diff options
author | Daniel Jacobowitz <drow@false.org> | 2006-09-21 13:47:56 +0000 |
---|---|---|
committer | Daniel Jacobowitz <drow@false.org> | 2006-09-21 13:47:56 +0000 |
commit | 350da6eece0dc73ae5a74a81064f8d26f9d429d8 (patch) | |
tree | f99402206550f639f4bd21028de2ff121b5d61b0 | |
parent | 5bd4b6af45c338d13afa57905c0e802401a93299 (diff) | |
download | gdb-350da6eece0dc73ae5a74a81064f8d26f9d429d8.zip gdb-350da6eece0dc73ae5a74a81064f8d26f9d429d8.tar.gz gdb-350da6eece0dc73ae5a74a81064f8d26f9d429d8.tar.bz2 |
2006-09-21 Nathan Sidwell <nathan@codesourcery.com>
gdb/
* vec.h: New file.
* vec.c: New file.
* Makefile.in (SFILES): Add vec.c.
(vec_h): New.
(COMMON_OBJS): Add vec.o.
(vec.o): New target.
gdb/doc/
* gdbint.texinfo (Array Containers): New section.
-rw-r--r-- | gdb/ChangeLog | 9 | ||||
-rw-r--r-- | gdb/Makefile.in | 6 | ||||
-rw-r--r-- | gdb/doc/ChangeLog | 4 | ||||
-rw-r--r-- | gdb/doc/gdbint.texinfo | 175 | ||||
-rw-r--r-- | gdb/vec.c | 120 | ||||
-rw-r--r-- | gdb/vec.h | 1000 |
6 files changed, 1312 insertions, 2 deletions
diff --git a/gdb/ChangeLog b/gdb/ChangeLog index 268df64..7b0e5d6 100644 --- a/gdb/ChangeLog +++ b/gdb/ChangeLog @@ -1,3 +1,12 @@ +2006-09-21 Nathan Sidwell <nathan@codesourcery.com> + + * vec.h: New file. + * vec.c: New file. + * Makefile.in (SFILES): Add vec.c. + (vec_h): New. + (COMMON_OBJS): Add vec.o. + (vec.o): New target. + 2006-09-20 Daniel Jacobowitz <dan@codesourcery.com> PR remote/2154 diff --git a/gdb/Makefile.in b/gdb/Makefile.in index 5d4b5fc..1690f52 100644 --- a/gdb/Makefile.in +++ b/gdb/Makefile.in @@ -560,7 +560,7 @@ SFILES = ada-exp.y ada-lang.c ada-typeprint.c ada-valprint.c \ typeprint.c \ ui-out.c utils.c ui-file.h ui-file.c \ user-regs.c \ - valarith.c valops.c valprint.c value.c varobj.c \ + valarith.c valops.c valprint.c value.c varobj.c vec.c \ wrapper.c LINTFILES = $(SFILES) $(YYFILES) $(CONFIG_SRCS) init.c @@ -816,6 +816,7 @@ value_h = value.h $(doublest_h) $(frame_h) $(symtab_h) $(gdbtypes_h) \ $(expression_h) varobj_h = varobj.h $(symtab_h) $(gdbtypes_h) vax_tdep_h = vax-tdep.h +vec_h = vec.h $(gdb_assert_h) $(gdb_string_h) version_h = version.h wince_stub_h = wince-stub.h wrapper_h = wrapper.h $(gdb_h) @@ -941,7 +942,7 @@ COMMON_OBS = $(DEPFILES) $(CONFIG_OBS) $(YYOBJ) \ dwarf2expr.o dwarf2loc.o dwarf2-frame.o \ ada-lang.o c-lang.o f-lang.o objc-lang.o \ ui-out.o cli-out.o \ - varobj.o wrapper.o \ + varobj.o vec.o wrapper.o \ jv-lang.o jv-valprint.o jv-typeprint.o \ m2-lang.o p-lang.o p-typeprint.o p-valprint.o \ scm-exp.o scm-lang.o scm-valprint.o \ @@ -2826,6 +2827,7 @@ vax-tdep.o: vax-tdep.c $(defs_h) $(arch_utils_h) $(dis_asm_h) \ $(float_format_h) $(frame_h) $(frame_base_h) $(frame_unwind_h) \ $(gdbcore_h) $(gdbtypes_h) $(osabi_h) $(regcache_h) $(regset_h) \ $(trad_frame_h) $(value_h) $(gdb_string_h) $(vax_tdep_h) +vec.o: vec.c $(defs_h) $(vec_h) win32-nat.o: win32-nat.c $(defs_h) $(frame_h) $(inferior_h) $(target_h) \ $(exceptions_h) $(gdbcore_h) $(command_h) $(completer_h) \ $(regcache_h) $(top_h) $(buildsym_h) $(symfile_h) $(objfiles_h) \ diff --git a/gdb/doc/ChangeLog b/gdb/doc/ChangeLog index f2ee9d8..d50e845 100644 --- a/gdb/doc/ChangeLog +++ b/gdb/doc/ChangeLog @@ -1,3 +1,7 @@ +2006-09-21 Nathan Sidwell <nathan@codesourcery.com> + + * gdbint.texinfo (Array Containers): New section. + 2006-09-17 Vladimir Prus <vladimir@codesourcery.com> * gdb.texinfo (GDB/MI Stack Manipulation): Mention that diff --git a/gdb/doc/gdbint.texinfo b/gdb/doc/gdbint.texinfo index 1ab1dbf..d370cb5 100644 --- a/gdb/doc/gdbint.texinfo +++ b/gdb/doc/gdbint.texinfo @@ -4913,6 +4913,181 @@ Regex conditionals. @item sparc @end table +@section Array Containers +@cindex Array Containers +@cindex VEC + +Often it is necessary to manipulate a dynamic array of a set of +objects. C forces some bookkeeping on this, which can get cumbersome +and repetative. The @file{vec.h} file contains macros for defining +and using a typesafe vector type. The functions defined will be +inlined when compiling, and so the abstraction cost should be zero. +Domain checks are added to detect programming errors. + +An example use would be an array of symbols or section information. +The array can be grown as symbols are read in (or preallocated), and +the accessor macros provided keep care of all the necessary +bookkeeping. Because the arrays are type safe, there is no danger of +accidentally mixing up the contents. Think of these as C++ templates, +but implemented in C. + +Because of the different behavior of structure objects, scalar objects +and of pointers, there are three flavors of vector, one for each of +these variants. Both the structure object and pointer variants pass +pointers to objects around --- in the former case the pointers are +stored into the vector and in the latter case the pointers are +dereferenced and the objects copied into the vector. The scalar +object variant is suitable for @code{int}-like objects, and the vector +elements are returned by value. + +There are both @code{index} and @code{iterate} accessors. The iterator +returns a boolean iteration condition and updates the iteration +variable passed by reference. Because the iterator will be inlined, +the address-of can be optimized away. + +The vectors are implemented using the trailing array idiom, thus they +are not resizeable without changing the address of the vector object +itself. This means you cannot have variables or fields of vector type +--- always use a pointer to a vector. The one exception is the final +field of a structure, which could be a vector type. You will have to +use the @code{embedded_size} & @code{embedded_init} calls to create +such objects, and they will probably not be resizeable (so don't use +the @dfn{safe} allocation variants). The trailing array idiom is used +(rather than a pointer to an array of data), because, if we allow +@code{NULL} to also represent an empty vector, empty vectors occupy +minimal space in the structure containing them. + +Each operation that increases the number of active elements is +available in @dfn{quick} and @dfn{safe} variants. The former presumes +that there is sufficient allocated space for the operation to succeed +(it dies if there is not). The latter will reallocate the vector, if +needed. Reallocation causes an exponential increase in vector size. +If you know you will be adding N elements, it would be more efficient +to use the reserve operation before adding the elements with the +@dfn{quick} operation. This will ensure there are at least as many +elements as you ask for, it will exponentially increase if there are +too few spare slots. If you want reserve a specific number of slots, +but do not want the exponential increase (for instance, you know this +is the last allocation), use a negative number for reservation. You +can also create a vector of a specific size from the get go. + +You should prefer the push and pop operations, as they append and +remove from the end of the vector. If you need to remove several items +in one go, use the truncate operation. The insert and remove +operations allow you to change elements in the middle of the vector. +There are two remove operations, one which preserves the element +ordering @code{ordered_remove}, and one which does not +@code{unordered_remove}. The latter function copies the end element +into the removed slot, rather than invoke a memmove operation. The +@code{lower_bound} function will determine where to place an item in +the array using insert that will maintain sorted order. + +If you need to directly manipulate a vector, then the @code{address} +accessor will return the address of the start of the vector. Also the +@code{space} predicate will tell you whether there is spare capacity in the +vector. You will not normally need to use these two functions. + +Vector types are defined using a +@code{DEF_VEC_@{O,P,I@}(@var{typename})} macro. Variables of vector +type are declared using a @code{VEC(@var{typename})} macro. The +characters @code{O}, @code{P} and @code{I} indicate whether +@var{typename} is an object (@code{O}), pointer (@code{P}) or integral +(@code{I}) type. Be careful to pick the correct one, as you'll get an +awkward and inefficient API if you use the wrong one. There is a +check, which results in a compile-time warning, for the @code{P} and +@code{I} versions, but there is no check for the @code{O} versions, as +that is not possible in plain C. + +An example of their use would be, + +@smallexample +DEF_VEC_P(tree); // non-managed tree vector. + +struct my_struct @{ + VEC(tree) *v; // A (pointer to) a vector of tree pointers. +@}; + +struct my_struct *s; + +if (VEC_length(tree, s->v)) @{ we have some contents @} +VEC_safe_push(tree, s->v, decl); // append some decl onto the end +for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++) + @{ do something with elt @} + +@end smallexample + +The @file{vec.h} file provides details on how to invoke the various +accessors provided. They are enumerated here: + +@table @code +@item VEC_length +Return the number of items in the array, + +@item VEC_empty +Return true if the array has no elements. + +@item VEC_last +@itemx VEC_index +Return the last or arbitrary item in the array. + +@item VEC_iterate +Access an array element and indicate whether the array has been +traversed. + +@item VEC_alloc +@itemx VEC_free +Create and destroy an array. + +@item VEC_embedded_size +@itemx VEC_embedded_init +Helpers for embedding an array as the final element of another struct. + +@item VEC_copy +Duplicate an array. + +@item VEC_space +Return the amount of free space in an array. + +@item VEC_reserve +Ensure a certain amount of free space. + +@item VEC_quick_push +@itemx VEC_safe_push +Append to an array, either assuming the space is available, or making +sure that it is. + +@item VEC_pop +Remove the last item from an array. + +@item VEC_truncate +Remove several items from the end of an array. + +@item VEC_safe_grow +Add several items to the end of an array. + +@item VEC_replace +Overwrite an item in the array. + +@item VEC_quick_insert +@itemx VEC_safe_insert +Insert an item into the middle of the array. Either the space must +already exist, or the space is created. + +@item VEC_ordered_remove +@itemx VEC_unordered_remove +Remove an item from the array, preserving order or not. + +@item VEC_block_remove +Remove a set of items from the array. + +@item VEC_address +Provide the address of the first element. + +@item VEC_lower_bound +Binary search the array. + +@end table + @section include @node Coding diff --git a/gdb/vec.c b/gdb/vec.c new file mode 100644 index 0000000..4f67e68 --- /dev/null +++ b/gdb/vec.c @@ -0,0 +1,120 @@ +/* Vector API for GDB. + Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc. + Contributed by Nathan Sidwell <nathan@codesourcery.com> + + This file is part of GDB. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 51 Franklin Street, Fifth Floor, + Boston, MA 02110-1301, USA. */ + +#include "vec.h" +#include "defs.h" + +struct vec_prefix +{ + unsigned num; + unsigned alloc; + void *vec[1]; +}; + +/* Calculate the new ALLOC value, making sure that abs(RESERVE) slots + are free. If RESERVE < 0 grow exactly, otherwise grow + exponentially. */ + +static inline unsigned +calculate_allocation (const struct vec_prefix *pfx, int reserve) +{ + unsigned alloc = 0; + unsigned num = 0; + + if (pfx) + { + alloc = pfx->alloc; + num = pfx->num; + } + else if (!reserve) + /* If there's no prefix, and we've not requested anything, then we + will create a NULL vector. */ + return 0; + + /* We must have run out of room. */ + gdb_assert (alloc - num < (unsigned)(reserve < 0 ? -reserve : reserve)); + + if (reserve < 0) + /* Exact size. */ + alloc = num + -reserve; + else + { + /* Exponential growth. */ + if (!alloc) + alloc = 4; + else if (alloc < 16) + /* Double when small. */ + alloc = alloc * 2; + else + /* Grow slower when large. */ + alloc = (alloc * 3 / 2); + + /* If this is still too small, set it to the right size. */ + if (alloc < num + reserve) + alloc = num + reserve; + } + return alloc; +} + +/* Ensure there are at least abs(RESERVE) free slots in VEC. If + RESERVE < 0 grow exactly, else grow exponentially. As a special + case, if VEC is NULL, and RESERVE is 0, no vector will be created. */ + +void * +vec_p_reserve (void *vec, int reserve) +{ + return vec_o_reserve (vec, reserve, + offsetof (struct vec_prefix, vec), sizeof (void *)); +} + +/* As vec_p_reserve, but for object vectors. The vector's trailing + array is at VEC_OFFSET offset and consists of ELT_SIZE sized + elements. */ + +void * +vec_o_reserve (void *vec, int reserve, size_t vec_offset, size_t elt_size) +{ + struct vec_prefix *pfx = vec; + unsigned alloc = calculate_allocation (pfx, reserve); + + if (!alloc) + return NULL; + + vec = xrealloc (vec, vec_offset + alloc * elt_size); + ((struct vec_prefix *)vec)->alloc = alloc; + if (!pfx) + ((struct vec_prefix *)vec)->num = 0; + + return vec; +} + +#if 0 +/* Example uses. */ +DEF_VEC_I (int); +typedef struct X +{ + int i; +} obj_t; +typedef obj_t *ptr_t; + +DEF_VEC_P (ptr_t); +DEF_VEC_O (obj_t); +#endif diff --git a/gdb/vec.h b/gdb/vec.h new file mode 100644 index 0000000..f6b7f07 --- /dev/null +++ b/gdb/vec.h @@ -0,0 +1,1000 @@ +/* Vector API for GDB. + Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc. + Contributed by Nathan Sidwell <nathan@codesourcery.com> + + This file is part of GDB. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 51 Franklin Street, Fifth Floor, + Boston, MA 02110-1301, USA. */ + +#if !defined (GDB_VEC_H) +#define GDB_VEC_H + +#include <stddef.h> +#include "gdb_string.h" +#include "gdb_assert.h" + +/* The macros here implement a set of templated vector types and + associated interfaces. These templates are implemented with + macros, as we're not in C++ land. The interface functions are + typesafe and use static inline functions, sometimes backed by + out-of-line generic functions. + + Because of the different behavior of structure objects, scalar + objects and of pointers, there are three flavors, one for each of + these variants. Both the structure object and pointer variants + pass pointers to objects around -- in the former case the pointers + are stored into the vector and in the latter case the pointers are + dereferenced and the objects copied into the vector. The scalar + object variant is suitable for int-like objects, and the vector + elements are returned by value. + + There are both 'index' and 'iterate' accessors. The iterator + returns a boolean iteration condition and updates the iteration + variable passed by reference. Because the iterator will be + inlined, the address-of can be optimized away. + + The vectors are implemented using the trailing array idiom, thus + they are not resizeable without changing the address of the vector + object itself. This means you cannot have variables or fields of + vector type -- always use a pointer to a vector. The one exception + is the final field of a structure, which could be a vector type. + You will have to use the embedded_size & embedded_init calls to + create such objects, and they will probably not be resizeable (so + don't use the 'safe' allocation variants). The trailing array + idiom is used (rather than a pointer to an array of data), because, + if we allow NULL to also represent an empty vector, empty vectors + occupy minimal space in the structure containing them. + + Each operation that increases the number of active elements is + available in 'quick' and 'safe' variants. The former presumes that + there is sufficient allocated space for the operation to succeed + (it dies if there is not). The latter will reallocate the + vector, if needed. Reallocation causes an exponential increase in + vector size. If you know you will be adding N elements, it would + be more efficient to use the reserve operation before adding the + elements with the 'quick' operation. This will ensure there are at + least as many elements as you ask for, it will exponentially + increase if there are too few spare slots. If you want reserve a + specific number of slots, but do not want the exponential increase + (for instance, you know this is the last allocation), use a + negative number for reservation. You can also create a vector of a + specific size from the get go. + + You should prefer the push and pop operations, as they append and + remove from the end of the vector. If you need to remove several + items in one go, use the truncate operation. The insert and remove + operations allow you to change elements in the middle of the + vector. There are two remove operations, one which preserves the + element ordering 'ordered_remove', and one which does not + 'unordered_remove'. The latter function copies the end element + into the removed slot, rather than invoke a memmove operation. The + 'lower_bound' function will determine where to place an item in the + array using insert that will maintain sorted order. + + If you need to directly manipulate a vector, then the 'address' + accessor will return the address of the start of the vector. Also + the 'space' predicate will tell you whether there is spare capacity + in the vector. You will not normally need to use these two functions. + + Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro. + Variables of vector type are declared using a VEC(TYPEDEF) macro. + The characters O, P and I indicate whether TYPEDEF is a pointer + (P), object (O) or integral (I) type. Be careful to pick the + correct one, as you'll get an awkward and inefficient API if you + use the wrong one. There is a check, which results in a + compile-time warning, for the P and I versions, but there is no + check for the O versions, as that is not possible in plain C. + + An example of their use would be, + + DEF_VEC_P(tree); // non-managed tree vector. + + struct my_struct { + VEC(tree) *v; // A (pointer to) a vector of tree pointers. + }; + + struct my_struct *s; + + if (VEC_length(tree, s->v)) { we have some contents } + VEC_safe_push(tree, s->v, decl); // append some decl onto the end + for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++) + { do something with elt } + +*/ + +/* Macros to invoke API calls. A single macro works for both pointer + and object vectors, but the argument and return types might well be + different. In each macro, T is the typedef of the vector elements. + Some of these macros pass the vector, V, by reference (by taking + its address), this is noted in the descriptions. */ + +/* Length of vector + unsigned VEC_T_length(const VEC(T) *v); + + Return the number of active elements in V. V can be NULL, in which + case zero is returned. */ + +#define VEC_length(T,V) (VEC_OP(T,length)(V)) + + +/* Check if vector is empty + int VEC_T_empty(const VEC(T) *v); + + Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */ + +#define VEC_empty(T,V) (VEC_length (T,V) == 0) + + +/* Get the final element of the vector. + T VEC_T_last(VEC(T) *v); // Integer + T VEC_T_last(VEC(T) *v); // Pointer + T *VEC_T_last(VEC(T) *v); // Object + + Return the final element. V must not be empty. */ + +#define VEC_last(T,V) (VEC_OP(T,last)(V VEC_ASSERT_INFO)) + +/* Index into vector + T VEC_T_index(VEC(T) *v, unsigned ix); // Integer + T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer + T *VEC_T_index(VEC(T) *v, unsigned ix); // Object + + Return the IX'th element. If IX must be in the domain of V. */ + +#define VEC_index(T,V,I) (VEC_OP(T,index)(V,I VEC_ASSERT_INFO)) + +/* Iterate over vector + int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer + int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer + int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object + + Return iteration condition and update PTR to point to the IX'th + element. At the end of iteration, sets PTR to NULL. Use this to + iterate over the elements of a vector as follows, + + for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++) + continue; */ + +#define VEC_iterate(T,V,I,P) (VEC_OP(T,iterate)(V,I,&(P))) + +/* Allocate new vector. + VEC(T,A) *VEC_T_alloc(int reserve); + + Allocate a new vector with space for RESERVE objects. If RESERVE + is zero, NO vector is created. */ + +#define VEC_alloc(T,N) (VEC_OP(T,alloc)(N)) + +/* Free a vector. + void VEC_T_free(VEC(T,A) *&); + + Free a vector and set it to NULL. */ + +#define VEC_free(T,V) (VEC_OP(T,free)(&V)) + +/* Use these to determine the required size and initialization of a + vector embedded within another structure (as the final member). + + size_t VEC_T_embedded_size(int reserve); + void VEC_T_embedded_init(VEC(T) *v, int reserve); + + These allow the caller to perform the memory allocation. */ + +#define VEC_embedded_size(T,N) (VEC_OP(T,embedded_size)(N)) +#define VEC_embedded_init(T,O,N) (VEC_OP(T,embedded_init)(VEC_BASE(O),N)) + +/* Copy a vector. + VEC(T,A) *VEC_T_copy(VEC(T) *); + + Copy the live elements of a vector into a new vector. The new and + old vectors need not be allocated by the same mechanism. */ + +#define VEC_copy(T,V) (VEC_OP(T,copy)(V)) + +/* Determine if a vector has additional capacity. + + int VEC_T_space (VEC(T) *v,int reserve) + + If V has space for RESERVE additional entries, return nonzero. You + usually only need to use this if you are doing your own vector + reallocation, for instance on an embedded vector. This returns + nonzero in exactly the same circumstances that VEC_T_reserve + will. */ + +#define VEC_space(T,V,R) (VEC_OP(T,space)(V,R VEC_ASSERT_INFO)) + +/* Reserve space. + int VEC_T_reserve(VEC(T,A) *&v, int reserve); + + Ensure that V has at least abs(RESERVE) slots available. The + signedness of RESERVE determines the reallocation behavior. A + negative value will not create additional headroom beyond that + requested. A positive value will create additional headroom. Note + this can cause V to be reallocated. Returns nonzero iff + reallocation actually occurred. */ + +#define VEC_reserve(T,V,R) (VEC_OP(T,reserve)(&(V),R VEC_ASSERT_INFO)) + +/* Push object with no reallocation + T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer + T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer + T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object + + Push a new element onto the end, returns a pointer to the slot + filled in. For object vectors, the new value can be NULL, in which + case NO initialization is performed. There must + be sufficient space in the vector. */ + +#define VEC_quick_push(T,V,O) (VEC_OP(T,quick_push)(V,O VEC_ASSERT_INFO)) + +/* Push object with reallocation + T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Integer + T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Pointer + T *VEC_T_safe_push (VEC(T,A) *&v, T *obj); // Object + + Push a new element onto the end, returns a pointer to the slot + filled in. For object vectors, the new value can be NULL, in which + case NO initialization is performed. Reallocates V, if needed. */ + +#define VEC_safe_push(T,V,O) (VEC_OP(T,safe_push)(&(V),O VEC_ASSERT_INFO)) + +/* Pop element off end + T VEC_T_pop (VEC(T) *v); // Integer + T VEC_T_pop (VEC(T) *v); // Pointer + void VEC_T_pop (VEC(T) *v); // Object + + Pop the last element off the end. Returns the element popped, for + pointer vectors. */ + +#define VEC_pop(T,V) (VEC_OP(T,pop)(V VEC_ASSERT_INFO)) + +/* Truncate to specific length + void VEC_T_truncate (VEC(T) *v, unsigned len); + + Set the length as specified. The new length must be less than or + equal to the current length. This is an O(1) operation. */ + +#define VEC_truncate(T,V,I) \ + (VEC_OP(T,truncate)(V,I VEC_ASSERT_INFO)) + +/* Grow to a specific length. + void VEC_T_safe_grow (VEC(T,A) *&v, int len); + + Grow the vector to a specific length. The LEN must be as + long or longer than the current length. The new elements are + uninitialized. */ + +#define VEC_safe_grow(T,V,I) \ + (VEC_OP(T,safe_grow)(&(V),I VEC_ASSERT_INFO)) + +/* Replace element + T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer + T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer + T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object + + Replace the IXth element of V with a new value, VAL. For pointer + vectors returns the original value. For object vectors returns a + pointer to the new value. For object vectors the new value can be + NULL, in which case no overwriting of the slot is actually + performed. */ + +#define VEC_replace(T,V,I,O) (VEC_OP(T,replace)(V,I,O VEC_ASSERT_INFO)) + +/* Insert object with no reallocation + T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer + T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer + T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object + + Insert an element, VAL, at the IXth position of V. Return a pointer + to the slot created. For vectors of object, the new value can be + NULL, in which case no initialization of the inserted slot takes + place. There must be sufficient space. */ + +#define VEC_quick_insert(T,V,I,O) \ + (VEC_OP(T,quick_insert)(V,I,O VEC_ASSERT_INFO)) + +/* Insert object with reallocation + T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer + T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer + T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object + + Insert an element, VAL, at the IXth position of V. Return a pointer + to the slot created. For vectors of object, the new value can be + NULL, in which case no initialization of the inserted slot takes + place. Reallocate V, if necessary. */ + +#define VEC_safe_insert(T,V,I,O) \ + (VEC_OP(T,safe_insert)(&(V),I,O VEC_ASSERT_INFO)) + +/* Remove element retaining order + T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer + T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer + void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object + + Remove an element from the IXth position of V. Ordering of + remaining elements is preserved. For pointer vectors returns the + removed object. This is an O(N) operation due to a memmove. */ + +#define VEC_ordered_remove(T,V,I) \ + (VEC_OP(T,ordered_remove)(V,I VEC_ASSERT_INFO)) + +/* Remove element destroying order + T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer + T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer + void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object + + Remove an element from the IXth position of V. Ordering of + remaining elements is destroyed. For pointer vectors returns the + removed object. This is an O(1) operation. */ + +#define VEC_unordered_remove(T,V,I) \ + (VEC_OP(T,unordered_remove)(V,I VEC_ASSERT_INFO)) + +/* Remove a block of elements + void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len); + + Remove LEN elements starting at the IXth. Ordering is retained. + This is an O(1) operation. */ + +#define VEC_block_remove(T,V,I,L) \ + (VEC_OP(T,block_remove)(V,I,L) VEC_ASSERT_INFO) + +/* Get the address of the array of elements + T *VEC_T_address (VEC(T) v) + + If you need to directly manipulate the array (for instance, you + want to feed it to qsort), use this accessor. */ + +#define VEC_address(T,V) (VEC_OP(T,address)(V)) + +/* Find the first index in the vector not less than the object. + unsigned VEC_T_lower_bound (VEC(T) *v, const T val, + int (*lessthan) (const T, const T)); // Integer + unsigned VEC_T_lower_bound (VEC(T) *v, const T val, + int (*lessthan) (const T, const T)); // Pointer + unsigned VEC_T_lower_bound (VEC(T) *v, const T *val, + int (*lessthan) (const T*, const T*)); // Object + + Find the first position in which VAL could be inserted without + changing the ordering of V. LESSTHAN is a function that returns + true if the first argument is strictly less than the second. */ + +#define VEC_lower_bound(T,V,O,LT) \ + (VEC_OP(T,lower_bound)(V,O,LT VEC_ASSERT_INFO)) + +/* Reallocate an array of elements with prefix. */ +extern void *vec_p_reserve (void *, int); +extern void *vec_o_reserve (void *, int, size_t, size_t); +#define vec_free(V) xfree (V) + +#define VEC_ASSERT_INFO ,__FILE__,__LINE__ +#define VEC_ASSERT_DECL ,const char *file_,unsigned line_ +#define VEC_ASSERT_PASS ,file_,line_ +#define vec_assert(expr, op) \ + ((void)((expr) ? 0 : (gdb_assert_fail (op, file_, line_, ASSERT_FUNCTION), 0))) + +#define VEC(T) VEC_##T +#define VEC_OP(T,OP) VEC_##T##_##OP + +#define VEC_T(T) \ +typedef struct VEC(T) \ +{ \ + unsigned num; \ + unsigned alloc; \ + T vec[1]; \ +} VEC(T) + +/* Vector of integer-like object. */ +#define DEF_VEC_I(T) \ +static inline void VEC_OP (T,must_be_integral_type) (void) \ +{ \ + (void)~(T)0; \ +} \ + \ +VEC_T(T); \ +DEF_VEC_FUNC_P(T) \ +DEF_VEC_ALLOC_FUNC_I(T) \ +struct vec_swallow_trailing_semi + +/* Vector of pointer to object. */ +#define DEF_VEC_P(T) \ +static inline void VEC_OP (T,must_be_pointer_type) (void) \ +{ \ + (void)((T)1 == (void *)1); \ +} \ + \ +VEC_T(T); \ +DEF_VEC_FUNC_P(T) \ +DEF_VEC_ALLOC_FUNC_P(T) \ +struct vec_swallow_trailing_semi + +/* Vector of object. */ +#define DEF_VEC_O(T) \ +VEC_T(T); \ +DEF_VEC_FUNC_O(T) \ +DEF_VEC_ALLOC_FUNC_O(T) \ +struct vec_swallow_trailing_semi + +#define DEF_VEC_ALLOC_FUNC_I(T) \ +static inline VEC(T) *VEC_OP (T,alloc) \ + (int alloc_) \ +{ \ + /* We must request exact size allocation, hence the negation. */ \ + return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \ + offsetof (VEC(T),vec), sizeof (T)); \ +} \ + \ +static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \ +{ \ + size_t len_ = vec_ ? vec_->num : 0; \ + VEC (T) *new_vec_ = NULL; \ + \ + if (len_) \ + { \ + /* We must request exact size allocation, hence the negation. */ \ + new_vec_ = (VEC (T) *) \ + vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \ + \ + new_vec_->num = len_; \ + memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \ + } \ + return new_vec_; \ +} \ + \ +static inline void VEC_OP (T,free) \ + (VEC(T) **vec_) \ +{ \ + if (*vec_) \ + vec_free (*vec_); \ + *vec_ = NULL; \ +} \ + \ +static inline int VEC_OP (T,reserve) \ + (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \ +{ \ + int extend = !VEC_OP (T,space) \ + (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \ + \ + if (extend) \ + *vec_ = (VEC(T) *) vec_o_reserve (*vec_, alloc_, \ + offsetof (VEC(T),vec), sizeof (T)); \ + \ + return extend; \ +} \ + \ +static inline void VEC_OP (T,safe_grow) \ + (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \ +{ \ + vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \ + "safe_grow"); \ + VEC_OP (T,reserve) (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ \ + VEC_ASSERT_PASS); \ + (*vec_)->num = size_; \ +} \ + \ +static inline T *VEC_OP (T,safe_push) \ + (VEC(T) **vec_, const T obj_ VEC_ASSERT_DECL) \ +{ \ + VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ + \ + return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \ +} \ + \ +static inline T *VEC_OP (T,safe_insert) \ + (VEC(T) **vec_, unsigned ix_, const T obj_ VEC_ASSERT_DECL) \ +{ \ + VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ + \ + return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \ +} + +#define DEF_VEC_FUNC_P(T) \ +static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \ +{ \ + return vec_ ? vec_->num : 0; \ +} \ + \ +static inline T VEC_OP (T,last) \ + (const VEC(T) *vec_ VEC_ASSERT_DECL) \ +{ \ + vec_assert (vec_ && vec_->num, "last"); \ + \ + return vec_->vec[vec_->num - 1]; \ +} \ + \ +static inline T VEC_OP (T,index) \ + (const VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ +{ \ + vec_assert (vec_ && ix_ < vec_->num, "index"); \ + \ + return vec_->vec[ix_]; \ +} \ + \ +static inline int VEC_OP (T,iterate) \ + (const VEC(T) *vec_, unsigned ix_, T *ptr) \ +{ \ + if (vec_ && ix_ < vec_->num) \ + { \ + *ptr = vec_->vec[ix_]; \ + return 1; \ + } \ + else \ + { \ + *ptr = 0; \ + return 0; \ + } \ +} \ + \ +static inline size_t VEC_OP (T,embedded_size) \ + (int alloc_) \ +{ \ + return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \ +} \ + \ +static inline void VEC_OP (T,embedded_init) \ + (VEC(T) *vec_, int alloc_) \ +{ \ + vec_->num = 0; \ + vec_->alloc = alloc_; \ +} \ + \ +static inline int VEC_OP (T,space) \ + (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \ +{ \ + vec_assert (alloc_ >= 0, "space"); \ + return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ +} \ + \ +static inline T *VEC_OP (T,quick_push) \ + (VEC(T) *vec_, T obj_ VEC_ASSERT_DECL) \ +{ \ + T *slot_; \ + \ + vec_assert (vec_->num < vec_->alloc, "quick_push"); \ + slot_ = &vec_->vec[vec_->num++]; \ + *slot_ = obj_; \ + \ + return slot_; \ +} \ + \ +static inline T VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \ +{ \ + T obj_; \ + \ + vec_assert (vec_->num, "pop"); \ + obj_ = vec_->vec[--vec_->num]; \ + \ + return obj_; \ +} \ + \ +static inline void VEC_OP (T,truncate) \ + (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \ +{ \ + vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \ + if (vec_) \ + vec_->num = size_; \ +} \ + \ +static inline T VEC_OP (T,replace) \ + (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \ +{ \ + T old_obj_; \ + \ + vec_assert (ix_ < vec_->num, "replace"); \ + old_obj_ = vec_->vec[ix_]; \ + vec_->vec[ix_] = obj_; \ + \ + return old_obj_; \ +} \ + \ +static inline T *VEC_OP (T,quick_insert) \ + (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \ +{ \ + T *slot_; \ + \ + vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \ + slot_ = &vec_->vec[ix_]; \ + memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ + *slot_ = obj_; \ + \ + return slot_; \ +} \ + \ +static inline T VEC_OP (T,ordered_remove) \ + (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ +{ \ + T *slot_; \ + T obj_; \ + \ + vec_assert (ix_ < vec_->num, "ordered_remove"); \ + slot_ = &vec_->vec[ix_]; \ + obj_ = *slot_; \ + memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ + \ + return obj_; \ +} \ + \ +static inline T VEC_OP (T,unordered_remove) \ + (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ +{ \ + T *slot_; \ + T obj_; \ + \ + vec_assert (ix_ < vec_->num, "unordered_remove"); \ + slot_ = &vec_->vec[ix_]; \ + obj_ = *slot_; \ + *slot_ = vec_->vec[--vec_->num]; \ + \ + return obj_; \ +} \ + \ +static inline void VEC_OP (T,block_remove) \ + (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \ +{ \ + T *slot_; \ + \ + vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \ + slot_ = &vec_->vec[ix_]; \ + vec_->num -= len_; \ + memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ +} \ + \ +static inline T *VEC_OP (T,address) \ + (VEC(T) *vec_) \ +{ \ + return vec_ ? vec_->vec : 0; \ +} \ + \ +static inline unsigned VEC_OP (T,lower_bound) \ + (VEC(T) *vec_, const T obj_, \ + int (*lessthan_)(const T, const T) VEC_ASSERT_DECL) \ +{ \ + unsigned int len_ = VEC_OP (T, length) (vec_); \ + unsigned int half_, middle_; \ + unsigned int first_ = 0; \ + while (len_ > 0) \ + { \ + T middle_elem_; \ + half_ = len_ >> 1; \ + middle_ = first_; \ + middle_ += half_; \ + middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \ + if (lessthan_ (middle_elem_, obj_)) \ + { \ + first_ = middle_; \ + ++first_; \ + len_ = len_ - half_ - 1; \ + } \ + else \ + len_ = half_; \ + } \ + return first_; \ +} + +#define DEF_VEC_ALLOC_FUNC_P(T) \ +static inline VEC(T) *VEC_OP (T,alloc) \ + (int alloc_) \ +{ \ + /* We must request exact size allocation, hence the negation. */ \ + return (VEC(T) *) vec_p_reserve (NULL, -alloc_); \ +} \ + \ +static inline void VEC_OP (T,free) \ + (VEC(T) **vec_) \ +{ \ + if (*vec_) \ + vec_free (*vec_); \ + *vec_ = NULL; \ +} \ + \ +static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \ +{ \ + size_t len_ = vec_ ? vec_->num : 0; \ + VEC (T) *new_vec_ = NULL; \ + \ + if (len_) \ + { \ + /* We must request exact size allocation, hence the negation. */ \ + new_vec_ = (VEC (T) *)(vec_p_reserve (NULL, -len_)); \ + \ + new_vec_->num = len_; \ + memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \ + } \ + return new_vec_; \ +} \ + \ +static inline int VEC_OP (T,reserve) \ + (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \ +{ \ + int extend = !VEC_OP (T,space) \ + (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \ + \ + if (extend) \ + *vec_ = (VEC(T) *) vec_p_reserve (*vec_, alloc_); \ + \ + return extend; \ +} \ + \ +static inline void VEC_OP (T,safe_grow) \ + (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \ +{ \ + vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \ + "safe_grow"); \ + VEC_OP (T,reserve) \ + (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \ + (*vec_)->num = size_; \ +} \ + \ +static inline T *VEC_OP (T,safe_push) \ + (VEC(T) **vec_, T obj_ VEC_ASSERT_DECL) \ +{ \ + VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ + \ + return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \ +} \ + \ +static inline T *VEC_OP (T,safe_insert) \ + (VEC(T) **vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \ +{ \ + VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ + \ + return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \ +} + +#define DEF_VEC_FUNC_O(T) \ +static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \ +{ \ + return vec_ ? vec_->num : 0; \ +} \ + \ +static inline T *VEC_OP (T,last) (VEC(T) *vec_ VEC_ASSERT_DECL) \ +{ \ + vec_assert (vec_ && vec_->num, "last"); \ + \ + return &vec_->vec[vec_->num - 1]; \ +} \ + \ +static inline T *VEC_OP (T,index) \ + (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ +{ \ + vec_assert (vec_ && ix_ < vec_->num, "index"); \ + \ + return &vec_->vec[ix_]; \ +} \ + \ +static inline int VEC_OP (T,iterate) \ + (VEC(T) *vec_, unsigned ix_, T **ptr) \ +{ \ + if (vec_ && ix_ < vec_->num) \ + { \ + *ptr = &vec_->vec[ix_]; \ + return 1; \ + } \ + else \ + { \ + *ptr = 0; \ + return 0; \ + } \ +} \ + \ +static inline size_t VEC_OP (T,embedded_size) \ + (int alloc_) \ +{ \ + return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \ +} \ + \ +static inline void VEC_OP (T,embedded_init) \ + (VEC(T) *vec_, int alloc_) \ +{ \ + vec_->num = 0; \ + vec_->alloc = alloc_; \ +} \ + \ +static inline int VEC_OP (T,space) \ + (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \ +{ \ + vec_assert (alloc_ >= 0, "space"); \ + return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ +} \ + \ +static inline T *VEC_OP (T,quick_push) \ + (VEC(T) *vec_, const T *obj_ VEC_ASSERT_DECL) \ +{ \ + T *slot_; \ + \ + vec_assert (vec_->num < vec_->alloc, "quick_push"); \ + slot_ = &vec_->vec[vec_->num++]; \ + if (obj_) \ + *slot_ = *obj_; \ + \ + return slot_; \ +} \ + \ +static inline void VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \ +{ \ + vec_assert (vec_->num, "pop"); \ + --vec_->num; \ +} \ + \ +static inline void VEC_OP (T,truncate) \ + (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \ +{ \ + vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \ + if (vec_) \ + vec_->num = size_; \ +} \ + \ +static inline T *VEC_OP (T,replace) \ + (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \ +{ \ + T *slot_; \ + \ + vec_assert (ix_ < vec_->num, "replace"); \ + slot_ = &vec_->vec[ix_]; \ + if (obj_) \ + *slot_ = *obj_; \ + \ + return slot_; \ +} \ + \ +static inline T *VEC_OP (T,quick_insert) \ + (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \ +{ \ + T *slot_; \ + \ + vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \ + slot_ = &vec_->vec[ix_]; \ + memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ + if (obj_) \ + *slot_ = *obj_; \ + \ + return slot_; \ +} \ + \ +static inline void VEC_OP (T,ordered_remove) \ + (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ +{ \ + T *slot_; \ + \ + vec_assert (ix_ < vec_->num, "ordered_remove"); \ + slot_ = &vec_->vec[ix_]; \ + memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ +} \ + \ +static inline void VEC_OP (T,unordered_remove) \ + (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ +{ \ + vec_assert (ix_ < vec_->num, "unordered_remove"); \ + vec_->vec[ix_] = vec_->vec[--vec_->num]; \ +} \ + \ +static inline void VEC_OP (T,block_remove) \ + (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \ +{ \ + T *slot_; \ + \ + vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \ + slot_ = &vec_->vec[ix_]; \ + vec_->num -= len_; \ + memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ +} \ + \ +static inline T *VEC_OP (T,address) \ + (VEC(T) *vec_) \ +{ \ + return vec_ ? vec_->vec : 0; \ +} \ + \ +static inline unsigned VEC_OP (T,lower_bound) \ + (VEC(T) *vec_, const T *obj_, \ + int (*lessthan_)(const T *, const T *) VEC_ASSERT_DECL) \ +{ \ + unsigned int len_ = VEC_OP (T, length) (vec_); \ + unsigned int half_, middle_; \ + unsigned int first_ = 0; \ + while (len_ > 0) \ + { \ + T *middle_elem_; \ + half_ = len_ >> 1; \ + middle_ = first_; \ + middle_ += half_; \ + middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \ + if (lessthan_ (middle_elem_, obj_)) \ + { \ + first_ = middle_; \ + ++first_; \ + len_ = len_ - half_ - 1; \ + } \ + else \ + len_ = half_; \ + } \ + return first_; \ +} + +#define DEF_VEC_ALLOC_FUNC_O(T) \ +static inline VEC(T) *VEC_OP (T,alloc) \ + (int alloc_) \ +{ \ + /* We must request exact size allocation, hence the negation. */ \ + return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \ + offsetof (VEC(T),vec), sizeof (T)); \ +} \ + \ +static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \ +{ \ + size_t len_ = vec_ ? vec_->num : 0; \ + VEC (T) *new_vec_ = NULL; \ + \ + if (len_) \ + { \ + /* We must request exact size allocation, hence the negation. */ \ + new_vec_ = (VEC (T) *) \ + vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \ + \ + new_vec_->num = len_; \ + memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \ + } \ + return new_vec_; \ +} \ + \ +static inline void VEC_OP (T,free) \ + (VEC(T) **vec_) \ +{ \ + if (*vec_) \ + vec_free (*vec_); \ + *vec_ = NULL; \ +} \ + \ +static inline int VEC_OP (T,reserve) \ + (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \ +{ \ + int extend = !VEC_OP (T,space) (*vec_, alloc_ < 0 ? -alloc_ : alloc_ \ + VEC_ASSERT_PASS); \ + \ + if (extend) \ + *vec_ = (VEC(T) *) \ + vec_o_reserve (*vec_, alloc_, offsetof (VEC(T),vec), sizeof (T)); \ + \ + return extend; \ +} \ + \ +static inline void VEC_OP (T,safe_grow) \ + (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \ +{ \ + vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \ + "safe_grow"); \ + VEC_OP (T,reserve) \ + (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \ + (*vec_)->num = size_; \ +} \ + \ +static inline T *VEC_OP (T,safe_push) \ + (VEC(T) **vec_, const T *obj_ VEC_ASSERT_DECL) \ +{ \ + VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ + \ + return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \ +} \ + \ +static inline T *VEC_OP (T,safe_insert) \ + (VEC(T) **vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \ +{ \ + VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ + \ + return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \ +} + +#endif /* GDB_VEC_H */ |