aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAndrew Cagney <cagney@redhat.com>2003-07-21 18:56:05 +0000
committerAndrew Cagney <cagney@redhat.com>2003-07-21 18:56:05 +0000
commitd95a89033d01d8f5132a8a4f79dc4c2d9deb54b1 (patch)
tree36ed9eb488dded30b82a07455f99064b8b248d28
parent796f2a93d192aa7d2c8d6a1ab541581b7b874740 (diff)
downloadgdb-d95a89033d01d8f5132a8a4f79dc4c2d9deb54b1.zip
gdb-d95a89033d01d8f5132a8a4f79dc4c2d9deb54b1.tar.gz
gdb-d95a89033d01d8f5132a8a4f79dc4c2d9deb54b1.tar.bz2
2003-07-21 Andrew Cagney <cagney@redhat.com>
From 2003-07-04 Kei Sakamoto <sakamoto.kei@renesas.com>: * m32r-tdep.c, m32r-stub.c, m32r-tdep.c: Rewrite.
-rw-r--r--gdb/ChangeLog5
-rw-r--r--gdb/m32r-rom.c1261
-rw-r--r--gdb/m32r-stub.c3497
-rw-r--r--gdb/m32r-tdep.c1697
4 files changed, 3408 insertions, 3052 deletions
diff --git a/gdb/ChangeLog b/gdb/ChangeLog
index 97c9484..a3dc614 100644
--- a/gdb/ChangeLog
+++ b/gdb/ChangeLog
@@ -1,3 +1,8 @@
+2003-07-21 Andrew Cagney <cagney@redhat.com>
+
+ From 2003-07-04 Kei Sakamoto <sakamoto.kei@renesas.com>:
+ * m32r-tdep.c, m32r-stub.c, m32r-tdep.c: Rewrite.
+
2003-07-20 Stephane Carrez <stcarrez@nerim.fr>
* m68hc11-tdep.c (m68hc11_pseudo_register_read): Use
diff --git a/gdb/m32r-rom.c b/gdb/m32r-rom.c
index f8ac154..54e2cd9 100644
--- a/gdb/m32r-rom.c
+++ b/gdb/m32r-rom.c
@@ -1,626 +1,635 @@
-// OBSOLETE /* Remote debugging interface to m32r and mon2000 ROM monitors for GDB,
-// OBSOLETE the GNU debugger.
-// OBSOLETE Copyright 1996, 1997, 1998, 1999, 2000, 2001
-// OBSOLETE Free Software Foundation, Inc.
-// OBSOLETE
-// OBSOLETE Adapted by Michael Snyder of Cygnus Support.
-// OBSOLETE
-// OBSOLETE This file is part of GDB.
-// OBSOLETE
-// OBSOLETE This program is free software; you can redistribute it and/or modify
-// OBSOLETE it under the terms of the GNU General Public License as published by
-// OBSOLETE the Free Software Foundation; either version 2 of the License, or
-// OBSOLETE (at your option) any later version.
-// OBSOLETE
-// OBSOLETE This program is distributed in the hope that it will be useful,
-// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of
-// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// OBSOLETE GNU General Public License for more details.
-// OBSOLETE
-// OBSOLETE You should have received a copy of the GNU General Public License
-// OBSOLETE along with this program; if not, write to the Free Software
-// OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330,
-// OBSOLETE Boston, MA 02111-1307, USA. */
-// OBSOLETE
-// OBSOLETE /* This module defines communication with the Mitsubishi m32r monitor */
-// OBSOLETE
-// OBSOLETE #include "defs.h"
-// OBSOLETE #include "gdbcore.h"
-// OBSOLETE #include "target.h"
-// OBSOLETE #include "monitor.h"
-// OBSOLETE #include "serial.h"
-// OBSOLETE #include "symtab.h"
-// OBSOLETE #include "command.h"
-// OBSOLETE #include "gdbcmd.h"
-// OBSOLETE #include "symfile.h" /* for generic load */
-// OBSOLETE #include <time.h> /* for time_t */
-// OBSOLETE #include "gdb_string.h"
-// OBSOLETE #include "objfiles.h" /* for ALL_OBJFILES etc. */
-// OBSOLETE #include "inferior.h" /* for write_pc() */
-// OBSOLETE #include <ctype.h>
-// OBSOLETE #include "regcache.h"
-// OBSOLETE
-// OBSOLETE extern void report_transfer_performance (unsigned long, time_t, time_t);
-// OBSOLETE
-// OBSOLETE /*
-// OBSOLETE * All this stuff just to get my host computer's IP address!
-// OBSOLETE */
-// OBSOLETE #include <sys/types.h>
-// OBSOLETE #include <netdb.h> /* for hostent */
-// OBSOLETE #include <netinet/in.h> /* for struct in_addr */
-// OBSOLETE #if 1
-// OBSOLETE #include <arpa/inet.h> /* for inet_ntoa */
-// OBSOLETE #endif
-// OBSOLETE
-// OBSOLETE static char *board_addr; /* user-settable IP address for M32R-EVA */
-// OBSOLETE static char *server_addr; /* user-settable IP address for gdb host */
-// OBSOLETE static char *download_path; /* user-settable path for SREC files */
-// OBSOLETE
-// OBSOLETE
-// OBSOLETE /*
-// OBSOLETE * Function: m32r_load_1 (helper function)
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE m32r_load_section (bfd *abfd, asection *s, void *obj)
-// OBSOLETE {
-// OBSOLETE unsigned int *data_count = obj;
-// OBSOLETE if (s->flags & SEC_LOAD)
-// OBSOLETE {
-// OBSOLETE bfd_size_type section_size = bfd_section_size (abfd, s);
-// OBSOLETE bfd_vma section_base = bfd_section_lma (abfd, s);
-// OBSOLETE unsigned int buffer, i;
-// OBSOLETE
-// OBSOLETE *data_count += section_size;
-// OBSOLETE
-// OBSOLETE printf_filtered ("Loading section %s, size 0x%lx lma ",
-// OBSOLETE bfd_section_name (abfd, s), section_size);
-// OBSOLETE print_address_numeric (section_base, 1, gdb_stdout);
-// OBSOLETE printf_filtered ("\n");
-// OBSOLETE gdb_flush (gdb_stdout);
-// OBSOLETE monitor_printf ("%s mw\r", paddr_nz (section_base));
-// OBSOLETE for (i = 0; i < section_size; i += 4)
-// OBSOLETE {
-// OBSOLETE QUIT;
-// OBSOLETE monitor_expect (" -> ", NULL, 0);
-// OBSOLETE bfd_get_section_contents (abfd, s, (char *) &buffer, i, 4);
-// OBSOLETE monitor_printf ("%x\n", buffer);
-// OBSOLETE }
-// OBSOLETE monitor_expect (" -> ", NULL, 0);
-// OBSOLETE monitor_printf ("q\n");
-// OBSOLETE monitor_expect_prompt (NULL, 0);
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE m32r_load_1 (void *dummy)
-// OBSOLETE {
-// OBSOLETE int data_count = 0;
-// OBSOLETE
-// OBSOLETE bfd_map_over_sections ((bfd *) dummy, m32r_load_section, &data_count);
-// OBSOLETE return data_count;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /*
-// OBSOLETE * Function: m32r_load (an alternate way to load)
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE m32r_load (char *filename, int from_tty)
-// OBSOLETE {
-// OBSOLETE bfd *abfd;
-// OBSOLETE asection *s;
-// OBSOLETE unsigned int i, data_count = 0;
-// OBSOLETE time_t start_time, end_time; /* for timing of download */
-// OBSOLETE
-// OBSOLETE if (filename == NULL || filename[0] == 0)
-// OBSOLETE filename = get_exec_file (1);
-// OBSOLETE
-// OBSOLETE abfd = bfd_openr (filename, 0);
-// OBSOLETE if (!abfd)
-// OBSOLETE error ("Unable to open file %s\n", filename);
-// OBSOLETE if (bfd_check_format (abfd, bfd_object) == 0)
-// OBSOLETE error ("File is not an object file\n");
-// OBSOLETE start_time = time (NULL);
-// OBSOLETE #if 0
-// OBSOLETE for (s = abfd->sections; s; s = s->next)
-// OBSOLETE if (s->flags & SEC_LOAD)
-// OBSOLETE {
-// OBSOLETE bfd_size_type section_size = bfd_section_size (abfd, s);
-// OBSOLETE bfd_vma section_base = bfd_section_vma (abfd, s);
-// OBSOLETE unsigned int buffer;
-// OBSOLETE
-// OBSOLETE data_count += section_size;
-// OBSOLETE
-// OBSOLETE printf_filtered ("Loading section %s, size 0x%lx vma ",
-// OBSOLETE bfd_section_name (abfd, s), section_size);
-// OBSOLETE print_address_numeric (section_base, 1, gdb_stdout);
-// OBSOLETE printf_filtered ("\n");
-// OBSOLETE gdb_flush (gdb_stdout);
-// OBSOLETE monitor_printf ("%x mw\r", section_base);
-// OBSOLETE for (i = 0; i < section_size; i += 4)
-// OBSOLETE {
-// OBSOLETE monitor_expect (" -> ", NULL, 0);
-// OBSOLETE bfd_get_section_contents (abfd, s, (char *) &buffer, i, 4);
-// OBSOLETE monitor_printf ("%x\n", buffer);
-// OBSOLETE }
-// OBSOLETE monitor_expect (" -> ", NULL, 0);
-// OBSOLETE monitor_printf ("q\n");
-// OBSOLETE monitor_expect_prompt (NULL, 0);
-// OBSOLETE }
-// OBSOLETE #else
-// OBSOLETE if (!(catch_errors (m32r_load_1, abfd, "Load aborted!\n", RETURN_MASK_ALL)))
-// OBSOLETE {
-// OBSOLETE monitor_printf ("q\n");
-// OBSOLETE return;
-// OBSOLETE }
-// OBSOLETE #endif
-// OBSOLETE end_time = time (NULL);
-// OBSOLETE printf_filtered ("Start address 0x%lx\n", bfd_get_start_address (abfd));
-// OBSOLETE report_transfer_performance (data_count, start_time, end_time);
-// OBSOLETE
-// OBSOLETE /* Finally, make the PC point at the start address */
-// OBSOLETE if (exec_bfd)
-// OBSOLETE write_pc (bfd_get_start_address (exec_bfd));
-// OBSOLETE
-// OBSOLETE inferior_ptid = null_ptid; /* No process now */
-// OBSOLETE
-// OBSOLETE /* This is necessary because many things were based on the PC at the
-// OBSOLETE time that we attached to the monitor, which is no longer valid
-// OBSOLETE now that we have loaded new code (and just changed the PC).
-// OBSOLETE Another way to do this might be to call normal_stop, except that
-// OBSOLETE the stack may not be valid, and things would get horribly
-// OBSOLETE confused... */
-// OBSOLETE
-// OBSOLETE clear_symtab_users ();
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE m32r_load_gen (char *filename, int from_tty)
-// OBSOLETE {
-// OBSOLETE generic_load (filename, from_tty);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static void m32r_open (char *args, int from_tty);
-// OBSOLETE static void mon2000_open (char *args, int from_tty);
-// OBSOLETE
-// OBSOLETE /* This array of registers needs to match the indexes used by GDB. The
-// OBSOLETE whole reason this exists is because the various ROM monitors use
-// OBSOLETE different names than GDB does, and don't support all the registers
-// OBSOLETE either. So, typing "info reg sp" becomes an "A7". */
-// OBSOLETE
-// OBSOLETE static char *m32r_regnames[] =
-// OBSOLETE {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
-// OBSOLETE "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
-// OBSOLETE "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
-// OBSOLETE };
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE m32r_supply_register (char *regname, int regnamelen, char *val, int vallen)
-// OBSOLETE {
-// OBSOLETE int regno;
-// OBSOLETE int num_regs = sizeof (m32r_regnames) / sizeof (m32r_regnames[0]);
-// OBSOLETE
-// OBSOLETE for (regno = 0; regno < num_regs; regno++)
-// OBSOLETE if (strncmp (regname, m32r_regnames[regno], regnamelen) == 0)
-// OBSOLETE break;
-// OBSOLETE
-// OBSOLETE if (regno >= num_regs)
-// OBSOLETE return; /* no match */
-// OBSOLETE
-// OBSOLETE if (regno == ACCL_REGNUM)
-// OBSOLETE { /* special handling for 64-bit acc reg */
-// OBSOLETE monitor_supply_register (ACCH_REGNUM, val);
-// OBSOLETE val = strchr (val, ':'); /* skip past ':' to get 2nd word */
-// OBSOLETE if (val != NULL)
-// OBSOLETE monitor_supply_register (ACCL_REGNUM, val + 1);
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE monitor_supply_register (regno, val);
-// OBSOLETE if (regno == PSW_REGNUM)
-// OBSOLETE {
-// OBSOLETE unsigned long psw = strtoul (val, NULL, 16);
-// OBSOLETE char *zero = "00000000", *one = "00000001";
-// OBSOLETE
-// OBSOLETE #ifdef SM_REGNUM
-// OBSOLETE /* Stack mode bit */
-// OBSOLETE monitor_supply_register (SM_REGNUM, (psw & 0x80) ? one : zero);
-// OBSOLETE #endif
-// OBSOLETE #ifdef BSM_REGNUM
-// OBSOLETE /* Backup stack mode bit */
-// OBSOLETE monitor_supply_register (BSM_REGNUM, (psw & 0x8000) ? one : zero);
-// OBSOLETE #endif
-// OBSOLETE #ifdef IE_REGNUM
-// OBSOLETE /* Interrupt enable bit */
-// OBSOLETE monitor_supply_register (IE_REGNUM, (psw & 0x40) ? one : zero);
-// OBSOLETE #endif
-// OBSOLETE #ifdef BIE_REGNUM
-// OBSOLETE /* Backup interrupt enable bit */
-// OBSOLETE monitor_supply_register (BIE_REGNUM, (psw & 0x4000) ? one : zero);
-// OBSOLETE #endif
-// OBSOLETE #ifdef COND_REGNUM
-// OBSOLETE /* Condition bit (carry etc.) */
-// OBSOLETE monitor_supply_register (COND_REGNUM, (psw & 0x1) ? one : zero);
-// OBSOLETE #endif
-// OBSOLETE #ifdef CBR_REGNUM
-// OBSOLETE monitor_supply_register (CBR_REGNUM, (psw & 0x1) ? one : zero);
-// OBSOLETE #endif
-// OBSOLETE #ifdef BPC_REGNUM
-// OBSOLETE monitor_supply_register (BPC_REGNUM, zero); /* KLUDGE: (???????) */
-// OBSOLETE #endif
-// OBSOLETE #ifdef BCARRY_REGNUM
-// OBSOLETE monitor_supply_register (BCARRY_REGNUM, zero); /* KLUDGE: (??????) */
-// OBSOLETE #endif
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE if (regno == SPI_REGNUM || regno == SPU_REGNUM)
-// OBSOLETE { /* special handling for stack pointer (spu or spi) */
-// OBSOLETE unsigned long stackmode = read_register (PSW_REGNUM) & 0x80;
-// OBSOLETE
-// OBSOLETE if (regno == SPI_REGNUM && !stackmode) /* SP == SPI */
-// OBSOLETE monitor_supply_register (SP_REGNUM, val);
-// OBSOLETE else if (regno == SPU_REGNUM && stackmode) /* SP == SPU */
-// OBSOLETE monitor_supply_register (SP_REGNUM, val);
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* m32r RevC board monitor */
-// OBSOLETE
-// OBSOLETE static struct target_ops m32r_ops;
-// OBSOLETE
-// OBSOLETE static char *m32r_inits[] =
-// OBSOLETE {"\r", NULL};
-// OBSOLETE
-// OBSOLETE static struct monitor_ops m32r_cmds;
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE init_m32r_cmds (void)
-// OBSOLETE {
-// OBSOLETE m32r_cmds.flags = MO_CLR_BREAK_USES_ADDR | MO_REGISTER_VALUE_FIRST;
-// OBSOLETE m32r_cmds.init = m32r_inits; /* Init strings */
-// OBSOLETE m32r_cmds.cont = "go\r"; /* continue command */
-// OBSOLETE m32r_cmds.step = "step\r"; /* single step */
-// OBSOLETE m32r_cmds.stop = NULL; /* interrupt command */
-// OBSOLETE m32r_cmds.set_break = "%x +bp\r"; /* set a breakpoint */
-// OBSOLETE m32r_cmds.clr_break = "%x -bp\r"; /* clear a breakpoint */
-// OBSOLETE m32r_cmds.clr_all_break = "bpoff\r"; /* clear all breakpoints */
-// OBSOLETE m32r_cmds.fill = "%x %x %x fill\r"; /* fill (start length val) */
-// OBSOLETE m32r_cmds.setmem.cmdb = "%x 1 %x fill\r"; /* setmem.cmdb (addr, value) */
-// OBSOLETE m32r_cmds.setmem.cmdw = "%x 1 %x fillh\r"; /* setmem.cmdw (addr, value) */
-// OBSOLETE m32r_cmds.setmem.cmdl = "%x 1 %x fillw\r"; /* setmem.cmdl (addr, value) */
-// OBSOLETE m32r_cmds.setmem.cmdll = NULL; /* setmem.cmdll (addr, value) */
-// OBSOLETE m32r_cmds.setmem.resp_delim = NULL; /* setmem.resp_delim */
-// OBSOLETE m32r_cmds.setmem.term = NULL; /* setmem.term */
-// OBSOLETE m32r_cmds.setmem.term_cmd = NULL; /* setmem.term_cmd */
-// OBSOLETE m32r_cmds.getmem.cmdb = "%x %x dump\r"; /* getmem.cmdb (addr, len) */
-// OBSOLETE m32r_cmds.getmem.cmdw = NULL; /* getmem.cmdw (addr, len) */
-// OBSOLETE m32r_cmds.getmem.cmdl = NULL; /* getmem.cmdl (addr, len) */
-// OBSOLETE m32r_cmds.getmem.cmdll = NULL; /* getmem.cmdll (addr, len) */
-// OBSOLETE m32r_cmds.getmem.resp_delim = ": "; /* getmem.resp_delim */
-// OBSOLETE m32r_cmds.getmem.term = NULL; /* getmem.term */
-// OBSOLETE m32r_cmds.getmem.term_cmd = NULL; /* getmem.term_cmd */
-// OBSOLETE m32r_cmds.setreg.cmd = "%x to %%%s\r"; /* setreg.cmd (name, value) */
-// OBSOLETE m32r_cmds.setreg.resp_delim = NULL; /* setreg.resp_delim */
-// OBSOLETE m32r_cmds.setreg.term = NULL; /* setreg.term */
-// OBSOLETE m32r_cmds.setreg.term_cmd = NULL; /* setreg.term_cmd */
-// OBSOLETE m32r_cmds.getreg.cmd = NULL; /* getreg.cmd (name) */
-// OBSOLETE m32r_cmds.getreg.resp_delim = NULL; /* getreg.resp_delim */
-// OBSOLETE m32r_cmds.getreg.term = NULL; /* getreg.term */
-// OBSOLETE m32r_cmds.getreg.term_cmd = NULL; /* getreg.term_cmd */
-// OBSOLETE m32r_cmds.dump_registers = ".reg\r"; /* dump_registers */
-// OBSOLETE m32r_cmds.register_pattern = "\\(\\w+\\) += \\([0-9a-fA-F]+\\b\\)"; /* register_pattern */
-// OBSOLETE m32r_cmds.supply_register = m32r_supply_register; /* supply_register */
-// OBSOLETE m32r_cmds.load_routine = NULL; /* load_routine (defaults to SRECs) */
-// OBSOLETE m32r_cmds.load = NULL; /* download command */
-// OBSOLETE m32r_cmds.loadresp = NULL; /* load response */
-// OBSOLETE m32r_cmds.prompt = "ok "; /* monitor command prompt */
-// OBSOLETE m32r_cmds.line_term = "\r"; /* end-of-line terminator */
-// OBSOLETE m32r_cmds.cmd_end = NULL; /* optional command terminator */
-// OBSOLETE m32r_cmds.target = &m32r_ops; /* target operations */
-// OBSOLETE m32r_cmds.stopbits = SERIAL_1_STOPBITS; /* number of stop bits */
-// OBSOLETE m32r_cmds.regnames = m32r_regnames; /* registers names */
-// OBSOLETE m32r_cmds.magic = MONITOR_OPS_MAGIC; /* magic */
-// OBSOLETE } /* init_m32r_cmds */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE m32r_open (char *args, int from_tty)
-// OBSOLETE {
-// OBSOLETE monitor_open (args, &m32r_cmds, from_tty);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Mon2000 monitor (MSA2000 board) */
-// OBSOLETE
-// OBSOLETE static struct target_ops mon2000_ops;
-// OBSOLETE static struct monitor_ops mon2000_cmds;
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE init_mon2000_cmds (void)
-// OBSOLETE {
-// OBSOLETE mon2000_cmds.flags = MO_CLR_BREAK_USES_ADDR | MO_REGISTER_VALUE_FIRST;
-// OBSOLETE mon2000_cmds.init = m32r_inits; /* Init strings */
-// OBSOLETE mon2000_cmds.cont = "go\r"; /* continue command */
-// OBSOLETE mon2000_cmds.step = "step\r"; /* single step */
-// OBSOLETE mon2000_cmds.stop = NULL; /* interrupt command */
-// OBSOLETE mon2000_cmds.set_break = "%x +bp\r"; /* set a breakpoint */
-// OBSOLETE mon2000_cmds.clr_break = "%x -bp\r"; /* clear a breakpoint */
-// OBSOLETE mon2000_cmds.clr_all_break = "bpoff\r"; /* clear all breakpoints */
-// OBSOLETE mon2000_cmds.fill = "%x %x %x fill\r"; /* fill (start length val) */
-// OBSOLETE mon2000_cmds.setmem.cmdb = "%x 1 %x fill\r"; /* setmem.cmdb (addr, value) */
-// OBSOLETE mon2000_cmds.setmem.cmdw = "%x 1 %x fillh\r"; /* setmem.cmdw (addr, value) */
-// OBSOLETE mon2000_cmds.setmem.cmdl = "%x 1 %x fillw\r"; /* setmem.cmdl (addr, value) */
-// OBSOLETE mon2000_cmds.setmem.cmdll = NULL; /* setmem.cmdll (addr, value) */
-// OBSOLETE mon2000_cmds.setmem.resp_delim = NULL; /* setmem.resp_delim */
-// OBSOLETE mon2000_cmds.setmem.term = NULL; /* setmem.term */
-// OBSOLETE mon2000_cmds.setmem.term_cmd = NULL; /* setmem.term_cmd */
-// OBSOLETE mon2000_cmds.getmem.cmdb = "%x %x dump\r"; /* getmem.cmdb (addr, len) */
-// OBSOLETE mon2000_cmds.getmem.cmdw = NULL; /* getmem.cmdw (addr, len) */
-// OBSOLETE mon2000_cmds.getmem.cmdl = NULL; /* getmem.cmdl (addr, len) */
-// OBSOLETE mon2000_cmds.getmem.cmdll = NULL; /* getmem.cmdll (addr, len) */
-// OBSOLETE mon2000_cmds.getmem.resp_delim = ": "; /* getmem.resp_delim */
-// OBSOLETE mon2000_cmds.getmem.term = NULL; /* getmem.term */
-// OBSOLETE mon2000_cmds.getmem.term_cmd = NULL; /* getmem.term_cmd */
-// OBSOLETE mon2000_cmds.setreg.cmd = "%x to %%%s\r"; /* setreg.cmd (name, value) */
-// OBSOLETE mon2000_cmds.setreg.resp_delim = NULL; /* setreg.resp_delim */
-// OBSOLETE mon2000_cmds.setreg.term = NULL; /* setreg.term */
-// OBSOLETE mon2000_cmds.setreg.term_cmd = NULL; /* setreg.term_cmd */
-// OBSOLETE mon2000_cmds.getreg.cmd = NULL; /* getreg.cmd (name) */
-// OBSOLETE mon2000_cmds.getreg.resp_delim = NULL; /* getreg.resp_delim */
-// OBSOLETE mon2000_cmds.getreg.term = NULL; /* getreg.term */
-// OBSOLETE mon2000_cmds.getreg.term_cmd = NULL; /* getreg.term_cmd */
-// OBSOLETE mon2000_cmds.dump_registers = ".reg\r"; /* dump_registers */
-// OBSOLETE mon2000_cmds.register_pattern = "\\(\\w+\\) += \\([0-9a-fA-F]+\\b\\)"; /* register_pattern */
-// OBSOLETE mon2000_cmds.supply_register = m32r_supply_register; /* supply_register */
-// OBSOLETE mon2000_cmds.load_routine = NULL; /* load_routine (defaults to SRECs) */
-// OBSOLETE mon2000_cmds.load = NULL; /* download command */
-// OBSOLETE mon2000_cmds.loadresp = NULL; /* load response */
-// OBSOLETE mon2000_cmds.prompt = "Mon2000>"; /* monitor command prompt */
-// OBSOLETE mon2000_cmds.line_term = "\r"; /* end-of-line terminator */
-// OBSOLETE mon2000_cmds.cmd_end = NULL; /* optional command terminator */
-// OBSOLETE mon2000_cmds.target = &mon2000_ops; /* target operations */
-// OBSOLETE mon2000_cmds.stopbits = SERIAL_1_STOPBITS; /* number of stop bits */
-// OBSOLETE mon2000_cmds.regnames = m32r_regnames; /* registers names */
-// OBSOLETE mon2000_cmds.magic = MONITOR_OPS_MAGIC; /* magic */
-// OBSOLETE } /* init_mon2000_cmds */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE mon2000_open (char *args, int from_tty)
-// OBSOLETE {
-// OBSOLETE monitor_open (args, &mon2000_cmds, from_tty);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: set_board_address
-// OBSOLETE Tell the BootOne monitor what it's ethernet IP address is. */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE m32r_set_board_address (char *args, int from_tty)
-// OBSOLETE {
-// OBSOLETE int resp_len;
-// OBSOLETE char buf[1024];
-// OBSOLETE
-// OBSOLETE if (args && *args)
-// OBSOLETE {
-// OBSOLETE monitor_printf ("ulip %s\n", args);
-// OBSOLETE resp_len = monitor_expect_prompt (buf, sizeof (buf));
-// OBSOLETE /* now parse the result for success */
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE error ("Requires argument (IP address for M32R-EVA board)");
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: set_server_address
-// OBSOLETE Tell the BootOne monitor what gdb's ethernet IP address is. */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE m32r_set_server_address (char *args, int from_tty)
-// OBSOLETE {
-// OBSOLETE int resp_len;
-// OBSOLETE char buf[1024];
-// OBSOLETE
-// OBSOLETE if (args && *args)
-// OBSOLETE {
-// OBSOLETE monitor_printf ("uhip %s\n", args);
-// OBSOLETE resp_len = monitor_expect_prompt (buf, sizeof (buf));
-// OBSOLETE /* now parse the result for success */
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE error ("Requires argument (IP address of GDB's host computer)");
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: set_download_path
-// OBSOLETE Tell the BootOne monitor the default path for downloadable SREC files. */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE m32r_set_download_path (char *args, int from_tty)
-// OBSOLETE {
-// OBSOLETE int resp_len;
-// OBSOLETE char buf[1024];
-// OBSOLETE
-// OBSOLETE if (args && *args)
-// OBSOLETE {
-// OBSOLETE monitor_printf ("up %s\n", args);
-// OBSOLETE resp_len = monitor_expect_prompt (buf, sizeof (buf));
-// OBSOLETE /* now parse the result for success */
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE error ("Requires argument (default path for downloadable SREC files)");
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE m32r_upload_command (char *args, int from_tty)
-// OBSOLETE {
-// OBSOLETE bfd *abfd;
-// OBSOLETE asection *s;
-// OBSOLETE time_t start_time, end_time; /* for timing of download */
-// OBSOLETE int resp_len, data_count = 0;
-// OBSOLETE char buf[1024];
-// OBSOLETE struct hostent *hostent;
-// OBSOLETE struct in_addr inet_addr;
-// OBSOLETE
-// OBSOLETE /* first check to see if there's an ethernet port! */
-// OBSOLETE monitor_printf ("ust\r");
-// OBSOLETE resp_len = monitor_expect_prompt (buf, sizeof (buf));
-// OBSOLETE if (!strchr (buf, ':'))
-// OBSOLETE error ("No ethernet connection!");
-// OBSOLETE
-// OBSOLETE if (board_addr == 0)
-// OBSOLETE {
-// OBSOLETE /* scan second colon in the output from the "ust" command */
-// OBSOLETE char *myIPaddress = strchr (strchr (buf, ':') + 1, ':') + 1;
-// OBSOLETE
-// OBSOLETE while (isspace (*myIPaddress))
-// OBSOLETE myIPaddress++;
-// OBSOLETE
-// OBSOLETE if (!strncmp (myIPaddress, "0.0.", 4)) /* empty */
-// OBSOLETE error ("Please use 'set board-address' to set the M32R-EVA board's IP address.");
-// OBSOLETE if (strchr (myIPaddress, '('))
-// OBSOLETE *(strchr (myIPaddress, '(')) = '\0'; /* delete trailing junk */
-// OBSOLETE board_addr = xstrdup (myIPaddress);
-// OBSOLETE }
-// OBSOLETE if (server_addr == 0)
-// OBSOLETE {
-// OBSOLETE buf[0] = 0;
-// OBSOLETE gethostname (buf, sizeof (buf));
-// OBSOLETE if (buf[0] != 0)
-// OBSOLETE hostent = gethostbyname (buf);
-// OBSOLETE if (hostent != 0)
-// OBSOLETE {
-// OBSOLETE #if 1
-// OBSOLETE memcpy (&inet_addr.s_addr, hostent->h_addr,
-// OBSOLETE sizeof (inet_addr.s_addr));
-// OBSOLETE server_addr = (char *) inet_ntoa (inet_addr);
-// OBSOLETE #else
-// OBSOLETE server_addr = (char *) inet_ntoa (hostent->h_addr);
-// OBSOLETE #endif
-// OBSOLETE }
-// OBSOLETE if (server_addr == 0) /* failed? */
-// OBSOLETE error ("Need to know gdb host computer's IP address (use 'set server-address')");
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE if (args == 0 || args[0] == 0) /* no args: upload the current file */
-// OBSOLETE args = get_exec_file (1);
-// OBSOLETE
-// OBSOLETE if (args[0] != '/' && download_path == 0)
-// OBSOLETE {
-// OBSOLETE if (current_directory)
-// OBSOLETE download_path = xstrdup (current_directory);
-// OBSOLETE else
-// OBSOLETE error ("Need to know default download path (use 'set download-path')");
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE start_time = time (NULL);
-// OBSOLETE monitor_printf ("uhip %s\r", server_addr);
-// OBSOLETE resp_len = monitor_expect_prompt (buf, sizeof (buf)); /* parse result? */
-// OBSOLETE monitor_printf ("ulip %s\r", board_addr);
-// OBSOLETE resp_len = monitor_expect_prompt (buf, sizeof (buf)); /* parse result? */
-// OBSOLETE if (args[0] != '/')
-// OBSOLETE monitor_printf ("up %s\r", download_path); /* use default path */
-// OBSOLETE else
-// OBSOLETE monitor_printf ("up\r"); /* rooted filename/path */
-// OBSOLETE resp_len = monitor_expect_prompt (buf, sizeof (buf)); /* parse result? */
-// OBSOLETE
-// OBSOLETE if (strrchr (args, '.') && !strcmp (strrchr (args, '.'), ".srec"))
-// OBSOLETE monitor_printf ("ul %s\r", args);
-// OBSOLETE else /* add ".srec" suffix */
-// OBSOLETE monitor_printf ("ul %s.srec\r", args);
-// OBSOLETE resp_len = monitor_expect_prompt (buf, sizeof (buf)); /* parse result? */
-// OBSOLETE
-// OBSOLETE if (buf[0] == 0 || strstr (buf, "complete") == 0)
-// OBSOLETE error ("Upload file not found: %s.srec\nCheck IP addresses and download path.", args);
-// OBSOLETE else
-// OBSOLETE printf_filtered (" -- Ethernet load complete.\n");
-// OBSOLETE
-// OBSOLETE end_time = time (NULL);
-// OBSOLETE abfd = bfd_openr (args, 0);
-// OBSOLETE if (abfd != NULL)
-// OBSOLETE { /* Download is done -- print section statistics */
-// OBSOLETE if (bfd_check_format (abfd, bfd_object) == 0)
-// OBSOLETE {
-// OBSOLETE printf_filtered ("File is not an object file\n");
-// OBSOLETE }
-// OBSOLETE for (s = abfd->sections; s; s = s->next)
-// OBSOLETE if (s->flags & SEC_LOAD)
-// OBSOLETE {
-// OBSOLETE bfd_size_type section_size = bfd_section_size (abfd, s);
-// OBSOLETE bfd_vma section_base = bfd_section_lma (abfd, s);
-// OBSOLETE unsigned int buffer;
-// OBSOLETE
-// OBSOLETE data_count += section_size;
-// OBSOLETE
-// OBSOLETE printf_filtered ("Loading section %s, size 0x%lx lma ",
-// OBSOLETE bfd_section_name (abfd, s), section_size);
-// OBSOLETE print_address_numeric (section_base, 1, gdb_stdout);
-// OBSOLETE printf_filtered ("\n");
-// OBSOLETE gdb_flush (gdb_stdout);
-// OBSOLETE }
-// OBSOLETE /* Finally, make the PC point at the start address */
-// OBSOLETE write_pc (bfd_get_start_address (abfd));
-// OBSOLETE report_transfer_performance (data_count, start_time, end_time);
-// OBSOLETE printf_filtered ("Start address 0x%lx\n", bfd_get_start_address (abfd));
-// OBSOLETE }
-// OBSOLETE inferior_ptid = null_ptid; /* No process now */
-// OBSOLETE
-// OBSOLETE /* This is necessary because many things were based on the PC at the
-// OBSOLETE time that we attached to the monitor, which is no longer valid
-// OBSOLETE now that we have loaded new code (and just changed the PC).
-// OBSOLETE Another way to do this might be to call normal_stop, except that
-// OBSOLETE the stack may not be valid, and things would get horribly
-// OBSOLETE confused... */
-// OBSOLETE
-// OBSOLETE clear_symtab_users ();
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE _initialize_m32r_rom (void)
-// OBSOLETE {
-// OBSOLETE /* Initialize m32r RevC monitor target */
-// OBSOLETE init_m32r_cmds ();
-// OBSOLETE init_monitor_ops (&m32r_ops);
-// OBSOLETE
-// OBSOLETE m32r_ops.to_shortname = "m32r";
-// OBSOLETE m32r_ops.to_longname = "m32r monitor";
-// OBSOLETE m32r_ops.to_load = m32r_load_gen; /* monitor lacks a download command */
-// OBSOLETE m32r_ops.to_doc = "Debug via the m32r monitor.\n\
-// OBSOLETE Specify the serial device it is connected to (e.g. /dev/ttya).";
-// OBSOLETE m32r_ops.to_open = m32r_open;
-// OBSOLETE add_target (&m32r_ops);
-// OBSOLETE
-// OBSOLETE /* Initialize mon2000 monitor target */
-// OBSOLETE init_mon2000_cmds ();
-// OBSOLETE init_monitor_ops (&mon2000_ops);
-// OBSOLETE
-// OBSOLETE mon2000_ops.to_shortname = "mon2000";
-// OBSOLETE mon2000_ops.to_longname = "Mon2000 monitor";
-// OBSOLETE mon2000_ops.to_load = m32r_load_gen; /* monitor lacks a download command */
-// OBSOLETE mon2000_ops.to_doc = "Debug via the Mon2000 monitor.\n\
-// OBSOLETE Specify the serial device it is connected to (e.g. /dev/ttya).";
-// OBSOLETE mon2000_ops.to_open = mon2000_open;
-// OBSOLETE add_target (&mon2000_ops);
-// OBSOLETE
-// OBSOLETE add_show_from_set
-// OBSOLETE (add_set_cmd ("download-path", class_obscure, var_string,
-// OBSOLETE (char *) &download_path,
-// OBSOLETE "Set the default path for downloadable SREC files.",
-// OBSOLETE &setlist),
-// OBSOLETE &showlist);
-// OBSOLETE
-// OBSOLETE add_show_from_set
-// OBSOLETE (add_set_cmd ("board-address", class_obscure, var_string,
-// OBSOLETE (char *) &board_addr,
-// OBSOLETE "Set IP address for M32R-EVA target board.",
-// OBSOLETE &setlist),
-// OBSOLETE &showlist);
-// OBSOLETE
-// OBSOLETE add_show_from_set
-// OBSOLETE (add_set_cmd ("server-address", class_obscure, var_string,
-// OBSOLETE (char *) &server_addr,
-// OBSOLETE "Set IP address for download server (GDB's host computer).",
-// OBSOLETE &setlist),
-// OBSOLETE &showlist);
-// OBSOLETE
-// OBSOLETE add_com ("upload", class_obscure, m32r_upload_command,
-// OBSOLETE "Upload the srec file via the monitor's Ethernet upload capability.");
-// OBSOLETE
-// OBSOLETE add_com ("tload", class_obscure, m32r_load, "test upload command.");
-// OBSOLETE }
+/* Remote debugging interface to m32r and mon2000 ROM monitors for GDB,
+ the GNU debugger.
+ Copyright 1996, 1997, 1998, 1999, 2000, 2001
+ Free Software Foundation, Inc.
+
+ Adapted by Michael Snyder of Cygnus Support.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+/* This module defines communication with the Renesas m32r monitor */
+
+#include "defs.h"
+#include "gdbcore.h"
+#include "target.h"
+#include "monitor.h"
+#include "serial.h"
+#include "symtab.h"
+#include "command.h"
+#include "gdbcmd.h"
+#include "symfile.h" /* for generic load */
+#include <time.h> /* for time_t */
+#include "gdb_string.h"
+#include "objfiles.h" /* for ALL_OBJFILES etc. */
+#include "inferior.h" /* for write_pc() */
+#include <ctype.h>
+#include "regcache.h"
+
+extern void report_transfer_performance (unsigned long, time_t, time_t);
+
+/*
+ * All this stuff just to get my host computer's IP address!
+ */
+#include <sys/types.h>
+#include <netdb.h> /* for hostent */
+#include <netinet/in.h> /* for struct in_addr */
+#if 1
+#include <arpa/inet.h> /* for inet_ntoa */
+#endif
+
+static char *board_addr; /* user-settable IP address for M32R-EVA */
+static char *server_addr; /* user-settable IP address for gdb host */
+static char *download_path; /* user-settable path for SREC files */
+
+
+/* REGNUM */
+#define PSW_REGNUM 16
+#define SPI_REGNUM 18
+#define SPU_REGNUM 19
+#define ACCL_REGNUM 22
+#define ACCH_REGNUM 23
+
+
+/*
+ * Function: m32r_load_1 (helper function)
+ */
+
+static void
+m32r_load_section (bfd *abfd, asection *s, void *obj)
+{
+ unsigned int *data_count = obj;
+ if (s->flags & SEC_LOAD)
+ {
+ bfd_size_type section_size = bfd_section_size (abfd, s);
+ bfd_vma section_base = bfd_section_lma (abfd, s);
+ unsigned int buffer, i;
+
+ *data_count += section_size;
+
+ printf_filtered ("Loading section %s, size 0x%lx lma ",
+ bfd_section_name (abfd, s), section_size);
+ print_address_numeric (section_base, 1, gdb_stdout);
+ printf_filtered ("\n");
+ gdb_flush (gdb_stdout);
+ monitor_printf ("%s mw\r", paddr_nz (section_base));
+ for (i = 0; i < section_size; i += 4)
+ {
+ QUIT;
+ monitor_expect (" -> ", NULL, 0);
+ bfd_get_section_contents (abfd, s, (char *) &buffer, i, 4);
+ monitor_printf ("%x\n", buffer);
+ }
+ monitor_expect (" -> ", NULL, 0);
+ monitor_printf ("q\n");
+ monitor_expect_prompt (NULL, 0);
+ }
+}
+
+static int
+m32r_load_1 (void *dummy)
+{
+ int data_count = 0;
+
+ bfd_map_over_sections ((bfd *) dummy, m32r_load_section, &data_count);
+ return data_count;
+}
+
+/*
+ * Function: m32r_load (an alternate way to load)
+ */
+
+static void
+m32r_load (char *filename, int from_tty)
+{
+ bfd *abfd;
+ asection *s;
+ unsigned int i, data_count = 0;
+ time_t start_time, end_time; /* for timing of download */
+
+ if (filename == NULL || filename[0] == 0)
+ filename = get_exec_file (1);
+
+ abfd = bfd_openr (filename, 0);
+ if (!abfd)
+ error ("Unable to open file %s\n", filename);
+ if (bfd_check_format (abfd, bfd_object) == 0)
+ error ("File is not an object file\n");
+ start_time = time (NULL);
+#if 0
+ for (s = abfd->sections; s; s = s->next)
+ if (s->flags & SEC_LOAD)
+ {
+ bfd_size_type section_size = bfd_section_size (abfd, s);
+ bfd_vma section_base = bfd_section_vma (abfd, s);
+ unsigned int buffer;
+
+ data_count += section_size;
+
+ printf_filtered ("Loading section %s, size 0x%lx vma ",
+ bfd_section_name (abfd, s), section_size);
+ print_address_numeric (section_base, 1, gdb_stdout);
+ printf_filtered ("\n");
+ gdb_flush (gdb_stdout);
+ monitor_printf ("%x mw\r", section_base);
+ for (i = 0; i < section_size; i += 4)
+ {
+ monitor_expect (" -> ", NULL, 0);
+ bfd_get_section_contents (abfd, s, (char *) &buffer, i, 4);
+ monitor_printf ("%x\n", buffer);
+ }
+ monitor_expect (" -> ", NULL, 0);
+ monitor_printf ("q\n");
+ monitor_expect_prompt (NULL, 0);
+ }
+#else
+ if (!(catch_errors (m32r_load_1, abfd, "Load aborted!\n", RETURN_MASK_ALL)))
+ {
+ monitor_printf ("q\n");
+ return;
+ }
+#endif
+ end_time = time (NULL);
+ printf_filtered ("Start address 0x%lx\n", bfd_get_start_address (abfd));
+ report_transfer_performance (data_count, start_time, end_time);
+
+ /* Finally, make the PC point at the start address */
+ if (exec_bfd)
+ write_pc (bfd_get_start_address (exec_bfd));
+
+ inferior_ptid = null_ptid; /* No process now */
+
+ /* This is necessary because many things were based on the PC at the
+ time that we attached to the monitor, which is no longer valid
+ now that we have loaded new code (and just changed the PC).
+ Another way to do this might be to call normal_stop, except that
+ the stack may not be valid, and things would get horribly
+ confused... */
+
+ clear_symtab_users ();
+}
+
+static void
+m32r_load_gen (char *filename, int from_tty)
+{
+ generic_load (filename, from_tty);
+}
+
+static void m32r_open (char *args, int from_tty);
+static void mon2000_open (char *args, int from_tty);
+
+/* This array of registers needs to match the indexes used by GDB. The
+ whole reason this exists is because the various ROM monitors use
+ different names than GDB does, and don't support all the registers
+ either. So, typing "info reg sp" becomes an "A7". */
+
+static char *m32r_regnames[] =
+ { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+ "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
+};
+
+static void
+m32r_supply_register (char *regname, int regnamelen, char *val, int vallen)
+{
+ int regno;
+ int num_regs = sizeof (m32r_regnames) / sizeof (m32r_regnames[0]);
+
+ for (regno = 0; regno < num_regs; regno++)
+ if (strncmp (regname, m32r_regnames[regno], regnamelen) == 0)
+ break;
+
+ if (regno >= num_regs)
+ return; /* no match */
+
+ if (regno == ACCL_REGNUM)
+ { /* special handling for 64-bit acc reg */
+ monitor_supply_register (ACCH_REGNUM, val);
+ val = strchr (val, ':'); /* skip past ':' to get 2nd word */
+ if (val != NULL)
+ monitor_supply_register (ACCL_REGNUM, val + 1);
+ }
+ else
+ {
+ monitor_supply_register (regno, val);
+ if (regno == PSW_REGNUM)
+ {
+ unsigned long psw = strtoul (val, NULL, 16);
+ char *zero = "00000000", *one = "00000001";
+
+#ifdef SM_REGNUM
+ /* Stack mode bit */
+ monitor_supply_register (SM_REGNUM, (psw & 0x80) ? one : zero);
+#endif
+#ifdef BSM_REGNUM
+ /* Backup stack mode bit */
+ monitor_supply_register (BSM_REGNUM, (psw & 0x8000) ? one : zero);
+#endif
+#ifdef IE_REGNUM
+ /* Interrupt enable bit */
+ monitor_supply_register (IE_REGNUM, (psw & 0x40) ? one : zero);
+#endif
+#ifdef BIE_REGNUM
+ /* Backup interrupt enable bit */
+ monitor_supply_register (BIE_REGNUM, (psw & 0x4000) ? one : zero);
+#endif
+#ifdef COND_REGNUM
+ /* Condition bit (carry etc.) */
+ monitor_supply_register (COND_REGNUM, (psw & 0x1) ? one : zero);
+#endif
+#ifdef CBR_REGNUM
+ monitor_supply_register (CBR_REGNUM, (psw & 0x1) ? one : zero);
+#endif
+#ifdef BPC_REGNUM
+ monitor_supply_register (BPC_REGNUM, zero); /* KLUDGE: (???????) */
+#endif
+#ifdef BCARRY_REGNUM
+ monitor_supply_register (BCARRY_REGNUM, zero); /* KLUDGE: (??????) */
+#endif
+ }
+
+ if (regno == SPI_REGNUM || regno == SPU_REGNUM)
+ { /* special handling for stack pointer (spu or spi) */
+ unsigned long stackmode = read_register (PSW_REGNUM) & 0x80;
+
+ if (regno == SPI_REGNUM && !stackmode) /* SP == SPI */
+ monitor_supply_register (SP_REGNUM, val);
+ else if (regno == SPU_REGNUM && stackmode) /* SP == SPU */
+ monitor_supply_register (SP_REGNUM, val);
+ }
+ }
+}
+
+/* m32r RevC board monitor */
+
+static struct target_ops m32r_ops;
+
+static char *m32r_inits[] = { "\r", NULL };
+
+static struct monitor_ops m32r_cmds;
+
+static void
+init_m32r_cmds (void)
+{
+ m32r_cmds.flags = MO_CLR_BREAK_USES_ADDR | MO_REGISTER_VALUE_FIRST;
+ m32r_cmds.init = m32r_inits; /* Init strings */
+ m32r_cmds.cont = "go\r"; /* continue command */
+ m32r_cmds.step = "step\r"; /* single step */
+ m32r_cmds.stop = NULL; /* interrupt command */
+ m32r_cmds.set_break = "%x +bp\r"; /* set a breakpoint */
+ m32r_cmds.clr_break = "%x -bp\r"; /* clear a breakpoint */
+ m32r_cmds.clr_all_break = "bpoff\r"; /* clear all breakpoints */
+ m32r_cmds.fill = "%x %x %x fill\r"; /* fill (start length val) */
+ m32r_cmds.setmem.cmdb = "%x 1 %x fill\r"; /* setmem.cmdb (addr, value) */
+ m32r_cmds.setmem.cmdw = "%x 1 %x fillh\r"; /* setmem.cmdw (addr, value) */
+ m32r_cmds.setmem.cmdl = "%x 1 %x fillw\r"; /* setmem.cmdl (addr, value) */
+ m32r_cmds.setmem.cmdll = NULL; /* setmem.cmdll (addr, value) */
+ m32r_cmds.setmem.resp_delim = NULL; /* setmem.resp_delim */
+ m32r_cmds.setmem.term = NULL; /* setmem.term */
+ m32r_cmds.setmem.term_cmd = NULL; /* setmem.term_cmd */
+ m32r_cmds.getmem.cmdb = "%x %x dump\r"; /* getmem.cmdb (addr, len) */
+ m32r_cmds.getmem.cmdw = NULL; /* getmem.cmdw (addr, len) */
+ m32r_cmds.getmem.cmdl = NULL; /* getmem.cmdl (addr, len) */
+ m32r_cmds.getmem.cmdll = NULL; /* getmem.cmdll (addr, len) */
+ m32r_cmds.getmem.resp_delim = ": "; /* getmem.resp_delim */
+ m32r_cmds.getmem.term = NULL; /* getmem.term */
+ m32r_cmds.getmem.term_cmd = NULL; /* getmem.term_cmd */
+ m32r_cmds.setreg.cmd = "%x to %%%s\r"; /* setreg.cmd (name, value) */
+ m32r_cmds.setreg.resp_delim = NULL; /* setreg.resp_delim */
+ m32r_cmds.setreg.term = NULL; /* setreg.term */
+ m32r_cmds.setreg.term_cmd = NULL; /* setreg.term_cmd */
+ m32r_cmds.getreg.cmd = NULL; /* getreg.cmd (name) */
+ m32r_cmds.getreg.resp_delim = NULL; /* getreg.resp_delim */
+ m32r_cmds.getreg.term = NULL; /* getreg.term */
+ m32r_cmds.getreg.term_cmd = NULL; /* getreg.term_cmd */
+ m32r_cmds.dump_registers = ".reg\r"; /* dump_registers */
+ m32r_cmds.register_pattern = "\\(\\w+\\) += \\([0-9a-fA-F]+\\b\\)"; /* register_pattern */
+ m32r_cmds.supply_register = m32r_supply_register; /* supply_register */
+ m32r_cmds.load_routine = NULL; /* load_routine (defaults to SRECs) */
+ m32r_cmds.load = NULL; /* download command */
+ m32r_cmds.loadresp = NULL; /* load response */
+ m32r_cmds.prompt = "ok "; /* monitor command prompt */
+ m32r_cmds.line_term = "\r"; /* end-of-line terminator */
+ m32r_cmds.cmd_end = NULL; /* optional command terminator */
+ m32r_cmds.target = &m32r_ops; /* target operations */
+ m32r_cmds.stopbits = SERIAL_1_STOPBITS; /* number of stop bits */
+ m32r_cmds.regnames = m32r_regnames; /* registers names */
+ m32r_cmds.magic = MONITOR_OPS_MAGIC; /* magic */
+} /* init_m32r_cmds */
+
+static void
+m32r_open (char *args, int from_tty)
+{
+ monitor_open (args, &m32r_cmds, from_tty);
+}
+
+/* Mon2000 monitor (MSA2000 board) */
+
+static struct target_ops mon2000_ops;
+static struct monitor_ops mon2000_cmds;
+
+static void
+init_mon2000_cmds (void)
+{
+ mon2000_cmds.flags = MO_CLR_BREAK_USES_ADDR | MO_REGISTER_VALUE_FIRST;
+ mon2000_cmds.init = m32r_inits; /* Init strings */
+ mon2000_cmds.cont = "go\r"; /* continue command */
+ mon2000_cmds.step = "step\r"; /* single step */
+ mon2000_cmds.stop = NULL; /* interrupt command */
+ mon2000_cmds.set_break = "%x +bp\r"; /* set a breakpoint */
+ mon2000_cmds.clr_break = "%x -bp\r"; /* clear a breakpoint */
+ mon2000_cmds.clr_all_break = "bpoff\r"; /* clear all breakpoints */
+ mon2000_cmds.fill = "%x %x %x fill\r"; /* fill (start length val) */
+ mon2000_cmds.setmem.cmdb = "%x 1 %x fill\r"; /* setmem.cmdb (addr, value) */
+ mon2000_cmds.setmem.cmdw = "%x 1 %x fillh\r"; /* setmem.cmdw (addr, value) */
+ mon2000_cmds.setmem.cmdl = "%x 1 %x fillw\r"; /* setmem.cmdl (addr, value) */
+ mon2000_cmds.setmem.cmdll = NULL; /* setmem.cmdll (addr, value) */
+ mon2000_cmds.setmem.resp_delim = NULL; /* setmem.resp_delim */
+ mon2000_cmds.setmem.term = NULL; /* setmem.term */
+ mon2000_cmds.setmem.term_cmd = NULL; /* setmem.term_cmd */
+ mon2000_cmds.getmem.cmdb = "%x %x dump\r"; /* getmem.cmdb (addr, len) */
+ mon2000_cmds.getmem.cmdw = NULL; /* getmem.cmdw (addr, len) */
+ mon2000_cmds.getmem.cmdl = NULL; /* getmem.cmdl (addr, len) */
+ mon2000_cmds.getmem.cmdll = NULL; /* getmem.cmdll (addr, len) */
+ mon2000_cmds.getmem.resp_delim = ": "; /* getmem.resp_delim */
+ mon2000_cmds.getmem.term = NULL; /* getmem.term */
+ mon2000_cmds.getmem.term_cmd = NULL; /* getmem.term_cmd */
+ mon2000_cmds.setreg.cmd = "%x to %%%s\r"; /* setreg.cmd (name, value) */
+ mon2000_cmds.setreg.resp_delim = NULL; /* setreg.resp_delim */
+ mon2000_cmds.setreg.term = NULL; /* setreg.term */
+ mon2000_cmds.setreg.term_cmd = NULL; /* setreg.term_cmd */
+ mon2000_cmds.getreg.cmd = NULL; /* getreg.cmd (name) */
+ mon2000_cmds.getreg.resp_delim = NULL; /* getreg.resp_delim */
+ mon2000_cmds.getreg.term = NULL; /* getreg.term */
+ mon2000_cmds.getreg.term_cmd = NULL; /* getreg.term_cmd */
+ mon2000_cmds.dump_registers = ".reg\r"; /* dump_registers */
+ mon2000_cmds.register_pattern = "\\(\\w+\\) += \\([0-9a-fA-F]+\\b\\)"; /* register_pattern */
+ mon2000_cmds.supply_register = m32r_supply_register; /* supply_register */
+ mon2000_cmds.load_routine = NULL; /* load_routine (defaults to SRECs) */
+ mon2000_cmds.load = NULL; /* download command */
+ mon2000_cmds.loadresp = NULL; /* load response */
+ mon2000_cmds.prompt = "Mon2000>"; /* monitor command prompt */
+ mon2000_cmds.line_term = "\r"; /* end-of-line terminator */
+ mon2000_cmds.cmd_end = NULL; /* optional command terminator */
+ mon2000_cmds.target = &mon2000_ops; /* target operations */
+ mon2000_cmds.stopbits = SERIAL_1_STOPBITS; /* number of stop bits */
+ mon2000_cmds.regnames = m32r_regnames; /* registers names */
+ mon2000_cmds.magic = MONITOR_OPS_MAGIC; /* magic */
+} /* init_mon2000_cmds */
+
+static void
+mon2000_open (char *args, int from_tty)
+{
+ monitor_open (args, &mon2000_cmds, from_tty);
+}
+
+/* Function: set_board_address
+ Tell the BootOne monitor what it's ethernet IP address is. */
+
+static void
+m32r_set_board_address (char *args, int from_tty)
+{
+ int resp_len;
+ char buf[1024];
+
+ if (args && *args)
+ {
+ monitor_printf ("ulip %s\n", args);
+ resp_len = monitor_expect_prompt (buf, sizeof (buf));
+ /* now parse the result for success */
+ }
+ else
+ error ("Requires argument (IP address for M32R-EVA board)");
+}
+
+/* Function: set_server_address
+ Tell the BootOne monitor what gdb's ethernet IP address is. */
+
+static void
+m32r_set_server_address (char *args, int from_tty)
+{
+ int resp_len;
+ char buf[1024];
+
+ if (args && *args)
+ {
+ monitor_printf ("uhip %s\n", args);
+ resp_len = monitor_expect_prompt (buf, sizeof (buf));
+ /* now parse the result for success */
+ }
+ else
+ error ("Requires argument (IP address of GDB's host computer)");
+}
+
+/* Function: set_download_path
+ Tell the BootOne monitor the default path for downloadable SREC files. */
+
+static void
+m32r_set_download_path (char *args, int from_tty)
+{
+ int resp_len;
+ char buf[1024];
+
+ if (args && *args)
+ {
+ monitor_printf ("up %s\n", args);
+ resp_len = monitor_expect_prompt (buf, sizeof (buf));
+ /* now parse the result for success */
+ }
+ else
+ error ("Requires argument (default path for downloadable SREC files)");
+}
+
+static void
+m32r_upload_command (char *args, int from_tty)
+{
+ bfd *abfd;
+ asection *s;
+ time_t start_time, end_time; /* for timing of download */
+ int resp_len, data_count = 0;
+ char buf[1024];
+ struct hostent *hostent;
+ struct in_addr inet_addr;
+
+ /* first check to see if there's an ethernet port! */
+ monitor_printf ("ust\r");
+ resp_len = monitor_expect_prompt (buf, sizeof (buf));
+ if (!strchr (buf, ':'))
+ error ("No ethernet connection!");
+
+ if (board_addr == 0)
+ {
+ /* scan second colon in the output from the "ust" command */
+ char *myIPaddress = strchr (strchr (buf, ':') + 1, ':') + 1;
+
+ while (isspace (*myIPaddress))
+ myIPaddress++;
+
+ if (!strncmp (myIPaddress, "0.0.", 4)) /* empty */
+ error
+ ("Please use 'set board-address' to set the M32R-EVA board's IP address.");
+ if (strchr (myIPaddress, '('))
+ *(strchr (myIPaddress, '(')) = '\0'; /* delete trailing junk */
+ board_addr = xstrdup (myIPaddress);
+ }
+ if (server_addr == 0)
+ {
+ buf[0] = 0;
+ gethostname (buf, sizeof (buf));
+ if (buf[0] != 0)
+ hostent = gethostbyname (buf);
+ if (hostent != 0)
+ {
+#if 1
+ memcpy (&inet_addr.s_addr, hostent->h_addr,
+ sizeof (inet_addr.s_addr));
+ server_addr = (char *) inet_ntoa (inet_addr);
+#else
+ server_addr = (char *) inet_ntoa (hostent->h_addr);
+#endif
+ }
+ if (server_addr == 0) /* failed? */
+ error
+ ("Need to know gdb host computer's IP address (use 'set server-address')");
+ }
+
+ if (args == 0 || args[0] == 0) /* no args: upload the current file */
+ args = get_exec_file (1);
+
+ if (args[0] != '/' && download_path == 0)
+ {
+ if (current_directory)
+ download_path = xstrdup (current_directory);
+ else
+ error
+ ("Need to know default download path (use 'set download-path')");
+ }
+
+ start_time = time (NULL);
+ monitor_printf ("uhip %s\r", server_addr);
+ resp_len = monitor_expect_prompt (buf, sizeof (buf)); /* parse result? */
+ monitor_printf ("ulip %s\r", board_addr);
+ resp_len = monitor_expect_prompt (buf, sizeof (buf)); /* parse result? */
+ if (args[0] != '/')
+ monitor_printf ("up %s\r", download_path); /* use default path */
+ else
+ monitor_printf ("up\r"); /* rooted filename/path */
+ resp_len = monitor_expect_prompt (buf, sizeof (buf)); /* parse result? */
+
+ if (strrchr (args, '.') && !strcmp (strrchr (args, '.'), ".srec"))
+ monitor_printf ("ul %s\r", args);
+ else /* add ".srec" suffix */
+ monitor_printf ("ul %s.srec\r", args);
+ resp_len = monitor_expect_prompt (buf, sizeof (buf)); /* parse result? */
+
+ if (buf[0] == 0 || strstr (buf, "complete") == 0)
+ error
+ ("Upload file not found: %s.srec\nCheck IP addresses and download path.",
+ args);
+ else
+ printf_filtered (" -- Ethernet load complete.\n");
+
+ end_time = time (NULL);
+ abfd = bfd_openr (args, 0);
+ if (abfd != NULL)
+ { /* Download is done -- print section statistics */
+ if (bfd_check_format (abfd, bfd_object) == 0)
+ {
+ printf_filtered ("File is not an object file\n");
+ }
+ for (s = abfd->sections; s; s = s->next)
+ if (s->flags & SEC_LOAD)
+ {
+ bfd_size_type section_size = bfd_section_size (abfd, s);
+ bfd_vma section_base = bfd_section_lma (abfd, s);
+ unsigned int buffer;
+
+ data_count += section_size;
+
+ printf_filtered ("Loading section %s, size 0x%lx lma ",
+ bfd_section_name (abfd, s), section_size);
+ print_address_numeric (section_base, 1, gdb_stdout);
+ printf_filtered ("\n");
+ gdb_flush (gdb_stdout);
+ }
+ /* Finally, make the PC point at the start address */
+ write_pc (bfd_get_start_address (abfd));
+ report_transfer_performance (data_count, start_time, end_time);
+ printf_filtered ("Start address 0x%lx\n", bfd_get_start_address (abfd));
+ }
+ inferior_ptid = null_ptid; /* No process now */
+
+ /* This is necessary because many things were based on the PC at the
+ time that we attached to the monitor, which is no longer valid
+ now that we have loaded new code (and just changed the PC).
+ Another way to do this might be to call normal_stop, except that
+ the stack may not be valid, and things would get horribly
+ confused... */
+
+ clear_symtab_users ();
+}
+
+void
+_initialize_m32r_rom (void)
+{
+ /* Initialize m32r RevC monitor target */
+ init_m32r_cmds ();
+ init_monitor_ops (&m32r_ops);
+
+ m32r_ops.to_shortname = "m32r";
+ m32r_ops.to_longname = "m32r monitor";
+ m32r_ops.to_load = m32r_load_gen; /* monitor lacks a download command */
+ m32r_ops.to_doc = "Debug via the m32r monitor.\n\
+Specify the serial device it is connected to (e.g. /dev/ttya).";
+ m32r_ops.to_open = m32r_open;
+ add_target (&m32r_ops);
+
+ /* Initialize mon2000 monitor target */
+ init_mon2000_cmds ();
+ init_monitor_ops (&mon2000_ops);
+
+ mon2000_ops.to_shortname = "mon2000";
+ mon2000_ops.to_longname = "Mon2000 monitor";
+ mon2000_ops.to_load = m32r_load_gen; /* monitor lacks a download command */
+ mon2000_ops.to_doc = "Debug via the Mon2000 monitor.\n\
+Specify the serial device it is connected to (e.g. /dev/ttya).";
+ mon2000_ops.to_open = mon2000_open;
+ add_target (&mon2000_ops);
+
+ add_show_from_set
+ (add_set_cmd ("download-path", class_obscure, var_string,
+ (char *) &download_path,
+ "Set the default path for downloadable SREC files.",
+ &setlist), &showlist);
+
+ add_show_from_set
+ (add_set_cmd ("board-address", class_obscure, var_string,
+ (char *) &board_addr,
+ "Set IP address for M32R-EVA target board.",
+ &setlist), &showlist);
+
+ add_show_from_set
+ (add_set_cmd ("server-address", class_obscure, var_string,
+ (char *) &server_addr,
+ "Set IP address for download server (GDB's host computer).",
+ &setlist), &showlist);
+
+ add_com ("upload", class_obscure, m32r_upload_command,
+ "Upload the srec file via the monitor's Ethernet upload capability.");
+
+ add_com ("tload", class_obscure, m32r_load, "test upload command.");
+}
diff --git a/gdb/m32r-stub.c b/gdb/m32r-stub.c
index d9be3eb..c7033ea 100644
--- a/gdb/m32r-stub.c
+++ b/gdb/m32r-stub.c
@@ -1,1718 +1,1779 @@
-// OBSOLETE /****************************************************************************
-// OBSOLETE
-// OBSOLETE THIS SOFTWARE IS NOT COPYRIGHTED
-// OBSOLETE
-// OBSOLETE HP offers the following for use in the public domain. HP makes no
-// OBSOLETE warranty with regard to the software or it's performance and the
-// OBSOLETE user accepts the software "AS IS" with all faults.
-// OBSOLETE
-// OBSOLETE HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
-// OBSOLETE TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-// OBSOLETE OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
-// OBSOLETE
-// OBSOLETE ****************************************************************************/
-// OBSOLETE
-// OBSOLETE /****************************************************************************
-// OBSOLETE * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
-// OBSOLETE *
-// OBSOLETE * Module name: remcom.c $
-// OBSOLETE * Revision: 1.34 $
-// OBSOLETE * Date: 91/03/09 12:29:49 $
-// OBSOLETE * Contributor: Lake Stevens Instrument Division$
-// OBSOLETE *
-// OBSOLETE * Description: low level support for gdb debugger. $
-// OBSOLETE *
-// OBSOLETE * Considerations: only works on target hardware $
-// OBSOLETE *
-// OBSOLETE * Written by: Glenn Engel $
-// OBSOLETE * ModuleState: Experimental $
-// OBSOLETE *
-// OBSOLETE * NOTES: See Below $
-// OBSOLETE *
-// OBSOLETE * Modified for M32R by Michael Snyder, Cygnus Support.
-// OBSOLETE *
-// OBSOLETE * To enable debugger support, two things need to happen. One, a
-// OBSOLETE * call to set_debug_traps() is necessary in order to allow any breakpoints
-// OBSOLETE * or error conditions to be properly intercepted and reported to gdb.
-// OBSOLETE * Two, a breakpoint needs to be generated to begin communication. This
-// OBSOLETE * is most easily accomplished by a call to breakpoint(). Breakpoint()
-// OBSOLETE * simulates a breakpoint by executing a trap #1.
-// OBSOLETE *
-// OBSOLETE * The external function exceptionHandler() is
-// OBSOLETE * used to attach a specific handler to a specific M32R vector number.
-// OBSOLETE * It should use the same privilege level it runs at. It should
-// OBSOLETE * install it as an interrupt gate so that interrupts are masked
-// OBSOLETE * while the handler runs.
-// OBSOLETE *
-// OBSOLETE * Because gdb will sometimes write to the stack area to execute function
-// OBSOLETE * calls, this program cannot rely on using the supervisor stack so it
-// OBSOLETE * uses it's own stack area reserved in the int array remcomStack.
-// OBSOLETE *
-// OBSOLETE *************
-// OBSOLETE *
-// OBSOLETE * The following gdb commands are supported:
-// OBSOLETE *
-// OBSOLETE * command function Return value
-// OBSOLETE *
-// OBSOLETE * g return the value of the CPU registers hex data or ENN
-// OBSOLETE * G set the value of the CPU registers OK or ENN
-// OBSOLETE *
-// OBSOLETE * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
-// OBSOLETE * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
-// OBSOLETE * XAA..AA,LLLL: Write LLLL binary bytes at address OK or ENN
-// OBSOLETE * AA..AA
-// OBSOLETE *
-// OBSOLETE * c Resume at current address SNN ( signal NN)
-// OBSOLETE * cAA..AA Continue at address AA..AA SNN
-// OBSOLETE *
-// OBSOLETE * s Step one instruction SNN
-// OBSOLETE * sAA..AA Step one instruction from AA..AA SNN
-// OBSOLETE *
-// OBSOLETE * k kill
-// OBSOLETE *
-// OBSOLETE * ? What was the last sigval ? SNN (signal NN)
-// OBSOLETE *
-// OBSOLETE * All commands and responses are sent with a packet which includes a
-// OBSOLETE * checksum. A packet consists of
-// OBSOLETE *
-// OBSOLETE * $<packet info>#<checksum>.
-// OBSOLETE *
-// OBSOLETE * where
-// OBSOLETE * <packet info> :: <characters representing the command or response>
-// OBSOLETE * <checksum> :: <two hex digits computed as modulo 256 sum of <packetinfo>>
-// OBSOLETE *
-// OBSOLETE * When a packet is received, it is first acknowledged with either '+' or '-'.
-// OBSOLETE * '+' indicates a successful transfer. '-' indicates a failed transfer.
-// OBSOLETE *
-// OBSOLETE * Example:
-// OBSOLETE *
-// OBSOLETE * Host: Reply:
-// OBSOLETE * $m0,10#2a +$00010203040506070809101112131415#42
-// OBSOLETE *
-// OBSOLETE ****************************************************************************/
-// OBSOLETE
-// OBSOLETE
-// OBSOLETE /************************************************************************
-// OBSOLETE *
-// OBSOLETE * external low-level support routines
-// OBSOLETE */
-// OBSOLETE extern void putDebugChar(); /* write a single character */
-// OBSOLETE extern int getDebugChar(); /* read and return a single char */
-// OBSOLETE extern void exceptionHandler(); /* assign an exception handler */
-// OBSOLETE
-// OBSOLETE /*****************************************************************************
-// OBSOLETE * BUFMAX defines the maximum number of characters in inbound/outbound buffers
-// OBSOLETE * at least NUMREGBYTES*2 are needed for register packets
-// OBSOLETE */
-// OBSOLETE #define BUFMAX 400
-// OBSOLETE
-// OBSOLETE static char initialized; /* boolean flag. != 0 means we've been initialized */
-// OBSOLETE
-// OBSOLETE int remote_debug;
-// OBSOLETE /* debug > 0 prints ill-formed commands in valid packets & checksum errors */
-// OBSOLETE
-// OBSOLETE static const unsigned char hexchars[]="0123456789abcdef";
-// OBSOLETE
-// OBSOLETE #define NUMREGS 24
-// OBSOLETE
-// OBSOLETE /* Number of bytes of registers. */
-// OBSOLETE #define NUMREGBYTES (NUMREGS * 4)
-// OBSOLETE enum regnames { R0, R1, R2, R3, R4, R5, R6, R7,
-// OBSOLETE R8, R9, R10, R11, R12, R13, R14, R15,
-// OBSOLETE PSW, CBR, SPI, SPU, BPC, PC, ACCL, ACCH };
-// OBSOLETE
-// OBSOLETE enum SYS_calls {
-// OBSOLETE SYS_null,
-// OBSOLETE SYS_exit,
-// OBSOLETE SYS_open,
-// OBSOLETE SYS_close,
-// OBSOLETE SYS_read,
-// OBSOLETE SYS_write,
-// OBSOLETE SYS_lseek,
-// OBSOLETE SYS_unlink,
-// OBSOLETE SYS_getpid,
-// OBSOLETE SYS_kill,
-// OBSOLETE SYS_fstat,
-// OBSOLETE SYS_sbrk,
-// OBSOLETE SYS_fork,
-// OBSOLETE SYS_execve,
-// OBSOLETE SYS_wait4,
-// OBSOLETE SYS_link,
-// OBSOLETE SYS_chdir,
-// OBSOLETE SYS_stat,
-// OBSOLETE SYS_utime,
-// OBSOLETE SYS_chown,
-// OBSOLETE SYS_chmod,
-// OBSOLETE SYS_time,
-// OBSOLETE SYS_pipe };
-// OBSOLETE
-// OBSOLETE static int registers[NUMREGS];
-// OBSOLETE
-// OBSOLETE #define STACKSIZE 8096
-// OBSOLETE static unsigned char remcomInBuffer[BUFMAX];
-// OBSOLETE static unsigned char remcomOutBuffer[BUFMAX];
-// OBSOLETE static int remcomStack[STACKSIZE/sizeof(int)];
-// OBSOLETE static int* stackPtr = &remcomStack[STACKSIZE/sizeof(int) - 1];
-// OBSOLETE
-// OBSOLETE static unsigned int save_vectors[18]; /* previous exception vectors */
-// OBSOLETE
-// OBSOLETE /* Indicate to caller of mem2hex or hex2mem that there has been an error. */
-// OBSOLETE static volatile int mem_err = 0;
-// OBSOLETE
-// OBSOLETE /* Store the vector number here (since GDB only gets the signal
-// OBSOLETE number through the usual means, and that's not very specific). */
-// OBSOLETE int gdb_m32r_vector = -1;
-// OBSOLETE
-// OBSOLETE #if 0
-// OBSOLETE #include "syscall.h" /* for SYS_exit, SYS_write etc. */
-// OBSOLETE #endif
-// OBSOLETE
-// OBSOLETE /* Global entry points:
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE extern void handle_exception(int);
-// OBSOLETE extern void set_debug_traps(void);
-// OBSOLETE extern void breakpoint(void);
-// OBSOLETE
-// OBSOLETE /* Local functions:
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE static int computeSignal(int);
-// OBSOLETE static void putpacket(unsigned char *);
-// OBSOLETE static unsigned char *getpacket(void);
-// OBSOLETE
-// OBSOLETE static unsigned char *mem2hex(unsigned char *, unsigned char *, int, int);
-// OBSOLETE static unsigned char *hex2mem(unsigned char *, unsigned char *, int, int);
-// OBSOLETE static int hexToInt(unsigned char **, int *);
-// OBSOLETE static unsigned char *bin2mem(unsigned char *, unsigned char *, int, int);
-// OBSOLETE static void stash_registers(void);
-// OBSOLETE static void restore_registers(void);
-// OBSOLETE static int prepare_to_step(int);
-// OBSOLETE static int finish_from_step(void);
-// OBSOLETE static unsigned long crc32 (unsigned char *, int, unsigned long);
-// OBSOLETE
-// OBSOLETE static void gdb_error(char *, char *);
-// OBSOLETE static int gdb_putchar(int), gdb_puts(char *), gdb_write(char *, int);
-// OBSOLETE
-// OBSOLETE static unsigned char *strcpy (unsigned char *, const unsigned char *);
-// OBSOLETE static int strlen (const unsigned char *);
-// OBSOLETE
-// OBSOLETE /*
-// OBSOLETE * This function does all command procesing for interfacing to gdb.
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE handle_exception(int exceptionVector)
-// OBSOLETE {
-// OBSOLETE int sigval, stepping;
-// OBSOLETE int addr, length, i;
-// OBSOLETE unsigned char * ptr;
-// OBSOLETE unsigned char buf[16];
-// OBSOLETE int binary;
-// OBSOLETE
-// OBSOLETE /* Do not call finish_from_step() if this is not a trap #1
-// OBSOLETE * (breakpoint trap). Without this check, the finish_from_step()
-// OBSOLETE * might interpret a system call trap as a single step trap. This
-// OBSOLETE * can happen if: the stub receives 's' and exits, but an interrupt
-// OBSOLETE * was pending; the interrupt is now handled and causes the stub to
-// OBSOLETE * be reentered because some function makes a system call.
-// OBSOLETE */
-// OBSOLETE if (exceptionVector == 1) /* Trap exception? */
-// OBSOLETE if (!finish_from_step()) /* Go see if stepping state needs update. */
-// OBSOLETE return; /* "false step": let the target continue */
-// OBSOLETE
-// OBSOLETE gdb_m32r_vector = exceptionVector;
-// OBSOLETE
-// OBSOLETE if (remote_debug)
-// OBSOLETE {
-// OBSOLETE mem2hex((unsigned char *) &exceptionVector, buf, 4, 0);
-// OBSOLETE gdb_error("Handle exception %s, ", buf);
-// OBSOLETE mem2hex((unsigned char *) &registers[PC], buf, 4, 0);
-// OBSOLETE gdb_error("PC == 0x%s\n", buf);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* reply to host that an exception has occurred */
-// OBSOLETE sigval = computeSignal( exceptionVector );
-// OBSOLETE
-// OBSOLETE ptr = remcomOutBuffer;
-// OBSOLETE
-// OBSOLETE *ptr++ = 'T'; /* notify gdb with signo, PC, FP and SP */
-// OBSOLETE *ptr++ = hexchars[sigval >> 4];
-// OBSOLETE *ptr++ = hexchars[sigval & 0xf];
-// OBSOLETE
-// OBSOLETE *ptr++ = hexchars[PC >> 4];
-// OBSOLETE *ptr++ = hexchars[PC & 0xf];
-// OBSOLETE *ptr++ = ':';
-// OBSOLETE ptr = mem2hex((unsigned char *)&registers[PC], ptr, 4, 0); /* PC */
-// OBSOLETE *ptr++ = ';';
-// OBSOLETE
-// OBSOLETE *ptr++ = hexchars[R13 >> 4];
-// OBSOLETE *ptr++ = hexchars[R13 & 0xf];
-// OBSOLETE *ptr++ = ':';
-// OBSOLETE ptr = mem2hex((unsigned char *)&registers[R13], ptr, 4, 0); /* FP */
-// OBSOLETE *ptr++ = ';';
-// OBSOLETE
-// OBSOLETE *ptr++ = hexchars[R15 >> 4];
-// OBSOLETE *ptr++ = hexchars[R15 & 0xf];
-// OBSOLETE *ptr++ = ':';
-// OBSOLETE ptr = mem2hex((unsigned char *)&registers[R15], ptr, 4, 0); /* SP */
-// OBSOLETE *ptr++ = ';';
-// OBSOLETE *ptr++ = 0;
-// OBSOLETE
-// OBSOLETE if (exceptionVector == 0) /* simulated SYS call stuff */
-// OBSOLETE {
-// OBSOLETE mem2hex((unsigned char *) &registers[PC], buf, 4, 0);
-// OBSOLETE switch (registers[R0]) {
-// OBSOLETE case SYS_exit:
-// OBSOLETE gdb_error("Target program has exited at %s\n", buf);
-// OBSOLETE ptr = remcomOutBuffer;
-// OBSOLETE *ptr++ = 'W';
-// OBSOLETE sigval = registers[R1] & 0xff;
-// OBSOLETE *ptr++ = hexchars[sigval >> 4];
-// OBSOLETE *ptr++ = hexchars[sigval & 0xf];
-// OBSOLETE *ptr++ = 0;
-// OBSOLETE break;
-// OBSOLETE case SYS_open:
-// OBSOLETE gdb_error("Target attempts SYS_open call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE case SYS_close:
-// OBSOLETE gdb_error("Target attempts SYS_close call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE case SYS_read:
-// OBSOLETE gdb_error("Target attempts SYS_read call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE case SYS_write:
-// OBSOLETE if (registers[R1] == 1 || /* write to stdout */
-// OBSOLETE registers[R1] == 2) /* write to stderr */
-// OBSOLETE { /* (we can do that) */
-// OBSOLETE registers[R0] = gdb_write((void *) registers[R2], registers[R3]);
-// OBSOLETE return;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE gdb_error("Target attempts SYS_write call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE case SYS_lseek:
-// OBSOLETE gdb_error("Target attempts SYS_lseek call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE case SYS_unlink:
-// OBSOLETE gdb_error("Target attempts SYS_unlink call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE case SYS_getpid:
-// OBSOLETE gdb_error("Target attempts SYS_getpid call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE case SYS_kill:
-// OBSOLETE gdb_error("Target attempts SYS_kill call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE case SYS_fstat:
-// OBSOLETE gdb_error("Target attempts SYS_fstat call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE default:
-// OBSOLETE gdb_error("Target attempts unknown SYS call at %s\n", buf);
-// OBSOLETE break;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE putpacket(remcomOutBuffer);
-// OBSOLETE
-// OBSOLETE stepping = 0;
-// OBSOLETE
-// OBSOLETE while (1==1) {
-// OBSOLETE remcomOutBuffer[0] = 0;
-// OBSOLETE ptr = getpacket();
-// OBSOLETE binary = 0;
-// OBSOLETE switch (*ptr++) {
-// OBSOLETE default: /* Unknown code. Return an empty reply message. */
-// OBSOLETE break;
-// OBSOLETE case 'R':
-// OBSOLETE if (hexToInt (&ptr, &addr))
-// OBSOLETE registers[PC] = addr;
-// OBSOLETE strcpy(remcomOutBuffer, "OK");
-// OBSOLETE break;
-// OBSOLETE case '!':
-// OBSOLETE strcpy(remcomOutBuffer, "OK");
-// OBSOLETE break;
-// OBSOLETE case 'X': /* XAA..AA,LLLL:<binary data>#cs */
-// OBSOLETE binary = 1;
-// OBSOLETE case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
-// OBSOLETE /* TRY TO READ '%x,%x:'. IF SUCCEED, SET PTR = 0 */
-// OBSOLETE {
-// OBSOLETE if (hexToInt(&ptr,&addr))
-// OBSOLETE if (*(ptr++) == ',')
-// OBSOLETE if (hexToInt(&ptr,&length))
-// OBSOLETE if (*(ptr++) == ':')
-// OBSOLETE {
-// OBSOLETE mem_err = 0;
-// OBSOLETE if (binary)
-// OBSOLETE bin2mem (ptr, (unsigned char *) addr, length, 1);
-// OBSOLETE else
-// OBSOLETE hex2mem(ptr, (unsigned char*) addr, length, 1);
-// OBSOLETE if (mem_err) {
-// OBSOLETE strcpy (remcomOutBuffer, "E03");
-// OBSOLETE gdb_error ("memory fault", "");
-// OBSOLETE } else {
-// OBSOLETE strcpy(remcomOutBuffer,"OK");
-// OBSOLETE }
-// OBSOLETE ptr = 0;
-// OBSOLETE }
-// OBSOLETE if (ptr)
-// OBSOLETE {
-// OBSOLETE strcpy(remcomOutBuffer,"E02");
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE break;
-// OBSOLETE case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
-// OBSOLETE /* TRY TO READ %x,%x. IF SUCCEED, SET PTR = 0 */
-// OBSOLETE if (hexToInt(&ptr,&addr))
-// OBSOLETE if (*(ptr++) == ',')
-// OBSOLETE if (hexToInt(&ptr,&length))
-// OBSOLETE {
-// OBSOLETE ptr = 0;
-// OBSOLETE mem_err = 0;
-// OBSOLETE mem2hex((unsigned char*) addr, remcomOutBuffer, length, 1);
-// OBSOLETE if (mem_err) {
-// OBSOLETE strcpy (remcomOutBuffer, "E03");
-// OBSOLETE gdb_error ("memory fault", "");
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE if (ptr)
-// OBSOLETE {
-// OBSOLETE strcpy(remcomOutBuffer,"E01");
-// OBSOLETE }
-// OBSOLETE break;
-// OBSOLETE case '?':
-// OBSOLETE remcomOutBuffer[0] = 'S';
-// OBSOLETE remcomOutBuffer[1] = hexchars[sigval >> 4];
-// OBSOLETE remcomOutBuffer[2] = hexchars[sigval % 16];
-// OBSOLETE remcomOutBuffer[3] = 0;
-// OBSOLETE break;
-// OBSOLETE case 'd':
-// OBSOLETE remote_debug = !(remote_debug); /* toggle debug flag */
-// OBSOLETE break;
-// OBSOLETE case 'g': /* return the value of the CPU registers */
-// OBSOLETE mem2hex((unsigned char*) registers, remcomOutBuffer, NUMREGBYTES, 0);
-// OBSOLETE break;
-// OBSOLETE case 'P': /* set the value of a single CPU register - return OK */
-// OBSOLETE {
-// OBSOLETE int regno;
-// OBSOLETE
-// OBSOLETE if (hexToInt (&ptr, &regno) && *ptr++ == '=')
-// OBSOLETE if (regno >= 0 && regno < NUMREGS)
-// OBSOLETE {
-// OBSOLETE int stackmode;
-// OBSOLETE
-// OBSOLETE hex2mem (ptr, (unsigned char *) &registers[regno], 4, 0);
-// OBSOLETE /*
-// OBSOLETE * Since we just changed a single CPU register, let's
-// OBSOLETE * make sure to keep the several stack pointers consistant.
-// OBSOLETE */
-// OBSOLETE stackmode = registers[PSW] & 0x80;
-// OBSOLETE if (regno == R15) /* stack pointer changed */
-// OBSOLETE { /* need to change SPI or SPU */
-// OBSOLETE if (stackmode == 0)
-// OBSOLETE registers[SPI] = registers[R15];
-// OBSOLETE else
-// OBSOLETE registers[SPU] = registers[R15];
-// OBSOLETE }
-// OBSOLETE else if (regno == SPU) /* "user" stack pointer changed */
-// OBSOLETE {
-// OBSOLETE if (stackmode != 0) /* stack in user mode: copy SP */
-// OBSOLETE registers[R15] = registers[SPU];
-// OBSOLETE }
-// OBSOLETE else if (regno == SPI) /* "interrupt" stack pointer changed */
-// OBSOLETE {
-// OBSOLETE if (stackmode == 0) /* stack in interrupt mode: copy SP */
-// OBSOLETE registers[R15] = registers[SPI];
-// OBSOLETE }
-// OBSOLETE else if (regno == PSW) /* stack mode may have changed! */
-// OBSOLETE { /* force SP to either SPU or SPI */
-// OBSOLETE if (stackmode == 0) /* stack in user mode */
-// OBSOLETE registers[R15] = registers[SPI];
-// OBSOLETE else /* stack in interrupt mode */
-// OBSOLETE registers[R15] = registers[SPU];
-// OBSOLETE }
-// OBSOLETE strcpy (remcomOutBuffer, "OK");
-// OBSOLETE break;
-// OBSOLETE }
-// OBSOLETE strcpy (remcomOutBuffer, "E01");
-// OBSOLETE break;
-// OBSOLETE }
-// OBSOLETE case 'G': /* set the value of the CPU registers - return OK */
-// OBSOLETE hex2mem(ptr, (unsigned char*) registers, NUMREGBYTES, 0);
-// OBSOLETE strcpy(remcomOutBuffer,"OK");
-// OBSOLETE break;
-// OBSOLETE case 's': /* sAA..AA Step one instruction from AA..AA(optional) */
-// OBSOLETE stepping = 1;
-// OBSOLETE case 'c': /* cAA..AA Continue from address AA..AA(optional) */
-// OBSOLETE /* try to read optional parameter, pc unchanged if no parm */
-// OBSOLETE if (hexToInt(&ptr,&addr))
-// OBSOLETE registers[ PC ] = addr;
-// OBSOLETE
-// OBSOLETE if (stepping) /* single-stepping */
-// OBSOLETE {
-// OBSOLETE if (!prepare_to_step(0)) /* set up for single-step */
-// OBSOLETE {
-// OBSOLETE /* prepare_to_step has already emulated the target insn:
-// OBSOLETE Send SIGTRAP to gdb, don't resume the target at all. */
-// OBSOLETE ptr = remcomOutBuffer;
-// OBSOLETE *ptr++ = 'T'; /* Simulate stopping with SIGTRAP */
-// OBSOLETE *ptr++ = '0';
-// OBSOLETE *ptr++ = '5';
-// OBSOLETE
-// OBSOLETE *ptr++ = hexchars[PC >> 4]; /* send PC */
-// OBSOLETE *ptr++ = hexchars[PC & 0xf];
-// OBSOLETE *ptr++ = ':';
-// OBSOLETE ptr = mem2hex((unsigned char *)&registers[PC], ptr, 4, 0);
-// OBSOLETE *ptr++ = ';';
-// OBSOLETE
-// OBSOLETE *ptr++ = hexchars[R13 >> 4]; /* send FP */
-// OBSOLETE *ptr++ = hexchars[R13 & 0xf];
-// OBSOLETE *ptr++ = ':';
-// OBSOLETE ptr = mem2hex((unsigned char *)&registers[R13], ptr, 4, 0);
-// OBSOLETE *ptr++ = ';';
-// OBSOLETE
-// OBSOLETE *ptr++ = hexchars[R15 >> 4]; /* send SP */
-// OBSOLETE *ptr++ = hexchars[R15 & 0xf];
-// OBSOLETE *ptr++ = ':';
-// OBSOLETE ptr = mem2hex((unsigned char *)&registers[R15], ptr, 4, 0);
-// OBSOLETE *ptr++ = ';';
-// OBSOLETE *ptr++ = 0;
-// OBSOLETE
-// OBSOLETE break;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE else /* continuing, not single-stepping */
-// OBSOLETE {
-// OBSOLETE /* OK, about to do a "continue". First check to see if the
-// OBSOLETE target pc is on an odd boundary (second instruction in the
-// OBSOLETE word). If so, we must do a single-step first, because
-// OBSOLETE ya can't jump or return back to an odd boundary! */
-// OBSOLETE if ((registers[PC] & 2) != 0)
-// OBSOLETE prepare_to_step(1);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE return;
-// OBSOLETE
-// OBSOLETE case 'D': /* Detach */
-// OBSOLETE #if 0
-// OBSOLETE /* I am interpreting this to mean, release the board from control
-// OBSOLETE by the remote stub. To do this, I am restoring the original
-// OBSOLETE (or at least previous) exception vectors.
-// OBSOLETE */
-// OBSOLETE for (i = 0; i < 18; i++)
-// OBSOLETE exceptionHandler (i, save_vectors[i]);
-// OBSOLETE putpacket ("OK");
-// OBSOLETE return; /* continue the inferior */
-// OBSOLETE #else
-// OBSOLETE strcpy(remcomOutBuffer,"OK");
-// OBSOLETE break;
-// OBSOLETE #endif
-// OBSOLETE case 'q':
-// OBSOLETE if (*ptr++ == 'C' &&
-// OBSOLETE *ptr++ == 'R' &&
-// OBSOLETE *ptr++ == 'C' &&
-// OBSOLETE *ptr++ == ':')
-// OBSOLETE {
-// OBSOLETE unsigned long start, len, our_crc;
-// OBSOLETE
-// OBSOLETE if (hexToInt (&ptr, (int *) &start) &&
-// OBSOLETE *ptr++ == ',' &&
-// OBSOLETE hexToInt (&ptr, (int *) &len))
-// OBSOLETE {
-// OBSOLETE remcomOutBuffer[0] = 'C';
-// OBSOLETE our_crc = crc32 ((unsigned char *) start, len, 0xffffffff);
-// OBSOLETE mem2hex ((char *) &our_crc,
-// OBSOLETE &remcomOutBuffer[1],
-// OBSOLETE sizeof (long),
-// OBSOLETE 0);
-// OBSOLETE } /* else do nothing */
-// OBSOLETE } /* else do nothing */
-// OBSOLETE break;
-// OBSOLETE
-// OBSOLETE case 'k': /* kill the program */
-// OBSOLETE continue;
-// OBSOLETE } /* switch */
-// OBSOLETE
-// OBSOLETE /* reply to the request */
-// OBSOLETE putpacket(remcomOutBuffer);
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* qCRC support */
-// OBSOLETE
-// OBSOLETE /* Table used by the crc32 function to calcuate the checksum. */
-// OBSOLETE static unsigned long crc32_table[256] = {0, 0};
-// OBSOLETE
-// OBSOLETE static unsigned long
-// OBSOLETE crc32 (unsigned char *buf, int len, unsigned long crc)
-// OBSOLETE {
-// OBSOLETE if (! crc32_table[1])
-// OBSOLETE {
-// OBSOLETE /* Initialize the CRC table and the decoding table. */
-// OBSOLETE int i, j;
-// OBSOLETE unsigned long c;
-// OBSOLETE
-// OBSOLETE for (i = 0; i < 256; i++)
-// OBSOLETE {
-// OBSOLETE for (c = i << 24, j = 8; j > 0; --j)
-// OBSOLETE c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
-// OBSOLETE crc32_table[i] = c;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE while (len--)
-// OBSOLETE {
-// OBSOLETE crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
-// OBSOLETE buf++;
-// OBSOLETE }
-// OBSOLETE return crc;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE hex (unsigned char ch)
-// OBSOLETE {
-// OBSOLETE if ((ch >= 'a') && (ch <= 'f')) return (ch-'a'+10);
-// OBSOLETE if ((ch >= '0') && (ch <= '9')) return (ch-'0');
-// OBSOLETE if ((ch >= 'A') && (ch <= 'F')) return (ch-'A'+10);
-// OBSOLETE return (-1);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* scan for the sequence $<data>#<checksum> */
-// OBSOLETE
-// OBSOLETE unsigned char *
-// OBSOLETE getpacket (void)
-// OBSOLETE {
-// OBSOLETE unsigned char *buffer = &remcomInBuffer[0];
-// OBSOLETE unsigned char checksum;
-// OBSOLETE unsigned char xmitcsum;
-// OBSOLETE int count;
-// OBSOLETE char ch;
-// OBSOLETE
-// OBSOLETE while (1)
-// OBSOLETE {
-// OBSOLETE /* wait around for the start character, ignore all other characters */
-// OBSOLETE while ((ch = getDebugChar ()) != '$')
-// OBSOLETE ;
-// OBSOLETE
-// OBSOLETE retry:
-// OBSOLETE checksum = 0;
-// OBSOLETE xmitcsum = -1;
-// OBSOLETE count = 0;
-// OBSOLETE
-// OBSOLETE /* now, read until a # or end of buffer is found */
-// OBSOLETE while (count < BUFMAX)
-// OBSOLETE {
-// OBSOLETE ch = getDebugChar ();
-// OBSOLETE if (ch == '$')
-// OBSOLETE goto retry;
-// OBSOLETE if (ch == '#')
-// OBSOLETE break;
-// OBSOLETE checksum = checksum + ch;
-// OBSOLETE buffer[count] = ch;
-// OBSOLETE count = count + 1;
-// OBSOLETE }
-// OBSOLETE buffer[count] = 0;
-// OBSOLETE
-// OBSOLETE if (ch == '#')
-// OBSOLETE {
-// OBSOLETE ch = getDebugChar ();
-// OBSOLETE xmitcsum = hex (ch) << 4;
-// OBSOLETE ch = getDebugChar ();
-// OBSOLETE xmitcsum += hex (ch);
-// OBSOLETE
-// OBSOLETE if (checksum != xmitcsum)
-// OBSOLETE {
-// OBSOLETE if (remote_debug)
-// OBSOLETE {
-// OBSOLETE unsigned char buf[16];
-// OBSOLETE
-// OBSOLETE mem2hex((unsigned char *) &checksum, buf, 4, 0);
-// OBSOLETE gdb_error("Bad checksum: my count = %s, ", buf);
-// OBSOLETE mem2hex((unsigned char *) &xmitcsum, buf, 4, 0);
-// OBSOLETE gdb_error("sent count = %s\n", buf);
-// OBSOLETE gdb_error(" -- Bad buffer: \"%s\"\n", buffer);
-// OBSOLETE }
-// OBSOLETE putDebugChar ('-'); /* failed checksum */
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE putDebugChar ('+'); /* successful transfer */
-// OBSOLETE
-// OBSOLETE /* if a sequence char is present, reply the sequence ID */
-// OBSOLETE if (buffer[2] == ':')
-// OBSOLETE {
-// OBSOLETE putDebugChar (buffer[0]);
-// OBSOLETE putDebugChar (buffer[1]);
-// OBSOLETE
-// OBSOLETE return &buffer[3];
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE return &buffer[0];
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* send the packet in buffer. */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE putpacket (unsigned char *buffer)
-// OBSOLETE {
-// OBSOLETE unsigned char checksum;
-// OBSOLETE int count;
-// OBSOLETE char ch;
-// OBSOLETE
-// OBSOLETE /* $<packet info>#<checksum>. */
-// OBSOLETE do {
-// OBSOLETE putDebugChar('$');
-// OBSOLETE checksum = 0;
-// OBSOLETE count = 0;
-// OBSOLETE
-// OBSOLETE while (ch=buffer[count]) {
-// OBSOLETE putDebugChar(ch);
-// OBSOLETE checksum += ch;
-// OBSOLETE count += 1;
-// OBSOLETE }
-// OBSOLETE putDebugChar('#');
-// OBSOLETE putDebugChar(hexchars[checksum >> 4]);
-// OBSOLETE putDebugChar(hexchars[checksum % 16]);
-// OBSOLETE } while (getDebugChar() != '+');
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Address of a routine to RTE to if we get a memory fault. */
-// OBSOLETE
-// OBSOLETE static void (*volatile mem_fault_routine)() = 0;
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE set_mem_err (void)
-// OBSOLETE {
-// OBSOLETE mem_err = 1;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Check the address for safe access ranges. As currently defined,
-// OBSOLETE this routine will reject the "expansion bus" address range(s).
-// OBSOLETE To make those ranges useable, someone must implement code to detect
-// OBSOLETE whether there's anything connected to the expansion bus. */
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE mem_safe (unsigned char *addr)
-// OBSOLETE {
-// OBSOLETE #define BAD_RANGE_ONE_START ((unsigned char *) 0x600000)
-// OBSOLETE #define BAD_RANGE_ONE_END ((unsigned char *) 0xa00000)
-// OBSOLETE #define BAD_RANGE_TWO_START ((unsigned char *) 0xff680000)
-// OBSOLETE #define BAD_RANGE_TWO_END ((unsigned char *) 0xff800000)
-// OBSOLETE
-// OBSOLETE if (addr < BAD_RANGE_ONE_START) return 1; /* safe */
-// OBSOLETE if (addr < BAD_RANGE_ONE_END) return 0; /* unsafe */
-// OBSOLETE if (addr < BAD_RANGE_TWO_START) return 1; /* safe */
-// OBSOLETE if (addr < BAD_RANGE_TWO_END) return 0; /* unsafe */
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* These are separate functions so that they are so short and sweet
-// OBSOLETE that the compiler won't save any registers (if there is a fault
-// OBSOLETE to mem_fault, they won't get restored, so there better not be any
-// OBSOLETE saved). */
-// OBSOLETE static int
-// OBSOLETE get_char (unsigned char *addr)
-// OBSOLETE {
-// OBSOLETE #if 1
-// OBSOLETE if (mem_fault_routine && !mem_safe(addr))
-// OBSOLETE {
-// OBSOLETE mem_fault_routine ();
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE #endif
-// OBSOLETE return *addr;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE set_char (unsigned char *addr, unsigned char val)
-// OBSOLETE {
-// OBSOLETE #if 1
-// OBSOLETE if (mem_fault_routine && !mem_safe (addr))
-// OBSOLETE {
-// OBSOLETE mem_fault_routine ();
-// OBSOLETE return;
-// OBSOLETE }
-// OBSOLETE #endif
-// OBSOLETE *addr = val;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Convert the memory pointed to by mem into hex, placing result in buf.
-// OBSOLETE Return a pointer to the last char put in buf (null).
-// OBSOLETE If MAY_FAULT is non-zero, then we should set mem_err in response to
-// OBSOLETE a fault; if zero treat a fault like any other fault in the stub. */
-// OBSOLETE
-// OBSOLETE static unsigned char *
-// OBSOLETE mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault)
-// OBSOLETE {
-// OBSOLETE int i;
-// OBSOLETE unsigned char ch;
-// OBSOLETE
-// OBSOLETE if (may_fault)
-// OBSOLETE mem_fault_routine = set_mem_err;
-// OBSOLETE for (i=0;i<count;i++) {
-// OBSOLETE ch = get_char (mem++);
-// OBSOLETE if (may_fault && mem_err)
-// OBSOLETE return (buf);
-// OBSOLETE *buf++ = hexchars[ch >> 4];
-// OBSOLETE *buf++ = hexchars[ch % 16];
-// OBSOLETE }
-// OBSOLETE *buf = 0;
-// OBSOLETE if (may_fault)
-// OBSOLETE mem_fault_routine = 0;
-// OBSOLETE return(buf);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Convert the hex array pointed to by buf into binary to be placed in mem.
-// OBSOLETE Return a pointer to the character AFTER the last byte written. */
-// OBSOLETE
-// OBSOLETE static unsigned char*
-// OBSOLETE hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
-// OBSOLETE {
-// OBSOLETE int i;
-// OBSOLETE unsigned char ch;
-// OBSOLETE
-// OBSOLETE if (may_fault)
-// OBSOLETE mem_fault_routine = set_mem_err;
-// OBSOLETE for (i=0;i<count;i++) {
-// OBSOLETE ch = hex(*buf++) << 4;
-// OBSOLETE ch = ch + hex(*buf++);
-// OBSOLETE set_char (mem++, ch);
-// OBSOLETE if (may_fault && mem_err)
-// OBSOLETE return (mem);
-// OBSOLETE }
-// OBSOLETE if (may_fault)
-// OBSOLETE mem_fault_routine = 0;
-// OBSOLETE return(mem);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Convert the binary stream in BUF to memory.
-// OBSOLETE
-// OBSOLETE Gdb will escape $, #, and the escape char (0x7d).
-// OBSOLETE COUNT is the total number of bytes to write into
-// OBSOLETE memory. */
-// OBSOLETE static unsigned char *
-// OBSOLETE bin2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
-// OBSOLETE {
-// OBSOLETE int i;
-// OBSOLETE unsigned char ch;
-// OBSOLETE
-// OBSOLETE if (may_fault)
-// OBSOLETE mem_fault_routine = set_mem_err;
-// OBSOLETE for (i = 0; i < count; i++)
-// OBSOLETE {
-// OBSOLETE /* Check for any escaped characters. Be paranoid and
-// OBSOLETE only unescape chars that should be escaped. */
-// OBSOLETE if (*buf == 0x7d)
-// OBSOLETE {
-// OBSOLETE switch (*(buf+1))
-// OBSOLETE {
-// OBSOLETE case 0x3: /* # */
-// OBSOLETE case 0x4: /* $ */
-// OBSOLETE case 0x5d: /* escape char */
-// OBSOLETE buf++;
-// OBSOLETE *buf |= 0x20;
-// OBSOLETE break;
-// OBSOLETE default:
-// OBSOLETE /* nothing */
-// OBSOLETE break;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE set_char (mem++, *buf++);
-// OBSOLETE
-// OBSOLETE if (may_fault && mem_err)
-// OBSOLETE return mem;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE if (may_fault)
-// OBSOLETE mem_fault_routine = 0;
-// OBSOLETE return mem;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* this function takes the m32r exception vector and attempts to
-// OBSOLETE translate this number into a unix compatible signal value */
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE computeSignal (int exceptionVector)
-// OBSOLETE {
-// OBSOLETE int sigval;
-// OBSOLETE switch (exceptionVector) {
-// OBSOLETE case 0 : sigval = 23; break; /* I/O trap */
-// OBSOLETE case 1 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 2 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 3 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 4 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 5 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 6 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 7 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 8 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 9 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 10 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 11 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 12 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 13 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 14 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 15 : sigval = 5; break; /* breakpoint */
-// OBSOLETE case 16 : sigval = 10; break; /* BUS ERROR (alignment) */
-// OBSOLETE case 17 : sigval = 2; break; /* INTerrupt */
-// OBSOLETE default : sigval = 7; break; /* "software generated" */
-// OBSOLETE }
-// OBSOLETE return (sigval);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /**********************************************/
-// OBSOLETE /* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */
-// OBSOLETE /* RETURN NUMBER OF CHARS PROCESSED */
-// OBSOLETE /**********************************************/
-// OBSOLETE static int
-// OBSOLETE hexToInt (unsigned char **ptr, int *intValue)
-// OBSOLETE {
-// OBSOLETE int numChars = 0;
-// OBSOLETE int hexValue;
-// OBSOLETE
-// OBSOLETE *intValue = 0;
-// OBSOLETE while (**ptr)
-// OBSOLETE {
-// OBSOLETE hexValue = hex(**ptr);
-// OBSOLETE if (hexValue >=0)
-// OBSOLETE {
-// OBSOLETE *intValue = (*intValue <<4) | hexValue;
-// OBSOLETE numChars ++;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE break;
-// OBSOLETE (*ptr)++;
-// OBSOLETE }
-// OBSOLETE return (numChars);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /*
-// OBSOLETE Table of branch instructions:
-// OBSOLETE
-// OBSOLETE 10B6 RTE return from trap or exception
-// OBSOLETE 1FCr JMP jump
-// OBSOLETE 1ECr JL jump and link
-// OBSOLETE 7Fxx BRA branch
-// OBSOLETE FFxxxxxx BRA branch (long)
-// OBSOLETE B09rxxxx BNEZ branch not-equal-zero
-// OBSOLETE Br1rxxxx BNE branch not-equal
-// OBSOLETE 7Dxx BNC branch not-condition
-// OBSOLETE FDxxxxxx BNC branch not-condition (long)
-// OBSOLETE B0Arxxxx BLTZ branch less-than-zero
-// OBSOLETE B0Crxxxx BLEZ branch less-equal-zero
-// OBSOLETE 7Exx BL branch and link
-// OBSOLETE FExxxxxx BL branch and link (long)
-// OBSOLETE B0Drxxxx BGTZ branch greater-than-zero
-// OBSOLETE B0Brxxxx BGEZ branch greater-equal-zero
-// OBSOLETE B08rxxxx BEQZ branch equal-zero
-// OBSOLETE Br0rxxxx BEQ branch equal
-// OBSOLETE 7Cxx BC branch condition
-// OBSOLETE FCxxxxxx BC branch condition (long)
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE isShortBranch (unsigned char *instr)
-// OBSOLETE {
-// OBSOLETE unsigned char instr0 = instr[0] & 0x7F; /* mask off high bit */
-// OBSOLETE
-// OBSOLETE if (instr0 == 0x10 && instr[1] == 0xB6) /* RTE */
-// OBSOLETE return 1; /* return from trap or exception */
-// OBSOLETE
-// OBSOLETE if (instr0 == 0x1E || instr0 == 0x1F) /* JL or JMP */
-// OBSOLETE if ((instr[1] & 0xF0) == 0xC0)
-// OBSOLETE return 2; /* jump thru a register */
-// OBSOLETE
-// OBSOLETE if (instr0 == 0x7C || instr0 == 0x7D || /* BC, BNC, BL, BRA */
-// OBSOLETE instr0 == 0x7E || instr0 == 0x7F)
-// OBSOLETE return 3; /* eight bit PC offset */
-// OBSOLETE
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE isLongBranch (unsigned char *instr)
-// OBSOLETE {
-// OBSOLETE if (instr[0] == 0xFC || instr[0] == 0xFD || /* BRA, BNC, BL, BC */
-// OBSOLETE instr[0] == 0xFE || instr[0] == 0xFF) /* 24 bit relative */
-// OBSOLETE return 4;
-// OBSOLETE if ((instr[0] & 0xF0) == 0xB0) /* 16 bit relative */
-// OBSOLETE {
-// OBSOLETE if ((instr[1] & 0xF0) == 0x00 || /* BNE, BEQ */
-// OBSOLETE (instr[1] & 0xF0) == 0x10)
-// OBSOLETE return 5;
-// OBSOLETE if (instr[0] == 0xB0) /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ, BEQZ */
-// OBSOLETE if ((instr[1] & 0xF0) == 0x80 || (instr[1] & 0xF0) == 0x90 ||
-// OBSOLETE (instr[1] & 0xF0) == 0xA0 || (instr[1] & 0xF0) == 0xB0 ||
-// OBSOLETE (instr[1] & 0xF0) == 0xC0 || (instr[1] & 0xF0) == 0xD0)
-// OBSOLETE return 6;
-// OBSOLETE }
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* if address is NOT on a 4-byte boundary, or high-bit of instr is zero,
-// OBSOLETE then it's a 2-byte instruction, else it's a 4-byte instruction. */
-// OBSOLETE
-// OBSOLETE #define INSTRUCTION_SIZE(addr) \
-// OBSOLETE ((((int) addr & 2) || (((unsigned char *) addr)[0] & 0x80) == 0) ? 2 : 4)
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE isBranch (unsigned char *instr)
-// OBSOLETE {
-// OBSOLETE if (INSTRUCTION_SIZE(instr) == 2)
-// OBSOLETE return isShortBranch(instr);
-// OBSOLETE else
-// OBSOLETE return isLongBranch(instr);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE willBranch (unsigned char *instr, int branchCode)
-// OBSOLETE {
-// OBSOLETE switch (branchCode)
-// OBSOLETE {
-// OBSOLETE case 0: return 0; /* not a branch */
-// OBSOLETE case 1: return 1; /* RTE */
-// OBSOLETE case 2: return 1; /* JL or JMP */
-// OBSOLETE case 3: /* BC, BNC, BL, BRA (short) */
-// OBSOLETE case 4: /* BC, BNC, BL, BRA (long) */
-// OBSOLETE switch (instr[0] & 0x0F)
-// OBSOLETE {
-// OBSOLETE case 0xC: /* Branch if Condition Register */
-// OBSOLETE return (registers[CBR] != 0);
-// OBSOLETE case 0xD: /* Branch if NOT Condition Register */
-// OBSOLETE return (registers[CBR] == 0);
-// OBSOLETE case 0xE: /* Branch and Link */
-// OBSOLETE case 0xF: /* Branch (unconditional) */
-// OBSOLETE return 1;
-// OBSOLETE default: /* oops? */
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE case 5: /* BNE, BEQ */
-// OBSOLETE switch (instr[1] & 0xF0)
-// OBSOLETE {
-// OBSOLETE case 0x00: /* Branch if r1 equal to r2 */
-// OBSOLETE return (registers[instr[0] & 0x0F] == registers[instr[1] & 0x0F]);
-// OBSOLETE case 0x10: /* Branch if r1 NOT equal to r2 */
-// OBSOLETE return (registers[instr[0] & 0x0F] != registers[instr[1] & 0x0F]);
-// OBSOLETE default: /* oops? */
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ */
-// OBSOLETE switch (instr[1] & 0xF0)
-// OBSOLETE {
-// OBSOLETE case 0x80: /* Branch if reg equal to zero */
-// OBSOLETE return (registers[instr[1] & 0x0F] == 0);
-// OBSOLETE case 0x90: /* Branch if reg NOT equal to zero */
-// OBSOLETE return (registers[instr[1] & 0x0F] != 0);
-// OBSOLETE case 0xA0: /* Branch if reg less than zero */
-// OBSOLETE return (registers[instr[1] & 0x0F] < 0);
-// OBSOLETE case 0xB0: /* Branch if reg greater or equal to zero */
-// OBSOLETE return (registers[instr[1] & 0x0F] >= 0);
-// OBSOLETE case 0xC0: /* Branch if reg less than or equal to zero */
-// OBSOLETE return (registers[instr[1] & 0x0F] <= 0);
-// OBSOLETE case 0xD0: /* Branch if reg greater than zero */
-// OBSOLETE return (registers[instr[1] & 0x0F] > 0);
-// OBSOLETE default: /* oops? */
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE default: /* oops? */
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE branchDestination (unsigned char *instr, int branchCode)
-// OBSOLETE {
-// OBSOLETE switch (branchCode) {
-// OBSOLETE default:
-// OBSOLETE case 0: /* not a branch */
-// OBSOLETE return 0;
-// OBSOLETE case 1: /* RTE */
-// OBSOLETE return registers[BPC] & ~3; /* pop BPC into PC */
-// OBSOLETE case 2: /* JL or JMP */
-// OBSOLETE return registers[instr[1] & 0x0F] & ~3; /* jump thru a register */
-// OBSOLETE case 3: /* BC, BNC, BL, BRA (short, 8-bit relative offset) */
-// OBSOLETE return (((int) instr) & ~3) + ((char) instr[1] << 2);
-// OBSOLETE case 4: /* BC, BNC, BL, BRA (long, 24-bit relative offset) */
-// OBSOLETE return ((int) instr +
-// OBSOLETE ((((char) instr[1] << 16) | (instr[2] << 8) | (instr[3])) << 2));
-// OBSOLETE case 5: /* BNE, BEQ (16-bit relative offset) */
-// OBSOLETE case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ (ditto) */
-// OBSOLETE return ((int) instr + ((((char) instr[2] << 8) | (instr[3])) << 2));
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* An explanatory note: in the last three return expressions, I have
-// OBSOLETE cast the most-significant byte of the return offset to char.
-// OBSOLETE What this accomplishes is sign extension. If the other
-// OBSOLETE less-significant bytes were signed as well, they would get sign
-// OBSOLETE extended too and, if negative, their leading bits would clobber
-// OBSOLETE the bits of the more-significant bytes ahead of them. There are
-// OBSOLETE other ways I could have done this, but sign extension from
-// OBSOLETE odd-sized integers is always a pain. */
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE branchSideEffects (unsigned char *instr, int branchCode)
-// OBSOLETE {
-// OBSOLETE switch (branchCode)
-// OBSOLETE {
-// OBSOLETE case 1: /* RTE */
-// OBSOLETE return; /* I <THINK> this is already handled... */
-// OBSOLETE case 2: /* JL (or JMP) */
-// OBSOLETE case 3: /* BL (or BC, BNC, BRA) */
-// OBSOLETE case 4:
-// OBSOLETE if ((instr[0] & 0x0F) == 0x0E) /* branch/jump and link */
-// OBSOLETE registers[R14] = (registers[PC] & ~3) + 4;
-// OBSOLETE return;
-// OBSOLETE default: /* any other branch has no side effects */
-// OBSOLETE return;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static struct STEPPING_CONTEXT {
-// OBSOLETE int stepping; /* true when we've started a single-step */
-// OBSOLETE unsigned long target_addr; /* the instr we're trying to execute */
-// OBSOLETE unsigned long target_size; /* the size of the target instr */
-// OBSOLETE unsigned long noop_addr; /* where we've inserted a no-op, if any */
-// OBSOLETE unsigned long trap1_addr; /* the trap following the target instr */
-// OBSOLETE unsigned long trap2_addr; /* the trap at a branch destination, if any */
-// OBSOLETE unsigned short noop_save; /* instruction overwritten by our no-op */
-// OBSOLETE unsigned short trap1_save; /* instruction overwritten by trap1 */
-// OBSOLETE unsigned short trap2_save; /* instruction overwritten by trap2 */
-// OBSOLETE unsigned short continue_p; /* true if NOT returning to gdb after step */
-// OBSOLETE } stepping;
-// OBSOLETE
-// OBSOLETE /* Function: prepare_to_step
-// OBSOLETE Called from handle_exception to prepare the user program to single-step.
-// OBSOLETE Places a trap instruction after the target instruction, with special
-// OBSOLETE extra handling for branch instructions and for instructions in the
-// OBSOLETE second half-word of a word.
-// OBSOLETE
-// OBSOLETE Returns: True if we should actually execute the instruction;
-// OBSOLETE False if we are going to emulate executing the instruction,
-// OBSOLETE in which case we simply report to GDB that the instruction
-// OBSOLETE has already been executed. */
-// OBSOLETE
-// OBSOLETE #define TRAP1 0x10f1; /* trap #1 instruction */
-// OBSOLETE #define NOOP 0x7000; /* noop instruction */
-// OBSOLETE
-// OBSOLETE static unsigned short trap1 = TRAP1;
-// OBSOLETE static unsigned short noop = NOOP;
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE prepare_to_step(continue_p)
-// OBSOLETE int continue_p; /* if this isn't REALLY a single-step (see below) */
-// OBSOLETE {
-// OBSOLETE unsigned long pc = registers[PC];
-// OBSOLETE int branchCode = isBranch((unsigned char *) pc);
-// OBSOLETE unsigned char *p;
-// OBSOLETE
-// OBSOLETE /* zero out the stepping context
-// OBSOLETE (paranoia -- it should already be zeroed) */
-// OBSOLETE for (p = (unsigned char *) &stepping;
-// OBSOLETE p < ((unsigned char *) &stepping) + sizeof(stepping);
-// OBSOLETE p++)
-// OBSOLETE *p = 0;
-// OBSOLETE
-// OBSOLETE if (branchCode != 0) /* next instruction is a branch */
-// OBSOLETE {
-// OBSOLETE branchSideEffects((unsigned char *) pc, branchCode);
-// OBSOLETE if (willBranch((unsigned char *)pc, branchCode))
-// OBSOLETE registers[PC] = branchDestination((unsigned char *) pc, branchCode);
-// OBSOLETE else
-// OBSOLETE registers[PC] = pc + INSTRUCTION_SIZE(pc);
-// OBSOLETE return 0; /* branch "executed" -- just notify GDB */
-// OBSOLETE }
-// OBSOLETE else if (((int) pc & 2) != 0) /* "second-slot" instruction */
-// OBSOLETE {
-// OBSOLETE /* insert no-op before pc */
-// OBSOLETE stepping.noop_addr = pc - 2;
-// OBSOLETE stepping.noop_save = *(unsigned short *) stepping.noop_addr;
-// OBSOLETE *(unsigned short *) stepping.noop_addr = noop;
-// OBSOLETE /* insert trap after pc */
-// OBSOLETE stepping.trap1_addr = pc + 2;
-// OBSOLETE stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
-// OBSOLETE *(unsigned short *) stepping.trap1_addr = trap1;
-// OBSOLETE }
-// OBSOLETE else /* "first-slot" instruction */
-// OBSOLETE {
-// OBSOLETE /* insert trap after pc */
-// OBSOLETE stepping.trap1_addr = pc + INSTRUCTION_SIZE(pc);
-// OBSOLETE stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
-// OBSOLETE *(unsigned short *) stepping.trap1_addr = trap1;
-// OBSOLETE }
-// OBSOLETE /* "continue_p" means that we are actually doing a continue, and not
-// OBSOLETE being requested to single-step by GDB. Sometimes we have to do
-// OBSOLETE one single-step before continuing, because the PC is on a half-word
-// OBSOLETE boundary. There's no way to simply resume at such an address. */
-// OBSOLETE stepping.continue_p = continue_p;
-// OBSOLETE stepping.stepping = 1; /* starting a single-step */
-// OBSOLETE return 1;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: finish_from_step
-// OBSOLETE Called from handle_exception to finish up when the user program
-// OBSOLETE returns from a single-step. Replaces the instructions that had
-// OBSOLETE been overwritten by traps or no-ops,
-// OBSOLETE
-// OBSOLETE Returns: True if we should notify GDB that the target stopped.
-// OBSOLETE False if we only single-stepped because we had to before we
-// OBSOLETE could continue (ie. we were trying to continue at a
-// OBSOLETE half-word boundary). In that case don't notify GDB:
-// OBSOLETE just "continue continuing". */
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE finish_from_step (void)
-// OBSOLETE {
-// OBSOLETE if (stepping.stepping) /* anything to do? */
-// OBSOLETE {
-// OBSOLETE int continue_p = stepping.continue_p;
-// OBSOLETE unsigned char *p;
-// OBSOLETE
-// OBSOLETE if (stepping.noop_addr) /* replace instr "under" our no-op */
-// OBSOLETE *(unsigned short *) stepping.noop_addr = stepping.noop_save;
-// OBSOLETE if (stepping.trap1_addr) /* replace instr "under" our trap */
-// OBSOLETE *(unsigned short *) stepping.trap1_addr = stepping.trap1_save;
-// OBSOLETE if (stepping.trap2_addr) /* ditto our other trap, if any */
-// OBSOLETE *(unsigned short *) stepping.trap2_addr = stepping.trap2_save;
-// OBSOLETE
-// OBSOLETE for (p = (unsigned char *) &stepping; /* zero out the stepping context */
-// OBSOLETE p < ((unsigned char *) &stepping) + sizeof(stepping);
-// OBSOLETE p++)
-// OBSOLETE *p = 0;
-// OBSOLETE
-// OBSOLETE return !(continue_p);
-// OBSOLETE }
-// OBSOLETE else /* we didn't single-step, therefore this must be a legitimate stop */
-// OBSOLETE return 1;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE struct PSWreg { /* separate out the bit flags in the PSW register */
-// OBSOLETE int pad1 : 16;
-// OBSOLETE int bsm : 1;
-// OBSOLETE int bie : 1;
-// OBSOLETE int pad2 : 5;
-// OBSOLETE int bc : 1;
-// OBSOLETE int sm : 1;
-// OBSOLETE int ie : 1;
-// OBSOLETE int pad3 : 5;
-// OBSOLETE int c : 1;
-// OBSOLETE } *psw;
-// OBSOLETE
-// OBSOLETE /* Upon entry the value for LR to save has been pushed.
-// OBSOLETE We unpush that so that the value for the stack pointer saved is correct.
-// OBSOLETE Upon entry, all other registers are assumed to have not been modified
-// OBSOLETE since the interrupt/trap occured. */
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE stash_registers:
-// OBSOLETE push r0
-// OBSOLETE push r1
-// OBSOLETE seth r1, #shigh(registers)
-// OBSOLETE add3 r1, r1, #low(registers)
-// OBSOLETE pop r0 ; r1
-// OBSOLETE st r0, @(4,r1)
-// OBSOLETE pop r0 ; r0
-// OBSOLETE st r0, @r1
-// OBSOLETE addi r1, #4 ; only add 4 as subsequent saves are `pre inc'
-// OBSOLETE st r2, @+r1
-// OBSOLETE st r3, @+r1
-// OBSOLETE st r4, @+r1
-// OBSOLETE st r5, @+r1
-// OBSOLETE st r6, @+r1
-// OBSOLETE st r7, @+r1
-// OBSOLETE st r8, @+r1
-// OBSOLETE st r9, @+r1
-// OBSOLETE st r10, @+r1
-// OBSOLETE st r11, @+r1
-// OBSOLETE st r12, @+r1
-// OBSOLETE st r13, @+r1 ; fp
-// OBSOLETE pop r0 ; lr (r14)
-// OBSOLETE st r0, @+r1
-// OBSOLETE st sp, @+r1 ; sp contains right value at this point
-// OBSOLETE mvfc r0, cr0
-// OBSOLETE st r0, @+r1 ; cr0 == PSW
-// OBSOLETE mvfc r0, cr1
-// OBSOLETE st r0, @+r1 ; cr1 == CBR
-// OBSOLETE mvfc r0, cr2
-// OBSOLETE st r0, @+r1 ; cr2 == SPI
-// OBSOLETE mvfc r0, cr3
-// OBSOLETE st r0, @+r1 ; cr3 == SPU
-// OBSOLETE mvfc r0, cr6
-// OBSOLETE st r0, @+r1 ; cr6 == BPC
-// OBSOLETE st r0, @+r1 ; PC == BPC
-// OBSOLETE mvfaclo r0
-// OBSOLETE st r0, @+r1 ; ACCL
-// OBSOLETE mvfachi r0
-// OBSOLETE st r0, @+r1 ; ACCH
-// OBSOLETE jmp lr");
-// OBSOLETE
-// OBSOLETE /* C routine to clean up what stash_registers did.
-// OBSOLETE It is called after calling stash_registers.
-// OBSOLETE This is separate from stash_registers as we want to do this in C
-// OBSOLETE but doing stash_registers in C isn't straightforward. */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE cleanup_stash (void)
-// OBSOLETE {
-// OBSOLETE psw = (struct PSWreg *) &registers[PSW]; /* fields of PSW register */
-// OBSOLETE psw->sm = psw->bsm; /* fix up pre-trap values of psw fields */
-// OBSOLETE psw->ie = psw->bie;
-// OBSOLETE psw->c = psw->bc;
-// OBSOLETE registers[CBR] = psw->bc; /* fix up pre-trap "C" register */
-// OBSOLETE
-// OBSOLETE #if 0 /* FIXME: Was in previous version. Necessary?
-// OBSOLETE (Remember that we use the "rte" insn to return from the
-// OBSOLETE trap/interrupt so the values of bsm, bie, bc are important. */
-// OBSOLETE psw->bsm = psw->bie = psw->bc = 0; /* zero post-trap values */
-// OBSOLETE #endif
-// OBSOLETE
-// OBSOLETE /* FIXME: Copied from previous version. This can probably be deleted
-// OBSOLETE since methinks stash_registers has already done this. */
-// OBSOLETE registers[PC] = registers[BPC]; /* pre-trap PC */
-// OBSOLETE
-// OBSOLETE /* FIXME: Copied from previous version. Necessary? */
-// OBSOLETE if (psw->sm) /* copy R15 into (psw->sm ? SPU : SPI) */
-// OBSOLETE registers[SPU] = registers[R15];
-// OBSOLETE else
-// OBSOLETE registers[SPI] = registers[R15];
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE restore_and_return:
-// OBSOLETE seth r0, #shigh(registers+8)
-// OBSOLETE add3 r0, r0, #low(registers+8)
-// OBSOLETE ld r2, @r0+ ; restore r2
-// OBSOLETE ld r3, @r0+ ; restore r3
-// OBSOLETE ld r4, @r0+ ; restore r4
-// OBSOLETE ld r5, @r0+ ; restore r5
-// OBSOLETE ld r6, @r0+ ; restore r6
-// OBSOLETE ld r7, @r0+ ; restore r7
-// OBSOLETE ld r8, @r0+ ; restore r8
-// OBSOLETE ld r9, @r0+ ; restore r9
-// OBSOLETE ld r10, @r0+ ; restore r10
-// OBSOLETE ld r11, @r0+ ; restore r11
-// OBSOLETE ld r12, @r0+ ; restore r12
-// OBSOLETE ld r13, @r0+ ; restore r13
-// OBSOLETE ld r14, @r0+ ; restore r14
-// OBSOLETE ld r15, @r0+ ; restore r15
-// OBSOLETE addi r0, #4 ; don't restore PSW (rte will do it)
-// OBSOLETE ld r1, @r0+ ; restore cr1 == CBR (no-op, because it's read only)
-// OBSOLETE mvtc r1, cr1
-// OBSOLETE ld r1, @r0+ ; restore cr2 == SPI
-// OBSOLETE mvtc r1, cr2
-// OBSOLETE ld r1, @r0+ ; restore cr3 == SPU
-// OBSOLETE mvtc r1, cr3
-// OBSOLETE addi r0, #4 ; skip BPC
-// OBSOLETE ld r1, @r0+ ; restore cr6 (BPC) == PC
-// OBSOLETE mvtc r1, cr6
-// OBSOLETE ld r1, @r0+ ; restore ACCL
-// OBSOLETE mvtaclo r1
-// OBSOLETE ld r1, @r0+ ; restore ACCH
-// OBSOLETE mvtachi r1
-// OBSOLETE seth r0, #shigh(registers)
-// OBSOLETE add3 r0, r0, #low(registers)
-// OBSOLETE ld r1, @(4,r0) ; restore r1
-// OBSOLETE ld r0, @r0 ; restore r0
-// OBSOLETE rte");
-// OBSOLETE
-// OBSOLETE /* General trap handler, called after the registers have been stashed.
-// OBSOLETE NUM is the trap/exception number. */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE process_exception (int num)
-// OBSOLETE {
-// OBSOLETE cleanup_stash ();
-// OBSOLETE asm volatile ("
-// OBSOLETE seth r1, #shigh(stackPtr)
-// OBSOLETE add3 r1, r1, #low(stackPtr)
-// OBSOLETE ld r15, @r1 ; setup local stack (protect user stack)
-// OBSOLETE mv r0, %0
-// OBSOLETE bl handle_exception
-// OBSOLETE bl restore_and_return"
-// OBSOLETE : : "r" (num) : "r0", "r1");
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE void _catchException0 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException0:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #0
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException1 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException1:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE bl cleanup_stash
-// OBSOLETE seth r1, #shigh(stackPtr)
-// OBSOLETE add3 r1, r1, #low(stackPtr)
-// OBSOLETE ld r15, @r1 ; setup local stack (protect user stack)
-// OBSOLETE seth r1, #shigh(registers + 21*4) ; PC
-// OBSOLETE add3 r1, r1, #low(registers + 21*4)
-// OBSOLETE ld r0, @r1
-// OBSOLETE addi r0, #-4 ; back up PC for breakpoint trap.
-// OBSOLETE st r0, @r1 ; FIXME: what about bp in right slot?
-// OBSOLETE ldi r0, #1
-// OBSOLETE bl handle_exception
-// OBSOLETE bl restore_and_return");
-// OBSOLETE
-// OBSOLETE void _catchException2 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException2:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #2
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException3 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException3:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #3
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException4 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException4:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #4
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException5 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException5:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #5
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException6 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException6:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #6
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException7 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException7:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #7
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException8 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException8:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #8
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException9 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException9:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #9
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException10 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException10:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #10
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException11 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException11:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #11
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException12 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException12:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #12
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException13 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException13:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #13
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException14 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException14:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #14
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException15 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException15:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #15
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException16 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException16:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #16
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE void _catchException17 ();
-// OBSOLETE
-// OBSOLETE asm ("
-// OBSOLETE _catchException17:
-// OBSOLETE push lr
-// OBSOLETE bl stash_registers
-// OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
-// OBSOLETE ldi r0, #17
-// OBSOLETE bl process_exception");
-// OBSOLETE
-// OBSOLETE
-// OBSOLETE /* this function is used to set up exception handlers for tracing and
-// OBSOLETE breakpoints */
-// OBSOLETE void
-// OBSOLETE set_debug_traps (void)
-// OBSOLETE {
-// OBSOLETE /* extern void remcomHandler(); */
-// OBSOLETE int i;
-// OBSOLETE
-// OBSOLETE for (i = 0; i < 18; i++) /* keep a copy of old vectors */
-// OBSOLETE if (save_vectors[i] == 0) /* only copy them the first time */
-// OBSOLETE save_vectors[i] = getExceptionHandler (i);
-// OBSOLETE
-// OBSOLETE stackPtr = &remcomStack[STACKSIZE/sizeof(int) - 1];
-// OBSOLETE
-// OBSOLETE exceptionHandler (0, _catchException0);
-// OBSOLETE exceptionHandler (1, _catchException1);
-// OBSOLETE exceptionHandler (2, _catchException2);
-// OBSOLETE exceptionHandler (3, _catchException3);
-// OBSOLETE exceptionHandler (4, _catchException4);
-// OBSOLETE exceptionHandler (5, _catchException5);
-// OBSOLETE exceptionHandler (6, _catchException6);
-// OBSOLETE exceptionHandler (7, _catchException7);
-// OBSOLETE exceptionHandler (8, _catchException8);
-// OBSOLETE exceptionHandler (9, _catchException9);
-// OBSOLETE exceptionHandler (10, _catchException10);
-// OBSOLETE exceptionHandler (11, _catchException11);
-// OBSOLETE exceptionHandler (12, _catchException12);
-// OBSOLETE exceptionHandler (13, _catchException13);
-// OBSOLETE exceptionHandler (14, _catchException14);
-// OBSOLETE exceptionHandler (15, _catchException15);
-// OBSOLETE exceptionHandler (16, _catchException16);
-// OBSOLETE /* exceptionHandler (17, _catchException17); */
-// OBSOLETE
-// OBSOLETE initialized = 1;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* This function will generate a breakpoint exception. It is used at the
-// OBSOLETE beginning of a program to sync up with a debugger and can be used
-// OBSOLETE otherwise as a quick means to stop program execution and "break" into
-// OBSOLETE the debugger. */
-// OBSOLETE
-// OBSOLETE #define BREAKPOINT() asm volatile (" trap #2");
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE breakpoint (void)
-// OBSOLETE {
-// OBSOLETE if (initialized)
-// OBSOLETE BREAKPOINT();
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* STDOUT section:
-// OBSOLETE Stuff pertaining to simulating stdout by sending chars to gdb to be echoed.
-// OBSOLETE Functions: gdb_putchar(char ch)
-// OBSOLETE gdb_puts(char *str)
-// OBSOLETE gdb_write(char *str, int len)
-// OBSOLETE gdb_error(char *format, char *parm)
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE /* Function: gdb_putchar(int)
-// OBSOLETE Make gdb write a char to stdout.
-// OBSOLETE Returns: the char */
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE gdb_putchar (int ch)
-// OBSOLETE {
-// OBSOLETE char buf[4];
-// OBSOLETE
-// OBSOLETE buf[0] = 'O';
-// OBSOLETE buf[1] = hexchars[ch >> 4];
-// OBSOLETE buf[2] = hexchars[ch & 0x0F];
-// OBSOLETE buf[3] = 0;
-// OBSOLETE putpacket(buf);
-// OBSOLETE return ch;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: gdb_write(char *, int)
-// OBSOLETE Make gdb write n bytes to stdout (not assumed to be null-terminated).
-// OBSOLETE Returns: number of bytes written */
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE gdb_write (char *data, int len)
-// OBSOLETE {
-// OBSOLETE char *buf, *cpy;
-// OBSOLETE int i;
-// OBSOLETE
-// OBSOLETE buf = remcomOutBuffer;
-// OBSOLETE buf[0] = 'O';
-// OBSOLETE i = 0;
-// OBSOLETE while (i < len)
-// OBSOLETE {
-// OBSOLETE for (cpy = buf+1;
-// OBSOLETE i < len && cpy < buf + sizeof(remcomOutBuffer) - 3;
-// OBSOLETE i++)
-// OBSOLETE {
-// OBSOLETE *cpy++ = hexchars[data[i] >> 4];
-// OBSOLETE *cpy++ = hexchars[data[i] & 0x0F];
-// OBSOLETE }
-// OBSOLETE *cpy = 0;
-// OBSOLETE putpacket(buf);
-// OBSOLETE }
-// OBSOLETE return len;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: gdb_puts(char *)
-// OBSOLETE Make gdb write a null-terminated string to stdout.
-// OBSOLETE Returns: the length of the string */
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE gdb_puts (char *str)
-// OBSOLETE {
-// OBSOLETE return gdb_write(str, strlen(str));
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: gdb_error(char *, char *)
-// OBSOLETE Send an error message to gdb's stdout.
-// OBSOLETE First string may have 1 (one) optional "%s" in it, which
-// OBSOLETE will cause the optional second string to be inserted. */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE gdb_error (char *format, char *parm)
-// OBSOLETE {
-// OBSOLETE char buf[400], *cpy;
-// OBSOLETE int len;
-// OBSOLETE
-// OBSOLETE if (remote_debug)
-// OBSOLETE {
-// OBSOLETE if (format && *format)
-// OBSOLETE len = strlen(format);
-// OBSOLETE else
-// OBSOLETE return; /* empty input */
-// OBSOLETE
-// OBSOLETE if (parm && *parm)
-// OBSOLETE len += strlen(parm);
-// OBSOLETE
-// OBSOLETE for (cpy = buf; *format; )
-// OBSOLETE {
-// OBSOLETE if (format[0] == '%' && format[1] == 's') /* include second string */
-// OBSOLETE {
-// OBSOLETE format += 2; /* advance two chars instead of just one */
-// OBSOLETE while (parm && *parm)
-// OBSOLETE *cpy++ = *parm++;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE *cpy++ = *format++;
-// OBSOLETE }
-// OBSOLETE *cpy = '\0';
-// OBSOLETE gdb_puts(buf);
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static unsigned char *
-// OBSOLETE strcpy (unsigned char *dest, const unsigned char *src)
-// OBSOLETE {
-// OBSOLETE unsigned char *ret = dest;
-// OBSOLETE
-// OBSOLETE if (dest && src)
-// OBSOLETE {
-// OBSOLETE while (*src)
-// OBSOLETE *dest++ = *src++;
-// OBSOLETE *dest = 0;
-// OBSOLETE }
-// OBSOLETE return ret;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static int
-// OBSOLETE strlen (const unsigned char *src)
-// OBSOLETE {
-// OBSOLETE int ret;
-// OBSOLETE
-// OBSOLETE for (ret = 0; *src; src++)
-// OBSOLETE ret++;
-// OBSOLETE
-// OBSOLETE return ret;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE #if 0
-// OBSOLETE void exit (code)
-// OBSOLETE int code;
-// OBSOLETE {
-// OBSOLETE _exit (code);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE int atexit (void *p)
-// OBSOLETE {
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE void abort (void)
-// OBSOLETE {
-// OBSOLETE _exit (1);
-// OBSOLETE }
-// OBSOLETE #endif
+/****************************************************************************
+
+ THIS SOFTWARE IS NOT COPYRIGHTED
+
+ HP offers the following for use in the public domain. HP makes no
+ warranty with regard to the software or it's performance and the
+ user accepts the software "AS IS" with all faults.
+
+ HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
+ TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
+ OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+
+****************************************************************************/
+
+/****************************************************************************
+ * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
+ *
+ * Module name: remcom.c $
+ * Revision: 1.34 $
+ * Date: 91/03/09 12:29:49 $
+ * Contributor: Lake Stevens Instrument Division$
+ *
+ * Description: low level support for gdb debugger. $
+ *
+ * Considerations: only works on target hardware $
+ *
+ * Written by: Glenn Engel $
+ * ModuleState: Experimental $
+ *
+ * NOTES: See Below $
+ *
+ * Modified for M32R by Michael Snyder, Cygnus Support.
+ *
+ * To enable debugger support, two things need to happen. One, a
+ * call to set_debug_traps() is necessary in order to allow any breakpoints
+ * or error conditions to be properly intercepted and reported to gdb.
+ * Two, a breakpoint needs to be generated to begin communication. This
+ * is most easily accomplished by a call to breakpoint(). Breakpoint()
+ * simulates a breakpoint by executing a trap #1.
+ *
+ * The external function exceptionHandler() is
+ * used to attach a specific handler to a specific M32R vector number.
+ * It should use the same privilege level it runs at. It should
+ * install it as an interrupt gate so that interrupts are masked
+ * while the handler runs.
+ *
+ * Because gdb will sometimes write to the stack area to execute function
+ * calls, this program cannot rely on using the supervisor stack so it
+ * uses it's own stack area reserved in the int array remcomStack.
+ *
+ *************
+ *
+ * The following gdb commands are supported:
+ *
+ * command function Return value
+ *
+ * g return the value of the CPU registers hex data or ENN
+ * G set the value of the CPU registers OK or ENN
+ *
+ * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
+ * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
+ * XAA..AA,LLLL: Write LLLL binary bytes at address OK or ENN
+ * AA..AA
+ *
+ * c Resume at current address SNN ( signal NN)
+ * cAA..AA Continue at address AA..AA SNN
+ *
+ * s Step one instruction SNN
+ * sAA..AA Step one instruction from AA..AA SNN
+ *
+ * k kill
+ *
+ * ? What was the last sigval ? SNN (signal NN)
+ *
+ * All commands and responses are sent with a packet which includes a
+ * checksum. A packet consists of
+ *
+ * $<packet info>#<checksum>.
+ *
+ * where
+ * <packet info> :: <characters representing the command or response>
+ * <checksum> :: <two hex digits computed as modulo 256 sum of <packetinfo>>
+ *
+ * When a packet is received, it is first acknowledged with either '+' or '-'.
+ * '+' indicates a successful transfer. '-' indicates a failed transfer.
+ *
+ * Example:
+ *
+ * Host: Reply:
+ * $m0,10#2a +$00010203040506070809101112131415#42
+ *
+ ****************************************************************************/
+
+
+/************************************************************************
+ *
+ * external low-level support routines
+ */
+extern void putDebugChar (); /* write a single character */
+extern int getDebugChar (); /* read and return a single char */
+extern void exceptionHandler (); /* assign an exception handler */
+
+/*****************************************************************************
+ * BUFMAX defines the maximum number of characters in inbound/outbound buffers
+ * at least NUMREGBYTES*2 are needed for register packets
+ */
+#define BUFMAX 400
+
+static char initialized; /* boolean flag. != 0 means we've been initialized */
+
+int remote_debug;
+/* debug > 0 prints ill-formed commands in valid packets & checksum errors */
+
+static const unsigned char hexchars[] = "0123456789abcdef";
+
+#define NUMREGS 24
+
+/* Number of bytes of registers. */
+#define NUMREGBYTES (NUMREGS * 4)
+enum regnames
+{ R0, R1, R2, R3, R4, R5, R6, R7,
+ R8, R9, R10, R11, R12, R13, R14, R15,
+ PSW, CBR, SPI, SPU, BPC, PC, ACCL, ACCH
+};
+
+enum SYS_calls
+{
+ SYS_null,
+ SYS_exit,
+ SYS_open,
+ SYS_close,
+ SYS_read,
+ SYS_write,
+ SYS_lseek,
+ SYS_unlink,
+ SYS_getpid,
+ SYS_kill,
+ SYS_fstat,
+ SYS_sbrk,
+ SYS_fork,
+ SYS_execve,
+ SYS_wait4,
+ SYS_link,
+ SYS_chdir,
+ SYS_stat,
+ SYS_utime,
+ SYS_chown,
+ SYS_chmod,
+ SYS_time,
+ SYS_pipe
+};
+
+static int registers[NUMREGS];
+
+#define STACKSIZE 8096
+static unsigned char remcomInBuffer[BUFMAX];
+static unsigned char remcomOutBuffer[BUFMAX];
+static int remcomStack[STACKSIZE / sizeof (int)];
+static int *stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1];
+
+static unsigned int save_vectors[18]; /* previous exception vectors */
+
+/* Indicate to caller of mem2hex or hex2mem that there has been an error. */
+static volatile int mem_err = 0;
+
+/* Store the vector number here (since GDB only gets the signal
+ number through the usual means, and that's not very specific). */
+int gdb_m32r_vector = -1;
+
+#if 0
+#include "syscall.h" /* for SYS_exit, SYS_write etc. */
+#endif
+
+/* Global entry points:
+ */
+
+extern void handle_exception (int);
+extern void set_debug_traps (void);
+extern void breakpoint (void);
+
+/* Local functions:
+ */
+
+static int computeSignal (int);
+static void putpacket (unsigned char *);
+static unsigned char *getpacket (void);
+
+static unsigned char *mem2hex (unsigned char *, unsigned char *, int, int);
+static unsigned char *hex2mem (unsigned char *, unsigned char *, int, int);
+static int hexToInt (unsigned char **, int *);
+static unsigned char *bin2mem (unsigned char *, unsigned char *, int, int);
+static void stash_registers (void);
+static void restore_registers (void);
+static int prepare_to_step (int);
+static int finish_from_step (void);
+static unsigned long crc32 (unsigned char *, int, unsigned long);
+
+static void gdb_error (char *, char *);
+static int gdb_putchar (int), gdb_puts (char *), gdb_write (char *, int);
+
+static unsigned char *strcpy (unsigned char *, const unsigned char *);
+static int strlen (const unsigned char *);
+
+/*
+ * This function does all command procesing for interfacing to gdb.
+ */
+
+void
+handle_exception (int exceptionVector)
+{
+ int sigval, stepping;
+ int addr, length, i;
+ unsigned char *ptr;
+ unsigned char buf[16];
+ int binary;
+
+ if (!finish_from_step ())
+ return; /* "false step": let the target continue */
+
+ gdb_m32r_vector = exceptionVector;
+
+ if (remote_debug)
+ {
+ mem2hex ((unsigned char *) &exceptionVector, buf, 4, 0);
+ gdb_error ("Handle exception %s, ", buf);
+ mem2hex ((unsigned char *) &registers[PC], buf, 4, 0);
+ gdb_error ("PC == 0x%s\n", buf);
+ }
+
+ /* reply to host that an exception has occurred */
+ sigval = computeSignal (exceptionVector);
+
+ ptr = remcomOutBuffer;
+
+ *ptr++ = 'T'; /* notify gdb with signo, PC, FP and SP */
+ *ptr++ = hexchars[sigval >> 4];
+ *ptr++ = hexchars[sigval & 0xf];
+
+ *ptr++ = hexchars[PC >> 4];
+ *ptr++ = hexchars[PC & 0xf];
+ *ptr++ = ':';
+ ptr = mem2hex ((unsigned char *) &registers[PC], ptr, 4, 0); /* PC */
+ *ptr++ = ';';
+
+ *ptr++ = hexchars[R13 >> 4];
+ *ptr++ = hexchars[R13 & 0xf];
+ *ptr++ = ':';
+ ptr = mem2hex ((unsigned char *) &registers[R13], ptr, 4, 0); /* FP */
+ *ptr++ = ';';
+
+ *ptr++ = hexchars[R15 >> 4];
+ *ptr++ = hexchars[R15 & 0xf];
+ *ptr++ = ':';
+ ptr = mem2hex ((unsigned char *) &registers[R15], ptr, 4, 0); /* SP */
+ *ptr++ = ';';
+ *ptr++ = 0;
+
+ if (exceptionVector == 0) /* simulated SYS call stuff */
+ {
+ mem2hex ((unsigned char *) &registers[PC], buf, 4, 0);
+ switch (registers[R0])
+ {
+ case SYS_exit:
+ gdb_error ("Target program has exited at %s\n", buf);
+ ptr = remcomOutBuffer;
+ *ptr++ = 'W';
+ sigval = registers[R1] & 0xff;
+ *ptr++ = hexchars[sigval >> 4];
+ *ptr++ = hexchars[sigval & 0xf];
+ *ptr++ = 0;
+ break;
+ case SYS_open:
+ gdb_error ("Target attempts SYS_open call at %s\n", buf);
+ break;
+ case SYS_close:
+ gdb_error ("Target attempts SYS_close call at %s\n", buf);
+ break;
+ case SYS_read:
+ gdb_error ("Target attempts SYS_read call at %s\n", buf);
+ break;
+ case SYS_write:
+ if (registers[R1] == 1 || /* write to stdout */
+ registers[R1] == 2) /* write to stderr */
+ { /* (we can do that) */
+ registers[R0] =
+ gdb_write ((void *) registers[R2], registers[R3]);
+ return;
+ }
+ else
+ gdb_error ("Target attempts SYS_write call at %s\n", buf);
+ break;
+ case SYS_lseek:
+ gdb_error ("Target attempts SYS_lseek call at %s\n", buf);
+ break;
+ case SYS_unlink:
+ gdb_error ("Target attempts SYS_unlink call at %s\n", buf);
+ break;
+ case SYS_getpid:
+ gdb_error ("Target attempts SYS_getpid call at %s\n", buf);
+ break;
+ case SYS_kill:
+ gdb_error ("Target attempts SYS_kill call at %s\n", buf);
+ break;
+ case SYS_fstat:
+ gdb_error ("Target attempts SYS_fstat call at %s\n", buf);
+ break;
+ default:
+ gdb_error ("Target attempts unknown SYS call at %s\n", buf);
+ break;
+ }
+ }
+
+ putpacket (remcomOutBuffer);
+
+ stepping = 0;
+
+ while (1 == 1)
+ {
+ remcomOutBuffer[0] = 0;
+ ptr = getpacket ();
+ binary = 0;
+ switch (*ptr++)
+ {
+ default: /* Unknown code. Return an empty reply message. */
+ break;
+ case 'R':
+ if (hexToInt (&ptr, &addr))
+ registers[PC] = addr;
+ strcpy (remcomOutBuffer, "OK");
+ break;
+ case '!':
+ strcpy (remcomOutBuffer, "OK");
+ break;
+ case 'X': /* XAA..AA,LLLL:<binary data>#cs */
+ binary = 1;
+ case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
+ /* TRY TO READ '%x,%x:'. IF SUCCEED, SET PTR = 0 */
+ {
+ if (hexToInt (&ptr, &addr))
+ if (*(ptr++) == ',')
+ if (hexToInt (&ptr, &length))
+ if (*(ptr++) == ':')
+ {
+ mem_err = 0;
+ if (binary)
+ bin2mem (ptr, (unsigned char *) addr, length, 1);
+ else
+ hex2mem (ptr, (unsigned char *) addr, length, 1);
+ if (mem_err)
+ {
+ strcpy (remcomOutBuffer, "E03");
+ gdb_error ("memory fault", "");
+ }
+ else
+ {
+ strcpy (remcomOutBuffer, "OK");
+ }
+ ptr = 0;
+ }
+ if (ptr)
+ {
+ strcpy (remcomOutBuffer, "E02");
+ }
+ }
+ break;
+ case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
+ /* TRY TO READ %x,%x. IF SUCCEED, SET PTR = 0 */
+ if (hexToInt (&ptr, &addr))
+ if (*(ptr++) == ',')
+ if (hexToInt (&ptr, &length))
+ {
+ ptr = 0;
+ mem_err = 0;
+ mem2hex ((unsigned char *) addr, remcomOutBuffer, length,
+ 1);
+ if (mem_err)
+ {
+ strcpy (remcomOutBuffer, "E03");
+ gdb_error ("memory fault", "");
+ }
+ }
+ if (ptr)
+ {
+ strcpy (remcomOutBuffer, "E01");
+ }
+ break;
+ case '?':
+ remcomOutBuffer[0] = 'S';
+ remcomOutBuffer[1] = hexchars[sigval >> 4];
+ remcomOutBuffer[2] = hexchars[sigval % 16];
+ remcomOutBuffer[3] = 0;
+ break;
+ case 'd':
+ remote_debug = !(remote_debug); /* toggle debug flag */
+ break;
+ case 'g': /* return the value of the CPU registers */
+ mem2hex ((unsigned char *) registers, remcomOutBuffer, NUMREGBYTES,
+ 0);
+ break;
+ case 'P': /* set the value of a single CPU register - return OK */
+ {
+ int regno;
+
+ if (hexToInt (&ptr, &regno) && *ptr++ == '=')
+ if (regno >= 0 && regno < NUMREGS)
+ {
+ int stackmode;
+
+ hex2mem (ptr, (unsigned char *) &registers[regno], 4, 0);
+ /*
+ * Since we just changed a single CPU register, let's
+ * make sure to keep the several stack pointers consistant.
+ */
+ stackmode = registers[PSW] & 0x80;
+ if (regno == R15) /* stack pointer changed */
+ { /* need to change SPI or SPU */
+ if (stackmode == 0)
+ registers[SPI] = registers[R15];
+ else
+ registers[SPU] = registers[R15];
+ }
+ else if (regno == SPU) /* "user" stack pointer changed */
+ {
+ if (stackmode != 0) /* stack in user mode: copy SP */
+ registers[R15] = registers[SPU];
+ }
+ else if (regno == SPI) /* "interrupt" stack pointer changed */
+ {
+ if (stackmode == 0) /* stack in interrupt mode: copy SP */
+ registers[R15] = registers[SPI];
+ }
+ else if (regno == PSW) /* stack mode may have changed! */
+ { /* force SP to either SPU or SPI */
+ if (stackmode == 0) /* stack in user mode */
+ registers[R15] = registers[SPI];
+ else /* stack in interrupt mode */
+ registers[R15] = registers[SPU];
+ }
+ strcpy (remcomOutBuffer, "OK");
+ break;
+ }
+ strcpy (remcomOutBuffer, "E01");
+ break;
+ }
+ case 'G': /* set the value of the CPU registers - return OK */
+ hex2mem (ptr, (unsigned char *) registers, NUMREGBYTES, 0);
+ strcpy (remcomOutBuffer, "OK");
+ break;
+ case 's': /* sAA..AA Step one instruction from AA..AA(optional) */
+ stepping = 1;
+ case 'c': /* cAA..AA Continue from address AA..AA(optional) */
+ /* try to read optional parameter, pc unchanged if no parm */
+ if (hexToInt (&ptr, &addr))
+ registers[PC] = addr;
+
+ if (stepping) /* single-stepping */
+ {
+ if (!prepare_to_step (0)) /* set up for single-step */
+ {
+ /* prepare_to_step has already emulated the target insn:
+ Send SIGTRAP to gdb, don't resume the target at all. */
+ ptr = remcomOutBuffer;
+ *ptr++ = 'T'; /* Simulate stopping with SIGTRAP */
+ *ptr++ = '0';
+ *ptr++ = '5';
+
+ *ptr++ = hexchars[PC >> 4]; /* send PC */
+ *ptr++ = hexchars[PC & 0xf];
+ *ptr++ = ':';
+ ptr = mem2hex ((unsigned char *) &registers[PC], ptr, 4, 0);
+ *ptr++ = ';';
+
+ *ptr++ = hexchars[R13 >> 4]; /* send FP */
+ *ptr++ = hexchars[R13 & 0xf];
+ *ptr++ = ':';
+ ptr =
+ mem2hex ((unsigned char *) &registers[R13], ptr, 4, 0);
+ *ptr++ = ';';
+
+ *ptr++ = hexchars[R15 >> 4]; /* send SP */
+ *ptr++ = hexchars[R15 & 0xf];
+ *ptr++ = ':';
+ ptr =
+ mem2hex ((unsigned char *) &registers[R15], ptr, 4, 0);
+ *ptr++ = ';';
+ *ptr++ = 0;
+
+ break;
+ }
+ }
+ else /* continuing, not single-stepping */
+ {
+ /* OK, about to do a "continue". First check to see if the
+ target pc is on an odd boundary (second instruction in the
+ word). If so, we must do a single-step first, because
+ ya can't jump or return back to an odd boundary! */
+ if ((registers[PC] & 2) != 0)
+ prepare_to_step (1);
+ }
+
+ return;
+
+ case 'D': /* Detach */
+#if 0
+ /* I am interpreting this to mean, release the board from control
+ by the remote stub. To do this, I am restoring the original
+ (or at least previous) exception vectors.
+ */
+ for (i = 0; i < 18; i++)
+ exceptionHandler (i, save_vectors[i]);
+ putpacket ("OK");
+ return; /* continue the inferior */
+#else
+ strcpy (remcomOutBuffer, "OK");
+ break;
+#endif
+ case 'q':
+ if (*ptr++ == 'C' &&
+ *ptr++ == 'R' && *ptr++ == 'C' && *ptr++ == ':')
+ {
+ unsigned long start, len, our_crc;
+
+ if (hexToInt (&ptr, (int *) &start) &&
+ *ptr++ == ',' && hexToInt (&ptr, (int *) &len))
+ {
+ remcomOutBuffer[0] = 'C';
+ our_crc = crc32 ((unsigned char *) start, len, 0xffffffff);
+ mem2hex ((char *) &our_crc,
+ &remcomOutBuffer[1], sizeof (long), 0);
+ } /* else do nothing */
+ } /* else do nothing */
+ break;
+
+ case 'k': /* kill the program */
+ continue;
+ } /* switch */
+
+ /* reply to the request */
+ putpacket (remcomOutBuffer);
+ }
+}
+
+/* qCRC support */
+
+/* Table used by the crc32 function to calcuate the checksum. */
+static unsigned long crc32_table[256] = { 0, 0 };
+
+static unsigned long
+crc32 (unsigned char *buf, int len, unsigned long crc)
+{
+ if (!crc32_table[1])
+ {
+ /* Initialize the CRC table and the decoding table. */
+ int i, j;
+ unsigned long c;
+
+ for (i = 0; i < 256; i++)
+ {
+ for (c = i << 24, j = 8; j > 0; --j)
+ c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
+ crc32_table[i] = c;
+ }
+ }
+
+ while (len--)
+ {
+ crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
+ buf++;
+ }
+ return crc;
+}
+
+static int
+hex (unsigned char ch)
+{
+ if ((ch >= 'a') && (ch <= 'f'))
+ return (ch - 'a' + 10);
+ if ((ch >= '0') && (ch <= '9'))
+ return (ch - '0');
+ if ((ch >= 'A') && (ch <= 'F'))
+ return (ch - 'A' + 10);
+ return (-1);
+}
+
+/* scan for the sequence $<data>#<checksum> */
+
+unsigned char *
+getpacket (void)
+{
+ unsigned char *buffer = &remcomInBuffer[0];
+ unsigned char checksum;
+ unsigned char xmitcsum;
+ int count;
+ char ch;
+
+ while (1)
+ {
+ /* wait around for the start character, ignore all other characters */
+ while ((ch = getDebugChar ()) != '$')
+ ;
+
+ retry:
+ checksum = 0;
+ xmitcsum = -1;
+ count = 0;
+
+ /* now, read until a # or end of buffer is found */
+ while (count < BUFMAX)
+ {
+ ch = getDebugChar ();
+ if (ch == '$')
+ goto retry;
+ if (ch == '#')
+ break;
+ checksum = checksum + ch;
+ buffer[count] = ch;
+ count = count + 1;
+ }
+ buffer[count] = 0;
+
+ if (ch == '#')
+ {
+ ch = getDebugChar ();
+ xmitcsum = hex (ch) << 4;
+ ch = getDebugChar ();
+ xmitcsum += hex (ch);
+
+ if (checksum != xmitcsum)
+ {
+ if (remote_debug)
+ {
+ unsigned char buf[16];
+
+ mem2hex ((unsigned char *) &checksum, buf, 4, 0);
+ gdb_error ("Bad checksum: my count = %s, ", buf);
+ mem2hex ((unsigned char *) &xmitcsum, buf, 4, 0);
+ gdb_error ("sent count = %s\n", buf);
+ gdb_error (" -- Bad buffer: \"%s\"\n", buffer);
+ }
+ putDebugChar ('-'); /* failed checksum */
+ }
+ else
+ {
+ putDebugChar ('+'); /* successful transfer */
+
+ /* if a sequence char is present, reply the sequence ID */
+ if (buffer[2] == ':')
+ {
+ putDebugChar (buffer[0]);
+ putDebugChar (buffer[1]);
+
+ return &buffer[3];
+ }
+
+ return &buffer[0];
+ }
+ }
+ }
+}
+
+/* send the packet in buffer. */
+
+static void
+putpacket (unsigned char *buffer)
+{
+ unsigned char checksum;
+ int count;
+ char ch;
+
+ /* $<packet info>#<checksum>. */
+ do
+ {
+ putDebugChar ('$');
+ checksum = 0;
+ count = 0;
+
+ while (ch = buffer[count])
+ {
+ putDebugChar (ch);
+ checksum += ch;
+ count += 1;
+ }
+ putDebugChar ('#');
+ putDebugChar (hexchars[checksum >> 4]);
+ putDebugChar (hexchars[checksum % 16]);
+ }
+ while (getDebugChar () != '+');
+}
+
+/* Address of a routine to RTE to if we get a memory fault. */
+
+static void (*volatile mem_fault_routine) () = 0;
+
+static void
+set_mem_err (void)
+{
+ mem_err = 1;
+}
+
+/* Check the address for safe access ranges. As currently defined,
+ this routine will reject the "expansion bus" address range(s).
+ To make those ranges useable, someone must implement code to detect
+ whether there's anything connected to the expansion bus. */
+
+static int
+mem_safe (unsigned char *addr)
+{
+#define BAD_RANGE_ONE_START ((unsigned char *) 0x600000)
+#define BAD_RANGE_ONE_END ((unsigned char *) 0xa00000)
+#define BAD_RANGE_TWO_START ((unsigned char *) 0xff680000)
+#define BAD_RANGE_TWO_END ((unsigned char *) 0xff800000)
+
+ if (addr < BAD_RANGE_ONE_START)
+ return 1; /* safe */
+ if (addr < BAD_RANGE_ONE_END)
+ return 0; /* unsafe */
+ if (addr < BAD_RANGE_TWO_START)
+ return 1; /* safe */
+ if (addr < BAD_RANGE_TWO_END)
+ return 0; /* unsafe */
+}
+
+/* These are separate functions so that they are so short and sweet
+ that the compiler won't save any registers (if there is a fault
+ to mem_fault, they won't get restored, so there better not be any
+ saved). */
+static int
+get_char (unsigned char *addr)
+{
+#if 1
+ if (mem_fault_routine && !mem_safe (addr))
+ {
+ mem_fault_routine ();
+ return 0;
+ }
+#endif
+ return *addr;
+}
+
+static void
+set_char (unsigned char *addr, unsigned char val)
+{
+#if 1
+ if (mem_fault_routine && !mem_safe (addr))
+ {
+ mem_fault_routine ();
+ return;
+ }
+#endif
+ *addr = val;
+}
+
+/* Convert the memory pointed to by mem into hex, placing result in buf.
+ Return a pointer to the last char put in buf (null).
+ If MAY_FAULT is non-zero, then we should set mem_err in response to
+ a fault; if zero treat a fault like any other fault in the stub. */
+
+static unsigned char *
+mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault)
+{
+ int i;
+ unsigned char ch;
+
+ if (may_fault)
+ mem_fault_routine = set_mem_err;
+ for (i = 0; i < count; i++)
+ {
+ ch = get_char (mem++);
+ if (may_fault && mem_err)
+ return (buf);
+ *buf++ = hexchars[ch >> 4];
+ *buf++ = hexchars[ch % 16];
+ }
+ *buf = 0;
+ if (may_fault)
+ mem_fault_routine = 0;
+ return (buf);
+}
+
+/* Convert the hex array pointed to by buf into binary to be placed in mem.
+ Return a pointer to the character AFTER the last byte written. */
+
+static unsigned char *
+hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
+{
+ int i;
+ unsigned char ch;
+
+ if (may_fault)
+ mem_fault_routine = set_mem_err;
+ for (i = 0; i < count; i++)
+ {
+ ch = hex (*buf++) << 4;
+ ch = ch + hex (*buf++);
+ set_char (mem++, ch);
+ if (may_fault && mem_err)
+ return (mem);
+ }
+ if (may_fault)
+ mem_fault_routine = 0;
+ return (mem);
+}
+
+/* Convert the binary stream in BUF to memory.
+
+ Gdb will escape $, #, and the escape char (0x7d).
+ COUNT is the total number of bytes to write into
+ memory. */
+static unsigned char *
+bin2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
+{
+ int i;
+ unsigned char ch;
+
+ if (may_fault)
+ mem_fault_routine = set_mem_err;
+ for (i = 0; i < count; i++)
+ {
+ /* Check for any escaped characters. Be paranoid and
+ only unescape chars that should be escaped. */
+ if (*buf == 0x7d)
+ {
+ switch (*(buf + 1))
+ {
+ case 0x3: /* # */
+ case 0x4: /* $ */
+ case 0x5d: /* escape char */
+ buf++;
+ *buf |= 0x20;
+ break;
+ default:
+ /* nothing */
+ break;
+ }
+ }
+
+ set_char (mem++, *buf++);
+
+ if (may_fault && mem_err)
+ return mem;
+ }
+
+ if (may_fault)
+ mem_fault_routine = 0;
+ return mem;
+}
+
+/* this function takes the m32r exception vector and attempts to
+ translate this number into a unix compatible signal value */
+
+static int
+computeSignal (int exceptionVector)
+{
+ int sigval;
+ switch (exceptionVector)
+ {
+ case 0:
+ sigval = 23;
+ break; /* I/O trap */
+ case 1:
+ sigval = 5;
+ break; /* breakpoint */
+ case 2:
+ sigval = 5;
+ break; /* breakpoint */
+ case 3:
+ sigval = 5;
+ break; /* breakpoint */
+ case 4:
+ sigval = 5;
+ break; /* breakpoint */
+ case 5:
+ sigval = 5;
+ break; /* breakpoint */
+ case 6:
+ sigval = 5;
+ break; /* breakpoint */
+ case 7:
+ sigval = 5;
+ break; /* breakpoint */
+ case 8:
+ sigval = 5;
+ break; /* breakpoint */
+ case 9:
+ sigval = 5;
+ break; /* breakpoint */
+ case 10:
+ sigval = 5;
+ break; /* breakpoint */
+ case 11:
+ sigval = 5;
+ break; /* breakpoint */
+ case 12:
+ sigval = 5;
+ break; /* breakpoint */
+ case 13:
+ sigval = 5;
+ break; /* breakpoint */
+ case 14:
+ sigval = 5;
+ break; /* breakpoint */
+ case 15:
+ sigval = 5;
+ break; /* breakpoint */
+ case 16:
+ sigval = 10;
+ break; /* BUS ERROR (alignment) */
+ case 17:
+ sigval = 2;
+ break; /* INTerrupt */
+ default:
+ sigval = 7;
+ break; /* "software generated" */
+ }
+ return (sigval);
+}
+
+/**********************************************/
+/* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */
+/* RETURN NUMBER OF CHARS PROCESSED */
+/**********************************************/
+static int
+hexToInt (unsigned char **ptr, int *intValue)
+{
+ int numChars = 0;
+ int hexValue;
+
+ *intValue = 0;
+ while (**ptr)
+ {
+ hexValue = hex (**ptr);
+ if (hexValue >= 0)
+ {
+ *intValue = (*intValue << 4) | hexValue;
+ numChars++;
+ }
+ else
+ break;
+ (*ptr)++;
+ }
+ return (numChars);
+}
+
+/*
+ Table of branch instructions:
+
+ 10B6 RTE return from trap or exception
+ 1FCr JMP jump
+ 1ECr JL jump and link
+ 7Fxx BRA branch
+ FFxxxxxx BRA branch (long)
+ B09rxxxx BNEZ branch not-equal-zero
+ Br1rxxxx BNE branch not-equal
+ 7Dxx BNC branch not-condition
+ FDxxxxxx BNC branch not-condition (long)
+ B0Arxxxx BLTZ branch less-than-zero
+ B0Crxxxx BLEZ branch less-equal-zero
+ 7Exx BL branch and link
+ FExxxxxx BL branch and link (long)
+ B0Drxxxx BGTZ branch greater-than-zero
+ B0Brxxxx BGEZ branch greater-equal-zero
+ B08rxxxx BEQZ branch equal-zero
+ Br0rxxxx BEQ branch equal
+ 7Cxx BC branch condition
+ FCxxxxxx BC branch condition (long)
+ */
+
+static int
+isShortBranch (unsigned char *instr)
+{
+ unsigned char instr0 = instr[0] & 0x7F; /* mask off high bit */
+
+ if (instr0 == 0x10 && instr[1] == 0xB6) /* RTE */
+ return 1; /* return from trap or exception */
+
+ if (instr0 == 0x1E || instr0 == 0x1F) /* JL or JMP */
+ if ((instr[1] & 0xF0) == 0xC0)
+ return 2; /* jump thru a register */
+
+ if (instr0 == 0x7C || instr0 == 0x7D || /* BC, BNC, BL, BRA */
+ instr0 == 0x7E || instr0 == 0x7F)
+ return 3; /* eight bit PC offset */
+
+ return 0;
+}
+
+static int
+isLongBranch (unsigned char *instr)
+{
+ if (instr[0] == 0xFC || instr[0] == 0xFD || /* BRA, BNC, BL, BC */
+ instr[0] == 0xFE || instr[0] == 0xFF) /* 24 bit relative */
+ return 4;
+ if ((instr[0] & 0xF0) == 0xB0) /* 16 bit relative */
+ {
+ if ((instr[1] & 0xF0) == 0x00 || /* BNE, BEQ */
+ (instr[1] & 0xF0) == 0x10)
+ return 5;
+ if (instr[0] == 0xB0) /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ, BEQZ */
+ if ((instr[1] & 0xF0) == 0x80 || (instr[1] & 0xF0) == 0x90 ||
+ (instr[1] & 0xF0) == 0xA0 || (instr[1] & 0xF0) == 0xB0 ||
+ (instr[1] & 0xF0) == 0xC0 || (instr[1] & 0xF0) == 0xD0)
+ return 6;
+ }
+ return 0;
+}
+
+/* if address is NOT on a 4-byte boundary, or high-bit of instr is zero,
+ then it's a 2-byte instruction, else it's a 4-byte instruction. */
+
+#define INSTRUCTION_SIZE(addr) \
+ ((((int) addr & 2) || (((unsigned char *) addr)[0] & 0x80) == 0) ? 2 : 4)
+
+static int
+isBranch (unsigned char *instr)
+{
+ if (INSTRUCTION_SIZE (instr) == 2)
+ return isShortBranch (instr);
+ else
+ return isLongBranch (instr);
+}
+
+static int
+willBranch (unsigned char *instr, int branchCode)
+{
+ switch (branchCode)
+ {
+ case 0:
+ return 0; /* not a branch */
+ case 1:
+ return 1; /* RTE */
+ case 2:
+ return 1; /* JL or JMP */
+ case 3: /* BC, BNC, BL, BRA (short) */
+ case 4: /* BC, BNC, BL, BRA (long) */
+ switch (instr[0] & 0x0F)
+ {
+ case 0xC: /* Branch if Condition Register */
+ return (registers[CBR] != 0);
+ case 0xD: /* Branch if NOT Condition Register */
+ return (registers[CBR] == 0);
+ case 0xE: /* Branch and Link */
+ case 0xF: /* Branch (unconditional) */
+ return 1;
+ default: /* oops? */
+ return 0;
+ }
+ case 5: /* BNE, BEQ */
+ switch (instr[1] & 0xF0)
+ {
+ case 0x00: /* Branch if r1 equal to r2 */
+ return (registers[instr[0] & 0x0F] == registers[instr[1] & 0x0F]);
+ case 0x10: /* Branch if r1 NOT equal to r2 */
+ return (registers[instr[0] & 0x0F] != registers[instr[1] & 0x0F]);
+ default: /* oops? */
+ return 0;
+ }
+ case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ */
+ switch (instr[1] & 0xF0)
+ {
+ case 0x80: /* Branch if reg equal to zero */
+ return (registers[instr[1] & 0x0F] == 0);
+ case 0x90: /* Branch if reg NOT equal to zero */
+ return (registers[instr[1] & 0x0F] != 0);
+ case 0xA0: /* Branch if reg less than zero */
+ return (registers[instr[1] & 0x0F] < 0);
+ case 0xB0: /* Branch if reg greater or equal to zero */
+ return (registers[instr[1] & 0x0F] >= 0);
+ case 0xC0: /* Branch if reg less than or equal to zero */
+ return (registers[instr[1] & 0x0F] <= 0);
+ case 0xD0: /* Branch if reg greater than zero */
+ return (registers[instr[1] & 0x0F] > 0);
+ default: /* oops? */
+ return 0;
+ }
+ default: /* oops? */
+ return 0;
+ }
+}
+
+static int
+branchDestination (unsigned char *instr, int branchCode)
+{
+ switch (branchCode)
+ {
+ default:
+ case 0: /* not a branch */
+ return 0;
+ case 1: /* RTE */
+ return registers[BPC] & ~3; /* pop BPC into PC */
+ case 2: /* JL or JMP */
+ return registers[instr[1] & 0x0F] & ~3; /* jump thru a register */
+ case 3: /* BC, BNC, BL, BRA (short, 8-bit relative offset) */
+ return (((int) instr) & ~3) + ((char) instr[1] << 2);
+ case 4: /* BC, BNC, BL, BRA (long, 24-bit relative offset) */
+ return ((int) instr +
+ ((((char) instr[1] << 16) | (instr[2] << 8) | (instr[3])) <<
+ 2));
+ case 5: /* BNE, BEQ (16-bit relative offset) */
+ case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ (ditto) */
+ return ((int) instr + ((((char) instr[2] << 8) | (instr[3])) << 2));
+ }
+
+ /* An explanatory note: in the last three return expressions, I have
+ cast the most-significant byte of the return offset to char.
+ What this accomplishes is sign extension. If the other
+ less-significant bytes were signed as well, they would get sign
+ extended too and, if negative, their leading bits would clobber
+ the bits of the more-significant bytes ahead of them. There are
+ other ways I could have done this, but sign extension from
+ odd-sized integers is always a pain. */
+}
+
+static void
+branchSideEffects (unsigned char *instr, int branchCode)
+{
+ switch (branchCode)
+ {
+ case 1: /* RTE */
+ return; /* I <THINK> this is already handled... */
+ case 2: /* JL (or JMP) */
+ case 3: /* BL (or BC, BNC, BRA) */
+ case 4:
+ if ((instr[0] & 0x0F) == 0x0E) /* branch/jump and link */
+ registers[R14] = (registers[PC] & ~3) + 4;
+ return;
+ default: /* any other branch has no side effects */
+ return;
+ }
+}
+
+static struct STEPPING_CONTEXT
+{
+ int stepping; /* true when we've started a single-step */
+ unsigned long target_addr; /* the instr we're trying to execute */
+ unsigned long target_size; /* the size of the target instr */
+ unsigned long noop_addr; /* where we've inserted a no-op, if any */
+ unsigned long trap1_addr; /* the trap following the target instr */
+ unsigned long trap2_addr; /* the trap at a branch destination, if any */
+ unsigned short noop_save; /* instruction overwritten by our no-op */
+ unsigned short trap1_save; /* instruction overwritten by trap1 */
+ unsigned short trap2_save; /* instruction overwritten by trap2 */
+ unsigned short continue_p; /* true if NOT returning to gdb after step */
+} stepping;
+
+/* Function: prepare_to_step
+ Called from handle_exception to prepare the user program to single-step.
+ Places a trap instruction after the target instruction, with special
+ extra handling for branch instructions and for instructions in the
+ second half-word of a word.
+
+ Returns: True if we should actually execute the instruction;
+ False if we are going to emulate executing the instruction,
+ in which case we simply report to GDB that the instruction
+ has already been executed. */
+
+#define TRAP1 0x10f1; /* trap #1 instruction */
+#define NOOP 0x7000; /* noop instruction */
+
+static unsigned short trap1 = TRAP1;
+static unsigned short noop = NOOP;
+
+static int
+prepare_to_step (continue_p)
+ int continue_p; /* if this isn't REALLY a single-step (see below) */
+{
+ unsigned long pc = registers[PC];
+ int branchCode = isBranch ((unsigned char *) pc);
+ unsigned char *p;
+
+ /* zero out the stepping context
+ (paranoia -- it should already be zeroed) */
+ for (p = (unsigned char *) &stepping;
+ p < ((unsigned char *) &stepping) + sizeof (stepping); p++)
+ *p = 0;
+
+ if (branchCode != 0) /* next instruction is a branch */
+ {
+ branchSideEffects ((unsigned char *) pc, branchCode);
+ if (willBranch ((unsigned char *) pc, branchCode))
+ registers[PC] = branchDestination ((unsigned char *) pc, branchCode);
+ else
+ registers[PC] = pc + INSTRUCTION_SIZE (pc);
+ return 0; /* branch "executed" -- just notify GDB */
+ }
+ else if (((int) pc & 2) != 0) /* "second-slot" instruction */
+ {
+ /* insert no-op before pc */
+ stepping.noop_addr = pc - 2;
+ stepping.noop_save = *(unsigned short *) stepping.noop_addr;
+ *(unsigned short *) stepping.noop_addr = noop;
+ /* insert trap after pc */
+ stepping.trap1_addr = pc + 2;
+ stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
+ *(unsigned short *) stepping.trap1_addr = trap1;
+ }
+ else /* "first-slot" instruction */
+ {
+ /* insert trap after pc */
+ stepping.trap1_addr = pc + INSTRUCTION_SIZE (pc);
+ stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
+ *(unsigned short *) stepping.trap1_addr = trap1;
+ }
+ /* "continue_p" means that we are actually doing a continue, and not
+ being requested to single-step by GDB. Sometimes we have to do
+ one single-step before continuing, because the PC is on a half-word
+ boundary. There's no way to simply resume at such an address. */
+ stepping.continue_p = continue_p;
+ stepping.stepping = 1; /* starting a single-step */
+ return 1;
+}
+
+/* Function: finish_from_step
+ Called from handle_exception to finish up when the user program
+ returns from a single-step. Replaces the instructions that had
+ been overwritten by traps or no-ops,
+
+ Returns: True if we should notify GDB that the target stopped.
+ False if we only single-stepped because we had to before we
+ could continue (ie. we were trying to continue at a
+ half-word boundary). In that case don't notify GDB:
+ just "continue continuing". */
+
+static int
+finish_from_step (void)
+{
+ if (stepping.stepping) /* anything to do? */
+ {
+ int continue_p = stepping.continue_p;
+ unsigned char *p;
+
+ if (stepping.noop_addr) /* replace instr "under" our no-op */
+ *(unsigned short *) stepping.noop_addr = stepping.noop_save;
+ if (stepping.trap1_addr) /* replace instr "under" our trap */
+ *(unsigned short *) stepping.trap1_addr = stepping.trap1_save;
+ if (stepping.trap2_addr) /* ditto our other trap, if any */
+ *(unsigned short *) stepping.trap2_addr = stepping.trap2_save;
+
+ for (p = (unsigned char *) &stepping; /* zero out the stepping context */
+ p < ((unsigned char *) &stepping) + sizeof (stepping); p++)
+ *p = 0;
+
+ return !(continue_p);
+ }
+ else /* we didn't single-step, therefore this must be a legitimate stop */
+ return 1;
+}
+
+struct PSWreg
+{ /* separate out the bit flags in the PSW register */
+ int pad1:16;
+ int bsm:1;
+ int bie:1;
+ int pad2:5;
+ int bc:1;
+ int sm:1;
+ int ie:1;
+ int pad3:5;
+ int c:1;
+} *psw;
+
+/* Upon entry the value for LR to save has been pushed.
+ We unpush that so that the value for the stack pointer saved is correct.
+ Upon entry, all other registers are assumed to have not been modified
+ since the interrupt/trap occured. */
+
+asm ("\n\
+stash_registers:\n\
+ push r0\n\
+ push r1\n\
+ seth r1, #shigh(registers)\n\
+ add3 r1, r1, #low(registers)\n\
+ pop r0 ; r1\n\
+ st r0, @(4,r1)\n\
+ pop r0 ; r0\n\
+ st r0, @r1\n\
+ addi r1, #4 ; only add 4 as subsequent saves are `pre inc'\n\
+ st r2, @+r1\n\
+ st r3, @+r1\n\
+ st r4, @+r1\n\
+ st r5, @+r1\n\
+ st r6, @+r1\n\
+ st r7, @+r1\n\
+ st r8, @+r1\n\
+ st r9, @+r1\n\
+ st r10, @+r1\n\
+ st r11, @+r1\n\
+ st r12, @+r1\n\
+ st r13, @+r1 ; fp\n\
+ pop r0 ; lr (r14)\n\
+ st r0, @+r1\n\
+ st sp, @+r1 ; sp contains right value at this point\n\
+ mvfc r0, cr0\n\
+ st r0, @+r1 ; cr0 == PSW\n\
+ mvfc r0, cr1\n\
+ st r0, @+r1 ; cr1 == CBR\n\
+ mvfc r0, cr2\n\
+ st r0, @+r1 ; cr2 == SPI\n\
+ mvfc r0, cr3\n\
+ st r0, @+r1 ; cr3 == SPU\n\
+ mvfc r0, cr6\n\
+ st r0, @+r1 ; cr6 == BPC\n\
+ st r0, @+r1 ; PC == BPC\n\
+ mvfaclo r0\n\
+ st r0, @+r1 ; ACCL\n\
+ mvfachi r0\n\
+ st r0, @+r1 ; ACCH\n\
+ jmp lr");
+
+/* C routine to clean up what stash_registers did.
+ It is called after calling stash_registers.
+ This is separate from stash_registers as we want to do this in C
+ but doing stash_registers in C isn't straightforward. */
+
+static void
+cleanup_stash (void)
+{
+ psw = (struct PSWreg *) &registers[PSW]; /* fields of PSW register */
+ psw->sm = psw->bsm; /* fix up pre-trap values of psw fields */
+ psw->ie = psw->bie;
+ psw->c = psw->bc;
+ registers[CBR] = psw->bc; /* fix up pre-trap "C" register */
+
+#if 0 /* FIXME: Was in previous version. Necessary?
+ (Remember that we use the "rte" insn to return from the
+ trap/interrupt so the values of bsm, bie, bc are important. */
+ psw->bsm = psw->bie = psw->bc = 0; /* zero post-trap values */
+#endif
+
+ /* FIXME: Copied from previous version. This can probably be deleted
+ since methinks stash_registers has already done this. */
+ registers[PC] = registers[BPC]; /* pre-trap PC */
+
+ /* FIXME: Copied from previous version. Necessary? */
+ if (psw->sm) /* copy R15 into (psw->sm ? SPU : SPI) */
+ registers[SPU] = registers[R15];
+ else
+ registers[SPI] = registers[R15];
+}
+
+asm ("\n\
+restore_and_return:\n\
+ seth r0, #shigh(registers+8)\n\
+ add3 r0, r0, #low(registers+8)\n\
+ ld r2, @r0+ ; restore r2\n\
+ ld r3, @r0+ ; restore r3\n\
+ ld r4, @r0+ ; restore r4\n\
+ ld r5, @r0+ ; restore r5\n\
+ ld r6, @r0+ ; restore r6\n\
+ ld r7, @r0+ ; restore r7\n\
+ ld r8, @r0+ ; restore r8\n\
+ ld r9, @r0+ ; restore r9\n\
+ ld r10, @r0+ ; restore r10\n\
+ ld r11, @r0+ ; restore r11\n\
+ ld r12, @r0+ ; restore r12\n\
+ ld r13, @r0+ ; restore r13\n\
+ ld r14, @r0+ ; restore r14\n\
+ ld r15, @r0+ ; restore r15\n\
+ ld r1, @r0+ ; restore cr0 == PSW\n\
+ mvtc r1, cr0\n\
+ ld r1, @r0+ ; restore cr1 == CBR (no-op, because it's read only)\n\
+ mvtc r1, cr1\n\
+ ld r1, @r0+ ; restore cr2 == SPI\n\
+ mvtc r1, cr2\n\
+ ld r1, @r0+ ; restore cr3 == SPU\n\
+ mvtc r1, cr3\n\
+ addi r0, #4 ; skip BPC\n\
+ ld r1, @r0+ ; restore cr6 (BPC) == PC\n\
+ mvtc r1, cr6\n\
+ ld r1, @r0+ ; restore ACCL\n\
+ mvtaclo r1\n\
+ ld r1, @r0+ ; restore ACCH\n\
+ mvtachi r1\n\
+ seth r0, #shigh(registers)\n\
+ add3 r0, r0, #low(registers)\n\
+ ld r1, @(4,r0) ; restore r1\n\
+ ld r0, @r0 ; restore r0\n\
+ rte");
+
+/* General trap handler, called after the registers have been stashed.
+ NUM is the trap/exception number. */
+
+static void
+process_exception (int num)
+{
+ cleanup_stash ();
+ asm volatile ("\n\
+ seth r1, #shigh(stackPtr)\n\
+ add3 r1, r1, #low(stackPtr)\n\
+ ld r15, @r1 ; setup local stack (protect user stack)\n\
+ mv r0, %0\n\
+ bl handle_exception\n\
+ bl restore_and_return"::"r" (num):"r0", "r1");
+}
+
+void _catchException0 ();
+
+asm ("\n\
+_catchException0:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #0\n\
+ bl process_exception");
+
+void _catchException1 ();
+
+asm ("\n\
+_catchException1:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ bl cleanup_stash\n\
+ seth r1, #shigh(stackPtr)\n\
+ add3 r1, r1, #low(stackPtr)\n\
+ ld r15, @r1 ; setup local stack (protect user stack)\n\
+ seth r1, #shigh(registers + 21*4) ; PC\n\
+ add3 r1, r1, #low(registers + 21*4)\n\
+ ld r0, @r1\n\
+ addi r0, #-4 ; back up PC for breakpoint trap.\n\
+ st r0, @r1 ; FIXME: what about bp in right slot?\n\
+ ldi r0, #1\n\
+ bl handle_exception\n\
+ bl restore_and_return");
+
+void _catchException2 ();
+
+asm ("\n\
+_catchException2:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #2\n\
+ bl process_exception");
+
+void _catchException3 ();
+
+asm ("\n\
+_catchException3:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #3\n\
+ bl process_exception");
+
+void _catchException4 ();
+
+asm ("\n\
+_catchException4:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #4\n\
+ bl process_exception");
+
+void _catchException5 ();
+
+asm ("\n\
+_catchException5:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #5\n\
+ bl process_exception");
+
+void _catchException6 ();
+
+asm ("\n\
+_catchException6:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #6\n\
+ bl process_exception");
+
+void _catchException7 ();
+
+asm ("\n\
+_catchException7:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #7\n\
+ bl process_exception");
+
+void _catchException8 ();
+
+asm ("\n\
+_catchException8:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #8\n\
+ bl process_exception");
+
+void _catchException9 ();
+
+asm ("\n\
+_catchException9:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #9\n\
+ bl process_exception");
+
+void _catchException10 ();
+
+asm ("\n\
+_catchException10:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #10\n\
+ bl process_exception");
+
+void _catchException11 ();
+
+asm ("\n\
+_catchException11:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #11\n\
+ bl process_exception");
+
+void _catchException12 ();
+
+asm ("\n\
+_catchException12:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #12\n\
+ bl process_exception");
+
+void _catchException13 ();
+
+asm ("\n\
+_catchException13:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #13\n\
+ bl process_exception");
+
+void _catchException14 ();
+
+asm ("\n\
+_catchException14:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #14\n\
+ bl process_exception");
+
+void _catchException15 ();
+
+asm ("\n\
+_catchException15:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #15\n\
+ bl process_exception");
+
+void _catchException16 ();
+
+asm ("\n\
+_catchException16:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #16\n\
+ bl process_exception");
+
+void _catchException17 ();
+
+asm ("\n\
+_catchException17:\n\
+ push lr\n\
+ bl stash_registers\n\
+ ; Note that at this point the pushed value of `lr' has been popped\n\
+ ldi r0, #17\n\
+ bl process_exception");
+
+
+/* this function is used to set up exception handlers for tracing and
+ breakpoints */
+void
+set_debug_traps (void)
+{
+ /* extern void remcomHandler(); */
+ int i;
+
+ for (i = 0; i < 18; i++) /* keep a copy of old vectors */
+ if (save_vectors[i] == 0) /* only copy them the first time */
+ save_vectors[i] = getExceptionHandler (i);
+
+ stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1];
+
+ exceptionHandler (0, _catchException0);
+ exceptionHandler (1, _catchException1);
+ exceptionHandler (2, _catchException2);
+ exceptionHandler (3, _catchException3);
+ exceptionHandler (4, _catchException4);
+ exceptionHandler (5, _catchException5);
+ exceptionHandler (6, _catchException6);
+ exceptionHandler (7, _catchException7);
+ exceptionHandler (8, _catchException8);
+ exceptionHandler (9, _catchException9);
+ exceptionHandler (10, _catchException10);
+ exceptionHandler (11, _catchException11);
+ exceptionHandler (12, _catchException12);
+ exceptionHandler (13, _catchException13);
+ exceptionHandler (14, _catchException14);
+ exceptionHandler (15, _catchException15);
+ exceptionHandler (16, _catchException16);
+ /* exceptionHandler (17, _catchException17); */
+
+ initialized = 1;
+}
+
+/* This function will generate a breakpoint exception. It is used at the
+ beginning of a program to sync up with a debugger and can be used
+ otherwise as a quick means to stop program execution and "break" into
+ the debugger. */
+
+#define BREAKPOINT() asm volatile (" trap #2");
+
+void
+breakpoint (void)
+{
+ if (initialized)
+ BREAKPOINT ();
+}
+
+/* STDOUT section:
+ Stuff pertaining to simulating stdout by sending chars to gdb to be echoed.
+ Functions: gdb_putchar(char ch)
+ gdb_puts(char *str)
+ gdb_write(char *str, int len)
+ gdb_error(char *format, char *parm)
+ */
+
+/* Function: gdb_putchar(int)
+ Make gdb write a char to stdout.
+ Returns: the char */
+
+static int
+gdb_putchar (int ch)
+{
+ char buf[4];
+
+ buf[0] = 'O';
+ buf[1] = hexchars[ch >> 4];
+ buf[2] = hexchars[ch & 0x0F];
+ buf[3] = 0;
+ putpacket (buf);
+ return ch;
+}
+
+/* Function: gdb_write(char *, int)
+ Make gdb write n bytes to stdout (not assumed to be null-terminated).
+ Returns: number of bytes written */
+
+static int
+gdb_write (char *data, int len)
+{
+ char *buf, *cpy;
+ int i;
+
+ buf = remcomOutBuffer;
+ buf[0] = 'O';
+ i = 0;
+ while (i < len)
+ {
+ for (cpy = buf + 1;
+ i < len && cpy < buf + sizeof (remcomOutBuffer) - 3; i++)
+ {
+ *cpy++ = hexchars[data[i] >> 4];
+ *cpy++ = hexchars[data[i] & 0x0F];
+ }
+ *cpy = 0;
+ putpacket (buf);
+ }
+ return len;
+}
+
+/* Function: gdb_puts(char *)
+ Make gdb write a null-terminated string to stdout.
+ Returns: the length of the string */
+
+static int
+gdb_puts (char *str)
+{
+ return gdb_write (str, strlen (str));
+}
+
+/* Function: gdb_error(char *, char *)
+ Send an error message to gdb's stdout.
+ First string may have 1 (one) optional "%s" in it, which
+ will cause the optional second string to be inserted. */
+
+static void
+gdb_error (char *format, char *parm)
+{
+ char buf[400], *cpy;
+ int len;
+
+ if (remote_debug)
+ {
+ if (format && *format)
+ len = strlen (format);
+ else
+ return; /* empty input */
+
+ if (parm && *parm)
+ len += strlen (parm);
+
+ for (cpy = buf; *format;)
+ {
+ if (format[0] == '%' && format[1] == 's') /* include second string */
+ {
+ format += 2; /* advance two chars instead of just one */
+ while (parm && *parm)
+ *cpy++ = *parm++;
+ }
+ else
+ *cpy++ = *format++;
+ }
+ *cpy = '\0';
+ gdb_puts (buf);
+ }
+}
+
+static unsigned char *
+strcpy (unsigned char *dest, const unsigned char *src)
+{
+ unsigned char *ret = dest;
+
+ if (dest && src)
+ {
+ while (*src)
+ *dest++ = *src++;
+ *dest = 0;
+ }
+ return ret;
+}
+
+static int
+strlen (const unsigned char *src)
+{
+ int ret;
+
+ for (ret = 0; *src; src++)
+ ret++;
+
+ return ret;
+}
+
+#if 0
+void
+exit (code)
+ int code;
+{
+ _exit (code);
+}
+
+int
+atexit (void *p)
+{
+ return 0;
+}
+
+void
+abort (void)
+{
+ _exit (1);
+}
+#endif
diff --git a/gdb/m32r-tdep.c b/gdb/m32r-tdep.c
index 93edbf9..a40f67d 100644
--- a/gdb/m32r-tdep.c
+++ b/gdb/m32r-tdep.c
@@ -1,708 +1,989 @@
-// OBSOLETE /* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
-// OBSOLETE
-// OBSOLETE Copyright 1996, 1998, 1999, 2000, 2001, 2003 Free Software
-// OBSOLETE Foundation, Inc.
-// OBSOLETE
-// OBSOLETE This file is part of GDB.
-// OBSOLETE
-// OBSOLETE This program is free software; you can redistribute it and/or modify
-// OBSOLETE it under the terms of the GNU General Public License as published by
-// OBSOLETE the Free Software Foundation; either version 2 of the License, or
-// OBSOLETE (at your option) any later version.
-// OBSOLETE
-// OBSOLETE This program is distributed in the hope that it will be useful,
-// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of
-// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// OBSOLETE GNU General Public License for more details.
-// OBSOLETE
-// OBSOLETE You should have received a copy of the GNU General Public License
-// OBSOLETE along with this program; if not, write to the Free Software
-// OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330,
-// OBSOLETE Boston, MA 02111-1307, USA. */
-// OBSOLETE
-// OBSOLETE #include "defs.h"
-// OBSOLETE #include "frame.h"
-// OBSOLETE #include "inferior.h"
-// OBSOLETE #include "target.h"
-// OBSOLETE #include "value.h"
-// OBSOLETE #include "bfd.h"
-// OBSOLETE #include "gdb_string.h"
-// OBSOLETE #include "gdbcore.h"
-// OBSOLETE #include "symfile.h"
-// OBSOLETE #include "regcache.h"
-// OBSOLETE
-// OBSOLETE /* Function: m32r_use_struct_convention
-// OBSOLETE Return nonzero if call_function should allocate stack space for a
-// OBSOLETE struct return? */
-// OBSOLETE int
-// OBSOLETE m32r_use_struct_convention (int gcc_p, struct type *type)
-// OBSOLETE {
-// OBSOLETE return (TYPE_LENGTH (type) > 8);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: frame_find_saved_regs
-// OBSOLETE Return the frame_saved_regs structure for the frame.
-// OBSOLETE Doesn't really work for dummy frames, but it does pass back
-// OBSOLETE an empty frame_saved_regs, so I guess that's better than total failure */
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE m32r_frame_find_saved_regs (struct frame_info *fi,
-// OBSOLETE struct frame_saved_regs *regaddr)
-// OBSOLETE {
-// OBSOLETE memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Turn this on if you want to see just how much instruction decoding
-// OBSOLETE if being done, its quite a lot
-// OBSOLETE */
-// OBSOLETE #if 0
-// OBSOLETE static void
-// OBSOLETE dump_insn (char *commnt, CORE_ADDR pc, int insn)
-// OBSOLETE {
-// OBSOLETE printf_filtered (" %s %08x %08x ",
-// OBSOLETE commnt, (unsigned int) pc, (unsigned int) insn);
-// OBSOLETE TARGET_PRINT_INSN (pc, &tm_print_insn_info);
-// OBSOLETE printf_filtered ("\n");
-// OBSOLETE }
-// OBSOLETE #define insn_debug(args) { printf_filtered args; }
-// OBSOLETE #else
-// OBSOLETE #define dump_insn(a,b,c) {}
-// OBSOLETE #define insn_debug(args) {}
-// OBSOLETE #endif
-// OBSOLETE
-// OBSOLETE #define DEFAULT_SEARCH_LIMIT 44
-// OBSOLETE
-// OBSOLETE /* Function: scan_prologue
-// OBSOLETE This function decodes the target function prologue to determine
-// OBSOLETE 1) the size of the stack frame, and 2) which registers are saved on it.
-// OBSOLETE It saves the offsets of saved regs in the frame_saved_regs argument,
-// OBSOLETE and returns the frame size. */
-// OBSOLETE
-// OBSOLETE /*
-// OBSOLETE The sequence it currently generates is:
-// OBSOLETE
-// OBSOLETE if (varargs function) { ddi sp,#n }
-// OBSOLETE push registers
-// OBSOLETE if (additional stack <= 256) { addi sp,#-stack }
-// OBSOLETE else if (additional stack < 65k) { add3 sp,sp,#-stack
-// OBSOLETE
-// OBSOLETE } else if (additional stack) {
-// OBSOLETE seth sp,#(stack & 0xffff0000)
-// OBSOLETE or3 sp,sp,#(stack & 0x0000ffff)
-// OBSOLETE sub sp,r4
-// OBSOLETE }
-// OBSOLETE if (frame pointer) {
-// OBSOLETE mv sp,fp
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE These instructions are scheduled like everything else, so you should stop at
-// OBSOLETE the first branch instruction.
-// OBSOLETE
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE /* This is required by skip prologue and by m32r_init_extra_frame_info.
-// OBSOLETE The results of decoding a prologue should be cached because this
-// OBSOLETE thrashing is getting nuts.
-// OBSOLETE I am thinking of making a container class with two indexes, name and
-// OBSOLETE address. It may be better to extend the symbol table.
-// OBSOLETE */
-// OBSOLETE
-// OBSOLETE static void
-// OBSOLETE decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, CORE_ADDR *pl_endptr, /* var parameter */
-// OBSOLETE unsigned long *framelength, struct frame_info *fi,
-// OBSOLETE struct frame_saved_regs *fsr)
-// OBSOLETE {
-// OBSOLETE unsigned long framesize;
-// OBSOLETE int insn;
-// OBSOLETE int op1;
-// OBSOLETE int maybe_one_more = 0;
-// OBSOLETE CORE_ADDR after_prologue = 0;
-// OBSOLETE CORE_ADDR after_stack_adjust = 0;
-// OBSOLETE CORE_ADDR current_pc;
-// OBSOLETE
-// OBSOLETE
-// OBSOLETE framesize = 0;
-// OBSOLETE after_prologue = 0;
-// OBSOLETE insn_debug (("rd prolog l(%d)\n", scan_limit - current_pc));
-// OBSOLETE
-// OBSOLETE for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
-// OBSOLETE {
-// OBSOLETE
-// OBSOLETE insn = read_memory_unsigned_integer (current_pc, 2);
-// OBSOLETE dump_insn ("insn-1", current_pc, insn); /* MTZ */
-// OBSOLETE
-// OBSOLETE /* If this is a 32 bit instruction, we dont want to examine its
-// OBSOLETE immediate data as though it were an instruction */
-// OBSOLETE if (current_pc & 0x02)
-// OBSOLETE { /* Clear the parallel execution bit from 16 bit instruction */
-// OBSOLETE if (maybe_one_more)
-// OBSOLETE { /* The last instruction was a branch, usually terminates
-// OBSOLETE the series, but if this is a parallel instruction,
-// OBSOLETE it may be a stack framing instruction */
-// OBSOLETE if (!(insn & 0x8000))
-// OBSOLETE {
-// OBSOLETE insn_debug (("Really done"));
-// OBSOLETE break; /* nope, we are really done */
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE insn &= 0x7fff; /* decode this instruction further */
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE if (maybe_one_more)
-// OBSOLETE break; /* This isnt the one more */
-// OBSOLETE if (insn & 0x8000)
-// OBSOLETE {
-// OBSOLETE insn_debug (("32 bit insn\n"));
-// OBSOLETE if (current_pc == scan_limit)
-// OBSOLETE scan_limit += 2; /* extend the search */
-// OBSOLETE current_pc += 2; /* skip the immediate data */
-// OBSOLETE if (insn == 0x8faf) /* add3 sp, sp, xxxx */
-// OBSOLETE /* add 16 bit sign-extended offset */
-// OBSOLETE {
-// OBSOLETE insn_debug (("stack increment\n"));
-// OBSOLETE framesize += -((short) read_memory_unsigned_integer (current_pc, 2));
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE if (((insn >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */
-// OBSOLETE read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24)
-// OBSOLETE { /* subtract 24 bit sign-extended negative-offset */
-// OBSOLETE dump_insn ("insn-2", current_pc + 2, insn);
-// OBSOLETE insn = read_memory_unsigned_integer (current_pc - 2, 4);
-// OBSOLETE dump_insn ("insn-3(l4)", current_pc - 2, insn);
-// OBSOLETE if (insn & 0x00800000) /* sign extend */
-// OBSOLETE insn |= 0xff000000; /* negative */
-// OBSOLETE else
-// OBSOLETE insn &= 0x00ffffff; /* positive */
-// OBSOLETE framesize += insn;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE after_prologue = current_pc;
-// OBSOLETE continue;
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE op1 = insn & 0xf000; /* isolate just the first nibble */
-// OBSOLETE
-// OBSOLETE if ((insn & 0xf0ff) == 0x207f)
-// OBSOLETE { /* st reg, @-sp */
-// OBSOLETE int regno;
-// OBSOLETE insn_debug (("push\n"));
-// OBSOLETE #if 0 /* No, PUSH FP is not an indication that we will use a frame pointer. */
-// OBSOLETE if (((insn & 0xffff) == 0x2d7f) && fi)
-// OBSOLETE fi->using_frame_pointer = 1;
-// OBSOLETE #endif
-// OBSOLETE framesize += 4;
-// OBSOLETE #if 0
-// OBSOLETE /* Why should we increase the scan limit, just because we did a push?
-// OBSOLETE And if there is a reason, surely we would only want to do it if we
-// OBSOLETE had already reached the scan limit... */
-// OBSOLETE if (current_pc == scan_limit)
-// OBSOLETE scan_limit += 2;
-// OBSOLETE #endif
-// OBSOLETE regno = ((insn >> 8) & 0xf);
-// OBSOLETE if (fsr) /* save_regs offset */
-// OBSOLETE fsr->regs[regno] = framesize;
-// OBSOLETE after_prologue = 0;
-// OBSOLETE continue;
-// OBSOLETE }
-// OBSOLETE if ((insn >> 8) == 0x4f) /* addi sp, xx */
-// OBSOLETE /* add 8 bit sign-extended offset */
-// OBSOLETE {
-// OBSOLETE int stack_adjust = (char) (insn & 0xff);
-// OBSOLETE
-// OBSOLETE /* there are probably two of these stack adjustments:
-// OBSOLETE 1) A negative one in the prologue, and
-// OBSOLETE 2) A positive one in the epilogue.
-// OBSOLETE We are only interested in the first one. */
-// OBSOLETE
-// OBSOLETE if (stack_adjust < 0)
-// OBSOLETE {
-// OBSOLETE framesize -= stack_adjust;
-// OBSOLETE after_prologue = 0;
-// OBSOLETE /* A frameless function may have no "mv fp, sp".
-// OBSOLETE In that case, this is the end of the prologue. */
-// OBSOLETE after_stack_adjust = current_pc + 2;
-// OBSOLETE }
-// OBSOLETE continue;
-// OBSOLETE }
-// OBSOLETE if (insn == 0x1d8f)
-// OBSOLETE { /* mv fp, sp */
-// OBSOLETE if (fi)
-// OBSOLETE fi->using_frame_pointer = 1; /* fp is now valid */
-// OBSOLETE insn_debug (("done fp found\n"));
-// OBSOLETE after_prologue = current_pc + 2;
-// OBSOLETE break; /* end of stack adjustments */
-// OBSOLETE }
-// OBSOLETE if (insn == 0x7000) /* Nop looks like a branch, continue explicitly */
-// OBSOLETE {
-// OBSOLETE insn_debug (("nop\n"));
-// OBSOLETE after_prologue = current_pc + 2;
-// OBSOLETE continue; /* nop occurs between pushes */
-// OBSOLETE }
-// OBSOLETE /* End of prolog if any of these are branch instructions */
-// OBSOLETE if ((op1 == 0x7000)
-// OBSOLETE || (op1 == 0xb000)
-// OBSOLETE || (op1 == 0xf000))
-// OBSOLETE {
-// OBSOLETE after_prologue = current_pc;
-// OBSOLETE insn_debug (("Done: branch\n"));
-// OBSOLETE maybe_one_more = 1;
-// OBSOLETE continue;
-// OBSOLETE }
-// OBSOLETE /* Some of the branch instructions are mixed with other types */
-// OBSOLETE if (op1 == 0x1000)
-// OBSOLETE {
-// OBSOLETE int subop = insn & 0x0ff0;
-// OBSOLETE if ((subop == 0x0ec0) || (subop == 0x0fc0))
-// OBSOLETE {
-// OBSOLETE insn_debug (("done: jmp\n"));
-// OBSOLETE after_prologue = current_pc;
-// OBSOLETE maybe_one_more = 1;
-// OBSOLETE continue; /* jmp , jl */
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE if (current_pc >= scan_limit)
-// OBSOLETE {
-// OBSOLETE if (pl_endptr)
-// OBSOLETE {
-// OBSOLETE #if 1
-// OBSOLETE if (after_stack_adjust != 0)
-// OBSOLETE /* We did not find a "mv fp,sp", but we DID find
-// OBSOLETE a stack_adjust. Is it safe to use that as the
-// OBSOLETE end of the prologue? I just don't know. */
-// OBSOLETE {
-// OBSOLETE *pl_endptr = after_stack_adjust;
-// OBSOLETE if (framelength)
-// OBSOLETE *framelength = framesize;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE #endif
-// OBSOLETE /* We reached the end of the loop without finding the end
-// OBSOLETE of the prologue. No way to win -- we should report failure.
-// OBSOLETE The way we do that is to return the original start_pc.
-// OBSOLETE GDB will set a breakpoint at the start of the function (etc.) */
-// OBSOLETE *pl_endptr = start_pc;
-// OBSOLETE }
-// OBSOLETE return;
-// OBSOLETE }
-// OBSOLETE if (after_prologue == 0)
-// OBSOLETE after_prologue = current_pc;
-// OBSOLETE
-// OBSOLETE insn_debug ((" framesize %d, firstline %08x\n", framesize, after_prologue));
-// OBSOLETE if (framelength)
-// OBSOLETE *framelength = framesize;
-// OBSOLETE if (pl_endptr)
-// OBSOLETE *pl_endptr = after_prologue;
-// OBSOLETE } /* decode_prologue */
-// OBSOLETE
-// OBSOLETE /* Function: skip_prologue
-// OBSOLETE Find end of function prologue */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_skip_prologue (CORE_ADDR pc)
-// OBSOLETE {
-// OBSOLETE CORE_ADDR func_addr, func_end;
-// OBSOLETE struct symtab_and_line sal;
-// OBSOLETE
-// OBSOLETE /* See what the symbol table says */
-// OBSOLETE
-// OBSOLETE if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
-// OBSOLETE {
-// OBSOLETE sal = find_pc_line (func_addr, 0);
-// OBSOLETE
-// OBSOLETE if (sal.line != 0 && sal.end <= func_end)
-// OBSOLETE {
-// OBSOLETE
-// OBSOLETE insn_debug (("BP after prologue %08x\n", sal.end));
-// OBSOLETE func_end = sal.end;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE /* Either there's no line info, or the line after the prologue is after
-// OBSOLETE the end of the function. In this case, there probably isn't a
-// OBSOLETE prologue. */
-// OBSOLETE {
-// OBSOLETE insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n",
-// OBSOLETE sal.line, sal.end, func_end));
-// OBSOLETE func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE func_end = pc + DEFAULT_SEARCH_LIMIT;
-// OBSOLETE decode_prologue (pc, func_end, &sal.end, 0, 0, 0);
-// OBSOLETE return sal.end;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE static unsigned long
-// OBSOLETE m32r_scan_prologue (struct frame_info *fi, struct frame_saved_regs *fsr)
-// OBSOLETE {
-// OBSOLETE struct symtab_and_line sal;
-// OBSOLETE CORE_ADDR prologue_start, prologue_end, current_pc;
-// OBSOLETE unsigned long framesize = 0;
-// OBSOLETE
-// OBSOLETE /* this code essentially duplicates skip_prologue,
-// OBSOLETE but we need the start address below. */
-// OBSOLETE
-// OBSOLETE if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
-// OBSOLETE {
-// OBSOLETE sal = find_pc_line (prologue_start, 0);
-// OBSOLETE
-// OBSOLETE if (sal.line == 0) /* no line info, use current PC */
-// OBSOLETE if (prologue_start == entry_point_address ())
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE prologue_start = fi->pc;
-// OBSOLETE prologue_end = prologue_start + 48; /* We're in the boondocks:
-// OBSOLETE allow for 16 pushes, an add,
-// OBSOLETE and "mv fp,sp" */
-// OBSOLETE }
-// OBSOLETE #if 0
-// OBSOLETE prologue_end = min (prologue_end, fi->pc);
-// OBSOLETE #endif
-// OBSOLETE insn_debug (("fipc(%08x) start(%08x) end(%08x)\n",
-// OBSOLETE fi->pc, prologue_start, prologue_end));
-// OBSOLETE prologue_end = min (prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT);
-// OBSOLETE decode_prologue (prologue_start, prologue_end, &prologue_end, &framesize,
-// OBSOLETE fi, fsr);
-// OBSOLETE return framesize;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: init_extra_frame_info
-// OBSOLETE This function actually figures out the frame address for a given pc and
-// OBSOLETE sp. This is tricky on the m32r because we sometimes don't use an explicit
-// OBSOLETE frame pointer, and the previous stack pointer isn't necessarily recorded
-// OBSOLETE on the stack. The only reliable way to get this info is to
-// OBSOLETE examine the prologue. */
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE m32r_init_extra_frame_info (struct frame_info *fi)
-// OBSOLETE {
-// OBSOLETE int reg;
-// OBSOLETE
-// OBSOLETE if (fi->next)
-// OBSOLETE fi->pc = FRAME_SAVED_PC (fi->next);
-// OBSOLETE
-// OBSOLETE memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
-// OBSOLETE
-// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
-// OBSOLETE {
-// OBSOLETE /* We need to setup fi->frame here because run_stack_dummy gets it wrong
-// OBSOLETE by assuming it's always FP. */
-// OBSOLETE fi->frame = deprecated_read_register_dummy (fi->pc, fi->frame,
-// OBSOLETE SP_REGNUM);
-// OBSOLETE fi->framesize = 0;
-// OBSOLETE return;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE fi->using_frame_pointer = 0;
-// OBSOLETE fi->framesize = m32r_scan_prologue (fi, &fi->fsr);
-// OBSOLETE
-// OBSOLETE if (!fi->next)
-// OBSOLETE if (fi->using_frame_pointer)
-// OBSOLETE {
-// OBSOLETE fi->frame = read_register (FP_REGNUM);
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE fi->frame = read_register (SP_REGNUM);
-// OBSOLETE else
-// OBSOLETE /* fi->next means this is not the innermost frame */ if (fi->using_frame_pointer)
-// OBSOLETE /* we have an FP */
-// OBSOLETE if (fi->next->fsr.regs[FP_REGNUM] != 0) /* caller saved our FP */
-// OBSOLETE fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
-// OBSOLETE for (reg = 0; reg < NUM_REGS; reg++)
-// OBSOLETE if (fi->fsr.regs[reg] != 0)
-// OBSOLETE fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg];
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: m32r_virtual_frame_pointer
-// OBSOLETE Return the register that the function uses for a frame pointer,
-// OBSOLETE plus any necessary offset to be applied to the register before
-// OBSOLETE any frame pointer offsets. */
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE m32r_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
-// OBSOLETE {
-// OBSOLETE struct frame_info *fi = deprecated_frame_xmalloc ();
-// OBSOLETE struct cleanup *old_chain = make_cleanup (xfree, fi);
-// OBSOLETE
-// OBSOLETE /* Set up a dummy frame_info. */
-// OBSOLETE fi->next = NULL;
-// OBSOLETE fi->prev = NULL;
-// OBSOLETE fi->frame = 0;
-// OBSOLETE fi->pc = pc;
-// OBSOLETE
-// OBSOLETE /* Analyze the prolog and fill in the extra info. */
-// OBSOLETE m32r_init_extra_frame_info (fi);
-// OBSOLETE
-// OBSOLETE /* Results will tell us which type of frame it uses. */
-// OBSOLETE if (fi->using_frame_pointer)
-// OBSOLETE {
-// OBSOLETE *reg = FP_REGNUM;
-// OBSOLETE *offset = 0;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE *reg = SP_REGNUM;
-// OBSOLETE *offset = 0;
-// OBSOLETE }
-// OBSOLETE do_cleanups (old_chain);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: find_callers_reg
-// OBSOLETE Find REGNUM on the stack. Otherwise, it's in an active register. One thing
-// OBSOLETE we might want to do here is to check REGNUM against the clobber mask, and
-// OBSOLETE somehow flag it as invalid if it isn't saved on the stack somewhere. This
-// OBSOLETE would provide a graceful failure mode when trying to get the value of
-// OBSOLETE caller-saves registers for an inner frame. */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_find_callers_reg (struct frame_info *fi, int regnum)
-// OBSOLETE {
-// OBSOLETE for (; fi; fi = fi->next)
-// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
-// OBSOLETE return deprecated_read_register_dummy (fi->pc, fi->frame, regnum);
-// OBSOLETE else if (fi->fsr.regs[regnum] != 0)
-// OBSOLETE return read_memory_integer (fi->fsr.regs[regnum],
-// OBSOLETE REGISTER_RAW_SIZE (regnum));
-// OBSOLETE return read_register (regnum);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: frame_chain Given a GDB frame, determine the address of
-// OBSOLETE the calling function's frame. This will be used to create a new
-// OBSOLETE GDB frame struct, and then INIT_EXTRA_FRAME_INFO and
-// OBSOLETE DEPRECATED_INIT_FRAME_PC will be called for the new frame. For
-// OBSOLETE m32r, we save the frame size when we initialize the frame_info. */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_frame_chain (struct frame_info *fi)
-// OBSOLETE {
-// OBSOLETE CORE_ADDR fn_start, callers_pc, fp;
-// OBSOLETE
-// OBSOLETE /* is this a dummy frame? */
-// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
-// OBSOLETE return fi->frame; /* dummy frame same as caller's frame */
-// OBSOLETE
-// OBSOLETE /* is caller-of-this a dummy frame? */
-// OBSOLETE callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
-// OBSOLETE fp = m32r_find_callers_reg (fi, FP_REGNUM);
-// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (callers_pc, fp, fp))
-// OBSOLETE return fp; /* dummy frame's frame may bear no relation to ours */
-// OBSOLETE
-// OBSOLETE if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
-// OBSOLETE if (fn_start == entry_point_address ())
-// OBSOLETE return 0; /* in _start fn, don't chain further */
-// OBSOLETE if (fi->framesize == 0)
-// OBSOLETE {
-// OBSOLETE printf_filtered ("cannot determine frame size @ %s , pc(%s)\n",
-// OBSOLETE paddr (fi->frame),
-// OBSOLETE paddr (fi->pc));
-// OBSOLETE return 0;
-// OBSOLETE }
-// OBSOLETE insn_debug (("m32rx frame %08x\n", fi->frame + fi->framesize));
-// OBSOLETE return fi->frame + fi->framesize;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: push_return_address (pc)
-// OBSOLETE Set up the return address for the inferior function call.
-// OBSOLETE Necessary for targets that don't actually execute a JSR/BSR instruction
-// OBSOLETE (ie. when using an empty CALL_DUMMY) */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
-// OBSOLETE {
-// OBSOLETE write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
-// OBSOLETE return sp;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE
-// OBSOLETE /* Function: pop_frame
-// OBSOLETE Discard from the stack the innermost frame,
-// OBSOLETE restoring all saved registers. */
-// OBSOLETE
-// OBSOLETE struct frame_info *
-// OBSOLETE m32r_pop_frame (struct frame_info *frame)
-// OBSOLETE {
-// OBSOLETE int regnum;
-// OBSOLETE
-// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
-// OBSOLETE generic_pop_dummy_frame ();
-// OBSOLETE else
-// OBSOLETE {
-// OBSOLETE for (regnum = 0; regnum < NUM_REGS; regnum++)
-// OBSOLETE if (frame->fsr.regs[regnum] != 0)
-// OBSOLETE write_register (regnum,
-// OBSOLETE read_memory_integer (frame->fsr.regs[regnum], 4));
-// OBSOLETE
-// OBSOLETE write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
-// OBSOLETE write_register (SP_REGNUM, read_register (FP_REGNUM));
-// OBSOLETE if (read_register (PSW_REGNUM) & 0x80)
-// OBSOLETE write_register (SPU_REGNUM, read_register (SP_REGNUM));
-// OBSOLETE else
-// OBSOLETE write_register (SPI_REGNUM, read_register (SP_REGNUM));
-// OBSOLETE }
-// OBSOLETE flush_cached_frames ();
-// OBSOLETE return NULL;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: frame_saved_pc
-// OBSOLETE Find the caller of this frame. We do this by seeing if RP_REGNUM is saved
-// OBSOLETE in the stack anywhere, otherwise we get it from the registers. */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_frame_saved_pc (struct frame_info *fi)
-// OBSOLETE {
-// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
-// OBSOLETE return deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
-// OBSOLETE else
-// OBSOLETE return m32r_find_callers_reg (fi, RP_REGNUM);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: push_arguments
-// OBSOLETE Setup the function arguments for calling a function in the inferior.
-// OBSOLETE
-// OBSOLETE On the Mitsubishi M32R architecture, there are four registers (R0 to R3)
-// OBSOLETE which are dedicated for passing function arguments. Up to the first
-// OBSOLETE four arguments (depending on size) may go into these registers.
-// OBSOLETE The rest go on the stack.
-// OBSOLETE
-// OBSOLETE Arguments that are smaller than 4 bytes will still take up a whole
-// OBSOLETE register or a whole 32-bit word on the stack, and will be
-// OBSOLETE right-justified in the register or the stack word. This includes
-// OBSOLETE chars, shorts, and small aggregate types.
-// OBSOLETE
-// OBSOLETE Arguments of 8 bytes size are split between two registers, if
-// OBSOLETE available. If only one register is available, the argument will
-// OBSOLETE be split between the register and the stack. Otherwise it is
-// OBSOLETE passed entirely on the stack. Aggregate types with sizes between
-// OBSOLETE 4 and 8 bytes are passed entirely on the stack, and are left-justified
-// OBSOLETE within the double-word (as opposed to aggregates smaller than 4 bytes
-// OBSOLETE which are right-justified).
-// OBSOLETE
-// OBSOLETE Aggregates of greater than 8 bytes are first copied onto the stack,
-// OBSOLETE and then a pointer to the copy is passed in the place of the normal
-// OBSOLETE argument (either in a register if available, or on the stack).
-// OBSOLETE
-// OBSOLETE Functions that must return an aggregate type can return it in the
-// OBSOLETE normal return value registers (R0 and R1) if its size is 8 bytes or
-// OBSOLETE less. For larger return values, the caller must allocate space for
-// OBSOLETE the callee to copy the return value to. A pointer to this space is
-// OBSOLETE passed as an implicit first argument, always in R0. */
-// OBSOLETE
-// OBSOLETE CORE_ADDR
-// OBSOLETE m32r_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
-// OBSOLETE unsigned char struct_return, CORE_ADDR struct_addr)
-// OBSOLETE {
-// OBSOLETE int stack_offset, stack_alloc;
-// OBSOLETE int argreg;
-// OBSOLETE int argnum;
-// OBSOLETE struct type *type;
-// OBSOLETE CORE_ADDR regval;
-// OBSOLETE char *val;
-// OBSOLETE char valbuf[4];
-// OBSOLETE int len;
-// OBSOLETE int odd_sized_struct;
-// OBSOLETE
-// OBSOLETE /* first force sp to a 4-byte alignment */
-// OBSOLETE sp = sp & ~3;
-// OBSOLETE
-// OBSOLETE argreg = ARG0_REGNUM;
-// OBSOLETE /* The "struct return pointer" pseudo-argument goes in R0 */
-// OBSOLETE if (struct_return)
-// OBSOLETE write_register (argreg++, struct_addr);
-// OBSOLETE
-// OBSOLETE /* Now make sure there's space on the stack */
-// OBSOLETE for (argnum = 0, stack_alloc = 0;
-// OBSOLETE argnum < nargs; argnum++)
-// OBSOLETE stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
-// OBSOLETE sp -= stack_alloc; /* make room on stack for args */
-// OBSOLETE
-// OBSOLETE
-// OBSOLETE /* Now load as many as possible of the first arguments into
-// OBSOLETE registers, and push the rest onto the stack. There are 16 bytes
-// OBSOLETE in four registers available. Loop thru args from first to last. */
-// OBSOLETE
-// OBSOLETE argreg = ARG0_REGNUM;
-// OBSOLETE for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
-// OBSOLETE {
-// OBSOLETE type = VALUE_TYPE (args[argnum]);
-// OBSOLETE len = TYPE_LENGTH (type);
-// OBSOLETE memset (valbuf, 0, sizeof (valbuf));
-// OBSOLETE if (len < 4)
-// OBSOLETE { /* value gets right-justified in the register or stack word */
-// OBSOLETE memcpy (valbuf + (4 - len),
-// OBSOLETE (char *) VALUE_CONTENTS (args[argnum]), len);
-// OBSOLETE val = valbuf;
-// OBSOLETE }
-// OBSOLETE else
-// OBSOLETE val = (char *) VALUE_CONTENTS (args[argnum]);
-// OBSOLETE
-// OBSOLETE if (len > 4 && (len & 3) != 0)
-// OBSOLETE odd_sized_struct = 1; /* such structs go entirely on stack */
-// OBSOLETE else
-// OBSOLETE odd_sized_struct = 0;
-// OBSOLETE while (len > 0)
-// OBSOLETE {
-// OBSOLETE if (argreg > ARGLAST_REGNUM || odd_sized_struct)
-// OBSOLETE { /* must go on the stack */
-// OBSOLETE write_memory (sp + stack_offset, val, 4);
-// OBSOLETE stack_offset += 4;
-// OBSOLETE }
-// OBSOLETE /* NOTE WELL!!!!! This is not an "else if" clause!!!
-// OBSOLETE That's because some *&^%$ things get passed on the stack
-// OBSOLETE AND in the registers! */
-// OBSOLETE if (argreg <= ARGLAST_REGNUM)
-// OBSOLETE { /* there's room in a register */
-// OBSOLETE regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
-// OBSOLETE write_register (argreg++, regval);
-// OBSOLETE }
-// OBSOLETE /* Store the value 4 bytes at a time. This means that things
-// OBSOLETE larger than 4 bytes may go partly in registers and partly
-// OBSOLETE on the stack. */
-// OBSOLETE len -= REGISTER_RAW_SIZE (argreg);
-// OBSOLETE val += REGISTER_RAW_SIZE (argreg);
-// OBSOLETE }
-// OBSOLETE }
-// OBSOLETE return sp;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE /* Function: fix_call_dummy
-// OBSOLETE If there is real CALL_DUMMY code (eg. on the stack), this function
-// OBSOLETE has the responsability to insert the address of the actual code that
-// OBSOLETE is the target of the target function call. */
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE m32r_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
-// OBSOLETE struct value **args, struct type *type, int gcc_p)
-// OBSOLETE {
-// OBSOLETE /* ld24 r8, <(imm24) fun> */
-// OBSOLETE *(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000;
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE
-// OBSOLETE /* Function: m32r_write_sp
-// OBSOLETE Because SP is really a read-only register that mirrors either SPU or SPI,
-// OBSOLETE we must actually write one of those two as well, depending on PSW. */
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE m32r_write_sp (CORE_ADDR val)
-// OBSOLETE {
-// OBSOLETE unsigned long psw = read_register (PSW_REGNUM);
-// OBSOLETE
-// OBSOLETE if (psw & 0x80) /* stack mode: user or interrupt */
-// OBSOLETE write_register (SPU_REGNUM, val);
-// OBSOLETE else
-// OBSOLETE write_register (SPI_REGNUM, val);
-// OBSOLETE write_register (SP_REGNUM, val);
-// OBSOLETE }
-// OBSOLETE
-// OBSOLETE void
-// OBSOLETE _initialize_m32r_tdep (void)
-// OBSOLETE {
-// OBSOLETE tm_print_insn = print_insn_m32r;
-// OBSOLETE }
+/* Target-dependent code for Renesas M32R, for GDB.
+
+ Copyright 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
+ Foundation, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "frame.h"
+#include "frame-unwind.h"
+#include "frame-base.h"
+#include "symtab.h"
+#include "gdbtypes.h"
+#include "gdbcmd.h"
+#include "gdbcore.h"
+#include "gdb_string.h"
+#include "value.h"
+#include "inferior.h"
+#include "symfile.h"
+#include "objfiles.h"
+#include "language.h"
+#include "arch-utils.h"
+#include "regcache.h"
+#include "trad-frame.h"
+
+#include "gdb_assert.h"
+
+struct gdbarch_tdep
+{
+ /* gdbarch target dependent data here. Currently unused for M32R. */
+};
+
+/* m32r register names. */
+
+enum
+{
+ R0_REGNUM = 0,
+ R3_REGNUM = 3,
+ M32R_FP_REGNUM = 13,
+ LR_REGNUM = 14,
+ M32R_SP_REGNUM = 15,
+ PSW_REGNUM = 16,
+ M32R_PC_REGNUM = 21,
+ /* m32r calling convention. */
+ ARG1_REGNUM = R0_REGNUM,
+ ARGN_REGNUM = R3_REGNUM,
+ RET1_REGNUM = R0_REGNUM,
+};
+
+/* Local functions */
+
+extern void _initialize_m32r_tdep (void);
+
+static CORE_ADDR
+m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
+{
+ /* Align to the size of an instruction (so that they can safely be
+ pushed onto the stack. */
+ return sp & ~3;
+}
+
+/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
+ EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
+ and TYPE is the type (which is known to be struct, union or array).
+
+ The m32r returns anything less than 8 bytes in size in
+ registers. */
+
+static int
+m32r_use_struct_convention (int gcc_p, struct type *type)
+{
+ return (TYPE_LENGTH (type) > 8);
+}
+
+
+/* BREAKPOINT */
+#define M32R_BE_BREAKPOINT32 {0x10, 0xf1, 0x70, 0x00}
+#define M32R_LE_BREAKPOINT32 {0xf1, 0x10, 0x00, 0x70}
+#define M32R_BE_BREAKPOINT16 {0x10, 0xf1}
+#define M32R_LE_BREAKPOINT16 {0xf1, 0x10}
+
+static int
+m32r_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
+{
+ int val;
+ unsigned char *bp;
+ int bplen;
+
+ bplen = (addr & 3) ? 2 : 4;
+
+ /* Save the memory contents. */
+ val = target_read_memory (addr, contents_cache, bplen);
+ if (val != 0)
+ return val; /* return error */
+
+ /* Determine appropriate breakpoint contents and size for this address. */
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ {
+ if (((addr & 3) == 0) &&
+ ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80)))
+ {
+ static unsigned char insn[] = M32R_BE_BREAKPOINT32;
+ bp = insn;
+ bplen = sizeof (insn);
+ }
+ else
+ {
+ static unsigned char insn[] = M32R_BE_BREAKPOINT16;
+ bp = insn;
+ bplen = sizeof (insn);
+ }
+ }
+ else
+ { /* little-endian */
+ if (((addr & 3) == 0) &&
+ ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80)))
+ {
+ static unsigned char insn[] = M32R_LE_BREAKPOINT32;
+ bp = insn;
+ bplen = sizeof (insn);
+ }
+ else
+ {
+ static unsigned char insn[] = M32R_LE_BREAKPOINT16;
+ bp = insn;
+ bplen = sizeof (insn);
+ }
+ }
+
+ /* Write the breakpoint. */
+ val = target_write_memory (addr, (char *) bp, bplen);
+ return val;
+}
+
+static int
+m32r_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
+{
+ int val;
+ int bplen;
+
+ /* Determine appropriate breakpoint contents and size for this address. */
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ {
+ if (((addr & 3) == 0) &&
+ ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80)))
+ {
+ static unsigned char insn[] = M32R_BE_BREAKPOINT32;
+ bplen = sizeof (insn);
+ }
+ else
+ {
+ static unsigned char insn[] = M32R_BE_BREAKPOINT16;
+ bplen = sizeof (insn);
+ }
+ }
+ else
+ {
+ /* little-endian */
+ if (((addr & 3) == 0) &&
+ ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80)))
+ {
+ static unsigned char insn[] = M32R_BE_BREAKPOINT32;
+ bplen = sizeof (insn);
+ }
+ else
+ {
+ static unsigned char insn[] = M32R_BE_BREAKPOINT16;
+ bplen = sizeof (insn);
+ }
+ }
+
+ /* Write contents. */
+ val = target_write_memory (addr, contents_cache, bplen);
+ return val;
+}
+
+static const unsigned char *
+m32r_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
+{
+ unsigned char *bp;
+
+ /* Determine appropriate breakpoint. */
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ {
+ if ((*pcptr & 3) == 0)
+ {
+ static unsigned char insn[] = M32R_BE_BREAKPOINT32;
+ bp = insn;
+ *lenptr = sizeof (insn);
+ }
+ else
+ {
+ static unsigned char insn[] = M32R_BE_BREAKPOINT16;
+ bp = insn;
+ *lenptr = sizeof (insn);
+ }
+ }
+ else
+ {
+ if ((*pcptr & 3) == 0)
+ {
+ static unsigned char insn[] = M32R_LE_BREAKPOINT32;
+ bp = insn;
+ *lenptr = sizeof (insn);
+ }
+ else
+ {
+ static unsigned char insn[] = M32R_LE_BREAKPOINT16;
+ bp = insn;
+ *lenptr = sizeof (insn);
+ }
+ }
+
+ return bp;
+}
+
+
+char *m32r_register_names[] = {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
+ "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
+ "evb"
+};
+
+static int
+m32r_num_regs (void)
+{
+ return (sizeof (m32r_register_names) / sizeof (m32r_register_names[0]));
+}
+
+static const char *
+m32r_register_name (int reg_nr)
+{
+ if (reg_nr < 0)
+ return NULL;
+ if (reg_nr >= m32r_num_regs ())
+ return NULL;
+ return m32r_register_names[reg_nr];
+}
+
+
+/* Return the GDB type object for the "standard" data type
+ of data in register N. */
+
+static struct type *
+m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
+{
+ if (reg_nr == M32R_PC_REGNUM)
+ return builtin_type_void_func_ptr;
+ else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
+ return builtin_type_void_data_ptr;
+ else
+ return builtin_type_int32;
+}
+
+
+/* Write into appropriate registers a function return value
+ of type TYPE, given in virtual format.
+
+ Things always get returned in RET1_REGNUM, RET2_REGNUM. */
+
+static void
+m32r_store_return_value (struct type *type, struct regcache *regcache,
+ const void *valbuf)
+{
+ CORE_ADDR regval;
+ int len = TYPE_LENGTH (type);
+
+ regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len);
+ regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
+
+ if (len > 4)
+ {
+ regval = extract_unsigned_integer (valbuf + 4, len - 4);
+ regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
+ }
+}
+
+/* Extract from an array REGBUF containing the (raw) register state
+ the address in which a function should return its structure value,
+ as a CORE_ADDR (or an expression that can be used as one). */
+
+static CORE_ADDR
+m32r_extract_struct_value_address (struct regcache *regcache)
+{
+ ULONGEST addr;
+ regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
+ return addr;
+}
+
+
+/* This is required by skip_prologue. The results of decoding a prologue
+ should be cached because this thrashing is getting nuts. */
+
+static void
+decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit,
+ CORE_ADDR *pl_endptr)
+{
+ unsigned long framesize;
+ int insn;
+ int op1;
+ int maybe_one_more = 0;
+ CORE_ADDR after_prologue = 0;
+ CORE_ADDR after_stack_adjust = 0;
+ CORE_ADDR current_pc;
+
+ framesize = 0;
+ after_prologue = 0;
+
+ for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
+ {
+ insn = read_memory_unsigned_integer (current_pc, 2);
+
+ /* If this is a 32 bit instruction, we dont want to examine its
+ immediate data as though it were an instruction */
+ if (current_pc & 0x02)
+ {
+ /* Clear the parallel execution bit from 16 bit instruction */
+ if (maybe_one_more)
+ {
+ /* The last instruction was a branch, usually terminates
+ the series, but if this is a parallel instruction,
+ it may be a stack framing instruction */
+ if (!(insn & 0x8000))
+ {
+ /* nope, we are really done */
+ break;
+ }
+ }
+ /* decode this instruction further */
+ insn &= 0x7fff;
+ }
+ else
+ {
+ if (maybe_one_more)
+ break; /* This isnt the one more */
+ if (insn & 0x8000)
+ {
+ if (current_pc == scan_limit)
+ scan_limit += 2; /* extend the search */
+ current_pc += 2; /* skip the immediate data */
+ if (insn == 0x8faf) /* add3 sp, sp, xxxx */
+ /* add 16 bit sign-extended offset */
+ {
+ framesize +=
+ -((short) read_memory_unsigned_integer (current_pc, 2));
+ }
+ else
+ {
+ if (((insn >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */
+ read_memory_unsigned_integer (current_pc + 2,
+ 2) == 0x0f24)
+ /* subtract 24 bit sign-extended negative-offset */
+ {
+ insn = read_memory_unsigned_integer (current_pc - 2, 4);
+ if (insn & 0x00800000) /* sign extend */
+ insn |= 0xff000000; /* negative */
+ else
+ insn &= 0x00ffffff; /* positive */
+ framesize += insn;
+ }
+ }
+ after_prologue = current_pc;
+ continue;
+ }
+ }
+ op1 = insn & 0xf000; /* isolate just the first nibble */
+
+ if ((insn & 0xf0ff) == 0x207f)
+ { /* st reg, @-sp */
+ int regno;
+ framesize += 4;
+ regno = ((insn >> 8) & 0xf);
+ after_prologue = 0;
+ continue;
+ }
+ if ((insn >> 8) == 0x4f) /* addi sp, xx */
+ /* add 8 bit sign-extended offset */
+ {
+ int stack_adjust = (char) (insn & 0xff);
+
+ /* there are probably two of these stack adjustments:
+ 1) A negative one in the prologue, and
+ 2) A positive one in the epilogue.
+ We are only interested in the first one. */
+
+ if (stack_adjust < 0)
+ {
+ framesize -= stack_adjust;
+ after_prologue = 0;
+ /* A frameless function may have no "mv fp, sp".
+ In that case, this is the end of the prologue. */
+ after_stack_adjust = current_pc + 2;
+ }
+ continue;
+ }
+ if (insn == 0x1d8f)
+ { /* mv fp, sp */
+ after_prologue = current_pc + 2;
+ break; /* end of stack adjustments */
+ }
+ /* Nop looks like a branch, continue explicitly */
+ if (insn == 0x7000)
+ {
+ after_prologue = current_pc + 2;
+ continue; /* nop occurs between pushes */
+ }
+ /* End of prolog if any of these are branch instructions */
+ if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
+ {
+ after_prologue = current_pc;
+ maybe_one_more = 1;
+ continue;
+ }
+ /* Some of the branch instructions are mixed with other types */
+ if (op1 == 0x1000)
+ {
+ int subop = insn & 0x0ff0;
+ if ((subop == 0x0ec0) || (subop == 0x0fc0))
+ {
+ after_prologue = current_pc;
+ maybe_one_more = 1;
+ continue; /* jmp , jl */
+ }
+ }
+ }
+
+ if (current_pc >= scan_limit)
+ {
+ if (pl_endptr)
+ {
+ if (after_stack_adjust != 0)
+ /* We did not find a "mv fp,sp", but we DID find
+ a stack_adjust. Is it safe to use that as the
+ end of the prologue? I just don't know. */
+ {
+ *pl_endptr = after_stack_adjust;
+ }
+ else
+ /* We reached the end of the loop without finding the end
+ of the prologue. No way to win -- we should report failure.
+ The way we do that is to return the original start_pc.
+ GDB will set a breakpoint at the start of the function (etc.) */
+ *pl_endptr = start_pc;
+ }
+ return;
+ }
+ if (after_prologue == 0)
+ after_prologue = current_pc;
+
+ if (pl_endptr)
+ *pl_endptr = after_prologue;
+} /* decode_prologue */
+
+/* Function: skip_prologue
+ Find end of function prologue */
+
+#define DEFAULT_SEARCH_LIMIT 44
+
+CORE_ADDR
+m32r_skip_prologue (CORE_ADDR pc)
+{
+ CORE_ADDR func_addr, func_end;
+ struct symtab_and_line sal;
+
+ /* See what the symbol table says */
+
+ if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
+ {
+ sal = find_pc_line (func_addr, 0);
+
+ if (sal.line != 0 && sal.end <= func_end)
+ {
+ func_end = sal.end;
+ }
+ else
+ /* Either there's no line info, or the line after the prologue is after
+ the end of the function. In this case, there probably isn't a
+ prologue. */
+ {
+ func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
+ }
+ }
+ else
+ func_end = pc + DEFAULT_SEARCH_LIMIT;
+ decode_prologue (pc, func_end, &sal.end);
+ return sal.end;
+}
+
+
+struct m32r_unwind_cache
+{
+ /* The previous frame's inner most stack address. Used as this
+ frame ID's stack_addr. */
+ CORE_ADDR prev_sp;
+ /* The frame's base, optionally used by the high-level debug info. */
+ CORE_ADDR base;
+ int size;
+ /* How far the SP and r13 (FP) have been offset from the start of
+ the stack frame (as defined by the previous frame's stack
+ pointer). */
+ LONGEST sp_offset;
+ LONGEST r13_offset;
+ int uses_frame;
+ /* Table indicating the location of each and every register. */
+ struct trad_frame_saved_reg *saved_regs;
+};
+
+/* Put here the code to store, into fi->saved_regs, the addresses of
+ the saved registers of frame described by FRAME_INFO. This
+ includes special registers such as pc and fp saved in special ways
+ in the stack frame. sp is even more special: the address we return
+ for it IS the sp for the next frame. */
+
+static struct m32r_unwind_cache *
+m32r_frame_unwind_cache (struct frame_info *next_frame,
+ void **this_prologue_cache)
+{
+ CORE_ADDR pc;
+ ULONGEST prev_sp;
+ ULONGEST this_base;
+ unsigned long op;
+ int i;
+ struct m32r_unwind_cache *info;
+
+ if ((*this_prologue_cache))
+ return (*this_prologue_cache);
+
+ info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
+ (*this_prologue_cache) = info;
+ info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
+
+ info->size = 0;
+ info->sp_offset = 0;
+
+ info->uses_frame = 0;
+ for (pc = frame_func_unwind (next_frame);
+ pc > 0 && pc < frame_pc_unwind (next_frame); pc += 2)
+ {
+ if ((pc & 2) == 0)
+ {
+ op = get_frame_memory_unsigned (next_frame, pc, 4);
+ if ((op & 0x80000000) == 0x80000000)
+ {
+ /* 32-bit instruction */
+ if ((op & 0xffff0000) == 0x8faf0000)
+ {
+ /* add3 sp,sp,xxxx */
+ short n = op & 0xffff;
+ info->sp_offset += n;
+ }
+ else if (((op >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */
+ get_frame_memory_unsigned (next_frame, pc + 4,
+ 2) == 0x0f24)
+ {
+ unsigned long n = op & 0xffffff;
+ info->sp_offset += n;
+ pc += 2;
+ }
+ else
+ break;
+
+ pc += 2;
+ continue;
+ }
+ }
+
+ /* 16-bit instructions */
+ op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff;
+ if ((op & 0xf0ff) == 0x207f)
+ {
+ /* st rn, @-sp */
+ int regno = ((op >> 8) & 0xf);
+ info->sp_offset -= 4;
+ info->saved_regs[regno].addr = info->sp_offset;
+ }
+ else if ((op & 0xff00) == 0x4f00)
+ {
+ /* addi sp, xx */
+ int n = (char) (op & 0xff);
+ info->sp_offset += n;
+ }
+ else if (op == 0x1d8f)
+ {
+ /* mv fp, sp */
+ info->uses_frame = 1;
+ info->r13_offset = info->sp_offset;
+ }
+ else if (op == 0x7000)
+ /* nop */
+ continue;
+ else
+ break;
+ }
+
+ info->size = -info->sp_offset;
+
+ /* Compute the previous frame's stack pointer (which is also the
+ frame's ID's stack address), and this frame's base pointer. */
+ if (info->uses_frame)
+ {
+ /* The SP was moved to the FP. This indicates that a new frame
+ was created. Get THIS frame's FP value by unwinding it from
+ the next frame. */
+ frame_unwind_unsigned_register (next_frame, M32R_FP_REGNUM, &this_base);
+ /* The FP points at the last saved register. Adjust the FP back
+ to before the first saved register giving the SP. */
+ prev_sp = this_base + info->size;
+ }
+ else
+ {
+ /* Assume that the FP is this frame's SP but with that pushed
+ stack space added back. */
+ frame_unwind_unsigned_register (next_frame, M32R_SP_REGNUM, &this_base);
+ prev_sp = this_base + info->size;
+ }
+
+ /* Convert that SP/BASE into real addresses. */
+ info->prev_sp = prev_sp;
+ info->base = this_base;
+
+ /* Adjust all the saved registers so that they contain addresses and
+ not offsets. */
+ for (i = 0; i < NUM_REGS - 1; i++)
+ if (trad_frame_addr_p (info->saved_regs, i))
+ info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
+
+ /* The call instruction moves the caller's PC in the callee's LR.
+ Since this is an unwind, do the reverse. Copy the location of LR
+ into PC (the address / regnum) so that a request for PC will be
+ converted into a request for the LR. */
+ info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
+
+ /* The previous frame's SP needed to be computed. Save the computed
+ value. */
+ trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
+
+ return info;
+}
+
+static CORE_ADDR
+m32r_read_pc (ptid_t ptid)
+{
+ ptid_t save_ptid;
+ CORE_ADDR pc;
+
+ save_ptid = inferior_ptid;
+ inferior_ptid = ptid;
+ pc = (int) read_register (M32R_PC_REGNUM);
+ inferior_ptid = save_ptid;
+ return pc;
+}
+
+static void
+m32r_write_pc (CORE_ADDR val, ptid_t ptid)
+{
+ ptid_t save_ptid;
+
+ save_ptid = inferior_ptid;
+ inferior_ptid = ptid;
+ write_register (M32R_PC_REGNUM, val);
+ inferior_ptid = save_ptid;
+}
+
+static CORE_ADDR
+m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ ULONGEST sp;
+ frame_unwind_unsigned_register (next_frame, M32R_SP_REGNUM, &sp);
+ return sp;
+}
+
+
+static CORE_ADDR
+m32r_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
+ struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
+ struct value **args, CORE_ADDR sp, int struct_return,
+ CORE_ADDR struct_addr)
+{
+ int stack_offset, stack_alloc;
+ int argreg = ARG1_REGNUM;
+ int argnum;
+ struct type *type;
+ enum type_code typecode;
+ CORE_ADDR regval;
+ char *val;
+ char valbuf[MAX_REGISTER_SIZE];
+ int len;
+ int odd_sized_struct;
+
+ /* first force sp to a 4-byte alignment */
+ sp = sp & ~3;
+
+ /* Set the return address. For the m32r, the return breakpoint is
+ always at BP_ADDR. */
+ regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
+
+ /* If STRUCT_RETURN is true, then the struct return address (in
+ STRUCT_ADDR) will consume the first argument-passing register.
+ Both adjust the register count and store that value. */
+ if (struct_return)
+ {
+ regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
+ argreg++;
+ }
+
+ /* Now make sure there's space on the stack */
+ for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
+ stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
+ sp -= stack_alloc; /* make room on stack for args */
+
+ for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
+ {
+ type = VALUE_TYPE (args[argnum]);
+ typecode = TYPE_CODE (type);
+ len = TYPE_LENGTH (type);
+
+ memset (valbuf, 0, sizeof (valbuf));
+
+ /* Passes structures that do not fit in 2 registers by reference. */
+ if (len > 8
+ && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
+ {
+ store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum]));
+ typecode = TYPE_CODE_PTR;
+ len = 4;
+ val = valbuf;
+ }
+ else if (len < 4)
+ {
+ /* value gets right-justified in the register or stack word */
+ memcpy (valbuf + (REGISTER_RAW_SIZE (argreg) - len),
+ (char *) VALUE_CONTENTS (args[argnum]), len);
+ val = valbuf;
+ }
+ else
+ val = (char *) VALUE_CONTENTS (args[argnum]);
+
+ while (len > 0)
+ {
+ if (argreg > ARGN_REGNUM)
+ {
+ /* must go on the stack */
+ write_memory (sp + stack_offset, val, 4);
+ stack_offset += 4;
+ }
+ else if (argreg <= ARGN_REGNUM)
+ {
+ /* there's room in a register */
+ regval =
+ extract_unsigned_integer (val, REGISTER_RAW_SIZE (argreg));
+ regcache_cooked_write_unsigned (regcache, argreg++, regval);
+ }
+
+ /* Store the value 4 bytes at a time. This means that things
+ larger than 4 bytes may go partly in registers and partly
+ on the stack. */
+ len -= REGISTER_RAW_SIZE (argreg);
+ val += REGISTER_RAW_SIZE (argreg);
+ }
+ }
+
+ /* Finally, update the SP register. */
+ regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
+
+ return sp;
+}
+
+
+/* Given a return value in `regbuf' with a type `valtype',
+ extract and copy its value into `valbuf'. */
+
+static void
+m32r_extract_return_value (struct type *type, struct regcache *regcache,
+ void *dst)
+{
+ bfd_byte *valbuf = dst;
+ int len = TYPE_LENGTH (type);
+ ULONGEST tmp;
+
+ /* By using store_unsigned_integer we avoid having to do
+ anything special for small big-endian values. */
+ regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
+ store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp);
+
+ /* Ignore return values more than 8 bytes in size because the m32r
+ returns anything more than 8 bytes in the stack. */
+ if (len > 4)
+ {
+ regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
+ store_unsigned_integer (valbuf + len - 4, 4, tmp);
+ }
+}
+
+
+static CORE_ADDR
+m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ ULONGEST pc;
+ frame_unwind_unsigned_register (next_frame, M32R_PC_REGNUM, &pc);
+ return pc;
+}
+
+/* Given a GDB frame, determine the address of the calling function's
+ frame. This will be used to create a new GDB frame struct. */
+
+static void
+m32r_frame_this_id (struct frame_info *next_frame,
+ void **this_prologue_cache, struct frame_id *this_id)
+{
+ struct m32r_unwind_cache *info
+ = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
+ CORE_ADDR base;
+ CORE_ADDR func;
+ struct minimal_symbol *msym_stack;
+ struct frame_id id;
+
+ /* The FUNC is easy. */
+ func = frame_func_unwind (next_frame);
+
+ /* This is meant to halt the backtrace at "_start". Make sure we
+ don't halt it at a generic dummy frame. */
+ if (inside_entry_file (func))
+ return;
+
+ /* Check if the stack is empty. */
+ msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
+ if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
+ return;
+
+ /* Hopefully the prologue analysis either correctly determined the
+ frame's base (which is the SP from the previous frame), or set
+ that base to "NULL". */
+ base = info->prev_sp;
+ if (base == 0)
+ return;
+
+ id = frame_id_build (base, func);
+
+ /* Check that we're not going round in circles with the same frame
+ ID (but avoid applying the test to sentinel frames which do go
+ round in circles). Can't use frame_id_eq() as that doesn't yet
+ compare the frame's PC value. */
+ if (frame_relative_level (next_frame) >= 0
+ && get_frame_type (next_frame) != DUMMY_FRAME
+ && frame_id_eq (get_frame_id (next_frame), id))
+ return;
+
+ (*this_id) = id;
+}
+
+static void
+m32r_frame_prev_register (struct frame_info *next_frame,
+ void **this_prologue_cache,
+ int regnum, int *optimizedp,
+ enum lval_type *lvalp, CORE_ADDR *addrp,
+ int *realnump, void *bufferp)
+{
+ struct m32r_unwind_cache *info
+ = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
+ trad_frame_prev_register (next_frame, info->saved_regs, regnum,
+ optimizedp, lvalp, addrp, realnump, bufferp);
+}
+
+static const struct frame_unwind m32r_frame_unwind = {
+ NORMAL_FRAME,
+ m32r_frame_this_id,
+ m32r_frame_prev_register
+};
+
+static const struct frame_unwind *
+m32r_frame_p (CORE_ADDR pc)
+{
+ return &m32r_frame_unwind;
+}
+
+static CORE_ADDR
+m32r_frame_base_address (struct frame_info *next_frame, void **this_cache)
+{
+ struct m32r_unwind_cache *info
+ = m32r_frame_unwind_cache (next_frame, this_cache);
+ return info->base;
+}
+
+static const struct frame_base m32r_frame_base = {
+ &m32r_frame_unwind,
+ m32r_frame_base_address,
+ m32r_frame_base_address,
+ m32r_frame_base_address
+};
+
+/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
+ dummy frame. The frame ID's base needs to match the TOS value
+ saved by save_dummy_frame_tos(), and the PC match the dummy frame's
+ breakpoint. */
+
+static struct frame_id
+m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ return frame_id_build (m32r_unwind_sp (gdbarch, next_frame),
+ frame_pc_unwind (next_frame));
+}
+
+
+static gdbarch_init_ftype m32r_gdbarch_init;
+
+static struct gdbarch *
+m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+ struct gdbarch *gdbarch;
+ struct gdbarch_tdep *tdep;
+
+ /* If there is already a candidate, use it. */
+ arches = gdbarch_list_lookup_by_info (arches, &info);
+ if (arches != NULL)
+ return arches->gdbarch;
+
+ /* Allocate space for the new architecture. */
+ tdep = XMALLOC (struct gdbarch_tdep);
+ gdbarch = gdbarch_alloc (&info, tdep);
+
+ set_gdbarch_read_pc (gdbarch, m32r_read_pc);
+ set_gdbarch_write_pc (gdbarch, m32r_write_pc);
+ set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
+
+ set_gdbarch_num_regs (gdbarch, m32r_num_regs ());
+ set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
+ set_gdbarch_register_name (gdbarch, m32r_register_name);
+ set_gdbarch_register_type (gdbarch, m32r_register_type);
+
+ set_gdbarch_extract_return_value (gdbarch, m32r_extract_return_value);
+ set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
+ set_gdbarch_store_return_value (gdbarch, m32r_store_return_value);
+ set_gdbarch_extract_struct_value_address (gdbarch,
+ m32r_extract_struct_value_address);
+ set_gdbarch_use_struct_convention (gdbarch, m32r_use_struct_convention);
+
+ set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+ set_gdbarch_decr_pc_after_break (gdbarch, 0);
+ set_gdbarch_function_start_offset (gdbarch, 0);
+ set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
+ set_gdbarch_memory_insert_breakpoint (gdbarch,
+ m32r_memory_insert_breakpoint);
+ set_gdbarch_memory_remove_breakpoint (gdbarch,
+ m32r_memory_remove_breakpoint);
+
+ set_gdbarch_frame_args_skip (gdbarch, 0);
+ set_gdbarch_frameless_function_invocation (gdbarch,
+ frameless_look_for_prologue);
+
+ set_gdbarch_frame_align (gdbarch, m32r_frame_align);
+
+ frame_unwind_append_predicate (gdbarch, m32r_frame_p);
+ frame_base_set_default (gdbarch, &m32r_frame_base);
+
+ /* Methods for saving / extracting a dummy frame's ID. The ID's
+ stack address must match the SP value returned by
+ PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
+ set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id);
+
+ /* Return the unwound PC value. */
+ set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
+
+ set_gdbarch_print_insn (gdbarch, print_insn_m32r);
+
+ return gdbarch;
+}
+
+void
+_initialize_m32r_tdep (void)
+{
+ register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
+}