aboutsummaryrefslogtreecommitdiff
path: root/libgo/runtime/runtime_c.c
blob: bc920a5d406fa09444a9e3af9968ccc7fe3c9bc8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include <errno.h>
#include <signal.h>
#include <unistd.h>

#if defined(__i386__) || defined(__x86_64__)
#include <cpuid.h>
#endif

#ifdef __linux__
#include <syscall.h>
#endif

#include "config.h"

#include "runtime.h"
#include "arch.h"
#include "array.h"

int32
runtime_atoi(const byte *p, intgo len)
{
	int32 n;

	n = 0;
	while(len > 0 && '0' <= *p && *p <= '9') {
		n = n*10 + *p++ - '0';
		len--;
	}
	return n;
}

// A random number from the GNU/Linux auxv array.
static uint32 randomNumber;

// Set the random number from Go code.

void
setRandomNumber(uint32 r)
{
	randomNumber = r;
}

#if defined(__i386__) || defined(__x86_64__) || defined (__s390__) || defined (__s390x__)

// When cputicks is just asm instructions, skip the split stack
// prologue for speed.

int64 runtime_cputicks(void) __attribute__((no_split_stack));

#endif

// Whether the processor supports SSE2.
#if defined (__i386__)
static _Bool hasSSE2;

// Force appropriate CPU level so that we can call the lfence/mfence
// builtins.

#pragma GCC push_options
#pragma GCC target("sse2")

#elif defined(__x86_64__)
#define hasSSE2 true
#endif

#if defined(__i386__) || defined(__x86_64__)
// Whether to use lfence, as opposed to mfence.
// Set based on cpuid.
static _Bool lfenceBeforeRdtsc;
#endif // defined(__i386__) || defined(__x86_64__)

int64
runtime_cputicks(void)
{
#if defined(__i386__) || defined(__x86_64__)
  if (hasSSE2) {
    if (lfenceBeforeRdtsc) {
      __builtin_ia32_lfence();
    } else {
      __builtin_ia32_mfence();
    }
  }
  return __builtin_ia32_rdtsc();
#elif defined (__s390__) || defined (__s390x__)
  uint64 clock = 0;
  /* stckf may not write the return variable in case of a clock error, so make
     it read-write to prevent that the initialisation is optimised out.
     Note: Targets below z9-109 will crash when executing store clock fast, i.e.
     we don't support Go for machines older than that.  */
  asm volatile(".insn s,0xb27c0000,%0" /* stckf */ : "+Q" (clock) : : "cc" );
  return (int64)clock;
#else
  // Currently cputicks() is used in blocking profiler and to seed runtime·fastrand().
  // runtime·nanotime() is a poor approximation of CPU ticks that is enough for the profiler.
  // randomNumber provides better seeding of fastrand.
  return runtime_nanotime1() + randomNumber;
#endif
}

#if defined(__i386__)
#pragma GCC pop_options
#endif

void
runtime_signalstack(byte *p, uintptr n)
{
	stack_t st;

	st.ss_sp = p;
	st.ss_size = n;
	st.ss_flags = 0;
	if(p == nil)
		st.ss_flags = SS_DISABLE;
	if(sigaltstack(&st, nil) < 0)
		abort();
}

int32 go_open(char *, int32, int32)
  __asm__ (GOSYM_PREFIX "runtime.open");

int32
go_open(char *name, int32 mode, int32 perm)
{
  return runtime_open(name, mode, perm);
}

int32 go_read(int32, void *, int32)
  __asm__ (GOSYM_PREFIX "runtime.read");

int32
go_read(int32 fd, void *p, int32 n)
{
  ssize_t r = runtime_read(fd, p, n);
  if (r < 0)
    r = - errno;
  return (int32)r;
}

int32 go_write1(uintptr, void *, int32)
  __asm__ (GOSYM_PREFIX "runtime.write1");

int32
go_write1(uintptr fd, void *p, int32 n)
{
  ssize_t r = runtime_write(fd, p, n);
  if (r < 0)
    r = - errno;
  return (int32)r;
}

int32 go_closefd(int32)
  __asm__ (GOSYM_PREFIX "runtime.closefd");

int32
go_closefd(int32 fd)
{
  return runtime_close(fd);
}

intgo go_errno(void)
  __asm__ (GOSYM_PREFIX "runtime.errno");

intgo
go_errno()
{
  return (intgo)errno;
}

uintptr getEnd(void)
  __asm__ (GOSYM_PREFIX "runtime.getEnd");

uintptr
getEnd()
{
#ifdef _AIX
  // mmap adresses range start at 0x30000000 on AIX for 32 bits processes
  uintptr end = 0x30000000U;
#else
  uintptr end = 0;
  uintptr *pend;

  pend = &__go_end;
  if (pend != nil) {
    end = *pend;
  }
#endif

  return end;
}

// Return an address that is before the read-only data section.
// Unfortunately there is no standard symbol for this so we use a text
// address.

uintptr getText(void)
  __asm__ (GOSYM_PREFIX "runtime.getText");

uintptr
getText(void)
{
  return (uintptr)(const void *)(getText);
}

// Return the end of the text segment, assumed to come after the
// read-only data section.

uintptr getEtext(void)
  __asm__ (GOSYM_PREFIX "runtime.getEtext");

uintptr
getEtext(void)
{
  const void *p;

  p = __data_start;
  if (p == nil)
    p = __etext;
  if (p == nil)
    p = _etext;
  return (uintptr)(p);
}

// CPU-specific initialization.
// Fetch CPUID info on x86.

void
runtime_cpuinit()
{
#if defined(__i386__) || defined(__x86_64__)
	unsigned int eax, ebx, ecx, edx;

	if (__get_cpuid(0, &eax, &ebx, &ecx, &edx)) {
		if (eax != 0
		    && ebx == 0x756E6547    // "Genu"
		    && edx == 0x49656E69    // "ineI"
		    && ecx == 0x6C65746E) { // "ntel"
			lfenceBeforeRdtsc = true;
		}
	}
	if (__get_cpuid(1, &eax, &ebx, &ecx, &edx)) {
#if defined(__i386__)
		if ((edx & bit_SSE2) != 0) {
			hasSSE2 = true;
		}
#endif
	}

#if defined(HAVE_AS_X86_AES)
	setSupportAES(true);
#endif
#endif
}

// A publication barrier: a store/store barrier.

void publicationBarrier(void)
  __asm__ (GOSYM_PREFIX "runtime.publicationBarrier");

void
publicationBarrier()
{
  __atomic_thread_fence(__ATOMIC_RELEASE);
}

#ifdef __linux__

/* Currently sbrk0 is only called on GNU/Linux.  */

uintptr sbrk0(void)
  __asm__ (GOSYM_PREFIX "runtime.sbrk0");

uintptr
sbrk0()
{
  return syscall(SYS_brk, (uintptr)(0));
}

#endif /* __linux__ */