aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSteve Chamberlain <sac@cygnus>1991-11-12 17:34:33 +0000
committerSteve Chamberlain <sac@cygnus>1991-11-12 17:34:33 +0000
commitecb1b520dee9279c9ab81a0352122f88619a90d4 (patch)
tree32b52c1de3839630ee6379fdb274ff7984cb3aed
parent5d2d9ca6299a68a31688757cbe881358a198a54d (diff)
downloadgdb-ecb1b520dee9279c9ab81a0352122f88619a90d4.zip
gdb-ecb1b520dee9279c9ab81a0352122f88619a90d4.tar.gz
gdb-ecb1b520dee9279c9ab81a0352122f88619a90d4.tar.bz2
First cut
-rw-r--r--gdb/tm-delta88.h478
-rw-r--r--gdb/xm-delta88.h125
2 files changed, 603 insertions, 0 deletions
diff --git a/gdb/tm-delta88.h b/gdb/tm-delta88.h
new file mode 100644
index 0000000..c0ffb4c
--- /dev/null
+++ b/gdb/tm-delta88.h
@@ -0,0 +1,478 @@
+/* Copyright (C) 1986, 1987, 1988, 1989, 1990 Free Software Foundation, Inc.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+/* g++ support is not yet included. */
+
+#include "tdesc.h"
+
+
+#define TARGET_BYTE_ORDER BIG_ENDIAN
+
+#define EXTRA_SYMTAB_INFO int coffsem;
+
+/* This is not a CREATE_INFERIOR_HOOK because it also applies to
+ remote debugging. */
+#define START_INFERIOR_HOOK() \
+ { \
+ extern int safe_to_init_tdesc_context; \
+ extern dc_handle_t tdesc_handle; \
+ \
+ safe_to_init_tdesc_context = 0; \
+ if (tdesc_handle) \
+ { \
+ dc_terminate (tdesc_handle); \
+ tdesc_handle = 0; \
+ } \
+ }
+
+dc_dcontext_t get_prev_context ();
+extern int stack_error;
+
+#define EXTRA_FRAME_INFO dc_dcontext_t frame_context;
+#define INIT_EXTRA_FRAME_INFO(fromleaf, fci) \
+ { \
+ if (fci->next_frame != NULL) \
+ { \
+ extern jmp_buf stack_jmp; \
+ struct frame_info *next_frame = fci->next; \
+ /* The call to get_prev_context */ \
+ /* will update current_context for us. */ \
+ stack_error = 1; \
+ if (!setjmp (stack_jmp)) \
+ { \
+ fci->frame_context \
+ = get_prev_context (next_frame->frame_context); \
+ stack_error = 0; \
+ } \
+ else \
+ { \
+ stack_error = 0; \
+ next_frame->prev = 0; \
+ return 0; \
+ } \
+ if (!fci->frame_context) \
+ { \
+ next_frame->prev = 0; \
+ return 0; \
+ } \
+ } \
+ else \
+ { \
+ /* We are creating an arbitrary frame */ \
+ /* (i.e. we are in create_new_frame). */ \
+ extern dc_dcontext_t current_context; \
+ \
+ fci->frame_context = current_context; \
+ } \
+ }
+
+#define INIT_FRAME_PC(fromleaf, prev) \
+ { \
+ prev->pc = dc_location (prev->frame_context); \
+ prev->frame = get_frame_base (prev->pc); \
+ }
+
+#define IEEE_FLOAT
+
+/* Text Description (TDESC) is used by m88k to maintain stack & reg info */
+
+#define TDESC
+
+/* Define this if the C compiler puts an underscore at the front
+ of external names before giving them to the linker. */
+
+#define NAMES_HAVE_UNDERSCORE
+
+/* Hook for read_relative_register_raw_bytes */
+
+#define READ_RELATIVE_REGISTER_RAW_BYTES
+
+/* Offset from address of function to start of its code.
+ Zero on most machines. */
+
+#define FUNCTION_START_OFFSET 0
+
+/* Advance PC across any function entry prologue instructions
+ to reach some "real" code. */
+
+#define SKIP_PROLOGUE(frompc) 0
+
+/* The m88k kernel aligns all instructions on 4-byte boundaries. The
+ kernel also uses the least significant two bits for its own hocus
+ pocus. When gdb receives an address from the kernel, it needs to
+ preserve those right-most two bits, but gdb also needs to be careful
+ to realize that those two bits are not really a part of the address
+ of an instruction. Shrug. */
+
+#define ADDR_BITS_REMOVE(addr) ((addr) & ~3)
+#define ADDR_BITS_SET(addr) (((addr) | 0x00000002) - 4)
+
+/* Immediately after a function call, return the saved pc.
+ Can't always go through the frames for this because on some machines
+ the new frame is not set up until the new function executes
+ some instructions. */
+
+#define SAVED_PC_AFTER_CALL(frame) \
+ (read_register (SRP_REGNUM) & (~3))
+
+/* Address of end of stack space. */
+
+#define STACK_END_ADDR 0xF0000000
+
+/* Stack grows downward. */
+
+#define INNER_THAN <
+
+/* Sequence of bytes for breakpoint instruction. */
+
+/* instruction 0xF000D1FF is 'tb0 0,r0,511'
+ If Bit bit 0 of r0 is clear (always true),
+ initiate exception processing (trap).
+ */
+#define BREAKPOINT {0xF0, 0x00, 0xD1, 0xFF}
+
+/* Address of end of stack space. */
+
+#define STACK_END_ADDR 0xF0000000
+
+/* Stack grows downward. */
+
+#define INNER_THAN <
+
+/* Sequence of bytes for breakpoint instruction. */
+
+/* instruction 0xF000D1FF is 'tb0 0,r0,511'
+ If Bit bit 0 of r0 is clear (always true),
+ initiate exception processing (trap).
+ */
+#define BREAKPOINT {0xF0, 0x00, 0xD1, 0xFF}
+
+/* Amount PC must be decremented by after a breakpoint.
+ This is often the number of bytes in BREAKPOINT
+ but not always. */
+
+#define DECR_PC_AFTER_BREAK 0
+
+/* Nonzero if instruction at PC is a return instruction. */
+/* 'jmp r1' or 'jmp.n r1' is used to return from a subroutine. */
+
+#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 2) == 0xF800)
+
+/* Return 1 if P points to an invalid floating point value.
+ LEN is the length in bytes -- not relevant on the 386. */
+
+#define INVALID_FLOAT(p, len) IEEE_isNAN(p,len)
+
+/* Say how long (ordinary) registers are. */
+
+#define REGISTER_TYPE long
+
+/* Number of machine registers */
+
+#define NUM_REGS 38
+
+/* Initializer for an array of names of registers.
+ There should be NUM_REGS strings in this initializer. */
+
+#define REGISTER_NAMES {\
+ "r0",\
+ "r1",\
+ "r2",\
+ "r3",\
+ "r4",\
+ "r5",\
+ "r6",\
+ "r7",\
+ "r8",\
+ "r9",\
+ "r10",\
+ "r11",\
+ "r12",\
+ "r13",\
+ "r14",\
+ "r15",\
+ "r16",\
+ "r17",\
+ "r18",\
+ "r19",\
+ "r20",\
+ "r21",\
+ "r22",\
+ "r23",\
+ "r24",\
+ "r25",\
+ "r26",\
+ "r27",\
+ "r28",\
+ "r29",\
+ "r30",\
+ "r31",\
+ "psr",\
+ "fpsr",\
+ "fpcr",\
+ "sxip",\
+ "snip",\
+ "sfip",\
+ "vbr",\
+ "dmt0",\
+ "dmd0",\
+ "dma0",\
+ "dmt1",\
+ "dmd1",\
+ "dma1",\
+ "dmt2",\
+ "dmd2",\
+ "dma2",\
+ "sr0",\
+ "sr1",\
+ "sr2",\
+ "sr3",\
+ "fpecr",\
+ "fphs1",\
+ "fpls1",\
+ "fphs2",\
+ "fpls2",\
+ "fppt",\
+ "fprh",\
+ "fprl",\
+ "fpit",\
+ "fpsr",\
+ "fpcr",\
+ };
+
+
+/* Register numbers of various important registers.
+ Note that some of these values are "real" register numbers,
+ and correspond to the general registers of the machine,
+ and some are "phony" register numbers which are too large
+ to be actual register numbers as far as the user is concerned
+ but do serve to get the desired values when passed to read_register. */
+
+#define SRP_REGNUM 1 /* Contains subroutine return pointer */
+#define RV_REGNUM 2 /* Contains simple return values */
+#define SRA_REGNUM 12 /* Contains address of struct return values */
+#define FP_REGNUM 30 /* Contains address of executing stack frame */
+#define SP_REGNUM 31 /* Contains address of top of stack */
+#define SXIP_REGNUM 35 /* Contains Shadow Execute Instruction Pointer */
+#define SNIP_REGNUM 36 /* Contains Shadow Next Instruction Pointer */
+#define PC_REGNUM SXIP_REGNUM /* Program Counter */
+#define NPC_REGNUM SNIP_REGNUM /* Next Program Counter */
+#define PSR_REGNUM 32 /* Processor Status Register */
+#define FPSR_REGNUM 33 /* Floating Point Status Register */
+#define FPCR_REGNUM 34 /* Floating Point Control Register */
+#define SFIP_REGNUM 37 /* Contains Shadow Fetched Intruction pointer */
+#define NNPC_REGNUM SFIP_REGNUM /* Next Next Program Counter */
+
+/* PSR status bit definitions. */
+
+#define PSR_MODE 0x80000000
+#define PSR_BYTE_ORDER 0x40000000
+#define PSR_SERIAL_MODE 0x20000000
+#define PSR_CARRY 0x10000000
+#define PSR_SFU_DISABLE 0x000003f0
+#define PSR_SFU1_DISABLE 0x00000008
+#define PSR_MXM 0x00000004
+#define PSR_IND 0x00000002
+#define PSR_SFRZ 0x00000001
+
+/* BCS requires that the SXIP_REGNUM (or PC_REGNUM) contain the address
+ of the next instr to be executed when a breakpoint occurs. Because
+ the kernel gets the next instr (SNIP_REGNUM), the instr in SNIP needs
+ to be put back into SFIP, and the instr in SXIP should be shifted
+ to SNIP */
+
+/* Are you sitting down? It turns out that the 88K BCS (binary compatibility
+ standard) folks originally felt that the debugger should be responsible
+ for backing up the IPs, not the kernel (as is usually done). Well, they
+ have reversed their decision, and in future releases our kernel will be
+ handling the backing up of the IPs. So, eventually, we won't need to
+ do the SHIFT_INST_REGS stuff. But, for now, since there are 88K systems out
+ there that do need the debugger to do the IP shifting, and since there
+ will be systems where the kernel does the shifting, the code is a little
+ more complex than perhaps it needs to be (we still go inside SHIFT_INST_REGS,
+ and if the shifting hasn't occurred then gdb goes ahead and shifts). */
+
+#define SHIFT_INST_REGS
+
+/* Total amount of space needed to store our copies of the machine's
+ register state, the array `registers'. */
+
+#define REGISTER_BYTES (NUM_REGS * sizeof(REGISTER_TYPE))
+
+/* Index within `registers' of the first byte of the space for
+ register N. */
+
+#define REGISTER_BYTE(N) ((N)*sizeof(REGISTER_TYPE))
+
+/* Number of bytes of storage in the actual machine representation
+ for register N. */
+
+#define REGISTER_RAW_SIZE(N) (sizeof(REGISTER_TYPE))
+
+/* Number of bytes of storage in the program's representation
+ for register N. */
+
+#define REGISTER_VIRTUAL_SIZE(N) (sizeof(REGISTER_TYPE))
+
+/* Largest value REGISTER_RAW_SIZE can have. */
+
+#define MAX_REGISTER_RAW_SIZE (sizeof(REGISTER_TYPE))
+
+/* Largest value REGISTER_VIRTUAL_SIZE can have.
+/* Are FPS1, FPS2, FPR "virtual" regisers? */
+
+#define MAX_REGISTER_VIRTUAL_SIZE (sizeof(REGISTER_TYPE))
+
+/* Nonzero if register N requires conversion
+ from raw format to virtual format. */
+
+#define REGISTER_CONVERTIBLE(N) (0)
+
+/* Convert data from raw format for register REGNUM
+ to virtual format for register REGNUM. */
+
+#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) {bcopy ((FROM), (TO), (sizeof(REGISTER_TYPE)));}
+
+/* Convert data from virtual format for register REGNUM
+ to raw format for register REGNUM. */
+
+#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) {bcopy ((FROM), (TO), (sizeof(REGISTER_TYPE)));}
+
+/* Return the GDB type object for the "standard" data type
+ of data in register N. */
+
+#define REGISTER_VIRTUAL_TYPE(N) (builtin_type_int)
+
+/* The 88k call/return conventions call for "small" values to be returned
+ into consecutive registers starting from r2. */
+
+#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
+ bcopy (&(((char *)REGBUF)[REGISTER_BYTE(RV_REGNUM)]), (VALBUF), TYPE_LENGTH (TYPE))
+
+#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
+
+/* Write into appropriate registers a function return value
+ of type TYPE, given in virtual format. */
+
+#define STORE_RETURN_VALUE(TYPE,VALBUF) \
+ write_register_bytes (2*sizeof(void*), (VALBUF), TYPE_LENGTH (TYPE))
+
+/* In COFF, if PCC says a parameter is a short or a char, do not
+ change it to int (it seems the convention is to change it). */
+
+#define BELIEVE_PCC_PROMOTION 1
+
+/* We provide our own get_saved_register in m88k-tdep.c. */
+#define GET_SAVED_REGISTER
+
+/* Describe the pointer in each stack frame to the previous stack frame
+ (its caller). */
+
+/* FRAME_CHAIN takes a frame's nominal address
+ and produces the frame's chain-pointer.
+
+ FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
+ and produces the nominal address of the caller frame.
+
+ However, if FRAME_CHAIN_VALID returns zero,
+ it means the given frame is the outermost one and has no caller.
+ In that case, FRAME_CHAIN_COMBINE is not used. */
+
+/* These are just dummies for the 88k because INIT_FRAME_PC sets prev->frame
+ instead. */
+
+#define FRAME_CHAIN(thisframe) (0)
+
+#define FRAME_CHAIN_VALID(chain, thisframe) (1)
+
+#define FRAME_CHAIN_COMBINE(chain, thisframe) (0)
+
+/* Define other aspects of the stack frame. */
+
+#define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame+4, 4))
+
+#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
+
+#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
+
+/* Return number of args passed to a frame.
+ Can return -1, meaning no way to tell. */
+
+#define FRAME_NUM_ARGS(numargs, fi) ((numargs) = -1)
+
+/* Return number of bytes at start of arglist that are not really args. */
+
+#define FRAME_ARGS_SKIP 0
+
+/* Put here the code to store, into a struct frame_saved_regs,
+ the addresses of the saved registers of frame described by FRAME_INFO.
+ This includes special registers such as pc and fp saved in special
+ ways in the stack frame. sp is even more special:
+ the address we return for it IS the sp for the next frame. */
+
+/* On the 88k, parameter registers get stored into the so called "homing"
+ area. This *always* happens when you compiled with GCC and use -g.
+ Also, (with GCC and -g) the saving of the parameter register values
+ always happens right within the function prologue code, so these register
+ values can generally be relied upon to be already copied into their
+ respective homing slots by the time you will normally try to look at
+ them (we hope).
+
+ Note that homing area stack slots are always at *positive* offsets from
+ the frame pointer. Thus, the homing area stack slots for the parameter
+ registers (passed values) for a given function are actually part of the
+ frame area of the caller. This is unusual, but it should not present
+ any special problems for GDB.
+
+ Note also that on the 88k, we are only interested in finding the
+ registers that might have been saved in memory. This is a subset of
+ the whole set of registers because the standard calling sequence allows
+ the called routine to clobber many registers.
+
+ We could manage to locate values for all of the so called "preserved"
+ registers (some of which may get saved within any particular frame) but
+ that would require decoding all of the tdesc information. Tht would be
+ nice information for GDB to have, but it is not strictly manditory if we
+ can live without the ability to look at values within (or backup to)
+ previous frames.
+*/
+
+#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
+ frame_find_saved_regs (frame_info, &frame_saved_regs)
+
+
+/* There is not currently a functioning way to call functions in the
+ inferior. */
+
+/* But if there was this is where we'd put the call dummy. */
+/* #define CALL_DUMMY_LOCATION AFTER_TEXT_END */
+
+/* When popping a frame on the 88k (say when doing a return command), the
+ calling function only expects to have the "preserved" registers restored.
+ Thus, those are the only ones that we even try to restore here. */
+
+extern void pop_frame ();
+
+#define POP_FRAME pop_frame ()
+
+/* BCS is a standard for binary compatibility. This machine uses it. */
+#if !defined (BCS)
+#define BCS 1
+#endif
+
+#define DELTA88
diff --git a/gdb/xm-delta88.h b/gdb/xm-delta88.h
new file mode 100644
index 0000000..306e447
--- /dev/null
+++ b/gdb/xm-delta88.h
@@ -0,0 +1,125 @@
+/* Copyright (C) 1986, 1987, 1988, 1989, 1990 Free Software Foundation, Inc.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+/* This is currently for a 88000 running DGUX. If other 88k ports are
+ done, OS-specific stuff should be moved (see tm-68k.h, for example). */
+/* g++ support is not yet included. */
+
+#define HOST_BYTE_ORDER BIG_ENDIAN
+
+#if !defined (USG)
+#define USG 1
+#endif
+
+#define MAXPATHLEN 1024
+/* delta 88 doesn't have bcopy(), etc. */
+#define USG_UTILS 1
+
+#include <sys/param.h>
+#include <sys/time.h>
+
+#define vfork() fork()
+#define index strchr
+#define rindex strrchr
+#define getwd(BUF) getcwd(BUF,MAXPATHLEN);
+#define bzero(ptr,count) (memset((ptr),0,(count)))
+#define bcopy(src,dst,count) (memcpy((dst),(src),(count)))
+#define bcmp(left,right,count) (memcmp((right),(left),(count)))
+#if 0
+#ifdef __GNUC__
+#define memcpy __builtin_memcpy
+/* gcc doesn't have this, at least not gcc 1.92. */
+/* #define memset __builtin_memset */
+#define strcmp __builtin_strcmp
+#endif
+#endif
+
+#define HAVE_TERMIO
+
+
+/*#define USIZE 2048*/
+#define NBPG NBPC
+#define UPAGES USIZE
+
+#define HAVE_GETPAGESIZE
+
+/* Get rid of any system-imposed stack limit if possible. */
+
+/*#define SET_STACK_LIMIT_HUGE*/
+
+/* number of traps that happen between exec'ing the shell
+ * to run an inferior, and when we finally get to
+ * the inferior code. This is 2 on most implementations.
+ */
+#define START_INFERIOR_TRAPS_EXPECTED 2
+
+/* This is the amount to subtract from u.u_ar0
+ to get the offset in the core file of the register values. */
+
+/* Since registers r0 through r31 are stored directly in the struct ptrace_user,
+ (for m88k BCS)
+ the ptrace_user offsets are sufficient and KERNEL_U_ADDRESS can be 0 */
+
+#define KERNEL_U_ADDR 0
+
+#define REGISTER_U_ADDR(addr, blockend, regno) \
+ (addr) = m88k_register_u_addr ((blockend),(regno));
+
+#define HAVE_WAIT_STRUCT
+
+#define FETCH_INFERIOR_REGISTERS
+
+/* Interface definitions for kernel debugger KDB. */
+
+/* Map machine fault codes into signal numbers.
+ First subtract 0, divide by 4, then index in a table.
+ Faults for which the entry in this table is 0
+ are not handled by KDB; the program's own trap handler
+ gets to handle then. */
+
+#define FAULT_CODE_ORIGIN 0
+#define FAULT_CODE_UNITS 4
+#define FAULT_TABLE \
+{ 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0, \
+ 0, 0, 0, 0, 0, 0, 0, 0}
+
+/* Start running with a stack stretching from BEG to END.
+ BEG and END should be symbols meaningful to the assembler.
+ This is used only for kdb. */
+
+#define INIT_STACK(beg, end) {}
+
+/* Push the frame pointer register on the stack. */
+#define PUSH_FRAME_PTR {}
+
+/* Copy the top-of-stack to the frame pointer register. */
+#define POP_FRAME_PTR {}
+
+/* After KDB is entered by a fault, push all registers
+ that GDB thinks about (all NUM_REGS of them),
+ so that they appear in order of ascending GDB register number.
+ The fault code will be on the stack beyond the last register. */
+
+#define PUSH_REGISTERS {}
+
+/* Assuming the registers (including processor status) have been
+ pushed on the stack in order of ascending GDB register number,
+ restore them and return to the address in the saved PC register. */
+
+#define POP_REGISTERS {}