diff options
author | Richard Henderson <rth@redhat.com> | 1999-05-03 07:29:11 +0000 |
---|---|---|
committer | Richard Henderson <rth@redhat.com> | 1999-05-03 07:29:11 +0000 |
commit | 252b5132c753830d5fd56823373aed85f2a0db63 (patch) | |
tree | 1af963bfd8d3e55167b81def4207f175eaff3a56 /bfd/elflink.h | |
download | gdb-252b5132c753830d5fd56823373aed85f2a0db63.zip gdb-252b5132c753830d5fd56823373aed85f2a0db63.tar.gz gdb-252b5132c753830d5fd56823373aed85f2a0db63.tar.bz2 |
19990502 sourceware importbinu_ss_19990502
Diffstat (limited to 'bfd/elflink.h')
-rw-r--r-- | bfd/elflink.h | 6150 |
1 files changed, 6150 insertions, 0 deletions
diff --git a/bfd/elflink.h b/bfd/elflink.h new file mode 100644 index 0000000..32bfab0 --- /dev/null +++ b/bfd/elflink.h @@ -0,0 +1,6150 @@ +/* ELF linker support. + Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc. + +This file is part of BFD, the Binary File Descriptor library. + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program; if not, write to the Free Software +Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + +/* ELF linker code. */ + +/* This struct is used to pass information to routines called via + elf_link_hash_traverse which must return failure. */ + +struct elf_info_failed +{ + boolean failed; + struct bfd_link_info *info; +}; + +static boolean elf_link_add_object_symbols + PARAMS ((bfd *, struct bfd_link_info *)); +static boolean elf_link_add_archive_symbols + PARAMS ((bfd *, struct bfd_link_info *)); +static boolean elf_merge_symbol + PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *, + asection **, bfd_vma *, struct elf_link_hash_entry **, + boolean *, boolean *, boolean *)); +static boolean elf_export_symbol + PARAMS ((struct elf_link_hash_entry *, PTR)); +static boolean elf_fix_symbol_flags + PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *)); +static boolean elf_adjust_dynamic_symbol + PARAMS ((struct elf_link_hash_entry *, PTR)); +static boolean elf_link_find_version_dependencies + PARAMS ((struct elf_link_hash_entry *, PTR)); +static boolean elf_link_find_version_dependencies + PARAMS ((struct elf_link_hash_entry *, PTR)); +static boolean elf_link_assign_sym_version + PARAMS ((struct elf_link_hash_entry *, PTR)); +static boolean elf_link_renumber_dynsyms + PARAMS ((struct elf_link_hash_entry *, PTR)); +static boolean elf_collect_hash_codes + PARAMS ((struct elf_link_hash_entry *, PTR)); + +/* Given an ELF BFD, add symbols to the global hash table as + appropriate. */ + +boolean +elf_bfd_link_add_symbols (abfd, info) + bfd *abfd; + struct bfd_link_info *info; +{ + switch (bfd_get_format (abfd)) + { + case bfd_object: + return elf_link_add_object_symbols (abfd, info); + case bfd_archive: + return elf_link_add_archive_symbols (abfd, info); + default: + bfd_set_error (bfd_error_wrong_format); + return false; + } +} + + +/* Add symbols from an ELF archive file to the linker hash table. We + don't use _bfd_generic_link_add_archive_symbols because of a + problem which arises on UnixWare. The UnixWare libc.so is an + archive which includes an entry libc.so.1 which defines a bunch of + symbols. The libc.so archive also includes a number of other + object files, which also define symbols, some of which are the same + as those defined in libc.so.1. Correct linking requires that we + consider each object file in turn, and include it if it defines any + symbols we need. _bfd_generic_link_add_archive_symbols does not do + this; it looks through the list of undefined symbols, and includes + any object file which defines them. When this algorithm is used on + UnixWare, it winds up pulling in libc.so.1 early and defining a + bunch of symbols. This means that some of the other objects in the + archive are not included in the link, which is incorrect since they + precede libc.so.1 in the archive. + + Fortunately, ELF archive handling is simpler than that done by + _bfd_generic_link_add_archive_symbols, which has to allow for a.out + oddities. In ELF, if we find a symbol in the archive map, and the + symbol is currently undefined, we know that we must pull in that + object file. + + Unfortunately, we do have to make multiple passes over the symbol + table until nothing further is resolved. */ + +static boolean +elf_link_add_archive_symbols (abfd, info) + bfd *abfd; + struct bfd_link_info *info; +{ + symindex c; + boolean *defined = NULL; + boolean *included = NULL; + carsym *symdefs; + boolean loop; + + if (! bfd_has_map (abfd)) + { + /* An empty archive is a special case. */ + if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL) + return true; + bfd_set_error (bfd_error_no_armap); + return false; + } + + /* Keep track of all symbols we know to be already defined, and all + files we know to be already included. This is to speed up the + second and subsequent passes. */ + c = bfd_ardata (abfd)->symdef_count; + if (c == 0) + return true; + defined = (boolean *) bfd_malloc (c * sizeof (boolean)); + included = (boolean *) bfd_malloc (c * sizeof (boolean)); + if (defined == (boolean *) NULL || included == (boolean *) NULL) + goto error_return; + memset (defined, 0, c * sizeof (boolean)); + memset (included, 0, c * sizeof (boolean)); + + symdefs = bfd_ardata (abfd)->symdefs; + + do + { + file_ptr last; + symindex i; + carsym *symdef; + carsym *symdefend; + + loop = false; + last = -1; + + symdef = symdefs; + symdefend = symdef + c; + for (i = 0; symdef < symdefend; symdef++, i++) + { + struct elf_link_hash_entry *h; + bfd *element; + struct bfd_link_hash_entry *undefs_tail; + symindex mark; + + if (defined[i] || included[i]) + continue; + if (symdef->file_offset == last) + { + included[i] = true; + continue; + } + + h = elf_link_hash_lookup (elf_hash_table (info), symdef->name, + false, false, false); + + if (h == NULL) + { + char *p, *copy; + + /* If this is a default version (the name contains @@), + look up the symbol again without the version. The + effect is that references to the symbol without the + version will be matched by the default symbol in the + archive. */ + + p = strchr (symdef->name, ELF_VER_CHR); + if (p == NULL || p[1] != ELF_VER_CHR) + continue; + + copy = bfd_alloc (abfd, p - symdef->name + 1); + if (copy == NULL) + goto error_return; + memcpy (copy, symdef->name, p - symdef->name); + copy[p - symdef->name] = '\0'; + + h = elf_link_hash_lookup (elf_hash_table (info), copy, + false, false, false); + + bfd_release (abfd, copy); + } + + if (h == NULL) + continue; + + if (h->root.type != bfd_link_hash_undefined) + { + if (h->root.type != bfd_link_hash_undefweak) + defined[i] = true; + continue; + } + + /* We need to include this archive member. */ + + element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); + if (element == (bfd *) NULL) + goto error_return; + + if (! bfd_check_format (element, bfd_object)) + goto error_return; + + /* Doublecheck that we have not included this object + already--it should be impossible, but there may be + something wrong with the archive. */ + if (element->archive_pass != 0) + { + bfd_set_error (bfd_error_bad_value); + goto error_return; + } + element->archive_pass = 1; + + undefs_tail = info->hash->undefs_tail; + + if (! (*info->callbacks->add_archive_element) (info, element, + symdef->name)) + goto error_return; + if (! elf_link_add_object_symbols (element, info)) + goto error_return; + + /* If there are any new undefined symbols, we need to make + another pass through the archive in order to see whether + they can be defined. FIXME: This isn't perfect, because + common symbols wind up on undefs_tail and because an + undefined symbol which is defined later on in this pass + does not require another pass. This isn't a bug, but it + does make the code less efficient than it could be. */ + if (undefs_tail != info->hash->undefs_tail) + loop = true; + + /* Look backward to mark all symbols from this object file + which we have already seen in this pass. */ + mark = i; + do + { + included[mark] = true; + if (mark == 0) + break; + --mark; + } + while (symdefs[mark].file_offset == symdef->file_offset); + + /* We mark subsequent symbols from this object file as we go + on through the loop. */ + last = symdef->file_offset; + } + } + while (loop); + + free (defined); + free (included); + + return true; + + error_return: + if (defined != (boolean *) NULL) + free (defined); + if (included != (boolean *) NULL) + free (included); + return false; +} + +/* This function is called when we want to define a new symbol. It + handles the various cases which arise when we find a definition in + a dynamic object, or when there is already a definition in a + dynamic object. The new symbol is described by NAME, SYM, PSEC, + and PVALUE. We set SYM_HASH to the hash table entry. We set + OVERRIDE if the old symbol is overriding a new definition. We set + TYPE_CHANGE_OK if it is OK for the type to change. We set + SIZE_CHANGE_OK if it is OK for the size to change. By OK to + change, we mean that we shouldn't warn if the type or size does + change. */ + +static boolean +elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash, + override, type_change_ok, size_change_ok) + bfd *abfd; + struct bfd_link_info *info; + const char *name; + Elf_Internal_Sym *sym; + asection **psec; + bfd_vma *pvalue; + struct elf_link_hash_entry **sym_hash; + boolean *override; + boolean *type_change_ok; + boolean *size_change_ok; +{ + asection *sec; + struct elf_link_hash_entry *h; + int bind; + bfd *oldbfd; + boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; + + *override = false; + + sec = *psec; + bind = ELF_ST_BIND (sym->st_info); + + if (! bfd_is_und_section (sec)) + h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false); + else + h = ((struct elf_link_hash_entry *) + bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false)); + if (h == NULL) + return false; + *sym_hash = h; + + /* This code is for coping with dynamic objects, and is only useful + if we are doing an ELF link. */ + if (info->hash->creator != abfd->xvec) + return true; + + /* For merging, we only care about real symbols. */ + + while (h->root.type == bfd_link_hash_indirect + || h->root.type == bfd_link_hash_warning) + h = (struct elf_link_hash_entry *) h->root.u.i.link; + + /* If we just created the symbol, mark it as being an ELF symbol. + Other than that, there is nothing to do--there is no merge issue + with a newly defined symbol--so we just return. */ + + if (h->root.type == bfd_link_hash_new) + { + h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; + return true; + } + + /* OLDBFD is a BFD associated with the existing symbol. */ + + switch (h->root.type) + { + default: + oldbfd = NULL; + break; + + case bfd_link_hash_undefined: + case bfd_link_hash_undefweak: + oldbfd = h->root.u.undef.abfd; + break; + + case bfd_link_hash_defined: + case bfd_link_hash_defweak: + oldbfd = h->root.u.def.section->owner; + break; + + case bfd_link_hash_common: + oldbfd = h->root.u.c.p->section->owner; + break; + } + + /* NEWDYN and OLDDYN indicate whether the new or old symbol, + respectively, is from a dynamic object. */ + + if ((abfd->flags & DYNAMIC) != 0) + newdyn = true; + else + newdyn = false; + + if (oldbfd == NULL || (oldbfd->flags & DYNAMIC) == 0) + olddyn = false; + else + olddyn = true; + + /* NEWDEF and OLDDEF indicate whether the new or old symbol, + respectively, appear to be a definition rather than reference. */ + + if (bfd_is_und_section (sec) || bfd_is_com_section (sec)) + newdef = false; + else + newdef = true; + + if (h->root.type == bfd_link_hash_undefined + || h->root.type == bfd_link_hash_undefweak + || h->root.type == bfd_link_hash_common) + olddef = false; + else + olddef = true; + + /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old + symbol, respectively, appears to be a common symbol in a dynamic + object. If a symbol appears in an uninitialized section, and is + not weak, and is not a function, then it may be a common symbol + which was resolved when the dynamic object was created. We want + to treat such symbols specially, because they raise special + considerations when setting the symbol size: if the symbol + appears as a common symbol in a regular object, and the size in + the regular object is larger, we must make sure that we use the + larger size. This problematic case can always be avoided in C, + but it must be handled correctly when using Fortran shared + libraries. + + Note that if NEWDYNCOMMON is set, NEWDEF will be set, and + likewise for OLDDYNCOMMON and OLDDEF. + + Note that this test is just a heuristic, and that it is quite + possible to have an uninitialized symbol in a shared object which + is really a definition, rather than a common symbol. This could + lead to some minor confusion when the symbol really is a common + symbol in some regular object. However, I think it will be + harmless. */ + + if (newdyn + && newdef + && (sec->flags & SEC_ALLOC) != 0 + && (sec->flags & SEC_LOAD) == 0 + && sym->st_size > 0 + && bind != STB_WEAK + && ELF_ST_TYPE (sym->st_info) != STT_FUNC) + newdyncommon = true; + else + newdyncommon = false; + + if (olddyn + && olddef + && h->root.type == bfd_link_hash_defined + && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 + && (h->root.u.def.section->flags & SEC_ALLOC) != 0 + && (h->root.u.def.section->flags & SEC_LOAD) == 0 + && h->size > 0 + && h->type != STT_FUNC) + olddyncommon = true; + else + olddyncommon = false; + + /* It's OK to change the type if either the existing symbol or the + new symbol is weak. */ + + if (h->root.type == bfd_link_hash_defweak + || h->root.type == bfd_link_hash_undefweak + || bind == STB_WEAK) + *type_change_ok = true; + + /* It's OK to change the size if either the existing symbol or the + new symbol is weak, or if the old symbol is undefined. */ + + if (*type_change_ok + || h->root.type == bfd_link_hash_undefined) + *size_change_ok = true; + + /* If both the old and the new symbols look like common symbols in a + dynamic object, set the size of the symbol to the larger of the + two. */ + + if (olddyncommon + && newdyncommon + && sym->st_size != h->size) + { + /* Since we think we have two common symbols, issue a multiple + common warning if desired. Note that we only warn if the + size is different. If the size is the same, we simply let + the old symbol override the new one as normally happens with + symbols defined in dynamic objects. */ + + if (! ((*info->callbacks->multiple_common) + (info, h->root.root.string, oldbfd, bfd_link_hash_common, + h->size, abfd, bfd_link_hash_common, sym->st_size))) + return false; + + if (sym->st_size > h->size) + h->size = sym->st_size; + + *size_change_ok = true; + } + + /* If we are looking at a dynamic object, and we have found a + definition, we need to see if the symbol was already defined by + some other object. If so, we want to use the existing + definition, and we do not want to report a multiple symbol + definition error; we do this by clobbering *PSEC to be + bfd_und_section_ptr. + + We treat a common symbol as a definition if the symbol in the + shared library is a function, since common symbols always + represent variables; this can cause confusion in principle, but + any such confusion would seem to indicate an erroneous program or + shared library. We also permit a common symbol in a regular + object to override a weak symbol in a shared object. */ + + if (newdyn + && newdef + && (olddef + || (h->root.type == bfd_link_hash_common + && (bind == STB_WEAK + || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))) + { + *override = true; + newdef = false; + newdyncommon = false; + + *psec = sec = bfd_und_section_ptr; + *size_change_ok = true; + + /* If we get here when the old symbol is a common symbol, then + we are explicitly letting it override a weak symbol or + function in a dynamic object, and we don't want to warn about + a type change. If the old symbol is a defined symbol, a type + change warning may still be appropriate. */ + + if (h->root.type == bfd_link_hash_common) + *type_change_ok = true; + } + + /* Handle the special case of an old common symbol merging with a + new symbol which looks like a common symbol in a shared object. + We change *PSEC and *PVALUE to make the new symbol look like a + common symbol, and let _bfd_generic_link_add_one_symbol will do + the right thing. */ + + if (newdyncommon + && h->root.type == bfd_link_hash_common) + { + *override = true; + newdef = false; + newdyncommon = false; + *pvalue = sym->st_size; + *psec = sec = bfd_com_section_ptr; + *size_change_ok = true; + } + + /* If the old symbol is from a dynamic object, and the new symbol is + a definition which is not from a dynamic object, then the new + symbol overrides the old symbol. Symbols from regular files + always take precedence over symbols from dynamic objects, even if + they are defined after the dynamic object in the link. + + As above, we again permit a common symbol in a regular object to + override a definition in a shared object if the shared object + symbol is a function or is weak. */ + + if (! newdyn + && (newdef + || (bfd_is_com_section (sec) + && (h->root.type == bfd_link_hash_defweak + || h->type == STT_FUNC))) + && olddyn + && olddef + && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0) + { + /* Change the hash table entry to undefined, and let + _bfd_generic_link_add_one_symbol do the right thing with the + new definition. */ + + h->root.type = bfd_link_hash_undefined; + h->root.u.undef.abfd = h->root.u.def.section->owner; + *size_change_ok = true; + + olddef = false; + olddyncommon = false; + + /* We again permit a type change when a common symbol may be + overriding a function. */ + + if (bfd_is_com_section (sec)) + *type_change_ok = true; + + /* This union may have been set to be non-NULL when this symbol + was seen in a dynamic object. We must force the union to be + NULL, so that it is correct for a regular symbol. */ + + h->verinfo.vertree = NULL; + + /* In this special case, if H is the target of an indirection, + we want the caller to frob with H rather than with the + indirect symbol. That will permit the caller to redefine the + target of the indirection, rather than the indirect symbol + itself. FIXME: This will break the -y option if we store a + symbol with a different name. */ + *sym_hash = h; + } + + /* Handle the special case of a new common symbol merging with an + old symbol that looks like it might be a common symbol defined in + a shared object. Note that we have already handled the case in + which a new common symbol should simply override the definition + in the shared library. */ + + if (! newdyn + && bfd_is_com_section (sec) + && olddyncommon) + { + /* It would be best if we could set the hash table entry to a + common symbol, but we don't know what to use for the section + or the alignment. */ + if (! ((*info->callbacks->multiple_common) + (info, h->root.root.string, oldbfd, bfd_link_hash_common, + h->size, abfd, bfd_link_hash_common, sym->st_size))) + return false; + + /* If the predumed common symbol in the dynamic object is + larger, pretend that the new symbol has its size. */ + + if (h->size > *pvalue) + *pvalue = h->size; + + /* FIXME: We no longer know the alignment required by the symbol + in the dynamic object, so we just wind up using the one from + the regular object. */ + + olddef = false; + olddyncommon = false; + + h->root.type = bfd_link_hash_undefined; + h->root.u.undef.abfd = h->root.u.def.section->owner; + + *size_change_ok = true; + *type_change_ok = true; + + h->verinfo.vertree = NULL; + } + + return true; +} + +/* Add symbols from an ELF object file to the linker hash table. */ + +static boolean +elf_link_add_object_symbols (abfd, info) + bfd *abfd; + struct bfd_link_info *info; +{ + boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *, + const Elf_Internal_Sym *, + const char **, flagword *, + asection **, bfd_vma *)); + boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *, + asection *, const Elf_Internal_Rela *)); + boolean collect; + Elf_Internal_Shdr *hdr; + size_t symcount; + size_t extsymcount; + size_t extsymoff; + Elf_External_Sym *buf = NULL; + struct elf_link_hash_entry **sym_hash; + boolean dynamic; + bfd_byte *dynver = NULL; + Elf_External_Versym *extversym = NULL; + Elf_External_Versym *ever; + Elf_External_Dyn *dynbuf = NULL; + struct elf_link_hash_entry *weaks; + Elf_External_Sym *esym; + Elf_External_Sym *esymend; + + add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook; + collect = get_elf_backend_data (abfd)->collect; + + if ((abfd->flags & DYNAMIC) == 0) + dynamic = false; + else + { + dynamic = true; + + /* You can't use -r against a dynamic object. Also, there's no + hope of using a dynamic object which does not exactly match + the format of the output file. */ + if (info->relocateable || info->hash->creator != abfd->xvec) + { + bfd_set_error (bfd_error_invalid_operation); + goto error_return; + } + } + + /* As a GNU extension, any input sections which are named + .gnu.warning.SYMBOL are treated as warning symbols for the given + symbol. This differs from .gnu.warning sections, which generate + warnings when they are included in an output file. */ + if (! info->shared) + { + asection *s; + + for (s = abfd->sections; s != NULL; s = s->next) + { + const char *name; + + name = bfd_get_section_name (abfd, s); + if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0) + { + char *msg; + bfd_size_type sz; + + name += sizeof ".gnu.warning." - 1; + + /* If this is a shared object, then look up the symbol + in the hash table. If it is there, and it is already + been defined, then we will not be using the entry + from this shared object, so we don't need to warn. + FIXME: If we see the definition in a regular object + later on, we will warn, but we shouldn't. The only + fix is to keep track of what warnings we are supposed + to emit, and then handle them all at the end of the + link. */ + if (dynamic && abfd->xvec == info->hash->creator) + { + struct elf_link_hash_entry *h; + + h = elf_link_hash_lookup (elf_hash_table (info), name, + false, false, true); + + /* FIXME: What about bfd_link_hash_common? */ + if (h != NULL + && (h->root.type == bfd_link_hash_defined + || h->root.type == bfd_link_hash_defweak)) + { + /* We don't want to issue this warning. Clobber + the section size so that the warning does not + get copied into the output file. */ + s->_raw_size = 0; + continue; + } + } + + sz = bfd_section_size (abfd, s); + msg = (char *) bfd_alloc (abfd, sz + 1); + if (msg == NULL) + goto error_return; + + if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz)) + goto error_return; + + msg[sz] = '\0'; + + if (! (_bfd_generic_link_add_one_symbol + (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg, + false, collect, (struct bfd_link_hash_entry **) NULL))) + goto error_return; + + if (! info->relocateable) + { + /* Clobber the section size so that the warning does + not get copied into the output file. */ + s->_raw_size = 0; + } + } + } + } + + /* If this is a dynamic object, we always link against the .dynsym + symbol table, not the .symtab symbol table. The dynamic linker + will only see the .dynsym symbol table, so there is no reason to + look at .symtab for a dynamic object. */ + + if (! dynamic || elf_dynsymtab (abfd) == 0) + hdr = &elf_tdata (abfd)->symtab_hdr; + else + hdr = &elf_tdata (abfd)->dynsymtab_hdr; + + if (dynamic) + { + /* Read in any version definitions. */ + + if (! _bfd_elf_slurp_version_tables (abfd)) + goto error_return; + + /* Read in the symbol versions, but don't bother to convert them + to internal format. */ + if (elf_dynversym (abfd) != 0) + { + Elf_Internal_Shdr *versymhdr; + + versymhdr = &elf_tdata (abfd)->dynversym_hdr; + extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size); + if (extversym == NULL) + goto error_return; + if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0 + || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd) + != versymhdr->sh_size)) + goto error_return; + } + } + + symcount = hdr->sh_size / sizeof (Elf_External_Sym); + + /* The sh_info field of the symtab header tells us where the + external symbols start. We don't care about the local symbols at + this point. */ + if (elf_bad_symtab (abfd)) + { + extsymcount = symcount; + extsymoff = 0; + } + else + { + extsymcount = symcount - hdr->sh_info; + extsymoff = hdr->sh_info; + } + + buf = ((Elf_External_Sym *) + bfd_malloc (extsymcount * sizeof (Elf_External_Sym))); + if (buf == NULL && extsymcount != 0) + goto error_return; + + /* We store a pointer to the hash table entry for each external + symbol. */ + sym_hash = ((struct elf_link_hash_entry **) + bfd_alloc (abfd, + extsymcount * sizeof (struct elf_link_hash_entry *))); + if (sym_hash == NULL) + goto error_return; + elf_sym_hashes (abfd) = sym_hash; + + if (! dynamic) + { + /* If we are creating a shared library, create all the dynamic + sections immediately. We need to attach them to something, + so we attach them to this BFD, provided it is the right + format. FIXME: If there are no input BFD's of the same + format as the output, we can't make a shared library. */ + if (info->shared + && ! elf_hash_table (info)->dynamic_sections_created + && abfd->xvec == info->hash->creator) + { + if (! elf_link_create_dynamic_sections (abfd, info)) + goto error_return; + } + } + else + { + asection *s; + boolean add_needed; + const char *name; + bfd_size_type oldsize; + bfd_size_type strindex; + + /* Find the name to use in a DT_NEEDED entry that refers to this + object. If the object has a DT_SONAME entry, we use it. + Otherwise, if the generic linker stuck something in + elf_dt_name, we use that. Otherwise, we just use the file + name. If the generic linker put a null string into + elf_dt_name, we don't make a DT_NEEDED entry at all, even if + there is a DT_SONAME entry. */ + add_needed = true; + name = bfd_get_filename (abfd); + if (elf_dt_name (abfd) != NULL) + { + name = elf_dt_name (abfd); + if (*name == '\0') + add_needed = false; + } + s = bfd_get_section_by_name (abfd, ".dynamic"); + if (s != NULL) + { + Elf_External_Dyn *extdyn; + Elf_External_Dyn *extdynend; + int elfsec; + unsigned long link; + + dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size); + if (dynbuf == NULL) + goto error_return; + + if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, + (file_ptr) 0, s->_raw_size)) + goto error_return; + + elfsec = _bfd_elf_section_from_bfd_section (abfd, s); + if (elfsec == -1) + goto error_return; + link = elf_elfsections (abfd)[elfsec]->sh_link; + + extdyn = dynbuf; + extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn); + for (; extdyn < extdynend; extdyn++) + { + Elf_Internal_Dyn dyn; + + elf_swap_dyn_in (abfd, extdyn, &dyn); + if (dyn.d_tag == DT_SONAME) + { + name = bfd_elf_string_from_elf_section (abfd, link, + dyn.d_un.d_val); + if (name == NULL) + goto error_return; + } + if (dyn.d_tag == DT_NEEDED) + { + struct bfd_link_needed_list *n, **pn; + char *fnm, *anm; + + n = ((struct bfd_link_needed_list *) + bfd_alloc (abfd, sizeof (struct bfd_link_needed_list))); + fnm = bfd_elf_string_from_elf_section (abfd, link, + dyn.d_un.d_val); + if (n == NULL || fnm == NULL) + goto error_return; + anm = bfd_alloc (abfd, strlen (fnm) + 1); + if (anm == NULL) + goto error_return; + strcpy (anm, fnm); + n->name = anm; + n->by = abfd; + n->next = NULL; + for (pn = &elf_hash_table (info)->needed; + *pn != NULL; + pn = &(*pn)->next) + ; + *pn = n; + } + } + + free (dynbuf); + dynbuf = NULL; + } + + /* We do not want to include any of the sections in a dynamic + object in the output file. We hack by simply clobbering the + list of sections in the BFD. This could be handled more + cleanly by, say, a new section flag; the existing + SEC_NEVER_LOAD flag is not the one we want, because that one + still implies that the section takes up space in the output + file. */ + abfd->sections = NULL; + abfd->section_count = 0; + + /* If this is the first dynamic object found in the link, create + the special sections required for dynamic linking. */ + if (! elf_hash_table (info)->dynamic_sections_created) + { + if (! elf_link_create_dynamic_sections (abfd, info)) + goto error_return; + } + + if (add_needed) + { + /* Add a DT_NEEDED entry for this dynamic object. */ + oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); + strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name, + true, false); + if (strindex == (bfd_size_type) -1) + goto error_return; + + if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr)) + { + asection *sdyn; + Elf_External_Dyn *dyncon, *dynconend; + + /* The hash table size did not change, which means that + the dynamic object name was already entered. If we + have already included this dynamic object in the + link, just ignore it. There is no reason to include + a particular dynamic object more than once. */ + sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj, + ".dynamic"); + BFD_ASSERT (sdyn != NULL); + + dyncon = (Elf_External_Dyn *) sdyn->contents; + dynconend = (Elf_External_Dyn *) (sdyn->contents + + sdyn->_raw_size); + for (; dyncon < dynconend; dyncon++) + { + Elf_Internal_Dyn dyn; + + elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon, + &dyn); + if (dyn.d_tag == DT_NEEDED + && dyn.d_un.d_val == strindex) + { + if (buf != NULL) + free (buf); + if (extversym != NULL) + free (extversym); + return true; + } + } + } + + if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex)) + goto error_return; + } + + /* Save the SONAME, if there is one, because sometimes the + linker emulation code will need to know it. */ + if (*name == '\0') + name = bfd_get_filename (abfd); + elf_dt_name (abfd) = name; + } + + if (bfd_seek (abfd, + hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym), + SEEK_SET) != 0 + || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd) + != extsymcount * sizeof (Elf_External_Sym))) + goto error_return; + + weaks = NULL; + + ever = extversym != NULL ? extversym + extsymoff : NULL; + esymend = buf + extsymcount; + for (esym = buf; + esym < esymend; + esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) + { + Elf_Internal_Sym sym; + int bind; + bfd_vma value; + asection *sec; + flagword flags; + const char *name; + struct elf_link_hash_entry *h; + boolean definition; + boolean size_change_ok, type_change_ok; + boolean new_weakdef; + unsigned int old_alignment; + + elf_swap_symbol_in (abfd, esym, &sym); + + flags = BSF_NO_FLAGS; + sec = NULL; + value = sym.st_value; + *sym_hash = NULL; + + bind = ELF_ST_BIND (sym.st_info); + if (bind == STB_LOCAL) + { + /* This should be impossible, since ELF requires that all + global symbols follow all local symbols, and that sh_info + point to the first global symbol. Unfortunatealy, Irix 5 + screws this up. */ + continue; + } + else if (bind == STB_GLOBAL) + { + if (sym.st_shndx != SHN_UNDEF + && sym.st_shndx != SHN_COMMON) + flags = BSF_GLOBAL; + else + flags = 0; + } + else if (bind == STB_WEAK) + flags = BSF_WEAK; + else + { + /* Leave it up to the processor backend. */ + } + + if (sym.st_shndx == SHN_UNDEF) + sec = bfd_und_section_ptr; + else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE) + { + sec = section_from_elf_index (abfd, sym.st_shndx); + if (sec == NULL) + sec = bfd_abs_section_ptr; + else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) + value -= sec->vma; + } + else if (sym.st_shndx == SHN_ABS) + sec = bfd_abs_section_ptr; + else if (sym.st_shndx == SHN_COMMON) + { + sec = bfd_com_section_ptr; + /* What ELF calls the size we call the value. What ELF + calls the value we call the alignment. */ + value = sym.st_size; + } + else + { + /* Leave it up to the processor backend. */ + } + + name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name); + if (name == (const char *) NULL) + goto error_return; + + if (add_symbol_hook) + { + if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec, + &value)) + goto error_return; + + /* The hook function sets the name to NULL if this symbol + should be skipped for some reason. */ + if (name == (const char *) NULL) + continue; + } + + /* Sanity check that all possibilities were handled. */ + if (sec == (asection *) NULL) + { + bfd_set_error (bfd_error_bad_value); + goto error_return; + } + + if (bfd_is_und_section (sec) + || bfd_is_com_section (sec)) + definition = false; + else + definition = true; + + size_change_ok = false; + type_change_ok = get_elf_backend_data (abfd)->type_change_ok; + old_alignment = 0; + if (info->hash->creator->flavour == bfd_target_elf_flavour) + { + Elf_Internal_Versym iver; + unsigned int vernum = 0; + boolean override; + + if (ever != NULL) + { + _bfd_elf_swap_versym_in (abfd, ever, &iver); + vernum = iver.vs_vers & VERSYM_VERSION; + + /* If this is a hidden symbol, or if it is not version + 1, we append the version name to the symbol name. + However, we do not modify a non-hidden absolute + symbol, because it might be the version symbol + itself. FIXME: What if it isn't? */ + if ((iver.vs_vers & VERSYM_HIDDEN) != 0 + || (vernum > 1 && ! bfd_is_abs_section (sec))) + { + const char *verstr; + int namelen, newlen; + char *newname, *p; + + if (sym.st_shndx != SHN_UNDEF) + { + if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info) + { + (*_bfd_error_handler) + (_("%s: %s: invalid version %u (max %d)"), + bfd_get_filename (abfd), name, vernum, + elf_tdata (abfd)->dynverdef_hdr.sh_info); + bfd_set_error (bfd_error_bad_value); + goto error_return; + } + else if (vernum > 1) + verstr = + elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; + else + verstr = ""; + } + else + { + /* We cannot simply test for the number of + entries in the VERNEED section since the + numbers for the needed versions do not start + at 0. */ + Elf_Internal_Verneed *t; + + verstr = NULL; + for (t = elf_tdata (abfd)->verref; + t != NULL; + t = t->vn_nextref) + { + Elf_Internal_Vernaux *a; + + for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) + { + if (a->vna_other == vernum) + { + verstr = a->vna_nodename; + break; + } + } + if (a != NULL) + break; + } + if (verstr == NULL) + { + (*_bfd_error_handler) + (_("%s: %s: invalid needed version %d"), + bfd_get_filename (abfd), name, vernum); + bfd_set_error (bfd_error_bad_value); + goto error_return; + } + } + + namelen = strlen (name); + newlen = namelen + strlen (verstr) + 2; + if ((iver.vs_vers & VERSYM_HIDDEN) == 0) + ++newlen; + + newname = (char *) bfd_alloc (abfd, newlen); + if (newname == NULL) + goto error_return; + strcpy (newname, name); + p = newname + namelen; + *p++ = ELF_VER_CHR; + if ((iver.vs_vers & VERSYM_HIDDEN) == 0) + *p++ = ELF_VER_CHR; + strcpy (p, verstr); + + name = newname; + } + } + + if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value, + sym_hash, &override, &type_change_ok, + &size_change_ok)) + goto error_return; + + if (override) + definition = false; + + h = *sym_hash; + while (h->root.type == bfd_link_hash_indirect + || h->root.type == bfd_link_hash_warning) + h = (struct elf_link_hash_entry *) h->root.u.i.link; + + /* Remember the old alignment if this is a common symbol, so + that we don't reduce the alignment later on. We can't + check later, because _bfd_generic_link_add_one_symbol + will set a default for the alignment which we want to + override. */ + if (h->root.type == bfd_link_hash_common) + old_alignment = h->root.u.c.p->alignment_power; + + if (elf_tdata (abfd)->verdef != NULL + && ! override + && vernum > 1 + && definition) + h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; + } + + if (! (_bfd_generic_link_add_one_symbol + (info, abfd, name, flags, sec, value, (const char *) NULL, + false, collect, (struct bfd_link_hash_entry **) sym_hash))) + goto error_return; + + h = *sym_hash; + while (h->root.type == bfd_link_hash_indirect + || h->root.type == bfd_link_hash_warning) + h = (struct elf_link_hash_entry *) h->root.u.i.link; + *sym_hash = h; + + new_weakdef = false; + if (dynamic + && definition + && (flags & BSF_WEAK) != 0 + && ELF_ST_TYPE (sym.st_info) != STT_FUNC + && info->hash->creator->flavour == bfd_target_elf_flavour + && h->weakdef == NULL) + { + /* Keep a list of all weak defined non function symbols from + a dynamic object, using the weakdef field. Later in this + function we will set the weakdef field to the correct + value. We only put non-function symbols from dynamic + objects on this list, because that happens to be the only + time we need to know the normal symbol corresponding to a + weak symbol, and the information is time consuming to + figure out. If the weakdef field is not already NULL, + then this symbol was already defined by some previous + dynamic object, and we will be using that previous + definition anyhow. */ + + h->weakdef = weaks; + weaks = h; + new_weakdef = true; + } + + /* Set the alignment of a common symbol. */ + if (sym.st_shndx == SHN_COMMON + && h->root.type == bfd_link_hash_common) + { + unsigned int align; + + align = bfd_log2 (sym.st_value); + if (align > old_alignment) + h->root.u.c.p->alignment_power = align; + } + + if (info->hash->creator->flavour == bfd_target_elf_flavour) + { + int old_flags; + boolean dynsym; + int new_flag; + + /* Remember the symbol size and type. */ + if (sym.st_size != 0 + && (definition || h->size == 0)) + { + if (h->size != 0 && h->size != sym.st_size && ! size_change_ok) + (*_bfd_error_handler) + (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"), + name, (unsigned long) h->size, (unsigned long) sym.st_size, + bfd_get_filename (abfd)); + + h->size = sym.st_size; + } + + /* If this is a common symbol, then we always want H->SIZE + to be the size of the common symbol. The code just above + won't fix the size if a common symbol becomes larger. We + don't warn about a size change here, because that is + covered by --warn-common. */ + if (h->root.type == bfd_link_hash_common) + h->size = h->root.u.c.size; + + if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE + && (definition || h->type == STT_NOTYPE)) + { + if (h->type != STT_NOTYPE + && h->type != ELF_ST_TYPE (sym.st_info) + && ! type_change_ok) + (*_bfd_error_handler) + (_("Warning: type of symbol `%s' changed from %d to %d in %s"), + name, h->type, ELF_ST_TYPE (sym.st_info), + bfd_get_filename (abfd)); + + h->type = ELF_ST_TYPE (sym.st_info); + } + + if (sym.st_other != 0 + && (definition || h->other == 0)) + h->other = sym.st_other; + + /* Set a flag in the hash table entry indicating the type of + reference or definition we just found. Keep a count of + the number of dynamic symbols we find. A dynamic symbol + is one which is referenced or defined by both a regular + object and a shared object. */ + old_flags = h->elf_link_hash_flags; + dynsym = false; + if (! dynamic) + { + if (! definition) + { + new_flag = ELF_LINK_HASH_REF_REGULAR; + if (bind != STB_WEAK) + new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK; + } + else + new_flag = ELF_LINK_HASH_DEF_REGULAR; + if (info->shared + || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC + | ELF_LINK_HASH_REF_DYNAMIC)) != 0) + dynsym = true; + } + else + { + if (! definition) + new_flag = ELF_LINK_HASH_REF_DYNAMIC; + else + new_flag = ELF_LINK_HASH_DEF_DYNAMIC; + if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR + | ELF_LINK_HASH_REF_REGULAR)) != 0 + || (h->weakdef != NULL + && ! new_weakdef + && h->weakdef->dynindx != -1)) + dynsym = true; + } + + h->elf_link_hash_flags |= new_flag; + + /* If this symbol has a version, and it is the default + version, we create an indirect symbol from the default + name to the fully decorated name. This will cause + external references which do not specify a version to be + bound to this version of the symbol. */ + if (definition) + { + char *p; + + p = strchr (name, ELF_VER_CHR); + if (p != NULL && p[1] == ELF_VER_CHR) + { + char *shortname; + struct elf_link_hash_entry *hi; + boolean override; + + shortname = bfd_hash_allocate (&info->hash->table, + p - name + 1); + if (shortname == NULL) + goto error_return; + strncpy (shortname, name, p - name); + shortname[p - name] = '\0'; + + /* We are going to create a new symbol. Merge it + with any existing symbol with this name. For the + purposes of the merge, act as though we were + defining the symbol we just defined, although we + actually going to define an indirect symbol. */ + type_change_ok = false; + size_change_ok = false; + if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec, + &value, &hi, &override, + &type_change_ok, &size_change_ok)) + goto error_return; + + if (! override) + { + if (! (_bfd_generic_link_add_one_symbol + (info, abfd, shortname, BSF_INDIRECT, + bfd_ind_section_ptr, (bfd_vma) 0, name, false, + collect, (struct bfd_link_hash_entry **) &hi))) + goto error_return; + } + else + { + /* In this case the symbol named SHORTNAME is + overriding the indirect symbol we want to + add. We were planning on making SHORTNAME an + indirect symbol referring to NAME. SHORTNAME + is the name without a version. NAME is the + fully versioned name, and it is the default + version. + + Overriding means that we already saw a + definition for the symbol SHORTNAME in a + regular object, and it is overriding the + symbol defined in the dynamic object. + + When this happens, we actually want to change + NAME, the symbol we just added, to refer to + SHORTNAME. This will cause references to + NAME in the shared object to become + references to SHORTNAME in the regular + object. This is what we expect when we + override a function in a shared object: that + the references in the shared object will be + mapped to the definition in the regular + object. */ + + while (hi->root.type == bfd_link_hash_indirect + || hi->root.type == bfd_link_hash_warning) + hi = (struct elf_link_hash_entry *) hi->root.u.i.link; + + h->root.type = bfd_link_hash_indirect; + h->root.u.i.link = (struct bfd_link_hash_entry *) hi; + if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) + { + h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC; + hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC; + if (hi->elf_link_hash_flags + & (ELF_LINK_HASH_REF_REGULAR + | ELF_LINK_HASH_DEF_REGULAR)) + { + if (! _bfd_elf_link_record_dynamic_symbol (info, + hi)) + goto error_return; + } + } + + /* Now set HI to H, so that the following code + will set the other fields correctly. */ + hi = h; + } + + /* If there is a duplicate definition somewhere, + then HI may not point to an indirect symbol. We + will have reported an error to the user in that + case. */ + + if (hi->root.type == bfd_link_hash_indirect) + { + struct elf_link_hash_entry *ht; + + /* If the symbol became indirect, then we assume + that we have not seen a definition before. */ + BFD_ASSERT ((hi->elf_link_hash_flags + & (ELF_LINK_HASH_DEF_DYNAMIC + | ELF_LINK_HASH_DEF_REGULAR)) + == 0); + + ht = (struct elf_link_hash_entry *) hi->root.u.i.link; + + /* Copy down any references that we may have + already seen to the symbol which just became + indirect. */ + ht->elf_link_hash_flags |= + (hi->elf_link_hash_flags + & (ELF_LINK_HASH_REF_DYNAMIC + | ELF_LINK_HASH_REF_REGULAR + | ELF_LINK_HASH_REF_REGULAR_NONWEAK)); + + /* Copy over the global and procedure linkage table + offset entries. These may have been already set + up by a check_relocs routine. */ + if (ht->got.offset == (bfd_vma) -1) + { + ht->got.offset = hi->got.offset; + hi->got.offset = (bfd_vma) -1; + } + BFD_ASSERT (hi->got.offset == (bfd_vma) -1); + + if (ht->plt.offset == (bfd_vma) -1) + { + ht->plt.offset = hi->plt.offset; + hi->plt.offset = (bfd_vma) -1; + } + BFD_ASSERT (hi->plt.offset == (bfd_vma) -1); + + if (ht->dynindx == -1) + { + ht->dynindx = hi->dynindx; + ht->dynstr_index = hi->dynstr_index; + hi->dynindx = -1; + hi->dynstr_index = 0; + } + BFD_ASSERT (hi->dynindx == -1); + + /* FIXME: There may be other information to copy + over for particular targets. */ + + /* See if the new flags lead us to realize that + the symbol must be dynamic. */ + if (! dynsym) + { + if (! dynamic) + { + if (info->shared + || ((hi->elf_link_hash_flags + & ELF_LINK_HASH_REF_DYNAMIC) + != 0)) + dynsym = true; + } + else + { + if ((hi->elf_link_hash_flags + & ELF_LINK_HASH_REF_REGULAR) != 0) + dynsym = true; + } + } + } + + /* We also need to define an indirection from the + nondefault version of the symbol. */ + + shortname = bfd_hash_allocate (&info->hash->table, + strlen (name)); + if (shortname == NULL) + goto error_return; + strncpy (shortname, name, p - name); + strcpy (shortname + (p - name), p + 1); + + /* Once again, merge with any existing symbol. */ + type_change_ok = false; + size_change_ok = false; + if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec, + &value, &hi, &override, + &type_change_ok, &size_change_ok)) + goto error_return; + + if (override) + { + /* Here SHORTNAME is a versioned name, so we + don't expect to see the type of override we + do in the case above. */ + (*_bfd_error_handler) + (_("%s: warning: unexpected redefinition of `%s'"), + bfd_get_filename (abfd), shortname); + } + else + { + if (! (_bfd_generic_link_add_one_symbol + (info, abfd, shortname, BSF_INDIRECT, + bfd_ind_section_ptr, (bfd_vma) 0, name, false, + collect, (struct bfd_link_hash_entry **) &hi))) + goto error_return; + + /* If there is a duplicate definition somewhere, + then HI may not point to an indirect symbol. + We will have reported an error to the user in + that case. */ + + if (hi->root.type == bfd_link_hash_indirect) + { + /* If the symbol became indirect, then we + assume that we have not seen a definition + before. */ + BFD_ASSERT ((hi->elf_link_hash_flags + & (ELF_LINK_HASH_DEF_DYNAMIC + | ELF_LINK_HASH_DEF_REGULAR)) + == 0); + + /* Copy down any references that we may have + already seen to the symbol which just + became indirect. */ + h->elf_link_hash_flags |= + (hi->elf_link_hash_flags + & (ELF_LINK_HASH_REF_DYNAMIC + | ELF_LINK_HASH_REF_REGULAR + | ELF_LINK_HASH_REF_REGULAR_NONWEAK)); + + /* Copy over the global and procedure linkage + table offset entries. These may have been + already set up by a check_relocs routine. */ + if (h->got.offset == (bfd_vma) -1) + { + h->got.offset = hi->got.offset; + hi->got.offset = (bfd_vma) -1; + } + BFD_ASSERT (hi->got.offset == (bfd_vma) -1); + + if (h->plt.offset == (bfd_vma) -1) + { + h->plt.offset = hi->plt.offset; + hi->plt.offset = (bfd_vma) -1; + } + BFD_ASSERT (hi->got.offset == (bfd_vma) -1); + + if (h->dynindx == -1) + { + h->dynindx = hi->dynindx; + h->dynstr_index = hi->dynstr_index; + hi->dynindx = -1; + hi->dynstr_index = 0; + } + BFD_ASSERT (hi->dynindx == -1); + + /* FIXME: There may be other information to + copy over for particular targets. */ + + /* See if the new flags lead us to realize + that the symbol must be dynamic. */ + if (! dynsym) + { + if (! dynamic) + { + if (info->shared + || ((hi->elf_link_hash_flags + & ELF_LINK_HASH_REF_DYNAMIC) + != 0)) + dynsym = true; + } + else + { + if ((hi->elf_link_hash_flags + & ELF_LINK_HASH_REF_REGULAR) != 0) + dynsym = true; + } + } + } + } + } + } + + if (dynsym && h->dynindx == -1) + { + if (! _bfd_elf_link_record_dynamic_symbol (info, h)) + goto error_return; + if (h->weakdef != NULL + && ! new_weakdef + && h->weakdef->dynindx == -1) + { + if (! _bfd_elf_link_record_dynamic_symbol (info, + h->weakdef)) + goto error_return; + } + } + } + } + + /* Now set the weakdefs field correctly for all the weak defined + symbols we found. The only way to do this is to search all the + symbols. Since we only need the information for non functions in + dynamic objects, that's the only time we actually put anything on + the list WEAKS. We need this information so that if a regular + object refers to a symbol defined weakly in a dynamic object, the + real symbol in the dynamic object is also put in the dynamic + symbols; we also must arrange for both symbols to point to the + same memory location. We could handle the general case of symbol + aliasing, but a general symbol alias can only be generated in + assembler code, handling it correctly would be very time + consuming, and other ELF linkers don't handle general aliasing + either. */ + while (weaks != NULL) + { + struct elf_link_hash_entry *hlook; + asection *slook; + bfd_vma vlook; + struct elf_link_hash_entry **hpp; + struct elf_link_hash_entry **hppend; + + hlook = weaks; + weaks = hlook->weakdef; + hlook->weakdef = NULL; + + BFD_ASSERT (hlook->root.type == bfd_link_hash_defined + || hlook->root.type == bfd_link_hash_defweak + || hlook->root.type == bfd_link_hash_common + || hlook->root.type == bfd_link_hash_indirect); + slook = hlook->root.u.def.section; + vlook = hlook->root.u.def.value; + + hpp = elf_sym_hashes (abfd); + hppend = hpp + extsymcount; + for (; hpp < hppend; hpp++) + { + struct elf_link_hash_entry *h; + + h = *hpp; + if (h != NULL && h != hlook + && h->root.type == bfd_link_hash_defined + && h->root.u.def.section == slook + && h->root.u.def.value == vlook) + { + hlook->weakdef = h; + + /* If the weak definition is in the list of dynamic + symbols, make sure the real definition is put there + as well. */ + if (hlook->dynindx != -1 + && h->dynindx == -1) + { + if (! _bfd_elf_link_record_dynamic_symbol (info, h)) + goto error_return; + } + + /* If the real definition is in the list of dynamic + symbols, make sure the weak definition is put there + as well. If we don't do this, then the dynamic + loader might not merge the entries for the real + definition and the weak definition. */ + if (h->dynindx != -1 + && hlook->dynindx == -1) + { + if (! _bfd_elf_link_record_dynamic_symbol (info, hlook)) + goto error_return; + } + + break; + } + } + } + + if (buf != NULL) + { + free (buf); + buf = NULL; + } + + if (extversym != NULL) + { + free (extversym); + extversym = NULL; + } + + /* If this object is the same format as the output object, and it is + not a shared library, then let the backend look through the + relocs. + + This is required to build global offset table entries and to + arrange for dynamic relocs. It is not required for the + particular common case of linking non PIC code, even when linking + against shared libraries, but unfortunately there is no way of + knowing whether an object file has been compiled PIC or not. + Looking through the relocs is not particularly time consuming. + The problem is that we must either (1) keep the relocs in memory, + which causes the linker to require additional runtime memory or + (2) read the relocs twice from the input file, which wastes time. + This would be a good case for using mmap. + + I have no idea how to handle linking PIC code into a file of a + different format. It probably can't be done. */ + check_relocs = get_elf_backend_data (abfd)->check_relocs; + if (! dynamic + && abfd->xvec == info->hash->creator + && check_relocs != NULL) + { + asection *o; + + for (o = abfd->sections; o != NULL; o = o->next) + { + Elf_Internal_Rela *internal_relocs; + boolean ok; + + if ((o->flags & SEC_RELOC) == 0 + || o->reloc_count == 0 + || ((info->strip == strip_all || info->strip == strip_debugger) + && (o->flags & SEC_DEBUGGING) != 0) + || bfd_is_abs_section (o->output_section)) + continue; + + internal_relocs = (NAME(_bfd_elf,link_read_relocs) + (abfd, o, (PTR) NULL, + (Elf_Internal_Rela *) NULL, + info->keep_memory)); + if (internal_relocs == NULL) + goto error_return; + + ok = (*check_relocs) (abfd, info, o, internal_relocs); + + if (! info->keep_memory) + free (internal_relocs); + + if (! ok) + goto error_return; + } + } + + /* If this is a non-traditional, non-relocateable link, try to + optimize the handling of the .stab/.stabstr sections. */ + if (! dynamic + && ! info->relocateable + && ! info->traditional_format + && info->hash->creator->flavour == bfd_target_elf_flavour + && (info->strip != strip_all && info->strip != strip_debugger)) + { + asection *stab, *stabstr; + + stab = bfd_get_section_by_name (abfd, ".stab"); + if (stab != NULL) + { + stabstr = bfd_get_section_by_name (abfd, ".stabstr"); + + if (stabstr != NULL) + { + struct bfd_elf_section_data *secdata; + + secdata = elf_section_data (stab); + if (! _bfd_link_section_stabs (abfd, + &elf_hash_table (info)->stab_info, + stab, stabstr, + &secdata->stab_info)) + goto error_return; + } + } + } + + return true; + + error_return: + if (buf != NULL) + free (buf); + if (dynbuf != NULL) + free (dynbuf); + if (dynver != NULL) + free (dynver); + if (extversym != NULL) + free (extversym); + return false; +} + +/* Create some sections which will be filled in with dynamic linking + information. ABFD is an input file which requires dynamic sections + to be created. The dynamic sections take up virtual memory space + when the final executable is run, so we need to create them before + addresses are assigned to the output sections. We work out the + actual contents and size of these sections later. */ + +boolean +elf_link_create_dynamic_sections (abfd, info) + bfd *abfd; + struct bfd_link_info *info; +{ + flagword flags; + register asection *s; + struct elf_link_hash_entry *h; + struct elf_backend_data *bed; + + if (elf_hash_table (info)->dynamic_sections_created) + return true; + + /* Make sure that all dynamic sections use the same input BFD. */ + if (elf_hash_table (info)->dynobj == NULL) + elf_hash_table (info)->dynobj = abfd; + else + abfd = elf_hash_table (info)->dynobj; + + /* Note that we set the SEC_IN_MEMORY flag for all of these + sections. */ + flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS + | SEC_IN_MEMORY | SEC_LINKER_CREATED); + + /* A dynamically linked executable has a .interp section, but a + shared library does not. */ + if (! info->shared) + { + s = bfd_make_section (abfd, ".interp"); + if (s == NULL + || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) + return false; + } + + /* Create sections to hold version informations. These are removed + if they are not needed. */ + s = bfd_make_section (abfd, ".gnu.version_d"); + if (s == NULL + || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) + || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) + return false; + + s = bfd_make_section (abfd, ".gnu.version"); + if (s == NULL + || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) + || ! bfd_set_section_alignment (abfd, s, 1)) + return false; + + s = bfd_make_section (abfd, ".gnu.version_r"); + if (s == NULL + || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) + || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) + return false; + + s = bfd_make_section (abfd, ".dynsym"); + if (s == NULL + || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) + || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) + return false; + + s = bfd_make_section (abfd, ".dynstr"); + if (s == NULL + || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)) + return false; + + /* Create a strtab to hold the dynamic symbol names. */ + if (elf_hash_table (info)->dynstr == NULL) + { + elf_hash_table (info)->dynstr = elf_stringtab_init (); + if (elf_hash_table (info)->dynstr == NULL) + return false; + } + + s = bfd_make_section (abfd, ".dynamic"); + if (s == NULL + || ! bfd_set_section_flags (abfd, s, flags) + || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) + return false; + + /* The special symbol _DYNAMIC is always set to the start of the + .dynamic section. This call occurs before we have processed the + symbols for any dynamic object, so we don't have to worry about + overriding a dynamic definition. We could set _DYNAMIC in a + linker script, but we only want to define it if we are, in fact, + creating a .dynamic section. We don't want to define it if there + is no .dynamic section, since on some ELF platforms the start up + code examines it to decide how to initialize the process. */ + h = NULL; + if (! (_bfd_generic_link_add_one_symbol + (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0, + (const char *) NULL, false, get_elf_backend_data (abfd)->collect, + (struct bfd_link_hash_entry **) &h))) + return false; + h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; + h->type = STT_OBJECT; + + if (info->shared + && ! _bfd_elf_link_record_dynamic_symbol (info, h)) + return false; + + s = bfd_make_section (abfd, ".hash"); + if (s == NULL + || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY) + || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN)) + return false; + + /* Let the backend create the rest of the sections. This lets the + backend set the right flags. The backend will normally create + the .got and .plt sections. */ + bed = get_elf_backend_data (abfd); + if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) + return false; + + elf_hash_table (info)->dynamic_sections_created = true; + + return true; +} + +/* Add an entry to the .dynamic table. */ + +boolean +elf_add_dynamic_entry (info, tag, val) + struct bfd_link_info *info; + bfd_vma tag; + bfd_vma val; +{ + Elf_Internal_Dyn dyn; + bfd *dynobj; + asection *s; + size_t newsize; + bfd_byte *newcontents; + + dynobj = elf_hash_table (info)->dynobj; + + s = bfd_get_section_by_name (dynobj, ".dynamic"); + BFD_ASSERT (s != NULL); + + newsize = s->_raw_size + sizeof (Elf_External_Dyn); + newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); + if (newcontents == NULL) + return false; + + dyn.d_tag = tag; + dyn.d_un.d_val = val; + elf_swap_dyn_out (dynobj, &dyn, + (Elf_External_Dyn *) (newcontents + s->_raw_size)); + + s->_raw_size = newsize; + s->contents = newcontents; + + return true; +} + + +/* Read and swap the relocs for a section. They may have been cached. + If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL, + they are used as buffers to read into. They are known to be large + enough. If the INTERNAL_RELOCS relocs argument is NULL, the return + value is allocated using either malloc or bfd_alloc, according to + the KEEP_MEMORY argument. */ + +Elf_Internal_Rela * +NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs, + keep_memory) + bfd *abfd; + asection *o; + PTR external_relocs; + Elf_Internal_Rela *internal_relocs; + boolean keep_memory; +{ + Elf_Internal_Shdr *rel_hdr; + PTR alloc1 = NULL; + Elf_Internal_Rela *alloc2 = NULL; + + if (elf_section_data (o)->relocs != NULL) + return elf_section_data (o)->relocs; + + if (o->reloc_count == 0) + return NULL; + + rel_hdr = &elf_section_data (o)->rel_hdr; + + if (internal_relocs == NULL) + { + size_t size; + + size = o->reloc_count * sizeof (Elf_Internal_Rela); + if (keep_memory) + internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size); + else + internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); + if (internal_relocs == NULL) + goto error_return; + } + + if (external_relocs == NULL) + { + alloc1 = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size); + if (alloc1 == NULL) + goto error_return; + external_relocs = alloc1; + } + + if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0) + || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd) + != rel_hdr->sh_size)) + goto error_return; + + /* Swap in the relocs. For convenience, we always produce an + Elf_Internal_Rela array; if the relocs are Rel, we set the addend + to 0. */ + if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) + { + Elf_External_Rel *erel; + Elf_External_Rel *erelend; + Elf_Internal_Rela *irela; + + erel = (Elf_External_Rel *) external_relocs; + erelend = erel + o->reloc_count; + irela = internal_relocs; + for (; erel < erelend; erel++, irela++) + { + Elf_Internal_Rel irel; + + elf_swap_reloc_in (abfd, erel, &irel); + irela->r_offset = irel.r_offset; + irela->r_info = irel.r_info; + irela->r_addend = 0; + } + } + else + { + Elf_External_Rela *erela; + Elf_External_Rela *erelaend; + Elf_Internal_Rela *irela; + + BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela)); + + erela = (Elf_External_Rela *) external_relocs; + erelaend = erela + o->reloc_count; + irela = internal_relocs; + for (; erela < erelaend; erela++, irela++) + elf_swap_reloca_in (abfd, erela, irela); + } + + /* Cache the results for next time, if we can. */ + if (keep_memory) + elf_section_data (o)->relocs = internal_relocs; + + if (alloc1 != NULL) + free (alloc1); + + /* Don't free alloc2, since if it was allocated we are passing it + back (under the name of internal_relocs). */ + + return internal_relocs; + + error_return: + if (alloc1 != NULL) + free (alloc1); + if (alloc2 != NULL) + free (alloc2); + return NULL; +} + + +/* Record an assignment to a symbol made by a linker script. We need + this in case some dynamic object refers to this symbol. */ + +/*ARGSUSED*/ +boolean +NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide) + bfd *output_bfd; + struct bfd_link_info *info; + const char *name; + boolean provide; +{ + struct elf_link_hash_entry *h; + + if (info->hash->creator->flavour != bfd_target_elf_flavour) + return true; + + h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false); + if (h == NULL) + return false; + + if (h->root.type == bfd_link_hash_new) + h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF; + + /* If this symbol is being provided by the linker script, and it is + currently defined by a dynamic object, but not by a regular + object, then mark it as undefined so that the generic linker will + force the correct value. */ + if (provide + && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 + && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) + h->root.type = bfd_link_hash_undefined; + + /* If this symbol is not being provided by the linker script, and it is + currently defined by a dynamic object, but not by a regular object, + then clear out any version information because the symbol will not be + associated with the dynamic object any more. */ + if (!provide + && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 + && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) + h->verinfo.verdef = NULL; + + h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; + h->type = STT_OBJECT; + + if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC + | ELF_LINK_HASH_REF_DYNAMIC)) != 0 + || info->shared) + && h->dynindx == -1) + { + if (! _bfd_elf_link_record_dynamic_symbol (info, h)) + return false; + + /* If this is a weak defined symbol, and we know a corresponding + real symbol from the same dynamic object, make sure the real + symbol is also made into a dynamic symbol. */ + if (h->weakdef != NULL + && h->weakdef->dynindx == -1) + { + if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef)) + return false; + } + } + + return true; +} + +/* This structure is used to pass information to + elf_link_assign_sym_version. */ + +struct elf_assign_sym_version_info +{ + /* Output BFD. */ + bfd *output_bfd; + /* General link information. */ + struct bfd_link_info *info; + /* Version tree. */ + struct bfd_elf_version_tree *verdefs; + /* Whether we are exporting all dynamic symbols. */ + boolean export_dynamic; + /* Whether we removed any symbols from the dynamic symbol table. */ + boolean removed_dynamic; + /* Whether we had a failure. */ + boolean failed; +}; + +/* This structure is used to pass information to + elf_link_find_version_dependencies. */ + +struct elf_find_verdep_info +{ + /* Output BFD. */ + bfd *output_bfd; + /* General link information. */ + struct bfd_link_info *info; + /* The number of dependencies. */ + unsigned int vers; + /* Whether we had a failure. */ + boolean failed; +}; + +/* Array used to determine the number of hash table buckets to use + based on the number of symbols there are. If there are fewer than + 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, + fewer than 37 we use 17 buckets, and so forth. We never use more + than 32771 buckets. */ + +static const size_t elf_buckets[] = +{ + 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, + 16411, 32771, 0 +}; + +/* Compute bucket count for hashing table. We do not use a static set + of possible tables sizes anymore. Instead we determine for all + possible reasonable sizes of the table the outcome (i.e., the + number of collisions etc) and choose the best solution. The + weighting functions are not too simple to allow the table to grow + without bounds. Instead one of the weighting factors is the size. + Therefore the result is always a good payoff between few collisions + (= short chain lengths) and table size. */ +static size_t +compute_bucket_count (info) + struct bfd_link_info *info; +{ + size_t dynsymcount = elf_hash_table (info)->dynsymcount; + size_t best_size; + unsigned long int *hashcodes; + unsigned long int *hashcodesp; + unsigned long int i; + + /* Compute the hash values for all exported symbols. At the same + time store the values in an array so that we could use them for + optimizations. */ + hashcodes = (unsigned long int *) bfd_malloc (dynsymcount + * sizeof (unsigned long int)); + if (hashcodes == NULL) + return 0; + hashcodesp = hashcodes; + + /* Put all hash values in HASHCODES. */ + elf_link_hash_traverse (elf_hash_table (info), + elf_collect_hash_codes, &hashcodesp); + +/* We have a problem here. The following code to optimize the table + size requires an integer type with more the 32 bits. If + BFD_HOST_U_64_BIT is set we know about such a type. */ +#ifdef BFD_HOST_U_64_BIT + if (info->optimize == true) + { + unsigned long int nsyms = hashcodesp - hashcodes; + size_t minsize; + size_t maxsize; + BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0); + unsigned long int *counts ; + + /* Possible optimization parameters: if we have NSYMS symbols we say + that the hashing table must at least have NSYMS/4 and at most + 2*NSYMS buckets. */ + minsize = nsyms / 4; + if (minsize == 0) + minsize = 1; + best_size = maxsize = nsyms * 2; + + /* Create array where we count the collisions in. We must use bfd_malloc + since the size could be large. */ + counts = (unsigned long int *) bfd_malloc (maxsize + * sizeof (unsigned long int)); + if (counts == NULL) + { + free (hashcodes); + return 0; + } + + /* Compute the "optimal" size for the hash table. The criteria is a + minimal chain length. The minor criteria is (of course) the size + of the table. */ + for (i = minsize; i < maxsize; ++i) + { + /* Walk through the array of hashcodes and count the collisions. */ + BFD_HOST_U_64_BIT max; + unsigned long int j; + unsigned long int fact; + + memset (counts, '\0', i * sizeof (unsigned long int)); + + /* Determine how often each hash bucket is used. */ + for (j = 0; j < nsyms; ++j) + ++counts[hashcodes[j] % i]; + + /* For the weight function we need some information about the + pagesize on the target. This is information need not be 100% + accurate. Since this information is not available (so far) we + define it here to a reasonable default value. If it is crucial + to have a better value some day simply define this value. */ +# ifndef BFD_TARGET_PAGESIZE +# define BFD_TARGET_PAGESIZE (4096) +# endif + + /* We in any case need 2 + NSYMS entries for the size values and + the chains. */ + max = (2 + nsyms) * (ARCH_SIZE / 8); + +# if 1 + /* Variant 1: optimize for short chains. We add the squares + of all the chain lengths (which favous many small chain + over a few long chains). */ + for (j = 0; j < i; ++j) + max += counts[j] * counts[j]; + + /* This adds penalties for the overall size of the table. */ + fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1; + max *= fact * fact; +# else + /* Variant 2: Optimize a lot more for small table. Here we + also add squares of the size but we also add penalties for + empty slots (the +1 term). */ + for (j = 0; j < i; ++j) + max += (1 + counts[j]) * (1 + counts[j]); + + /* The overall size of the table is considered, but not as + strong as in variant 1, where it is squared. */ + fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1; + max *= fact; +# endif + + /* Compare with current best results. */ + if (max < best_chlen) + { + best_chlen = max; + best_size = i; + } + } + + free (counts); + } + else +#endif /* defined (BFD_HOST_U_64_BIT) */ + { + /* This is the fallback solution if no 64bit type is available or if we + are not supposed to spend much time on optimizations. We select the + bucket count using a fixed set of numbers. */ + for (i = 0; elf_buckets[i] != 0; i++) + { + best_size = elf_buckets[i]; + if (dynsymcount < elf_buckets[i + 1]) + break; + } + } + + /* Free the arrays we needed. */ + free (hashcodes); + + return best_size; +} + +/* Set up the sizes and contents of the ELF dynamic sections. This is + called by the ELF linker emulation before_allocation routine. We + must set the sizes of the sections before the linker sets the + addresses of the various sections. */ + +boolean +NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath, + export_dynamic, filter_shlib, + auxiliary_filters, info, sinterpptr, + verdefs) + bfd *output_bfd; + const char *soname; + const char *rpath; + boolean export_dynamic; + const char *filter_shlib; + const char * const *auxiliary_filters; + struct bfd_link_info *info; + asection **sinterpptr; + struct bfd_elf_version_tree *verdefs; +{ + bfd_size_type soname_indx; + bfd *dynobj; + struct elf_backend_data *bed; + bfd_size_type old_dynsymcount; + struct elf_assign_sym_version_info asvinfo; + + *sinterpptr = NULL; + + soname_indx = (bfd_size_type) -1; + + if (info->hash->creator->flavour != bfd_target_elf_flavour) + return true; + + /* The backend may have to create some sections regardless of whether + we're dynamic or not. */ + bed = get_elf_backend_data (output_bfd); + if (bed->elf_backend_always_size_sections + && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) + return false; + + dynobj = elf_hash_table (info)->dynobj; + + /* If there were no dynamic objects in the link, there is nothing to + do here. */ + if (dynobj == NULL) + return true; + + /* If we are supposed to export all symbols into the dynamic symbol + table (this is not the normal case), then do so. */ + if (export_dynamic) + { + struct elf_info_failed eif; + + eif.failed = false; + eif.info = info; + elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol, + (PTR) &eif); + if (eif.failed) + return false; + } + + if (elf_hash_table (info)->dynamic_sections_created) + { + struct elf_info_failed eif; + struct elf_link_hash_entry *h; + bfd_size_type strsize; + + *sinterpptr = bfd_get_section_by_name (dynobj, ".interp"); + BFD_ASSERT (*sinterpptr != NULL || info->shared); + + if (soname != NULL) + { + soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, + soname, true, true); + if (soname_indx == (bfd_size_type) -1 + || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) + return false; + } + + if (info->symbolic) + { + if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) + return false; + } + + if (rpath != NULL) + { + bfd_size_type indx; + + indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath, + true, true); + if (indx == (bfd_size_type) -1 + || ! elf_add_dynamic_entry (info, DT_RPATH, indx)) + return false; + } + + if (filter_shlib != NULL) + { + bfd_size_type indx; + + indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, + filter_shlib, true, true); + if (indx == (bfd_size_type) -1 + || ! elf_add_dynamic_entry (info, DT_FILTER, indx)) + return false; + } + + if (auxiliary_filters != NULL) + { + const char * const *p; + + for (p = auxiliary_filters; *p != NULL; p++) + { + bfd_size_type indx; + + indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, + *p, true, true); + if (indx == (bfd_size_type) -1 + || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) + return false; + } + } + + /* Attach all the symbols to their version information. */ + asvinfo.output_bfd = output_bfd; + asvinfo.info = info; + asvinfo.verdefs = verdefs; + asvinfo.export_dynamic = export_dynamic; + asvinfo.removed_dynamic = false; + asvinfo.failed = false; + + elf_link_hash_traverse (elf_hash_table (info), + elf_link_assign_sym_version, + (PTR) &asvinfo); + if (asvinfo.failed) + return false; + + /* Find all symbols which were defined in a dynamic object and make + the backend pick a reasonable value for them. */ + eif.failed = false; + eif.info = info; + elf_link_hash_traverse (elf_hash_table (info), + elf_adjust_dynamic_symbol, + (PTR) &eif); + if (eif.failed) + return false; + + /* Add some entries to the .dynamic section. We fill in some of the + values later, in elf_bfd_final_link, but we must add the entries + now so that we know the final size of the .dynamic section. */ + h = elf_link_hash_lookup (elf_hash_table (info), "_init", false, + false, false); + if (h != NULL + && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR + | ELF_LINK_HASH_DEF_REGULAR)) != 0) + { + if (! elf_add_dynamic_entry (info, DT_INIT, 0)) + return false; + } + h = elf_link_hash_lookup (elf_hash_table (info), "_fini", false, + false, false); + if (h != NULL + && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR + | ELF_LINK_HASH_DEF_REGULAR)) != 0) + { + if (! elf_add_dynamic_entry (info, DT_FINI, 0)) + return false; + } + strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr); + if (! elf_add_dynamic_entry (info, DT_HASH, 0) + || ! elf_add_dynamic_entry (info, DT_STRTAB, 0) + || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0) + || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize) + || ! elf_add_dynamic_entry (info, DT_SYMENT, + sizeof (Elf_External_Sym))) + return false; + } + + /* The backend must work out the sizes of all the other dynamic + sections. */ + old_dynsymcount = elf_hash_table (info)->dynsymcount; + if (bed->elf_backend_size_dynamic_sections + && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) + return false; + + if (elf_hash_table (info)->dynamic_sections_created) + { + size_t dynsymcount; + asection *s; + size_t bucketcount = 0; + Elf_Internal_Sym isym; + + /* Set up the version definition section. */ + s = bfd_get_section_by_name (dynobj, ".gnu.version_d"); + BFD_ASSERT (s != NULL); + + /* We may have created additional version definitions if we are + just linking a regular application. */ + verdefs = asvinfo.verdefs; + + if (verdefs == NULL) + { + asection **spp; + + /* Don't include this section in the output file. */ + for (spp = &output_bfd->sections; + *spp != s->output_section; + spp = &(*spp)->next) + ; + *spp = s->output_section->next; + --output_bfd->section_count; + } + else + { + unsigned int cdefs; + bfd_size_type size; + struct bfd_elf_version_tree *t; + bfd_byte *p; + Elf_Internal_Verdef def; + Elf_Internal_Verdaux defaux; + + if (asvinfo.removed_dynamic) + { + /* Some dynamic symbols were changed to be local + symbols. In this case, we renumber all of the + dynamic symbols, so that we don't have a hole. If + the backend changed dynsymcount, then assume that the + new symbols are at the start. This is the case on + the MIPS. FIXME: The names of the removed symbols + will still be in the dynamic string table, wasting + space. */ + elf_hash_table (info)->dynsymcount = + 1 + (elf_hash_table (info)->dynsymcount - old_dynsymcount); + elf_link_hash_traverse (elf_hash_table (info), + elf_link_renumber_dynsyms, + (PTR) info); + } + + cdefs = 0; + size = 0; + + /* Make space for the base version. */ + size += sizeof (Elf_External_Verdef); + size += sizeof (Elf_External_Verdaux); + ++cdefs; + + for (t = verdefs; t != NULL; t = t->next) + { + struct bfd_elf_version_deps *n; + + size += sizeof (Elf_External_Verdef); + size += sizeof (Elf_External_Verdaux); + ++cdefs; + + for (n = t->deps; n != NULL; n = n->next) + size += sizeof (Elf_External_Verdaux); + } + + s->_raw_size = size; + s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); + if (s->contents == NULL && s->_raw_size != 0) + return false; + + /* Fill in the version definition section. */ + + p = s->contents; + + def.vd_version = VER_DEF_CURRENT; + def.vd_flags = VER_FLG_BASE; + def.vd_ndx = 1; + def.vd_cnt = 1; + def.vd_aux = sizeof (Elf_External_Verdef); + def.vd_next = (sizeof (Elf_External_Verdef) + + sizeof (Elf_External_Verdaux)); + + if (soname_indx != (bfd_size_type) -1) + { + def.vd_hash = bfd_elf_hash ((const unsigned char *) soname); + defaux.vda_name = soname_indx; + } + else + { + const char *name; + bfd_size_type indx; + + name = output_bfd->filename; + def.vd_hash = bfd_elf_hash ((const unsigned char *) name); + indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, + name, true, false); + if (indx == (bfd_size_type) -1) + return false; + defaux.vda_name = indx; + } + defaux.vda_next = 0; + + _bfd_elf_swap_verdef_out (output_bfd, &def, + (Elf_External_Verdef *)p); + p += sizeof (Elf_External_Verdef); + _bfd_elf_swap_verdaux_out (output_bfd, &defaux, + (Elf_External_Verdaux *) p); + p += sizeof (Elf_External_Verdaux); + + for (t = verdefs; t != NULL; t = t->next) + { + unsigned int cdeps; + struct bfd_elf_version_deps *n; + struct elf_link_hash_entry *h; + + cdeps = 0; + for (n = t->deps; n != NULL; n = n->next) + ++cdeps; + + /* Add a symbol representing this version. */ + h = NULL; + if (! (_bfd_generic_link_add_one_symbol + (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, + (bfd_vma) 0, (const char *) NULL, false, + get_elf_backend_data (dynobj)->collect, + (struct bfd_link_hash_entry **) &h))) + return false; + h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF; + h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; + h->type = STT_OBJECT; + h->verinfo.vertree = t; + + if (! _bfd_elf_link_record_dynamic_symbol (info, h)) + return false; + + def.vd_version = VER_DEF_CURRENT; + def.vd_flags = 0; + if (t->globals == NULL && t->locals == NULL && ! t->used) + def.vd_flags |= VER_FLG_WEAK; + def.vd_ndx = t->vernum + 1; + def.vd_cnt = cdeps + 1; + def.vd_hash = bfd_elf_hash ((const unsigned char *) t->name); + def.vd_aux = sizeof (Elf_External_Verdef); + if (t->next != NULL) + def.vd_next = (sizeof (Elf_External_Verdef) + + (cdeps + 1) * sizeof (Elf_External_Verdaux)); + else + def.vd_next = 0; + + _bfd_elf_swap_verdef_out (output_bfd, &def, + (Elf_External_Verdef *) p); + p += sizeof (Elf_External_Verdef); + + defaux.vda_name = h->dynstr_index; + if (t->deps == NULL) + defaux.vda_next = 0; + else + defaux.vda_next = sizeof (Elf_External_Verdaux); + t->name_indx = defaux.vda_name; + + _bfd_elf_swap_verdaux_out (output_bfd, &defaux, + (Elf_External_Verdaux *) p); + p += sizeof (Elf_External_Verdaux); + + for (n = t->deps; n != NULL; n = n->next) + { + if (n->version_needed == NULL) + { + /* This can happen if there was an error in the + version script. */ + defaux.vda_name = 0; + } + else + defaux.vda_name = n->version_needed->name_indx; + if (n->next == NULL) + defaux.vda_next = 0; + else + defaux.vda_next = sizeof (Elf_External_Verdaux); + + _bfd_elf_swap_verdaux_out (output_bfd, &defaux, + (Elf_External_Verdaux *) p); + p += sizeof (Elf_External_Verdaux); + } + } + + if (! elf_add_dynamic_entry (info, DT_VERDEF, 0) + || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs)) + return false; + + elf_tdata (output_bfd)->cverdefs = cdefs; + } + + /* Work out the size of the version reference section. */ + + s = bfd_get_section_by_name (dynobj, ".gnu.version_r"); + BFD_ASSERT (s != NULL); + { + struct elf_find_verdep_info sinfo; + + sinfo.output_bfd = output_bfd; + sinfo.info = info; + sinfo.vers = elf_tdata (output_bfd)->cverdefs; + if (sinfo.vers == 0) + sinfo.vers = 1; + sinfo.failed = false; + + elf_link_hash_traverse (elf_hash_table (info), + elf_link_find_version_dependencies, + (PTR) &sinfo); + + if (elf_tdata (output_bfd)->verref == NULL) + { + asection **spp; + + /* We don't have any version definitions, so we can just + remove the section. */ + + for (spp = &output_bfd->sections; + *spp != s->output_section; + spp = &(*spp)->next) + ; + *spp = s->output_section->next; + --output_bfd->section_count; + } + else + { + Elf_Internal_Verneed *t; + unsigned int size; + unsigned int crefs; + bfd_byte *p; + + /* Build the version definition section. */ + size = 0; + crefs = 0; + for (t = elf_tdata (output_bfd)->verref; + t != NULL; + t = t->vn_nextref) + { + Elf_Internal_Vernaux *a; + + size += sizeof (Elf_External_Verneed); + ++crefs; + for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) + size += sizeof (Elf_External_Vernaux); + } + + s->_raw_size = size; + s->contents = (bfd_byte *) bfd_alloc (output_bfd, size); + if (s->contents == NULL) + return false; + + p = s->contents; + for (t = elf_tdata (output_bfd)->verref; + t != NULL; + t = t->vn_nextref) + { + unsigned int caux; + Elf_Internal_Vernaux *a; + bfd_size_type indx; + + caux = 0; + for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) + ++caux; + + t->vn_version = VER_NEED_CURRENT; + t->vn_cnt = caux; + if (elf_dt_name (t->vn_bfd) != NULL) + indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, + elf_dt_name (t->vn_bfd), + true, false); + else + indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, + t->vn_bfd->filename, true, false); + if (indx == (bfd_size_type) -1) + return false; + t->vn_file = indx; + t->vn_aux = sizeof (Elf_External_Verneed); + if (t->vn_nextref == NULL) + t->vn_next = 0; + else + t->vn_next = (sizeof (Elf_External_Verneed) + + caux * sizeof (Elf_External_Vernaux)); + + _bfd_elf_swap_verneed_out (output_bfd, t, + (Elf_External_Verneed *) p); + p += sizeof (Elf_External_Verneed); + + for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) + { + a->vna_hash = bfd_elf_hash ((const unsigned char *) + a->vna_nodename); + indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, + a->vna_nodename, true, false); + if (indx == (bfd_size_type) -1) + return false; + a->vna_name = indx; + if (a->vna_nextptr == NULL) + a->vna_next = 0; + else + a->vna_next = sizeof (Elf_External_Vernaux); + + _bfd_elf_swap_vernaux_out (output_bfd, a, + (Elf_External_Vernaux *) p); + p += sizeof (Elf_External_Vernaux); + } + } + + if (! elf_add_dynamic_entry (info, DT_VERNEED, 0) + || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) + return false; + + elf_tdata (output_bfd)->cverrefs = crefs; + } + } + + dynsymcount = elf_hash_table (info)->dynsymcount; + + /* Work out the size of the symbol version section. */ + s = bfd_get_section_by_name (dynobj, ".gnu.version"); + BFD_ASSERT (s != NULL); + if (dynsymcount == 0 + || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL)) + { + asection **spp; + + /* We don't need any symbol versions; just discard the + section. */ + for (spp = &output_bfd->sections; + *spp != s->output_section; + spp = &(*spp)->next) + ; + *spp = s->output_section->next; + --output_bfd->section_count; + } + else + { + s->_raw_size = dynsymcount * sizeof (Elf_External_Versym); + s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size); + if (s->contents == NULL) + return false; + + if (! elf_add_dynamic_entry (info, DT_VERSYM, 0)) + return false; + } + + /* Set the size of the .dynsym and .hash sections. We counted + the number of dynamic symbols in elf_link_add_object_symbols. + We will build the contents of .dynsym and .hash when we build + the final symbol table, because until then we do not know the + correct value to give the symbols. We built the .dynstr + section as we went along in elf_link_add_object_symbols. */ + s = bfd_get_section_by_name (dynobj, ".dynsym"); + BFD_ASSERT (s != NULL); + s->_raw_size = dynsymcount * sizeof (Elf_External_Sym); + s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); + if (s->contents == NULL && s->_raw_size != 0) + return false; + + /* The first entry in .dynsym is a dummy symbol. */ + isym.st_value = 0; + isym.st_size = 0; + isym.st_name = 0; + isym.st_info = 0; + isym.st_other = 0; + isym.st_shndx = 0; + elf_swap_symbol_out (output_bfd, &isym, + (PTR) (Elf_External_Sym *) s->contents); + + /* Compute the size of the hashing table. As a side effect this + computes the hash values for all the names we export. */ + bucketcount = compute_bucket_count (info); + + s = bfd_get_section_by_name (dynobj, ".hash"); + BFD_ASSERT (s != NULL); + s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8); + s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size); + if (s->contents == NULL) + return false; + memset (s->contents, 0, (size_t) s->_raw_size); + + put_word (output_bfd, bucketcount, s->contents); + put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8)); + + elf_hash_table (info)->bucketcount = bucketcount; + + s = bfd_get_section_by_name (dynobj, ".dynstr"); + BFD_ASSERT (s != NULL); + s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr); + + if (! elf_add_dynamic_entry (info, DT_NULL, 0)) + return false; + } + + return true; +} + +/* Fix up the flags for a symbol. This handles various cases which + can only be fixed after all the input files are seen. This is + currently called by both adjust_dynamic_symbol and + assign_sym_version, which is unnecessary but perhaps more robust in + the face of future changes. */ + +static boolean +elf_fix_symbol_flags (h, eif) + struct elf_link_hash_entry *h; + struct elf_info_failed *eif; +{ + /* If this symbol was mentioned in a non-ELF file, try to set + DEF_REGULAR and REF_REGULAR correctly. This is the only way to + permit a non-ELF file to correctly refer to a symbol defined in + an ELF dynamic object. */ + if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0) + { + if (h->root.type != bfd_link_hash_defined + && h->root.type != bfd_link_hash_defweak) + h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR + | ELF_LINK_HASH_REF_REGULAR_NONWEAK); + else + { + if (h->root.u.def.section->owner != NULL + && (bfd_get_flavour (h->root.u.def.section->owner) + == bfd_target_elf_flavour)) + h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR + | ELF_LINK_HASH_REF_REGULAR_NONWEAK); + else + h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; + } + + if (h->dynindx == -1 + && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 + || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)) + { + if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) + { + eif->failed = true; + return false; + } + } + } + else + { + /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol + was first seen in a non-ELF file. Fortunately, if the symbol + was first seen in an ELF file, we're probably OK unless the + symbol was defined in a non-ELF file. Catch that case here. + FIXME: We're still in trouble if the symbol was first seen in + a dynamic object, and then later in a non-ELF regular object. */ + if ((h->root.type == bfd_link_hash_defined + || h->root.type == bfd_link_hash_defweak) + && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 + && (h->root.u.def.section->owner != NULL + ? (bfd_get_flavour (h->root.u.def.section->owner) + != bfd_target_elf_flavour) + : (bfd_is_abs_section (h->root.u.def.section) + && (h->elf_link_hash_flags + & ELF_LINK_HASH_DEF_DYNAMIC) == 0))) + h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; + } + + /* If this is a final link, and the symbol was defined as a common + symbol in a regular object file, and there was no definition in + any dynamic object, then the linker will have allocated space for + the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR + flag will not have been set. */ + if (h->root.type == bfd_link_hash_defined + && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 + && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 + && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 + && (h->root.u.def.section->owner->flags & DYNAMIC) == 0) + h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; + + /* If -Bsymbolic was used (which means to bind references to global + symbols to the definition within the shared object), and this + symbol was defined in a regular object, then it actually doesn't + need a PLT entry. */ + if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 + && eif->info->shared + && eif->info->symbolic + && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) + { + h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT; + h->plt.offset = (bfd_vma) -1; + } + + return true; +} + +/* Make the backend pick a good value for a dynamic symbol. This is + called via elf_link_hash_traverse, and also calls itself + recursively. */ + +static boolean +elf_adjust_dynamic_symbol (h, data) + struct elf_link_hash_entry *h; + PTR data; +{ + struct elf_info_failed *eif = (struct elf_info_failed *) data; + bfd *dynobj; + struct elf_backend_data *bed; + + /* Ignore indirect symbols. These are added by the versioning code. */ + if (h->root.type == bfd_link_hash_indirect) + return true; + + /* Fix the symbol flags. */ + if (! elf_fix_symbol_flags (h, eif)) + return false; + + /* If this symbol does not require a PLT entry, and it is not + defined by a dynamic object, or is not referenced by a regular + object, ignore it. We do have to handle a weak defined symbol, + even if no regular object refers to it, if we decided to add it + to the dynamic symbol table. FIXME: Do we normally need to worry + about symbols which are defined by one dynamic object and + referenced by another one? */ + if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0 + && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 + || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 + || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0 + && (h->weakdef == NULL || h->weakdef->dynindx == -1)))) + { + h->plt.offset = (bfd_vma) -1; + return true; + } + + /* If we've already adjusted this symbol, don't do it again. This + can happen via a recursive call. */ + if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0) + return true; + + /* Don't look at this symbol again. Note that we must set this + after checking the above conditions, because we may look at a + symbol once, decide not to do anything, and then get called + recursively later after REF_REGULAR is set below. */ + h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED; + + /* If this is a weak definition, and we know a real definition, and + the real symbol is not itself defined by a regular object file, + then get a good value for the real definition. We handle the + real symbol first, for the convenience of the backend routine. + + Note that there is a confusing case here. If the real definition + is defined by a regular object file, we don't get the real symbol + from the dynamic object, but we do get the weak symbol. If the + processor backend uses a COPY reloc, then if some routine in the + dynamic object changes the real symbol, we will not see that + change in the corresponding weak symbol. This is the way other + ELF linkers work as well, and seems to be a result of the shared + library model. + + I will clarify this issue. Most SVR4 shared libraries define the + variable _timezone and define timezone as a weak synonym. The + tzset call changes _timezone. If you write + extern int timezone; + int _timezone = 5; + int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } + you might expect that, since timezone is a synonym for _timezone, + the same number will print both times. However, if the processor + backend uses a COPY reloc, then actually timezone will be copied + into your process image, and, since you define _timezone + yourself, _timezone will not. Thus timezone and _timezone will + wind up at different memory locations. The tzset call will set + _timezone, leaving timezone unchanged. */ + + if (h->weakdef != NULL) + { + struct elf_link_hash_entry *weakdef; + + BFD_ASSERT (h->root.type == bfd_link_hash_defined + || h->root.type == bfd_link_hash_defweak); + weakdef = h->weakdef; + BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined + || weakdef->root.type == bfd_link_hash_defweak); + BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC); + if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0) + { + /* This symbol is defined by a regular object file, so we + will not do anything special. Clear weakdef for the + convenience of the processor backend. */ + h->weakdef = NULL; + } + else + { + /* There is an implicit reference by a regular object file + via the weak symbol. */ + weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; + if (h->weakdef->elf_link_hash_flags + & ELF_LINK_HASH_REF_REGULAR_NONWEAK) + weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR_NONWEAK; + if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif)) + return false; + } + } + + /* If a symbol has no type and no size and does not require a PLT + entry, then we are probably about to do the wrong thing here: we + are probably going to create a COPY reloc for an empty object. + This case can arise when a shared object is built with assembly + code, and the assembly code fails to set the symbol type. */ + if (h->size == 0 + && h->type == STT_NOTYPE + && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0) + (*_bfd_error_handler) + (_("warning: type and size of dynamic symbol `%s' are not defined"), + h->root.root.string); + + dynobj = elf_hash_table (eif->info)->dynobj; + bed = get_elf_backend_data (dynobj); + if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) + { + eif->failed = true; + return false; + } + + return true; +} + +/* This routine is used to export all defined symbols into the dynamic + symbol table. It is called via elf_link_hash_traverse. */ + +static boolean +elf_export_symbol (h, data) + struct elf_link_hash_entry *h; + PTR data; +{ + struct elf_info_failed *eif = (struct elf_info_failed *) data; + + /* Ignore indirect symbols. These are added by the versioning code. */ + if (h->root.type == bfd_link_hash_indirect) + return true; + + if (h->dynindx == -1 + && (h->elf_link_hash_flags + & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0) + { + if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h)) + { + eif->failed = true; + return false; + } + } + + return true; +} + +/* Look through the symbols which are defined in other shared + libraries and referenced here. Update the list of version + dependencies. This will be put into the .gnu.version_r section. + This function is called via elf_link_hash_traverse. */ + +static boolean +elf_link_find_version_dependencies (h, data) + struct elf_link_hash_entry *h; + PTR data; +{ + struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data; + Elf_Internal_Verneed *t; + Elf_Internal_Vernaux *a; + + /* We only care about symbols defined in shared objects with version + information. */ + if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0 + || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 + || h->dynindx == -1 + || h->verinfo.verdef == NULL) + return true; + + /* See if we already know about this version. */ + for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref) + { + if (t->vn_bfd != h->verinfo.verdef->vd_bfd) + continue; + + for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) + if (a->vna_nodename == h->verinfo.verdef->vd_nodename) + return true; + + break; + } + + /* This is a new version. Add it to tree we are building. */ + + if (t == NULL) + { + t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t); + if (t == NULL) + { + rinfo->failed = true; + return false; + } + + t->vn_bfd = h->verinfo.verdef->vd_bfd; + t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref; + elf_tdata (rinfo->output_bfd)->verref = t; + } + + a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a); + + /* Note that we are copying a string pointer here, and testing it + above. If bfd_elf_string_from_elf_section is ever changed to + discard the string data when low in memory, this will have to be + fixed. */ + a->vna_nodename = h->verinfo.verdef->vd_nodename; + + a->vna_flags = h->verinfo.verdef->vd_flags; + a->vna_nextptr = t->vn_auxptr; + + h->verinfo.verdef->vd_exp_refno = rinfo->vers; + ++rinfo->vers; + + a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; + + t->vn_auxptr = a; + + return true; +} + +/* Figure out appropriate versions for all the symbols. We may not + have the version number script until we have read all of the input + files, so until that point we don't know which symbols should be + local. This function is called via elf_link_hash_traverse. */ + +static boolean +elf_link_assign_sym_version (h, data) + struct elf_link_hash_entry *h; + PTR data; +{ + struct elf_assign_sym_version_info *sinfo = + (struct elf_assign_sym_version_info *) data; + struct bfd_link_info *info = sinfo->info; + struct elf_info_failed eif; + char *p; + + /* Fix the symbol flags. */ + eif.failed = false; + eif.info = info; + if (! elf_fix_symbol_flags (h, &eif)) + { + if (eif.failed) + sinfo->failed = true; + return false; + } + + /* We only need version numbers for symbols defined in regular + objects. */ + if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) + return true; + + p = strchr (h->root.root.string, ELF_VER_CHR); + if (p != NULL && h->verinfo.vertree == NULL) + { + struct bfd_elf_version_tree *t; + boolean hidden; + + hidden = true; + + /* There are two consecutive ELF_VER_CHR characters if this is + not a hidden symbol. */ + ++p; + if (*p == ELF_VER_CHR) + { + hidden = false; + ++p; + } + + /* If there is no version string, we can just return out. */ + if (*p == '\0') + { + if (hidden) + h->elf_link_hash_flags |= ELF_LINK_HIDDEN; + return true; + } + + /* Look for the version. If we find it, it is no longer weak. */ + for (t = sinfo->verdefs; t != NULL; t = t->next) + { + if (strcmp (t->name, p) == 0) + { + int len; + char *alc; + struct bfd_elf_version_expr *d; + + len = p - h->root.root.string; + alc = bfd_alloc (sinfo->output_bfd, len); + if (alc == NULL) + return false; + strncpy (alc, h->root.root.string, len - 1); + alc[len - 1] = '\0'; + if (alc[len - 2] == ELF_VER_CHR) + alc[len - 2] = '\0'; + + h->verinfo.vertree = t; + t->used = true; + d = NULL; + + if (t->globals != NULL) + { + for (d = t->globals; d != NULL; d = d->next) + if ((*d->match) (d, alc)) + break; + } + + /* See if there is anything to force this symbol to + local scope. */ + if (d == NULL && t->locals != NULL) + { + for (d = t->locals; d != NULL; d = d->next) + { + if ((*d->match) (d, alc)) + { + if (h->dynindx != -1 + && info->shared + && ! sinfo->export_dynamic) + { + sinfo->removed_dynamic = true; + h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; + h->elf_link_hash_flags &=~ + ELF_LINK_HASH_NEEDS_PLT; + h->dynindx = -1; + h->plt.offset = (bfd_vma) -1; + /* FIXME: The name of the symbol has + already been recorded in the dynamic + string table section. */ + } + + break; + } + } + } + + bfd_release (sinfo->output_bfd, alc); + break; + } + } + + /* If we are building an application, we need to create a + version node for this version. */ + if (t == NULL && ! info->shared) + { + struct bfd_elf_version_tree **pp; + int version_index; + + /* If we aren't going to export this symbol, we don't need + to worry about it. */ + if (h->dynindx == -1) + return true; + + t = ((struct bfd_elf_version_tree *) + bfd_alloc (sinfo->output_bfd, sizeof *t)); + if (t == NULL) + { + sinfo->failed = true; + return false; + } + + t->next = NULL; + t->name = p; + t->globals = NULL; + t->locals = NULL; + t->deps = NULL; + t->name_indx = (unsigned int) -1; + t->used = true; + + version_index = 1; + for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next) + ++version_index; + t->vernum = version_index; + + *pp = t; + + h->verinfo.vertree = t; + } + else if (t == NULL) + { + /* We could not find the version for a symbol when + generating a shared archive. Return an error. */ + (*_bfd_error_handler) + (_("%s: undefined versioned symbol name %s"), + bfd_get_filename (sinfo->output_bfd), h->root.root.string); + bfd_set_error (bfd_error_bad_value); + sinfo->failed = true; + return false; + } + + if (hidden) + h->elf_link_hash_flags |= ELF_LINK_HIDDEN; + } + + /* If we don't have a version for this symbol, see if we can find + something. */ + if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL) + { + struct bfd_elf_version_tree *t; + struct bfd_elf_version_tree *deflt; + struct bfd_elf_version_expr *d; + + /* See if can find what version this symbol is in. If the + symbol is supposed to be local, then don't actually register + it. */ + deflt = NULL; + for (t = sinfo->verdefs; t != NULL; t = t->next) + { + if (t->globals != NULL) + { + for (d = t->globals; d != NULL; d = d->next) + { + if ((*d->match) (d, h->root.root.string)) + { + h->verinfo.vertree = t; + break; + } + } + + if (d != NULL) + break; + } + + if (t->locals != NULL) + { + for (d = t->locals; d != NULL; d = d->next) + { + if (d->pattern[0] == '*' && d->pattern[1] == '\0') + deflt = t; + else if ((*d->match) (d, h->root.root.string)) + { + h->verinfo.vertree = t; + if (h->dynindx != -1 + && info->shared + && ! sinfo->export_dynamic) + { + sinfo->removed_dynamic = true; + h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; + h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT; + h->dynindx = -1; + h->plt.offset = (bfd_vma) -1; + /* FIXME: The name of the symbol has already + been recorded in the dynamic string table + section. */ + } + break; + } + } + + if (d != NULL) + break; + } + } + + if (deflt != NULL && h->verinfo.vertree == NULL) + { + h->verinfo.vertree = deflt; + if (h->dynindx != -1 + && info->shared + && ! sinfo->export_dynamic) + { + sinfo->removed_dynamic = true; + h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; + h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT; + h->dynindx = -1; + h->plt.offset = (bfd_vma) -1; + /* FIXME: The name of the symbol has already been + recorded in the dynamic string table section. */ + } + } + } + + return true; +} + +/* This function is used to renumber the dynamic symbols, if some of + them are removed because they are marked as local. This is called + via elf_link_hash_traverse. */ + +static boolean +elf_link_renumber_dynsyms (h, data) + struct elf_link_hash_entry *h; + PTR data; +{ + struct bfd_link_info *info = (struct bfd_link_info *) data; + + if (h->dynindx != -1) + { + h->dynindx = elf_hash_table (info)->dynsymcount; + ++elf_hash_table (info)->dynsymcount; + } + + return true; +} + +/* Final phase of ELF linker. */ + +/* A structure we use to avoid passing large numbers of arguments. */ + +struct elf_final_link_info +{ + /* General link information. */ + struct bfd_link_info *info; + /* Output BFD. */ + bfd *output_bfd; + /* Symbol string table. */ + struct bfd_strtab_hash *symstrtab; + /* .dynsym section. */ + asection *dynsym_sec; + /* .hash section. */ + asection *hash_sec; + /* symbol version section (.gnu.version). */ + asection *symver_sec; + /* Buffer large enough to hold contents of any section. */ + bfd_byte *contents; + /* Buffer large enough to hold external relocs of any section. */ + PTR external_relocs; + /* Buffer large enough to hold internal relocs of any section. */ + Elf_Internal_Rela *internal_relocs; + /* Buffer large enough to hold external local symbols of any input + BFD. */ + Elf_External_Sym *external_syms; + /* Buffer large enough to hold internal local symbols of any input + BFD. */ + Elf_Internal_Sym *internal_syms; + /* Array large enough to hold a symbol index for each local symbol + of any input BFD. */ + long *indices; + /* Array large enough to hold a section pointer for each local + symbol of any input BFD. */ + asection **sections; + /* Buffer to hold swapped out symbols. */ + Elf_External_Sym *symbuf; + /* Number of swapped out symbols in buffer. */ + size_t symbuf_count; + /* Number of symbols which fit in symbuf. */ + size_t symbuf_size; +}; + +static boolean elf_link_output_sym + PARAMS ((struct elf_final_link_info *, const char *, + Elf_Internal_Sym *, asection *)); +static boolean elf_link_flush_output_syms + PARAMS ((struct elf_final_link_info *)); +static boolean elf_link_output_extsym + PARAMS ((struct elf_link_hash_entry *, PTR)); +static boolean elf_link_input_bfd + PARAMS ((struct elf_final_link_info *, bfd *)); +static boolean elf_reloc_link_order + PARAMS ((bfd *, struct bfd_link_info *, asection *, + struct bfd_link_order *)); + +/* This struct is used to pass information to elf_link_output_extsym. */ + +struct elf_outext_info +{ + boolean failed; + boolean localsyms; + struct elf_final_link_info *finfo; +}; + +/* Do the final step of an ELF link. */ + +boolean +elf_bfd_final_link (abfd, info) + bfd *abfd; + struct bfd_link_info *info; +{ + boolean dynamic; + bfd *dynobj; + struct elf_final_link_info finfo; + register asection *o; + register struct bfd_link_order *p; + register bfd *sub; + size_t max_contents_size; + size_t max_external_reloc_size; + size_t max_internal_reloc_count; + size_t max_sym_count; + file_ptr off; + Elf_Internal_Sym elfsym; + unsigned int i; + Elf_Internal_Shdr *symtab_hdr; + Elf_Internal_Shdr *symstrtab_hdr; + struct elf_backend_data *bed = get_elf_backend_data (abfd); + struct elf_outext_info eoinfo; + + if (info->shared) + abfd->flags |= DYNAMIC; + + dynamic = elf_hash_table (info)->dynamic_sections_created; + dynobj = elf_hash_table (info)->dynobj; + + finfo.info = info; + finfo.output_bfd = abfd; + finfo.symstrtab = elf_stringtab_init (); + if (finfo.symstrtab == NULL) + return false; + + if (! dynamic) + { + finfo.dynsym_sec = NULL; + finfo.hash_sec = NULL; + finfo.symver_sec = NULL; + } + else + { + finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym"); + finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash"); + BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL); + finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version"); + /* Note that it is OK if symver_sec is NULL. */ + } + + finfo.contents = NULL; + finfo.external_relocs = NULL; + finfo.internal_relocs = NULL; + finfo.external_syms = NULL; + finfo.internal_syms = NULL; + finfo.indices = NULL; + finfo.sections = NULL; + finfo.symbuf = NULL; + finfo.symbuf_count = 0; + + /* Count up the number of relocations we will output for each output + section, so that we know the sizes of the reloc sections. We + also figure out some maximum sizes. */ + max_contents_size = 0; + max_external_reloc_size = 0; + max_internal_reloc_count = 0; + max_sym_count = 0; + for (o = abfd->sections; o != (asection *) NULL; o = o->next) + { + o->reloc_count = 0; + + for (p = o->link_order_head; p != NULL; p = p->next) + { + if (p->type == bfd_section_reloc_link_order + || p->type == bfd_symbol_reloc_link_order) + ++o->reloc_count; + else if (p->type == bfd_indirect_link_order) + { + asection *sec; + + sec = p->u.indirect.section; + + /* Mark all sections which are to be included in the + link. This will normally be every section. We need + to do this so that we can identify any sections which + the linker has decided to not include. */ + sec->linker_mark = true; + + if (info->relocateable) + o->reloc_count += sec->reloc_count; + + if (sec->_raw_size > max_contents_size) + max_contents_size = sec->_raw_size; + if (sec->_cooked_size > max_contents_size) + max_contents_size = sec->_cooked_size; + + /* We are interested in just local symbols, not all + symbols. */ + if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour + && (sec->owner->flags & DYNAMIC) == 0) + { + size_t sym_count; + + if (elf_bad_symtab (sec->owner)) + sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size + / sizeof (Elf_External_Sym)); + else + sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; + + if (sym_count > max_sym_count) + max_sym_count = sym_count; + + if ((sec->flags & SEC_RELOC) != 0) + { + size_t ext_size; + + ext_size = elf_section_data (sec)->rel_hdr.sh_size; + if (ext_size > max_external_reloc_size) + max_external_reloc_size = ext_size; + if (sec->reloc_count > max_internal_reloc_count) + max_internal_reloc_count = sec->reloc_count; + } + } + } + } + + if (o->reloc_count > 0) + o->flags |= SEC_RELOC; + else + { + /* Explicitly clear the SEC_RELOC flag. The linker tends to + set it (this is probably a bug) and if it is set + assign_section_numbers will create a reloc section. */ + o->flags &=~ SEC_RELOC; + } + + /* If the SEC_ALLOC flag is not set, force the section VMA to + zero. This is done in elf_fake_sections as well, but forcing + the VMA to 0 here will ensure that relocs against these + sections are handled correctly. */ + if ((o->flags & SEC_ALLOC) == 0 + && ! o->user_set_vma) + o->vma = 0; + } + + /* Figure out the file positions for everything but the symbol table + and the relocs. We set symcount to force assign_section_numbers + to create a symbol table. */ + bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1; + BFD_ASSERT (! abfd->output_has_begun); + if (! _bfd_elf_compute_section_file_positions (abfd, info)) + goto error_return; + + /* That created the reloc sections. Set their sizes, and assign + them file positions, and allocate some buffers. */ + for (o = abfd->sections; o != NULL; o = o->next) + { + if ((o->flags & SEC_RELOC) != 0) + { + Elf_Internal_Shdr *rel_hdr; + register struct elf_link_hash_entry **p, **pend; + + rel_hdr = &elf_section_data (o)->rel_hdr; + + rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count; + + /* The contents field must last into write_object_contents, + so we allocate it with bfd_alloc rather than malloc. */ + rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size); + if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) + goto error_return; + + p = ((struct elf_link_hash_entry **) + bfd_malloc (o->reloc_count + * sizeof (struct elf_link_hash_entry *))); + if (p == NULL && o->reloc_count != 0) + goto error_return; + elf_section_data (o)->rel_hashes = p; + pend = p + o->reloc_count; + for (; p < pend; p++) + *p = NULL; + + /* Use the reloc_count field as an index when outputting the + relocs. */ + o->reloc_count = 0; + } + } + + _bfd_elf_assign_file_positions_for_relocs (abfd); + + /* We have now assigned file positions for all the sections except + .symtab and .strtab. We start the .symtab section at the current + file position, and write directly to it. We build the .strtab + section in memory. */ + bfd_get_symcount (abfd) = 0; + symtab_hdr = &elf_tdata (abfd)->symtab_hdr; + /* sh_name is set in prep_headers. */ + symtab_hdr->sh_type = SHT_SYMTAB; + symtab_hdr->sh_flags = 0; + symtab_hdr->sh_addr = 0; + symtab_hdr->sh_size = 0; + symtab_hdr->sh_entsize = sizeof (Elf_External_Sym); + /* sh_link is set in assign_section_numbers. */ + /* sh_info is set below. */ + /* sh_offset is set just below. */ + symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */ + + off = elf_tdata (abfd)->next_file_pos; + off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true); + + /* Note that at this point elf_tdata (abfd)->next_file_pos is + incorrect. We do not yet know the size of the .symtab section. + We correct next_file_pos below, after we do know the size. */ + + /* Allocate a buffer to hold swapped out symbols. This is to avoid + continuously seeking to the right position in the file. */ + if (! info->keep_memory || max_sym_count < 20) + finfo.symbuf_size = 20; + else + finfo.symbuf_size = max_sym_count; + finfo.symbuf = ((Elf_External_Sym *) + bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym))); + if (finfo.symbuf == NULL) + goto error_return; + + /* Start writing out the symbol table. The first symbol is always a + dummy symbol. */ + if (info->strip != strip_all || info->relocateable) + { + elfsym.st_value = 0; + elfsym.st_size = 0; + elfsym.st_info = 0; + elfsym.st_other = 0; + elfsym.st_shndx = SHN_UNDEF; + if (! elf_link_output_sym (&finfo, (const char *) NULL, + &elfsym, bfd_und_section_ptr)) + goto error_return; + } + +#if 0 + /* Some standard ELF linkers do this, but we don't because it causes + bootstrap comparison failures. */ + /* Output a file symbol for the output file as the second symbol. + We output this even if we are discarding local symbols, although + I'm not sure if this is correct. */ + elfsym.st_value = 0; + elfsym.st_size = 0; + elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); + elfsym.st_other = 0; + elfsym.st_shndx = SHN_ABS; + if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd), + &elfsym, bfd_abs_section_ptr)) + goto error_return; +#endif + + /* Output a symbol for each section. We output these even if we are + discarding local symbols, since they are used for relocs. These + symbols have no names. We store the index of each one in the + index field of the section, so that we can find it again when + outputting relocs. */ + if (info->strip != strip_all || info->relocateable) + { + elfsym.st_size = 0; + elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); + elfsym.st_other = 0; + for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) + { + o = section_from_elf_index (abfd, i); + if (o != NULL) + o->target_index = bfd_get_symcount (abfd); + elfsym.st_shndx = i; + if (info->relocateable || o == NULL) + elfsym.st_value = 0; + else + elfsym.st_value = o->vma; + if (! elf_link_output_sym (&finfo, (const char *) NULL, + &elfsym, o)) + goto error_return; + } + } + + /* Allocate some memory to hold information read in from the input + files. */ + finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); + finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size); + finfo.internal_relocs = ((Elf_Internal_Rela *) + bfd_malloc (max_internal_reloc_count + * sizeof (Elf_Internal_Rela))); + finfo.external_syms = ((Elf_External_Sym *) + bfd_malloc (max_sym_count + * sizeof (Elf_External_Sym))); + finfo.internal_syms = ((Elf_Internal_Sym *) + bfd_malloc (max_sym_count + * sizeof (Elf_Internal_Sym))); + finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long)); + finfo.sections = ((asection **) + bfd_malloc (max_sym_count * sizeof (asection *))); + if ((finfo.contents == NULL && max_contents_size != 0) + || (finfo.external_relocs == NULL && max_external_reloc_size != 0) + || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0) + || (finfo.external_syms == NULL && max_sym_count != 0) + || (finfo.internal_syms == NULL && max_sym_count != 0) + || (finfo.indices == NULL && max_sym_count != 0) + || (finfo.sections == NULL && max_sym_count != 0)) + goto error_return; + + /* Since ELF permits relocations to be against local symbols, we + must have the local symbols available when we do the relocations. + Since we would rather only read the local symbols once, and we + would rather not keep them in memory, we handle all the + relocations for a single input file at the same time. + + Unfortunately, there is no way to know the total number of local + symbols until we have seen all of them, and the local symbol + indices precede the global symbol indices. This means that when + we are generating relocateable output, and we see a reloc against + a global symbol, we can not know the symbol index until we have + finished examining all the local symbols to see which ones we are + going to output. To deal with this, we keep the relocations in + memory, and don't output them until the end of the link. This is + an unfortunate waste of memory, but I don't see a good way around + it. Fortunately, it only happens when performing a relocateable + link, which is not the common case. FIXME: If keep_memory is set + we could write the relocs out and then read them again; I don't + know how bad the memory loss will be. */ + + for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) + sub->output_has_begun = false; + for (o = abfd->sections; o != NULL; o = o->next) + { + for (p = o->link_order_head; p != NULL; p = p->next) + { + if (p->type == bfd_indirect_link_order + && (bfd_get_flavour (p->u.indirect.section->owner) + == bfd_target_elf_flavour)) + { + sub = p->u.indirect.section->owner; + if (! sub->output_has_begun) + { + if (! elf_link_input_bfd (&finfo, sub)) + goto error_return; + sub->output_has_begun = true; + } + } + else if (p->type == bfd_section_reloc_link_order + || p->type == bfd_symbol_reloc_link_order) + { + if (! elf_reloc_link_order (abfd, info, o, p)) + goto error_return; + } + else + { + if (! _bfd_default_link_order (abfd, info, o, p)) + goto error_return; + } + } + } + + /* That wrote out all the local symbols. Finish up the symbol table + with the global symbols. */ + + if (info->strip != strip_all && info->shared) + { + /* Output any global symbols that got converted to local in a + version script. We do this in a separate step since ELF + requires all local symbols to appear prior to any global + symbols. FIXME: We should only do this if some global + symbols were, in fact, converted to become local. FIXME: + Will this work correctly with the Irix 5 linker? */ + eoinfo.failed = false; + eoinfo.finfo = &finfo; + eoinfo.localsyms = true; + elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, + (PTR) &eoinfo); + if (eoinfo.failed) + return false; + } + + /* The sh_info field records the index of the first non local + symbol. */ + symtab_hdr->sh_info = bfd_get_symcount (abfd); + if (dynamic) + elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1; + + /* We get the global symbols from the hash table. */ + eoinfo.failed = false; + eoinfo.localsyms = false; + eoinfo.finfo = &finfo; + elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym, + (PTR) &eoinfo); + if (eoinfo.failed) + return false; + + /* Flush all symbols to the file. */ + if (! elf_link_flush_output_syms (&finfo)) + return false; + + /* Now we know the size of the symtab section. */ + off += symtab_hdr->sh_size; + + /* Finish up and write out the symbol string table (.strtab) + section. */ + symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; + /* sh_name was set in prep_headers. */ + symstrtab_hdr->sh_type = SHT_STRTAB; + symstrtab_hdr->sh_flags = 0; + symstrtab_hdr->sh_addr = 0; + symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab); + symstrtab_hdr->sh_entsize = 0; + symstrtab_hdr->sh_link = 0; + symstrtab_hdr->sh_info = 0; + /* sh_offset is set just below. */ + symstrtab_hdr->sh_addralign = 1; + + off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true); + elf_tdata (abfd)->next_file_pos = off; + + if (bfd_get_symcount (abfd) > 0) + { + if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 + || ! _bfd_stringtab_emit (abfd, finfo.symstrtab)) + return false; + } + + /* Adjust the relocs to have the correct symbol indices. */ + for (o = abfd->sections; o != NULL; o = o->next) + { + struct elf_link_hash_entry **rel_hash; + Elf_Internal_Shdr *rel_hdr; + + if ((o->flags & SEC_RELOC) == 0) + continue; + + rel_hash = elf_section_data (o)->rel_hashes; + rel_hdr = &elf_section_data (o)->rel_hdr; + for (i = 0; i < o->reloc_count; i++, rel_hash++) + { + if (*rel_hash == NULL) + continue; + + BFD_ASSERT ((*rel_hash)->indx >= 0); + + if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) + { + Elf_External_Rel *erel; + Elf_Internal_Rel irel; + + erel = (Elf_External_Rel *) rel_hdr->contents + i; + elf_swap_reloc_in (abfd, erel, &irel); + irel.r_info = ELF_R_INFO ((*rel_hash)->indx, + ELF_R_TYPE (irel.r_info)); + elf_swap_reloc_out (abfd, &irel, erel); + } + else + { + Elf_External_Rela *erela; + Elf_Internal_Rela irela; + + BFD_ASSERT (rel_hdr->sh_entsize + == sizeof (Elf_External_Rela)); + + erela = (Elf_External_Rela *) rel_hdr->contents + i; + elf_swap_reloca_in (abfd, erela, &irela); + irela.r_info = ELF_R_INFO ((*rel_hash)->indx, + ELF_R_TYPE (irela.r_info)); + elf_swap_reloca_out (abfd, &irela, erela); + } + } + + /* Set the reloc_count field to 0 to prevent write_relocs from + trying to swap the relocs out itself. */ + o->reloc_count = 0; + } + + /* If we are linking against a dynamic object, or generating a + shared library, finish up the dynamic linking information. */ + if (dynamic) + { + Elf_External_Dyn *dyncon, *dynconend; + + /* Fix up .dynamic entries. */ + o = bfd_get_section_by_name (dynobj, ".dynamic"); + BFD_ASSERT (o != NULL); + + dyncon = (Elf_External_Dyn *) o->contents; + dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size); + for (; dyncon < dynconend; dyncon++) + { + Elf_Internal_Dyn dyn; + const char *name; + unsigned int type; + + elf_swap_dyn_in (dynobj, dyncon, &dyn); + + switch (dyn.d_tag) + { + default: + break; + + /* SVR4 linkers seem to set DT_INIT and DT_FINI based on + magic _init and _fini symbols. This is pretty ugly, + but we are compatible. */ + case DT_INIT: + name = "_init"; + goto get_sym; + case DT_FINI: + name = "_fini"; + get_sym: + { + struct elf_link_hash_entry *h; + + h = elf_link_hash_lookup (elf_hash_table (info), name, + false, false, true); + if (h != NULL + && (h->root.type == bfd_link_hash_defined + || h->root.type == bfd_link_hash_defweak)) + { + dyn.d_un.d_val = h->root.u.def.value; + o = h->root.u.def.section; + if (o->output_section != NULL) + dyn.d_un.d_val += (o->output_section->vma + + o->output_offset); + else + { + /* The symbol is imported from another shared + library and does not apply to this one. */ + dyn.d_un.d_val = 0; + } + + elf_swap_dyn_out (dynobj, &dyn, dyncon); + } + } + break; + + case DT_HASH: + name = ".hash"; + goto get_vma; + case DT_STRTAB: + name = ".dynstr"; + goto get_vma; + case DT_SYMTAB: + name = ".dynsym"; + goto get_vma; + case DT_VERDEF: + name = ".gnu.version_d"; + goto get_vma; + case DT_VERNEED: + name = ".gnu.version_r"; + goto get_vma; + case DT_VERSYM: + name = ".gnu.version"; + get_vma: + o = bfd_get_section_by_name (abfd, name); + BFD_ASSERT (o != NULL); + dyn.d_un.d_ptr = o->vma; + elf_swap_dyn_out (dynobj, &dyn, dyncon); + break; + + case DT_REL: + case DT_RELA: + case DT_RELSZ: + case DT_RELASZ: + if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) + type = SHT_REL; + else + type = SHT_RELA; + dyn.d_un.d_val = 0; + for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++) + { + Elf_Internal_Shdr *hdr; + + hdr = elf_elfsections (abfd)[i]; + if (hdr->sh_type == type + && (hdr->sh_flags & SHF_ALLOC) != 0) + { + if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) + dyn.d_un.d_val += hdr->sh_size; + else + { + if (dyn.d_un.d_val == 0 + || hdr->sh_addr < dyn.d_un.d_val) + dyn.d_un.d_val = hdr->sh_addr; + } + } + } + elf_swap_dyn_out (dynobj, &dyn, dyncon); + break; + } + } + } + + /* If we have created any dynamic sections, then output them. */ + if (dynobj != NULL) + { + if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) + goto error_return; + + for (o = dynobj->sections; o != NULL; o = o->next) + { + if ((o->flags & SEC_HAS_CONTENTS) == 0 + || o->_raw_size == 0) + continue; + if ((o->flags & SEC_LINKER_CREATED) == 0) + { + /* At this point, we are only interested in sections + created by elf_link_create_dynamic_sections. */ + continue; + } + if ((elf_section_data (o->output_section)->this_hdr.sh_type + != SHT_STRTAB) + || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0) + { + if (! bfd_set_section_contents (abfd, o->output_section, + o->contents, o->output_offset, + o->_raw_size)) + goto error_return; + } + else + { + file_ptr off; + + /* The contents of the .dynstr section are actually in a + stringtab. */ + off = elf_section_data (o->output_section)->this_hdr.sh_offset; + if (bfd_seek (abfd, off, SEEK_SET) != 0 + || ! _bfd_stringtab_emit (abfd, + elf_hash_table (info)->dynstr)) + goto error_return; + } + } + } + + /* If we have optimized stabs strings, output them. */ + if (elf_hash_table (info)->stab_info != NULL) + { + if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info)) + goto error_return; + } + + if (finfo.symstrtab != NULL) + _bfd_stringtab_free (finfo.symstrtab); + if (finfo.contents != NULL) + free (finfo.contents); + if (finfo.external_relocs != NULL) + free (finfo.external_relocs); + if (finfo.internal_relocs != NULL) + free (finfo.internal_relocs); + if (finfo.external_syms != NULL) + free (finfo.external_syms); + if (finfo.internal_syms != NULL) + free (finfo.internal_syms); + if (finfo.indices != NULL) + free (finfo.indices); + if (finfo.sections != NULL) + free (finfo.sections); + if (finfo.symbuf != NULL) + free (finfo.symbuf); + for (o = abfd->sections; o != NULL; o = o->next) + { + if ((o->flags & SEC_RELOC) != 0 + && elf_section_data (o)->rel_hashes != NULL) + free (elf_section_data (o)->rel_hashes); + } + + elf_tdata (abfd)->linker = true; + + return true; + + error_return: + if (finfo.symstrtab != NULL) + _bfd_stringtab_free (finfo.symstrtab); + if (finfo.contents != NULL) + free (finfo.contents); + if (finfo.external_relocs != NULL) + free (finfo.external_relocs); + if (finfo.internal_relocs != NULL) + free (finfo.internal_relocs); + if (finfo.external_syms != NULL) + free (finfo.external_syms); + if (finfo.internal_syms != NULL) + free (finfo.internal_syms); + if (finfo.indices != NULL) + free (finfo.indices); + if (finfo.sections != NULL) + free (finfo.sections); + if (finfo.symbuf != NULL) + free (finfo.symbuf); + for (o = abfd->sections; o != NULL; o = o->next) + { + if ((o->flags & SEC_RELOC) != 0 + && elf_section_data (o)->rel_hashes != NULL) + free (elf_section_data (o)->rel_hashes); + } + + return false; +} + +/* Add a symbol to the output symbol table. */ + +static boolean +elf_link_output_sym (finfo, name, elfsym, input_sec) + struct elf_final_link_info *finfo; + const char *name; + Elf_Internal_Sym *elfsym; + asection *input_sec; +{ + boolean (*output_symbol_hook) PARAMS ((bfd *, + struct bfd_link_info *info, + const char *, + Elf_Internal_Sym *, + asection *)); + + output_symbol_hook = get_elf_backend_data (finfo->output_bfd)-> + elf_backend_link_output_symbol_hook; + if (output_symbol_hook != NULL) + { + if (! ((*output_symbol_hook) + (finfo->output_bfd, finfo->info, name, elfsym, input_sec))) + return false; + } + + if (name == (const char *) NULL || *name == '\0') + elfsym->st_name = 0; + else if (input_sec->flags & SEC_EXCLUDE) + elfsym->st_name = 0; + else + { + elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab, + name, true, + false); + if (elfsym->st_name == (unsigned long) -1) + return false; + } + + if (finfo->symbuf_count >= finfo->symbuf_size) + { + if (! elf_link_flush_output_syms (finfo)) + return false; + } + + elf_swap_symbol_out (finfo->output_bfd, elfsym, + (PTR) (finfo->symbuf + finfo->symbuf_count)); + ++finfo->symbuf_count; + + ++ bfd_get_symcount (finfo->output_bfd); + + return true; +} + +/* Flush the output symbols to the file. */ + +static boolean +elf_link_flush_output_syms (finfo) + struct elf_final_link_info *finfo; +{ + if (finfo->symbuf_count > 0) + { + Elf_Internal_Shdr *symtab; + + symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr; + + if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size, + SEEK_SET) != 0 + || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count, + sizeof (Elf_External_Sym), finfo->output_bfd) + != finfo->symbuf_count * sizeof (Elf_External_Sym))) + return false; + + symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym); + + finfo->symbuf_count = 0; + } + + return true; +} + +/* Add an external symbol to the symbol table. This is called from + the hash table traversal routine. When generating a shared object, + we go through the symbol table twice. The first time we output + anything that might have been forced to local scope in a version + script. The second time we output the symbols that are still + global symbols. */ + +static boolean +elf_link_output_extsym (h, data) + struct elf_link_hash_entry *h; + PTR data; +{ + struct elf_outext_info *eoinfo = (struct elf_outext_info *) data; + struct elf_final_link_info *finfo = eoinfo->finfo; + boolean strip; + Elf_Internal_Sym sym; + asection *input_sec; + + /* Decide whether to output this symbol in this pass. */ + if (eoinfo->localsyms) + { + if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) + return true; + } + else + { + if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) + return true; + } + + /* If we are not creating a shared library, and this symbol is + referenced by a shared library but is not defined anywhere, then + warn that it is undefined. If we do not do this, the runtime + linker will complain that the symbol is undefined when the + program is run. We don't have to worry about symbols that are + referenced by regular files, because we will already have issued + warnings for them. */ + if (! finfo->info->relocateable + && ! (finfo->info->shared + && !finfo->info->symbolic + && !finfo->info->no_undefined) + && h->root.type == bfd_link_hash_undefined + && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0 + && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) + { + if (! ((*finfo->info->callbacks->undefined_symbol) + (finfo->info, h->root.root.string, h->root.u.undef.abfd, + (asection *) NULL, 0))) + { + eoinfo->failed = true; + return false; + } + } + + /* We don't want to output symbols that have never been mentioned by + a regular file, or that we have been told to strip. However, if + h->indx is set to -2, the symbol is used by a reloc and we must + output it. */ + if (h->indx == -2) + strip = false; + else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 + || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) + && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 + && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) + strip = true; + else if (finfo->info->strip == strip_all + || (finfo->info->strip == strip_some + && bfd_hash_lookup (finfo->info->keep_hash, + h->root.root.string, + false, false) == NULL)) + strip = true; + else + strip = false; + + /* If we're stripping it, and it's not a dynamic symbol, there's + nothing else to do. */ + if (strip && h->dynindx == -1) + return true; + + sym.st_value = 0; + sym.st_size = h->size; + sym.st_other = h->other; + if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) + sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type); + else if (h->root.type == bfd_link_hash_undefweak + || h->root.type == bfd_link_hash_defweak) + sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); + else + sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type); + + switch (h->root.type) + { + default: + case bfd_link_hash_new: + abort (); + return false; + + case bfd_link_hash_undefined: + input_sec = bfd_und_section_ptr; + sym.st_shndx = SHN_UNDEF; + break; + + case bfd_link_hash_undefweak: + input_sec = bfd_und_section_ptr; + sym.st_shndx = SHN_UNDEF; + break; + + case bfd_link_hash_defined: + case bfd_link_hash_defweak: + { + input_sec = h->root.u.def.section; + if (input_sec->output_section != NULL) + { + sym.st_shndx = + _bfd_elf_section_from_bfd_section (finfo->output_bfd, + input_sec->output_section); + if (sym.st_shndx == (unsigned short) -1) + { + (*_bfd_error_handler) + (_("%s: could not find output section %s for input section %s"), + bfd_get_filename (finfo->output_bfd), + input_sec->output_section->name, + input_sec->name); + eoinfo->failed = true; + return false; + } + + /* ELF symbols in relocateable files are section relative, + but in nonrelocateable files they are virtual + addresses. */ + sym.st_value = h->root.u.def.value + input_sec->output_offset; + if (! finfo->info->relocateable) + sym.st_value += input_sec->output_section->vma; + } + else + { + BFD_ASSERT (input_sec->owner == NULL + || (input_sec->owner->flags & DYNAMIC) != 0); + sym.st_shndx = SHN_UNDEF; + input_sec = bfd_und_section_ptr; + } + } + break; + + case bfd_link_hash_common: + input_sec = h->root.u.c.p->section; + sym.st_shndx = SHN_COMMON; + sym.st_value = 1 << h->root.u.c.p->alignment_power; + break; + + case bfd_link_hash_indirect: + /* These symbols are created by symbol versioning. They point + to the decorated version of the name. For example, if the + symbol foo@@GNU_1.2 is the default, which should be used when + foo is used with no version, then we add an indirect symbol + foo which points to foo@@GNU_1.2. We ignore these symbols, + since the indirected symbol is already in the hash table. If + the indirect symbol is non-ELF, fall through and output it. */ + if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0) + return true; + + /* Fall through. */ + case bfd_link_hash_warning: + /* We can't represent these symbols in ELF, although a warning + symbol may have come from a .gnu.warning.SYMBOL section. We + just put the target symbol in the hash table. If the target + symbol does not really exist, don't do anything. */ + if (h->root.u.i.link->type == bfd_link_hash_new) + return true; + return (elf_link_output_extsym + ((struct elf_link_hash_entry *) h->root.u.i.link, data)); + } + + /* Give the processor backend a chance to tweak the symbol value, + and also to finish up anything that needs to be done for this + symbol. */ + if ((h->dynindx != -1 + || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) + && elf_hash_table (finfo->info)->dynamic_sections_created) + { + struct elf_backend_data *bed; + + bed = get_elf_backend_data (finfo->output_bfd); + if (! ((*bed->elf_backend_finish_dynamic_symbol) + (finfo->output_bfd, finfo->info, h, &sym))) + { + eoinfo->failed = true; + return false; + } + } + + /* If we are marking the symbol as undefined, and there are no + non-weak references to this symbol from a regular object, then + mark the symbol as weak undefined. We can't do this earlier, + because it might not be marked as undefined until the + finish_dynamic_symbol routine gets through with it. */ + if (sym.st_shndx == SHN_UNDEF + && sym.st_info == ELF_ST_INFO (STB_GLOBAL, h->type) + && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0 + && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) == 0) + sym.st_info = ELF_ST_INFO (STB_WEAK, h->type); + + /* If this symbol should be put in the .dynsym section, then put it + there now. We have already know the symbol index. We also fill + in the entry in the .hash section. */ + if (h->dynindx != -1 + && elf_hash_table (finfo->info)->dynamic_sections_created) + { + size_t bucketcount; + size_t bucket; + bfd_byte *bucketpos; + bfd_vma chain; + + sym.st_name = h->dynstr_index; + + elf_swap_symbol_out (finfo->output_bfd, &sym, + (PTR) (((Elf_External_Sym *) + finfo->dynsym_sec->contents) + + h->dynindx)); + + bucketcount = elf_hash_table (finfo->info)->bucketcount; + bucket = h->elf_hash_value % bucketcount; + bucketpos = ((bfd_byte *) finfo->hash_sec->contents + + (bucket + 2) * (ARCH_SIZE / 8)); + chain = get_word (finfo->output_bfd, bucketpos); + put_word (finfo->output_bfd, h->dynindx, bucketpos); + put_word (finfo->output_bfd, chain, + ((bfd_byte *) finfo->hash_sec->contents + + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8))); + + if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL) + { + Elf_Internal_Versym iversym; + + if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) + { + if (h->verinfo.verdef == NULL) + iversym.vs_vers = 0; + else + iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; + } + else + { + if (h->verinfo.vertree == NULL) + iversym.vs_vers = 1; + else + iversym.vs_vers = h->verinfo.vertree->vernum + 1; + } + + if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0) + iversym.vs_vers |= VERSYM_HIDDEN; + + _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, + (((Elf_External_Versym *) + finfo->symver_sec->contents) + + h->dynindx)); + } + } + + /* If we're stripping it, then it was just a dynamic symbol, and + there's nothing else to do. */ + if (strip) + return true; + + h->indx = bfd_get_symcount (finfo->output_bfd); + + if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec)) + { + eoinfo->failed = true; + return false; + } + + return true; +} + +/* Link an input file into the linker output file. This function + handles all the sections and relocations of the input file at once. + This is so that we only have to read the local symbols once, and + don't have to keep them in memory. */ + +static boolean +elf_link_input_bfd (finfo, input_bfd) + struct elf_final_link_info *finfo; + bfd *input_bfd; +{ + boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *, + bfd *, asection *, bfd_byte *, + Elf_Internal_Rela *, + Elf_Internal_Sym *, asection **)); + bfd *output_bfd; + Elf_Internal_Shdr *symtab_hdr; + size_t locsymcount; + size_t extsymoff; + Elf_External_Sym *external_syms; + Elf_External_Sym *esym; + Elf_External_Sym *esymend; + Elf_Internal_Sym *isym; + long *pindex; + asection **ppsection; + asection *o; + + output_bfd = finfo->output_bfd; + relocate_section = + get_elf_backend_data (output_bfd)->elf_backend_relocate_section; + + /* If this is a dynamic object, we don't want to do anything here: + we don't want the local symbols, and we don't want the section + contents. */ + if ((input_bfd->flags & DYNAMIC) != 0) + return true; + + symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; + if (elf_bad_symtab (input_bfd)) + { + locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); + extsymoff = 0; + } + else + { + locsymcount = symtab_hdr->sh_info; + extsymoff = symtab_hdr->sh_info; + } + + /* Read the local symbols. */ + if (symtab_hdr->contents != NULL) + external_syms = (Elf_External_Sym *) symtab_hdr->contents; + else if (locsymcount == 0) + external_syms = NULL; + else + { + external_syms = finfo->external_syms; + if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 + || (bfd_read (external_syms, sizeof (Elf_External_Sym), + locsymcount, input_bfd) + != locsymcount * sizeof (Elf_External_Sym))) + return false; + } + + /* Swap in the local symbols and write out the ones which we know + are going into the output file. */ + esym = external_syms; + esymend = esym + locsymcount; + isym = finfo->internal_syms; + pindex = finfo->indices; + ppsection = finfo->sections; + for (; esym < esymend; esym++, isym++, pindex++, ppsection++) + { + asection *isec; + const char *name; + Elf_Internal_Sym osym; + + elf_swap_symbol_in (input_bfd, esym, isym); + *pindex = -1; + + if (elf_bad_symtab (input_bfd)) + { + if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) + { + *ppsection = NULL; + continue; + } + } + + if (isym->st_shndx == SHN_UNDEF) + isec = bfd_und_section_ptr; + else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE) + isec = section_from_elf_index (input_bfd, isym->st_shndx); + else if (isym->st_shndx == SHN_ABS) + isec = bfd_abs_section_ptr; + else if (isym->st_shndx == SHN_COMMON) + isec = bfd_com_section_ptr; + else + { + /* Who knows? */ + isec = NULL; + } + + *ppsection = isec; + + /* Don't output the first, undefined, symbol. */ + if (esym == external_syms) + continue; + + /* If we are stripping all symbols, we don't want to output this + one. */ + if (finfo->info->strip == strip_all) + continue; + + /* We never output section symbols. Instead, we use the section + symbol of the corresponding section in the output file. */ + if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) + continue; + + /* If we are discarding all local symbols, we don't want to + output this one. If we are generating a relocateable output + file, then some of the local symbols may be required by + relocs; we output them below as we discover that they are + needed. */ + if (finfo->info->discard == discard_all) + continue; + + /* If this symbol is defined in a section which we are + discarding, we don't need to keep it, but note that + linker_mark is only reliable for sections that have contents. + For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE + as well as linker_mark. */ + if (isym->st_shndx > 0 + && isym->st_shndx < SHN_LORESERVE + && isec != NULL + && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0) + || (! finfo->info->relocateable + && (isec->flags & SEC_EXCLUDE) != 0))) + continue; + + /* Get the name of the symbol. */ + name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, + isym->st_name); + if (name == NULL) + return false; + + /* See if we are discarding symbols with this name. */ + if ((finfo->info->strip == strip_some + && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false) + == NULL)) + || (finfo->info->discard == discard_l + && bfd_is_local_label_name (input_bfd, name))) + continue; + + /* If we get here, we are going to output this symbol. */ + + osym = *isym; + + /* Adjust the section index for the output file. */ + osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, + isec->output_section); + if (osym.st_shndx == (unsigned short) -1) + return false; + + *pindex = bfd_get_symcount (output_bfd); + + /* ELF symbols in relocateable files are section relative, but + in executable files they are virtual addresses. Note that + this code assumes that all ELF sections have an associated + BFD section with a reasonable value for output_offset; below + we assume that they also have a reasonable value for + output_section. Any special sections must be set up to meet + these requirements. */ + osym.st_value += isec->output_offset; + if (! finfo->info->relocateable) + osym.st_value += isec->output_section->vma; + + if (! elf_link_output_sym (finfo, name, &osym, isec)) + return false; + } + + /* Relocate the contents of each section. */ + for (o = input_bfd->sections; o != NULL; o = o->next) + { + bfd_byte *contents; + + if (! o->linker_mark) + { + /* This section was omitted from the link. */ + continue; + } + + if ((o->flags & SEC_HAS_CONTENTS) == 0 + || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0)) + continue; + + if ((o->flags & SEC_LINKER_CREATED) != 0) + { + /* Section was created by elf_link_create_dynamic_sections + or somesuch. */ + continue; + } + + /* Get the contents of the section. They have been cached by a + relaxation routine. Note that o is a section in an input + file, so the contents field will not have been set by any of + the routines which work on output files. */ + if (elf_section_data (o)->this_hdr.contents != NULL) + contents = elf_section_data (o)->this_hdr.contents; + else + { + contents = finfo->contents; + if (! bfd_get_section_contents (input_bfd, o, contents, + (file_ptr) 0, o->_raw_size)) + return false; + } + + if ((o->flags & SEC_RELOC) != 0) + { + Elf_Internal_Rela *internal_relocs; + + /* Get the swapped relocs. */ + internal_relocs = (NAME(_bfd_elf,link_read_relocs) + (input_bfd, o, finfo->external_relocs, + finfo->internal_relocs, false)); + if (internal_relocs == NULL + && o->reloc_count > 0) + return false; + + /* Relocate the section by invoking a back end routine. + + The back end routine is responsible for adjusting the + section contents as necessary, and (if using Rela relocs + and generating a relocateable output file) adjusting the + reloc addend as necessary. + + The back end routine does not have to worry about setting + the reloc address or the reloc symbol index. + + The back end routine is given a pointer to the swapped in + internal symbols, and can access the hash table entries + for the external symbols via elf_sym_hashes (input_bfd). + + When generating relocateable output, the back end routine + must handle STB_LOCAL/STT_SECTION symbols specially. The + output symbol is going to be a section symbol + corresponding to the output section, which will require + the addend to be adjusted. */ + + if (! (*relocate_section) (output_bfd, finfo->info, + input_bfd, o, contents, + internal_relocs, + finfo->internal_syms, + finfo->sections)) + return false; + + if (finfo->info->relocateable) + { + Elf_Internal_Rela *irela; + Elf_Internal_Rela *irelaend; + struct elf_link_hash_entry **rel_hash; + Elf_Internal_Shdr *input_rel_hdr; + Elf_Internal_Shdr *output_rel_hdr; + + /* Adjust the reloc addresses and symbol indices. */ + + irela = internal_relocs; + irelaend = irela + o->reloc_count; + rel_hash = (elf_section_data (o->output_section)->rel_hashes + + o->output_section->reloc_count); + for (; irela < irelaend; irela++, rel_hash++) + { + unsigned long r_symndx; + Elf_Internal_Sym *isym; + asection *sec; + + irela->r_offset += o->output_offset; + + r_symndx = ELF_R_SYM (irela->r_info); + + if (r_symndx == 0) + continue; + + if (r_symndx >= locsymcount + || (elf_bad_symtab (input_bfd) + && finfo->sections[r_symndx] == NULL)) + { + struct elf_link_hash_entry *rh; + long indx; + + /* This is a reloc against a global symbol. We + have not yet output all the local symbols, so + we do not know the symbol index of any global + symbol. We set the rel_hash entry for this + reloc to point to the global hash table entry + for this symbol. The symbol index is then + set at the end of elf_bfd_final_link. */ + indx = r_symndx - extsymoff; + rh = elf_sym_hashes (input_bfd)[indx]; + while (rh->root.type == bfd_link_hash_indirect + || rh->root.type == bfd_link_hash_warning) + rh = (struct elf_link_hash_entry *) rh->root.u.i.link; + + /* Setting the index to -2 tells + elf_link_output_extsym that this symbol is + used by a reloc. */ + BFD_ASSERT (rh->indx < 0); + rh->indx = -2; + + *rel_hash = rh; + + continue; + } + + /* This is a reloc against a local symbol. */ + + *rel_hash = NULL; + isym = finfo->internal_syms + r_symndx; + sec = finfo->sections[r_symndx]; + if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) + { + /* I suppose the backend ought to fill in the + section of any STT_SECTION symbol against a + processor specific section. If we have + discarded a section, the output_section will + be the absolute section. */ + if (sec != NULL + && (bfd_is_abs_section (sec) + || (sec->output_section != NULL + && bfd_is_abs_section (sec->output_section)))) + r_symndx = 0; + else if (sec == NULL || sec->owner == NULL) + { + bfd_set_error (bfd_error_bad_value); + return false; + } + else + { + r_symndx = sec->output_section->target_index; + BFD_ASSERT (r_symndx != 0); + } + } + else + { + if (finfo->indices[r_symndx] == -1) + { + unsigned long link; + const char *name; + asection *osec; + + if (finfo->info->strip == strip_all) + { + /* You can't do ld -r -s. */ + bfd_set_error (bfd_error_invalid_operation); + return false; + } + + /* This symbol was skipped earlier, but + since it is needed by a reloc, we + must output it now. */ + link = symtab_hdr->sh_link; + name = bfd_elf_string_from_elf_section (input_bfd, + link, + isym->st_name); + if (name == NULL) + return false; + + osec = sec->output_section; + isym->st_shndx = + _bfd_elf_section_from_bfd_section (output_bfd, + osec); + if (isym->st_shndx == (unsigned short) -1) + return false; + + isym->st_value += sec->output_offset; + if (! finfo->info->relocateable) + isym->st_value += osec->vma; + + finfo->indices[r_symndx] = bfd_get_symcount (output_bfd); + + if (! elf_link_output_sym (finfo, name, isym, sec)) + return false; + } + + r_symndx = finfo->indices[r_symndx]; + } + + irela->r_info = ELF_R_INFO (r_symndx, + ELF_R_TYPE (irela->r_info)); + } + + /* Swap out the relocs. */ + input_rel_hdr = &elf_section_data (o)->rel_hdr; + output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr; + BFD_ASSERT (output_rel_hdr->sh_entsize + == input_rel_hdr->sh_entsize); + irela = internal_relocs; + irelaend = irela + o->reloc_count; + if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel)) + { + Elf_External_Rel *erel; + + erel = ((Elf_External_Rel *) output_rel_hdr->contents + + o->output_section->reloc_count); + for (; irela < irelaend; irela++, erel++) + { + Elf_Internal_Rel irel; + + irel.r_offset = irela->r_offset; + irel.r_info = irela->r_info; + BFD_ASSERT (irela->r_addend == 0); + elf_swap_reloc_out (output_bfd, &irel, erel); + } + } + else + { + Elf_External_Rela *erela; + + BFD_ASSERT (input_rel_hdr->sh_entsize + == sizeof (Elf_External_Rela)); + erela = ((Elf_External_Rela *) output_rel_hdr->contents + + o->output_section->reloc_count); + for (; irela < irelaend; irela++, erela++) + elf_swap_reloca_out (output_bfd, irela, erela); + } + + o->output_section->reloc_count += o->reloc_count; + } + } + + /* Write out the modified section contents. */ + if (elf_section_data (o)->stab_info == NULL) + { + if (! (o->flags & SEC_EXCLUDE) && + ! bfd_set_section_contents (output_bfd, o->output_section, + contents, o->output_offset, + (o->_cooked_size != 0 + ? o->_cooked_size + : o->_raw_size))) + return false; + } + else + { + if (! (_bfd_write_section_stabs + (output_bfd, &elf_hash_table (finfo->info)->stab_info, + o, &elf_section_data (o)->stab_info, contents))) + return false; + } + } + + return true; +} + +/* Generate a reloc when linking an ELF file. This is a reloc + requested by the linker, and does come from any input file. This + is used to build constructor and destructor tables when linking + with -Ur. */ + +static boolean +elf_reloc_link_order (output_bfd, info, output_section, link_order) + bfd *output_bfd; + struct bfd_link_info *info; + asection *output_section; + struct bfd_link_order *link_order; +{ + reloc_howto_type *howto; + long indx; + bfd_vma offset; + bfd_vma addend; + struct elf_link_hash_entry **rel_hash_ptr; + Elf_Internal_Shdr *rel_hdr; + + howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); + if (howto == NULL) + { + bfd_set_error (bfd_error_bad_value); + return false; + } + + addend = link_order->u.reloc.p->addend; + + /* Figure out the symbol index. */ + rel_hash_ptr = (elf_section_data (output_section)->rel_hashes + + output_section->reloc_count); + if (link_order->type == bfd_section_reloc_link_order) + { + indx = link_order->u.reloc.p->u.section->target_index; + BFD_ASSERT (indx != 0); + *rel_hash_ptr = NULL; + } + else + { + struct elf_link_hash_entry *h; + + /* Treat a reloc against a defined symbol as though it were + actually against the section. */ + h = ((struct elf_link_hash_entry *) + bfd_wrapped_link_hash_lookup (output_bfd, info, + link_order->u.reloc.p->u.name, + false, false, true)); + if (h != NULL + && (h->root.type == bfd_link_hash_defined + || h->root.type == bfd_link_hash_defweak)) + { + asection *section; + + section = h->root.u.def.section; + indx = section->output_section->target_index; + *rel_hash_ptr = NULL; + /* It seems that we ought to add the symbol value to the + addend here, but in practice it has already been added + because it was passed to constructor_callback. */ + addend += section->output_section->vma + section->output_offset; + } + else if (h != NULL) + { + /* Setting the index to -2 tells elf_link_output_extsym that + this symbol is used by a reloc. */ + h->indx = -2; + *rel_hash_ptr = h; + indx = 0; + } + else + { + if (! ((*info->callbacks->unattached_reloc) + (info, link_order->u.reloc.p->u.name, (bfd *) NULL, + (asection *) NULL, (bfd_vma) 0))) + return false; + indx = 0; + } + } + + /* If this is an inplace reloc, we must write the addend into the + object file. */ + if (howto->partial_inplace && addend != 0) + { + bfd_size_type size; + bfd_reloc_status_type rstat; + bfd_byte *buf; + boolean ok; + + size = bfd_get_reloc_size (howto); + buf = (bfd_byte *) bfd_zmalloc (size); + if (buf == (bfd_byte *) NULL) + return false; + rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); + switch (rstat) + { + case bfd_reloc_ok: + break; + default: + case bfd_reloc_outofrange: + abort (); + case bfd_reloc_overflow: + if (! ((*info->callbacks->reloc_overflow) + (info, + (link_order->type == bfd_section_reloc_link_order + ? bfd_section_name (output_bfd, + link_order->u.reloc.p->u.section) + : link_order->u.reloc.p->u.name), + howto->name, addend, (bfd *) NULL, (asection *) NULL, + (bfd_vma) 0))) + { + free (buf); + return false; + } + break; + } + ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf, + (file_ptr) link_order->offset, size); + free (buf); + if (! ok) + return false; + } + + /* The address of a reloc is relative to the section in a + relocateable file, and is a virtual address in an executable + file. */ + offset = link_order->offset; + if (! info->relocateable) + offset += output_section->vma; + + rel_hdr = &elf_section_data (output_section)->rel_hdr; + + if (rel_hdr->sh_type == SHT_REL) + { + Elf_Internal_Rel irel; + Elf_External_Rel *erel; + + irel.r_offset = offset; + irel.r_info = ELF_R_INFO (indx, howto->type); + erel = ((Elf_External_Rel *) rel_hdr->contents + + output_section->reloc_count); + elf_swap_reloc_out (output_bfd, &irel, erel); + } + else + { + Elf_Internal_Rela irela; + Elf_External_Rela *erela; + + irela.r_offset = offset; + irela.r_info = ELF_R_INFO (indx, howto->type); + irela.r_addend = addend; + erela = ((Elf_External_Rela *) rel_hdr->contents + + output_section->reloc_count); + elf_swap_reloca_out (output_bfd, &irela, erela); + } + + ++output_section->reloc_count; + + return true; +} + + +/* Allocate a pointer to live in a linker created section. */ + +boolean +elf_create_pointer_linker_section (abfd, info, lsect, h, rel) + bfd *abfd; + struct bfd_link_info *info; + elf_linker_section_t *lsect; + struct elf_link_hash_entry *h; + const Elf_Internal_Rela *rel; +{ + elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL; + elf_linker_section_pointers_t *linker_section_ptr; + unsigned long r_symndx = ELF_R_SYM (rel->r_info);; + + BFD_ASSERT (lsect != NULL); + + /* Is this a global symbol? */ + if (h != NULL) + { + /* Has this symbol already been allocated, if so, our work is done */ + if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer, + rel->r_addend, + lsect->which)) + return true; + + ptr_linker_section_ptr = &h->linker_section_pointer; + /* Make sure this symbol is output as a dynamic symbol. */ + if (h->dynindx == -1) + { + if (! elf_link_record_dynamic_symbol (info, h)) + return false; + } + + if (lsect->rel_section) + lsect->rel_section->_raw_size += sizeof (Elf_External_Rela); + } + + else /* Allocation of a pointer to a local symbol */ + { + elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd); + + /* Allocate a table to hold the local symbols if first time */ + if (!ptr) + { + unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info; + register unsigned int i; + + ptr = (elf_linker_section_pointers_t **) + bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *)); + + if (!ptr) + return false; + + elf_local_ptr_offsets (abfd) = ptr; + for (i = 0; i < num_symbols; i++) + ptr[i] = (elf_linker_section_pointers_t *)0; + } + + /* Has this symbol already been allocated, if so, our work is done */ + if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx], + rel->r_addend, + lsect->which)) + return true; + + ptr_linker_section_ptr = &ptr[r_symndx]; + + if (info->shared) + { + /* If we are generating a shared object, we need to + output a R_<xxx>_RELATIVE reloc so that the + dynamic linker can adjust this GOT entry. */ + BFD_ASSERT (lsect->rel_section != NULL); + lsect->rel_section->_raw_size += sizeof (Elf_External_Rela); + } + } + + /* Allocate space for a pointer in the linker section, and allocate a new pointer record + from internal memory. */ + BFD_ASSERT (ptr_linker_section_ptr != NULL); + linker_section_ptr = (elf_linker_section_pointers_t *) + bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t)); + + if (!linker_section_ptr) + return false; + + linker_section_ptr->next = *ptr_linker_section_ptr; + linker_section_ptr->addend = rel->r_addend; + linker_section_ptr->which = lsect->which; + linker_section_ptr->written_address_p = false; + *ptr_linker_section_ptr = linker_section_ptr; + +#if 0 + if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset) + { + linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8); + lsect->hole_offset += ARCH_SIZE / 8; + lsect->sym_offset += ARCH_SIZE / 8; + if (lsect->sym_hash) /* Bump up symbol value if needed */ + { + lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8; +#ifdef DEBUG + fprintf (stderr, "Bump up %s by %ld, current value = %ld\n", + lsect->sym_hash->root.root.string, + (long)ARCH_SIZE / 8, + (long)lsect->sym_hash->root.u.def.value); +#endif + } + } + else +#endif + linker_section_ptr->offset = lsect->section->_raw_size; + + lsect->section->_raw_size += ARCH_SIZE / 8; + +#ifdef DEBUG + fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n", + lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size); +#endif + + return true; +} + + +#if ARCH_SIZE==64 +#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR) +#endif +#if ARCH_SIZE==32 +#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR) +#endif + +/* Fill in the address for a pointer generated in alinker section. */ + +bfd_vma +elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc) + bfd *output_bfd; + bfd *input_bfd; + struct bfd_link_info *info; + elf_linker_section_t *lsect; + struct elf_link_hash_entry *h; + bfd_vma relocation; + const Elf_Internal_Rela *rel; + int relative_reloc; +{ + elf_linker_section_pointers_t *linker_section_ptr; + + BFD_ASSERT (lsect != NULL); + + if (h != NULL) /* global symbol */ + { + linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer, + rel->r_addend, + lsect->which); + + BFD_ASSERT (linker_section_ptr != NULL); + + if (! elf_hash_table (info)->dynamic_sections_created + || (info->shared + && info->symbolic + && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) + { + /* This is actually a static link, or it is a + -Bsymbolic link and the symbol is defined + locally. We must initialize this entry in the + global section. + + When doing a dynamic link, we create a .rela.<xxx> + relocation entry to initialize the value. This + is done in the finish_dynamic_symbol routine. */ + if (!linker_section_ptr->written_address_p) + { + linker_section_ptr->written_address_p = true; + bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend, + lsect->section->contents + linker_section_ptr->offset); + } + } + } + else /* local symbol */ + { + unsigned long r_symndx = ELF_R_SYM (rel->r_info); + BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL); + BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL); + linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx], + rel->r_addend, + lsect->which); + + BFD_ASSERT (linker_section_ptr != NULL); + + /* Write out pointer if it hasn't been rewritten out before */ + if (!linker_section_ptr->written_address_p) + { + linker_section_ptr->written_address_p = true; + bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend, + lsect->section->contents + linker_section_ptr->offset); + + if (info->shared) + { + asection *srel = lsect->rel_section; + Elf_Internal_Rela outrel; + + /* We need to generate a relative reloc for the dynamic linker. */ + if (!srel) + lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj, + lsect->rel_name); + + BFD_ASSERT (srel != NULL); + + outrel.r_offset = (lsect->section->output_section->vma + + lsect->section->output_offset + + linker_section_ptr->offset); + outrel.r_info = ELF_R_INFO (0, relative_reloc); + outrel.r_addend = 0; + elf_swap_reloca_out (output_bfd, &outrel, + (((Elf_External_Rela *) + lsect->section->contents) + + lsect->section->reloc_count)); + ++lsect->section->reloc_count; + } + } + } + + relocation = (lsect->section->output_offset + + linker_section_ptr->offset + - lsect->hole_offset + - lsect->sym_offset); + +#ifdef DEBUG + fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n", + lsect->name, (long)relocation, (long)relocation); +#endif + + /* Subtract out the addend, because it will get added back in by the normal + processing. */ + return relocation - linker_section_ptr->addend; +} + +/* Garbage collect unused sections. */ + +static boolean elf_gc_mark + PARAMS ((struct bfd_link_info *info, asection *sec, + asection * (*gc_mark_hook) + PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, + struct elf_link_hash_entry *, Elf_Internal_Sym *)))); + +static boolean elf_gc_sweep + PARAMS ((struct bfd_link_info *info, + boolean (*gc_sweep_hook) + PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o, + const Elf_Internal_Rela *relocs)))); + +static boolean elf_gc_sweep_symbol + PARAMS ((struct elf_link_hash_entry *h, PTR idxptr)); + +static boolean elf_gc_allocate_got_offsets + PARAMS ((struct elf_link_hash_entry *h, PTR offarg)); + +static boolean elf_gc_propagate_vtable_entries_used + PARAMS ((struct elf_link_hash_entry *h, PTR dummy)); + +static boolean elf_gc_smash_unused_vtentry_relocs + PARAMS ((struct elf_link_hash_entry *h, PTR dummy)); + +/* The mark phase of garbage collection. For a given section, mark + it, and all the sections which define symbols to which it refers. */ + +static boolean +elf_gc_mark (info, sec, gc_mark_hook) + struct bfd_link_info *info; + asection *sec; + asection * (*gc_mark_hook) + PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, + struct elf_link_hash_entry *, Elf_Internal_Sym *)); +{ + boolean ret = true; + + sec->gc_mark = 1; + + /* Look through the section relocs. */ + + if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0) + { + Elf_Internal_Rela *relstart, *rel, *relend; + Elf_Internal_Shdr *symtab_hdr; + struct elf_link_hash_entry **sym_hashes; + size_t nlocsyms; + size_t extsymoff; + Elf_External_Sym *locsyms, *freesyms = NULL; + bfd *input_bfd = sec->owner; + + /* GCFIXME: how to arrange so that relocs and symbols are not + reread continually? */ + + symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; + sym_hashes = elf_sym_hashes (input_bfd); + + /* Read the local symbols. */ + if (elf_bad_symtab (input_bfd)) + { + nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym); + extsymoff = 0; + } + else + extsymoff = nlocsyms = symtab_hdr->sh_info; + if (symtab_hdr->contents) + locsyms = (Elf_External_Sym *) symtab_hdr->contents; + else if (nlocsyms == 0) + locsyms = NULL; + else + { + locsyms = freesyms = + bfd_malloc (nlocsyms * sizeof (Elf_External_Sym)); + if (freesyms == NULL + || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 + || (bfd_read (locsyms, sizeof (Elf_External_Sym), + nlocsyms, input_bfd) + != nlocsyms * sizeof (Elf_External_Sym))) + { + ret = false; + goto out1; + } + } + + /* Read the relocations. */ + relstart = (NAME(_bfd_elf,link_read_relocs) + (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, + info->keep_memory)); + if (relstart == NULL) + { + ret = false; + goto out1; + } + relend = relstart + sec->reloc_count; + + for (rel = relstart; rel < relend; rel++) + { + unsigned long r_symndx; + asection *rsec; + struct elf_link_hash_entry *h; + Elf_Internal_Sym s; + + r_symndx = ELF_R_SYM (rel->r_info); + if (r_symndx == 0) + continue; + + if (elf_bad_symtab (sec->owner)) + { + elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s); + if (ELF_ST_BIND (s.st_info) == STB_LOCAL) + rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s); + else + { + h = sym_hashes[r_symndx - extsymoff]; + rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL); + } + } + else if (r_symndx >= nlocsyms) + { + h = sym_hashes[r_symndx - extsymoff]; + rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL); + } + else + { + elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s); + rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s); + } + + if (rsec && !rsec->gc_mark) + if (!elf_gc_mark (info, rsec, gc_mark_hook)) + { + ret = false; + goto out2; + } + } + + out2: + if (!info->keep_memory) + free (relstart); + out1: + if (freesyms) + free (freesyms); + } + + return ret; +} + +/* The sweep phase of garbage collection. Remove all garbage sections. */ + +static boolean +elf_gc_sweep (info, gc_sweep_hook) + struct bfd_link_info *info; + boolean (*gc_sweep_hook) + PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o, + const Elf_Internal_Rela *relocs)); +{ + bfd *sub; + + for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) + { + asection *o; + + for (o = sub->sections; o != NULL; o = o->next) + { + /* Keep special sections. Keep .debug sections. */ + if ((o->flags & SEC_LINKER_CREATED) + || (o->flags & SEC_DEBUGGING)) + o->gc_mark = 1; + + if (o->gc_mark) + continue; + + /* Skip sweeping sections already excluded. */ + if (o->flags & SEC_EXCLUDE) + continue; + + /* Since this is early in the link process, it is simple + to remove a section from the output. */ + o->flags |= SEC_EXCLUDE; + + /* But we also have to update some of the relocation + info we collected before. */ + if (gc_sweep_hook + && (o->flags & SEC_RELOC) && o->reloc_count > 0) + { + Elf_Internal_Rela *internal_relocs; + boolean r; + + internal_relocs = (NAME(_bfd_elf,link_read_relocs) + (o->owner, o, NULL, NULL, info->keep_memory)); + if (internal_relocs == NULL) + return false; + + r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs); + + if (!info->keep_memory) + free (internal_relocs); + + if (!r) + return false; + } + } + } + + /* Remove the symbols that were in the swept sections from the dynamic + symbol table. GCFIXME: Anyone know how to get them out of the + static symbol table as well? */ + { + int i = 0; + + elf_link_hash_traverse (elf_hash_table (info), + elf_gc_sweep_symbol, + (PTR) &i); + + elf_hash_table (info)->dynsymcount = i; + } + + return true; +} + +/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ + +static boolean +elf_gc_sweep_symbol (h, idxptr) + struct elf_link_hash_entry *h; + PTR idxptr; +{ + int *idx = (int *) idxptr; + + if (h->dynindx != -1 + && ((h->root.type != bfd_link_hash_defined + && h->root.type != bfd_link_hash_defweak) + || h->root.u.def.section->gc_mark)) + h->dynindx = (*idx)++; + + return true; +} + +/* Propogate collected vtable information. This is called through + elf_link_hash_traverse. */ + +static boolean +elf_gc_propagate_vtable_entries_used (h, okp) + struct elf_link_hash_entry *h; + PTR okp; +{ + /* Those that are not vtables. */ + if (h->vtable_parent == NULL) + return true; + + /* Those vtables that do not have parents, we cannot merge. */ + if (h->vtable_parent == (struct elf_link_hash_entry *) -1) + return true; + + /* If we've already been done, exit. */ + if (h->vtable_entries_used && h->vtable_entries_used[-1]) + return true; + + /* Make sure the parent's table is up to date. */ + elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp); + + if (h->vtable_entries_used == NULL) + { + /* None of this table's entries were referenced. Re-use the + parent's table. */ + h->vtable_entries_used = h->vtable_parent->vtable_entries_used; + h->vtable_entries_size = h->vtable_parent->vtable_entries_size; + } + else + { + size_t n; + boolean *cu, *pu; + + /* Or the parent's entries into ours. */ + cu = h->vtable_entries_used; + cu[-1] = true; + pu = h->vtable_parent->vtable_entries_used; + if (pu != NULL) + { + n = h->vtable_parent->vtable_entries_size / FILE_ALIGN; + while (--n != 0) + { + if (*pu) *cu = true; + pu++, cu++; + } + } + } + + return true; +} + +static boolean +elf_gc_smash_unused_vtentry_relocs (h, okp) + struct elf_link_hash_entry *h; + PTR okp; +{ + asection *sec; + bfd_vma hstart, hend; + Elf_Internal_Rela *relstart, *relend, *rel; + + /* Take care of both those symbols that do not describe vtables as + well as those that are not loaded. */ + if (h->vtable_parent == NULL) + return true; + + BFD_ASSERT (h->root.type == bfd_link_hash_defined + || h->root.type == bfd_link_hash_defweak); + + sec = h->root.u.def.section; + hstart = h->root.u.def.value; + hend = hstart + h->size; + + relstart = (NAME(_bfd_elf,link_read_relocs) + (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true)); + if (!relstart) + return *(boolean *)okp = false; + relend = relstart + sec->reloc_count; + + for (rel = relstart; rel < relend; ++rel) + if (rel->r_offset >= hstart && rel->r_offset < hend) + { + /* If the entry is in use, do nothing. */ + if (h->vtable_entries_used + && (rel->r_offset - hstart) < h->vtable_entries_size) + { + bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN; + if (h->vtable_entries_used[entry]) + continue; + } + /* Otherwise, kill it. */ + rel->r_offset = rel->r_info = rel->r_addend = 0; + } + + return true; +} + +/* Do mark and sweep of unused sections. */ + +boolean +elf_gc_sections (abfd, info) + bfd *abfd; + struct bfd_link_info *info; +{ + boolean ok = true; + bfd *sub; + asection * (*gc_mark_hook) + PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *, + struct elf_link_hash_entry *h, Elf_Internal_Sym *)); + + if (!get_elf_backend_data (abfd)->can_gc_sections + || info->relocateable + || elf_hash_table (info)->dynamic_sections_created) + return true; + + /* Apply transitive closure to the vtable entry usage info. */ + elf_link_hash_traverse (elf_hash_table (info), + elf_gc_propagate_vtable_entries_used, + (PTR) &ok); + if (!ok) + return false; + + /* Kill the vtable relocations that were not used. */ + elf_link_hash_traverse (elf_hash_table (info), + elf_gc_smash_unused_vtentry_relocs, + (PTR) &ok); + if (!ok) + return false; + + /* Grovel through relocs to find out who stays ... */ + + gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook; + for (sub = info->input_bfds; sub != NULL; sub = sub->link_next) + { + asection *o; + for (o = sub->sections; o != NULL; o = o->next) + { + if (o->flags & SEC_KEEP) + if (!elf_gc_mark (info, o, gc_mark_hook)) + return false; + } + } + + /* ... and mark SEC_EXCLUDE for those that go. */ + if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook)) + return false; + + return true; +} + +/* Called from check_relocs to record the existance of a VTINHERIT reloc. */ + +boolean +elf_gc_record_vtinherit (abfd, sec, h, offset) + bfd *abfd; + asection *sec; + struct elf_link_hash_entry *h; + bfd_vma offset; +{ + struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; + struct elf_link_hash_entry **search, *child; + bfd_size_type extsymcount; + + /* The sh_info field of the symtab header tells us where the + external symbols start. We don't care about the local symbols at + this point. */ + extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym); + if (!elf_bad_symtab (abfd)) + extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; + + sym_hashes = elf_sym_hashes (abfd); + sym_hashes_end = sym_hashes + extsymcount; + + /* Hunt down the child symbol, which is in this section at the same + offset as the relocation. */ + for (search = sym_hashes; search != sym_hashes_end; ++search) + { + if ((child = *search) != NULL + && (child->root.type == bfd_link_hash_defined + || child->root.type == bfd_link_hash_defweak) + && child->root.u.def.section == sec + && child->root.u.def.value == offset) + goto win; + } + + (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT", + bfd_get_filename (abfd), sec->name, + (unsigned long)offset); + bfd_set_error (bfd_error_invalid_operation); + return false; + +win: + if (!h) + { + /* This *should* only be the absolute section. It could potentially + be that someone has defined a non-global vtable though, which + would be bad. It isn't worth paging in the local symbols to be + sure though; that case should simply be handled by the assembler. */ + + child->vtable_parent = (struct elf_link_hash_entry *) -1; + } + else + child->vtable_parent = h; + + return true; +} + +/* Called from check_relocs to record the existance of a VTENTRY reloc. */ + +boolean +elf_gc_record_vtentry (abfd, sec, h, addend) + bfd *abfd; + asection *sec; + struct elf_link_hash_entry *h; + bfd_vma addend; +{ + if (addend >= h->vtable_entries_size) + { + size_t size, bytes; + boolean *ptr = h->vtable_entries_used; + + /* While the symbol is undefined, we have to be prepared to handle + a zero size. */ + if (h->root.type == bfd_link_hash_undefined) + size = addend; + else + { + size = h->size; + if (size < addend) + { + /* Oops! We've got a reference past the defined end of + the table. This is probably a bug -- shall we warn? */ + size = addend; + } + } + + /* Allocate one extra entry for use as a "done" flag for the + consolidation pass. */ + bytes = (size / FILE_ALIGN + 1) * sizeof(boolean); + + if (ptr) + { + size_t oldbytes; + + ptr = realloc (ptr-1, bytes); + if (ptr == NULL) + return false; + + oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof(boolean); + memset (ptr + oldbytes, 0, bytes - oldbytes); + } + else + { + ptr = calloc (1, bytes); + if (ptr == NULL) + return false; + } + + /* And arrange for that done flag to be at index -1. */ + h->vtable_entries_used = ptr+1; + h->vtable_entries_size = size; + } + h->vtable_entries_used[addend / FILE_ALIGN] = true; + + return true; +} + +/* And an accompanying bit to work out final got entry offsets once + we're done. Should be called from final_link. */ + +boolean +elf_gc_common_finalize_got_offsets (abfd, info) + bfd *abfd; + struct bfd_link_info *info; +{ + bfd *i; + struct elf_backend_data *bed = get_elf_backend_data (abfd); + bfd_vma gotoff; + + /* The GOT offset is relative to the .got section, but the GOT header is + put into the .got.plt section, if the backend uses it. */ + if (bed->want_got_plt) + gotoff = 0; + else + gotoff = bed->got_header_size; + + /* Do the local .got entries first. */ + for (i = info->input_bfds; i; i = i->link_next) + { + bfd_signed_vma *local_got = elf_local_got_refcounts (i); + bfd_size_type j, locsymcount; + Elf_Internal_Shdr *symtab_hdr; + + if (!local_got) + continue; + + symtab_hdr = &elf_tdata (i)->symtab_hdr; + if (elf_bad_symtab (i)) + locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym); + else + locsymcount = symtab_hdr->sh_info; + + for (j = 0; j < locsymcount; ++j) + { + if (local_got[j] > 0) + { + local_got[j] = gotoff; + gotoff += ARCH_SIZE / 8; + } + else + local_got[j] = (bfd_vma) -1; + } + } + + /* Then the global .got and .plt entries. */ + elf_link_hash_traverse (elf_hash_table (info), + elf_gc_allocate_got_offsets, + (PTR) &gotoff); + return true; +} + +/* We need a special top-level link routine to convert got reference counts + to real got offsets. */ + +static boolean +elf_gc_allocate_got_offsets (h, offarg) + struct elf_link_hash_entry *h; + PTR offarg; +{ + bfd_vma *off = (bfd_vma *) offarg; + + if (h->got.refcount > 0) + { + h->got.offset = off[0]; + off[0] += ARCH_SIZE / 8; + } + else + h->got.offset = (bfd_vma) -1; + + return true; +} + +/* Many folk need no more in the way of final link than this, once + got entry reference counting is enabled. */ + +boolean +elf_gc_common_final_link (abfd, info) + bfd *abfd; + struct bfd_link_info *info; +{ + if (!elf_gc_common_finalize_got_offsets (abfd, info)) + return false; + + /* Invoke the regular ELF backend linker to do all the work. */ + return elf_bfd_final_link (abfd, info); +} + +/* This function will be called though elf_link_hash_traverse to store + all hash value of the exported symbols in an array. */ + +static boolean +elf_collect_hash_codes (h, data) + struct elf_link_hash_entry *h; + PTR data; +{ + unsigned long **valuep = (unsigned long **) data; + const char *name; + char *p; + unsigned long ha; + char *alc = NULL; + + /* Ignore indirect symbols. These are added by the versioning code. */ + if (h->dynindx == -1) + return true; + + name = h->root.root.string; + p = strchr (name, ELF_VER_CHR); + if (p != NULL) + { + alc = bfd_malloc (p - name + 1); + memcpy (alc, name, p - name); + alc[p - name] = '\0'; + name = alc; + } + + /* Compute the hash value. */ + ha = bfd_elf_hash (name); + + /* Store the found hash value in the array given as the argument. */ + *(*valuep)++ = ha; + + /* And store it in the struct so that we can put it in the hash table + later. */ + h->elf_hash_value = ha; + + if (alc != NULL) + free (alc); + + return true; +} |