aboutsummaryrefslogtreecommitdiff
path: root/libjava/java/net/NetPermission.java
blob: 6b796be7f04a9e40c834945dfdc8f603e38ba965 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
/* NetPermission.java -- A class for basic miscellaneous network permission
   Copyright (C) 1998, 2000, 2003 Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */

package java.net;

import java.security.BasicPermission;

/**
 * This class is used to model miscellaneous network permissions.  It is
 * a subclass of <code>BasicPermission</code>.  This means that it models a 
 * "boolean" permission.  One that you either have or do not have.  Thus 
 * there is no permitted action list associated with this object. 
 *
 * The following permission names are defined for this class:
 * 
 * <ul>
 * <li>setDefaultAuthenticator - Grants the ability to install a facility
 * to collect username and password information when requested by a 
 * web site or proxy server.
 * <li>requestPasswordAuthentication - Grants the ability to ask the
 * authentication facility for the user's password.
 * <li>specifyStreamHandler - Grants the permission to specify the 
 * stream handler class used when loading from a URL.
 * </ul>
 *
 * @author Aaron M. Renn (arenn@urbanophile.com)
 */
public final class NetPermission extends BasicPermission
{
  static final long serialVersionUID = -8343910153355041693L;

  /**
   * Initializes a new instance of <code>NetPermission</code> with the
   * specified name.
   *
   * @param name The name of this permission.
   */
  public NetPermission(String name)
  {
    super(name);
  }

  /**
   * Initializes a new instance of <code>NetPermission</code> with the 
   * specified name and perms.  Note that the perms field is irrelevant and is 
   * ignored.  This constructor should never need to be used.
   *
   * @param name The name of this permission
   * @param perms The permitted actions of this permission (ignored)
   */
  public NetPermission(String name, String perms)
  {
    super(name);
  }
}
id='n302' href='#n302'>302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
/* Functions to determine/estimate number of iterations of a loop.
   Copyright (C) 2004-2019 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "stor-layout.h"
#include "fold-const.h"
#include "calls.h"
#include "intl.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-ivopts.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-scalar-evolution.h"
#include "params.h"
#include "tree-dfa.h"


/* The maximum number of dominator BBs we search for conditions
   of loop header copies we use for simplifying a conditional
   expression.  */
#define MAX_DOMINATORS_TO_WALK 8

/*

   Analysis of number of iterations of an affine exit test.

*/

/* Bounds on some value, BELOW <= X <= UP.  */

struct bounds
{
  mpz_t below, up;
};

static bool number_of_iterations_popcount (loop_p loop, edge exit,
					   enum tree_code code,
					   struct tree_niter_desc *niter);


/* Splits expression EXPR to a variable part VAR and constant OFFSET.  */

static void
split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
{
  tree type = TREE_TYPE (expr);
  tree op0, op1;
  bool negate = false;

  *var = expr;
  mpz_set_ui (offset, 0);

  switch (TREE_CODE (expr))
    {
    case MINUS_EXPR:
      negate = true;
      /* Fallthru.  */

    case PLUS_EXPR:
    case POINTER_PLUS_EXPR:
      op0 = TREE_OPERAND (expr, 0);
      op1 = TREE_OPERAND (expr, 1);

      if (TREE_CODE (op1) != INTEGER_CST)
	break;

      *var = op0;
      /* Always sign extend the offset.  */
      wi::to_mpz (wi::to_wide (op1), offset, SIGNED);
      if (negate)
	mpz_neg (offset, offset);
      break;

    case INTEGER_CST:
      *var = build_int_cst_type (type, 0);
      wi::to_mpz (wi::to_wide (expr), offset, TYPE_SIGN (type));
      break;

    default:
      break;
    }
}

/* From condition C0 CMP C1 derives information regarding the value range
   of VAR, which is of TYPE.  Results are stored in to BELOW and UP.  */

static void
refine_value_range_using_guard (tree type, tree var,
				tree c0, enum tree_code cmp, tree c1,
				mpz_t below, mpz_t up)
{
  tree varc0, varc1, ctype;
  mpz_t offc0, offc1;
  mpz_t mint, maxt, minc1, maxc1;
  wide_int minv, maxv;
  bool no_wrap = nowrap_type_p (type);
  bool c0_ok, c1_ok;
  signop sgn = TYPE_SIGN (type);

  switch (cmp)
    {
    case LT_EXPR:
    case LE_EXPR:
    case GT_EXPR:
    case GE_EXPR:
      STRIP_SIGN_NOPS (c0);
      STRIP_SIGN_NOPS (c1);
      ctype = TREE_TYPE (c0);
      if (!useless_type_conversion_p (ctype, type))
	return;

      break;

    case EQ_EXPR:
      /* We could derive quite precise information from EQ_EXPR, however,
	 such a guard is unlikely to appear, so we do not bother with
	 handling it.  */
      return;

    case NE_EXPR:
      /* NE_EXPR comparisons do not contain much of useful information,
	 except for cases of comparing with bounds.  */
      if (TREE_CODE (c1) != INTEGER_CST
	  || !INTEGRAL_TYPE_P (type))
	return;

      /* Ensure that the condition speaks about an expression in the same
	 type as X and Y.  */
      ctype = TREE_TYPE (c0);
      if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
	return;
      c0 = fold_convert (type, c0);
      c1 = fold_convert (type, c1);

      if (operand_equal_p (var, c0, 0))
	{
	  mpz_t valc1;

	  /* Case of comparing VAR with its below/up bounds.  */
	  mpz_init (valc1);
	  wi::to_mpz (wi::to_wide (c1), valc1, TYPE_SIGN (type));
	  if (mpz_cmp (valc1, below) == 0)
	    cmp = GT_EXPR;
	  if (mpz_cmp (valc1, up) == 0)
	    cmp = LT_EXPR;

	  mpz_clear (valc1);
	}
      else
	{
	  /* Case of comparing with the bounds of the type.  */
	  wide_int min = wi::min_value (type);
	  wide_int max = wi::max_value (type);

	  if (wi::to_wide (c1) == min)
	    cmp = GT_EXPR;
	  if (wi::to_wide (c1) == max)
	    cmp = LT_EXPR;
	}

      /* Quick return if no useful information.  */
      if (cmp == NE_EXPR)
	return;

      break;

    default:
      return;
    }

  mpz_init (offc0);
  mpz_init (offc1);
  split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
  split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);

  /* We are only interested in comparisons of expressions based on VAR.  */
  if (operand_equal_p (var, varc1, 0))
    {
      std::swap (varc0, varc1);
      mpz_swap (offc0, offc1);
      cmp = swap_tree_comparison (cmp);
    }
  else if (!operand_equal_p (var, varc0, 0))
    {
      mpz_clear (offc0);
      mpz_clear (offc1);
      return;
    }

  mpz_init (mint);
  mpz_init (maxt);
  get_type_static_bounds (type, mint, maxt);
  mpz_init (minc1);
  mpz_init (maxc1);
  /* Setup range information for varc1.  */
  if (integer_zerop (varc1))
    {
      wi::to_mpz (0, minc1, TYPE_SIGN (type));
      wi::to_mpz (0, maxc1, TYPE_SIGN (type));
    }
  else if (TREE_CODE (varc1) == SSA_NAME
	   && INTEGRAL_TYPE_P (type)
	   && get_range_info (varc1, &minv, &maxv) == VR_RANGE)
    {
      gcc_assert (wi::le_p (minv, maxv, sgn));
      wi::to_mpz (minv, minc1, sgn);
      wi::to_mpz (maxv, maxc1, sgn);
    }
  else
    {
      mpz_set (minc1, mint);
      mpz_set (maxc1, maxt);
    }

  /* Compute valid range information for varc1 + offc1.  Note nothing
     useful can be derived if it overflows or underflows.  Overflow or
     underflow could happen when:

       offc1 > 0 && varc1 + offc1 > MAX_VAL (type)
       offc1 < 0 && varc1 + offc1 < MIN_VAL (type).  */
  mpz_add (minc1, minc1, offc1);
  mpz_add (maxc1, maxc1, offc1);
  c1_ok = (no_wrap
	   || mpz_sgn (offc1) == 0
	   || (mpz_sgn (offc1) < 0 && mpz_cmp (minc1, mint) >= 0)
	   || (mpz_sgn (offc1) > 0 && mpz_cmp (maxc1, maxt) <= 0));
  if (!c1_ok)
    goto end;

  if (mpz_cmp (minc1, mint) < 0)
    mpz_set (minc1, mint);
  if (mpz_cmp (maxc1, maxt) > 0)
    mpz_set (maxc1, maxt);

  if (cmp == LT_EXPR)
    {
      cmp = LE_EXPR;
      mpz_sub_ui (maxc1, maxc1, 1);
    }
  if (cmp == GT_EXPR)
    {
      cmp = GE_EXPR;
      mpz_add_ui (minc1, minc1, 1);
    }

  /* Compute range information for varc0.  If there is no overflow,
     the condition implied that

       (varc0) cmp (varc1 + offc1 - offc0)

     We can possibly improve the upper bound of varc0 if cmp is LE_EXPR,
     or the below bound if cmp is GE_EXPR.

     To prove there is no overflow/underflow, we need to check below
     four cases:
       1) cmp == LE_EXPR && offc0 > 0

	    (varc0 + offc0) doesn't overflow
	    && (varc1 + offc1 - offc0) doesn't underflow

       2) cmp == LE_EXPR && offc0 < 0

	    (varc0 + offc0) doesn't underflow
	    && (varc1 + offc1 - offc0) doesn't overfloe

	  In this case, (varc0 + offc0) will never underflow if we can
	  prove (varc1 + offc1 - offc0) doesn't overflow.

       3) cmp == GE_EXPR && offc0 < 0

	    (varc0 + offc0) doesn't underflow
	    && (varc1 + offc1 - offc0) doesn't overflow

       4) cmp == GE_EXPR && offc0 > 0

	    (varc0 + offc0) doesn't overflow
	    && (varc1 + offc1 - offc0) doesn't underflow

	  In this case, (varc0 + offc0) will never overflow if we can
	  prove (varc1 + offc1 - offc0) doesn't underflow.

     Note we only handle case 2 and 4 in below code.  */

  mpz_sub (minc1, minc1, offc0);
  mpz_sub (maxc1, maxc1, offc0);
  c0_ok = (no_wrap
	   || mpz_sgn (offc0) == 0
	   || (cmp == LE_EXPR
	       && mpz_sgn (offc0) < 0 && mpz_cmp (maxc1, maxt) <= 0)
	   || (cmp == GE_EXPR
	       && mpz_sgn (offc0) > 0 && mpz_cmp (minc1, mint) >= 0));
  if (!c0_ok)
    goto end;

  if (cmp == LE_EXPR)
    {
      if (mpz_cmp (up, maxc1) > 0)
	mpz_set (up, maxc1);
    }
  else
    {
      if (mpz_cmp (below, minc1) < 0)
	mpz_set (below, minc1);
    }

end:
  mpz_clear (mint);
  mpz_clear (maxt);
  mpz_clear (minc1);
  mpz_clear (maxc1);
  mpz_clear (offc0);
  mpz_clear (offc1);
}

/* Stores estimate on the minimum/maximum value of the expression VAR + OFF
   in TYPE to MIN and MAX.  */

static void
determine_value_range (struct loop *loop, tree type, tree var, mpz_t off,
		       mpz_t min, mpz_t max)
{
  int cnt = 0;
  mpz_t minm, maxm;
  basic_block bb;
  wide_int minv, maxv;
  enum value_range_kind rtype = VR_VARYING;

  /* If the expression is a constant, we know its value exactly.  */
  if (integer_zerop (var))
    {
      mpz_set (min, off);
      mpz_set (max, off);
      return;
    }

  get_type_static_bounds (type, min, max);

  /* See if we have some range info from VRP.  */
  if (TREE_CODE (var) == SSA_NAME && INTEGRAL_TYPE_P (type))
    {
      edge e = loop_preheader_edge (loop);
      signop sgn = TYPE_SIGN (type);
      gphi_iterator gsi;

      /* Either for VAR itself...  */
      rtype = get_range_info (var, &minv, &maxv);
      /* Or for PHI results in loop->header where VAR is used as
	 PHI argument from the loop preheader edge.  */
      for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gphi *phi = gsi.phi ();
	  wide_int minc, maxc;
	  if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var
	      && (get_range_info (gimple_phi_result (phi), &minc, &maxc)
		  == VR_RANGE))
	    {
	      if (rtype != VR_RANGE)
		{
		  rtype = VR_RANGE;
		  minv = minc;
		  maxv = maxc;
		}
	      else
		{
		  minv = wi::max (minv, minc, sgn);
		  maxv = wi::min (maxv, maxc, sgn);
		  /* If the PHI result range are inconsistent with
		     the VAR range, give up on looking at the PHI
		     results.  This can happen if VR_UNDEFINED is
		     involved.  */
		  if (wi::gt_p (minv, maxv, sgn))
		    {
		      rtype = get_range_info (var, &minv, &maxv);
		      break;
		    }
		}
	    }
	}
      mpz_init (minm);
      mpz_init (maxm);
      if (rtype != VR_RANGE)
	{
	  mpz_set (minm, min);
	  mpz_set (maxm, max);
	}
      else
	{
	  gcc_assert (wi::le_p (minv, maxv, sgn));
	  wi::to_mpz (minv, minm, sgn);
	  wi::to_mpz (maxv, maxm, sgn);
	}
      /* Now walk the dominators of the loop header and use the entry
	 guards to refine the estimates.  */
      for (bb = loop->header;
	   bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
	   bb = get_immediate_dominator (CDI_DOMINATORS, bb))
	{
	  edge e;
	  tree c0, c1;
	  gimple *cond;
	  enum tree_code cmp;

	  if (!single_pred_p (bb))
	    continue;
	  e = single_pred_edge (bb);

	  if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
	    continue;

	  cond = last_stmt (e->src);
	  c0 = gimple_cond_lhs (cond);
	  cmp = gimple_cond_code (cond);
	  c1 = gimple_cond_rhs (cond);

	  if (e->flags & EDGE_FALSE_VALUE)
	    cmp = invert_tree_comparison (cmp, false);

	  refine_value_range_using_guard (type, var, c0, cmp, c1, minm, maxm);
	  ++cnt;
	}

      mpz_add (minm, minm, off);
      mpz_add (maxm, maxm, off);
      /* If the computation may not wrap or off is zero, then this
	 is always fine.  If off is negative and minv + off isn't
	 smaller than type's minimum, or off is positive and
	 maxv + off isn't bigger than type's maximum, use the more
	 precise range too.  */
      if (nowrap_type_p (type)
	  || mpz_sgn (off) == 0
	  || (mpz_sgn (off) < 0 && mpz_cmp (minm, min) >= 0)
	  || (mpz_sgn (off) > 0 && mpz_cmp (maxm, max) <= 0))
	{
	  mpz_set (min, minm);
	  mpz_set (max, maxm);
	  mpz_clear (minm);
	  mpz_clear (maxm);
	  return;
	}
      mpz_clear (minm);
      mpz_clear (maxm);
    }

  /* If the computation may wrap, we know nothing about the value, except for
     the range of the type.  */
  if (!nowrap_type_p (type))
    return;

  /* Since the addition of OFF does not wrap, if OFF is positive, then we may
     add it to MIN, otherwise to MAX.  */
  if (mpz_sgn (off) < 0)
    mpz_add (max, max, off);
  else
    mpz_add (min, min, off);
}

/* Stores the bounds on the difference of the values of the expressions
   (var + X) and (var + Y), computed in TYPE, to BNDS.  */

static void
bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
				    bounds *bnds)
{
  int rel = mpz_cmp (x, y);
  bool may_wrap = !nowrap_type_p (type);
  mpz_t m;

  /* If X == Y, then the expressions are always equal.
     If X > Y, there are the following possibilities:
       a) neither of var + X and var + Y overflow or underflow, or both of
	  them do.  Then their difference is X - Y.
       b) var + X overflows, and var + Y does not.  Then the values of the
	  expressions are var + X - M and var + Y, where M is the range of
	  the type, and their difference is X - Y - M.
       c) var + Y underflows and var + X does not.  Their difference again
	  is M - X + Y.
       Therefore, if the arithmetics in type does not overflow, then the
       bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
     Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
     (X - Y, X - Y + M).  */

  if (rel == 0)
    {
      mpz_set_ui (bnds->below, 0);
      mpz_set_ui (bnds->up, 0);
      return;
    }

  mpz_init (m);
  wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), m, UNSIGNED);
  mpz_add_ui (m, m, 1);
  mpz_sub (bnds->up, x, y);
  mpz_set (bnds->below, bnds->up);

  if (may_wrap)
    {
      if (rel > 0)
	mpz_sub (bnds->below, bnds->below, m);
      else
	mpz_add (bnds->up, bnds->up, m);
    }

  mpz_clear (m);
}

/* From condition C0 CMP C1 derives information regarding the
   difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
   and stores it to BNDS.  */

static void
refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
			   tree vary, mpz_t offy,
			   tree c0, enum tree_code cmp, tree c1,
			   bounds *bnds)
{
  tree varc0, varc1, ctype;
  mpz_t offc0, offc1, loffx, loffy, bnd;
  bool lbound = false;
  bool no_wrap = nowrap_type_p (type);
  bool x_ok, y_ok;

  switch (cmp)
    {
    case LT_EXPR:
    case LE_EXPR:
    case GT_EXPR:
    case GE_EXPR:
      STRIP_SIGN_NOPS (c0);
      STRIP_SIGN_NOPS (c1);
      ctype = TREE_TYPE (c0);
      if (!useless_type_conversion_p (ctype, type))
	return;

      break;

    case EQ_EXPR:
      /* We could derive quite precise information from EQ_EXPR, however, such
	 a guard is unlikely to appear, so we do not bother with handling
	 it.  */
      return;

    case NE_EXPR:
      /* NE_EXPR comparisons do not contain much of useful information, except for
	 special case of comparing with the bounds of the type.  */
      if (TREE_CODE (c1) != INTEGER_CST
	  || !INTEGRAL_TYPE_P (type))
	return;

      /* Ensure that the condition speaks about an expression in the same type
	 as X and Y.  */
      ctype = TREE_TYPE (c0);
      if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
	return;
      c0 = fold_convert (type, c0);
      c1 = fold_convert (type, c1);

      if (TYPE_MIN_VALUE (type)
	  && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
	{
	  cmp = GT_EXPR;
	  break;
	}
      if (TYPE_MAX_VALUE (type)
	  && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
	{
	  cmp = LT_EXPR;
	  break;
	}

      return;
    default:
      return;
    }

  mpz_init (offc0);
  mpz_init (offc1);
  split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
  split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);

  /* We are only interested in comparisons of expressions based on VARX and
     VARY.  TODO -- we might also be able to derive some bounds from
     expressions containing just one of the variables.  */

  if (operand_equal_p (varx, varc1, 0))
    {
      std::swap (varc0, varc1);
      mpz_swap (offc0, offc1);
      cmp = swap_tree_comparison (cmp);
    }

  if (!operand_equal_p (varx, varc0, 0)
      || !operand_equal_p (vary, varc1, 0))
    goto end;

  mpz_init_set (loffx, offx);
  mpz_init_set (loffy, offy);

  if (cmp == GT_EXPR || cmp == GE_EXPR)
    {
      std::swap (varx, vary);
      mpz_swap (offc0, offc1);
      mpz_swap (loffx, loffy);
      cmp = swap_tree_comparison (cmp);
      lbound = true;
    }

  /* If there is no overflow, the condition implies that

     (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).

     The overflows and underflows may complicate things a bit; each
     overflow decreases the appropriate offset by M, and underflow
     increases it by M.  The above inequality would not necessarily be
     true if

     -- VARX + OFFX underflows and VARX + OFFC0 does not, or
	VARX + OFFC0 overflows, but VARX + OFFX does not.
	This may only happen if OFFX < OFFC0.
     -- VARY + OFFY overflows and VARY + OFFC1 does not, or
	VARY + OFFC1 underflows and VARY + OFFY does not.
	This may only happen if OFFY > OFFC1.  */

  if (no_wrap)
    {
      x_ok = true;
      y_ok = true;
    }
  else
    {
      x_ok = (integer_zerop (varx)
	      || mpz_cmp (loffx, offc0) >= 0);
      y_ok = (integer_zerop (vary)
	      || mpz_cmp (loffy, offc1) <= 0);
    }

  if (x_ok && y_ok)
    {
      mpz_init (bnd);
      mpz_sub (bnd, loffx, loffy);
      mpz_add (bnd, bnd, offc1);
      mpz_sub (bnd, bnd, offc0);

      if (cmp == LT_EXPR)
	mpz_sub_ui (bnd, bnd, 1);

      if (lbound)
	{
	  mpz_neg (bnd, bnd);
	  if (mpz_cmp (bnds->below, bnd) < 0)
	    mpz_set (bnds->below, bnd);
	}
      else
	{
	  if (mpz_cmp (bnd, bnds->up) < 0)
	    mpz_set (bnds->up, bnd);
	}
      mpz_clear (bnd);
    }

  mpz_clear (loffx);
  mpz_clear (loffy);
end:
  mpz_clear (offc0);
  mpz_clear (offc1);
}

/* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
   The subtraction is considered to be performed in arbitrary precision,
   without overflows.

   We do not attempt to be too clever regarding the value ranges of X and
   Y; most of the time, they are just integers or ssa names offsetted by
   integer.  However, we try to use the information contained in the
   comparisons before the loop (usually created by loop header copying).  */

static void
bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
{
  tree type = TREE_TYPE (x);
  tree varx, vary;
  mpz_t offx, offy;
  mpz_t minx, maxx, miny, maxy;
  int cnt = 0;
  edge e;
  basic_block bb;
  tree c0, c1;
  gimple *cond;
  enum tree_code cmp;

  /* Get rid of unnecessary casts, but preserve the value of
     the expressions.  */
  STRIP_SIGN_NOPS (x);
  STRIP_SIGN_NOPS (y);

  mpz_init (bnds->below);
  mpz_init (bnds->up);
  mpz_init (offx);
  mpz_init (offy);
  split_to_var_and_offset (x, &varx, offx);
  split_to_var_and_offset (y, &vary, offy);

  if (!integer_zerop (varx)
      && operand_equal_p (varx, vary, 0))
    {
      /* Special case VARX == VARY -- we just need to compare the
         offsets.  The matters are a bit more complicated in the
	 case addition of offsets may wrap.  */
      bound_difference_of_offsetted_base (type, offx, offy, bnds);
    }
  else
    {
      /* Otherwise, use the value ranges to determine the initial
	 estimates on below and up.  */
      mpz_init (minx);
      mpz_init (maxx);
      mpz_init (miny);
      mpz_init (maxy);
      determine_value_range (loop, type, varx, offx, minx, maxx);
      determine_value_range (loop, type, vary, offy, miny, maxy);

      mpz_sub (bnds->below, minx, maxy);
      mpz_sub (bnds->up, maxx, miny);
      mpz_clear (minx);
      mpz_clear (maxx);
      mpz_clear (miny);
      mpz_clear (maxy);
    }

  /* If both X and Y are constants, we cannot get any more precise.  */
  if (integer_zerop (varx) && integer_zerop (vary))
    goto end;

  /* Now walk the dominators of the loop header and use the entry
     guards to refine the estimates.  */
  for (bb = loop->header;
       bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
       bb = get_immediate_dominator (CDI_DOMINATORS, bb))
    {
      if (!single_pred_p (bb))
	continue;
      e = single_pred_edge (bb);

      if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
	continue;

      cond = last_stmt (e->src);
      c0 = gimple_cond_lhs (cond);
      cmp = gimple_cond_code (cond);
      c1 = gimple_cond_rhs (cond);

      if (e->flags & EDGE_FALSE_VALUE)
	cmp = invert_tree_comparison (cmp, false);

      refine_bounds_using_guard (type, varx, offx, vary, offy,
				 c0, cmp, c1, bnds);
      ++cnt;
    }

end:
  mpz_clear (offx);
  mpz_clear (offy);
}

/* Update the bounds in BNDS that restrict the value of X to the bounds
   that restrict the value of X + DELTA.  X can be obtained as a
   difference of two values in TYPE.  */

static void
bounds_add (bounds *bnds, const widest_int &delta, tree type)
{
  mpz_t mdelta, max;

  mpz_init (mdelta);
  wi::to_mpz (delta, mdelta, SIGNED);

  mpz_init (max);
  wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);

  mpz_add (bnds->up, bnds->up, mdelta);
  mpz_add (bnds->below, bnds->below, mdelta);

  if (mpz_cmp (bnds->up, max) > 0)
    mpz_set (bnds->up, max);

  mpz_neg (max, max);
  if (mpz_cmp (bnds->below, max) < 0)
    mpz_set (bnds->below, max);

  mpz_clear (mdelta);
  mpz_clear (max);
}

/* Update the bounds in BNDS that restrict the value of X to the bounds
   that restrict the value of -X.  */

static void
bounds_negate (bounds *bnds)
{
  mpz_t tmp;

  mpz_init_set (tmp, bnds->up);
  mpz_neg (bnds->up, bnds->below);
  mpz_neg (bnds->below, tmp);
  mpz_clear (tmp);
}

/* Returns inverse of X modulo 2^s, where MASK = 2^s-1.  */

static tree
inverse (tree x, tree mask)
{
  tree type = TREE_TYPE (x);
  tree rslt;
  unsigned ctr = tree_floor_log2 (mask);

  if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
    {
      unsigned HOST_WIDE_INT ix;
      unsigned HOST_WIDE_INT imask;
      unsigned HOST_WIDE_INT irslt = 1;

      gcc_assert (cst_and_fits_in_hwi (x));
      gcc_assert (cst_and_fits_in_hwi (mask));

      ix = int_cst_value (x);
      imask = int_cst_value (mask);

      for (; ctr; ctr--)
	{
	  irslt *= ix;
	  ix *= ix;
	}
      irslt &= imask;

      rslt = build_int_cst_type (type, irslt);
    }
  else
    {
      rslt = build_int_cst (type, 1);
      for (; ctr; ctr--)
	{
	  rslt = int_const_binop (MULT_EXPR, rslt, x);
	  x = int_const_binop (MULT_EXPR, x, x);
	}
      rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
    }

  return rslt;
}

/* Derives the upper bound BND on the number of executions of loop with exit
   condition S * i <> C.  If NO_OVERFLOW is true, then the control variable of
   the loop does not overflow.  EXIT_MUST_BE_TAKEN is true if we are guaranteed
   that the loop ends through this exit, i.e., the induction variable ever
   reaches the value of C.  
   
   The value C is equal to final - base, where final and base are the final and
   initial value of the actual induction variable in the analysed loop.  BNDS
   bounds the value of this difference when computed in signed type with
   unbounded range, while the computation of C is performed in an unsigned
   type with the range matching the range of the type of the induction variable.
   In particular, BNDS.up contains an upper bound on C in the following cases:
   -- if the iv must reach its final value without overflow, i.e., if
      NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
   -- if final >= base, which we know to hold when BNDS.below >= 0.  */

static void
number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
			     bounds *bnds, bool exit_must_be_taken)
{
  widest_int max;
  mpz_t d;
  tree type = TREE_TYPE (c);
  bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
		       || mpz_sgn (bnds->below) >= 0);

  if (integer_onep (s)
      || (TREE_CODE (c) == INTEGER_CST
	  && TREE_CODE (s) == INTEGER_CST
	  && wi::mod_trunc (wi::to_wide (c), wi::to_wide (s),
			    TYPE_SIGN (type)) == 0)
      || (TYPE_OVERFLOW_UNDEFINED (type)
	  && multiple_of_p (type, c, s)))
    {
      /* If C is an exact multiple of S, then its value will be reached before
	 the induction variable overflows (unless the loop is exited in some
	 other way before).  Note that the actual induction variable in the
	 loop (which ranges from base to final instead of from 0 to C) may
	 overflow, in which case BNDS.up will not be giving a correct upper
	 bound on C; thus, BNDS_U_VALID had to be computed in advance.  */
      no_overflow = true;
      exit_must_be_taken = true;
    }

  /* If the induction variable can overflow, the number of iterations is at
     most the period of the control variable (or infinite, but in that case
     the whole # of iterations analysis will fail).  */
  if (!no_overflow)
    {
      max = wi::mask <widest_int> (TYPE_PRECISION (type)
				   - wi::ctz (wi::to_wide (s)), false);
      wi::to_mpz (max, bnd, UNSIGNED);
      return;
    }

  /* Now we know that the induction variable does not overflow, so the loop
     iterates at most (range of type / S) times.  */
  wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), bnd, UNSIGNED);

  /* If the induction variable is guaranteed to reach the value of C before
     overflow, ... */
  if (exit_must_be_taken)
    {
      /* ... then we can strengthen this to C / S, and possibly we can use
	 the upper bound on C given by BNDS.  */
      if (TREE_CODE (c) == INTEGER_CST)
	wi::to_mpz (wi::to_wide (c), bnd, UNSIGNED);
      else if (bnds_u_valid)
	mpz_set (bnd, bnds->up);
    }

  mpz_init (d);
  wi::to_mpz (wi::to_wide (s), d, UNSIGNED);
  mpz_fdiv_q (bnd, bnd, d);
  mpz_clear (d);
}

/* Determines number of iterations of loop whose ending condition
   is IV <> FINAL.  TYPE is the type of the iv.  The number of
   iterations is stored to NITER.  EXIT_MUST_BE_TAKEN is true if
   we know that the exit must be taken eventually, i.e., that the IV
   ever reaches the value FINAL (we derived this earlier, and possibly set
   NITER->assumptions to make sure this is the case).  BNDS contains the
   bounds on the difference FINAL - IV->base.  */

static bool
number_of_iterations_ne (struct loop *loop, tree type, affine_iv *iv,
			 tree final, struct tree_niter_desc *niter,
			 bool exit_must_be_taken, bounds *bnds)
{
  tree niter_type = unsigned_type_for (type);
  tree s, c, d, bits, assumption, tmp, bound;
  mpz_t max;

  niter->control = *iv;
  niter->bound = final;
  niter->cmp = NE_EXPR;

  /* Rearrange the terms so that we get inequality S * i <> C, with S
     positive.  Also cast everything to the unsigned type.  If IV does
     not overflow, BNDS bounds the value of C.  Also, this is the
     case if the computation |FINAL - IV->base| does not overflow, i.e.,
     if BNDS->below in the result is nonnegative.  */
  if (tree_int_cst_sign_bit (iv->step))
    {
      s = fold_convert (niter_type,
			fold_build1 (NEGATE_EXPR, type, iv->step));
      c = fold_build2 (MINUS_EXPR, niter_type,
		       fold_convert (niter_type, iv->base),
		       fold_convert (niter_type, final));
      bounds_negate (bnds);
    }
  else
    {
      s = fold_convert (niter_type, iv->step);
      c = fold_build2 (MINUS_EXPR, niter_type,
		       fold_convert (niter_type, final),
		       fold_convert (niter_type, iv->base));
    }

  mpz_init (max);
  number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
			       exit_must_be_taken);
  niter->max = widest_int::from (wi::from_mpz (niter_type, max, false),
				 TYPE_SIGN (niter_type));
  mpz_clear (max);

  /* Compute no-overflow information for the control iv.  This can be
     proven when below two conditions are satisfied:

       1) IV evaluates toward FINAL at beginning, i.e:
	    base <= FINAL ; step > 0
	    base >= FINAL ; step < 0

       2) |FINAL - base| is an exact multiple of step.

     Unfortunately, it's hard to prove above conditions after pass loop-ch
     because loop with exit condition (IV != FINAL) usually will be guarded
     by initial-condition (IV.base - IV.step != FINAL).  In this case, we
     can alternatively try to prove below conditions:

       1') IV evaluates toward FINAL at beginning, i.e:
	    new_base = base - step < FINAL ; step > 0
					     && base - step doesn't underflow
	    new_base = base - step > FINAL ; step < 0
					     && base - step doesn't overflow

       2') |FINAL - new_base| is an exact multiple of step.

     Please refer to PR34114 as an example of loop-ch's impact, also refer
     to PR72817 as an example why condition 2') is necessary.

     Note, for NE_EXPR, base equals to FINAL is a special case, in
     which the loop exits immediately, and the iv does not overflow.  */
  if (!niter->control.no_overflow
      && (integer_onep (s) || multiple_of_p (type, c, s)))
    {
      tree t, cond, new_c, relaxed_cond = boolean_false_node;

      if (tree_int_cst_sign_bit (iv->step))
	{
	  cond = fold_build2 (GE_EXPR, boolean_type_node, iv->base, final);
	  if (TREE_CODE (type) == INTEGER_TYPE)
	    {
	      /* Only when base - step doesn't overflow.  */
	      t = TYPE_MAX_VALUE (type);
	      t = fold_build2 (PLUS_EXPR, type, t, iv->step);
	      t = fold_build2 (GE_EXPR, boolean_type_node, t, iv->base);
	      if (integer_nonzerop (t))
		{
		  t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
		  new_c = fold_build2 (MINUS_EXPR, niter_type,
				       fold_convert (niter_type, t),
				       fold_convert (niter_type, final));
		  if (multiple_of_p (type, new_c, s))
		    relaxed_cond = fold_build2 (GT_EXPR, boolean_type_node,
						t, final);
		}
	    }
	}
      else
	{
	  cond = fold_build2 (LE_EXPR, boolean_type_node, iv->base, final);
	  if (TREE_CODE (type) == INTEGER_TYPE)
	    {
	      /* Only when base - step doesn't underflow.  */
	      t = TYPE_MIN_VALUE (type);
	      t = fold_build2 (PLUS_EXPR, type, t, iv->step);
	      t = fold_build2 (LE_EXPR, boolean_type_node, t, iv->base);
	      if (integer_nonzerop (t))
		{
		  t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
		  new_c = fold_build2 (MINUS_EXPR, niter_type,
				       fold_convert (niter_type, final),
				       fold_convert (niter_type, t));
		  if (multiple_of_p (type, new_c, s))
		    relaxed_cond = fold_build2 (LT_EXPR, boolean_type_node,
						t, final);
		}
	    }
	}

      t = simplify_using_initial_conditions (loop, cond);
      if (!t || !integer_onep (t))
	t = simplify_using_initial_conditions (loop, relaxed_cond);

      if (t && integer_onep (t))
	niter->control.no_overflow = true;
    }

  /* First the trivial cases -- when the step is 1.  */
  if (integer_onep (s))
    {
      niter->niter = c;
      return true;
    }
  if (niter->control.no_overflow && multiple_of_p (type, c, s))
    {
      niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, c, s);
      return true;
    }

  /* Let nsd (step, size of mode) = d.  If d does not divide c, the loop
     is infinite.  Otherwise, the number of iterations is
     (inverse(s/d) * (c/d)) mod (size of mode/d).  */
  bits = num_ending_zeros (s);
  bound = build_low_bits_mask (niter_type,
			       (TYPE_PRECISION (niter_type)
				- tree_to_uhwi (bits)));

  d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
			       build_int_cst (niter_type, 1), bits);
  s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);

  if (!exit_must_be_taken)
    {
      /* If we cannot assume that the exit is taken eventually, record the
	 assumptions for divisibility of c.  */
      assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
      assumption = fold_build2 (EQ_EXPR, boolean_type_node,
				assumption, build_int_cst (niter_type, 0));
      if (!integer_nonzerop (assumption))
	niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
					  niter->assumptions, assumption);
    }

  c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
  tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
  niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
  return true;
}

/* Checks whether we can determine the final value of the control variable
   of the loop with ending condition IV0 < IV1 (computed in TYPE).
   DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
   of the step.  The assumptions necessary to ensure that the computation
   of the final value does not overflow are recorded in NITER.  If we
   find the final value, we adjust DELTA and return TRUE.  Otherwise
   we return false.  BNDS bounds the value of IV1->base - IV0->base,
   and will be updated by the same amount as DELTA.  EXIT_MUST_BE_TAKEN is
   true if we know that the exit must be taken eventually.  */

static bool
number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
			       struct tree_niter_desc *niter,
			       tree *delta, tree step,
			       bool exit_must_be_taken, bounds *bnds)
{
  tree niter_type = TREE_TYPE (step);
  tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
  tree tmod;
  mpz_t mmod;
  tree assumption = boolean_true_node, bound, noloop;
  bool ret = false, fv_comp_no_overflow;
  tree type1 = type;
  if (POINTER_TYPE_P (type))
    type1 = sizetype;

  if (TREE_CODE (mod) != INTEGER_CST)
    return false;
  if (integer_nonzerop (mod))
    mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
  tmod = fold_convert (type1, mod);

  mpz_init (mmod);
  wi::to_mpz (wi::to_wide (mod), mmod, UNSIGNED);
  mpz_neg (mmod, mmod);

  /* If the induction variable does not overflow and the exit is taken,
     then the computation of the final value does not overflow.  This is
     also obviously the case if the new final value is equal to the
     current one.  Finally, we postulate this for pointer type variables,
     as the code cannot rely on the object to that the pointer points being
     placed at the end of the address space (and more pragmatically,
     TYPE_{MIN,MAX}_VALUE is not defined for pointers).  */
  if (integer_zerop (mod) || POINTER_TYPE_P (type))
    fv_comp_no_overflow = true;
  else if (!exit_must_be_taken)
    fv_comp_no_overflow = false;
  else
    fv_comp_no_overflow =
	    (iv0->no_overflow && integer_nonzerop (iv0->step))
	    || (iv1->no_overflow && integer_nonzerop (iv1->step));

  if (integer_nonzerop (iv0->step))
    {
      /* The final value of the iv is iv1->base + MOD, assuming that this
	 computation does not overflow, and that
	 iv0->base <= iv1->base + MOD.  */
      if (!fv_comp_no_overflow)
	{
	  bound = fold_build2 (MINUS_EXPR, type1,
			       TYPE_MAX_VALUE (type1), tmod);
	  assumption = fold_build2 (LE_EXPR, boolean_type_node,
				    iv1->base, bound);
	  if (integer_zerop (assumption))
	    goto end;
	}
      if (mpz_cmp (mmod, bnds->below) < 0)
	noloop = boolean_false_node;
      else if (POINTER_TYPE_P (type))
	noloop = fold_build2 (GT_EXPR, boolean_type_node,
			      iv0->base,
			      fold_build_pointer_plus (iv1->base, tmod));
      else
	noloop = fold_build2 (GT_EXPR, boolean_type_node,
			      iv0->base,
			      fold_build2 (PLUS_EXPR, type1,
					   iv1->base, tmod));
    }
  else
    {
      /* The final value of the iv is iv0->base - MOD, assuming that this
	 computation does not overflow, and that
	 iv0->base - MOD <= iv1->base. */
      if (!fv_comp_no_overflow)
	{
	  bound = fold_build2 (PLUS_EXPR, type1,
			       TYPE_MIN_VALUE (type1), tmod);
	  assumption = fold_build2 (GE_EXPR, boolean_type_node,
				    iv0->base, bound);
	  if (integer_zerop (assumption))
	    goto end;
	}
      if (mpz_cmp (mmod, bnds->below) < 0)
	noloop = boolean_false_node;
      else if (POINTER_TYPE_P (type))
	noloop = fold_build2 (GT_EXPR, boolean_type_node,
			      fold_build_pointer_plus (iv0->base,
						       fold_build1 (NEGATE_EXPR,
								    type1, tmod)),
			      iv1->base);
      else
	noloop = fold_build2 (GT_EXPR, boolean_type_node,
			      fold_build2 (MINUS_EXPR, type1,
					   iv0->base, tmod),
			      iv1->base);
    }

  if (!integer_nonzerop (assumption))
    niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
				      niter->assumptions,
				      assumption);
  if (!integer_zerop (noloop))
    niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
				      niter->may_be_zero,
				      noloop);
  bounds_add (bnds, wi::to_widest (mod), type);
  *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);

  ret = true;
end:
  mpz_clear (mmod);
  return ret;
}

/* Add assertions to NITER that ensure that the control variable of the loop
   with ending condition IV0 < IV1 does not overflow.  Types of IV0 and IV1
   are TYPE.  Returns false if we can prove that there is an overflow, true
   otherwise.  STEP is the absolute value of the step.  */

static bool
assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
		       struct tree_niter_desc *niter, tree step)
{
  tree bound, d, assumption, diff;
  tree niter_type = TREE_TYPE (step);

  if (integer_nonzerop (iv0->step))
    {
      /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
      if (iv0->no_overflow)
	return true;

      /* If iv0->base is a constant, we can determine the last value before
	 overflow precisely; otherwise we conservatively assume
	 MAX - STEP + 1.  */

      if (TREE_CODE (iv0->base) == INTEGER_CST)
	{
	  d = fold_build2 (MINUS_EXPR, niter_type,
			   fold_convert (niter_type, TYPE_MAX_VALUE (type)),
			   fold_convert (niter_type, iv0->base));
	  diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
	}
      else
	diff = fold_build2 (MINUS_EXPR, niter_type, step,
			    build_int_cst (niter_type, 1));
      bound = fold_build2 (MINUS_EXPR, type,
			   TYPE_MAX_VALUE (type), fold_convert (type, diff));
      assumption = fold_build2 (LE_EXPR, boolean_type_node,
				iv1->base, bound);
    }
  else
    {
      /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
      if (iv1->no_overflow)
	return true;

      if (TREE_CODE (iv1->base) == INTEGER_CST)
	{
	  d = fold_build2 (MINUS_EXPR, niter_type,
			   fold_convert (niter_type, iv1->base),
			   fold_convert (niter_type, TYPE_MIN_VALUE (type)));
	  diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
	}
      else
	diff = fold_build2 (MINUS_EXPR, niter_type, step,
			    build_int_cst (niter_type, 1));
      bound = fold_build2 (PLUS_EXPR, type,
			   TYPE_MIN_VALUE (type), fold_convert (type, diff));
      assumption = fold_build2 (GE_EXPR, boolean_type_node,
				iv0->base, bound);
    }

  if (integer_zerop (assumption))
    return false;
  if (!integer_nonzerop (assumption))
    niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
				      niter->assumptions, assumption);

  iv0->no_overflow = true;
  iv1->no_overflow = true;
  return true;
}

/* Add an assumption to NITER that a loop whose ending condition
   is IV0 < IV1 rolls.  TYPE is the type of the control iv.  BNDS
   bounds the value of IV1->base - IV0->base.  */

static void
assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
		      struct tree_niter_desc *niter, bounds *bnds)
{
  tree assumption = boolean_true_node, bound, diff;
  tree mbz, mbzl, mbzr, type1;
  bool rolls_p, no_overflow_p;
  widest_int dstep;
  mpz_t mstep, max;

  /* We are going to compute the number of iterations as
     (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
     variant of TYPE.  This formula only works if

     -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1

     (where MAX is the maximum value of the unsigned variant of TYPE, and
     the computations in this formula are performed in full precision,
     i.e., without overflows).

     Usually, for loops with exit condition iv0->base + step * i < iv1->base,
     we have a condition of the form iv0->base - step < iv1->base before the loop,
     and for loops iv0->base < iv1->base - step * i the condition
     iv0->base < iv1->base + step, due to loop header copying, which enable us
     to prove the lower bound.

     The upper bound is more complicated.  Unless the expressions for initial
     and final value themselves contain enough information, we usually cannot
     derive it from the context.  */

  /* First check whether the answer does not follow from the bounds we gathered
     before.  */
  if (integer_nonzerop (iv0->step))
    dstep = wi::to_widest (iv0->step);
  else
    {
      dstep = wi::sext (wi::to_widest (iv1->step), TYPE_PRECISION (type));
      dstep = -dstep;
    }

  mpz_init (mstep);
  wi::to_mpz (dstep, mstep, UNSIGNED);
  mpz_neg (mstep, mstep);
  mpz_add_ui (mstep, mstep, 1);

  rolls_p = mpz_cmp (mstep, bnds->below) <= 0;

  mpz_init (max);
  wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
  mpz_add (max, max, mstep);
  no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
		   /* For pointers, only values lying inside a single object
		      can be compared or manipulated by pointer arithmetics.
		      Gcc in general does not allow or handle objects larger
		      than half of the address space, hence the upper bound
		      is satisfied for pointers.  */
		   || POINTER_TYPE_P (type));
  mpz_clear (mstep);
  mpz_clear (max);

  if (rolls_p && no_overflow_p)
    return;

  type1 = type;
  if (POINTER_TYPE_P (type))
    type1 = sizetype;

  /* Now the hard part; we must formulate the assumption(s) as expressions, and
     we must be careful not to introduce overflow.  */

  if (integer_nonzerop (iv0->step))
    {
      diff = fold_build2 (MINUS_EXPR, type1,
			  iv0->step, build_int_cst (type1, 1));

      /* We need to know that iv0->base >= MIN + iv0->step - 1.  Since
	 0 address never belongs to any object, we can assume this for
	 pointers.  */
      if (!POINTER_TYPE_P (type))
	{
	  bound = fold_build2 (PLUS_EXPR, type1,
			       TYPE_MIN_VALUE (type), diff);
	  assumption = fold_build2 (GE_EXPR, boolean_type_node,
				    iv0->base, bound);
	}

      /* And then we can compute iv0->base - diff, and compare it with
	 iv1->base.  */
      mbzl = fold_build2 (MINUS_EXPR, type1,
			  fold_convert (type1, iv0->base), diff);
      mbzr = fold_convert (type1, iv1->base);
    }
  else
    {
      diff = fold_build2 (PLUS_EXPR, type1,
			  iv1->step, build_int_cst (type1, 1));

      if (!POINTER_TYPE_P (type))
	{
	  bound = fold_build2 (PLUS_EXPR, type1,
			       TYPE_MAX_VALUE (type), diff);
	  assumption = fold_build2 (LE_EXPR, boolean_type_node,
				    iv1->base, bound);
	}

      mbzl = fold_convert (type1, iv0->base);
      mbzr = fold_build2 (MINUS_EXPR, type1,
			  fold_convert (type1, iv1->base), diff);
    }

  if (!integer_nonzerop (assumption))
    niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
				      niter->assumptions, assumption);
  if (!rolls_p)
    {
      mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
      niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
					niter->may_be_zero, mbz);
    }
}

/* Determines number of iterations of loop whose ending condition
   is IV0 < IV1.  TYPE is the type of the iv.  The number of
   iterations is stored to NITER.  BNDS bounds the difference
   IV1->base - IV0->base.  EXIT_MUST_BE_TAKEN is true if we know
   that the exit must be taken eventually.  */

static bool
number_of_iterations_lt (struct loop *loop, tree type, affine_iv *iv0,
			 affine_iv *iv1, struct tree_niter_desc *niter,
			 bool exit_must_be_taken, bounds *bnds)
{
  tree niter_type = unsigned_type_for (type);
  tree delta, step, s;
  mpz_t mstep, tmp;

  if (integer_nonzerop (iv0->step))
    {
      niter->control = *iv0;
      niter->cmp = LT_EXPR;
      niter->bound = iv1->base;
    }
  else
    {
      niter->control = *iv1;
      niter->cmp = GT_EXPR;
      niter->bound = iv0->base;
    }

  delta = fold_build2 (MINUS_EXPR, niter_type,
		       fold_convert (niter_type, iv1->base),
		       fold_convert (niter_type, iv0->base));

  /* First handle the special case that the step is +-1.  */
  if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
      || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
    {
      /* for (i = iv0->base; i < iv1->base; i++)

	 or

	 for (i = iv1->base; i > iv0->base; i--).

	 In both cases # of iterations is iv1->base - iv0->base, assuming that
	 iv1->base >= iv0->base.

         First try to derive a lower bound on the value of
	 iv1->base - iv0->base, computed in full precision.  If the difference
	 is nonnegative, we are done, otherwise we must record the
	 condition.  */

      if (mpz_sgn (bnds->below) < 0)
	niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
					  iv1->base, iv0->base);
      niter->niter = delta;
      niter->max = widest_int::from (wi::from_mpz (niter_type, bnds->up, false),
				     TYPE_SIGN (niter_type));
      niter->control.no_overflow = true;
      return true;
    }

  if (integer_nonzerop (iv0->step))
    step = fold_convert (niter_type, iv0->step);
  else
    step = fold_convert (niter_type,
			 fold_build1 (NEGATE_EXPR, type, iv1->step));

  /* If we can determine the final value of the control iv exactly, we can
     transform the condition to != comparison.  In particular, this will be
     the case if DELTA is constant.  */
  if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
				     exit_must_be_taken, bnds))
    {
      affine_iv zps;

      zps.base = build_int_cst (niter_type, 0);
      zps.step = step;
      /* number_of_iterations_lt_to_ne will add assumptions that ensure that
	 zps does not overflow.  */
      zps.no_overflow = true;

      return number_of_iterations_ne (loop, type, &zps,
				      delta, niter, true, bnds);
    }

  /* Make sure that the control iv does not overflow.  */
  if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
    return false;

  /* We determine the number of iterations as (delta + step - 1) / step.  For
     this to work, we must know that iv1->base >= iv0->base - step + 1,
     otherwise the loop does not roll.  */
  assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);

  s = fold_build2 (MINUS_EXPR, niter_type,
		   step, build_int_cst (niter_type, 1));
  delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
  niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);

  mpz_init (mstep);
  mpz_init (tmp);
  wi::to_mpz (wi::to_wide (step), mstep, UNSIGNED);
  mpz_add (tmp, bnds->up, mstep);
  mpz_sub_ui (tmp, tmp, 1);
  mpz_fdiv_q (tmp, tmp, mstep);
  niter->max = widest_int::from (wi::from_mpz (niter_type, tmp, false),
				 TYPE_SIGN (niter_type));
  mpz_clear (mstep);
  mpz_clear (tmp);

  return true;
}

/* Determines number of iterations of loop whose ending condition
   is IV0 <= IV1.  TYPE is the type of the iv.  The number of
   iterations is stored to NITER.  EXIT_MUST_BE_TAKEN is true if
   we know that this condition must eventually become false (we derived this
   earlier, and possibly set NITER->assumptions to make sure this
   is the case).  BNDS bounds the difference IV1->base - IV0->base.  */

static bool
number_of_iterations_le (struct loop *loop, tree type, affine_iv *iv0,
			 affine_iv *iv1, struct tree_niter_desc *niter,
			 bool exit_must_be_taken, bounds *bnds)
{
  tree assumption;
  tree type1 = type;
  if (POINTER_TYPE_P (type))
    type1 = sizetype;

  /* Say that IV0 is the control variable.  Then IV0 <= IV1 iff
     IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
     value of the type.  This we must know anyway, since if it is
     equal to this value, the loop rolls forever.  We do not check
     this condition for pointer type ivs, as the code cannot rely on
     the object to that the pointer points being placed at the end of
     the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
     not defined for pointers).  */

  if (!exit_must_be_taken && !POINTER_TYPE_P (type))
    {
      if (integer_nonzerop (iv0->step))
	assumption = fold_build2 (NE_EXPR, boolean_type_node,
				  iv1->base, TYPE_MAX_VALUE (type));
      else
	assumption = fold_build2 (NE_EXPR, boolean_type_node,
				  iv0->base, TYPE_MIN_VALUE (type));

      if (integer_zerop (assumption))
	return false;
      if (!integer_nonzerop (assumption))
	niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
					  niter->assumptions, assumption);
    }

  if (integer_nonzerop (iv0->step))
    {
      if (POINTER_TYPE_P (type))
	iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
      else
	iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
				 build_int_cst (type1, 1));
    }
  else if (POINTER_TYPE_P (type))
    iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
  else
    iv0->base = fold_build2 (MINUS_EXPR, type1,
			     iv0->base, build_int_cst (type1, 1));

  bounds_add (bnds, 1, type1);

  return number_of_iterations_lt (loop, type, iv0, iv1, niter, exit_must_be_taken,
				  bnds);
}

/* Dumps description of affine induction variable IV to FILE.  */

static void
dump_affine_iv (FILE *file, affine_iv *iv)
{
  if (!integer_zerop (iv->step))
    fprintf (file, "[");

  print_generic_expr (dump_file, iv->base, TDF_SLIM);

  if (!integer_zerop (iv->step))
    {
      fprintf (file, ", + , ");
      print_generic_expr (dump_file, iv->step, TDF_SLIM);
      fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
    }
}

/* Given exit condition IV0 CODE IV1 in TYPE, this function adjusts
   the condition for loop-until-wrap cases.  For example:
     (unsigned){8, -1}_loop < 10        => {0, 1} != 9
     10 < (unsigned){0, max - 7}_loop   => {0, 1} != 8
   Return true if condition is successfully adjusted.  */

static bool
adjust_cond_for_loop_until_wrap (tree type, affine_iv *iv0, tree_code *code,
				 affine_iv *iv1)
{
  /* Only support simple cases for the moment.  */
  if (TREE_CODE (iv0->base) != INTEGER_CST
      || TREE_CODE (iv1->base) != INTEGER_CST)
    return false;

  tree niter_type = unsigned_type_for (type), high, low;
  /* Case: i-- < 10.  */
  if (integer_zerop (iv1->step))
    {
      /* TODO: Should handle case in which abs(step) != 1.  */
      if (!integer_minus_onep (iv0->step))
	return false;
      /* Give up on infinite loop.  */
      if (*code == LE_EXPR
	  && tree_int_cst_equal (iv1->base, TYPE_MAX_VALUE (type)))
	return false;
      high = fold_build2 (PLUS_EXPR, niter_type,
			  fold_convert (niter_type, iv0->base),
			  build_int_cst (niter_type, 1));
      low = fold_convert (niter_type, TYPE_MIN_VALUE (type));
    }
  else if (integer_zerop (iv0->step))
    {
      /* TODO: Should handle case in which abs(step) != 1.  */
      if (!integer_onep (iv1->step))
	return false;
      /* Give up on infinite loop.  */
      if (*code == LE_EXPR
	  && tree_int_cst_equal (iv0->base, TYPE_MIN_VALUE (type)))
	return false;
      high = fold_convert (niter_type, TYPE_MAX_VALUE (type));
      low = fold_build2 (MINUS_EXPR, niter_type,
			 fold_convert (niter_type, iv1->base),
			 build_int_cst (niter_type, 1));
    }
  else
    gcc_unreachable ();

  iv0->base = low;
  iv0->step = fold_convert (niter_type, integer_one_node);
  iv1->base = high;
  iv1->step = build_int_cst (niter_type, 0);
  *code = NE_EXPR;
  return true;
}

/* Determine the number of iterations according to condition (for staying
   inside loop) which compares two induction variables using comparison
   operator CODE.  The induction variable on left side of the comparison
   is IV0, the right-hand side is IV1.  Both induction variables must have
   type TYPE, which must be an integer or pointer type.  The steps of the
   ivs must be constants (or NULL_TREE, which is interpreted as constant zero).

   LOOP is the loop whose number of iterations we are determining.

   ONLY_EXIT is true if we are sure this is the only way the loop could be
   exited (including possibly non-returning function calls, exceptions, etc.)
   -- in this case we can use the information whether the control induction
   variables can overflow or not in a more efficient way.

   if EVERY_ITERATION is true, we know the test is executed on every iteration.

   The results (number of iterations and assumptions as described in
   comments at struct tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
   Returns false if it fails to determine number of iterations, true if it
   was determined (possibly with some assumptions).  */

static bool
number_of_iterations_cond (struct loop *loop,
			   tree type, affine_iv *iv0, enum tree_code code,
			   affine_iv *iv1, struct tree_niter_desc *niter,
			   bool only_exit, bool every_iteration)
{
  bool exit_must_be_taken = false, ret;
  bounds bnds;

  /* If the test is not executed every iteration, wrapping may make the test
     to pass again. 
     TODO: the overflow case can be still used as unreliable estimate of upper
     bound.  But we have no API to pass it down to number of iterations code
     and, at present, it will not use it anyway.  */
  if (!every_iteration
      && (!iv0->no_overflow || !iv1->no_overflow
	  || code == NE_EXPR || code == EQ_EXPR))
    return false;

  /* The meaning of these assumptions is this:
     if !assumptions
       then the rest of information does not have to be valid
     if may_be_zero then the loop does not roll, even if
       niter != 0.  */
  niter->assumptions = boolean_true_node;
  niter->may_be_zero = boolean_false_node;
  niter->niter = NULL_TREE;
  niter->max = 0;
  niter->bound = NULL_TREE;
  niter->cmp = ERROR_MARK;

  /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
     the control variable is on lhs.  */
  if (code == GE_EXPR || code == GT_EXPR
      || (code == NE_EXPR && integer_zerop (iv0->step)))
    {
      std::swap (iv0, iv1);
      code = swap_tree_comparison (code);
    }

  if (POINTER_TYPE_P (type))
    {
      /* Comparison of pointers is undefined unless both iv0 and iv1 point
	 to the same object.  If they do, the control variable cannot wrap
	 (as wrap around the bounds of memory will never return a pointer
	 that would be guaranteed to point to the same object, even if we
	 avoid undefined behavior by casting to size_t and back).  */
      iv0->no_overflow = true;
      iv1->no_overflow = true;
    }

  /* If the control induction variable does not overflow and the only exit
     from the loop is the one that we analyze, we know it must be taken
     eventually.  */
  if (only_exit)
    {
      if (!integer_zerop (iv0->step) && iv0->no_overflow)
	exit_must_be_taken = true;
      else if (!integer_zerop (iv1->step) && iv1->no_overflow)
	exit_must_be_taken = true;
    }

  /* We can handle cases which neither of the sides of the comparison is
     invariant:

       {iv0.base, iv0.step} cmp_code {iv1.base, iv1.step}
     as if:
       {iv0.base, iv0.step - iv1.step} cmp_code {iv1.base, 0}

     provided that either below condition is satisfied:

       a) the test is NE_EXPR;
       b) iv0.step - iv1.step is integer and iv0/iv1 don't overflow.

     This rarely occurs in practice, but it is simple enough to manage.  */
  if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
    {
      tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
      tree step = fold_binary_to_constant (MINUS_EXPR, step_type,
					   iv0->step, iv1->step);

      /* No need to check sign of the new step since below code takes care
	 of this well.  */
      if (code != NE_EXPR
	  && (TREE_CODE (step) != INTEGER_CST
	      || !iv0->no_overflow || !iv1->no_overflow))
	return false;

      iv0->step = step;
      if (!POINTER_TYPE_P (type))
	iv0->no_overflow = false;

      iv1->step = build_int_cst (step_type, 0);
      iv1->no_overflow = true;
    }

  /* If the result of the comparison is a constant,  the loop is weird.  More
     precise handling would be possible, but the situation is not common enough
     to waste time on it.  */
  if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
    return false;

  /* If the loop exits immediately, there is nothing to do.  */
  tree tem = fold_binary (code, boolean_type_node, iv0->base, iv1->base);
  if (tem && integer_zerop (tem))
    {
      if (!every_iteration)
	return false;
      niter->niter = build_int_cst (unsigned_type_for (type), 0);
      niter->max = 0;
      return true;
    }

  /* Handle special case loops: while (i-- < 10) and while (10 < i++) by
     adjusting iv0, iv1 and code.  */
  if (code != NE_EXPR
      && (tree_int_cst_sign_bit (iv0->step)
	  || (!integer_zerop (iv1->step)
	      && !tree_int_cst_sign_bit (iv1->step)))
      && !adjust_cond_for_loop_until_wrap (type, iv0, &code, iv1))
    return false;

  /* OK, now we know we have a senseful loop.  Handle several cases, depending
     on what comparison operator is used.  */
  bound_difference (loop, iv1->base, iv0->base, &bnds);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file,
	       "Analyzing # of iterations of loop %d\n", loop->num);

      fprintf (dump_file, "  exit condition ");
      dump_affine_iv (dump_file, iv0);
      fprintf (dump_file, " %s ",
	       code == NE_EXPR ? "!="
	       : code == LT_EXPR ? "<"
	       : "<=");
      dump_affine_iv (dump_file, iv1);
      fprintf (dump_file, "\n");

      fprintf (dump_file, "  bounds on difference of bases: ");
      mpz_out_str (dump_file, 10, bnds.below);
      fprintf (dump_file, " ... ");
      mpz_out_str (dump_file, 10, bnds.up);
      fprintf (dump_file, "\n");
    }

  switch (code)
    {
    case NE_EXPR:
      gcc_assert (integer_zerop (iv1->step));
      ret = number_of_iterations_ne (loop, type, iv0, iv1->base, niter,
				     exit_must_be_taken, &bnds);
      break;

    case LT_EXPR:
      ret = number_of_iterations_lt (loop, type, iv0, iv1, niter,
				     exit_must_be_taken, &bnds);
      break;

    case LE_EXPR:
      ret = number_of_iterations_le (loop, type, iv0, iv1, niter,
				     exit_must_be_taken, &bnds);
      break;

    default:
      gcc_unreachable ();
    }

  mpz_clear (bnds.up);
  mpz_clear (bnds.below);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      if (ret)
	{
	  fprintf (dump_file, "  result:\n");
	  if (!integer_nonzerop (niter->assumptions))
	    {
	      fprintf (dump_file, "    under assumptions ");
	      print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
	      fprintf (dump_file, "\n");
	    }

	  if (!integer_zerop (niter->may_be_zero))
	    {
	      fprintf (dump_file, "    zero if ");
	      print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
	      fprintf (dump_file, "\n");
	    }

	  fprintf (dump_file, "    # of iterations ");
	  print_generic_expr (dump_file, niter->niter, TDF_SLIM);
	  fprintf (dump_file, ", bounded by ");
	  print_decu (niter->max, dump_file);
	  fprintf (dump_file, "\n");
	}
      else
	fprintf (dump_file, "  failed\n\n");
    }
  return ret;
}

/* Substitute NEW_TREE for OLD in EXPR and fold the result.
   If VALUEIZE is non-NULL then OLD and NEW_TREE are ignored and instead
   all SSA names are replaced with the result of calling the VALUEIZE
   function with the SSA name as argument.  */

tree
simplify_replace_tree (tree expr, tree old, tree new_tree,
		       tree (*valueize) (tree))
{
  unsigned i, n;
  tree ret = NULL_TREE, e, se;

  if (!expr)
    return NULL_TREE;

  /* Do not bother to replace constants.  */
  if (CONSTANT_CLASS_P (expr))
    return expr;

  if (valueize)
    {
      if (TREE_CODE (expr) == SSA_NAME)
	{
	  new_tree = valueize (expr);
	  if (new_tree != expr)
	    return new_tree;
	}
    }
  else if (expr == old
	   || operand_equal_p (expr, old, 0))
    return unshare_expr (new_tree);

  if (!EXPR_P (expr))
    return expr;

  n = TREE_OPERAND_LENGTH (expr);
  for (i = 0; i < n; i++)
    {
      e = TREE_OPERAND (expr, i);
      se = simplify_replace_tree (e, old, new_tree, valueize);
      if (e == se)
	continue;

      if (!ret)
	ret = copy_node (expr);

      TREE_OPERAND (ret, i) = se;
    }

  return (ret ? fold (ret) : expr);
}

/* Expand definitions of ssa names in EXPR as long as they are simple
   enough, and return the new expression.  If STOP is specified, stop
   expanding if EXPR equals to it.  */

tree
expand_simple_operations (tree expr, tree stop)
{
  unsigned i, n;
  tree ret = NULL_TREE, e, ee, e1;
  enum tree_code code;
  gimple *stmt;

  if (expr == NULL_TREE)
    return expr;

  if (is_gimple_min_invariant (expr))
    return expr;

  code = TREE_CODE (expr);
  if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
    {
      n = TREE_OPERAND_LENGTH (expr);
      for (i = 0; i < n; i++)
	{
	  e = TREE_OPERAND (expr, i);
	  ee = expand_simple_operations (e, stop);
	  if (e == ee)
	    continue;

	  if (!ret)
	    ret = copy_node (expr);

	  TREE_OPERAND (ret, i) = ee;
	}

      if (!ret)
	return expr;

      fold_defer_overflow_warnings ();
      ret = fold (ret);
      fold_undefer_and_ignore_overflow_warnings ();
      return ret;
    }

  /* Stop if it's not ssa name or the one we don't want to expand.  */
  if (TREE_CODE (expr) != SSA_NAME || expr == stop)
    return expr;

  stmt = SSA_NAME_DEF_STMT (expr);
  if (gimple_code (stmt) == GIMPLE_PHI)
    {
      basic_block src, dest;

      if (gimple_phi_num_args (stmt) != 1)
	return expr;
      e = PHI_ARG_DEF (stmt, 0);

      /* Avoid propagating through loop exit phi nodes, which
	 could break loop-closed SSA form restrictions.  */
      dest = gimple_bb (stmt);
      src = single_pred (dest);
      if (TREE_CODE (e) == SSA_NAME
	  && src->loop_father != dest->loop_father)
	return expr;

      return expand_simple_operations (e, stop);
    }
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return expr;

  /* Avoid expanding to expressions that contain SSA names that need
     to take part in abnormal coalescing.  */
  ssa_op_iter iter;
  FOR_EACH_SSA_TREE_OPERAND (e, stmt, iter, SSA_OP_USE)
    if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e))
      return expr;

  e = gimple_assign_rhs1 (stmt);
  code = gimple_assign_rhs_code (stmt);
  if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
    {
      if (is_gimple_min_invariant (e))
	return e;

      if (code == SSA_NAME)
	return expand_simple_operations (e, stop);
      else if (code == ADDR_EXPR)
	{
	  poly_int64 offset;
	  tree base = get_addr_base_and_unit_offset (TREE_OPERAND (e, 0),
						     &offset);
	  if (base
	      && TREE_CODE (base) == MEM_REF)
	    {
	      ee = expand_simple_operations (TREE_OPERAND (base, 0), stop);
	      return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (expr), ee,
				  wide_int_to_tree (sizetype,
						    mem_ref_offset (base)
						    + offset));
	    }
	}

      return expr;
    }

  switch (code)
    {
    CASE_CONVERT:
      /* Casts are simple.  */
      ee = expand_simple_operations (e, stop);
      return fold_build1 (code, TREE_TYPE (expr), ee);

    case PLUS_EXPR:
    case MINUS_EXPR:
      if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (expr))
	  && TYPE_OVERFLOW_TRAPS (TREE_TYPE (expr)))
	return expr;
      /* Fallthru.  */
    case POINTER_PLUS_EXPR:
      /* And increments and decrements by a constant are simple.  */
      e1 = gimple_assign_rhs2 (stmt);
      if (!is_gimple_min_invariant (e1))
	return expr;

      ee = expand_simple_operations (e, stop);
      return fold_build2 (code, TREE_TYPE (expr), ee, e1);

    default:
      return expr;
    }
}

/* Tries to simplify EXPR using the condition COND.  Returns the simplified
   expression (or EXPR unchanged, if no simplification was possible).  */

static tree
tree_simplify_using_condition_1 (tree cond, tree expr)
{
  bool changed;
  tree e, e0, e1, e2, notcond;
  enum tree_code code = TREE_CODE (expr);

  if (code == INTEGER_CST)
    return expr;

  if (code == TRUTH_OR_EXPR
      || code == TRUTH_AND_EXPR
      || code == COND_EXPR)
    {
      changed = false;

      e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
      if (TREE_OPERAND (expr, 0) != e0)
	changed = true;

      e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
      if (TREE_OPERAND (expr, 1) != e1)
	changed = true;

      if (code == COND_EXPR)
	{
	  e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
	  if (TREE_OPERAND (expr, 2) != e2)
	    changed = true;
	}
      else
	e2 = NULL_TREE;

      if (changed)
	{
	  if (code == COND_EXPR)
	    expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
	  else
	    expr = fold_build2 (code, boolean_type_node, e0, e1);
	}

      return expr;
    }

  /* In case COND is equality, we may be able to simplify EXPR by copy/constant
     propagation, and vice versa.  Fold does not handle this, since it is
     considered too expensive.  */
  if (TREE_CODE (cond) == EQ_EXPR)
    {
      e0 = TREE_OPERAND (cond, 0);
      e1 = TREE_OPERAND (cond, 1);

      /* We know that e0 == e1.  Check whether we cannot simplify expr
	 using this fact.  */
      e = simplify_replace_tree (expr, e0, e1);
      if (integer_zerop (e) || integer_nonzerop (e))
	return e;

      e = simplify_replace_tree (expr, e1, e0);
      if (integer_zerop (e) || integer_nonzerop (e))
	return e;
    }
  if (TREE_CODE (expr) == EQ_EXPR)
    {
      e0 = TREE_OPERAND (expr, 0);
      e1 = TREE_OPERAND (expr, 1);

      /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true.  */
      e = simplify_replace_tree (cond, e0, e1);
      if (integer_zerop (e))
	return e;
      e = simplify_replace_tree (cond, e1, e0);
      if (integer_zerop (e))
	return e;
    }
  if (TREE_CODE (expr) == NE_EXPR)
    {
      e0 = TREE_OPERAND (expr, 0);
      e1 = TREE_OPERAND (expr, 1);

      /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true.  */
      e = simplify_replace_tree (cond, e0, e1);
      if (integer_zerop (e))
	return boolean_true_node;
      e = simplify_replace_tree (cond, e1, e0);
      if (integer_zerop (e))
	return boolean_true_node;
    }

  /* Check whether COND ==> EXPR.  */
  notcond = invert_truthvalue (cond);
  e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, expr);
  if (e && integer_nonzerop (e))
    return e;

  /* Check whether COND ==> not EXPR.  */
  e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, expr);
  if (e && integer_zerop (e))
    return e;

  return expr;
}

/* Tries to simplify EXPR using the condition COND.  Returns the simplified
   expression (or EXPR unchanged, if no simplification was possible).
   Wrapper around tree_simplify_using_condition_1 that ensures that chains
   of simple operations in definitions of ssa names in COND are expanded,
   so that things like casts or incrementing the value of the bound before
   the loop do not cause us to fail.  */

static tree
tree_simplify_using_condition (tree cond, tree expr)
{
  cond = expand_simple_operations (cond);

  return tree_simplify_using_condition_1 (cond, expr);
}

/* Tries to simplify EXPR using the conditions on entry to LOOP.
   Returns the simplified expression (or EXPR unchanged, if no
   simplification was possible).  */

tree
simplify_using_initial_conditions (struct loop *loop, tree expr)
{
  edge e;
  basic_block bb;
  gimple *stmt;
  tree cond, expanded, backup;
  int cnt = 0;

  if (TREE_CODE (expr) == INTEGER_CST)
    return expr;

  backup = expanded = expand_simple_operations (expr);

  /* Limit walking the dominators to avoid quadraticness in
     the number of BBs times the number of loops in degenerate
     cases.  */
  for (bb = loop->header;
       bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
       bb = get_immediate_dominator (CDI_DOMINATORS, bb))
    {
      if (!single_pred_p (bb))
	continue;
      e = single_pred_edge (bb);

      if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
	continue;

      stmt = last_stmt (e->src);
      cond = fold_build2 (gimple_cond_code (stmt),
			  boolean_type_node,
			  gimple_cond_lhs (stmt),
			  gimple_cond_rhs (stmt));
      if (e->flags & EDGE_FALSE_VALUE)
	cond = invert_truthvalue (cond);
      expanded = tree_simplify_using_condition (cond, expanded);
      /* Break if EXPR is simplified to const values.  */
      if (expanded
	  && (integer_zerop (expanded) || integer_nonzerop (expanded)))
	return expanded;

      ++cnt;
    }

  /* Return the original expression if no simplification is done.  */
  return operand_equal_p (backup, expanded, 0) ? expr : expanded;
}

/* Tries to simplify EXPR using the evolutions of the loop invariants
   in the superloops of LOOP.  Returns the simplified expression
   (or EXPR unchanged, if no simplification was possible).  */

static tree
simplify_using_outer_evolutions (struct loop *loop, tree expr)
{
  enum tree_code code = TREE_CODE (expr);
  bool changed;
  tree e, e0, e1, e2;

  if (is_gimple_min_invariant (expr))
    return expr;

  if (code == TRUTH_OR_EXPR
      || code == TRUTH_AND_EXPR
      || code == COND_EXPR)
    {
      changed = false;

      e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
      if (TREE_OPERAND (expr, 0) != e0)
	changed = true;

      e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
      if (TREE_OPERAND (expr, 1) != e1)
	changed = true;

      if (code == COND_EXPR)
	{
	  e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
	  if (TREE_OPERAND (expr, 2) != e2)
	    changed = true;
	}
      else
	e2 = NULL_TREE;

      if (changed)
	{
	  if (code == COND_EXPR)
	    expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
	  else
	    expr = fold_build2 (code, boolean_type_node, e0, e1);
	}

      return expr;
    }

  e = instantiate_parameters (loop, expr);
  if (is_gimple_min_invariant (e))
    return e;

  return expr;
}

/* Returns true if EXIT is the only possible exit from LOOP.  */

bool
loop_only_exit_p (const struct loop *loop, const_edge exit)
{
  basic_block *body;
  gimple_stmt_iterator bsi;
  unsigned i;

  if (exit != single_exit (loop))
    return false;

  body = get_loop_body (loop);
  for (i = 0; i < loop->num_nodes; i++)
    {
      for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
	if (stmt_can_terminate_bb_p (gsi_stmt (bsi)))
	  {
	    free (body);
	    return true;
	  }
    }

  free (body);
  return true;
}

/* Stores description of number of iterations of LOOP derived from
   EXIT (an exit edge of the LOOP) in NITER.  Returns true if some useful
   information could be derived (and fields of NITER have meaning described
   in comments at struct tree_niter_desc declaration), false otherwise.
   When EVERY_ITERATION is true, only tests that are known to be executed
   every iteration are considered (i.e. only test that alone bounds the loop).
   If AT_STMT is not NULL, this function stores LOOP's condition statement in
   it when returning true.  */

bool
number_of_iterations_exit_assumptions (struct loop *loop, edge exit,
				       struct tree_niter_desc *niter,
				       gcond **at_stmt, bool every_iteration)
{
  gimple *last;
  gcond *stmt;
  tree type;
  tree op0, op1;
  enum tree_code code;
  affine_iv iv0, iv1;
  bool safe;

  /* Nothing to analyze if the loop is known to be infinite.  */
  if (loop_constraint_set_p (loop, LOOP_C_INFINITE))
    return false;

  safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);

  if (every_iteration && !safe)
    return false;

  niter->assumptions = boolean_false_node;
  niter->control.base = NULL_TREE;
  niter->control.step = NULL_TREE;
  niter->control.no_overflow = false;
  last = last_stmt (exit->src);
  if (!last)
    return false;
  stmt = dyn_cast <gcond *> (last);
  if (!stmt)
    return false;

  /* We want the condition for staying inside loop.  */
  code = gimple_cond_code (stmt);
  if (exit->flags & EDGE_TRUE_VALUE)
    code = invert_tree_comparison (code, false);

  switch (code)
    {
    case GT_EXPR:
    case GE_EXPR:
    case LT_EXPR:
    case LE_EXPR:
    case NE_EXPR:
      break;

    default:
      return false;
    }

  op0 = gimple_cond_lhs (stmt);
  op1 = gimple_cond_rhs (stmt);
  type = TREE_TYPE (op0);

  if (TREE_CODE (type) != INTEGER_TYPE
      && !POINTER_TYPE_P (type))
    return false;

  tree iv0_niters = NULL_TREE;
  if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
			      op0, &iv0, safe ? &iv0_niters : NULL, false))
    return number_of_iterations_popcount (loop, exit, code, niter);
  tree iv1_niters = NULL_TREE;
  if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
			      op1, &iv1, safe ? &iv1_niters : NULL, false))
    return false;
  /* Give up on complicated case.  */
  if (iv0_niters && iv1_niters)
    return false;

  /* We don't want to see undefined signed overflow warnings while
     computing the number of iterations.  */
  fold_defer_overflow_warnings ();

  iv0.base = expand_simple_operations (iv0.base);
  iv1.base = expand_simple_operations (iv1.base);
  if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
				  loop_only_exit_p (loop, exit), safe))
    {
      fold_undefer_and_ignore_overflow_warnings ();
      return false;
    }

  /* Incorporate additional assumption implied by control iv.  */
  tree iv_niters = iv0_niters ? iv0_niters : iv1_niters;
  if (iv_niters)
    {
      tree assumption = fold_build2 (LE_EXPR, boolean_type_node, niter->niter,
				     fold_convert (TREE_TYPE (niter->niter),
						   iv_niters));

      if (!integer_nonzerop (assumption))
	niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
					  niter->assumptions, assumption);

      /* Refine upper bound if possible.  */
      if (TREE_CODE (iv_niters) == INTEGER_CST
	  && niter->max > wi::to_widest (iv_niters))
	niter->max = wi::to_widest (iv_niters);
    }

  /* There is no assumptions if the loop is known to be finite.  */
  if (!integer_zerop (niter->assumptions)
      && loop_constraint_set_p (loop, LOOP_C_FINITE))
    niter->assumptions = boolean_true_node;

  if (optimize >= 3)
    {
      niter->assumptions = simplify_using_outer_evolutions (loop,
							    niter->assumptions);
      niter->may_be_zero = simplify_using_outer_evolutions (loop,
							    niter->may_be_zero);
      niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
    }

  niter->assumptions
	  = simplify_using_initial_conditions (loop,
					       niter->assumptions);
  niter->may_be_zero
	  = simplify_using_initial_conditions (loop,
					       niter->may_be_zero);

  fold_undefer_and_ignore_overflow_warnings ();

  /* If NITER has simplified into a constant, update MAX.  */
  if (TREE_CODE (niter->niter) == INTEGER_CST)
    niter->max = wi::to_widest (niter->niter);

  if (at_stmt)
    *at_stmt = stmt;

  return (!integer_zerop (niter->assumptions));
}


/* Utility function to check if OP is defined by a stmt
   that is a val - 1.  */

static bool
ssa_defined_by_minus_one_stmt_p (tree op, tree val)
{
  gimple *stmt;
  return (TREE_CODE (op) == SSA_NAME
	  && (stmt = SSA_NAME_DEF_STMT (op))
	  && is_gimple_assign (stmt)
	  && (gimple_assign_rhs_code (stmt) == PLUS_EXPR)
	  && val == gimple_assign_rhs1 (stmt)
	  && integer_minus_onep (gimple_assign_rhs2 (stmt)));
}


/* See if LOOP is a popcout implementation, determine NITER for the loop

   We match:
   <bb 2>
   goto <bb 4>

   <bb 3>
   _1 = b_11 + -1
   b_6 = _1 & b_11

   <bb 4>
   b_11 = PHI <b_5(D)(2), b_6(3)>

   exit block
   if (b_11 != 0)
	goto <bb 3>
   else
	goto <bb 5>

   OR we match copy-header version:
   if (b_5 != 0)
	goto <bb 3>
   else
	goto <bb 4>

   <bb 3>
   b_11 = PHI <b_5(2), b_6(3)>
   _1 = b_11 + -1
   b_6 = _1 & b_11

   exit block
   if (b_6 != 0)
	goto <bb 3>
   else
	goto <bb 4>

   If popcount pattern, update NITER accordingly.
   i.e., set NITER to  __builtin_popcount (b)
   return true if we did, false otherwise.

 */

static bool
number_of_iterations_popcount (loop_p loop, edge exit,
			       enum tree_code code,
			       struct tree_niter_desc *niter)
{
  bool adjust = true;
  tree iter;
  HOST_WIDE_INT max;
  adjust = true;
  tree fn = NULL_TREE;

  /* Check loop terminating branch is like
     if (b != 0).  */
  gimple *stmt = last_stmt (exit->src);
  if (!stmt
      || gimple_code (stmt) != GIMPLE_COND
      || code != NE_EXPR
      || !integer_zerop (gimple_cond_rhs (stmt))
      || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME)
    return false;

  gimple *and_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));

  /* Depending on copy-header is performed, feeding PHI stmts might be in
     the loop header or loop latch, handle this.  */
  if (gimple_code (and_stmt) == GIMPLE_PHI
      && gimple_bb (and_stmt) == loop->header
      && gimple_phi_num_args (and_stmt) == 2
      && (TREE_CODE (gimple_phi_arg_def (and_stmt,
					 loop_latch_edge (loop)->dest_idx))
	  == SSA_NAME))
    {
      /* SSA used in exit condition is defined by PHI stmt
	b_11 = PHI <b_5(D)(2), b_6(3)>
	from the PHI stmt, get the and_stmt
	b_6 = _1 & b_11.  */
      tree t = gimple_phi_arg_def (and_stmt, loop_latch_edge (loop)->dest_idx);
      and_stmt = SSA_NAME_DEF_STMT (t);
      adjust = false;
    }

  /* Make sure it is indeed an and stmt (b_6 = _1 & b_11).  */
  if (!is_gimple_assign (and_stmt)
      || gimple_assign_rhs_code (and_stmt) != BIT_AND_EXPR)
    return false;

  tree b_11 = gimple_assign_rhs1 (and_stmt);
  tree _1 = gimple_assign_rhs2 (and_stmt);

  /* Check that _1 is defined by _b11 + -1 (_1 = b_11 + -1).
     Also make sure that b_11 is the same in and_stmt and _1 defining stmt.
     Also canonicalize if _1 and _b11 are revrsed.  */
  if (ssa_defined_by_minus_one_stmt_p (b_11, _1))
    std::swap (b_11, _1);
  else if (ssa_defined_by_minus_one_stmt_p (_1, b_11))
    ;
  else
    return false;
  /* Check the recurrence:
   ... = PHI <b_5(2), b_6(3)>.  */
  gimple *phi = SSA_NAME_DEF_STMT (b_11);
  if (gimple_code (phi) != GIMPLE_PHI
      || (gimple_bb (phi) != loop_latch_edge (loop)->dest)
      || (gimple_assign_lhs (and_stmt)
	  != gimple_phi_arg_def (phi, loop_latch_edge (loop)->dest_idx)))
    return false;

  /* We found a match. Get the corresponding popcount builtin.  */
  tree src = gimple_phi_arg_def (phi, loop_preheader_edge (loop)->dest_idx);
  if (TYPE_PRECISION (TREE_TYPE (src)) == TYPE_PRECISION (integer_type_node))
    fn = builtin_decl_implicit (BUILT_IN_POPCOUNT);
  else if (TYPE_PRECISION (TREE_TYPE (src)) == TYPE_PRECISION
	   (long_integer_type_node))
    fn = builtin_decl_implicit (BUILT_IN_POPCOUNTL);
  else if (TYPE_PRECISION (TREE_TYPE (src)) == TYPE_PRECISION
	   (long_long_integer_type_node))
    fn = builtin_decl_implicit (BUILT_IN_POPCOUNTLL);

  /* ??? Support promoting char/short to int.  */
  if (!fn)
    return false;

  /* Update NITER params accordingly  */
  tree utype = unsigned_type_for (TREE_TYPE (src));
  src = fold_convert (utype, src);
  tree call = fold_convert (utype, build_call_expr (fn, 1, src));
  if (adjust)
    iter = fold_build2 (MINUS_EXPR, utype,
			call,
			build_int_cst (utype, 1));
  else
    iter = call;

  if (TREE_CODE (call) == INTEGER_CST)
    max = tree_to_uhwi (call);
  else
    max = TYPE_PRECISION (TREE_TYPE (src));
  if (adjust)
    max = max - 1;

  niter->niter = iter;
  niter->assumptions = boolean_true_node;

  if (adjust)
    {
      tree may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node, src,
				      build_zero_cst
				      (TREE_TYPE (src)));
      niter->may_be_zero =
	simplify_using_initial_conditions (loop, may_be_zero);
    }
  else
    niter->may_be_zero = boolean_false_node;

  niter->max = max;
  niter->bound = NULL_TREE;
  niter->cmp = ERROR_MARK;
  return true;
}


/* Like number_of_iterations_exit_assumptions, but return TRUE only if
   the niter information holds unconditionally.  */

bool
number_of_iterations_exit (struct loop *loop, edge exit,
			   struct tree_niter_desc *niter,
			   bool warn, bool every_iteration)
{
  gcond *stmt;
  if (!number_of_iterations_exit_assumptions (loop, exit, niter,
					      &stmt, every_iteration))
    return false;

  if (integer_nonzerop (niter->assumptions))
    return true;

  if (warn && dump_enabled_p ())
    dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmt,
		     "missed loop optimization: niters analysis ends up "
		     "with assumptions.\n");

  return false;
}

/* Try to determine the number of iterations of LOOP.  If we succeed,
   expression giving number of iterations is returned and *EXIT is
   set to the edge from that the information is obtained.  Otherwise
   chrec_dont_know is returned.  */

tree
find_loop_niter (struct loop *loop, edge *exit)
{
  unsigned i;
  vec<edge> exits = get_loop_exit_edges (loop);
  edge ex;
  tree niter = NULL_TREE, aniter;
  struct tree_niter_desc desc;

  *exit = NULL;
  FOR_EACH_VEC_ELT (exits, i, ex)
    {
      if (!number_of_iterations_exit (loop, ex, &desc, false))
	continue;

      if (integer_nonzerop (desc.may_be_zero))
	{
	  /* We exit in the first iteration through this exit.
	     We won't find anything better.  */
	  niter = build_int_cst (unsigned_type_node, 0);
	  *exit = ex;
	  break;
	}

      if (!integer_zerop (desc.may_be_zero))
	continue;

      aniter = desc.niter;

      if (!niter)
	{
	  /* Nothing recorded yet.  */
	  niter = aniter;
	  *exit = ex;
	  continue;
	}

      /* Prefer constants, the lower the better.  */
      if (TREE_CODE (aniter) != INTEGER_CST)
	continue;

      if (TREE_CODE (niter) != INTEGER_CST)
	{
	  niter = aniter;
	  *exit = ex;
	  continue;
	}

      if (tree_int_cst_lt (aniter, niter))
	{
	  niter = aniter;
	  *exit = ex;
	  continue;
	}
    }
  exits.release ();

  return niter ? niter : chrec_dont_know;
}

/* Return true if loop is known to have bounded number of iterations.  */

bool
finite_loop_p (struct loop *loop)
{
  widest_int nit;
  int flags;

  flags = flags_from_decl_or_type (current_function_decl);
  if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
		 loop->num);
      return true;
    }

  if (loop->any_upper_bound
      || max_loop_iterations (loop, &nit))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Found loop %i to be finite: upper bound found.\n",
		 loop->num);
      return true;
    }
  return false;
}

/*

   Analysis of a number of iterations of a loop by a brute-force evaluation.

*/

/* Bound on the number of iterations we try to evaluate.  */

#define MAX_ITERATIONS_TO_TRACK \
  ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))

/* Returns the loop phi node of LOOP such that ssa name X is derived from its
   result by a chain of operations such that all but exactly one of their
   operands are constants.  */

static gphi *
chain_of_csts_start (struct loop *loop, tree x)
{
  gimple *stmt = SSA_NAME_DEF_STMT (x);
  tree use;
  basic_block bb = gimple_bb (stmt);
  enum tree_code code;

  if (!bb
      || !flow_bb_inside_loop_p (loop, bb))
    return NULL;

  if (gimple_code (stmt) == GIMPLE_PHI)
    {
      if (bb == loop->header)
	return as_a <gphi *> (stmt);

      return NULL;
    }

  if (gimple_code (stmt) != GIMPLE_ASSIGN
      || gimple_assign_rhs_class (stmt) == GIMPLE_TERNARY_RHS)
    return NULL;

  code = gimple_assign_rhs_code (stmt);
  if (gimple_references_memory_p (stmt)
      || TREE_CODE_CLASS (code) == tcc_reference
      || (code == ADDR_EXPR
	  && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
    return NULL;

  use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
  if (use == NULL_TREE)
    return NULL;

  return chain_of_csts_start (loop, use);
}

/* Determines whether the expression X is derived from a result of a phi node
   in header of LOOP such that

   * the derivation of X consists only from operations with constants
   * the initial value of the phi node is constant
   * the value of the phi node in the next iteration can be derived from the
     value in the current iteration by a chain of operations with constants,
     or is also a constant

   If such phi node exists, it is returned, otherwise NULL is returned.  */

static gphi *
get_base_for (struct loop *loop, tree x)
{
  gphi *phi;
  tree init, next;

  if (is_gimple_min_invariant (x))
    return NULL;

  phi = chain_of_csts_start (loop, x);
  if (!phi)
    return NULL;

  init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
  next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));

  if (!is_gimple_min_invariant (init))
    return NULL;

  if (TREE_CODE (next) == SSA_NAME
      && chain_of_csts_start (loop, next) != phi)
    return NULL;

  return phi;
}

/* Given an expression X, then

   * if X is NULL_TREE, we return the constant BASE.
   * if X is a constant, we return the constant X.
   * otherwise X is a SSA name, whose value in the considered loop is derived
     by a chain of operations with constant from a result of a phi node in
     the header of the loop.  Then we return value of X when the value of the
     result of this phi node is given by the constant BASE.  */

static tree
get_val_for (tree x, tree base)
{
  gimple *stmt;

  gcc_checking_assert (is_gimple_min_invariant (base));

  if (!x)
    return base;
  else if (is_gimple_min_invariant (x))
    return x;

  stmt = SSA_NAME_DEF_STMT (x);
  if (gimple_code (stmt) == GIMPLE_PHI)
    return base;

  gcc_checking_assert (is_gimple_assign (stmt));

  /* STMT must be either an assignment of a single SSA name or an
     expression involving an SSA name and a constant.  Try to fold that
     expression using the value for the SSA name.  */
  if (gimple_assign_ssa_name_copy_p (stmt))
    return get_val_for (gimple_assign_rhs1 (stmt), base);
  else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
	   && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
    return fold_build1 (gimple_assign_rhs_code (stmt),
			gimple_expr_type (stmt),
			get_val_for (gimple_assign_rhs1 (stmt), base));
  else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
    {
      tree rhs1 = gimple_assign_rhs1 (stmt);
      tree rhs2 = gimple_assign_rhs2 (stmt);
      if (TREE_CODE (rhs1) == SSA_NAME)
	rhs1 = get_val_for (rhs1, base);
      else if (TREE_CODE (rhs2) == SSA_NAME)
	rhs2 = get_val_for (rhs2, base);
      else
	gcc_unreachable ();
      return fold_build2 (gimple_assign_rhs_code (stmt),
			  gimple_expr_type (stmt), rhs1, rhs2);
    }
  else
    gcc_unreachable ();
}


/* Tries to count the number of iterations of LOOP till it exits by EXIT
   by brute force -- i.e. by determining the value of the operands of the
   condition at EXIT in first few iterations of the loop (assuming that
   these values are constant) and determining the first one in that the
   condition is not satisfied.  Returns the constant giving the number
   of the iterations of LOOP if successful, chrec_dont_know otherwise.  */

tree
loop_niter_by_eval (struct loop *loop, edge exit)
{
  tree acnd;
  tree op[2], val[2], next[2], aval[2];
  gphi *phi;
  gimple *cond;
  unsigned i, j;
  enum tree_code cmp;

  cond = last_stmt (exit->src);
  if (!cond || gimple_code (cond) != GIMPLE_COND)
    return chrec_dont_know;

  cmp = gimple_cond_code (cond);
  if (exit->flags & EDGE_TRUE_VALUE)
    cmp = invert_tree_comparison (cmp, false);

  switch (cmp)
    {
    case EQ_EXPR:
    case NE_EXPR:
    case GT_EXPR:
    case GE_EXPR:
    case LT_EXPR:
    case LE_EXPR:
      op[0] = gimple_cond_lhs (cond);
      op[1] = gimple_cond_rhs (cond);
      break;

    default:
      return chrec_dont_know;
    }

  for (j = 0; j < 2; j++)
    {
      if (is_gimple_min_invariant (op[j]))
	{
	  val[j] = op[j];
	  next[j] = NULL_TREE;
	  op[j] = NULL_TREE;
	}
      else
	{
	  phi = get_base_for (loop, op[j]);
	  if (!phi)
	    return chrec_dont_know;
	  val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
	  next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
	}
    }

  /* Don't issue signed overflow warnings.  */
  fold_defer_overflow_warnings ();

  for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
    {
      for (j = 0; j < 2; j++)
	aval[j] = get_val_for (op[j], val[j]);

      acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
      if (acnd && integer_zerop (acnd))
	{
	  fold_undefer_and_ignore_overflow_warnings ();
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file,
		     "Proved that loop %d iterates %d times using brute force.\n",
		     loop->num, i);
	  return build_int_cst (unsigned_type_node, i);
	}

      for (j = 0; j < 2; j++)
	{
	  aval[j] = val[j];
	  val[j] = get_val_for (next[j], val[j]);
	  if (!is_gimple_min_invariant (val[j]))
	    {
	      fold_undefer_and_ignore_overflow_warnings ();
	      return chrec_dont_know;
	    }
	}

      /* If the next iteration would use the same base values
	 as the current one, there is no point looping further,
	 all following iterations will be the same as this one.  */
      if (val[0] == aval[0] && val[1] == aval[1])
	break;
    }

  fold_undefer_and_ignore_overflow_warnings ();

  return chrec_dont_know;
}

/* Finds the exit of the LOOP by that the loop exits after a constant
   number of iterations and stores the exit edge to *EXIT.  The constant
   giving the number of iterations of LOOP is returned.  The number of
   iterations is determined using loop_niter_by_eval (i.e. by brute force
   evaluation).  If we are unable to find the exit for that loop_niter_by_eval
   determines the number of iterations, chrec_dont_know is returned.  */

tree
find_loop_niter_by_eval (struct loop *loop, edge *exit)
{
  unsigned i;
  vec<edge> exits = get_loop_exit_edges (loop);
  edge ex;
  tree niter = NULL_TREE, aniter;

  *exit = NULL;

  /* Loops with multiple exits are expensive to handle and less important.  */
  if (!flag_expensive_optimizations
      && exits.length () > 1)
    {
      exits.release ();
      return chrec_dont_know;
    }

  FOR_EACH_VEC_ELT (exits, i, ex)
    {
      if (!just_once_each_iteration_p (loop, ex->src))
	continue;

      aniter = loop_niter_by_eval (loop, ex);
      if (chrec_contains_undetermined (aniter))
	continue;

      if (niter
	  && !tree_int_cst_lt (aniter, niter))
	continue;

      niter = aniter;
      *exit = ex;
    }
  exits.release ();

  return niter ? niter : chrec_dont_know;
}

/*

   Analysis of upper bounds on number of iterations of a loop.

*/

static widest_int derive_constant_upper_bound_ops (tree, tree,
						   enum tree_code, tree);

/* Returns a constant upper bound on the value of the right-hand side of
   an assignment statement STMT.  */

static widest_int
derive_constant_upper_bound_assign (gimple *stmt)
{
  enum tree_code code = gimple_assign_rhs_code (stmt);
  tree op0 = gimple_assign_rhs1 (stmt);
  tree op1 = gimple_assign_rhs2 (stmt);

  return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
					  op0, code, op1);
}

/* Returns a constant upper bound on the value of expression VAL.  VAL
   is considered to be unsigned.  If its type is signed, its value must
   be nonnegative.  */

static widest_int
derive_constant_upper_bound (tree val)
{
  enum tree_code code;
  tree op0, op1, op2;

  extract_ops_from_tree (val, &code, &op0, &op1, &op2);
  return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
}

/* Returns a constant upper bound on the value of expression OP0 CODE OP1,
   whose type is TYPE.  The expression is considered to be unsigned.  If
   its type is signed, its value must be nonnegative.  */

static widest_int
derive_constant_upper_bound_ops (tree type, tree op0,
				 enum tree_code code, tree op1)
{
  tree subtype, maxt;
  widest_int bnd, max, cst;
  gimple *stmt;

  if (INTEGRAL_TYPE_P (type))
    maxt = TYPE_MAX_VALUE (type);
  else
    maxt = upper_bound_in_type (type, type);

  max = wi::to_widest (maxt);

  switch (code)
    {
    case INTEGER_CST:
      return wi::to_widest (op0);

    CASE_CONVERT:
      subtype = TREE_TYPE (op0);
      if (!TYPE_UNSIGNED (subtype)
	  /* If TYPE is also signed, the fact that VAL is nonnegative implies
	     that OP0 is nonnegative.  */
	  && TYPE_UNSIGNED (type)
	  && !tree_expr_nonnegative_p (op0))
	{
	  /* If we cannot prove that the casted expression is nonnegative,
	     we cannot establish more useful upper bound than the precision
	     of the type gives us.  */
	  return max;
	}

      /* We now know that op0 is an nonnegative value.  Try deriving an upper
	 bound for it.  */
      bnd = derive_constant_upper_bound (op0);

      /* If the bound does not fit in TYPE, max. value of TYPE could be
	 attained.  */
      if (wi::ltu_p (max, bnd))
	return max;

      return bnd;

    case PLUS_EXPR:
    case POINTER_PLUS_EXPR:
    case MINUS_EXPR:
      if (TREE_CODE (op1) != INTEGER_CST
	  || !tree_expr_nonnegative_p (op0))
	return max;

      /* Canonicalize to OP0 - CST.  Consider CST to be signed, in order to
	 choose the most logical way how to treat this constant regardless
	 of the signedness of the type.  */
      cst = wi::sext (wi::to_widest (op1), TYPE_PRECISION (type));
      if (code != MINUS_EXPR)
	cst = -cst;

      bnd = derive_constant_upper_bound (op0);

      if (wi::neg_p (cst))
	{
	  cst = -cst;
	  /* Avoid CST == 0x80000...  */
	  if (wi::neg_p (cst))
	    return max;

	  /* OP0 + CST.  We need to check that
	     BND <= MAX (type) - CST.  */

	  widest_int mmax = max - cst;
	  if (wi::leu_p (bnd, mmax))
	    return max;

	  return bnd + cst;
	}
      else
	{
	  /* OP0 - CST, where CST >= 0.

	     If TYPE is signed, we have already verified that OP0 >= 0, and we
	     know that the result is nonnegative.  This implies that
	     VAL <= BND - CST.

	     If TYPE is unsigned, we must additionally know that OP0 >= CST,
	     otherwise the operation underflows.
	   */

	  /* This should only happen if the type is unsigned; however, for
	     buggy programs that use overflowing signed arithmetics even with
	     -fno-wrapv, this condition may also be true for signed values.  */
	  if (wi::ltu_p (bnd, cst))
	    return max;

	  if (TYPE_UNSIGNED (type))
	    {
	      tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
				      wide_int_to_tree (type, cst));
	      if (!tem || integer_nonzerop (tem))
		return max;
	    }

	  bnd -= cst;
	}

      return bnd;

    case FLOOR_DIV_EXPR:
    case EXACT_DIV_EXPR:
      if (TREE_CODE (op1) != INTEGER_CST
	  || tree_int_cst_sign_bit (op1))
	return max;

      bnd = derive_constant_upper_bound (op0);
      return wi::udiv_floor (bnd, wi::to_widest (op1));

    case BIT_AND_EXPR:
      if (TREE_CODE (op1) != INTEGER_CST
	  || tree_int_cst_sign_bit (op1))
	return max;
      return wi::to_widest (op1);

    case SSA_NAME:
      stmt = SSA_NAME_DEF_STMT (op0);
      if (gimple_code (stmt) != GIMPLE_ASSIGN
	  || gimple_assign_lhs (stmt) != op0)
	return max;
      return derive_constant_upper_bound_assign (stmt);

    default:
      return max;
    }
}

/* Emit a -Waggressive-loop-optimizations warning if needed.  */

static void
do_warn_aggressive_loop_optimizations (struct loop *loop,
				       widest_int i_bound, gimple *stmt)
{
  /* Don't warn if the loop doesn't have known constant bound.  */
  if (!loop->nb_iterations
      || TREE_CODE (loop->nb_iterations) != INTEGER_CST
      || !warn_aggressive_loop_optimizations
      /* To avoid warning multiple times for the same loop,
	 only start warning when we preserve loops.  */
      || (cfun->curr_properties & PROP_loops) == 0
      /* Only warn once per loop.  */
      || loop->warned_aggressive_loop_optimizations
      /* Only warn if undefined behavior gives us lower estimate than the
	 known constant bound.  */
      || wi::cmpu (i_bound, wi::to_widest (loop->nb_iterations)) >= 0
      /* And undefined behavior happens unconditionally.  */
      || !dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (stmt)))
    return;

  edge e = single_exit (loop);
  if (e == NULL)
    return;

  gimple *estmt = last_stmt (e->src);
  char buf[WIDE_INT_PRINT_BUFFER_SIZE];
  print_dec (i_bound, buf, TYPE_UNSIGNED (TREE_TYPE (loop->nb_iterations))
	     ? UNSIGNED : SIGNED);
  auto_diagnostic_group d;
  if (warning_at (gimple_location (stmt), OPT_Waggressive_loop_optimizations,
		  "iteration %s invokes undefined behavior", buf))
    inform (gimple_location (estmt), "within this loop");
  loop->warned_aggressive_loop_optimizations = true;
}

/* Records that AT_STMT is executed at most BOUND + 1 times in LOOP.  IS_EXIT
   is true if the loop is exited immediately after STMT, and this exit
   is taken at last when the STMT is executed BOUND + 1 times.
   REALISTIC is true if BOUND is expected to be close to the real number
   of iterations.  UPPER is true if we are sure the loop iterates at most
   BOUND times.  I_BOUND is a widest_int upper estimate on BOUND.  */

static void
record_estimate (struct loop *loop, tree bound, const widest_int &i_bound,
		 gimple *at_stmt, bool is_exit, bool realistic, bool upper)
{
  widest_int delta;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
      print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
      fprintf (dump_file, " is %sexecuted at most ",
	       upper ? "" : "probably ");
      print_generic_expr (dump_file, bound, TDF_SLIM);
      fprintf (dump_file, " (bounded by ");
      print_decu (i_bound, dump_file);
      fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
    }

  /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
     real number of iterations.  */
  if (TREE_CODE (bound) != INTEGER_CST)
    realistic = false;
  else
    gcc_checking_assert (i_bound == wi::to_widest (bound));

  /* If we have a guaranteed upper bound, record it in the appropriate
     list, unless this is an !is_exit bound (i.e. undefined behavior in
     at_stmt) in a loop with known constant number of iterations.  */
  if (upper
      && (is_exit
	  || loop->nb_iterations == NULL_TREE
	  || TREE_CODE (loop->nb_iterations) != INTEGER_CST))
    {
      struct nb_iter_bound *elt = ggc_alloc<nb_iter_bound> ();

      elt->bound = i_bound;
      elt->stmt = at_stmt;
      elt->is_exit = is_exit;
      elt->next = loop->bounds;
      loop->bounds = elt;
    }

  /* If statement is executed on every path to the loop latch, we can directly
     infer the upper bound on the # of iterations of the loop.  */
  if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (at_stmt)))
    upper = false;

  /* Update the number of iteration estimates according to the bound.
     If at_stmt is an exit then the loop latch is executed at most BOUND times,
     otherwise it can be executed BOUND + 1 times.  We will lower the estimate
     later if such statement must be executed on last iteration  */
  if (is_exit)
    delta = 0;
  else
    delta = 1;
  widest_int new_i_bound = i_bound + delta;

  /* If an overflow occurred, ignore the result.  */
  if (wi::ltu_p (new_i_bound, delta))
    return;

  if (upper && !is_exit)
    do_warn_aggressive_loop_optimizations (loop, new_i_bound, at_stmt);
  record_niter_bound (loop, new_i_bound, realistic, upper);
}

/* Records the control iv analyzed in NITER for LOOP if the iv is valid
   and doesn't overflow.  */

static void
record_control_iv (struct loop *loop, struct tree_niter_desc *niter)
{
  struct control_iv *iv;

  if (!niter->control.base || !niter->control.step)
    return;

  if (!integer_onep (niter->assumptions) || !niter->control.no_overflow)
    return;

  iv = ggc_alloc<control_iv> ();
  iv->base = niter->control.base;
  iv->step = niter->control.step;
  iv->next = loop->control_ivs;
  loop->control_ivs = iv;

  return;
}

/* This function returns TRUE if below conditions are satisfied:
     1) VAR is SSA variable.
     2) VAR is an IV:{base, step} in its defining loop.
     3) IV doesn't overflow.
     4) Both base and step are integer constants.
     5) Base is the MIN/MAX value depends on IS_MIN.
   Store value of base to INIT correspondingly.  */

static bool
get_cst_init_from_scev (tree var, wide_int *init, bool is_min)
{
  if (TREE_CODE (var) != SSA_NAME)
    return false;

  gimple *def_stmt = SSA_NAME_DEF_STMT (var);
  struct loop *loop = loop_containing_stmt (def_stmt);

  if (loop == NULL)
    return false;

  affine_iv iv;
  if (!simple_iv (loop, loop, var, &iv, false))
    return false;

  if (!iv.no_overflow)
    return false;

  if (TREE_CODE (iv.base) != INTEGER_CST || TREE_CODE (iv.step) != INTEGER_CST)
    return false;

  if (is_min == tree_int_cst_sign_bit (iv.step))
    return false;

  *init = wi::to_wide (iv.base);
  return true;
}

/* Record the estimate on number of iterations of LOOP based on the fact that
   the induction variable BASE + STEP * i evaluated in STMT does not wrap and
   its values belong to the range <LOW, HIGH>.  REALISTIC is true if the
   estimated number of iterations is expected to be close to the real one.
   UPPER is true if we are sure the induction variable does not wrap.  */

static void
record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple *stmt,
		       tree low, tree high, bool realistic, bool upper)
{
  tree niter_bound, extreme, delta;
  tree type = TREE_TYPE (base), unsigned_type;
  tree orig_base = base;

  if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
    return;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Induction variable (");
      print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
      fprintf (dump_file, ") ");
      print_generic_expr (dump_file, base, TDF_SLIM);
      fprintf (dump_file, " + ");
      print_generic_expr (dump_file, step, TDF_SLIM);
      fprintf (dump_file, " * iteration does not wrap in statement ");
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
      fprintf (dump_file, " in loop %d.\n", loop->num);
    }

  unsigned_type = unsigned_type_for (type);
  base = fold_convert (unsigned_type, base);
  step = fold_convert (unsigned_type, step);

  if (tree_int_cst_sign_bit (step))
    {
      wide_int min, max;
      extreme = fold_convert (unsigned_type, low);
      if (TREE_CODE (orig_base) == SSA_NAME
	  && TREE_CODE (high) == INTEGER_CST
	  && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
	  && (get_range_info (orig_base, &min, &max) == VR_RANGE
	      || get_cst_init_from_scev (orig_base, &max, false))
	  && wi::gts_p (wi::to_wide (high), max))
	base = wide_int_to_tree (unsigned_type, max);
      else if (TREE_CODE (base) != INTEGER_CST
	       && dominated_by_p (CDI_DOMINATORS,
				  loop->latch, gimple_bb (stmt)))
	base = fold_convert (unsigned_type, high);
      delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
      step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
    }
  else
    {
      wide_int min, max;
      extreme = fold_convert (unsigned_type, high);
      if (TREE_CODE (orig_base) == SSA_NAME
	  && TREE_CODE (low) == INTEGER_CST
	  && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
	  && (get_range_info (orig_base, &min, &max) == VR_RANGE
	      || get_cst_init_from_scev (orig_base, &min, true))
	  && wi::gts_p (min, wi::to_wide (low)))
	base = wide_int_to_tree (unsigned_type, min);
      else if (TREE_CODE (base) != INTEGER_CST
	       && dominated_by_p (CDI_DOMINATORS,
				  loop->latch, gimple_bb (stmt)))
	base = fold_convert (unsigned_type, low);
      delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
    }

  /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
     would get out of the range.  */
  niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
  widest_int max = derive_constant_upper_bound (niter_bound);
  record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
}

/* Determine information about number of iterations a LOOP from the index
   IDX of a data reference accessed in STMT.  RELIABLE is true if STMT is
   guaranteed to be executed in every iteration of LOOP.  Callback for
   for_each_index.  */

struct ilb_data
{
  struct loop *loop;
  gimple *stmt;
};

static bool
idx_infer_loop_bounds (tree base, tree *idx, void *dta)
{
  struct ilb_data *data = (struct ilb_data *) dta;
  tree ev, init, step;
  tree low, high, type, next;
  bool sign, upper = true, at_end = false;
  struct loop *loop = data->loop;

  if (TREE_CODE (base) != ARRAY_REF)
    return true;

  /* For arrays at the end of the structure, we are not guaranteed that they
     do not really extend over their declared size.  However, for arrays of
     size greater than one, this is unlikely to be intended.  */
  if (array_at_struct_end_p (base))
    {
      at_end = true;
      upper = false;
    }

  struct loop *dloop = loop_containing_stmt (data->stmt);
  if (!dloop)
    return true;

  ev = analyze_scalar_evolution (dloop, *idx);
  ev = instantiate_parameters (loop, ev);
  init = initial_condition (ev);
  step = evolution_part_in_loop_num (ev, loop->num);

  if (!init
      || !step
      || TREE_CODE (step) != INTEGER_CST
      || integer_zerop (step)
      || tree_contains_chrecs (init, NULL)
      || chrec_contains_symbols_defined_in_loop (init, loop->num))
    return true;

  low = array_ref_low_bound (base);
  high = array_ref_up_bound (base);

  /* The case of nonconstant bounds could be handled, but it would be
     complicated.  */
  if (TREE_CODE (low) != INTEGER_CST
      || !high
      || TREE_CODE (high) != INTEGER_CST)
    return true;
  sign = tree_int_cst_sign_bit (step);
  type = TREE_TYPE (step);

  /* The array of length 1 at the end of a structure most likely extends
     beyond its bounds.  */
  if (at_end
      && operand_equal_p (low, high, 0))
    return true;

  /* In case the relevant bound of the array does not fit in type, or
     it does, but bound + step (in type) still belongs into the range of the
     array, the index may wrap and still stay within the range of the array
     (consider e.g. if the array is indexed by the full range of
     unsigned char).

     To make things simpler, we require both bounds to fit into type, although
     there are cases where this would not be strictly necessary.  */
  if (!int_fits_type_p (high, type)
      || !int_fits_type_p (low, type))
    return true;
  low = fold_convert (type, low);
  high = fold_convert (type, high);

  if (sign)
    next = fold_binary (PLUS_EXPR, type, low, step);
  else
    next = fold_binary (PLUS_EXPR, type, high, step);

  if (tree_int_cst_compare (low, next) <= 0
      && tree_int_cst_compare (next, high) <= 0)
    return true;

  /* If access is not executed on every iteration, we must ensure that overlow
     may not make the access valid later.  */
  if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (data->stmt))
      && scev_probably_wraps_p (NULL_TREE,
				initial_condition_in_loop_num (ev, loop->num),
				step, data->stmt, loop, true))
    upper = false;

  record_nonwrapping_iv (loop, init, step, data->stmt, low, high, false, upper);
  return true;
}

/* Determine information about number of iterations a LOOP from the bounds
   of arrays in the data reference REF accessed in STMT.  RELIABLE is true if
   STMT is guaranteed to be executed in every iteration of LOOP.*/

static void
infer_loop_bounds_from_ref (struct loop *loop, gimple *stmt, tree ref)
{
  struct ilb_data data;

  data.loop = loop;
  data.stmt = stmt;
  for_each_index (&ref, idx_infer_loop_bounds, &data);
}

/* Determine information about number of iterations of a LOOP from the way
   arrays are used in STMT.  RELIABLE is true if STMT is guaranteed to be
   executed in every iteration of LOOP.  */

static void
infer_loop_bounds_from_array (struct loop *loop, gimple *stmt)
{
  if (is_gimple_assign (stmt))
    {
      tree op0 = gimple_assign_lhs (stmt);
      tree op1 = gimple_assign_rhs1 (stmt);

      /* For each memory access, analyze its access function
	 and record a bound on the loop iteration domain.  */
      if (REFERENCE_CLASS_P (op0))
	infer_loop_bounds_from_ref (loop, stmt, op0);

      if (REFERENCE_CLASS_P (op1))
	infer_loop_bounds_from_ref (loop, stmt, op1);
    }
  else if (is_gimple_call (stmt))
    {
      tree arg, lhs;
      unsigned i, n = gimple_call_num_args (stmt);

      lhs = gimple_call_lhs (stmt);
      if (lhs && REFERENCE_CLASS_P (lhs))
	infer_loop_bounds_from_ref (loop, stmt, lhs);

      for (i = 0; i < n; i++)
	{
	  arg = gimple_call_arg (stmt, i);
	  if (REFERENCE_CLASS_P (arg))
	    infer_loop_bounds_from_ref (loop, stmt, arg);
	}
    }
}

/* Determine information about number of iterations of a LOOP from the fact
   that pointer arithmetics in STMT does not overflow.  */

static void
infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple *stmt)
{
  tree def, base, step, scev, type, low, high;
  tree var, ptr;

  if (!is_gimple_assign (stmt)
      || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
    return;

  def = gimple_assign_lhs (stmt);
  if (TREE_CODE (def) != SSA_NAME)
    return;

  type = TREE_TYPE (def);
  if (!nowrap_type_p (type))
    return;

  ptr = gimple_assign_rhs1 (stmt);
  if (!expr_invariant_in_loop_p (loop, ptr))
    return;

  var = gimple_assign_rhs2 (stmt);
  if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
    return;

  struct loop *uloop = loop_containing_stmt (stmt);
  scev = instantiate_parameters (loop, analyze_scalar_evolution (uloop, def));
  if (chrec_contains_undetermined (scev))
    return;

  base = initial_condition_in_loop_num (scev, loop->num);
  step = evolution_part_in_loop_num (scev, loop->num);

  if (!base || !step
      || TREE_CODE (step) != INTEGER_CST
      || tree_contains_chrecs (base, NULL)
      || chrec_contains_symbols_defined_in_loop (base, loop->num))
    return;

  low = lower_bound_in_type (type, type);
  high = upper_bound_in_type (type, type);

  /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
     produce a NULL pointer.  The contrary would mean NULL points to an object,
     while NULL is supposed to compare unequal with the address of all objects.
     Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
     NULL pointer since that would mean wrapping, which we assume here not to
     happen.  So, we can exclude NULL from the valid range of pointer
     arithmetic.  */
  if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
    low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));

  record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
}

/* Determine information about number of iterations of a LOOP from the fact
   that signed arithmetics in STMT does not overflow.  */

static void
infer_loop_bounds_from_signedness (struct loop *loop, gimple *stmt)
{
  tree def, base, step, scev, type, low, high;

  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return;

  def = gimple_assign_lhs (stmt);

  if (TREE_CODE (def) != SSA_NAME)
    return;

  type = TREE_TYPE (def);
  if (!INTEGRAL_TYPE_P (type)
      || !TYPE_OVERFLOW_UNDEFINED (type))
    return;

  scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
  if (chrec_contains_undetermined (scev))
    return;

  base = initial_condition_in_loop_num (scev, loop->num);
  step = evolution_part_in_loop_num (scev, loop->num);

  if (!base || !step
      || TREE_CODE (step) != INTEGER_CST
      || tree_contains_chrecs (base, NULL)
      || chrec_contains_symbols_defined_in_loop (base, loop->num))
    return;

  low = lower_bound_in_type (type, type);
  high = upper_bound_in_type (type, type);
  wide_int minv, maxv;
  if (get_range_info (def, &minv, &maxv) == VR_RANGE)
    {
      low = wide_int_to_tree (type, minv);
      high = wide_int_to_tree (type, maxv);
    }

  record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
}

/* The following analyzers are extracting informations on the bounds
   of LOOP from the following undefined behaviors:

   - data references should not access elements over the statically
     allocated size,

   - signed variables should not overflow when flag_wrapv is not set.
*/

static void
infer_loop_bounds_from_undefined (struct loop *loop)
{
  unsigned i;
  basic_block *bbs;
  gimple_stmt_iterator bsi;
  basic_block bb;
  bool reliable;

  bbs = get_loop_body (loop);

  for (i = 0; i < loop->num_nodes; i++)
    {
      bb = bbs[i];

      /* If BB is not executed in each iteration of the loop, we cannot
	 use the operations in it to infer reliable upper bound on the
	 # of iterations of the loop.  However, we can use it as a guess. 
	 Reliable guesses come only from array bounds.  */
      reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);

      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
	{
	  gimple *stmt = gsi_stmt (bsi);

	  infer_loop_bounds_from_array (loop, stmt);

	  if (reliable)
            {
              infer_loop_bounds_from_signedness (loop, stmt);
              infer_loop_bounds_from_pointer_arith (loop, stmt);
            }
  	}

    }

  free (bbs);
}

/* Compare wide ints, callback for qsort.  */

static int
wide_int_cmp (const void *p1, const void *p2)
{
  const widest_int *d1 = (const widest_int *) p1;
  const widest_int *d2 = (const widest_int *) p2;
  return wi::cmpu (*d1, *d2);
}

/* Return index of BOUND in BOUNDS array sorted in increasing order.
   Lookup by binary search.  */

static int
bound_index (vec<widest_int> bounds, const widest_int &bound)
{
  unsigned int end = bounds.length ();
  unsigned int begin = 0;

  /* Find a matching index by means of a binary search.  */
  while (begin != end)
    {
      unsigned int middle = (begin + end) / 2;
      widest_int index = bounds[middle];

      if (index == bound)
	return middle;
      else if (wi::ltu_p (index, bound))
	begin = middle + 1;
      else
	end = middle;
    }
  gcc_unreachable ();
}

/* We recorded loop bounds only for statements dominating loop latch (and thus
   executed each loop iteration).  If there are any bounds on statements not
   dominating the loop latch we can improve the estimate by walking the loop
   body and seeing if every path from loop header to loop latch contains
   some bounded statement.  */

static void
discover_iteration_bound_by_body_walk (struct loop *loop)
{
  struct nb_iter_bound *elt;
  auto_vec<widest_int> bounds;
  vec<vec<basic_block> > queues = vNULL;
  vec<basic_block> queue = vNULL;
  ptrdiff_t queue_index;
  ptrdiff_t latch_index = 0;

  /* Discover what bounds may interest us.  */
  for (elt = loop->bounds; elt; elt = elt->next)
    {
      widest_int bound = elt->bound;

      /* Exit terminates loop at given iteration, while non-exits produce undefined
	 effect on the next iteration.  */
      if (!elt->is_exit)
	{
	  bound += 1;
	  /* If an overflow occurred, ignore the result.  */
	  if (bound == 0)
	    continue;
	}

      if (!loop->any_upper_bound
	  || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
        bounds.safe_push (bound);
    }

  /* Exit early if there is nothing to do.  */
  if (!bounds.exists ())
    return;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, " Trying to walk loop body to reduce the bound.\n");

  /* Sort the bounds in decreasing order.  */
  bounds.qsort (wide_int_cmp);

  /* For every basic block record the lowest bound that is guaranteed to
     terminate the loop.  */

  hash_map<basic_block, ptrdiff_t> bb_bounds;
  for (elt = loop->bounds; elt; elt = elt->next)
    {
      widest_int bound = elt->bound;
      if (!elt->is_exit)
	{
	  bound += 1;
	  /* If an overflow occurred, ignore the result.  */
	  if (bound == 0)
	    continue;
	}

      if (!loop->any_upper_bound
	  || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
	{
	  ptrdiff_t index = bound_index (bounds, bound);
	  ptrdiff_t *entry = bb_bounds.get (gimple_bb (elt->stmt));
	  if (!entry)
	    bb_bounds.put (gimple_bb (elt->stmt), index);
	  else if ((ptrdiff_t)*entry > index)
	    *entry = index;
	}
    }

  hash_map<basic_block, ptrdiff_t> block_priority;

  /* Perform shortest path discovery loop->header ... loop->latch.

     The "distance" is given by the smallest loop bound of basic block
     present in the path and we look for path with largest smallest bound
     on it.

     To avoid the need for fibonacci heap on double ints we simply compress
     double ints into indexes to BOUNDS array and then represent the queue
     as arrays of queues for every index.
     Index of BOUNDS.length() means that the execution of given BB has
     no bounds determined.

     VISITED is a pointer map translating basic block into smallest index
     it was inserted into the priority queue with.  */
  latch_index = -1;

  /* Start walk in loop header with index set to infinite bound.  */
  queue_index = bounds.length ();
  queues.safe_grow_cleared (queue_index + 1);
  queue.safe_push (loop->header);
  queues[queue_index] = queue;
  block_priority.put (loop->header, queue_index);

  for (; queue_index >= 0; queue_index--)
    {
      if (latch_index < queue_index)
	{
	  while (queues[queue_index].length ())
	    {
	      basic_block bb;
	      ptrdiff_t bound_index = queue_index;
              edge e;
              edge_iterator ei;

	      queue = queues[queue_index];
	      bb = queue.pop ();

	      /* OK, we later inserted the BB with lower priority, skip it.  */
	      if (*block_priority.get (bb) > queue_index)
		continue;

	      /* See if we can improve the bound.  */
	      ptrdiff_t *entry = bb_bounds.get (bb);
	      if (entry && *entry < bound_index)
		bound_index = *entry;

	      /* Insert succesors into the queue, watch for latch edge
		 and record greatest index we saw.  */
	      FOR_EACH_EDGE (e, ei, bb->succs)
		{
		  bool insert = false;

		  if (loop_exit_edge_p (loop, e))
		    continue;

		  if (e == loop_latch_edge (loop)
		      && latch_index < bound_index)
		    latch_index = bound_index;
		  else if (!(entry = block_priority.get (e->dest)))
		    {
		      insert = true;
		      block_priority.put (e->dest, bound_index);
		    }
		  else if (*entry < bound_index)
		    {
		      insert = true;
		      *entry = bound_index;
		    }
		    
		  if (insert)
		    queues[bound_index].safe_push (e->dest);
		}
	    }
	}
      queues[queue_index].release ();
    }

  gcc_assert (latch_index >= 0);
  if ((unsigned)latch_index < bounds.length ())
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Found better loop bound ");
	  print_decu (bounds[latch_index], dump_file);
	  fprintf (dump_file, "\n");
	}
      record_niter_bound (loop, bounds[latch_index], false, true);
    }

  queues.release ();
}

/* See if every path cross the loop goes through a statement that is known
   to not execute at the last iteration. In that case we can decrese iteration
   count by 1.  */

static void
maybe_lower_iteration_bound (struct loop *loop)
{
  hash_set<gimple *> *not_executed_last_iteration = NULL;
  struct nb_iter_bound *elt;
  bool found_exit = false;
  auto_vec<basic_block> queue;
  bitmap visited;

  /* Collect all statements with interesting (i.e. lower than
     nb_iterations_upper_bound) bound on them. 

     TODO: Due to the way record_estimate choose estimates to store, the bounds
     will be always nb_iterations_upper_bound-1.  We can change this to record
     also statements not dominating the loop latch and update the walk bellow
     to the shortest path algorithm.  */
  for (elt = loop->bounds; elt; elt = elt->next)
    {
      if (!elt->is_exit
	  && wi::ltu_p (elt->bound, loop->nb_iterations_upper_bound))
	{
	  if (!not_executed_last_iteration)
	    not_executed_last_iteration = new hash_set<gimple *>;
	  not_executed_last_iteration->add (elt->stmt);
	}
    }
  if (!not_executed_last_iteration)
    return;

  /* Start DFS walk in the loop header and see if we can reach the
     loop latch or any of the exits (including statements with side
     effects that may terminate the loop otherwise) without visiting
     any of the statements known to have undefined effect on the last
     iteration.  */
  queue.safe_push (loop->header);
  visited = BITMAP_ALLOC (NULL);
  bitmap_set_bit (visited, loop->header->index);
  found_exit = false;

  do
    {
      basic_block bb = queue.pop ();
      gimple_stmt_iterator gsi;
      bool stmt_found = false;

      /* Loop for possible exits and statements bounding the execution.  */
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple *stmt = gsi_stmt (gsi);
	  if (not_executed_last_iteration->contains (stmt))
	    {
	      stmt_found = true;
	      break;
	    }
	  if (gimple_has_side_effects (stmt))
	    {
	      found_exit = true;
	      break;
	    }
	}
      if (found_exit)
	break;

      /* If no bounding statement is found, continue the walk.  */
      if (!stmt_found)
	{
          edge e;
          edge_iterator ei;

          FOR_EACH_EDGE (e, ei, bb->succs)
	    {
	      if (loop_exit_edge_p (loop, e)
		  || e == loop_latch_edge (loop))
		{
		  found_exit = true;
		  break;
		}
	      if (bitmap_set_bit (visited, e->dest->index))
		queue.safe_push (e->dest);
	    }
	}
    }
  while (queue.length () && !found_exit);

  /* If every path through the loop reach bounding statement before exit,
     then we know the last iteration of the loop will have undefined effect
     and we can decrease number of iterations.  */
    
  if (!found_exit)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Reducing loop iteration estimate by 1; "
		 "undefined statement must be executed at the last iteration.\n");
      record_niter_bound (loop, loop->nb_iterations_upper_bound - 1,
			  false, true);
    }

  BITMAP_FREE (visited);
  delete not_executed_last_iteration;
}

/* Records estimates on numbers of iterations of LOOP.  If USE_UNDEFINED_P
   is true also use estimates derived from undefined behavior.  */

void
estimate_numbers_of_iterations (struct loop *loop)
{
  vec<edge> exits;
  tree niter, type;
  unsigned i;
  struct tree_niter_desc niter_desc;
  edge ex;
  widest_int bound;
  edge likely_exit;

  /* Give up if we already have tried to compute an estimation.  */
  if (loop->estimate_state != EST_NOT_COMPUTED)
    return;

  loop->estimate_state = EST_AVAILABLE;

  /* If we have a measured profile, use it to estimate the number of
     iterations.  Normally this is recorded by branch_prob right after
     reading the profile.  In case we however found a new loop, record the
     information here.

     Explicitly check for profile status so we do not report
     wrong prediction hitrates for guessed loop iterations heuristics.
     Do not recompute already recorded bounds - we ought to be better on
     updating iteration bounds than updating profile in general and thus
     recomputing iteration bounds later in the compilation process will just
     introduce random roundoff errors.  */
  if (!loop->any_estimate
      && loop->header->count.reliable_p ())
    {
      gcov_type nit = expected_loop_iterations_unbounded (loop);
      bound = gcov_type_to_wide_int (nit);
      record_niter_bound (loop, bound, true, false);
    }

  /* Ensure that loop->nb_iterations is computed if possible.  If it turns out
     to be constant, we avoid undefined behavior implied bounds and instead
     diagnose those loops with -Waggressive-loop-optimizations.  */
  number_of_latch_executions (loop);

  exits = get_loop_exit_edges (loop);
  likely_exit = single_likely_exit (loop);
  FOR_EACH_VEC_ELT (exits, i, ex)
    {
      if (!number_of_iterations_exit (loop, ex, &niter_desc, false, false))
	continue;

      niter = niter_desc.niter;
      type = TREE_TYPE (niter);
      if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
	niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
			build_int_cst (type, 0),
			niter);
      record_estimate (loop, niter, niter_desc.max,
		       last_stmt (ex->src),
		       true, ex == likely_exit, true);
      record_control_iv (loop, &niter_desc);
    }
  exits.release ();

  if (flag_aggressive_loop_optimizations)
    infer_loop_bounds_from_undefined (loop);

  discover_iteration_bound_by_body_walk (loop);

  maybe_lower_iteration_bound (loop);

  /* If we know the exact number of iterations of this loop, try to
     not break code with undefined behavior by not recording smaller
     maximum number of iterations.  */
  if (loop->nb_iterations
      && TREE_CODE (loop->nb_iterations) == INTEGER_CST)
    {
      loop->any_upper_bound = true;
      loop->nb_iterations_upper_bound = wi::to_widest (loop->nb_iterations);
    }
}

/* Sets NIT to the estimated number of executions of the latch of the
   LOOP.  If CONSERVATIVE is true, we must be sure that NIT is at least as
   large as the number of iterations.  If we have no reliable estimate,
   the function returns false, otherwise returns true.  */

bool
estimated_loop_iterations (struct loop *loop, widest_int *nit)
{
  /* When SCEV information is available, try to update loop iterations
     estimate.  Otherwise just return whatever we recorded earlier.  */
  if (scev_initialized_p ())
    estimate_numbers_of_iterations (loop);

  return (get_estimated_loop_iterations (loop, nit));
}

/* Similar to estimated_loop_iterations, but returns the estimate only
   if it fits to HOST_WIDE_INT.  If this is not the case, or the estimate
   on the number of iterations of LOOP could not be derived, returns -1.  */

HOST_WIDE_INT
estimated_loop_iterations_int (struct loop *loop)
{
  widest_int nit;
  HOST_WIDE_INT hwi_nit;

  if (!estimated_loop_iterations (loop, &nit))
    return -1;

  if (!wi::fits_shwi_p (nit))
    return -1;
  hwi_nit = nit.to_shwi ();

  return hwi_nit < 0 ? -1 : hwi_nit;
}


/* Sets NIT to an upper bound for the maximum number of executions of the
   latch of the LOOP.  If we have no reliable estimate, the function returns
   false, otherwise returns true.  */

bool
max_loop_iterations (struct loop *loop, widest_int *nit)
{
  /* When SCEV information is available, try to update loop iterations
     estimate.  Otherwise just return whatever we recorded earlier.  */
  if (scev_initialized_p ())
    estimate_numbers_of_iterations (loop);

  return get_max_loop_iterations (loop, nit);
}

/* Similar to max_loop_iterations, but returns the estimate only
   if it fits to HOST_WIDE_INT.  If this is not the case, or the estimate
   on the number of iterations of LOOP could not be derived, returns -1.  */

HOST_WIDE_INT
max_loop_iterations_int (struct loop *loop)
{
  widest_int nit;
  HOST_WIDE_INT hwi_nit;

  if (!max_loop_iterations (loop, &nit))
    return -1;

  if (!wi::fits_shwi_p (nit))
    return -1;
  hwi_nit = nit.to_shwi ();

  return hwi_nit < 0 ? -1 : hwi_nit;
}

/* Sets NIT to an likely upper bound for the maximum number of executions of the
   latch of the LOOP.  If we have no reliable estimate, the function returns
   false, otherwise returns true.  */

bool
likely_max_loop_iterations (struct loop *loop, widest_int *nit)
{
  /* When SCEV information is available, try to update loop iterations
     estimate.  Otherwise just return whatever we recorded earlier.  */
  if (scev_initialized_p ())
    estimate_numbers_of_iterations (loop);

  return get_likely_max_loop_iterations (loop, nit);
}

/* Similar to max_loop_iterations, but returns the estimate only
   if it fits to HOST_WIDE_INT.  If this is not the case, or the estimate
   on the number of iterations of LOOP could not be derived, returns -1.  */

HOST_WIDE_INT
likely_max_loop_iterations_int (struct loop *loop)
{
  widest_int nit;
  HOST_WIDE_INT hwi_nit;

  if (!likely_max_loop_iterations (loop, &nit))
    return -1;

  if (!wi::fits_shwi_p (nit))
    return -1;
  hwi_nit = nit.to_shwi ();

  return hwi_nit < 0 ? -1 : hwi_nit;
}

/* Returns an estimate for the number of executions of statements
   in the LOOP.  For statements before the loop exit, this exceeds
   the number of execution of the latch by one.  */

HOST_WIDE_INT
estimated_stmt_executions_int (struct loop *loop)
{
  HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
  HOST_WIDE_INT snit;

  if (nit == -1)
    return -1;

  snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);

  /* If the computation overflows, return -1.  */
  return snit < 0 ? -1 : snit;
}

/* Sets NIT to the maximum number of executions of the latch of the
   LOOP, plus one.  If we have no reliable estimate, the function returns
   false, otherwise returns true.  */

bool
max_stmt_executions (struct loop *loop, widest_int *nit)
{
  widest_int nit_minus_one;

  if (!max_loop_iterations (loop, nit))
    return false;

  nit_minus_one = *nit;

  *nit += 1;

  return wi::gtu_p (*nit, nit_minus_one);
}

/* Sets NIT to the estimated maximum number of executions of the latch of the
   LOOP, plus one.  If we have no likely estimate, the function returns
   false, otherwise returns true.  */

bool
likely_max_stmt_executions (struct loop *loop, widest_int *nit)
{
  widest_int nit_minus_one;

  if (!likely_max_loop_iterations (loop, nit))
    return false;

  nit_minus_one = *nit;

  *nit += 1;

  return wi::gtu_p (*nit, nit_minus_one);
}

/* Sets NIT to the estimated number of executions of the latch of the
   LOOP, plus one.  If we have no reliable estimate, the function returns
   false, otherwise returns true.  */

bool
estimated_stmt_executions (struct loop *loop, widest_int *nit)
{
  widest_int nit_minus_one;

  if (!estimated_loop_iterations (loop, nit))
    return false;

  nit_minus_one = *nit;

  *nit += 1;

  return wi::gtu_p (*nit, nit_minus_one);
}

/* Records estimates on numbers of iterations of loops.  */

void
estimate_numbers_of_iterations (function *fn)
{
  struct loop *loop;

  /* We don't want to issue signed overflow warnings while getting
     loop iteration estimates.  */
  fold_defer_overflow_warnings ();

  FOR_EACH_LOOP_FN (fn, loop, 0)
    estimate_numbers_of_iterations (loop);

  fold_undefer_and_ignore_overflow_warnings ();
}

/* Returns true if statement S1 dominates statement S2.  */

bool
stmt_dominates_stmt_p (gimple *s1, gimple *s2)
{
  basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);

  if (!bb1
      || s1 == s2)
    return true;

  if (bb1 == bb2)
    {
      gimple_stmt_iterator bsi;

      if (gimple_code (s2) == GIMPLE_PHI)
	return false;

      if (gimple_code (s1) == GIMPLE_PHI)
	return true;

      for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
	if (gsi_stmt (bsi) == s1)
	  return true;

      return false;
    }

  return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
}

/* Returns true when we can prove that the number of executions of
   STMT in the loop is at most NITER, according to the bound on
   the number of executions of the statement NITER_BOUND->stmt recorded in
   NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.

   ??? This code can become quite a CPU hog - we can have many bounds,
   and large basic block forcing stmt_dominates_stmt_p to be queried
   many times on a large basic blocks, so the whole thing is O(n^2)
   for scev_probably_wraps_p invocation (that can be done n times).

   It would make more sense (and give better answers) to remember BB
   bounds computed by discover_iteration_bound_by_body_walk.  */

static bool
n_of_executions_at_most (gimple *stmt,
			 struct nb_iter_bound *niter_bound,
			 tree niter)
{
  widest_int bound = niter_bound->bound;
  tree nit_type = TREE_TYPE (niter), e;
  enum tree_code cmp;

  gcc_assert (TYPE_UNSIGNED (nit_type));

  /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
     the number of iterations is small.  */
  if (!wi::fits_to_tree_p (bound, nit_type))
    return false;

  /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
     times.  This means that:

     -- if NITER_BOUND->is_exit is true, then everything after
	it at most NITER_BOUND->bound times.

     -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
	is executed, then NITER_BOUND->stmt is executed as well in the same
	iteration then STMT is executed at most NITER_BOUND->bound + 1 times. 

	If we can determine that NITER_BOUND->stmt is always executed
	after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
	We conclude that if both statements belong to the same
	basic block and STMT is before NITER_BOUND->stmt and there are no
	statements with side effects in between.  */

  if (niter_bound->is_exit)
    {
      if (stmt == niter_bound->stmt
	  || !stmt_dominates_stmt_p (niter_bound->stmt, stmt))
	return false;
      cmp = GE_EXPR;
    }
  else
    {
      if (!stmt_dominates_stmt_p (niter_bound->stmt, stmt))
	{
          gimple_stmt_iterator bsi;
	  if (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
	      || gimple_code (stmt) == GIMPLE_PHI
	      || gimple_code (niter_bound->stmt) == GIMPLE_PHI)
	    return false;

	  /* By stmt_dominates_stmt_p we already know that STMT appears
	     before NITER_BOUND->STMT.  Still need to test that the loop
	     cannot be terinated by a side effect in between.  */
	  for (bsi = gsi_for_stmt (stmt); gsi_stmt (bsi) != niter_bound->stmt;
	       gsi_next (&bsi))
	    if (gimple_has_side_effects (gsi_stmt (bsi)))
	       return false;
	  bound += 1;
	  if (bound == 0
	      || !wi::fits_to_tree_p (bound, nit_type))
	    return false;
	}
      cmp = GT_EXPR;
    }

  e = fold_binary (cmp, boolean_type_node,
		   niter, wide_int_to_tree (nit_type, bound));
  return e && integer_nonzerop (e);
}

/* Returns true if the arithmetics in TYPE can be assumed not to wrap.  */

bool
nowrap_type_p (tree type)
{
  if (ANY_INTEGRAL_TYPE_P (type)
      && TYPE_OVERFLOW_UNDEFINED (type))
    return true;

  if (POINTER_TYPE_P (type))
    return true;

  return false;
}

/* Return true if we can prove LOOP is exited before evolution of induction
   variable {BASE, STEP} overflows with respect to its type bound.  */

static bool
loop_exits_before_overflow (tree base, tree step,
			    gimple *at_stmt, struct loop *loop)
{
  widest_int niter;
  struct control_iv *civ;
  struct nb_iter_bound *bound;
  tree e, delta, step_abs, unsigned_base;
  tree type = TREE_TYPE (step);
  tree unsigned_type, valid_niter;

  /* Don't issue signed overflow warnings.  */
  fold_defer_overflow_warnings ();

  /* Compute the number of iterations before we reach the bound of the
     type, and verify that the loop is exited before this occurs.  */
  unsigned_type = unsigned_type_for (type);
  unsigned_base = fold_convert (unsigned_type, base);

  if (tree_int_cst_sign_bit (step))
    {
      tree extreme = fold_convert (unsigned_type,
				   lower_bound_in_type (type, type));
      delta = fold_build2 (MINUS_EXPR, unsigned_type, unsigned_base, extreme);
      step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
			      fold_convert (unsigned_type, step));
    }
  else
    {
      tree extreme = fold_convert (unsigned_type,
				   upper_bound_in_type (type, type));
      delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, unsigned_base);
      step_abs = fold_convert (unsigned_type, step);
    }

  valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);

  estimate_numbers_of_iterations (loop);

  if (max_loop_iterations (loop, &niter)
      && wi::fits_to_tree_p (niter, TREE_TYPE (valid_niter))
      && (e = fold_binary (GT_EXPR, boolean_type_node, valid_niter,
			   wide_int_to_tree (TREE_TYPE (valid_niter),
					     niter))) != NULL
      && integer_nonzerop (e))
    {
      fold_undefer_and_ignore_overflow_warnings ();
      return true;
    }
  if (at_stmt)
    for (bound = loop->bounds; bound; bound = bound->next)
      {
	if (n_of_executions_at_most (at_stmt, bound, valid_niter))
	  {
	    fold_undefer_and_ignore_overflow_warnings ();
	    return true;
	  }
      }
  fold_undefer_and_ignore_overflow_warnings ();

  /* Try to prove loop is exited before {base, step} overflows with the
     help of analyzed loop control IV.  This is done only for IVs with
     constant step because otherwise we don't have the information.  */
  if (TREE_CODE (step) == INTEGER_CST)
    {
      for (civ = loop->control_ivs; civ; civ = civ->next)
	{
	  enum tree_code code;
	  tree civ_type = TREE_TYPE (civ->step);

	  /* Have to consider type difference because operand_equal_p ignores
	     that for constants.  */
	  if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (civ_type)
	      || element_precision (type) != element_precision (civ_type))
	    continue;

	  /* Only consider control IV with same step.  */
	  if (!operand_equal_p (step, civ->step, 0))
	    continue;

	  /* Done proving if this is a no-overflow control IV.  */
	  if (operand_equal_p (base, civ->base, 0))
	    return true;

	  /* Control IV is recorded after expanding simple operations,
	     Here we expand base and compare it too.  */
	  tree expanded_base = expand_simple_operations (base);
	  if (operand_equal_p (expanded_base, civ->base, 0))
	    return true;

	  /* If this is a before stepping control IV, in other words, we have

	       {civ_base, step} = {base + step, step}

	     Because civ {base + step, step} doesn't overflow during loop
	     iterations, {base, step} will not overflow if we can prove the
	     operation "base + step" does not overflow.  Specifically, we try
	     to prove below conditions are satisfied:

	       base <= UPPER_BOUND (type) - step  ;;step > 0
	       base >= LOWER_BOUND (type) - step  ;;step < 0

	     by proving the reverse conditions are false using loop's initial
	     condition.  */
	  if (POINTER_TYPE_P (TREE_TYPE (base)))
	    code = POINTER_PLUS_EXPR;
	  else
	    code = PLUS_EXPR;

	  tree stepped = fold_build2 (code, TREE_TYPE (base), base, step);
	  tree expanded_stepped = fold_build2 (code, TREE_TYPE (base),
					       expanded_base, step);
	  if (operand_equal_p (stepped, civ->base, 0)
	      || operand_equal_p (expanded_stepped, civ->base, 0))
	    {
	      tree extreme;

	      if (tree_int_cst_sign_bit (step))
		{
		  code = LT_EXPR;
		  extreme = lower_bound_in_type (type, type);
		}
	      else
		{
		  code = GT_EXPR;
		  extreme = upper_bound_in_type (type, type);
		}
	      extreme = fold_build2 (MINUS_EXPR, type, extreme, step);
	      e = fold_build2 (code, boolean_type_node, base, extreme);
	      e = simplify_using_initial_conditions (loop, e);
	      if (integer_zerop (e))
		return true;
	    }
        }
    }

  return false;
}

/* VAR is scev variable whose evolution part is constant STEP, this function
   proves that VAR can't overflow by using value range info.  If VAR's value
   range is [MIN, MAX], it can be proven by:
     MAX + step doesn't overflow    ; if step > 0
   or
     MIN + step doesn't underflow   ; if step < 0.

   We can only do this if var is computed in every loop iteration, i.e, var's
   definition has to dominate loop latch.  Consider below example:

     {
       unsigned int i;

       <bb 3>:

       <bb 4>:
       # RANGE [0, 4294967294] NONZERO 65535
       # i_21 = PHI <0(3), i_18(9)>
       if (i_21 != 0)
	 goto <bb 6>;
       else
	 goto <bb 8>;

       <bb 6>:
       # RANGE [0, 65533] NONZERO 65535
       _6 = i_21 + 4294967295;
       # RANGE [0, 65533] NONZERO 65535
       _7 = (long unsigned int) _6;
       # RANGE [0, 524264] NONZERO 524280
       _8 = _7 * 8;
       # PT = nonlocal escaped
       _9 = a_14 + _8;
       *_9 = 0;

       <bb 8>:
       # RANGE [1, 65535] NONZERO 65535
       i_18 = i_21 + 1;
       if (i_18 >= 65535)
	 goto <bb 10>;
       else
	 goto <bb 9>;

       <bb 9>:
       goto <bb 4>;

       <bb 10>:
       return;
     }

   VAR _6 doesn't overflow only with pre-condition (i_21 != 0), here we
   can't use _6 to prove no-overlfow for _7.  In fact, var _7 takes value
   sequence (4294967295, 0, 1, ..., 65533) in loop life time, rather than
   (4294967295, 4294967296, ...).  */

static bool
scev_var_range_cant_overflow (tree var, tree step, struct loop *loop)
{
  tree type;
  wide_int minv, maxv, diff, step_wi;
  enum value_range_kind rtype;

  if (TREE_CODE (step) != INTEGER_CST || !INTEGRAL_TYPE_P (TREE_TYPE (var)))
    return false;

  /* Check if VAR evaluates in every loop iteration.  It's not the case
     if VAR is default definition or does not dominate loop's latch.  */
  basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
  if (!def_bb || !dominated_by_p (CDI_DOMINATORS, loop->latch, def_bb))
    return false;

  rtype = get_range_info (var, &minv, &maxv);
  if (rtype != VR_RANGE)
    return false;

  /* VAR is a scev whose evolution part is STEP and value range info
     is [MIN, MAX], we can prove its no-overflowness by conditions:

       type_MAX - MAX >= step   ; if step > 0
       MIN - type_MIN >= |step| ; if step < 0.

     Or VAR must take value outside of value range, which is not true.  */
  step_wi = wi::to_wide (step);
  type = TREE_TYPE (var);
  if (tree_int_cst_sign_bit (step))
    {
      diff = minv - wi::to_wide (lower_bound_in_type (type, type));
      step_wi = - step_wi;
    }
  else
    diff = wi::to_wide (upper_bound_in_type (type, type)) - maxv;

  return (wi::geu_p (diff, step_wi));
}

/* Return false only when the induction variable BASE + STEP * I is