aboutsummaryrefslogtreecommitdiff
path: root/libjava/java/util/TimeZone.java
blob: 974065a6e6581b733258c9a22a2e583f87c74677 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
/* java.util.TimeZone
   Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */


package java.util;
import java.text.DateFormatSymbols;

/**
 * This class represents a time zone offset and handles daylight savings.
 * 
 * You can get the default time zone with <code>getDefault</code>.
 * This represents the time zone where program is running.
 *
 * Another way to create a time zone is <code>getTimeZone</code>, where
 * you can give an identifier as parameter.  For instance, the identifier
 * of the Central European Time zone is "CET".
 *
 * With the <code>getAvailableIDs</code> method, you can get all the
 * supported time zone identifiers.
 *
 * @see Calendar
 * @see SimpleTimeZone
 * @author Jochen Hoenicke
 */
public abstract class TimeZone implements java.io.Serializable, Cloneable
{

  /**
   * Constant used to indicate that a short timezone abbreviation should
   * be returned, such as "EST"
   */
  public static final int SHORT = 0;

  /**
   * Constant used to indicate that a long timezone name should be
   * returned, such as "Eastern Standard Time".
   */
  public static final int LONG = 1;

  /**
   * The time zone identifier, e.g. PST.
   */
  private String ID;

  /**
   * The default time zone, as returned by getDefault.
   */
  private static TimeZone defaultZone;

  private static final long serialVersionUID = 3581463369166924961L;

  /**
   * Hashtable for timezones by ID.  
   */
  private static final Hashtable timezones = new Hashtable();

  static
  {
    TimeZone tz;
    // Automatically generated by scripts/timezones.pl
    // XXX - Should we read this data from a file?
    tz = new SimpleTimeZone(-11000 * 3600, "MIT");
    timezones.put("MIT", tz);
    timezones.put("Pacific/Apia", tz);
    timezones.put("Pacific/Midway", tz);
    timezones.put("Pacific/Niue", tz);
    timezones.put("Pacific/Pago_Pago", tz);
    tz = new SimpleTimeZone
      (-10000 * 3600, "America/Adak",
       Calendar.APRIL, 1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("America/Adak", tz);
    tz = new SimpleTimeZone(-10000 * 3600, "HST");
    timezones.put("HST", tz);
    timezones.put("Pacific/Fakaofo", tz);
    timezones.put("Pacific/Honolulu", tz);
    timezones.put("Pacific/Johnston", tz);
    timezones.put("Pacific/Rarotonga", tz);
    timezones.put("Pacific/Tahiti", tz);
    tz = new SimpleTimeZone(-9500 * 3600, "Pacific/Marquesas");
    timezones.put("Pacific/Marquesas", tz);
    tz = new SimpleTimeZone
      (-9000 * 3600, "AST",
       Calendar.APRIL, 1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("AST", tz);
    timezones.put("America/Anchorage", tz);
    timezones.put("America/Juneau", tz);
    timezones.put("America/Nome", tz);
    timezones.put("America/Yakutat", tz);
    tz = new SimpleTimeZone(-9000 * 3600, "Pacific/Gambier");
    timezones.put("Pacific/Gambier", tz);
    tz = new SimpleTimeZone
      (-8000 * 3600, "PST",
       Calendar.APRIL, 1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("PST", tz);
    timezones.put("PST8PDT", tz);
    timezones.put("America/Dawson", tz);
    timezones.put("America/Los_Angeles", tz);
    timezones.put("America/Tijuana", tz);
    timezones.put("America/Vancouver", tz);
    timezones.put("America/Whitehorse", tz);
    timezones.put("US/Pacific-New", tz);
    tz = new SimpleTimeZone(-8000 * 3600, "Pacific/Pitcairn");
    timezones.put("Pacific/Pitcairn", tz);
    tz = new SimpleTimeZone
      (-7000 * 3600, "MST",
       Calendar.APRIL, 1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("MST", tz);
    timezones.put("MST7MDT", tz);
    timezones.put("America/Boise", tz);
    timezones.put("America/Chihuahua", tz);
    timezones.put("America/Denver", tz);
    timezones.put("America/Edmonton", tz);
    timezones.put("America/Inuvik", tz);
    timezones.put("America/Mazatlan", tz);
    timezones.put("America/Shiprock", tz);
    timezones.put("America/Yellowknife", tz);
    tz = new SimpleTimeZone(-7000 * 3600, "MST7");
    timezones.put("MST7", tz);
    timezones.put("PNT", tz);
    timezones.put("America/Dawson_Creek", tz);
    timezones.put("America/Hermosillo", tz);
    timezones.put("America/Phoenix", tz);
    tz = new SimpleTimeZone
      (-6000 * 3600, "CST",
       Calendar.APRIL, 1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("CST", tz);
    timezones.put("CST6CDT", tz);
    timezones.put("America/Cambridge_Bay", tz);
    timezones.put("America/Cancun", tz);
    timezones.put("America/Chicago", tz);
    timezones.put("America/Menominee", tz);
    timezones.put("America/Merida", tz);
    timezones.put("America/Mexico_City", tz);
    timezones.put("America/Monterrey", tz);
    timezones.put("America/Rainy_River", tz);
    timezones.put("America/Winnipeg", tz);
    tz = new SimpleTimeZone(-6000 * 3600, "America/Belize");
    timezones.put("America/Belize", tz);
    timezones.put("America/Costa_Rica", tz);
    timezones.put("America/El_Salvador", tz);
    timezones.put("America/Guatemala", tz);
    timezones.put("America/Managua", tz);
    timezones.put("America/Regina", tz);
    timezones.put("America/Swift_Current", tz);
    timezones.put("America/Tegucigalpa", tz);
    timezones.put("Pacific/Galapagos", tz);
    tz = new SimpleTimeZone
      (-6000 * 3600, "Pacific/Easter",
       Calendar.OCTOBER, 9, -Calendar.SUNDAY, 0 * 3600,
       Calendar.MARCH, 9, -Calendar.SUNDAY, 0 * 3600);
    timezones.put("Pacific/Easter", tz);
    tz = new SimpleTimeZone
      (-5000 * 3600, "America/Grand_Turk",
       Calendar.APRIL, 1, Calendar.SUNDAY, 0 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 0 * 3600);
    timezones.put("America/Grand_Turk", tz);
    timezones.put("America/Havana", tz);
    tz = new SimpleTimeZone(-5000 * 3600, "EST5");
    timezones.put("EST5", tz);
    timezones.put("IET", tz);
    timezones.put("America/Bogota", tz);
    timezones.put("America/Cayman", tz);
    timezones.put("America/Eirunepe", tz);
    timezones.put("America/Guayaquil", tz);
    timezones.put("America/Indiana/Indianapolis", tz);
    timezones.put("America/Indiana/Knox", tz);
    timezones.put("America/Indiana/Marengo", tz);
    timezones.put("America/Indiana/Vevay", tz);
    timezones.put("America/Indianapolis", tz);
    timezones.put("America/Iqaluit", tz);
    timezones.put("America/Jamaica", tz);
    timezones.put("America/Lima", tz);
    timezones.put("America/Panama", tz);
    timezones.put("America/Pangnirtung", tz);
    timezones.put("America/Port-au-Prince", tz);
    timezones.put("America/Porto_Acre", tz);
    timezones.put("America/Rankin_Inlet", tz);
    tz = new SimpleTimeZone
      (-5000 * 3600, "EST",
       Calendar.APRIL, 1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("EST", tz);
    timezones.put("EST5EDT", tz);
    timezones.put("America/Detroit", tz);
    timezones.put("America/Kentucky/Louisville", tz);
    timezones.put("America/Kentucky/Monticello", tz);
    timezones.put("America/Louisville", tz);
    timezones.put("America/Montreal", tz);
    timezones.put("America/Nassau", tz);
    timezones.put("America/New_York", tz);
    timezones.put("America/Nipigon", tz);
    timezones.put("America/Thunder_Bay", tz);
    tz = new SimpleTimeZone(-4000 * 3600, "PRT");
    timezones.put("PRT", tz);
    timezones.put("America/Anguilla", tz);
    timezones.put("America/Antigua", tz);
    timezones.put("America/Aruba", tz);
    timezones.put("America/Barbados", tz);
    timezones.put("America/Boa_Vista", tz);
    timezones.put("America/Caracas", tz);
    timezones.put("America/Curacao", tz);
    timezones.put("America/Dominica", tz);
    timezones.put("America/Grenada", tz);
    timezones.put("America/Guadeloupe", tz);
    timezones.put("America/Guyana", tz);
    timezones.put("America/La_Paz", tz);
    timezones.put("America/Manaus", tz);
    timezones.put("America/Martinique", tz);
    timezones.put("America/Montserrat", tz);
    timezones.put("America/Port_of_Spain", tz);
    timezones.put("America/Porto_Velho", tz);
    timezones.put("America/Puerto_Rico", tz);
    timezones.put("America/Santo_Domingo", tz);
    timezones.put("America/St_Kitts", tz);
    timezones.put("America/St_Lucia", tz);
    timezones.put("America/St_Thomas", tz);
    timezones.put("America/St_Vincent", tz);
    timezones.put("America/Tortola", tz);
    tz = new SimpleTimeZone
      (-4000 * 3600, "America/Asuncion",
       Calendar.OCTOBER, 1, Calendar.SUNDAY, 0 * 3600,
       Calendar.FEBRUARY, -1, Calendar.SUNDAY, 0 * 3600);
    timezones.put("America/Asuncion", tz);
    tz = new SimpleTimeZone
      (-4000 * 3600, "America/Cuiaba",
       Calendar.OCTOBER, 2, Calendar.SUNDAY, 0 * 3600,
       Calendar.FEBRUARY, 3, Calendar.SUNDAY, 0 * 3600);
    timezones.put("America/Cuiaba", tz);
    tz = new SimpleTimeZone
      (-4000 * 3600, "America/Goose_Bay",
       Calendar.APRIL, 1, Calendar.SUNDAY, 60000,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 60000);
    timezones.put("America/Goose_Bay", tz);
    tz = new SimpleTimeZone
      (-4000 * 3600, "America/Glace_Bay",
       Calendar.APRIL, 1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("America/Glace_Bay", tz);
    timezones.put("America/Halifax", tz);
    timezones.put("America/Thule", tz);
    timezones.put("Atlantic/Bermuda", tz);
    tz = new SimpleTimeZone
      (-4000 * 3600, "America/Santiago",
       Calendar.OCTOBER, 9, -Calendar.SUNDAY, 0 * 3600,
       Calendar.MARCH, 9, -Calendar.SUNDAY, 0 * 3600);
    timezones.put("America/Santiago", tz);
    timezones.put("Antarctica/Palmer", tz);
    tz = new SimpleTimeZone
      (-4000 * 3600, "Atlantic/Stanley",
       Calendar.SEPTEMBER, 2, Calendar.SUNDAY, 0 * 3600,
       Calendar.APRIL, 16, -Calendar.SUNDAY, 0 * 3600);
    timezones.put("Atlantic/Stanley", tz);
    tz = new SimpleTimeZone
      (-3500 * 3600, "CNT",
       Calendar.APRIL, 1, Calendar.SUNDAY, 60000,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 60000);
    timezones.put("CNT", tz);
    timezones.put("America/St_Johns", tz);
    tz = new SimpleTimeZone
      (-3000 * 3600, "America/Araguaina",
       Calendar.OCTOBER, 2, Calendar.SUNDAY, 0 * 3600,
       Calendar.FEBRUARY, 3, Calendar.SUNDAY, 0 * 3600);
    timezones.put("America/Araguaina", tz);
    timezones.put("America/Sao_Paulo", tz);
    tz = new SimpleTimeZone(-3000 * 3600, "AGT");
    timezones.put("AGT", tz);
    timezones.put("America/Belem", tz);
    timezones.put("America/Buenos_Aires", tz);
    timezones.put("America/Catamarca", tz);
    timezones.put("America/Cayenne", tz);
    timezones.put("America/Cordoba", tz);
    timezones.put("America/Fortaleza", tz);
    timezones.put("America/Jujuy", tz);
    timezones.put("America/Maceio", tz);
    timezones.put("America/Mendoza", tz);
    timezones.put("America/Montevideo", tz);
    timezones.put("America/Paramaribo", tz);
    timezones.put("America/Recife", tz);
    timezones.put("America/Rosario", tz);
    tz = new SimpleTimeZone
      (-3000 * 3600, "America/Godthab",
       Calendar.MARCH, 30, -Calendar.SATURDAY, 22000 * 3600,
       Calendar.OCTOBER, 30, -Calendar.SATURDAY, 22000 * 3600);
    timezones.put("America/Godthab", tz);
    tz = new SimpleTimeZone
      (-3000 * 3600, "America/Miquelon",
       Calendar.APRIL, 1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("America/Miquelon", tz);
    tz = new SimpleTimeZone(-2000 * 3600, "America/Noronha");
    timezones.put("America/Noronha", tz);
    timezones.put("Atlantic/South_Georgia", tz);
    tz = new SimpleTimeZone
      (-1000 * 3600, "America/Scoresbysund",
       Calendar.MARCH, -1, Calendar.SUNDAY, 0 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 0 * 3600);
    timezones.put("America/Scoresbysund", tz);
    timezones.put("Atlantic/Azores", tz);
    tz = new SimpleTimeZone(-1000 * 3600, "Atlantic/Cape_Verde");
    timezones.put("Atlantic/Cape_Verde", tz);
    timezones.put("Atlantic/Jan_Mayen", tz);
    tz = new SimpleTimeZone(0 * 3600, "GMT");
    timezones.put("GMT", tz);
    timezones.put("UTC", tz);
    timezones.put("Africa/Abidjan", tz);
    timezones.put("Africa/Accra", tz);
    timezones.put("Africa/Bamako", tz);
    timezones.put("Africa/Banjul", tz);
    timezones.put("Africa/Bissau", tz);
    timezones.put("Africa/Casablanca", tz);
    timezones.put("Africa/Conakry", tz);
    timezones.put("Africa/Dakar", tz);
    timezones.put("Africa/El_Aaiun", tz);
    timezones.put("Africa/Freetown", tz);
    timezones.put("Africa/Lome", tz);
    timezones.put("Africa/Monrovia", tz);
    timezones.put("Africa/Nouakchott", tz);
    timezones.put("Africa/Ouagadougou", tz);
    timezones.put("Africa/Sao_Tome", tz);
    timezones.put("Africa/Timbuktu", tz);
    timezones.put("Atlantic/Reykjavik", tz);
    timezones.put("Atlantic/St_Helena", tz);
    timezones.put("Europe/Belfast", tz);
    timezones.put("Europe/Dublin", tz);
    timezones.put("Europe/London", tz);
    tz = new SimpleTimeZone
      (0 * 3600, "WET",
       Calendar.MARCH, -1, Calendar.SUNDAY, 1000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 1000 * 3600);
    timezones.put("WET", tz);
    timezones.put("Atlantic/Canary", tz);
    timezones.put("Atlantic/Faeroe", tz);
    timezones.put("Atlantic/Madeira", tz);
    timezones.put("Europe/Lisbon", tz);
    tz = new SimpleTimeZone(1000 * 3600, "Africa/Algiers");
    timezones.put("Africa/Algiers", tz);
    timezones.put("Africa/Bangui", tz);
    timezones.put("Africa/Brazzaville", tz);
    timezones.put("Africa/Douala", tz);
    timezones.put("Africa/Kinshasa", tz);
    timezones.put("Africa/Lagos", tz);
    timezones.put("Africa/Libreville", tz);
    timezones.put("Africa/Luanda", tz);
    timezones.put("Africa/Malabo", tz);
    timezones.put("Africa/Ndjamena", tz);
    timezones.put("Africa/Niamey", tz);
    timezones.put("Africa/Porto-Novo", tz);
    timezones.put("Africa/Tunis", tz);
    tz = new SimpleTimeZone
      (1000 * 3600, "Africa/Windhoek",
       Calendar.SEPTEMBER, 1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.APRIL, 1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("Africa/Windhoek", tz);
    tz = new SimpleTimeZone
      (1000 * 3600, "CET",
       Calendar.MARCH, -1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("CET", tz);
    timezones.put("ECT", tz);
    timezones.put("MET", tz);
    timezones.put("Africa/Ceuta", tz);
    timezones.put("Arctic/Longyearbyen", tz);
    timezones.put("Europe/Amsterdam", tz);
    timezones.put("Europe/Andorra", tz);
    timezones.put("Europe/Belgrade", tz);
    timezones.put("Europe/Berlin", tz);
    timezones.put("Europe/Bratislava", tz);
    timezones.put("Europe/Brussels", tz);
    timezones.put("Europe/Budapest", tz);
    timezones.put("Europe/Copenhagen", tz);
    timezones.put("Europe/Gibraltar", tz);
    timezones.put("Europe/Ljubljana", tz);
    timezones.put("Europe/Luxembourg", tz);
    timezones.put("Europe/Madrid", tz);
    timezones.put("Europe/Malta", tz);
    timezones.put("Europe/Monaco", tz);
    timezones.put("Europe/Oslo", tz);
    timezones.put("Europe/Paris", tz);
    timezones.put("Europe/Prague", tz);
    timezones.put("Europe/Rome", tz);
    timezones.put("Europe/San_Marino", tz);
    timezones.put("Europe/Sarajevo", tz);
    timezones.put("Europe/Skopje", tz);
    timezones.put("Europe/Stockholm", tz);
    timezones.put("Europe/Tirane", tz);
    timezones.put("Europe/Vaduz", tz);
    timezones.put("Europe/Vatican", tz);
    timezones.put("Europe/Vienna", tz);
    timezones.put("Europe/Warsaw", tz);
    timezones.put("Europe/Zagreb", tz);
    timezones.put("Europe/Zurich", tz);
    tz = new SimpleTimeZone
      (2000 * 3600, "ART",
       Calendar.APRIL, -1, Calendar.FRIDAY, 0 * 3600,
       Calendar.SEPTEMBER, -1, Calendar.THURSDAY, 23000 * 3600);
    timezones.put("ART", tz);
    timezones.put("Africa/Cairo", tz);
    tz = new SimpleTimeZone(2000 * 3600, "CAT");
    timezones.put("CAT", tz);
    timezones.put("Africa/Blantyre", tz);
    timezones.put("Africa/Bujumbura", tz);
    timezones.put("Africa/Gaborone", tz);
    timezones.put("Africa/Harare", tz);
    timezones.put("Africa/Johannesburg", tz);
    timezones.put("Africa/Kigali", tz);
    timezones.put("Africa/Lubumbashi", tz);
    timezones.put("Africa/Lusaka", tz);
    timezones.put("Africa/Maputo", tz);
    timezones.put("Africa/Maseru", tz);
    timezones.put("Africa/Mbabane", tz);
    timezones.put("Africa/Tripoli", tz);
    timezones.put("Europe/Riga", tz);
    timezones.put("Europe/Tallinn", tz);
    timezones.put("Europe/Vilnius", tz);
    tz = new SimpleTimeZone
      (2000 * 3600, "Asia/Amman",
       Calendar.MARCH, -1, Calendar.THURSDAY, 0 * 3600,
       Calendar.SEPTEMBER, -1, Calendar.THURSDAY, 0 * 3600);
    timezones.put("Asia/Amman", tz);
    tz = new SimpleTimeZone
      (2000 * 3600, "Asia/Beirut",
       Calendar.MARCH, -1, Calendar.SUNDAY, 0 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 0 * 3600);
    timezones.put("Asia/Beirut", tz);
    tz = new SimpleTimeZone
      (2000 * 3600, "Asia/Damascus",
       Calendar.APRIL, 1, 0, 0 * 3600,
       Calendar.OCTOBER, 1, 0, 0 * 3600);
    timezones.put("Asia/Damascus", tz);
    tz = new SimpleTimeZone
      (2000 * 3600, "Asia/Gaza",
       Calendar.APRIL, 3, Calendar.FRIDAY, 0 * 3600,
       Calendar.OCTOBER, 3, Calendar.FRIDAY, 0 * 3600);
    timezones.put("Asia/Gaza", tz);
    tz = new SimpleTimeZone
      (2000 * 3600, "Asia/Jerusalem",
       Calendar.APRIL, 1, 0, 1000 * 3600,
       Calendar.OCTOBER, 1, 0, 1000 * 3600);
    timezones.put("Asia/Jerusalem", tz);
    tz = new SimpleTimeZone
      (2000 * 3600, "EET",
       Calendar.MARCH, -1, Calendar.SUNDAY, 3000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 3000 * 3600);
    timezones.put("EET", tz);
    timezones.put("Asia/Istanbul", tz);
    timezones.put("Asia/Nicosia", tz);
    timezones.put("Europe/Athens", tz);
    timezones.put("Europe/Bucharest", tz);
    timezones.put("Europe/Chisinau", tz);
    timezones.put("Europe/Helsinki", tz);
    timezones.put("Europe/Istanbul", tz);
    timezones.put("Europe/Kiev", tz);
    timezones.put("Europe/Nicosia", tz);
    timezones.put("Europe/Simferopol", tz);
    timezones.put("Europe/Sofia", tz);
    timezones.put("Europe/Uzhgorod", tz);
    timezones.put("Europe/Zaporozhye", tz);
    tz = new SimpleTimeZone
      (2000 * 3600, "Europe/Kaliningrad",
       Calendar.MARCH, -1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("Europe/Kaliningrad", tz);
    timezones.put("Europe/Minsk", tz);
    tz = new SimpleTimeZone
      (3000 * 3600, "Asia/Baghdad",
       Calendar.APRIL, 1, 0, 3000 * 3600,
       Calendar.OCTOBER, 1, 0, 3000 * 3600);
    timezones.put("Asia/Baghdad", tz);
    tz = new SimpleTimeZone
      (3000 * 3600, "Europe/Moscow",
       Calendar.MARCH, -1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("Europe/Moscow", tz);
    timezones.put("Europe/Tiraspol", tz);
    tz = new SimpleTimeZone(3000 * 3600, "EAT");
    timezones.put("EAT", tz);
    timezones.put("Africa/Addis_Ababa", tz);
    timezones.put("Africa/Asmera", tz);
    timezones.put("Africa/Dar_es_Salaam", tz);
    timezones.put("Africa/Djibouti", tz);
    timezones.put("Africa/Kampala", tz);
    timezones.put("Africa/Khartoum", tz);
    timezones.put("Africa/Mogadishu", tz);
    timezones.put("Africa/Nairobi", tz);
    timezones.put("Antarctica/Syowa", tz);
    timezones.put("Asia/Aden", tz);
    timezones.put("Asia/Bahrain", tz);
    timezones.put("Asia/Kuwait", tz);
    timezones.put("Asia/Qatar", tz);
    timezones.put("Asia/Riyadh", tz);
    timezones.put("Indian/Antananarivo", tz);
    timezones.put("Indian/Comoro", tz);
    timezones.put("Indian/Mayotte", tz);
    tz = new SimpleTimeZone(3500 * 3600, "Asia/Tehran");
    timezones.put("Asia/Tehran", tz);
    tz = new SimpleTimeZone
      (4000 * 3600, "Asia/Baku",
       Calendar.MARCH, -1, Calendar.SUNDAY, 1000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 1000 * 3600);
    timezones.put("Asia/Baku", tz);
    tz = new SimpleTimeZone
      (4000 * 3600, "Asia/Aqtau",
       Calendar.MARCH, -1, Calendar.SUNDAY, 0 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 0 * 3600);
    timezones.put("Asia/Aqtau", tz);
    timezones.put("Asia/Tbilisi", tz);
    tz = new SimpleTimeZone
      (4000 * 3600, "Asia/Yerevan",
       Calendar.MARCH, -1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("Asia/Yerevan", tz);
    timezones.put("Europe/Samara", tz);
    tz = new SimpleTimeZone(4000 * 3600, "NET");
    timezones.put("NET", tz);
    timezones.put("Asia/Dubai", tz);
    timezones.put("Asia/Muscat", tz);
    timezones.put("Indian/Mahe", tz);
    timezones.put("Indian/Mauritius", tz);
    timezones.put("Indian/Reunion", tz);
    tz = new SimpleTimeZone(4500 * 3600, "Asia/Kabul");
    timezones.put("Asia/Kabul", tz);
    tz = new SimpleTimeZone
      (5000 * 3600, "Asia/Aqtobe",
       Calendar.MARCH, -1, Calendar.SUNDAY, 0 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 0 * 3600);
    timezones.put("Asia/Aqtobe", tz);
    tz = new SimpleTimeZone
      (5000 * 3600, "Asia/Bishkek",
       Calendar.MARCH, -1, Calendar.SUNDAY, 2500 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2500 * 3600);
    timezones.put("Asia/Bishkek", tz);
    tz = new SimpleTimeZone
      (5000 * 3600, "Asia/Yekaterinburg",
       Calendar.MARCH, -1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("Asia/Yekaterinburg", tz);
    tz = new SimpleTimeZone(5000 * 3600, "PLT");
    timezones.put("PLT", tz);
    timezones.put("Asia/Ashgabat", tz);
    timezones.put("Asia/Dushanbe", tz);
    timezones.put("Asia/Karachi", tz);
    timezones.put("Asia/Samarkand", tz);
    timezones.put("Asia/Tashkent", tz);
    timezones.put("Indian/Chagos", tz);
    timezones.put("Indian/Kerguelen", tz);
    timezones.put("Indian/Maldives", tz);
    tz = new SimpleTimeZone(5500 * 3600, "IST");
    timezones.put("IST", tz);
    timezones.put("Asia/Calcutta", tz);
    tz = new SimpleTimeZone(5750 * 3600, "Asia/Katmandu");
    timezones.put("Asia/Katmandu", tz);
    tz = new SimpleTimeZone(6000 * 3600, "BST");
    timezones.put("BST", tz);
    timezones.put("Antarctica/Mawson", tz);
    timezones.put("Asia/Colombo", tz);
    timezones.put("Asia/Dhaka", tz);
    timezones.put("Asia/Thimphu", tz);
    tz = new SimpleTimeZone
      (6000 * 3600, "Asia/Almaty",
       Calendar.MARCH, -1, Calendar.SUNDAY, 0 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 0 * 3600);
    timezones.put("Asia/Almaty", tz);
    tz = new SimpleTimeZone
      (6000 * 3600, "Asia/Novosibirsk",
       Calendar.MARCH, -1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("Asia/Novosibirsk", tz);
    timezones.put("Asia/Omsk", tz);
    tz = new SimpleTimeZone(6500 * 3600, "Asia/Rangoon");
    timezones.put("Asia/Rangoon", tz);
    timezones.put("Indian/Cocos", tz);
    tz = new SimpleTimeZone(7000 * 3600, "VST");
    timezones.put("VST", tz);
    timezones.put("Antarctica/Davis", tz);
    timezones.put("Asia/Bangkok", tz);
    timezones.put("Asia/Hovd", tz);
    timezones.put("Asia/Jakarta", tz);
    timezones.put("Asia/Phnom_Penh", tz);
    timezones.put("Asia/Saigon", tz);
    timezones.put("Asia/Vientiane", tz);
    timezones.put("Indian/Christmas", tz);
    tz = new SimpleTimeZone
      (7000 * 3600, "Asia/Krasnoyarsk",
       Calendar.MARCH, -1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("Asia/Krasnoyarsk", tz);
    tz = new SimpleTimeZone(8000 * 3600, "CTT");
    timezones.put("CTT", tz);
    timezones.put("Antarctica/Casey", tz);
    timezones.put("Asia/Brunei", tz);
    timezones.put("Asia/Chungking", tz);
    timezones.put("Asia/Harbin", tz);
    timezones.put("Asia/Hong_Kong", tz);
    timezones.put("Asia/Kashgar", tz);
    timezones.put("Asia/Kuala_Lumpur", tz);
    timezones.put("Asia/Kuching", tz);
    timezones.put("Asia/Macao", tz);
    timezones.put("Asia/Manila", tz);
    timezones.put("Asia/Shanghai", tz);
    timezones.put("Asia/Singapore", tz);
    timezones.put("Asia/Taipei", tz);
    timezones.put("Asia/Ujung_Pandang", tz);
    timezones.put("Asia/Ulaanbaatar", tz);
    timezones.put("Asia/Urumqi", tz);
    timezones.put("Australia/Perth", tz);
    tz = new SimpleTimeZone
      (8000 * 3600, "Asia/Irkutsk",
       Calendar.MARCH, -1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("Asia/Irkutsk", tz);
    tz = new SimpleTimeZone(9000 * 3600, "JST");
    timezones.put("JST", tz);
    timezones.put("Asia/Dili", tz);
    timezones.put("Asia/Jayapura", tz);
    timezones.put("Asia/Pyongyang", tz);
    timezones.put("Asia/Seoul", tz);
    timezones.put("Asia/Tokyo", tz);
    timezones.put("Pacific/Palau", tz);
    tz = new SimpleTimeZone
      (9000 * 3600, "Asia/Yakutsk",
       Calendar.MARCH, -1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("Asia/Yakutsk", tz);
    tz = new SimpleTimeZone
      (9500 * 3600, "Australia/Adelaide",
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.MARCH, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("Australia/Adelaide", tz);
    timezones.put("Australia/Broken_Hill", tz);
    tz = new SimpleTimeZone(9500 * 3600, "ACT");
    timezones.put("ACT", tz);
    timezones.put("Australia/Darwin", tz);
    tz = new SimpleTimeZone(10000 * 3600, "Antarctica/DumontDUrville");
    timezones.put("Antarctica/DumontDUrville", tz);
    timezones.put("Australia/Brisbane", tz);
    timezones.put("Australia/Lindeman", tz);
    timezones.put("Pacific/Guam", tz);
    timezones.put("Pacific/Port_Moresby", tz);
    timezones.put("Pacific/Saipan", tz);
    timezones.put("Pacific/Truk", tz);
    timezones.put("Pacific/Yap", tz);
    tz = new SimpleTimeZone
      (10000 * 3600, "Asia/Vladivostok",
       Calendar.MARCH, -1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("Asia/Vladivostok", tz);
    tz = new SimpleTimeZone
      (10000 * 3600, "Australia/Hobart",
       Calendar.OCTOBER, 1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.MARCH, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("Australia/Hobart", tz);
    tz = new SimpleTimeZone
      (10000 * 3600, "AET",
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.MARCH, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("AET", tz);
    timezones.put("Australia/Melbourne", tz);
    timezones.put("Australia/Sydney", tz);
    tz = new SimpleTimeZone
      (10500 * 3600, "Australia/Lord_Howe",
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.MARCH, -1, Calendar.SUNDAY, 2000 * 3600, 500 * 3600);
    timezones.put("Australia/Lord_Howe", tz);
    tz = new SimpleTimeZone
      (11000 * 3600, "Asia/Magadan",
       Calendar.MARCH, -1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("Asia/Magadan", tz);
    tz = new SimpleTimeZone(11000 * 3600, "SST");
    timezones.put("SST", tz);
    timezones.put("Pacific/Efate", tz);
    timezones.put("Pacific/Guadalcanal", tz);
    timezones.put("Pacific/Kosrae", tz);
    timezones.put("Pacific/Noumea", tz);
    timezones.put("Pacific/Ponape", tz);
    tz = new SimpleTimeZone(11500 * 3600, "Pacific/Norfolk");
    timezones.put("Pacific/Norfolk", tz);
    tz = new SimpleTimeZone
      (12000 * 3600, "NST",
       Calendar.OCTOBER, 1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.MARCH, 3, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("NST", tz);
    timezones.put("Antarctica/McMurdo", tz);
    timezones.put("Antarctica/South_Pole", tz);
    timezones.put("Pacific/Auckland", tz);
    tz = new SimpleTimeZone
      (12000 * 3600, "Asia/Anadyr",
       Calendar.MARCH, -1, Calendar.SUNDAY, 2000 * 3600,
       Calendar.OCTOBER, -1, Calendar.SUNDAY, 2000 * 3600);
    timezones.put("Asia/Anadyr", tz);
    timezones.put("Asia/Kamchatka", tz);
    tz = new SimpleTimeZone(12000 * 3600, "Pacific/Fiji");
    timezones.put("Pacific/Fiji", tz);
    timezones.put("Pacific/Funafuti", tz);
    timezones.put("Pacific/Kwajalein", tz);
    timezones.put("Pacific/Majuro", tz);
    timezones.put("Pacific/Nauru", tz);
    timezones.put("Pacific/Tarawa", tz);
    timezones.put("Pacific/Wake", tz);
    timezones.put("Pacific/Wallis", tz);
    tz = new SimpleTimeZone
      (12750 * 3600, "Pacific/Chatham",
       Calendar.OCTOBER, 1, Calendar.SUNDAY, 2750 * 3600,
       Calendar.MARCH, 3, Calendar.SUNDAY, 2750 * 3600);
    timezones.put("Pacific/Chatham", tz);
    tz = new SimpleTimeZone(13000 * 3600, "Pacific/Enderbury");
    timezones.put("Pacific/Enderbury", tz);
    timezones.put("Pacific/Tongatapu", tz);
    tz = new SimpleTimeZone(14000 * 3600, "Pacific/Kiritimati");
    timezones.put("Pacific/Kiritimati", tz);
  }


  /* Look up default timezone */
  static
  {
    // System.loadLibrary("javautil");

    String tzid = System.getProperty("user.timezone");

    if (tzid == null)
      tzid = "GMT";

    defaultZone = getTimeZone(tzid);
  }

  /**
   * Gets the time zone offset, for current date, modified in case of 
   * daylight savings.  This is the offset to add to UTC to get the local
   * time.
   * @param era the era of the given date
   * @param year the year of the given date
   * @param month the month of the given date, 0 for January.
   * @param day the day of month
   * @param dayOfWeek the day of week
   * @param milliseconds the millis in the day (in local standard time)
   * @return the time zone offset in milliseconds.
   */
  public abstract int getOffset(int era, int year, int month,
				int day, int dayOfWeek, int milliseconds);

  /**
   * Gets the time zone offset, ignoring daylight savings.  This is
   * the offset to add to UTC to get the local time.
   * @return the time zone offset in milliseconds.  
   */
  public abstract int getRawOffset();

  /**
   * Sets the time zone offset, ignoring daylight savings.  This is
   * the offset to add to UTC to get the local time.
   * @param offsetMillis the time zone offset to GMT.
   */
  public abstract void setRawOffset(int offsetMillis);

  /**
   * Gets the identifier of this time zone. For instance, PST for
   * Pacific Standard Time.
   * @returns the ID of this time zone.  
   */
  public String getID()
  {
    return ID;
  }

  /**
   * Sets the identifier of this time zone. For instance, PST for
   * Pacific Standard Time.
   * @param id the new time zone ID.
   */
  public void setID(String id)
  {
    this.ID = id;
  }

  /**
   * This method returns a string name of the time zone suitable
   * for displaying to the user.  The string returned will be the long
   * description of the timezone in the current locale.  The name
   * displayed will assume daylight savings time is not in effect.
   *
   * @return The name of the time zone.
   */
  public final String getDisplayName()
  {
    return (getDisplayName(false, LONG, Locale.getDefault()));
  }

  /**
   * This method returns a string name of the time zone suitable
   * for displaying to the user.  The string returned will be the long
   * description of the timezone in the specified locale. The name
   * displayed will assume daylight savings time is not in effect.
   *
   * @param locale The locale for this timezone name.
   *
   * @return The name of the time zone.
   */
  public final String getDisplayName(Locale locale)
  {
    return (getDisplayName(false, LONG, locale));
  }

  /**
   * This method returns a string name of the time zone suitable
   * for displaying to the user.  The string returned will be of the
   * specified type in the current locale. 
   *
   * @param dst Whether or not daylight savings time is in effect.
   * @param style <code>LONG</code> for a long name, <code>SHORT</code> for
   * a short abbreviation.
   *
   * @return The name of the time zone.
   */
  public final String getDisplayName(boolean dst, int style)
  {
    return (getDisplayName(dst, style, Locale.getDefault()));
  }


  /**
   * This method returns a string name of the time zone suitable
   * for displaying to the user.  The string returned will be of the
   * specified type in the specified locale. 
   *
   * @param dst Whether or not daylight savings time is in effect.
   * @param style <code>LONG</code> for a long name, <code>SHORT</code> for
   * a short abbreviation.
   * @param locale The locale for this timezone name.
   *
   * @return The name of the time zone.
   */
  public String getDisplayName(boolean dst, int style, Locale locale)
  {
    DateFormatSymbols dfs;
    try
      {
	dfs = new DateFormatSymbols(locale);

	// The format of the value returned is defined by us.
	String[][]zoneinfo = dfs.getZoneStrings();
	for (int i = 0; i < zoneinfo.length; i++)
	  {
	    if (zoneinfo[i][0].equals(getID()))
	      {
		if (!dst)
		  {
		    if (style == SHORT)
		      return (zoneinfo[i][2]);
		    else
		      return (zoneinfo[i][1]);
		  }
		else
		  {
		    if (style == SHORT)
		      return (zoneinfo[i][4]);
		    else
		      return (zoneinfo[i][3]);
		  }
	      }
	  }
      }
    catch (MissingResourceException e)
      {
      }

    return getDefaultDisplayName(dst);
  }

  private String getDefaultDisplayName(boolean dst)
  {
    int offset = getRawOffset();
    if (dst && this instanceof SimpleTimeZone)
      {
	// ugly, but this is a design failure of the API:
	// getDisplayName takes a dst parameter even though
	// TimeZone knows nothing about daylight saving offsets.
	offset += ((SimpleTimeZone) this).getDSTSavings();
      }

    StringBuffer sb = new StringBuffer(9);
    sb.append("GMT");
    sb.append(offset >= 0 ? '+' : '-');

    offset = Math.abs(offset) / (1000 * 60);
    int hours = offset / 60;
    int minutes = offset % 60;

    sb.append((char) ('0' + hours / 10)).append((char) ('0' + hours % 10));
    sb.append(':');
    sb.append((char) ('0' + minutes / 10)).append((char) ('0' + minutes % 10));
    return sb.toString();
  }

  /** 
   * Returns true, if this time zone uses Daylight Savings Time.
   */
  public abstract boolean useDaylightTime();

  /**
   * Returns true, if the given date is in Daylight Savings Time in this
   * time zone.
   * @param date the given Date.
   */
  public abstract boolean inDaylightTime(Date date);

  /**
   * Gets the TimeZone for the given ID.
   * @param ID the time zone identifier.
   * @return The time zone for the identifier or GMT, if no such time
   * zone exists.
   */
  // FIXME: XXX: JCL indicates this and other methods are synchronized.
  public static TimeZone getTimeZone(String ID)
  {
    // First check timezones hash
    TimeZone tz = (TimeZone) timezones.get(ID);
    if (tz != null)
      {
	if (tz.getID().equals(ID))
	  return tz;

	// We always return a timezone with the requested ID.
	// This is the same behaviour as with JDK1.2.
	tz = (TimeZone) tz.clone();
	tz.setID(ID);
	// We also save the alias, so that we return the same
	// object again if getTimeZone is called with the same
	// alias.
	timezones.put(ID, tz);
	return tz;
      }

    // See if the ID is really a GMT offset form.
    // Note that GMT is in the table so we know it is different.
    if (ID.startsWith("GMT"))
      {
	int pos = 3;
	int offset_direction = 1;

	if (ID.charAt(pos) == '-')
	  {
	    offset_direction = -1;
	    pos++;
	  }
	else if (ID.charAt(pos) == '+')
	  {
	    pos++;
	  }

	try
	  {
	    int hour, minute;

	    String offset_str = ID.substring(pos);
	    int idx = offset_str.indexOf(":");
	    if (idx != -1)
	      {
		hour = Integer.parseInt(offset_str.substring(0, idx));
		minute = Integer.parseInt(offset_str.substring(idx + 1));
	      }
	    else
	      {
		int offset_length = offset_str.length();
		if (offset_length <= 2)
		  {
		    // Only hour
		    hour = Integer.parseInt(offset_str);
		    minute = 0;
		  }
		else
		  {
		    // hour and minute, not separated by colon
		    hour = Integer.parseInt
		      (offset_str.substring(0, offset_length - 2));
		    minute = Integer.parseInt
		      (offset_str.substring(offset_length - 2));
		  }
	      }

	    return new SimpleTimeZone((hour * (60 * 60 * 1000) +
				       minute * (60 * 1000))
				      * offset_direction, ID);
	  }
	catch (NumberFormatException e)
	  {
	  }
      }

    // Finally, return GMT per spec
    return getTimeZone("GMT");
  }

  /**
   * Gets the available IDs according to the given time zone
   * offset.  
   * @param rawOffset the given time zone GMT offset.
   * @return An array of IDs, where the time zone has the specified GMT
   * offset. For example <code>{"Phoenix", "Denver"}</code>, since both have
   * GMT-07:00, but differ in daylight savings behaviour.
   */
  public static String[] getAvailableIDs(int rawOffset)
  {
    int count = 0;
    Iterator iter = timezones.entrySet().iterator();
    while (iter.hasNext())
      {
	// Don't iterate the values, since we want to count 
	// doubled values (aliases)
	Map.Entry entry = (Map.Entry) iter.next();
	if (((TimeZone) entry.getValue()).getRawOffset() == rawOffset)
	  count++;
      }

    String[] ids = new String[count];
    count = 0;
    iter = timezones.entrySet().iterator();
    while (iter.hasNext())
      {
	Map.Entry entry = (Map.Entry) iter.next();
	if (((TimeZone) entry.getValue()).getRawOffset() == rawOffset)
	  ids[count++] = (String) entry.getKey();
      }
    return ids;
  }

  /**
   * Gets all available IDs.
   * @return An array of all supported IDs.
   */
  public static String[] getAvailableIDs()
  {
    return (String[])
      timezones.keySet().toArray(new String[timezones.size()]);
  }

  /**
   * Returns the time zone under which the host is running.  This
   * can be changed with setDefault.
   * @return the time zone for this host.
   * @see #setDefault
   */
  public static TimeZone getDefault()
  {
    return defaultZone;
  }

  public static void setDefault(TimeZone zone)
  {
    defaultZone = zone;
  }

  /**
   * Test if the other time zone uses the same rule and only
   * possibly differs in ID.  This implementation for this particular
   * class will return true if the raw offsets are identical.  Subclasses
   * should override this method if they use daylight savings.
   * @return true if this zone has the same raw offset
   */
  public boolean hasSameRules(TimeZone other)
  {
    return other.getRawOffset() == getRawOffset();
  }

  /**
   * Returns a clone of this object.  I can't imagine, why this is
   * useful for a time zone.
   */
  public Object clone()
  {
    try
      {
	return super.clone();
      }
    catch (CloneNotSupportedException ex)
      {
	return null;
      }
  }
}
span class="hl opt">} if (*op != INTRINSIC_NONE) return MATCH_YES; } if (gfc_match_name (buffer) == MATCH_YES) { strcpy (name, buffer); *type = INTERFACE_GENERIC; return MATCH_YES; } *type = INTERFACE_NAMELESS; return MATCH_YES; syntax: gfc_error ("Syntax error in generic specification at %C"); return MATCH_ERROR; } /* Match one of the five F95 forms of an interface statement. The matcher for the abstract interface follows. */ match gfc_match_interface (void) { char name[GFC_MAX_SYMBOL_LEN + 1]; interface_type type; gfc_symbol *sym; gfc_intrinsic_op op; match m; m = gfc_match_space (); if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR) return MATCH_ERROR; /* If we're not looking at the end of the statement now, or if this is not a nameless interface but we did not see a space, punt. */ if (gfc_match_eos () != MATCH_YES || (type != INTERFACE_NAMELESS && m != MATCH_YES)) { gfc_error ("Syntax error: Trailing garbage in INTERFACE statement " "at %C"); return MATCH_ERROR; } current_interface.type = type; switch (type) { case INTERFACE_DTIO: case INTERFACE_GENERIC: if (gfc_get_symbol (name, NULL, &sym)) return MATCH_ERROR; if (!sym->attr.generic && !gfc_add_generic (&sym->attr, sym->name, NULL)) return MATCH_ERROR; if (sym->attr.dummy) { gfc_error ("Dummy procedure %qs at %C cannot have a " "generic interface", sym->name); return MATCH_ERROR; } current_interface.sym = gfc_new_block = sym; break; case INTERFACE_USER_OP: current_interface.uop = gfc_get_uop (name); break; case INTERFACE_INTRINSIC_OP: current_interface.op = op; break; case INTERFACE_NAMELESS: case INTERFACE_ABSTRACT: break; } return MATCH_YES; } /* Match a F2003 abstract interface. */ match gfc_match_abstract_interface (void) { match m; if (!gfc_notify_std (GFC_STD_F2003, "ABSTRACT INTERFACE at %C")) return MATCH_ERROR; m = gfc_match_eos (); if (m != MATCH_YES) { gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C"); return MATCH_ERROR; } current_interface.type = INTERFACE_ABSTRACT; return m; } /* Match the different sort of generic-specs that can be present after the END INTERFACE itself. */ match gfc_match_end_interface (void) { char name[GFC_MAX_SYMBOL_LEN + 1]; interface_type type; gfc_intrinsic_op op; match m; m = gfc_match_space (); if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR) return MATCH_ERROR; /* If we're not looking at the end of the statement now, or if this is not a nameless interface but we did not see a space, punt. */ if (gfc_match_eos () != MATCH_YES || (type != INTERFACE_NAMELESS && m != MATCH_YES)) { gfc_error ("Syntax error: Trailing garbage in END INTERFACE " "statement at %C"); return MATCH_ERROR; } m = MATCH_YES; switch (current_interface.type) { case INTERFACE_NAMELESS: case INTERFACE_ABSTRACT: if (type != INTERFACE_NAMELESS) { gfc_error ("Expected a nameless interface at %C"); m = MATCH_ERROR; } break; case INTERFACE_INTRINSIC_OP: if (type != current_interface.type || op != current_interface.op) { if (current_interface.op == INTRINSIC_ASSIGN) { m = MATCH_ERROR; gfc_error ("Expected %<END INTERFACE ASSIGNMENT (=)%> at %C"); } else { const char *s1, *s2; s1 = gfc_op2string (current_interface.op); s2 = gfc_op2string (op); /* The following if-statements are used to enforce C1202 from F2003. */ if ((strcmp(s1, "==") == 0 && strcmp (s2, ".eq.") == 0) || (strcmp(s1, ".eq.") == 0 && strcmp (s2, "==") == 0)) break; if ((strcmp(s1, "/=") == 0 && strcmp (s2, ".ne.") == 0) || (strcmp(s1, ".ne.") == 0 && strcmp (s2, "/=") == 0)) break; if ((strcmp(s1, "<=") == 0 && strcmp (s2, ".le.") == 0) || (strcmp(s1, ".le.") == 0 && strcmp (s2, "<=") == 0)) break; if ((strcmp(s1, "<") == 0 && strcmp (s2, ".lt.") == 0) || (strcmp(s1, ".lt.") == 0 && strcmp (s2, "<") == 0)) break; if ((strcmp(s1, ">=") == 0 && strcmp (s2, ".ge.") == 0) || (strcmp(s1, ".ge.") == 0 && strcmp (s2, ">=") == 0)) break; if ((strcmp(s1, ">") == 0 && strcmp (s2, ".gt.") == 0) || (strcmp(s1, ".gt.") == 0 && strcmp (s2, ">") == 0)) break; m = MATCH_ERROR; if (strcmp(s2, "none") == 0) gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> " "at %C", s1); else gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> at %C, " "but got %qs", s1, s2); } } break; case INTERFACE_USER_OP: /* Comparing the symbol node names is OK because only use-associated symbols can be renamed. */ if (type != current_interface.type || strcmp (current_interface.uop->name, name) != 0) { gfc_error ("Expecting %<END INTERFACE OPERATOR (.%s.)%> at %C", current_interface.uop->name); m = MATCH_ERROR; } break; case INTERFACE_DTIO: case INTERFACE_GENERIC: if (type != current_interface.type || strcmp (current_interface.sym->name, name) != 0) { gfc_error ("Expecting %<END INTERFACE %s%> at %C", current_interface.sym->name); m = MATCH_ERROR; } break; } return m; } /* Return whether the component was defined anonymously. */ static bool is_anonymous_component (gfc_component *cmp) { /* Only UNION and MAP components are anonymous. In the case of a MAP, the derived type symbol is FL_STRUCT and the component name looks like mM*. This is the only case in which the second character of a component name is uppercase. */ return cmp->ts.type == BT_UNION || (cmp->ts.type == BT_DERIVED && cmp->ts.u.derived->attr.flavor == FL_STRUCT && cmp->name[0] && cmp->name[1] && ISUPPER (cmp->name[1])); } /* Return whether the derived type was defined anonymously. */ static bool is_anonymous_dt (gfc_symbol *derived) { /* UNION and MAP types are always anonymous. Otherwise, only nested STRUCTURE types can be anonymous. For anonymous MAP/STRUCTURE, we have FL_STRUCT and the type name looks like XX*. This is the only case in which the second character of a type name is uppercase. */ return derived->attr.flavor == FL_UNION || (derived->attr.flavor == FL_STRUCT && derived->name[0] && derived->name[1] && ISUPPER (derived->name[1])); } /* Compare components according to 4.4.2 of the Fortran standard. */ static bool compare_components (gfc_component *cmp1, gfc_component *cmp2, gfc_symbol *derived1, gfc_symbol *derived2) { /* Compare names, but not for anonymous components such as UNION or MAP. */ if (!is_anonymous_component (cmp1) && !is_anonymous_component (cmp2) && strcmp (cmp1->name, cmp2->name) != 0) return false; if (cmp1->attr.access != cmp2->attr.access) return false; if (cmp1->attr.pointer != cmp2->attr.pointer) return false; if (cmp1->attr.dimension != cmp2->attr.dimension) return false; if (cmp1->attr.codimension != cmp2->attr.codimension) return false; if (cmp1->attr.allocatable != cmp2->attr.allocatable) return false; if (cmp1->attr.dimension && gfc_compare_array_spec (cmp1->as, cmp2->as) == 0) return false; if (cmp1->attr.codimension && gfc_compare_array_spec (cmp1->as, cmp2->as) == 0) return false; if (cmp1->ts.type == BT_CHARACTER && cmp2->ts.type == BT_CHARACTER) { gfc_charlen *l1 = cmp1->ts.u.cl; gfc_charlen *l2 = cmp2->ts.u.cl; if (l1 && l2 && l1->length && l2->length && l1->length->expr_type == EXPR_CONSTANT && l2->length->expr_type == EXPR_CONSTANT && gfc_dep_compare_expr (l1->length, l2->length) != 0) return false; } /* Make sure that link lists do not put this function into an endless recursive loop! */ if (!(cmp1->ts.type == BT_DERIVED && derived1 == cmp1->ts.u.derived) && !(cmp2->ts.type == BT_DERIVED && derived2 == cmp2->ts.u.derived) && !gfc_compare_types (&cmp1->ts, &cmp2->ts)) return false; else if ( (cmp1->ts.type == BT_DERIVED && derived1 == cmp1->ts.u.derived) && !(cmp2->ts.type == BT_DERIVED && derived2 == cmp2->ts.u.derived)) return false; else if (!(cmp1->ts.type == BT_DERIVED && derived1 == cmp1->ts.u.derived) && (cmp2->ts.type == BT_DERIVED && derived2 == cmp2->ts.u.derived)) return false; return true; } /* Compare two union types by comparing the components of their maps. Because unions and maps are anonymous their types get special internal names; therefore the usual derived type comparison will fail on them. Returns nonzero if equal, as with gfc_compare_derived_types. Also as with gfc_compare_derived_types, 'equal' is closer to meaning 'duplicate definitions' than 'equivalent structure'. */ static bool compare_union_types (gfc_symbol *un1, gfc_symbol *un2) { gfc_component *map1, *map2, *cmp1, *cmp2; gfc_symbol *map1_t, *map2_t; if (un1->attr.flavor != FL_UNION || un2->attr.flavor != FL_UNION) return false; if (un1->attr.zero_comp != un2->attr.zero_comp) return false; if (un1->attr.zero_comp) return true; map1 = un1->components; map2 = un2->components; /* In terms of 'equality' here we are worried about types which are declared the same in two places, not types that represent equivalent structures. (This is common because of FORTRAN's weird scoping rules.) Though two unions with their maps in different orders could be equivalent, we will say they are not equal for the purposes of this test; therefore we compare the maps sequentially. */ for (;;) { map1_t = map1->ts.u.derived; map2_t = map2->ts.u.derived; cmp1 = map1_t->components; cmp2 = map2_t->components; /* Protect against null components. */ if (map1_t->attr.zero_comp != map2_t->attr.zero_comp) return false; if (map1_t->attr.zero_comp) return true; for (;;) { /* No two fields will ever point to the same map type unless they are the same component, because one map field is created with its type declaration. Therefore don't worry about recursion here. */ /* TODO: worry about recursion into parent types of the unions? */ if (!compare_components (cmp1, cmp2, map1_t, map2_t)) return false; cmp1 = cmp1->next; cmp2 = cmp2->next; if (cmp1 == NULL && cmp2 == NULL) break; if (cmp1 == NULL || cmp2 == NULL) return false; } map1 = map1->next; map2 = map2->next; if (map1 == NULL && map2 == NULL) break; if (map1 == NULL || map2 == NULL) return false; } return true; } /* Compare two derived types using the criteria in 4.4.2 of the standard, recursing through gfc_compare_types for the components. */ bool gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2) { gfc_component *cmp1, *cmp2; if (derived1 == derived2) return true; if (!derived1 || !derived2) gfc_internal_error ("gfc_compare_derived_types: invalid derived type"); if (derived1->attr.unlimited_polymorphic && derived2->attr.unlimited_polymorphic) return true; if (derived1->attr.unlimited_polymorphic != derived2->attr.unlimited_polymorphic) return false; /* Compare UNION types specially. */ if (derived1->attr.flavor == FL_UNION || derived2->attr.flavor == FL_UNION) return compare_union_types (derived1, derived2); /* Special case for comparing derived types across namespaces. If the true names and module names are the same and the module name is nonnull, then they are equal. */ if (strcmp (derived1->name, derived2->name) == 0 && derived1->module != NULL && derived2->module != NULL && strcmp (derived1->module, derived2->module) == 0) return true; /* Compare type via the rules of the standard. Both types must have the SEQUENCE or BIND(C) attribute to be equal. We also compare types recursively if they are class descriptors types or virtual tables types. STRUCTUREs are special because they can be anonymous; therefore two structures with different names may be equal. */ /* Compare names, but not for anonymous types such as UNION or MAP. */ if (!is_anonymous_dt (derived1) && !is_anonymous_dt (derived2) && strcmp (derived1->name, derived2->name) != 0) return false; if (derived1->component_access == ACCESS_PRIVATE || derived2->component_access == ACCESS_PRIVATE) return false; if (!(derived1->attr.sequence && derived2->attr.sequence) && !(derived1->attr.is_bind_c && derived2->attr.is_bind_c) && !(derived1->attr.is_class && derived2->attr.is_class) && !(derived1->attr.vtype && derived2->attr.vtype) && !(derived1->attr.pdt_type && derived2->attr.pdt_type)) return false; /* Protect against null components. */ if (derived1->attr.zero_comp != derived2->attr.zero_comp) return false; if (derived1->attr.zero_comp) return true; cmp1 = derived1->components; cmp2 = derived2->components; /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a simple test can speed things up. Otherwise, lots of things have to match. */ for (;;) { if (!compare_components (cmp1, cmp2, derived1, derived2)) return false; cmp1 = cmp1->next; cmp2 = cmp2->next; if (cmp1 == NULL && cmp2 == NULL) break; if (cmp1 == NULL || cmp2 == NULL) return false; } return true; } /* Compare two typespecs, recursively if necessary. */ bool gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2) { /* See if one of the typespecs is a BT_VOID, which is what is being used to allow the funcs like c_f_pointer to accept any pointer type. TODO: Possibly should narrow this to just the one typespec coming in that is for the formal arg, but oh well. */ if (ts1->type == BT_VOID || ts2->type == BT_VOID) return true; /* Special case for our C interop types. FIXME: There should be a better way of doing this. When ISO C binding is cleared up, this can probably be removed. See PR 57048. */ if ((ts1->type == BT_INTEGER && ts2->type == BT_DERIVED && ts1->f90_type == BT_VOID && ts2->u.derived->from_intmod == INTMOD_ISO_C_BINDING && ts1->u.derived && strcmp (ts1->u.derived->name, ts2->u.derived->name) == 0) || (ts2->type == BT_INTEGER && ts1->type == BT_DERIVED && ts2->f90_type == BT_VOID && ts1->u.derived->from_intmod == INTMOD_ISO_C_BINDING && ts2->u.derived && strcmp (ts1->u.derived->name, ts2->u.derived->name) == 0)) return true; /* The _data component is not always present, therefore check for its presence before assuming, that its derived->attr is available. When the _data component is not present, then nevertheless the unlimited_polymorphic flag may be set in the derived type's attr. */ if (ts1->type == BT_CLASS && ts1->u.derived->components && ((ts1->u.derived->attr.is_class && ts1->u.derived->components->ts.u.derived->attr .unlimited_polymorphic) || ts1->u.derived->attr.unlimited_polymorphic)) return true; /* F2003: C717 */ if (ts2->type == BT_CLASS && ts1->type == BT_DERIVED && ts2->u.derived->components && ((ts2->u.derived->attr.is_class && ts2->u.derived->components->ts.u.derived->attr .unlimited_polymorphic) || ts2->u.derived->attr.unlimited_polymorphic) && (ts1->u.derived->attr.sequence || ts1->u.derived->attr.is_bind_c)) return true; if (ts1->type != ts2->type && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS) || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS))) return false; if (ts1->type == BT_UNION) return compare_union_types (ts1->u.derived, ts2->u.derived); if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS) return (ts1->kind == ts2->kind); /* Compare derived types. */ return gfc_type_compatible (ts1, ts2); } static bool compare_type (gfc_symbol *s1, gfc_symbol *s2) { if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) return true; return gfc_compare_types (&s1->ts, &s2->ts) || s2->ts.type == BT_ASSUMED; } static bool compare_type_characteristics (gfc_symbol *s1, gfc_symbol *s2) { /* TYPE and CLASS of the same declared type are type compatible, but have different characteristics. */ if ((s1->ts.type == BT_CLASS && s2->ts.type == BT_DERIVED) || (s1->ts.type == BT_DERIVED && s2->ts.type == BT_CLASS)) return false; return compare_type (s1, s2); } static bool compare_rank (gfc_symbol *s1, gfc_symbol *s2) { gfc_array_spec *as1, *as2; int r1, r2; if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) return true; as1 = (s1->ts.type == BT_CLASS && !s1->ts.u.derived->attr.unlimited_polymorphic) ? CLASS_DATA (s1)->as : s1->as; as2 = (s2->ts.type == BT_CLASS && !s2->ts.u.derived->attr.unlimited_polymorphic) ? CLASS_DATA (s2)->as : s2->as; r1 = as1 ? as1->rank : 0; r2 = as2 ? as2->rank : 0; if (r1 != r2 && (!as2 || as2->type != AS_ASSUMED_RANK)) return false; /* Ranks differ. */ return true; } /* Given two symbols that are formal arguments, compare their ranks and types. Returns true if they have the same rank and type, false otherwise. */ static bool compare_type_rank (gfc_symbol *s1, gfc_symbol *s2) { return compare_type (s1, s2) && compare_rank (s1, s2); } /* Given two symbols that are formal arguments, compare their types and rank and their formal interfaces if they are both dummy procedures. Returns true if the same, false if different. */ static bool compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2) { if (s1 == NULL || s2 == NULL) return (s1 == s2); if (s1 == s2) return true; if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE) return compare_type_rank (s1, s2); if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE) return false; /* At this point, both symbols are procedures. It can happen that external procedures are compared, where one is identified by usage to be a function or subroutine but the other is not. Check TKR nonetheless for these cases. */ if (s1->attr.function == 0 && s1->attr.subroutine == 0) return s1->attr.external ? compare_type_rank (s1, s2) : false; if (s2->attr.function == 0 && s2->attr.subroutine == 0) return s2->attr.external ? compare_type_rank (s1, s2) : false; /* Now the type of procedure has been identified. */ if (s1->attr.function != s2->attr.function || s1->attr.subroutine != s2->attr.subroutine) return false; if (s1->attr.function && !compare_type_rank (s1, s2)) return false; /* Originally, gfortran recursed here to check the interfaces of passed procedures. This is explicitly not required by the standard. */ return true; } /* Given a formal argument list and a keyword name, search the list for that keyword. Returns the correct symbol node if found, NULL if not found. */ static gfc_symbol * find_keyword_arg (const char *name, gfc_formal_arglist *f) { for (; f; f = f->next) if (strcmp (f->sym->name, name) == 0) return f->sym; return NULL; } /******** Interface checking subroutines **********/ /* Given an operator interface and the operator, make sure that all interfaces for that operator are legal. */ bool gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op, locus opwhere) { gfc_formal_arglist *formal; sym_intent i1, i2; bt t1, t2; int args, r1, r2, k1, k2; gcc_assert (sym); args = 0; t1 = t2 = BT_UNKNOWN; i1 = i2 = INTENT_UNKNOWN; r1 = r2 = -1; k1 = k2 = -1; for (formal = gfc_sym_get_dummy_args (sym); formal; formal = formal->next) { gfc_symbol *fsym = formal->sym; if (fsym == NULL) { gfc_error ("Alternate return cannot appear in operator " "interface at %L", &sym->declared_at); return false; } if (args == 0) { t1 = fsym->ts.type; i1 = fsym->attr.intent; r1 = (fsym->as != NULL) ? fsym->as->rank : 0; k1 = fsym->ts.kind; } if (args == 1) { t2 = fsym->ts.type; i2 = fsym->attr.intent; r2 = (fsym->as != NULL) ? fsym->as->rank : 0; k2 = fsym->ts.kind; } args++; } /* Only +, - and .not. can be unary operators. .not. cannot be a binary operator. */ if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS && op != INTRINSIC_MINUS && op != INTRINSIC_NOT) || (args == 2 && op == INTRINSIC_NOT)) { if (op == INTRINSIC_ASSIGN) gfc_error ("Assignment operator interface at %L must have " "two arguments", &sym->declared_at); else gfc_error ("Operator interface at %L has the wrong number of arguments", &sym->declared_at); return false; } /* Check that intrinsics are mapped to functions, except INTRINSIC_ASSIGN which should map to a subroutine. */ if (op == INTRINSIC_ASSIGN) { gfc_formal_arglist *dummy_args; if (!sym->attr.subroutine) { gfc_error ("Assignment operator interface at %L must be " "a SUBROUTINE", &sym->declared_at); return false; } /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments): - First argument an array with different rank than second, - First argument is a scalar and second an array, - Types and kinds do not conform, or - First argument is of derived type. */ dummy_args = gfc_sym_get_dummy_args (sym); if (dummy_args->sym->ts.type != BT_DERIVED && dummy_args->sym->ts.type != BT_CLASS && (r2 == 0 || r1 == r2) && (dummy_args->sym->ts.type == dummy_args->next->sym->ts.type || (gfc_numeric_ts (&dummy_args->sym->ts) && gfc_numeric_ts (&dummy_args->next->sym->ts)))) { gfc_error ("Assignment operator interface at %L must not redefine " "an INTRINSIC type assignment", &sym->declared_at); return false; } } else { if (!sym->attr.function) { gfc_error ("Intrinsic operator interface at %L must be a FUNCTION", &sym->declared_at); return false; } } /* Check intents on operator interfaces. */ if (op == INTRINSIC_ASSIGN) { if (i1 != INTENT_OUT && i1 != INTENT_INOUT) { gfc_error ("First argument of defined assignment at %L must be " "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at); return false; } if (i2 != INTENT_IN) { gfc_error ("Second argument of defined assignment at %L must be " "INTENT(IN)", &sym->declared_at); return false; } } else { if (i1 != INTENT_IN) { gfc_error ("First argument of operator interface at %L must be " "INTENT(IN)", &sym->declared_at); return false; } if (args == 2 && i2 != INTENT_IN) { gfc_error ("Second argument of operator interface at %L must be " "INTENT(IN)", &sym->declared_at); return false; } } /* From now on, all we have to do is check that the operator definition doesn't conflict with an intrinsic operator. The rules for this game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards, as well as 12.3.2.1.1 of Fortran 2003: "If the operator is an intrinsic-operator (R310), the number of function arguments shall be consistent with the intrinsic uses of that operator, and the types, kind type parameters, or ranks of the dummy arguments shall differ from those required for the intrinsic operation (7.1.2)." */ #define IS_NUMERIC_TYPE(t) \ ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX) /* Unary ops are easy, do them first. */ if (op == INTRINSIC_NOT) { if (t1 == BT_LOGICAL) goto bad_repl; else return true; } if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS)) { if (IS_NUMERIC_TYPE (t1)) goto bad_repl; else return true; } /* Character intrinsic operators have same character kind, thus operator definitions with operands of different character kinds are always safe. */ if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2) return true; /* Intrinsic operators always perform on arguments of same rank, so different ranks is also always safe. (rank == 0) is an exception to that, because all intrinsic operators are elemental. */ if (r1 != r2 && r1 != 0 && r2 != 0) return true; switch (op) { case INTRINSIC_EQ: case INTRINSIC_EQ_OS: case INTRINSIC_NE: case INTRINSIC_NE_OS: if (t1 == BT_CHARACTER && t2 == BT_CHARACTER) goto bad_repl; /* Fall through. */ case INTRINSIC_PLUS: case INTRINSIC_MINUS: case INTRINSIC_TIMES: case INTRINSIC_DIVIDE: case INTRINSIC_POWER: if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2)) goto bad_repl; break; case INTRINSIC_GT: case INTRINSIC_GT_OS: case INTRINSIC_GE: case INTRINSIC_GE_OS: case INTRINSIC_LT: case INTRINSIC_LT_OS: case INTRINSIC_LE: case INTRINSIC_LE_OS: if (t1 == BT_CHARACTER && t2 == BT_CHARACTER) goto bad_repl; if ((t1 == BT_INTEGER || t1 == BT_REAL) && (t2 == BT_INTEGER || t2 == BT_REAL)) goto bad_repl; break; case INTRINSIC_CONCAT: if (t1 == BT_CHARACTER && t2 == BT_CHARACTER) goto bad_repl; break; case INTRINSIC_AND: case INTRINSIC_OR: case INTRINSIC_EQV: case INTRINSIC_NEQV: if (t1 == BT_LOGICAL && t2 == BT_LOGICAL) goto bad_repl; break; default: break; } return true; #undef IS_NUMERIC_TYPE bad_repl: gfc_error ("Operator interface at %L conflicts with intrinsic interface", &opwhere); return false; } /* Given a pair of formal argument lists, we see if the two lists can be distinguished by counting the number of nonoptional arguments of a given type/rank in f1 and seeing if there are less then that number of those arguments in f2 (including optional arguments). Since this test is asymmetric, it has to be called twice to make it symmetric. Returns nonzero if the argument lists are incompatible by this test. This subroutine implements rule 1 of section F03:16.2.3. 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */ static bool count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2, const char *p1, const char *p2) { int ac1, ac2, i, j, k, n1; gfc_formal_arglist *f; typedef struct { int flag; gfc_symbol *sym; } arginfo; arginfo *arg; n1 = 0; for (f = f1; f; f = f->next) n1++; /* Build an array of integers that gives the same integer to arguments of the same type/rank. */ arg = XCNEWVEC (arginfo, n1); f = f1; for (i = 0; i < n1; i++, f = f->next) { arg[i].flag = -1; arg[i].sym = f->sym; } k = 0; for (i = 0; i < n1; i++) { if (arg[i].flag != -1) continue; if (arg[i].sym && (arg[i].sym->attr.optional || (p1 && strcmp (arg[i].sym->name, p1) == 0))) continue; /* Skip OPTIONAL and PASS arguments. */ arg[i].flag = k; /* Find other non-optional, non-pass arguments of the same type/rank. */ for (j = i + 1; j < n1; j++) if ((arg[j].sym == NULL || !(arg[j].sym->attr.optional || (p1 && strcmp (arg[j].sym->name, p1) == 0))) && (compare_type_rank_if (arg[i].sym, arg[j].sym) || compare_type_rank_if (arg[j].sym, arg[i].sym))) arg[j].flag = k; k++; } /* Now loop over each distinct type found in f1. */ k = 0; bool rc = false; for (i = 0; i < n1; i++) { if (arg[i].flag != k) continue; ac1 = 1; for (j = i + 1; j < n1; j++) if (arg[j].flag == k) ac1++; /* Count the number of non-pass arguments in f2 with that type, including those that are optional. */ ac2 = 0; for (f = f2; f; f = f->next) if ((!p2 || strcmp (f->sym->name, p2) != 0) && (compare_type_rank_if (arg[i].sym, f->sym) || compare_type_rank_if (f->sym, arg[i].sym))) ac2++; if (ac1 > ac2) { rc = true; break; } k++; } free (arg); return rc; } /* Returns true if two dummy arguments are distinguishable due to their POINTER and ALLOCATABLE attributes according to F2018 section 15.4.3.4.5 (3). The function is asymmetric wrt to the arguments s1 and s2 and should always be called twice (with flipped arguments in the second call). */ static bool compare_ptr_alloc(gfc_symbol *s1, gfc_symbol *s2) { /* Is s1 allocatable? */ const bool a1 = s1->ts.type == BT_CLASS ? CLASS_DATA(s1)->attr.allocatable : s1->attr.allocatable; /* Is s2 a pointer? */ const bool p2 = s2->ts.type == BT_CLASS ? CLASS_DATA(s2)->attr.class_pointer : s2->attr.pointer; return a1 && p2 && (s2->attr.intent != INTENT_IN); } /* Perform the correspondence test in rule (3) of F08:C1215. Returns zero if no argument is found that satisfies this rule, nonzero otherwise. 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). This test is also not symmetric in f1 and f2 and must be called twice. This test finds problems caused by sorting the actual argument list with keywords. For example: INTERFACE FOO SUBROUTINE F1(A, B) INTEGER :: A ; REAL :: B END SUBROUTINE F1 SUBROUTINE F2(B, A) INTEGER :: A ; REAL :: B END SUBROUTINE F1 END INTERFACE FOO At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */ static bool generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2, const char *p1, const char *p2) { gfc_formal_arglist *f2_save, *g; gfc_symbol *sym; f2_save = f2; while (f1) { if (!f1->sym || f1->sym->attr.optional) goto next; if (p1 && strcmp (f1->sym->name, p1) == 0) f1 = f1->next; if (f2 && p2 && strcmp (f2->sym->name, p2) == 0) f2 = f2->next; if (f2 != NULL && (compare_type_rank (f1->sym, f2->sym) || compare_type_rank (f2->sym, f1->sym)) && !((gfc_option.allow_std & GFC_STD_F2008) && (compare_ptr_alloc(f1->sym, f2->sym) || compare_ptr_alloc(f2->sym, f1->sym)))) goto next; /* Now search for a disambiguating keyword argument starting at the current non-match. */ for (g = f1; g; g = g->next) { if (g->sym->attr.optional || (p1 && strcmp (g->sym->name, p1) == 0)) continue; sym = find_keyword_arg (g->sym->name, f2_save); if (sym == NULL || !compare_type_rank (g->sym, sym) || ((gfc_option.allow_std & GFC_STD_F2008) && (compare_ptr_alloc(sym, g->sym) || compare_ptr_alloc(g->sym, sym)))) return true; } next: if (f1 != NULL) f1 = f1->next; if (f2 != NULL) f2 = f2->next; } return false; } static int symbol_rank (gfc_symbol *sym) { gfc_array_spec *as = NULL; if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)) as = CLASS_DATA (sym)->as; else as = sym->as; return as ? as->rank : 0; } /* Check if the characteristics of two dummy arguments match, cf. F08:12.3.2. */ bool gfc_check_dummy_characteristics (gfc_symbol *s1, gfc_symbol *s2, bool type_must_agree, char *errmsg, int err_len) { if (s1 == NULL || s2 == NULL) return s1 == s2 ? true : false; if (s1->attr.proc == PROC_ST_FUNCTION || s2->attr.proc == PROC_ST_FUNCTION) { strncpy (errmsg, "Statement function", err_len); return false; } /* Check type and rank. */ if (type_must_agree) { if (!compare_type_characteristics (s1, s2) || !compare_type_characteristics (s2, s1)) { snprintf (errmsg, err_len, "Type mismatch in argument '%s' (%s/%s)", s1->name, gfc_dummy_typename (&s1->ts), gfc_dummy_typename (&s2->ts)); return false; } if (!compare_rank (s1, s2)) { snprintf (errmsg, err_len, "Rank mismatch in argument '%s' (%i/%i)", s1->name, symbol_rank (s1), symbol_rank (s2)); return false; } } /* Check INTENT. */ if (s1->attr.intent != s2->attr.intent && !s1->attr.artificial && !s2->attr.artificial) { snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'", s1->name); return false; } /* Check OPTIONAL attribute. */ if (s1->attr.optional != s2->attr.optional) { snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'", s1->name); return false; } /* Check ALLOCATABLE attribute. */ if (s1->attr.allocatable != s2->attr.allocatable) { snprintf (errmsg, err_len, "ALLOCATABLE mismatch in argument '%s'", s1->name); return false; } /* Check POINTER attribute. */ if (s1->attr.pointer != s2->attr.pointer) { snprintf (errmsg, err_len, "POINTER mismatch in argument '%s'", s1->name); return false; } /* Check TARGET attribute. */ if (s1->attr.target != s2->attr.target) { snprintf (errmsg, err_len, "TARGET mismatch in argument '%s'", s1->name); return false; } /* Check ASYNCHRONOUS attribute. */ if (s1->attr.asynchronous != s2->attr.asynchronous) { snprintf (errmsg, err_len, "ASYNCHRONOUS mismatch in argument '%s'", s1->name); return false; } /* Check CONTIGUOUS attribute. */ if (s1->attr.contiguous != s2->attr.contiguous) { snprintf (errmsg, err_len, "CONTIGUOUS mismatch in argument '%s'", s1->name); return false; } /* Check VALUE attribute. */ if (s1->attr.value != s2->attr.value) { snprintf (errmsg, err_len, "VALUE mismatch in argument '%s'", s1->name); return false; } /* Check VOLATILE attribute. */ if (s1->attr.volatile_ != s2->attr.volatile_) { snprintf (errmsg, err_len, "VOLATILE mismatch in argument '%s'", s1->name); return false; } /* Check interface of dummy procedures. */ if (s1->attr.flavor == FL_PROCEDURE) { char err[200]; if (!gfc_compare_interfaces (s1, s2, s2->name, 0, 1, err, sizeof(err), NULL, NULL)) { snprintf (errmsg, err_len, "Interface mismatch in dummy procedure " "'%s': %s", s1->name, err); return false; } } /* Check string length. */ if (s1->ts.type == BT_CHARACTER && s1->ts.u.cl && s1->ts.u.cl->length && s2->ts.u.cl && s2->ts.u.cl->length) { int compval = gfc_dep_compare_expr (s1->ts.u.cl->length, s2->ts.u.cl->length); switch (compval) { case -1: case 1: case -3: snprintf (errmsg, err_len, "Character length mismatch " "in argument '%s'", s1->name); return false; case -2: /* FIXME: Implement a warning for this case. gfc_warning (0, "Possible character length mismatch in argument %qs", s1->name);*/ break; case 0: break; default: gfc_internal_error ("check_dummy_characteristics: Unexpected result " "%i of gfc_dep_compare_expr", compval); break; } } /* Check array shape. */ if (s1->as && s2->as) { int i, compval; gfc_expr *shape1, *shape2; /* Sometimes the ambiguity between deferred shape and assumed shape does not get resolved in module procedures, where the only explicit declaration of the dummy is in the interface. */ if (s1->ns->proc_name && s1->ns->proc_name->attr.module_procedure && s1->as->type == AS_ASSUMED_SHAPE && s2->as->type == AS_DEFERRED) { s2->as->type = AS_ASSUMED_SHAPE; for (i = 0; i < s2->as->rank; i++) if (s1->as->lower[i] != NULL) s2->as->lower[i] = gfc_copy_expr (s1->as->lower[i]); } if (s1->as->type != s2->as->type) { snprintf (errmsg, err_len, "Shape mismatch in argument '%s'", s1->name); return false; } if (s1->as->corank != s2->as->corank) { snprintf (errmsg, err_len, "Corank mismatch in argument '%s' (%i/%i)", s1->name, s1->as->corank, s2->as->corank); return false; } if (s1->as->type == AS_EXPLICIT) for (i = 0; i < s1->as->rank + MAX (0, s1->as->corank-1); i++) { shape1 = gfc_subtract (gfc_copy_expr (s1->as->upper[i]), gfc_copy_expr (s1->as->lower[i])); shape2 = gfc_subtract (gfc_copy_expr (s2->as->upper[i]), gfc_copy_expr (s2->as->lower[i])); compval = gfc_dep_compare_expr (shape1, shape2); gfc_free_expr (shape1); gfc_free_expr (shape2); switch (compval) { case -1: case 1: case -3: if (i < s1->as->rank) snprintf (errmsg, err_len, "Shape mismatch in dimension %i of" " argument '%s'", i + 1, s1->name); else snprintf (errmsg, err_len, "Shape mismatch in codimension %i " "of argument '%s'", i - s1->as->rank + 1, s1->name); return false; case -2: /* FIXME: Implement a warning for this case. gfc_warning (0, "Possible shape mismatch in argument %qs", s1->name);*/ break; case 0: break; default: gfc_internal_error ("check_dummy_characteristics: Unexpected " "result %i of gfc_dep_compare_expr", compval); break; } } } return true; } /* Check if the characteristics of two function results match, cf. F08:12.3.3. */ bool gfc_check_result_characteristics (gfc_symbol *s1, gfc_symbol *s2, char *errmsg, int err_len) { gfc_symbol *r1, *r2; if (s1->ts.interface && s1->ts.interface->result) r1 = s1->ts.interface->result; else r1 = s1->result ? s1->result : s1; if (s2->ts.interface && s2->ts.interface->result) r2 = s2->ts.interface->result; else r2 = s2->result ? s2->result : s2; if (r1->ts.type == BT_UNKNOWN) return true; /* Check type and rank. */ if (!compare_type_characteristics (r1, r2)) { snprintf (errmsg, err_len, "Type mismatch in function result (%s/%s)", gfc_typename (&r1->ts), gfc_typename (&r2->ts)); return false; } if (!compare_rank (r1, r2)) { snprintf (errmsg, err_len, "Rank mismatch in function result (%i/%i)", symbol_rank (r1), symbol_rank (r2)); return false; } /* Check ALLOCATABLE attribute. */ if (r1->attr.allocatable != r2->attr.allocatable) { snprintf (errmsg, err_len, "ALLOCATABLE attribute mismatch in " "function result"); return false; } /* Check POINTER attribute. */ if (r1->attr.pointer != r2->attr.pointer) { snprintf (errmsg, err_len, "POINTER attribute mismatch in " "function result"); return false; } /* Check CONTIGUOUS attribute. */ if (r1->attr.contiguous != r2->attr.contiguous) { snprintf (errmsg, err_len, "CONTIGUOUS attribute mismatch in " "function result"); return false; } /* Check PROCEDURE POINTER attribute. */ if (r1 != s1 && r1->attr.proc_pointer != r2->attr.proc_pointer) { snprintf (errmsg, err_len, "PROCEDURE POINTER mismatch in " "function result"); return false; } /* Check string length. */ if (r1->ts.type == BT_CHARACTER && r1->ts.u.cl && r2->ts.u.cl) { if (r1->ts.deferred != r2->ts.deferred) { snprintf (errmsg, err_len, "Character length mismatch " "in function result"); return false; } if (r1->ts.u.cl->length && r2->ts.u.cl->length) { int compval = gfc_dep_compare_expr (r1->ts.u.cl->length, r2->ts.u.cl->length); switch (compval) { case -1: case 1: case -3: snprintf (errmsg, err_len, "Character length mismatch " "in function result"); return false; case -2: if (r1->ts.u.cl->length->expr_type == EXPR_CONSTANT) { snprintf (errmsg, err_len, "Function declared with a non-constant character " "length referenced with a constant length"); return false; } else if (r2->ts.u.cl->length->expr_type == EXPR_CONSTANT) { snprintf (errmsg, err_len, "Function declared with a constant character " "length referenced with a non-constant length"); return false; } /* Warn if length expression types are different, except for possibly false positives where complex expressions might have been used. */ else if ((r1->ts.u.cl->length->expr_type != r2->ts.u.cl->length->expr_type) && (r1->ts.u.cl->length->expr_type != EXPR_OP || r2->ts.u.cl->length->expr_type != EXPR_OP)) gfc_warning (0, "Possible character length mismatch in " "function result between %L and %L", &r1->declared_at, &r2->declared_at); break; case 0: break; default: gfc_internal_error ("check_result_characteristics (1): Unexpected " "result %i of gfc_dep_compare_expr", compval); break; } } } /* Check array shape. */ if (!r1->attr.allocatable && !r1->attr.pointer && r1->as && r2->as) { int i, compval; gfc_expr *shape1, *shape2; if (r1->as->type != r2->as->type) { snprintf (errmsg, err_len, "Shape mismatch in function result"); return false; } if (r1->as->type == AS_EXPLICIT) for (i = 0; i < r1->as->rank + r1->as->corank; i++) { shape1 = gfc_subtract (gfc_copy_expr (r1->as->upper[i]), gfc_copy_expr (r1->as->lower[i])); shape2 = gfc_subtract (gfc_copy_expr (r2->as->upper[i]), gfc_copy_expr (r2->as->lower[i])); compval = gfc_dep_compare_expr (shape1, shape2); gfc_free_expr (shape1); gfc_free_expr (shape2); switch (compval) { case -1: case 1: case -3: snprintf (errmsg, err_len, "Shape mismatch in dimension %i of " "function result", i + 1); return false; case -2: /* FIXME: Implement a warning for this case. gfc_warning (0, "Possible shape mismatch in return value");*/ break; case 0: break; default: gfc_internal_error ("check_result_characteristics (2): " "Unexpected result %i of " "gfc_dep_compare_expr", compval); break; } } } return true; } /* 'Compare' two formal interfaces associated with a pair of symbols. We return true if there exists an actual argument list that would be ambiguous between the two interfaces, zero otherwise. 'strict_flag' specifies whether all the characteristics are required to match, which is not the case for ambiguity checks. 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */ bool gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2, int generic_flag, int strict_flag, char *errmsg, int err_len, const char *p1, const char *p2, bool *bad_result_characteristics) { gfc_formal_arglist *f1, *f2; gcc_assert (name2 != NULL); if (bad_result_characteristics) *bad_result_characteristics = false; if (s1->attr.function && (s2->attr.subroutine || (!s2->attr.function && s2->ts.type == BT_UNKNOWN && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN))) { if (errmsg != NULL) snprintf (errmsg, err_len, "'%s' is not a function", name2); return false; } if (s1->attr.subroutine && s2->attr.function) { if (errmsg != NULL) snprintf (errmsg, err_len, "'%s' is not a subroutine", name2); return false; } if (s2->attr.subroutine && s1->attr.flavor == FL_VARIABLE) { if (errmsg != NULL) snprintf (errmsg, err_len, "subroutine proc pointer '%s' passed " "to dummy variable '%s'", name2, s1->name); return false; } /* Do strict checks on all characteristics (for dummy procedures and procedure pointer assignments). */ if (!generic_flag && strict_flag) { if (s1->attr.function && s2->attr.function) { /* If both are functions, check result characteristics. */ if (!gfc_check_result_characteristics (s1, s2, errmsg, err_len) || !gfc_check_result_characteristics (s2, s1, errmsg, err_len)) { if (bad_result_characteristics) *bad_result_characteristics = true; return false; } } if (s1->attr.pure && !s2->attr.pure) { snprintf (errmsg, err_len, "Mismatch in PURE attribute"); return false; } if (s1->attr.elemental && !s2->attr.elemental) { snprintf (errmsg, err_len, "Mismatch in ELEMENTAL attribute"); return false; } } if (s1->attr.if_source == IFSRC_UNKNOWN || s2->attr.if_source == IFSRC_UNKNOWN) return true; f1 = gfc_sym_get_dummy_args (s1); f2 = gfc_sym_get_dummy_args (s2); /* Special case: No arguments. */ if (f1 == NULL && f2 == NULL) return true; if (generic_flag) { if (count_types_test (f1, f2, p1, p2) || count_types_test (f2, f1, p2, p1)) return false; /* Special case: alternate returns. If both f1->sym and f2->sym are NULL, then the leading formal arguments are alternate returns. The previous conditional should catch argument lists with different number of argument. */ if (f1 && f1->sym == NULL && f2 && f2->sym == NULL) return true; if (generic_correspondence (f1, f2, p1, p2) || generic_correspondence (f2, f1, p2, p1)) return false; } else /* Perform the abbreviated correspondence test for operators (the arguments cannot be optional and are always ordered correctly). This is also done when comparing interfaces for dummy procedures and in procedure pointer assignments. */ for (; f1 || f2; f1 = f1->next, f2 = f2->next) { /* Check existence. */ if (f1 == NULL || f2 == NULL) { if (errmsg != NULL) snprintf (errmsg, err_len, "'%s' has the wrong number of " "arguments", name2); return false; } if (strict_flag) { /* Check all characteristics. */ if (!gfc_check_dummy_characteristics (f1->sym, f2->sym, true, errmsg, err_len)) return false; } else { /* Operators: Only check type and rank of arguments. */ if (!compare_type (f2->sym, f1->sym)) { if (errmsg != NULL) snprintf (errmsg, err_len, "Type mismatch in argument '%s' " "(%s/%s)", f1->sym->name, gfc_typename (&f1->sym->ts), gfc_typename (&f2->sym->ts)); return false; } if (!compare_rank (f2->sym, f1->sym)) { if (errmsg != NULL) snprintf (errmsg, err_len, "Rank mismatch in argument " "'%s' (%i/%i)", f1->sym->name, symbol_rank (f1->sym), symbol_rank (f2->sym)); return false; } if ((gfc_option.allow_std & GFC_STD_F2008) && (compare_ptr_alloc(f1->sym, f2->sym) || compare_ptr_alloc(f2->sym, f1->sym))) { if (errmsg != NULL) snprintf (errmsg, err_len, "Mismatching POINTER/ALLOCATABLE " "attribute in argument '%s' ", f1->sym->name); return false; } } } return true; } /* Given a pointer to an interface pointer, remove duplicate interfaces and make sure that all symbols are either functions or subroutines, and all of the same kind. Returns true if something goes wrong. */ static bool check_interface0 (gfc_interface *p, const char *interface_name) { gfc_interface *psave, *q, *qlast; psave = p; for (; p; p = p->next) { /* Make sure all symbols in the interface have been defined as functions or subroutines. */ if (((!p->sym->attr.function && !p->sym->attr.subroutine) || !p->sym->attr.if_source) && !gfc_fl_struct (p->sym->attr.flavor)) { const char *guessed = gfc_lookup_function_fuzzy (p->sym->name, p->sym->ns->sym_root); if (p->sym->attr.external) if (guessed) gfc_error ("Procedure %qs in %s at %L has no explicit interface" "; did you mean %qs?", p->sym->name, interface_name, &p->sym->declared_at, guessed); else gfc_error ("Procedure %qs in %s at %L has no explicit interface", p->sym->name, interface_name, &p->sym->declared_at); else if (guessed) gfc_error ("Procedure %qs in %s at %L is neither function nor " "subroutine; did you mean %qs?", p->sym->name, interface_name, &p->sym->declared_at, guessed); else gfc_error ("Procedure %qs in %s at %L is neither function nor " "subroutine", p->sym->name, interface_name, &p->sym->declared_at); return true; } /* Verify that procedures are either all SUBROUTINEs or all FUNCTIONs. */ if ((psave->sym->attr.function && !p->sym->attr.function && !gfc_fl_struct (p->sym->attr.flavor)) || (psave->sym->attr.subroutine && !p->sym->attr.subroutine)) { if (!gfc_fl_struct (p->sym->attr.flavor)) gfc_error ("In %s at %L procedures must be either all SUBROUTINEs" " or all FUNCTIONs", interface_name, &p->sym->declared_at); else if (p->sym->attr.flavor == FL_DERIVED) gfc_error ("In %s at %L procedures must be all FUNCTIONs as the " "generic name is also the name of a derived type", interface_name, &p->sym->declared_at); return true; } /* F2003, C1207. F2008, C1207. */ if (p->sym->attr.proc == PROC_INTERNAL && !gfc_notify_std (GFC_STD_F2008, "Internal procedure " "%qs in %s at %L", p->sym->name, interface_name, &p->sym->declared_at)) return true; } p = psave; /* Remove duplicate interfaces in this interface list. */ for (; p; p = p->next) { qlast = p; for (q = p->next; q;) { if (p->sym != q->sym) { qlast = q; q = q->next; } else { /* Duplicate interface. */ qlast->next = q->next; free (q); q = qlast->next; } } } return false; } /* Check lists of interfaces to make sure that no two interfaces are ambiguous. Duplicate interfaces (from the same symbol) are OK here. */ static bool check_interface1 (gfc_interface *p, gfc_interface *q0, int generic_flag, const char *interface_name, bool referenced) { gfc_interface *q; for (; p; p = p->next) for (q = q0; q; q = q->next) { if (p->sym == q->sym) continue; /* Duplicates OK here. */ if (p->sym->name == q->sym->name && p->sym->module == q->sym->module) continue; if (!gfc_fl_struct (p->sym->attr.flavor) && !gfc_fl_struct (q->sym->attr.flavor) && gfc_compare_interfaces (p->sym, q->sym, q->sym->name, generic_flag, 0, NULL, 0, NULL, NULL)) { if (referenced) gfc_error ("Ambiguous interfaces in %s for %qs at %L " "and %qs at %L", interface_name, q->sym->name, &q->sym->declared_at, p->sym->name, &p->sym->declared_at); else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc) gfc_warning (0, "Ambiguous interfaces in %s for %qs at %L " "and %qs at %L", interface_name, q->sym->name, &q->sym->declared_at, p->sym->name, &p->sym->declared_at); else gfc_warning (0, "Although not referenced, %qs has ambiguous " "interfaces at %L", interface_name, &p->where); return true; } } return false; } /* Check the generic and operator interfaces of symbols to make sure that none of the interfaces conflict. The check has to be done after all of the symbols are actually loaded. */ static void check_sym_interfaces (gfc_symbol *sym) { /* Provide sufficient space to hold "generic interface 'symbol.symbol'". */ char interface_name[2*GFC_MAX_SYMBOL_LEN+2 + sizeof("generic interface ''")]; gfc_interface *p; if (sym->ns != gfc_current_ns) return; if (sym->generic != NULL) { size_t len = strlen (sym->name) + sizeof("generic interface ''"); gcc_assert (len < sizeof (interface_name)); sprintf (interface_name, "generic interface '%s'", sym->name); if (check_interface0 (sym->generic, interface_name)) return; for (p = sym->generic; p; p = p->next) { if (p->sym->attr.mod_proc && !p->sym->attr.module_procedure && (p->sym->attr.if_source != IFSRC_DECL || p->sym->attr.procedure)) { gfc_error ("%qs at %L is not a module procedure", p->sym->name, &p->where); return; } } /* Originally, this test was applied to host interfaces too; this is incorrect since host associated symbols, from any source, cannot be ambiguous with local symbols. */ check_interface1 (sym->generic, sym->generic, 1, interface_name, sym->attr.referenced || !sym->attr.use_assoc); } } static void check_uop_interfaces (gfc_user_op *uop) { char interface_name[GFC_MAX_SYMBOL_LEN + sizeof("operator interface ''")]; gfc_user_op *uop2; gfc_namespace *ns; sprintf (interface_name, "operator interface '%s'", uop->name); if (check_interface0 (uop->op, interface_name)) return; for (ns = gfc_current_ns; ns; ns = ns->parent) { uop2 = gfc_find_uop (uop->name, ns); if (uop2 == NULL) continue; check_interface1 (uop->op, uop2->op, 0, interface_name, true); } } /* Given an intrinsic op, return an equivalent op if one exists, or INTRINSIC_NONE otherwise. */ gfc_intrinsic_op gfc_equivalent_op (gfc_intrinsic_op op) { switch(op) { case INTRINSIC_EQ: return INTRINSIC_EQ_OS; case INTRINSIC_EQ_OS: return INTRINSIC_EQ; case INTRINSIC_NE: return INTRINSIC_NE_OS; case INTRINSIC_NE_OS: return INTRINSIC_NE; case INTRINSIC_GT: return INTRINSIC_GT_OS; case INTRINSIC_GT_OS: return INTRINSIC_GT; case INTRINSIC_GE: return INTRINSIC_GE_OS; case INTRINSIC_GE_OS: return INTRINSIC_GE; case INTRINSIC_LT: return INTRINSIC_LT_OS; case INTRINSIC_LT_OS: return INTRINSIC_LT; case INTRINSIC_LE: return INTRINSIC_LE_OS; case INTRINSIC_LE_OS: return INTRINSIC_LE; default: return INTRINSIC_NONE; } } /* For the namespace, check generic, user operator and intrinsic operator interfaces for consistency and to remove duplicate interfaces. We traverse the whole namespace, counting on the fact that most symbols will not have generic or operator interfaces. */ void gfc_check_interfaces (gfc_namespace *ns) { gfc_namespace *old_ns, *ns2; char interface_name[GFC_MAX_SYMBOL_LEN + sizeof("intrinsic '' operator")]; int i; old_ns = gfc_current_ns; gfc_current_ns = ns; gfc_traverse_ns (ns, check_sym_interfaces); gfc_traverse_user_op (ns, check_uop_interfaces); for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++) { if (i == INTRINSIC_USER) continue; if (i == INTRINSIC_ASSIGN) strcpy (interface_name, "intrinsic assignment operator"); else sprintf (interface_name, "intrinsic '%s' operator", gfc_op2string ((gfc_intrinsic_op) i)); if (check_interface0 (ns->op[i], interface_name)) continue; if (ns->op[i]) gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i, ns->op[i]->where); for (ns2 = ns; ns2; ns2 = ns2->parent) { gfc_intrinsic_op other_op; if (check_interface1 (ns->op[i], ns2->op[i], 0, interface_name, true)) goto done; /* i should be gfc_intrinsic_op, but has to be int with this cast here for stupid C++ compatibility rules. */ other_op = gfc_equivalent_op ((gfc_intrinsic_op) i); if (other_op != INTRINSIC_NONE && check_interface1 (ns->op[i], ns2->op[other_op], 0, interface_name, true)) goto done; } } done: gfc_current_ns = old_ns; } /* Given a symbol of a formal argument list and an expression, if the formal argument is allocatable, check that the actual argument is allocatable. Returns true if compatible, zero if not compatible. */ static bool compare_allocatable (gfc_symbol *formal, gfc_expr *actual) { if (formal->attr.allocatable || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.allocatable)) { symbol_attribute attr = gfc_expr_attr (actual); if (actual->ts.type == BT_CLASS && !attr.class_ok) return true; else if (!attr.allocatable) return false; } return true; } /* Given a symbol of a formal argument list and an expression, if the formal argument is a pointer, see if the actual argument is a pointer. Returns nonzero if compatible, zero if not compatible. */ static int compare_pointer (gfc_symbol *formal, gfc_expr *actual) { symbol_attribute attr; if (formal->attr.pointer || (formal->ts.type == BT_CLASS && CLASS_DATA (formal) && CLASS_DATA (formal)->attr.class_pointer)) { attr = gfc_expr_attr (actual); /* Fortran 2008 allows non-pointer actual arguments. */ if (!attr.pointer && attr.target && formal->attr.intent == INTENT_IN) return 2; if (!attr.pointer) return 0; } return 1; } /* Emit clear error messages for rank mismatch. */ static void argument_rank_mismatch (const char *name, locus *where, int rank1, int rank2, locus *where_formal) { /* TS 29113, C407b. */ if (where_formal == NULL) { if (rank2 == -1) gfc_error ("The assumed-rank array at %L requires that the dummy " "argument %qs has assumed-rank", where, name); else if (rank1 == 0) gfc_error_opt (0, "Rank mismatch in argument %qs " "at %L (scalar and rank-%d)", name, where, rank2); else if (rank2 == 0) gfc_error_opt (0, "Rank mismatch in argument %qs " "at %L (rank-%d and scalar)", name, where, rank1); else gfc_error_opt (0, "Rank mismatch in argument %qs " "at %L (rank-%d and rank-%d)", name, where, rank1, rank2); } else { if (rank2 == -1) /* This is an assumed rank-actual passed to a function without an explicit interface, which is already diagnosed in gfc_procedure_use. */ return; if (rank1 == 0) gfc_error_opt (0, "Rank mismatch between actual argument at %L " "and actual argument at %L (scalar and rank-%d)", where, where_formal, rank2); else if (rank2 == 0) gfc_error_opt (0, "Rank mismatch between actual argument at %L " "and actual argument at %L (rank-%d and scalar)", where, where_formal, rank1); else gfc_error_opt (0, "Rank mismatch between actual argument at %L " "and actual argument at %L (rank-%d and rank-%d)", where, where_formal, rank1, rank2); } } /* Under certain conditions, a scalar actual argument can be passed to an array dummy argument - see F2018, 15.5.2.4, paragraph 14. This function returns true for these conditions so that an error or warning for this can be suppressed later. Always return false for expressions with rank > 0. */ bool maybe_dummy_array_arg (gfc_expr *e) { gfc_symbol *s; gfc_ref *ref; bool array_pointer = false; bool assumed_shape = false; bool scalar_ref = true; if (e->rank > 0) return false; if (e->ts.type == BT_CHARACTER && e->ts.kind == 1) return true; /* If this comes from a constructor, it has been an array element originally. */ if (e->expr_type == EXPR_CONSTANT) return e->from_constructor; if (e->expr_type != EXPR_VARIABLE) return false; s = e->symtree->n.sym; if (s->attr.dimension) { scalar_ref = false; array_pointer = s->attr.pointer; } if (s->as && s->as->type == AS_ASSUMED_SHAPE) assumed_shape = true; for (ref=e->ref; ref; ref=ref->next) { if (ref->type == REF_COMPONENT) { symbol_attribute *attr; attr = &ref->u.c.component->attr; if (attr->dimension) { array_pointer = attr->pointer; assumed_shape = false; scalar_ref = false; } else scalar_ref = true; } } return !(scalar_ref || array_pointer || assumed_shape); } /* Given a symbol of a formal argument list and an expression, see if the two are compatible as arguments. Returns true if compatible, false if not compatible. */ static bool compare_parameter (gfc_symbol *formal, gfc_expr *actual, int ranks_must_agree, int is_elemental, locus *where) { gfc_ref *ref; bool rank_check, is_pointer; char err[200]; gfc_component *ppc; bool codimension = false; gfc_array_spec *formal_as; /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding procs c_f_pointer or c_f_procpointer, and we need to accept most pointers the user could give us. This should allow that. */ if (formal->ts.type == BT_VOID) return true; if (formal->ts.type == BT_DERIVED && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c && actual->ts.type == BT_DERIVED && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c) { if (formal->ts.u.derived->intmod_sym_id != actual->ts.u.derived->intmod_sym_id) return false; if (ranks_must_agree && symbol_rank (formal) != actual->rank && symbol_rank (formal) != -1) { if (where) argument_rank_mismatch (formal->name, &actual->where, symbol_rank (formal), actual->rank, NULL); return false; } return true; } if (formal->ts.type == BT_CLASS && actual->ts.type == BT_DERIVED) /* Make sure the vtab symbol is present when the module variables are generated. */ gfc_find_derived_vtab (actual->ts.u.derived); if (actual->ts.type == BT_PROCEDURE) { gfc_symbol *act_sym = actual->symtree->n.sym; if (formal->attr.flavor != FL_PROCEDURE && !act_sym->ts.interface) { if (where) gfc_error ("Invalid procedure argument at %L", &actual->where); return false; } else if (act_sym->ts.interface && !gfc_compare_interfaces (formal, act_sym->ts.interface, act_sym->name, 0, 1, err, sizeof(err),NULL, NULL)) { if (where) gfc_error_opt (0, "Interface mismatch in dummy procedure %qs at %L:" " %s", formal->name, &actual->where, err); return false; } if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err, sizeof(err), NULL, NULL)) { if (where) gfc_error_opt (0, "Interface mismatch in dummy procedure %qs at %L:" " %s", formal->name, &actual->where, err); return false; } if (formal->attr.function && !act_sym->attr.function) { gfc_add_function (&act_sym->attr, act_sym->name, &act_sym->declared_at); if (act_sym->ts.type == BT_UNKNOWN && !gfc_set_default_type (act_sym, 1, act_sym->ns)) return false; } else if (formal->attr.subroutine && !act_sym->attr.subroutine) gfc_add_subroutine (&act_sym->attr, act_sym->name, &act_sym->declared_at); return true; } ppc = gfc_get_proc_ptr_comp (actual); if (ppc && ppc->ts.interface) { if (!gfc_compare_interfaces (formal, ppc->ts.interface, ppc->name, 0, 1, err, sizeof(err), NULL, NULL)) { if (where) gfc_error_opt (0, "Interface mismatch in dummy procedure %qs at %L:" " %s", formal->name, &actual->where, err); return false; } } /* F2008, C1241. */ if (formal->attr.pointer && formal->attr.contiguous && !gfc_is_simply_contiguous (actual, true, false)) { if (where) gfc_error ("Actual argument to contiguous pointer dummy %qs at %L " "must be simply contiguous", formal->name, &actual->where); return false; } symbol_attribute actual_attr = gfc_expr_attr (actual); if (actual->ts.type == BT_CLASS && !actual_attr.class_ok) return true; if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN) && actual->ts.type != BT_HOLLERITH && formal->ts.type != BT_ASSUMED && !(formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) && !gfc_compare_types (&formal->ts, &actual->ts) && !(formal->ts.type == BT_DERIVED && actual->ts.type == BT_CLASS && gfc_compare_derived_types (formal->ts.u.derived, CLASS_DATA (actual)->ts.u.derived))) { if (where) { if (formal->attr.artificial) { if (!flag_allow_argument_mismatch || !formal->error) gfc_error_opt (0, "Type mismatch between actual argument at %L " "and actual argument at %L (%s/%s).", &actual->where, &formal->declared_at, gfc_typename (actual), gfc_dummy_typename (&formal->ts)); formal->error = 1; } else gfc_error_opt (0, "Type mismatch in argument %qs at %L; passed %s " "to %s", formal->name, where, gfc_typename (actual), gfc_dummy_typename (&formal->ts)); } return false; } if (actual->ts.type == BT_ASSUMED && formal->ts.type != BT_ASSUMED) { if (where) gfc_error ("Assumed-type actual argument at %L requires that dummy " "argument %qs is of assumed type", &actual->where, formal->name); return false; } /* TS29113 C407c; F2018 C711. */ if (actual->ts.type == BT_ASSUMED && symbol_rank (formal) == -1 && actual->rank != -1 && !(actual->symtree->n.sym->as && actual->symtree->n.sym->as->type == AS_ASSUMED_SHAPE)) { if (where) gfc_error ("Assumed-type actual argument at %L corresponding to " "assumed-rank dummy argument %qs must be " "assumed-shape or assumed-rank", &actual->where, formal->name); return false; } /* F2008, 12.5.2.5; IR F08/0073. */ if (formal->ts.type == BT_CLASS && formal->attr.class_ok && actual->expr_type != EXPR_NULL && ((CLASS_DATA (formal)->attr.class_pointer && formal->attr.intent != INTENT_IN) || CLASS_DATA (formal)->attr.allocatable)) { if (actual->ts.type != BT_CLASS) { if (where) gfc_error ("Actual argument to %qs at %L must be polymorphic", formal->name, &actual->where); return false; } if ((!UNLIMITED_POLY (formal) || !UNLIMITED_POLY(actual)) && !gfc_compare_derived_types (CLASS_DATA (actual)->ts.u.derived, CLASS_DATA (formal)->ts.u.derived)) { if (where) gfc_error ("Actual argument to %qs at %L must have the same " "declared type", formal->name, &actual->where); return false; } } /* F08: 12.5.2.5 Allocatable and pointer dummy variables. However, this is necessary also for F03, so retain error for both. NOTE: Other type/kind errors pre-empt this error. Since they are F03 compatible, no attempt has been made to channel to this one. */ if (UNLIMITED_POLY (formal) && !UNLIMITED_POLY (actual) && (CLASS_DATA (formal)->attr.allocatable ||CLASS_DATA (formal)->attr.class_pointer)) { if (where) gfc_error ("Actual argument to %qs at %L must be unlimited " "polymorphic since the formal argument is a " "pointer or allocatable unlimited polymorphic " "entity [F2008: 12.5.2.5]", formal->name, &actual->where); return false; } if (formal->ts.type == BT_CLASS && formal->attr.class_ok) codimension = CLASS_DATA (formal)->attr.codimension; else codimension = formal->attr.codimension; if (codimension && !gfc_is_coarray (actual)) { if (where) gfc_error ("Actual argument to %qs at %L must be a coarray", formal->name, &actual->where); return false; } formal_as = (formal->ts.type == BT_CLASS ? CLASS_DATA (formal)->as : formal->as); if (codimension && formal->attr.allocatable) { gfc_ref *last = NULL; for (ref = actual->ref; ref; ref = ref->next) if (ref->type == REF_COMPONENT) last = ref; /* F2008, 12.5.2.6. */ if ((last && last->u.c.component->as->corank != formal->as->corank) || (!last && actual->symtree->n.sym->as->corank != formal->as->corank)) { if (where) gfc_error ("Corank mismatch in argument %qs at %L (%d and %d)", formal->name, &actual->where, formal->as->corank, last ? last->u.c.component->as->corank : actual->symtree->n.sym->as->corank); return false; } } if (codimension) { /* F2008, 12.5.2.8 + Corrig 2 (IR F08/0048). */ /* F2018, 12.5.2.8. */ if (formal->attr.dimension && (formal->attr.contiguous || formal->as->type != AS_ASSUMED_SHAPE) && actual_attr.dimension && !gfc_is_simply_contiguous (actual, true, true)) { if (where) gfc_error ("Actual argument to %qs at %L must be simply " "contiguous or an element of such an array", formal->name, &actual->where); return false; } /* F2008, C1303 and C1304. */ if (formal->attr.intent != INTENT_INOUT && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS) && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE) || formal->attr.lock_comp)) { if (where) gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, " "which is LOCK_TYPE or has a LOCK_TYPE component", formal->name, &actual->where); return false; } /* TS18508, C702/C703. */ if (formal->attr.intent != INTENT_INOUT && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS) && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE) || formal->attr.event_comp)) { if (where) gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, " "which is EVENT_TYPE or has a EVENT_TYPE component", formal->name, &actual->where); return false; } } /* F2008, C1239/C1240. */ if (actual->expr_type == EXPR_VARIABLE && (actual->symtree->n.sym->attr.asynchronous || actual->symtree->n.sym->attr.volatile_) && (formal->attr.asynchronous || formal->attr.volatile_) && actual->rank && formal->as && !gfc_is_simply_contiguous (actual, true, false) && ((formal->as->type != AS_ASSUMED_SHAPE && formal->as->type != AS_ASSUMED_RANK && !formal->attr.pointer) || formal->attr.contiguous)) { if (where) gfc_error ("Dummy argument %qs has to be a pointer, assumed-shape or " "assumed-rank array without CONTIGUOUS attribute - as actual" " argument at %L is not simply contiguous and both are " "ASYNCHRONOUS or VOLATILE", formal->name, &actual->where); return false; } if (formal->attr.allocatable && !codimension && actual_attr.codimension) { if (formal->attr.intent == INTENT_OUT) { if (where) gfc_error ("Passing coarray at %L to allocatable, noncoarray, " "INTENT(OUT) dummy argument %qs", &actual->where, formal->name); return false; } else if (warn_surprising && where && formal->attr.intent != INTENT_IN) gfc_warning (OPT_Wsurprising, "Passing coarray at %L to allocatable, noncoarray dummy " "argument %qs, which is invalid if the allocation status" " is modified", &actual->where, formal->name); } /* If the rank is the same or the formal argument has assumed-rank. */ if (symbol_rank (formal) == actual->rank || symbol_rank (formal) == -1) return true; rank_check = where != NULL && !is_elemental && formal_as && (formal_as->type == AS_ASSUMED_SHAPE || formal_as->type == AS_DEFERRED) && actual->expr_type != EXPR_NULL; /* Skip rank checks for NO_ARG_CHECK. */ if (formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) return true; /* Scalar & coindexed, see: F2008, Section 12.5.2.4. */ if (rank_check || ranks_must_agree || (formal->attr.pointer && actual->expr_type != EXPR_NULL) || (actual->rank != 0 && !(is_elemental || formal->attr.dimension || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.dimension))) || (actual->rank == 0 && ((formal->ts.type == BT_CLASS && CLASS_DATA (formal)->as->type == AS_ASSUMED_SHAPE) || (formal->ts.type != BT_CLASS && formal->as->type == AS_ASSUMED_SHAPE)) && actual->expr_type != EXPR_NULL) || (actual->rank == 0 && (formal->attr.dimension || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.dimension)) && gfc_is_coindexed (actual)) /* Assumed-rank actual argument; F2018 C838. */ || actual->rank == -1) { if (where && (!formal->attr.artificial || (!formal->maybe_array && !maybe_dummy_array_arg (actual)))) { locus *where_formal; if (formal->attr.artificial) where_formal = &formal->declared_at; else where_formal = NULL; argument_rank_mismatch (formal->name, &actual->where, symbol_rank (formal), actual->rank, where_formal); } return false; } else if (actual->rank != 0 && (is_elemental || formal->attr.dimension || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.dimension))) return true; /* At this point, we are considering a scalar passed to an array. This is valid (cf. F95 12.4.1.1, F2003 12.4.1.2, and F2008 12.5.2.4), - if the actual argument is (a substring of) an element of a non-assumed-shape/non-pointer/non-polymorphic array; or - (F2003) if the actual argument is of type character of default/c_char kind. - (F2018) if the dummy argument is type(*). */ is_pointer = actual->expr_type == EXPR_VARIABLE ? actual->symtree->n.sym->attr.pointer : false; for (ref = actual->ref; ref; ref = ref->next) { if (ref->type == REF_COMPONENT) is_pointer = ref->u.c.component->attr.pointer; else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT && ref->u.ar.dimen > 0 && (!ref->next || (ref->next->type == REF_SUBSTRING && !ref->next->next))) break; } if (actual->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL) { if (where) gfc_error ("Polymorphic scalar passed to array dummy argument %qs " "at %L", formal->name, &actual->where); return false; } if (actual->expr_type != EXPR_NULL && ref && actual->ts.type != BT_CHARACTER && (is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE)) { if (where) { if (formal->attr.artificial) gfc_error ("Element of assumed-shape or pointer array " "as actual argument at %L cannot correspond to " "actual argument at %L", &actual->where, &formal->declared_at); else gfc_error ("Element of assumed-shape or pointer " "array passed to array dummy argument %qs at %L", formal->name, &actual->where); } return false; } if (actual->ts.type == BT_CHARACTER && actual->expr_type != EXPR_NULL && (!ref || is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE)) { if (formal->ts.kind != 1 && (gfc_option.allow_std & GFC_STD_GNU) == 0) { if (where) gfc_error ("Extension: Scalar non-default-kind, non-C_CHAR-kind " "CHARACTER actual argument with array dummy argument " "%qs at %L", formal->name, &actual->where); return false; } if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0) { gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with " "array dummy argument %qs at %L", formal->name, &actual->where); return false; } else return ((gfc_option.allow_std & GFC_STD_F2003) != 0); } if (ref == NULL && actual->expr_type != EXPR_NULL) { if (actual->rank == 0 && formal->ts.type == BT_ASSUMED && formal->as && formal->as->type == AS_ASSUMED_SIZE) /* This is new in F2018, type(*) is new in TS29113, but gfortran does not differentiate. Thus, if type(*) exists, it is valid; otherwise, type(*) is already rejected. */ return true; if (where && (!formal->attr.artificial || (!formal->maybe_array && !maybe_dummy_array_arg (actual)))) { locus *where_formal; if (formal->attr.artificial) where_formal = &formal->declared_at; else where_formal = NULL; argument_rank_mismatch (formal->name, &actual->where, symbol_rank (formal), actual->rank, where_formal); } return false; } return true; } /* Returns the storage size of a symbol (formal argument) or zero if it cannot be determined. */ static unsigned long get_sym_storage_size (gfc_symbol *sym) { int i; unsigned long strlen, elements; if (sym->ts.type == BT_CHARACTER) { if (sym->ts.u.cl && sym->ts.u.cl->length && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT && sym->ts.u.cl->length->ts.type == BT_INTEGER) strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer); else return 0; } else strlen = 1; if (symbol_rank (sym) == 0) return strlen; elements = 1; if (sym->as->type != AS_EXPLICIT) return 0; for (i = 0; i < sym->as->rank; i++) { if (sym->as->upper[i]->expr_type != EXPR_CONSTANT || sym->as->lower[i]->expr_type != EXPR_CONSTANT || sym->as->upper[i]->ts.type != BT_INTEGER || sym->as->lower[i]->ts.type != BT_INTEGER) return 0; elements *= mpz_get_si (sym->as->upper[i]->value.integer) - mpz_get_si (sym->as->lower[i]->value.integer) + 1L; } return strlen*elements; } /* Returns the storage size of an expression (actual argument) or zero if it cannot be determined. For an array element, it returns the remaining size as the element sequence consists of all storage units of the actual argument up to the end of the array. */ static unsigned long get_expr_storage_size (gfc_expr *e) { int i; long int strlen, elements; long int substrlen = 0; bool is_str_storage = false; gfc_ref *ref; if (e == NULL) return 0; if (e->ts.type == BT_CHARACTER) { if (e->ts.u.cl && e->ts.u.cl->length && e->ts.u.cl->length->expr_type == EXPR_CONSTANT && e->ts.u.cl->length->ts.type == BT_INTEGER) strlen = mpz_get_si (e->ts.u.cl->length->value.integer); else if (e->expr_type == EXPR_CONSTANT && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL)) strlen = e->value.character.length; else return 0; } else strlen = 1; /* Length per element. */ if (e->rank == 0 && !e->ref) return strlen; elements = 1; if (!e->ref) { if (!e->shape) return 0; for (i = 0; i < e->rank; i++) elements *= mpz_get_si (e->shape[i]); return elements*strlen; } for (ref = e->ref; ref; ref = ref->next) { if (ref->type == REF_SUBSTRING && ref->u.ss.start && ref->u.ss.start->expr_type == EXPR_CONSTANT) { if (is_str_storage) { /* The string length is the substring length. Set now to full string length. */ if (!ref->u.ss.length || !ref->u.ss.length->length || ref->u.ss.length->length->expr_type != EXPR_CONSTANT) return 0; strlen = mpz_get_ui (ref->u.ss.length->length->value.integer); } substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1; continue; } if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION) for (i = 0; i < ref->u.ar.dimen; i++) { long int start, end, stride; stride = 1; if (ref->u.ar.stride[i]) { if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT && ref->u.ar.stride[i]->ts.type == BT_INTEGER) stride = mpz_get_si (ref->u.ar.stride[i]->value.integer); else return 0; } if (ref->u.ar.start[i]) { if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT && ref->u.ar.start[i]->ts.type == BT_INTEGER) start = mpz_get_si (ref->u.ar.start[i]->value.integer); else return 0; } else if (ref->u.ar.as->lower[i] && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT && ref->u.ar.as->lower[i]->ts.type == BT_INTEGER) start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer); else return 0; if (ref->u.ar.end[i]) { if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT && ref->u.ar.end[i]->ts.type == BT_INTEGER) end = mpz_get_si (ref->u.ar.end[i]->value.integer); else return 0; } else if (ref->u.ar.as->upper[i] && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT && ref->u.ar.as->upper[i]->ts.type == BT_INTEGER) end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer); else return 0; elements *= (end - start)/stride + 1L; } else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL) for (i = 0; i < ref->u.ar.as->rank; i++) { if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i] && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT && ref->u.ar.as->lower[i]->ts.type == BT_INTEGER && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT && ref->u.ar.as->upper[i]->ts.type == BT_INTEGER) elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer) - mpz_get_si (ref->u.ar.as->lower[i]->value.integer) + 1L; else return 0; } else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT && e->expr_type == EXPR_VARIABLE) { if (ref->u.ar.as->type == AS_ASSUMED_SHAPE || e->symtree->n.sym->attr.pointer) { elements = 1; continue; } /* Determine the number of remaining elements in the element sequence for array element designators. */ is_str_storage = true; for (i = ref->u.ar.dimen - 1; i >= 0; i--) { if (ref->u.ar.start[i] == NULL || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT || ref->u.ar.as->upper[i] == NULL || ref->u.ar.as->lower[i] == NULL || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT || ref->u.ar.as->upper[i]->ts.type != BT_INTEGER || ref->u.ar.as->lower[i]->ts.type != BT_INTEGER) return 0; elements = elements * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer) - mpz_get_si (ref->u.ar.as->lower[i]->value.integer) + 1L) - (mpz_get_si (ref->u.ar.start[i]->value.integer) - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)); } } else if (ref->type == REF_COMPONENT && ref->u.c.component->attr.function && ref->u.c.component->attr.proc_pointer && ref->u.c.component->attr.dimension) { /* Array-valued procedure-pointer components. */ gfc_array_spec *as = ref->u.c.component->as; for (i = 0; i < as->rank; i++) { if (!as->upper[i] || !as->lower[i] || as->upper[i]->expr_type != EXPR_CONSTANT || as->lower[i]->expr_type != EXPR_CONSTANT || as->upper[i]->ts.type != BT_INTEGER || as->lower[i]->ts.type != BT_INTEGER) return 0; elements = elements * (mpz_get_si (as->upper[i]->value.integer) - mpz_get_si (as->lower[i]->value.integer) + 1L); } } } if (substrlen) return (is_str_storage) ? substrlen + (elements-1)*strlen : elements*strlen; else return elements*strlen; } /* Given an expression, check whether it is an array section which has a vector subscript. */ bool gfc_has_vector_subscript (gfc_expr *e) { int i; gfc_ref *ref; if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE) return false; for (ref = e->ref; ref; ref = ref->next) if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION) for (i = 0; i < ref->u.ar.dimen; i++) if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR) return true; return false; } static bool is_procptr_result (gfc_expr *expr) { gfc_component *c = gfc_get_proc_ptr_comp (expr); if (c) return (c->ts.interface && (c->ts.interface->attr.proc_pointer == 1)); else return ((expr->symtree->n.sym->result != expr->symtree->n.sym) && (expr->symtree->n.sym->result->attr.proc_pointer == 1)); } /* Recursively append candidate argument ARG to CANDIDATES. Store the number of total candidates in CANDIDATES_LEN. */ static void lookup_arg_fuzzy_find_candidates (gfc_formal_arglist *arg, char **&candidates, size_t &candidates_len) { for (gfc_formal_arglist *p = arg; p && p->sym; p = p->next) vec_push (candidates, candidates_len, p->sym->name); } /* Lookup argument ARG fuzzily, taking names in ARGUMENTS into account. */ static const char* lookup_arg_fuzzy (const char *arg, gfc_formal_arglist *arguments) { char **candidates = NULL; size_t candidates_len = 0; lookup_arg_fuzzy_find_candidates (arguments, candidates, candidates_len); return gfc_closest_fuzzy_match (arg, candidates); } static gfc_dummy_arg * get_nonintrinsic_dummy_arg (gfc_formal_arglist *formal) { gfc_dummy_arg * const dummy_arg = gfc_get_dummy_arg (); dummy_arg->intrinsicness = GFC_NON_INTRINSIC_DUMMY_ARG; dummy_arg->u.non_intrinsic = formal; return dummy_arg; } /* Given formal and actual argument lists, see if they are compatible. If they are compatible, the actual argument list is sorted to correspond with the formal list, and elements for missing optional arguments are inserted. If WHERE pointer is nonnull, then we issue errors when things don't match instead of just returning the status code. */ bool gfc_compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal, int ranks_must_agree, int is_elemental, bool in_statement_function, locus *where) { gfc_actual_arglist **new_arg, *a, *actual; gfc_formal_arglist *f; int i, n, na; unsigned long actual_size, formal_size; bool full_array = false; gfc_array_ref *actual_arr_ref; gfc_array_spec *fas, *aas; bool pointer_dummy, pointer_arg, allocatable_arg; bool ok = true; actual = *ap; if (actual == NULL && formal == NULL) return true; n = 0; for (f = formal; f; f = f->next) n++; new_arg = XALLOCAVEC (gfc_actual_arglist *, n); for (i = 0; i < n; i++) new_arg[i] = NULL; na = 0; f = formal; i = 0; for (a = actual; a; a = a->next, f = f->next) { if (a->name != NULL && in_statement_function) { gfc_error ("Keyword argument %qs at %L is invalid in " "a statement function", a->name, &a->expr->where); return false; } /* Look for keywords but ignore g77 extensions like %VAL. */ if (a->name != NULL && a->name[0] != '%') { i = 0; for (f = formal; f; f = f->next, i++) { if (f->sym == NULL) continue; if (strcmp (f->sym->name, a->name) == 0) break; } if (f == NULL) { if (where) { const char *guessed = lookup_arg_fuzzy (a->name, formal); if (guessed) gfc_error ("Keyword argument %qs at %L is not in " "the procedure; did you mean %qs?", a->name, &a->expr->where, guessed); else gfc_error ("Keyword argument %qs at %L is not in " "the procedure", a->name, &a->expr->where); } return false; } if (new_arg[i] != NULL) { if (where) gfc_error ("Keyword argument %qs at %L is already associated " "with another actual argument", a->name, &a->expr->where); return false; } } if (f == NULL) { if (where) gfc_error ("More actual than formal arguments in procedure " "call at %L", where); return false; } if (f->sym == NULL && a->expr == NULL) goto match; if (f->sym == NULL) { /* These errors have to be issued, otherwise an ICE can occur. See PR 78865. */ if (where) gfc_error_now ("Missing alternate return specifier in subroutine " "call at %L", where); return false; } else a->associated_dummy = get_nonintrinsic_dummy_arg (f); if (a->expr == NULL) { if (f->sym->attr.optional) continue; else { if (where) gfc_error_now ("Unexpected alternate return specifier in " "subroutine call at %L", where); return false; } } /* Make sure that intrinsic vtables exist for calls to unlimited polymorphic formal arguments. */ if (UNLIMITED_POLY (f->sym) && a->expr->ts.type != BT_DERIVED && a->expr->ts.type != BT_CLASS && a->expr->ts.type != BT_ASSUMED) gfc_find_vtab (&a->expr->ts); /* Interp J3/22-146: "If the context of the reference to NULL is an <actual argument> corresponding to an <assumed-rank> dummy argument, MOLD shall be present." */ if (a->expr->expr_type == EXPR_NULL && a->expr->ts.type == BT_UNKNOWN && f->sym->as && f->sym->as->type == AS_ASSUMED_RANK) { gfc_error ("Intrinsic %<NULL()%> without %<MOLD%> argument at %L " "passed to assumed-rank dummy %qs", &a->expr->where, f->sym->name); ok = false; goto match; } if (warn_surprising && a->expr->expr_type == EXPR_VARIABLE && a->expr->symtree->n.sym->as && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE && f->sym->as && f->sym->as->type == AS_ASSUMED_RANK) gfc_warning (0, "The assumed-size dummy %qs is being passed at %L to " "an assumed-rank dummy %qs", a->expr->symtree->name, &a->expr->where, f->sym->name); if (a->expr->expr_type == EXPR_NULL && a->expr->ts.type == BT_UNKNOWN && f->sym->ts.type == BT_CHARACTER && !f->sym->ts.deferred && f->sym->ts.u.cl && f->sym->ts.u.cl->length == NULL) { gfc_error ("Intrinsic %<NULL()%> without %<MOLD%> argument at %L " "passed to assumed-length dummy %qs", &a->expr->where, f->sym->name); ok = false; goto match; } if (a->expr->expr_type == EXPR_NULL && ((f->sym->ts.type != BT_CLASS && !f->sym->attr.pointer && (f->sym->attr.allocatable || !f->sym->attr.optional || (gfc_option.allow_std & GFC_STD_F2008) == 0)) || (f->sym->ts.type == BT_CLASS && !CLASS_DATA (f->sym)->attr.class_pointer && (CLASS_DATA (f->sym)->attr.allocatable || !f->sym->attr.optional || (gfc_option.allow_std & GFC_STD_F2008) == 0)))) { if (where && (!f->sym->attr.optional || (f->sym->ts.type != BT_CLASS && f->sym->attr.allocatable) || (f->sym->ts.type == BT_CLASS && CLASS_DATA (f->sym)->attr.allocatable))) gfc_error ("Unexpected NULL() intrinsic at %L to dummy %qs", where, f->sym->name); else if (where) gfc_error ("Fortran 2008: Null pointer at %L to non-pointer " "dummy %qs", where, f->sym->name); ok = false; goto match; } if (!compare_parameter (f->sym, a->expr, ranks_must_agree, is_elemental, where)) { ok = false; goto match; } /* TS 29113, 6.3p2; F2018 15.5.2.4. */ if (f->sym->ts.type == BT_ASSUMED && (a->expr->ts.type == BT_DERIVED || (a->expr->ts.type == BT_CLASS && CLASS_DATA (a->expr)))) { gfc_symbol *derived = (a->expr->ts.type == BT_DERIVED ? a->expr->ts.u.derived : CLASS_DATA (a->expr)->ts.u.derived); gfc_namespace *f2k_derived = derived->f2k_derived; if (derived->attr.pdt_type || (f2k_derived && (f2k_derived->finalizers || f2k_derived->tb_sym_root))) { gfc_error ("Actual argument at %L to assumed-type dummy " "has type parameters or is of " "derived type with type-bound or FINAL procedures", &a->expr->where); ok = false; goto match; } } if (UNLIMITED_POLY (a->expr) && !(f->sym->ts.type == BT_ASSUMED || UNLIMITED_POLY (f->sym))) { gfc_error ("Unlimited polymorphic actual argument at %L is not " "matched with either an unlimited polymorphic or " "assumed type dummy argument", &a->expr->where); ok = false; goto match; } /* Special case for character arguments. For allocatable, pointer and assumed-shape dummies, the string length needs to match exactly. */ if (a->expr->ts.type == BT_CHARACTER && a->expr->ts.u.cl && a->expr->ts.u.cl->length && a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT && a->expr->ts.u.cl->length->ts.type == BT_INTEGER && f->sym->ts.type == BT_CHARACTER && f->sym->ts.u.cl && f->sym->ts.u.cl->length && f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT && f->sym->ts.u.cl->length->ts.type == BT_INTEGER && (f->sym->attr.pointer || f->sym->attr.allocatable || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE)) && (mpz_cmp (a->expr->ts.u.cl->length->value.integer, f->sym->ts.u.cl->length->value.integer) != 0)) { if (where && (f->sym->attr.pointer || f->sym->attr.allocatable)) gfc_warning (0, "Character length mismatch (%ld/%ld) between actual " "argument and pointer or allocatable dummy argument " "%qs at %L", mpz_get_si (a->expr->ts.u.cl->length->value.integer), mpz_get_si (f->sym->ts.u.cl->length->value.integer), f->sym->name, &a->expr->where); else if (where) gfc_warning (0, "Character length mismatch (%ld/%ld) between actual " "argument and assumed-shape dummy argument %qs " "at %L", mpz_get_si (a->expr->ts.u.cl->length->value.integer), mpz_get_si (f->sym->ts.u.cl->length->value.integer), f->sym->name, &a->expr->where); ok = false; goto match; } if ((f->sym->attr.pointer || f->sym->attr.allocatable) && f->sym->ts.deferred != a->expr->ts.deferred && a->expr->ts.type == BT_CHARACTER) { if (where) gfc_error ("Actual argument at %L to allocatable or " "pointer dummy argument %qs must have a deferred " "length type parameter if and only if the dummy has one", &a->expr->where, f->sym->name); ok = false; goto match; } if (f->sym->ts.type == BT_CLASS) goto skip_size_check; /* Skip size check for NULL() actual without MOLD argument. */ if (a->expr->expr_type == EXPR_NULL && a->expr->ts.type == BT_UNKNOWN) goto skip_size_check; actual_size = get_expr_storage_size (a->expr); formal_size = get_sym_storage_size (f->sym); if (actual_size != 0 && actual_size < formal_size && a->expr->ts.type != BT_PROCEDURE && f->sym->attr.flavor != FL_PROCEDURE) { if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where) { gfc_warning (0, "Character length of actual argument shorter " "than of dummy argument %qs (%lu/%lu) at %L", f->sym->name, actual_size, formal_size, &a->expr->where); goto skip_size_check; } else if (where) { /* Emit a warning for -std=legacy and an error otherwise. */ if (gfc_option.warn_std == 0) gfc_warning (0, "Actual argument contains too few " "elements for dummy argument %qs (%lu/%lu) " "at %L", f->sym->name, actual_size, formal_size, &a->expr->where); else gfc_error_now ("Actual argument contains too few " "elements for dummy argument %qs (%lu/%lu) " "at %L", f->sym->name, actual_size, formal_size, &a->expr->where); } ok = false; goto match; } skip_size_check: /* Satisfy either: F03:12.4.1.3 by ensuring that a procedure pointer actual argument is provided for a procedure pointer formal argument; or: F08:12.5.2.9 (F18:15.5.2.10) by ensuring that the effective argument shall be an external, internal, module, or dummy procedure. The interfaces are checked elsewhere. */ if (f->sym->attr.proc_pointer && !((a->expr->expr_type == EXPR_VARIABLE && (a->expr->symtree->n.sym->attr.proc_pointer || gfc_is_proc_ptr_comp (a->expr))) || (a->expr->ts.type == BT_PROCEDURE && f->sym->ts.interface) || (a->expr->expr_type == EXPR_FUNCTION && is_procptr_result (a->expr)))) { if (where) gfc_error ("Expected a procedure pointer for argument %qs at %L", f->sym->name, &a->expr->where); ok = false; goto match; } /* Satisfy F03:12.4.1.3 by ensuring that a procedure actual argument is provided for a procedure formal argument. */ if (f->sym->attr.flavor == FL_PROCEDURE && !((a->expr->expr_type == EXPR_VARIABLE && (a->expr->symtree->n.sym->attr.flavor == FL_PROCEDURE || a->expr->symtree->n.sym->attr.proc_pointer || gfc_is_proc_ptr_comp (a->expr))) || (a->expr->expr_type == EXPR_FUNCTION && is_procptr_result (a->expr)))) { if (where) gfc_error ("Expected a procedure for argument %qs at %L", f->sym->name, &a->expr->where); ok = false; goto match; } /* Class array variables and expressions store array info in a different place from non-class objects; consolidate the logic to access it here instead of repeating it below. Note that pointer_arg and allocatable_arg are not fully general and are only used in a specific situation below with an assumed-rank argument. */ if (f->sym->ts.type == BT_CLASS && CLASS_DATA (f->sym)) { gfc_component *classdata = CLASS_DATA (f->sym); fas = classdata->as; pointer_dummy = classdata->attr.class_pointer; } else { fas = f->sym->as; pointer_dummy = f->sym->attr.pointer; } if (a->expr->expr_type != EXPR_VARIABLE) { aas = NULL; pointer_arg = false; allocatable_arg = false; } else if (a->expr->ts.type == BT_CLASS && a->expr->symtree->n.sym && CLASS_DATA (a->expr->symtree->n.sym)) { gfc_component *classdata = CLASS_DATA (a->expr->symtree->n.sym); aas = classdata->as; pointer_arg = classdata->attr.class_pointer; allocatable_arg = classdata->attr.allocatable; } else { aas = a->expr->symtree->n.sym->as; pointer_arg = a->expr->symtree->n.sym->attr.pointer; allocatable_arg = a->expr->symtree->n.sym->attr.allocatable; } /* F2018:9.5.2(2) permits assumed-size whole array expressions as actual arguments only if the shape is not required; thus it cannot be passed to an assumed-shape array dummy. F2018:15.5.2.(2) permits passing a nonpointer actual to an intent(in) pointer dummy argument and this is accepted by the compare_pointer check below, but this also requires shape information. There's more discussion of this in PR94110. */ if (fas && (fas->type == AS_ASSUMED_SHAPE || fas->type == AS_DEFERRED || (fas->type == AS_ASSUMED_RANK && pointer_dummy)) && aas && aas->type == AS_ASSUMED_SIZE && (a->expr->ref == NULL || (a->expr->ref->type == REF_ARRAY && a->expr->ref->u.ar.type == AR_FULL))) { if (where) gfc_error ("Actual argument for %qs cannot be an assumed-size" " array at %L", f->sym->name, where); ok = false; goto match; } /* Diagnose F2018 C839 (TS29113 C535c). Here the problem is passing an assumed-size array to an INTENT(OUT) assumed-rank dummy when it doesn't have the size information needed to run initializers and finalizers. */ if (f->sym->attr.intent == INTENT_OUT && fas && fas->type == AS_ASSUMED_RANK && aas && ((aas->type == AS_ASSUMED_SIZE && (a->expr->ref == NULL || (a->expr->ref->type == REF_ARRAY && a->expr->ref->u.ar.type == AR_FULL))) || (aas->type == AS_ASSUMED_RANK && !pointer_arg && !allocatable_arg)) && (a->expr->ts.type == BT_CLASS || (a->expr->ts.type == BT_DERIVED && (gfc_is_finalizable (a->expr->ts.u.derived, NULL) || gfc_has_ultimate_allocatable (a->expr) || gfc_has_default_initializer (a->expr->ts.u.derived))))) { if (where) gfc_error ("Actual argument to assumed-rank INTENT(OUT) " "dummy %qs at %L cannot be of unknown size", f->sym->name, where); ok = false; goto match; } if (a->expr->expr_type != EXPR_NULL) { int cmp = compare_pointer (f->sym, a->expr); bool pre2008 = ((gfc_option.allow_std & GFC_STD_F2008) == 0); if (pre2008 && cmp == 0) { if (where) gfc_error ("Actual argument for %qs at %L must be a pointer", f->sym->name, &a->expr->where); ok = false; goto match; } if (pre2008 && cmp == 2) { if (where) gfc_error ("Fortran 2008: Non-pointer actual argument at %L to " "pointer dummy %qs", &a->expr->where, f->sym->name); ok = false; goto match; } if (!pre2008 && cmp == 0) { if (where) gfc_error ("Actual argument for %qs at %L must be a pointer " "or a valid target for the dummy pointer in a " "pointer assignment statement", f->sym->name, &a->expr->where); ok = false; goto match; } } /* Fortran 2008, C1242. */ if (f->sym->attr.pointer && gfc_is_coindexed (a->expr)) { if (where) gfc_error ("Coindexed actual argument at %L to pointer " "dummy %qs", &a->expr->where, f->sym->name); ok = false; goto match; } /* Fortran 2008, 12.5.2.5 (no constraint). */ if (a->expr->expr_type == EXPR_VARIABLE && f->sym->attr.intent != INTENT_IN && f->sym->attr.allocatable && gfc_is_coindexed (a->expr)) { if (where) gfc_error ("Coindexed actual argument at %L to allocatable " "dummy %qs requires INTENT(IN)", &a->expr->where, f->sym->name); ok = false; goto match; } /* Fortran 2008, C1237. */ if (a->expr->expr_type == EXPR_VARIABLE && (f->sym->attr.asynchronous || f->sym->attr.volatile_) && gfc_is_coindexed (a->expr) && (a->expr->symtree->n.sym->attr.volatile_ || a->expr->symtree->n.sym->attr.asynchronous)) { if (where) gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at " "%L requires that dummy %qs has neither " "ASYNCHRONOUS nor VOLATILE", &a->expr->where, f->sym->name); ok = false; goto match; } /* Fortran 2008, 12.5.2.4 (no constraint). */ if (a->expr->expr_type == EXPR_VARIABLE && f->sym->attr.intent != INTENT_IN && !f->sym->attr.value && gfc_is_coindexed (a->expr) && gfc_has_ultimate_allocatable (a->expr)) { if (where) gfc_error ("Coindexed actual argument at %L with allocatable " "ultimate component to dummy %qs requires either VALUE " "or INTENT(IN)", &a->expr->where, f->sym->name); ok = false; goto match; } if (f->sym->ts.type == BT_CLASS && CLASS_DATA (f->sym)->attr.allocatable && gfc_is_class_array_ref (a->expr, &full_array) && !full_array) { if (where) gfc_error ("Actual CLASS array argument for %qs must be a full " "array at %L", f->sym->name, &a->expr->where); ok = false; goto match; } if (a->expr->expr_type != EXPR_NULL && !compare_allocatable (f->sym, a->expr)) { if (where) gfc_error ("Actual argument for %qs must be ALLOCATABLE at %L", f->sym->name, &a->expr->where); ok = false; goto match; } if (a->expr->expr_type == EXPR_FUNCTION && a->expr->value.function.esym && f->sym->attr.allocatable) { if (where) gfc_error ("Actual argument for %qs at %L is a function result " "and the dummy argument is ALLOCATABLE", f->sym->name, &a->expr->where); ok = false; goto match; } /* Check intent = OUT/INOUT for definable actual argument. */ if (!in_statement_function && (f->sym->attr.intent == INTENT_OUT || f->sym->attr.intent == INTENT_INOUT)) { const char* context = (where ? _("actual argument to INTENT = OUT/INOUT") : NULL); if (((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok && CLASS_DATA (f->sym)->attr.class_pointer) || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer)) && !gfc_check_vardef_context (a->expr, true, false, false, context)) { ok = false; goto match; } if (!gfc_check_vardef_context (a->expr, false, false, false, context)) { ok = false; goto match; } } if ((f->sym->attr.intent == INTENT_OUT || f->sym->attr.intent == INTENT_INOUT || f->sym->attr.volatile_ || f->sym->attr.asynchronous) && gfc_has_vector_subscript (a->expr)) { if (where) gfc_error ("Array-section actual argument with vector " "subscripts at %L is incompatible with INTENT(OUT), " "INTENT(INOUT), VOLATILE or ASYNCHRONOUS attribute " "of the dummy argument %qs", &a->expr->where, f->sym->name); ok = false; goto match; } /* C1232 (R1221) For an actual argument which is an array section or an assumed-shape array, the dummy argument shall be an assumed- shape array, if the dummy argument has the VOLATILE attribute. */ if (f->sym->attr.volatile_ && a->expr->expr_type == EXPR_VARIABLE && a->expr->symtree->n.sym->as && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE && !(fas && fas->type == AS_ASSUMED_SHAPE)) { if (where) gfc_error ("Assumed-shape actual argument at %L is " "incompatible with the non-assumed-shape " "dummy argument %qs due to VOLATILE attribute", &a->expr->where,f->sym->name); ok = false; goto match; } /* Find the last array_ref. */ actual_arr_ref = NULL; if (a->expr->ref) actual_arr_ref = gfc_find_array_ref (a->expr, true); if (f->sym->attr.volatile_ && actual_arr_ref && actual_arr_ref->type == AR_SECTION && !(fas && fas->type == AS_ASSUMED_SHAPE)) { if (where) gfc_error ("Array-section actual argument at %L is " "incompatible with the non-assumed-shape " "dummy argument %qs due to VOLATILE attribute", &a->expr->where, f->sym->name); ok = false; goto match; } /* C1233 (R1221) For an actual argument which is a pointer array, the dummy argument shall be an assumed-shape or pointer array, if the dummy argument has the VOLATILE attribute. */ if (f->sym->attr.volatile_ && a->expr->expr_type == EXPR_VARIABLE && a->expr->symtree->n.sym->attr.pointer && a->expr->symtree->n.sym->as && !(fas && (fas->type == AS_ASSUMED_SHAPE || f->sym->attr.pointer))) { if (where) gfc_error ("Pointer-array actual argument at %L requires " "an assumed-shape or pointer-array dummy " "argument %qs due to VOLATILE attribute", &a->expr->where,f->sym->name); ok = false; goto match; } match: if (a == actual) na = i; new_arg[i++] = a; } /* Give up now if we saw any bad argument. */ if (!ok) return false; /* Make sure missing actual arguments are optional. */ i = 0; for (f = formal; f; f = f->next, i++) { if (new_arg[i] != NULL) continue; if (f->sym == NULL) { if (where) gfc_error ("Missing alternate return spec in subroutine call " "at %L", where); return false; } /* For CLASS, the optional attribute might be set at either location. */ if (((f->sym->ts.type != BT_CLASS || !CLASS_DATA (f->sym)->attr.optional) && !f->sym->attr.optional) || (in_statement_function && (f->sym->attr.optional || (f->sym->ts.type == BT_CLASS && CLASS_DATA (f->sym)->attr.optional)))) { if (where) gfc_error ("Missing actual argument for argument %qs at %L", f->sym->name, where); return false; } } /* We should have handled the cases where the formal arglist is null already. */ gcc_assert (n > 0); /* The argument lists are compatible. We now relink a new actual argument list with null arguments in the right places. The head of the list remains the head. */ for (f = formal, i = 0; f; f = f->next, i++) if (new_arg[i] == NULL) { new_arg[i] = gfc_get_actual_arglist (); new_arg[i]->associated_dummy = get_nonintrinsic_dummy_arg (f); } if (na != 0) { std::swap (*new_arg[0], *actual); std::swap (new_arg[0], new_arg[na]); } for (i = 0; i < n - 1; i++) new_arg[i]->next = new_arg[i + 1]; new_arg[i]->next = NULL; if (*ap == NULL && n > 0) *ap = new_arg[0]; return true; } typedef struct { gfc_formal_arglist *f; gfc_actual_arglist *a; } argpair; /* qsort comparison function for argument pairs, with the following order: - p->a->expr == NULL - p->a->expr->expr_type != EXPR_VARIABLE - by gfc_symbol pointer value (larger first). */ static int pair_cmp (const void *p1, const void *p2) { const gfc_actual_arglist *a1, *a2; /* *p1 and *p2 are elements of the to-be-sorted array. */ a1 = ((const argpair *) p1)->a; a2 = ((const argpair *) p2)->a; if (!a1->expr) { if (!a2->expr) return 0; return -1; } if (!a2->expr) return 1; if (a1->expr->expr_type != EXPR_VARIABLE) { if (a2->expr->expr_type != EXPR_VARIABLE) return 0; return -1; } if (a2->expr->expr_type != EXPR_VARIABLE) return 1; if (a1->expr->symtree->n.sym > a2->expr->symtree->n.sym) return -1; return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym; } /* Given two expressions from some actual arguments, test whether they refer to the same expression. The analysis is conservative. Returning false will produce no warning. */ static bool compare_actual_expr (gfc_expr *e1, gfc_expr *e2) { const gfc_ref *r1, *r2; if (!e1 || !e2 || e1->expr_type != EXPR_VARIABLE || e2->expr_type != EXPR_VARIABLE || e1->symtree->n.sym != e2->symtree->n.sym) return false; /* TODO: improve comparison, see expr.cc:show_ref(). */ for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next) { if (r1->type != r2->type) return false; switch (r1->type) { case REF_ARRAY: if (r1->u.ar.type != r2->u.ar.type) return false; /* TODO: At the moment, consider only full arrays; we could do better. */ if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL) return false; break; case REF_COMPONENT: if (r1->u.c.component != r2->u.c.component) return false; break; case REF_SUBSTRING: return false; case REF_INQUIRY: if (e1->symtree->n.sym->ts.type == BT_COMPLEX && e1->ts.type == BT_REAL && e2->ts.type == BT_REAL && r1->u.i != r2->u.i) return false; break; default: gfc_internal_error ("compare_actual_expr(): Bad component code"); } } if (!r1 && !r2) return true; return false; } /* Given formal and actual argument lists that correspond to one another, check that identical actual arguments aren't not associated with some incompatible INTENTs. */ static bool check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a) { sym_intent f1_intent, f2_intent; gfc_formal_arglist *f1; gfc_actual_arglist *a1; size_t n, i, j; argpair *p; bool t = true; n = 0; for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next) { if (f1 == NULL && a1 == NULL) break; if (f1 == NULL || a1 == NULL) gfc_internal_error ("check_some_aliasing(): List mismatch"); n++; } if (n == 0) return t; p = XALLOCAVEC (argpair, n); for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next) { p[i].f = f1; p[i].a = a1; } qsort (p, n, sizeof (argpair), pair_cmp); for (i = 0; i < n; i++) { if (!p[i].a->expr || p[i].a->expr->expr_type != EXPR_VARIABLE || p[i].a->expr->ts.type == BT_PROCEDURE) continue; f1_intent = p[i].f->sym->attr.intent; for (j = i + 1; j < n; j++) { /* Expected order after the sort. */ if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE) gfc_internal_error ("check_some_aliasing(): corrupted data"); /* Are the expression the same? */ if (!compare_actual_expr (p[i].a->expr, p[j].a->expr)) break; f2_intent = p[j].f->sym->attr.intent; if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT) || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN) || (f1_intent == INTENT_OUT && f2_intent == INTENT_OUT)) { gfc_warning (0, "Same actual argument associated with INTENT(%s) " "argument %qs and INTENT(%s) argument %qs at %L", gfc_intent_string (f1_intent), p[i].f->sym->name, gfc_intent_string (f2_intent), p[j].f->sym->name, &p[i].a->expr->where); t = false; } } } return t; } /* Given formal and actual argument lists that correspond to one another, check that they are compatible in the sense that intents are not mismatched. */ static bool check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a) { sym_intent f_intent; for (;; f = f->next, a = a->next) { gfc_expr *expr; if (f == NULL && a == NULL) break; if (f == NULL || a == NULL) gfc_internal_error ("check_intents(): List mismatch"); if (a->expr && a->expr->expr_type == EXPR_FUNCTION && a->expr->value.function.isym && a->expr->value.function.isym->id == GFC_ISYM_CAF_GET) expr = a->expr->value.function.actual->expr; else expr = a->expr; if (expr == NULL || expr->expr_type != EXPR_VARIABLE) continue; f_intent = f->sym->attr.intent; if (gfc_pure (NULL) && gfc_impure_variable (expr->symtree->n.sym)) { if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok && CLASS_DATA (f->sym)->attr.class_pointer) || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer)) { gfc_error ("Procedure argument at %L is local to a PURE " "procedure and has the POINTER attribute", &expr->where); return false; } } /* Fortran 2008, C1283. */ if (gfc_pure (NULL) && gfc_is_coindexed (expr)) { if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT) { gfc_error ("Coindexed actual argument at %L in PURE procedure " "is passed to an INTENT(%s) argument", &expr->where, gfc_intent_string (f_intent)); return false; } if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok && CLASS_DATA (f->sym)->attr.class_pointer) || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer)) { gfc_error ("Coindexed actual argument at %L in PURE procedure " "is passed to a POINTER dummy argument", &expr->where); return false; } } /* F2008, Section 12.5.2.4. */ if (expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS && gfc_is_coindexed (expr)) { gfc_error ("Coindexed polymorphic actual argument at %L is passed " "polymorphic dummy argument %qs", &expr->where, f->sym->name); return false; } } return true; } /* Check how a procedure is used against its interface. If all goes well, the actual argument list will also end up being properly sorted. */ bool gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where) { gfc_actual_arglist *a; gfc_formal_arglist *dummy_args; bool implicit = false; /* Warn about calls with an implicit interface. Special case for calling a ISO_C_BINDING because c_loc and c_funloc are pseudo-unknown. Additionally, warn about procedures not explicitly declared at all if requested. */ if (sym->attr.if_source == IFSRC_UNKNOWN && !sym->attr.is_iso_c) { bool has_implicit_none_export = false; implicit = true; if (sym->attr.proc == PROC_UNKNOWN) for (gfc_namespace *ns = sym->ns; ns; ns = ns->parent) if (ns->has_implicit_none_export) { has_implicit_none_export = true; break; } if (has_implicit_none_export) { const char *guessed = gfc_lookup_function_fuzzy (sym->name, sym->ns->sym_root); if (guessed) gfc_error ("Procedure %qs called at %L is not explicitly declared" "; did you mean %qs?", sym->name, where, guessed); else gfc_error ("Procedure %qs called at %L is not explicitly declared", sym->name, where); return false; } if (warn_implicit_interface) gfc_warning (OPT_Wimplicit_interface, "Procedure %qs called with an implicit interface at %L", sym->name, where); else if (warn_implicit_procedure && sym->attr.proc == PROC_UNKNOWN) gfc_warning (OPT_Wimplicit_procedure, "Procedure %qs called at %L is not explicitly declared", sym->name, where); gfc_find_proc_namespace (sym->ns)->implicit_interface_calls = 1; } if (sym->attr.if_source == IFSRC_UNKNOWN) { if (sym->attr.pointer) { gfc_error ("The pointer object %qs at %L must have an explicit " "function interface or be declared as array", sym->name, where); return false; } if (sym->attr.allocatable && !sym->attr.external) { gfc_error ("The allocatable object %qs at %L must have an explicit " "function interface or be declared as array", sym->name, where); return false; } if (sym->attr.allocatable) { gfc_error ("Allocatable function %qs at %L must have an explicit " "function interface", sym->name, where); return false; } for (a = *ap; a; a = a->next) { if (a->expr && a->expr->error) return false; /* F2018, 15.4.2.2 Explicit interface is required for a polymorphic dummy argument, so there is no way to legally have a class appear in an argument with an implicit interface. */ if (implicit && a->expr && a->expr->ts.type == BT_CLASS) { gfc_error ("Explicit interface required for polymorphic " "argument at %L",&a->expr->where); a->expr->error = 1; break; } /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */ if (a->name != NULL && a->name[0] != '%') { gfc_error ("Keyword argument requires explicit interface " "for procedure %qs at %L", sym->name, &a->expr->where); break; } /* TS 29113, 6.2. */ if (a->expr && a->expr->ts.type == BT_ASSUMED && sym->intmod_sym_id != ISOCBINDING_LOC) { gfc_error ("Assumed-type argument %s at %L requires an explicit " "interface", a->expr->symtree->n.sym->name, &a->expr->where); a->expr->error = 1; break; } /* F2008, C1303 and C1304. */ if (a->expr && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS) && a->expr->ts.u.derived && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV && a->expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE) || gfc_expr_attr (a->expr).lock_comp)) { gfc_error ("Actual argument of LOCK_TYPE or with LOCK_TYPE " "component at %L requires an explicit interface for " "procedure %qs", &a->expr->where, sym->name); a->expr->error = 1; break; } if (a->expr && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS) && a->expr->ts.u.derived && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV && a->expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE) || gfc_expr_attr (a->expr).event_comp)) { gfc_error ("Actual argument of EVENT_TYPE or with EVENT_TYPE " "component at %L requires an explicit interface for " "procedure %qs", &a->expr->where, sym->name); a->expr->error = 1; break; } if (a->expr && a->expr->expr_type == EXPR_NULL && a->expr->ts.type == BT_UNKNOWN) { gfc_error ("MOLD argument to NULL required at %L", &a->expr->where); a->expr->error = 1; return false; } if (a->expr && a->expr->expr_type == EXPR_NULL) { gfc_error ("Passing intrinsic NULL as actual argument at %L " "requires an explicit interface", &a->expr->where); a->expr->error = 1; return false; } /* TS 29113, C407b. */ if (a->expr && a->expr->expr_type == EXPR_VARIABLE && symbol_rank (a->expr->symtree->n.sym) == -1) { gfc_error ("Assumed-rank argument requires an explicit interface " "at %L", &a->expr->where); a->expr->error = 1; return false; } } return true; } dummy_args = gfc_sym_get_dummy_args (sym); /* For a statement function, check that types and type parameters of actual arguments and dummy arguments match. */ if (!gfc_compare_actual_formal (ap, dummy_args, 0, sym->attr.elemental, sym->attr.proc == PROC_ST_FUNCTION, where)) return false; if (!check_intents (dummy_args, *ap)) return false; if (warn_aliasing) check_some_aliasing (dummy_args, *ap); return true; } /* Check how a procedure pointer component is used against its interface. If all goes well, the actual argument list will also end up being properly sorted. Completely analogous to gfc_procedure_use. */ void gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where) { /* Warn about calls with an implicit interface. Special case for calling a ISO_C_BINDING because c_loc and c_funloc are pseudo-unknown. */ if (warn_implicit_interface && comp->attr.if_source == IFSRC_UNKNOWN && !comp->attr.is_iso_c) gfc_warning (OPT_Wimplicit_interface, "Procedure pointer component %qs called with an implicit " "interface at %L", comp->name, where); if (comp->attr.if_source == IFSRC_UNKNOWN) { gfc_actual_arglist *a; for (a = *ap; a; a = a->next) { /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */ if (a->name != NULL && a->name[0] != '%') { gfc_error ("Keyword argument requires explicit interface " "for procedure pointer component %qs at %L", comp->name, &a->expr->where); break; } } return; } if (!gfc_compare_actual_formal (ap, comp->ts.interface->formal, 0, comp->attr.elemental, false, where)) return; check_intents (comp->ts.interface->formal, *ap); if (warn_aliasing) check_some_aliasing (comp->ts.interface->formal, *ap); } /* Try if an actual argument list matches the formal list of a symbol, respecting the symbol's attributes like ELEMENTAL. This is used for GENERIC resolution. */ bool gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym) { gfc_formal_arglist *dummy_args; bool r; if (sym->attr.flavor != FL_PROCEDURE) return false; dummy_args = gfc_sym_get_dummy_args (sym); r = !sym->attr.elemental; if (gfc_compare_actual_formal (args, dummy_args, r, !r, false, NULL)) { check_intents (dummy_args, *args); if (warn_aliasing) check_some_aliasing (dummy_args, *args); return true; } return false; } /* Given an interface pointer and an actual argument list, search for a formal argument list that matches the actual. If found, returns a pointer to the symbol of the correct interface. Returns NULL if not found. */ gfc_symbol * gfc_search_interface (gfc_interface *intr, int sub_flag, gfc_actual_arglist **ap) { gfc_symbol *elem_sym = NULL; gfc_symbol *null_sym = NULL; locus null_expr_loc; gfc_actual_arglist *a; bool has_null_arg = false; for (a = *ap; a; a = a->next) if (a->expr && a->expr->expr_type == EXPR_NULL && a->expr->ts.type == BT_UNKNOWN) { has_null_arg = true; null_expr_loc = a->expr->where; break; } for (; intr; intr = intr->next) { if (gfc_fl_struct (intr->sym->attr.flavor)) continue; if (sub_flag && intr->sym->attr.function) continue; if (!sub_flag && intr->sym->attr.subroutine) continue; if (gfc_arglist_matches_symbol (ap, intr->sym)) { if (has_null_arg && null_sym) { gfc_error ("MOLD= required in NULL() argument at %L: Ambiguity " "between specific functions %s and %s", &null_expr_loc, null_sym->name, intr->sym->name); return NULL; } else if (has_null_arg) { null_sym = intr->sym; continue; } /* Satisfy 12.4.4.1 such that an elemental match has lower weight than a non-elemental match. */ if (intr->sym->attr.elemental) { elem_sym = intr->sym; continue; } return intr->sym; } } if (null_sym) return null_sym; return elem_sym ? elem_sym : NULL; } /* Do a brute force recursive search for a symbol. */ static gfc_symtree * find_symtree0 (gfc_symtree *root, gfc_symbol *sym) { gfc_symtree * st; if (root->n.sym == sym) return root; st = NULL; if (root->left) st = find_symtree0 (root->left, sym); if (root->right && ! st) st = find_symtree0 (root->right, sym); return st; } /* Find a symtree for a symbol. */ gfc_symtree * gfc_find_sym_in_symtree (gfc_symbol *sym) { gfc_symtree *st; gfc_namespace *ns; /* First try to find it by name. */ gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st); if (st && st->n.sym == sym) return st; /* If it's been renamed, resort to a brute-force search. */ /* TODO: avoid having to do this search. If the symbol doesn't exist in the symtree for the current namespace, it should probably be added. */ for (ns = gfc_current_ns; ns; ns = ns->parent) { st = find_symtree0 (ns->sym_root, sym); if (st) return st; } gfc_internal_error ("Unable to find symbol %qs", sym->name); /* Not reached. */ } /* See if the arglist to an operator-call contains a derived-type argument with a matching type-bound operator. If so, return the matching specific procedure defined as operator-target as well as the base-object to use (which is the found derived-type argument with operator). The generic name, if any, is transmitted to the final expression via 'gname'. */ static gfc_typebound_proc* matching_typebound_op (gfc_expr** tb_base, gfc_actual_arglist* args, gfc_intrinsic_op op, const char* uop, const char ** gname) { gfc_actual_arglist* base; for (base = args; base; base = base->next) if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS) { gfc_typebound_proc* tb; gfc_symbol* derived; bool result; while (base->expr->expr_type == EXPR_OP && base->expr->value.op.op == INTRINSIC_PARENTHESES) base->expr = base->expr->value.op.op1; if (base->expr->ts.type == BT_CLASS) { if (!base->expr->ts.u.derived || CLASS_DATA (base->expr) == NULL || !gfc_expr_attr (base->expr).class_ok) continue; derived = CLASS_DATA (base->expr)->ts.u.derived; } else derived = base->expr->ts.u.derived; if (op == INTRINSIC_USER) { gfc_symtree* tb_uop; gcc_assert (uop); tb_uop = gfc_find_typebound_user_op (derived, &result, uop, false, NULL); if (tb_uop) tb = tb_uop->n.tb; else tb = NULL; } else tb = gfc_find_typebound_intrinsic_op (derived, &result, op, false, NULL); /* This means we hit a PRIVATE operator which is use-associated and should thus not be seen. */ if (!result) tb = NULL; /* Look through the super-type hierarchy for a matching specific binding. */ for (; tb; tb = tb->overridden) { gfc_tbp_generic* g; gcc_assert (tb->is_generic); for (g = tb->u.generic; g; g = g->next) { gfc_symbol* target; gfc_actual_arglist* argcopy; bool matches; gcc_assert (g->specific); if (g->specific->error) continue; target = g->specific->u.specific->n.sym; /* Check if this arglist matches the formal. */ argcopy = gfc_copy_actual_arglist (args); matches = gfc_arglist_matches_symbol (&argcopy, target); gfc_free_actual_arglist (argcopy); /* Return if we found a match. */ if (matches) { *tb_base = base->expr; *gname = g->specific_st->name; return g->specific; } } } } return NULL; } /* For the 'actual arglist' of an operator call and a specific typebound procedure that has been found the target of a type-bound operator, build the appropriate EXPR_COMPCALL and resolve it. We take this indirection over type-bound procedures rather than resolving type-bound operators 'directly' so that we can reuse the existing logic. */ static void build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual, gfc_expr* base, gfc_typebound_proc* target, const char *gname) { e->expr_type = EXPR_COMPCALL; e->value.compcall.tbp = target; e->value.compcall.name = gname ? gname : "$op"; e->value.compcall.actual = actual; e->value.compcall.base_object = base; e->value.compcall.ignore_pass = 1; e->value.compcall.assign = 0; if (e->ts.type == BT_UNKNOWN && target->function) { if (target->is_generic) e->ts = target->u.generic->specific->u.specific->n.sym->ts; else e->ts = target->u.specific->n.sym->ts; } } /* This subroutine is called when an expression is being resolved. The expression node in question is either a user defined operator or an intrinsic operator with arguments that aren't compatible with the operator. This subroutine builds an actual argument list corresponding to the operands, then searches for a compatible interface. If one is found, the expression node is replaced with the appropriate function call. We use the 'match' enum to specify whether a replacement has been made or not, or if an error occurred. */ match gfc_extend_expr (gfc_expr *e) { gfc_actual_arglist *actual; gfc_symbol *sym; gfc_namespace *ns; gfc_user_op *uop; gfc_intrinsic_op i; const char *gname; gfc_typebound_proc* tbo; gfc_expr* tb_base; sym = NULL; actual = gfc_get_actual_arglist (); actual->expr = e->value.op.op1; gname = NULL; if (e->value.op.op2 != NULL) { actual->next = gfc_get_actual_arglist (); actual->next->expr = e->value.op.op2; } i = fold_unary_intrinsic (e->value.op.op); /* See if we find a matching type-bound operator. */ if (i == INTRINSIC_USER) tbo = matching_typebound_op (&tb_base, actual, i, e->value.op.uop->name, &gname); else switch (i) { #define CHECK_OS_COMPARISON(comp) \ case INTRINSIC_##comp: \ case INTRINSIC_##comp##_OS: \ tbo = matching_typebound_op (&tb_base, actual, \ INTRINSIC_##comp, NULL, &gname); \ if (!tbo) \ tbo = matching_typebound_op (&tb_base, actual, \ INTRINSIC_##comp##_OS, NULL, &gname); \ break; CHECK_OS_COMPARISON(EQ) CHECK_OS_COMPARISON(NE) CHECK_OS_COMPARISON(GT) CHECK_OS_COMPARISON(GE) CHECK_OS_COMPARISON(LT) CHECK_OS_COMPARISON(LE) #undef CHECK_OS_COMPARISON default: tbo = matching_typebound_op (&tb_base, actual, i, NULL, &gname); break; } /* If there is a matching typebound-operator, replace the expression with a call to it and succeed. */ if (tbo) { gcc_assert (tb_base); build_compcall_for_operator (e, actual, tb_base, tbo, gname); if (!gfc_resolve_expr (e)) return MATCH_ERROR; else return MATCH_YES; } if (i == INTRINSIC_USER) { for (ns = gfc_current_ns; ns; ns = ns->parent) { uop = gfc_find_uop (e->value.op.uop->name, ns); if (uop == NULL) continue; sym = gfc_search_interface (uop->op, 0, &actual); if (sym != NULL) break; } } else { for (ns = gfc_current_ns; ns; ns = ns->parent) { /* Due to the distinction between '==' and '.eq.' and friends, one has to check if either is defined. */ switch (i) { #define CHECK_OS_COMPARISON(comp) \ case INTRINSIC_##comp: \ case INTRINSIC_##comp##_OS: \ sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \ if (!sym) \ sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \ break; CHECK_OS_COMPARISON(EQ) CHECK_OS_COMPARISON(NE) CHECK_OS_COMPARISON(GT) CHECK_OS_COMPARISON(GE) CHECK_OS_COMPARISON(LT) CHECK_OS_COMPARISON(LE) #undef CHECK_OS_COMPARISON default: sym = gfc_search_interface (ns->op[i], 0, &actual); } if (sym != NULL) break; } /* F2018(15.4.3.4.2) requires that the use of unlimited polymorphic formal arguments does not override the intrinsic uses. */ gfc_push_suppress_errors (); if (sym && (UNLIMITED_POLY (sym->formal->sym) || (sym->formal->next && UNLIMITED_POLY (sym->formal->next->sym))) && !gfc_check_operator_interface (sym, e->value.op.op, e->where)) sym = NULL; gfc_pop_suppress_errors (); } /* TODO: Do an ambiguity-check and error if multiple matching interfaces are found rather than just taking the first one and not checking further. */ if (sym == NULL) { /* Don't use gfc_free_actual_arglist(). */ free (actual->next); free (actual); return MATCH_NO; } /* Change the expression node to a function call. */ e->expr_type = EXPR_FUNCTION; e->symtree = gfc_find_sym_in_symtree (sym); e->value.function.actual = actual; e->value.function.esym = NULL; e->value.function.isym = NULL; e->value.function.name = NULL; e->user_operator = 1; if (!gfc_resolve_expr (e)) return MATCH_ERROR; return MATCH_YES; } /* Tries to replace an assignment code node with a subroutine call to the subroutine associated with the assignment operator. Return true if the node was replaced. On false, no error is generated. */ bool gfc_extend_assign (gfc_code *c, gfc_namespace *ns) { gfc_actual_arglist *actual; gfc_expr *lhs, *rhs, *tb_base; gfc_symbol *sym = NULL; const char *gname = NULL; gfc_typebound_proc* tbo; lhs = c->expr1; rhs = c->expr2; /* Don't allow an intrinsic assignment with a BOZ rhs to be replaced. */ if (c->op == EXEC_ASSIGN && c->expr1->expr_type == EXPR_VARIABLE && c->expr2->expr_type == EXPR_CONSTANT && c->expr2->ts.type == BT_BOZ) return false; /* Don't allow an intrinsic assignment to be replaced. */ if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS && (rhs->rank == 0 || rhs->rank == lhs->rank) && (lhs->ts.type == rhs->ts.type || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts)))) return false; actual = gfc_get_actual_arglist (); actual->expr = lhs; actual->next = gfc_get_actual_arglist (); actual->next->expr = rhs; /* TODO: Ambiguity-check, see above for gfc_extend_expr. */ /* See if we find a matching type-bound assignment. */ tbo = matching_typebound_op (&tb_base, actual, INTRINSIC_ASSIGN, NULL, &gname); if (tbo) { /* Success: Replace the expression with a type-bound call. */ gcc_assert (tb_base); c->expr1 = gfc_get_expr (); build_compcall_for_operator (c->expr1, actual, tb_base, tbo, gname); c->expr1->value.compcall.assign = 1; c->expr1->where = c->loc; c->expr2 = NULL; c->op = EXEC_COMPCALL; return true; } /* See if we find an 'ordinary' (non-typebound) assignment procedure. */ for (; ns; ns = ns->parent) { sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual); if (sym != NULL) break; } if (sym) { /* Success: Replace the assignment with the call. */ c->op = EXEC_ASSIGN_CALL; c->symtree = gfc_find_sym_in_symtree (sym); c->expr1 = NULL; c->expr2 = NULL; c->ext.actual = actual; return true; } /* Failure: No assignment procedure found. */ free (actual->next); free (actual); return false; } /* Make sure that the interface just parsed is not already present in the given interface list. Ambiguity isn't checked yet since module procedures can be present without interfaces. */ bool gfc_check_new_interface (gfc_interface *base, gfc_symbol *new_sym, locus loc) { gfc_interface *ip; for (ip = base; ip; ip = ip->next) { if (ip->sym == new_sym) { gfc_error ("Entity %qs at %L is already present in the interface", new_sym->name, &loc); return false; } } return true; } /* Add a symbol to the current interface. */ bool gfc_add_interface (gfc_symbol *new_sym) { gfc_interface **head, *intr; gfc_namespace *ns; gfc_symbol *sym; switch (current_interface.type) { case INTERFACE_NAMELESS: case INTERFACE_ABSTRACT: return true; case INTERFACE_INTRINSIC_OP: for (ns = current_interface.ns; ns; ns = ns->parent) switch (current_interface.op) { case INTRINSIC_EQ: case INTRINSIC_EQ_OS: if (!gfc_check_new_interface (ns->op[INTRINSIC_EQ], new_sym, gfc_current_locus) || !gfc_check_new_interface (ns->op[INTRINSIC_EQ_OS], new_sym, gfc_current_locus)) return false; break; case INTRINSIC_NE: case INTRINSIC_NE_OS: if (!gfc_check_new_interface (ns->op[INTRINSIC_NE], new_sym, gfc_current_locus) || !gfc_check_new_interface (ns->op[INTRINSIC_NE_OS], new_sym, gfc_current_locus)) return false; break; case INTRINSIC_GT: case INTRINSIC_GT_OS: if (!gfc_check_new_interface (ns->op[INTRINSIC_GT], new_sym, gfc_current_locus) || !gfc_check_new_interface (ns->op[INTRINSIC_GT_OS], new_sym, gfc_current_locus)) return false; break; case INTRINSIC_GE: case INTRINSIC_GE_OS: if (!gfc_check_new_interface (ns->op[INTRINSIC_GE], new_sym, gfc_current_locus) || !gfc_check_new_interface (ns->op[INTRINSIC_GE_OS], new_sym, gfc_current_locus)) return false; break; case INTRINSIC_LT: case INTRINSIC_LT_OS: if (!gfc_check_new_interface (ns->op[INTRINSIC_LT], new_sym, gfc_current_locus) || !gfc_check_new_interface (ns->op[INTRINSIC_LT_OS], new_sym, gfc_current_locus)) return false; break; case INTRINSIC_LE: case INTRINSIC_LE_OS: if (!gfc_check_new_interface (ns->op[INTRINSIC_LE], new_sym, gfc_current_locus) || !gfc_check_new_interface (ns->op[INTRINSIC_LE_OS], new_sym, gfc_current_locus)) return false; break; default: if (!gfc_check_new_interface (ns->op[current_interface.op], new_sym, gfc_current_locus)) return false; } head = &current_interface.ns->op[current_interface.op]; break; case INTERFACE_GENERIC: case INTERFACE_DTIO: for (ns = current_interface.ns; ns; ns = ns->parent) { gfc_find_symbol (current_interface.sym->name, ns, 0, &sym); if (sym == NULL) continue; if (!gfc_check_new_interface (sym->generic, new_sym, gfc_current_locus)) return false; } head = &current_interface.sym->generic; break; case INTERFACE_USER_OP: if (!gfc_check_new_interface (current_interface.uop->op, new_sym, gfc_current_locus)) return false; head = &current_interface.uop->op; break; default: gfc_internal_error ("gfc_add_interface(): Bad interface type"); } intr = gfc_get_interface (); intr->sym = new_sym; intr->where = gfc_current_locus; intr->next = *head; *head = intr; return true; } gfc_interface *& gfc_current_interface_head (void) { switch (current_interface.type) { case INTERFACE_INTRINSIC_OP: return current_interface.ns->op[current_interface.op]; case INTERFACE_GENERIC: case INTERFACE_DTIO: return current_interface.sym->generic; case INTERFACE_USER_OP: return current_interface.uop->op; default: gcc_unreachable (); } } void gfc_set_current_interface_head (gfc_interface *i) { switch (current_interface.type) { case INTERFACE_INTRINSIC_OP: current_interface.ns->op[current_interface.op] = i; break; case INTERFACE_GENERIC: case INTERFACE_DTIO: current_interface.sym->generic = i; break; case INTERFACE_USER_OP: current_interface.uop->op = i; break; default: gcc_unreachable (); } } /* Gets rid of a formal argument list. We do not free symbols. Symbols are freed when a namespace is freed. */ void gfc_free_formal_arglist (gfc_formal_arglist *p) { gfc_formal_arglist *q; for (; p; p = q) { q = p->next; free (p); } } /* Check that it is ok for the type-bound procedure 'proc' to override the procedure 'old', cf. F08:4.5.7.3. */ bool gfc_check_typebound_override (gfc_symtree* proc, gfc_symtree* old) { locus where; gfc_symbol *proc_target, *old_target; unsigned proc_pass_arg, old_pass_arg, argpos; gfc_formal_arglist *proc_formal, *old_formal; bool check_type; char err[200]; /* This procedure should only be called for non-GENERIC proc. */ gcc_assert (!proc->n.tb->is_generic); /* If the overwritten procedure is GENERIC, this is an error. */ if (old->n.tb->is_generic) { gfc_error ("Cannot overwrite GENERIC %qs at %L", old->name, &proc->n.tb->where); return false; } where = proc->n.tb->where; proc_target = proc->n.tb->u.specific->n.sym; old_target = old->n.tb->u.specific->n.sym; /* Check that overridden binding is not NON_OVERRIDABLE. */ if (old->n.tb->non_overridable) { gfc_error ("%qs at %L overrides a procedure binding declared" " NON_OVERRIDABLE", proc->name, &where); return false; } /* It's an error to override a non-DEFERRED procedure with a DEFERRED one. */ if (!old->n.tb->deferred && proc->n.tb->deferred) { gfc_error ("%qs at %L must not be DEFERRED as it overrides a" " non-DEFERRED binding", proc->name, &where); return false; } /* If the overridden binding is PURE, the overriding must be, too. */ if (old_target->attr.pure && !proc_target->attr.pure) { gfc_error ("%qs at %L overrides a PURE procedure and must also be PURE", proc->name, &where); return false; } /* If the overridden binding is ELEMENTAL, the overriding must be, too. If it is not, the overriding must not be either. */ if (old_target->attr.elemental && !proc_target->attr.elemental) { gfc_error ("%qs at %L overrides an ELEMENTAL procedure and must also be" " ELEMENTAL", proc->name, &where); return false; } if (!old_target->attr.elemental && proc_target->attr.elemental) { gfc_error ("%qs at %L overrides a non-ELEMENTAL procedure and must not" " be ELEMENTAL, either", proc->name, &where); return false; } /* If the overridden binding is a SUBROUTINE, the overriding must also be a SUBROUTINE. */ if (old_target->attr.subroutine && !proc_target->attr.subroutine) { gfc_error ("%qs at %L overrides a SUBROUTINE and must also be a" " SUBROUTINE", proc->name, &where); return false; } /* If the overridden binding is a FUNCTION, the overriding must also be a FUNCTION and have the same characteristics. */ if (old_target->attr.function) { if (!proc_target->attr.function) { gfc_error ("%qs at %L overrides a FUNCTION and must also be a" " FUNCTION", proc->name, &where); return false; } if (!gfc_check_result_characteristics (proc_target, old_target, err, sizeof(err))) { gfc_error ("Result mismatch for the overriding procedure " "%qs at %L: %s", proc->name, &where, err); return false; } } /* If the overridden binding is PUBLIC, the overriding one must not be PRIVATE. */ if (old->n.tb->access == ACCESS_PUBLIC && proc->n.tb->access == ACCESS_PRIVATE) { gfc_error ("%qs at %L overrides a PUBLIC procedure and must not be" " PRIVATE", proc->name, &where); return false; } /* Compare the formal argument lists of both procedures. This is also abused to find the position of the passed-object dummy arguments of both bindings as at least the overridden one might not yet be resolved and we need those positions in the check below. */ proc_pass_arg = old_pass_arg = 0; if (!proc->n.tb->nopass && !proc->n.tb->pass_arg) proc_pass_arg = 1; if (!old->n.tb->nopass && !old->n.tb->pass_arg) old_pass_arg = 1; argpos = 1; proc_formal = gfc_sym_get_dummy_args (proc_target); old_formal = gfc_sym_get_dummy_args (old_target); for ( ; proc_formal && old_formal; proc_formal = proc_formal->next, old_formal = old_formal->next) { if (proc->n.tb->pass_arg && !strcmp (proc->n.tb->pass_arg, proc_formal->sym->name)) proc_pass_arg = argpos; if (old->n.tb->pass_arg && !strcmp (old->n.tb->pass_arg, old_formal->sym->name)) old_pass_arg = argpos; /* Check that the names correspond. */ if (strcmp (proc_formal->sym->name, old_formal->sym->name)) { gfc_error ("Dummy argument %qs of %qs at %L should be named %qs as" " to match the corresponding argument of the overridden" " procedure", proc_formal->sym->name, proc->name, &where, old_formal->sym->name); return false; } check_type = proc_pass_arg != argpos && old_pass_arg != argpos; if (!gfc_check_dummy_characteristics (proc_formal->sym, old_formal->sym, check_type, err, sizeof(err))) { gfc_error_opt (0, "Argument mismatch for the overriding procedure " "%qs at %L: %s", proc->name, &where, err); return false; } ++argpos; } if (proc_formal || old_formal) { gfc_error ("%qs at %L must have the same number of formal arguments as" " the overridden procedure", proc->name, &where); return false; } /* If the overridden binding is NOPASS, the overriding one must also be NOPASS. */ if (old->n.tb->nopass && !proc->n.tb->nopass) { gfc_error ("%qs at %L overrides a NOPASS binding and must also be" " NOPASS", proc->name, &where); return false; } /* If the overridden binding is PASS(x), the overriding one must also be PASS and the passed-object dummy arguments must correspond. */ if (!old->n.tb->nopass) { if (proc->n.tb->nopass) { gfc_error ("%qs at %L overrides a binding with PASS and must also be" " PASS", proc->name, &where); return false; } if (proc_pass_arg != old_pass_arg) { gfc_error ("Passed-object dummy argument of %qs at %L must be at" " the same position as the passed-object dummy argument of" " the overridden procedure", proc->name, &where); return false; } } return true; } /* The following three functions check that the formal arguments of user defined derived type IO procedures are compliant with the requirements of the standard, see F03:9.5.3.7.2 (F08:9.6.4.8.3). */ static void check_dtio_arg_TKR_intent (gfc_symbol *fsym, bool typebound, bt type, int kind, int rank, sym_intent intent) { if (fsym->ts.type != type) { gfc_error ("DTIO dummy argument at %L must be of type %s", &fsym->declared_at, gfc_basic_typename (type)); return; } if (fsym->ts.type != BT_CLASS && fsym->ts.type != BT_DERIVED && fsym->ts.kind != kind) gfc_error ("DTIO dummy argument at %L must be of KIND = %d", &fsym->declared_at, kind); if (!typebound && rank == 0 && (((type == BT_CLASS) && CLASS_DATA (fsym)->attr.dimension) || ((type != BT_CLASS) && fsym->attr.dimension))) gfc_error ("DTIO dummy argument at %L must be a scalar", &fsym->declared_at); else if (rank == 1 && (fsym->as == NULL || fsym->as->type != AS_ASSUMED_SHAPE)) gfc_error ("DTIO dummy argument at %L must be an " "ASSUMED SHAPE ARRAY", &fsym->declared_at); if (type == BT_CHARACTER && fsym->ts.u.cl->length != NULL) gfc_error ("DTIO character argument at %L must have assumed length", &fsym->declared_at); if (fsym->attr.intent != intent) gfc_error ("DTIO dummy argument at %L must have INTENT %s", &fsym->declared_at, gfc_code2string (intents, (int)intent)); return; } static void check_dtio_interface1 (gfc_symbol *derived, gfc_symtree *tb_io_st, bool typebound, bool formatted, int code) { gfc_symbol *dtio_sub, *generic_proc, *fsym; gfc_typebound_proc *tb_io_proc, *specific_proc; gfc_interface *intr; gfc_formal_arglist *formal; int arg_num; bool read = ((dtio_codes)code == DTIO_RF) || ((dtio_codes)code == DTIO_RUF); bt type; sym_intent intent; int kind; dtio_sub = NULL; if (typebound) { /* Typebound DTIO binding. */ tb_io_proc = tb_io_st->n.tb; if (tb_io_proc == NULL) return; gcc_assert (tb_io_proc->is_generic); specific_proc = tb_io_proc->u.generic->specific; if (specific_proc == NULL || specific_proc->is_generic) return; dtio_sub = specific_proc->u.specific->n.sym; } else { generic_proc = tb_io_st->n.sym; if (generic_proc == NULL || generic_proc->generic == NULL) return; for (intr = tb_io_st->n.sym->generic; intr; intr = intr->next) { if (intr->sym && intr->sym->formal && intr->sym->formal->sym && ((intr->sym->formal->sym->ts.type == BT_CLASS && CLASS_DATA (intr->sym->formal->sym)->ts.u.derived == derived) || (intr->sym->formal->sym->ts.type == BT_DERIVED && intr->sym->formal->sym->ts.u.derived == derived))) { dtio_sub = intr->sym; break; } else if (intr->sym && intr->sym->formal && !intr->sym->formal->sym) { gfc_error ("Alternate return at %L is not permitted in a DTIO " "procedure", &intr->sym->declared_at); return; } } if (dtio_sub == NULL) return; } gcc_assert (dtio_sub); if (!dtio_sub->attr.subroutine) gfc_error ("DTIO procedure %qs at %L must be a subroutine", dtio_sub->name, &dtio_sub->declared_at); if (!dtio_sub->resolve_symbol_called) gfc_resolve_formal_arglist (dtio_sub); arg_num = 0; for (formal = dtio_sub->formal; formal; formal = formal->next) arg_num++; if (arg_num < (formatted ? 6 : 4)) { gfc_error ("Too few dummy arguments in DTIO procedure %qs at %L", dtio_sub->name, &dtio_sub->declared_at); return; } if (arg_num > (formatted ? 6 : 4)) { gfc_error ("Too many dummy arguments in DTIO procedure %qs at %L", dtio_sub->name, &dtio_sub->declared_at); return; } /* Now go through the formal arglist. */ arg_num = 1; for (formal = dtio_sub->formal; formal; formal = formal->next, arg_num++) { if (!formatted && arg_num == 3) arg_num = 5; fsym = formal->sym; if (fsym == NULL) { gfc_error ("Alternate return at %L is not permitted in a DTIO " "procedure", &dtio_sub->declared_at); return; } switch (arg_num) { case(1): /* DTV */ type = derived->attr.sequence || derived->attr.is_bind_c ? BT_DERIVED : BT_CLASS; kind = 0; intent = read ? INTENT_INOUT : INTENT_IN; check_dtio_arg_TKR_intent (fsym, typebound, type, kind, 0, intent); break; case(2): /* UNIT */ type = BT_INTEGER; kind = gfc_default_integer_kind; intent = INTENT_IN; check_dtio_arg_TKR_intent (fsym, typebound, type, kind, 0, intent); break; case(3): /* IOTYPE */ type = BT_CHARACTER; kind = gfc_default_character_kind; intent = INTENT_IN; check_dtio_arg_TKR_intent (fsym, typebound, type, kind, 0, intent); break; case(4): /* VLIST */ type = BT_INTEGER; kind = gfc_default_integer_kind; intent = INTENT_IN; check_dtio_arg_TKR_intent (fsym, typebound, type, kind, 1, intent); break; case(5): /* IOSTAT */ type = BT_INTEGER; kind = gfc_default_integer_kind; intent = INTENT_OUT; check_dtio_arg_TKR_intent (fsym, typebound, type, kind, 0, intent); break; case(6): /* IOMSG */ type = BT_CHARACTER; kind = gfc_default_character_kind; intent = INTENT_INOUT; check_dtio_arg_TKR_intent (fsym, typebound, type, kind, 0, intent); break; default: gcc_unreachable (); } } derived->attr.has_dtio_procs = 1; return; } void gfc_check_dtio_interfaces (gfc_symbol *derived) { gfc_symtree *tb_io_st; bool t = false; int code; bool formatted; if (derived->attr.is_class == 1 || derived->attr.vtype == 1) return; /* Check typebound DTIO bindings. */ for (code = 0; code < 4; code++) { formatted = ((dtio_codes)code == DTIO_RF) || ((dtio_codes)code == DTIO_WF); tb_io_st = gfc_find_typebound_proc (derived, &t, gfc_code2string (dtio_procs, code), true, &derived->declared_at); if (tb_io_st != NULL) check_dtio_interface1 (derived, tb_io_st, true, formatted, code); } /* Check generic DTIO interfaces. */ for (code = 0; code < 4; code++) { formatted = ((dtio_codes)code == DTIO_RF)