aboutsummaryrefslogtreecommitdiff
path: root/libgcc/dfp-bit.c
blob: ed14b863c80eb0ca24e8e39c1badbb6eaed543a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
/* This is a software decimal floating point library.
   Copyright (C) 2005-2021 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

/* This implements IEEE 754 decimal floating point arithmetic, but
   does not provide a mechanism for setting the rounding mode, or for
   generating or handling exceptions.  Conversions between decimal
   floating point types and other types depend on C library functions.

   Contributed by Ben Elliston  <bje@au.ibm.com>.  */

#include <stdio.h>
#include <stdlib.h>
/* FIXME: compile with -std=gnu99 to get these from stdlib.h */
extern float strtof (const char *, char **);
extern long double strtold (const char *, char **);
#include <string.h>
#include <limits.h>

#include "dfp-bit.h"

/* Forward declarations.  */
#if WIDTH == 32 || WIDTH_TO == 32
void __host_to_ieee_32 (_Decimal32 in, decimal32 *out);
void __ieee_to_host_32 (decimal32 in, _Decimal32 *out);
#endif
#if WIDTH == 64 || WIDTH_TO == 64
void __host_to_ieee_64 (_Decimal64 in, decimal64 *out);
void __ieee_to_host_64 (decimal64 in, _Decimal64 *out);
#endif
#if WIDTH == 128 || WIDTH_TO == 128
void __host_to_ieee_128 (_Decimal128 in, decimal128 *out);
void __ieee_to_host_128 (decimal128 in, _Decimal128 *out);
#endif

/* A pointer to a binary decFloat operation.  */
typedef decFloat* (*dfp_binary_func)
     (decFloat *, const decFloat *, const decFloat *, decContext *);

/* Binary operations.  */

/* Use a decFloat (decDouble or decQuad) function to perform a DFP
   binary operation.  */
static inline decFloat
dfp_binary_op (dfp_binary_func op, decFloat arg_a, decFloat arg_b)
{
  decFloat result;
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);

  /* Perform the operation.  */
  op (&result, &arg_a, &arg_b, &context);

  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    {
      /* decNumber exception flags we care about here.  */
      int ieee_flags;
      int dec_flags = DEC_IEEE_854_Division_by_zero | DEC_IEEE_854_Inexact
		      | DEC_IEEE_854_Invalid_operation | DEC_IEEE_854_Overflow
		      | DEC_IEEE_854_Underflow;
      dec_flags &= context.status;
      ieee_flags = DFP_IEEE_FLAGS (dec_flags);
      if (ieee_flags != 0)
        DFP_HANDLE_EXCEPTIONS (ieee_flags);
    }

  return result;
}

#if WIDTH == 32
/* The decNumber package doesn't provide arithmetic for decSingle (32 bits);
   convert to decDouble, use the operation for that, and convert back.  */
static inline _Decimal32
d32_binary_op (dfp_binary_func op, _Decimal32 arg_a, _Decimal32 arg_b)
{
  union { _Decimal32 c; decSingle f; } a32, b32, res32;
  decDouble a, b, res;
  decContext context;

  /* Widen the operands and perform the operation.  */
  a32.c = arg_a;
  b32.c = arg_b;
  decSingleToWider (&a32.f, &a);
  decSingleToWider (&b32.f, &b);
  res = dfp_binary_op (op, a, b);

  /* Narrow the result, which might result in an underflow or overflow.  */
  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);
  decSingleFromWider (&res32.f, &res, &context);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    {
      /* decNumber exception flags we care about here.  */
      int ieee_flags;
      int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Overflow
		      | DEC_IEEE_854_Underflow;
      dec_flags &= context.status;
      ieee_flags = DFP_IEEE_FLAGS (dec_flags);
      if (ieee_flags != 0)
        DFP_HANDLE_EXCEPTIONS (ieee_flags);
    }

  return res32.c;
}
#else
/* decFloat operations are supported for decDouble (64 bits) and
   decQuad (128 bits).  The bit patterns for the types are the same.  */
static inline DFP_C_TYPE
dnn_binary_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  union { DFP_C_TYPE c; decFloat f; } a, b, result;

  a.c = arg_a;
  b.c = arg_b;
  result.f = dfp_binary_op (op, a.f, b.f);
  return result.c;
}
#endif

/* Comparison operations.  */

/* Use a decFloat (decDouble or decQuad) function to perform a DFP
   comparison.  */
static inline CMPtype
dfp_compare_op (dfp_binary_func op, decFloat arg_a, decFloat arg_b)
{
  decContext context;
  decFloat res;
  int result;

  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);

  /* Perform the comparison.  */
  op (&res, &arg_a, &arg_b, &context);

  if (DEC_FLOAT_IS_SIGNED (&res))
    result = -1;
  else if (DEC_FLOAT_IS_ZERO (&res))
    result = 0;
  else if (DEC_FLOAT_IS_NAN (&res))
    result = -2;
  else
    result = 1;

  return (CMPtype) result;
}

#if WIDTH == 32
/* The decNumber package doesn't provide comparisons for decSingle (32 bits);
   convert to decDouble, use the operation for that, and convert back.  */
static inline CMPtype
d32_compare_op (dfp_binary_func op, _Decimal32 arg_a, _Decimal32 arg_b)
{
  union { _Decimal32 c; decSingle f; } a32, b32;
  decDouble a, b;

  a32.c = arg_a;
  b32.c = arg_b;
  decSingleToWider (&a32.f, &a);
  decSingleToWider (&b32.f, &b);
  return dfp_compare_op (op, a, b);  
}
#else
/* decFloat comparisons are supported for decDouble (64 bits) and
   decQuad (128 bits).  The bit patterns for the types are the same.  */
static inline CMPtype
dnn_compare_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  union { DFP_C_TYPE c; decFloat f; } a, b;

  a.c = arg_a;
  b.c = arg_b;
  return dfp_compare_op (op, a.f, b.f);  
}
#endif

#if defined(L_conv_sd)
void
__host_to_ieee_32 (_Decimal32 in, decimal32 *out)
{
  memcpy (out, &in, 4);
}

void
__ieee_to_host_32 (decimal32 in, _Decimal32 *out)
{
  memcpy (out, &in, 4);
}
#endif /* L_conv_sd */

#if defined(L_conv_dd)
void
__host_to_ieee_64 (_Decimal64 in, decimal64 *out)
{
  memcpy (out, &in, 8);
}

void
__ieee_to_host_64 (decimal64 in, _Decimal64 *out)
{
  memcpy (out, &in, 8);
}
#endif /* L_conv_dd */

#if defined(L_conv_td)
void
__host_to_ieee_128 (_Decimal128 in, decimal128 *out)
{
  memcpy (out, &in, 16);
}

void
__ieee_to_host_128 (decimal128 in, _Decimal128 *out)
{
  memcpy (out, &in, 16);
}
#endif /* L_conv_td */

#if defined(L_addsub_sd) || defined(L_addsub_dd) || defined(L_addsub_td)
DFP_C_TYPE
DFP_ADD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  return DFP_BINARY_OP (DEC_FLOAT_ADD, arg_a, arg_b);
}

DFP_C_TYPE
DFP_SUB (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  return DFP_BINARY_OP (DEC_FLOAT_SUBTRACT, arg_a, arg_b);
}
#endif /* L_addsub */

#if defined(L_mul_sd) || defined(L_mul_dd) || defined(L_mul_td)
DFP_C_TYPE
DFP_MULTIPLY (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  return DFP_BINARY_OP (DEC_FLOAT_MULTIPLY, arg_a, arg_b);
}
#endif /* L_mul */

#if defined(L_div_sd) || defined(L_div_dd) || defined(L_div_td)
DFP_C_TYPE
DFP_DIVIDE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  return DFP_BINARY_OP (DEC_FLOAT_DIVIDE, arg_a, arg_b);
}
#endif /* L_div */

#if defined (L_eq_sd) || defined (L_eq_dd) || defined (L_eq_td)
CMPtype
DFP_EQ (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  CMPtype stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For EQ return zero for true, nonzero for false.  */
  return stat != 0;
}
#endif /* L_eq */

#if defined (L_ne_sd) || defined (L_ne_dd) || defined (L_ne_td)
CMPtype
DFP_NE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  int stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For NE return zero for true, nonzero for false.  */
  if (__builtin_expect (stat == -2, 0))  /* An operand is NaN.  */
    return 1;
  return stat != 0;
}
#endif /* L_ne */

#if defined (L_lt_sd) || defined (L_lt_dd) || defined (L_lt_td)
CMPtype
DFP_LT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  int stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For LT return -1 (<0) for true, 1 for false.  */
  return (stat == -1) ? -1 : 1;
}
#endif /* L_lt */

#if defined (L_gt_sd) || defined (L_gt_dd) || defined (L_gt_td)
CMPtype
DFP_GT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  int stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For GT return 1 (>0) for true, -1 for false.  */
  return (stat == 1) ? 1 : -1;
}
#endif

#if defined (L_le_sd) || defined (L_le_dd) || defined (L_le_td)
CMPtype
DFP_LE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  int stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For LE return 0 (<= 0) for true, 1 for false.  */
  if (__builtin_expect (stat == -2, 0))  /* An operand is NaN.  */
    return 1;
  return stat == 1;
}
#endif /* L_le */

#if defined (L_ge_sd) || defined (L_ge_dd) || defined (L_ge_td)
CMPtype
DFP_GE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  int stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For GE return 1 (>=0) for true, -1 for false.  */
  if (__builtin_expect (stat == -2, 0))  /* An operand is NaN.  */
    return -1;
  return (stat != -1) ? 1 : -1;
}
#endif /* L_ge */

#define BUFMAX 128

/* Check for floating point exceptions that are relevant for conversions
   between decimal float values and handle them.  */
static inline void
dfp_conversion_exceptions (const int status)
{
  /* decNumber exception flags we care about here.  */
  int ieee_flags;
  int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Invalid_operation
		  | DEC_IEEE_854_Overflow;
  dec_flags &= status;
  ieee_flags = DFP_IEEE_FLAGS (dec_flags);
  if (ieee_flags != 0)
    DFP_HANDLE_EXCEPTIONS (ieee_flags);
}

#if defined (L_sd_to_dd)
/* Use decNumber to convert directly from _Decimal32 to _Decimal64.  */
_Decimal64
DFP_TO_DFP (_Decimal32 f_from)
{
  union { _Decimal32 c; decSingle f; } from;
  union { _Decimal64 c; decDouble f; } to;

  from.c = f_from;
  to.f = *decSingleToWider (&from.f, &to.f);
  return to.c;
}
#endif

#if defined (L_sd_to_td)
/* Use decNumber to convert directly from _Decimal32 to _Decimal128.  */
_Decimal128
DFP_TO_DFP (_Decimal32 f_from)
{
  union { _Decimal32 c; decSingle f; } from;
  union { _Decimal128 c; decQuad f; } to;
  decDouble temp;

  from.c = f_from;
  temp = *decSingleToWider (&from.f, &temp);
  to.f = *decDoubleToWider (&temp, &to.f);
  return to.c;
}
#endif

#if defined (L_dd_to_td)
/* Use decNumber to convert directly from _Decimal64 to _Decimal128.  */
_Decimal128
DFP_TO_DFP (_Decimal64 f_from)
{
  union { _Decimal64 c; decDouble f; } from;
  union { _Decimal128 c; decQuad f; } to;

  from.c = f_from;
  to.f = *decDoubleToWider (&from.f, &to.f);
  return to.c;
}
#endif

#if defined (L_dd_to_sd)
/* Use decNumber to convert directly from _Decimal64 to _Decimal32.  */
_Decimal32
DFP_TO_DFP (_Decimal64 f_from)
{
  union { _Decimal32 c; decSingle f; } to;
  union { _Decimal64 c; decDouble f; } from;
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);
  from.c = f_from;
  to.f = *decSingleFromWider (&to.f, &from.f, &context);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
  return to.c;
}
#endif

#if defined (L_td_to_sd)
/* Use decNumber to convert directly from _Decimal128 to _Decimal32.  */
_Decimal32
DFP_TO_DFP (_Decimal128 f_from)
{
  union { _Decimal32 c; decSingle f; } to;
  union { _Decimal128 c; decQuad f; } from;
  decDouble temp;
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);
  from.c = f_from;
  temp = *decDoubleFromWider (&temp, &from.f, &context);
  to.f = *decSingleFromWider (&to.f, &temp, &context);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
  return to.c;
}
#endif

#if defined (L_td_to_dd)
/* Use decNumber to convert directly from _Decimal128 to _Decimal64.  */
_Decimal64
DFP_TO_DFP (_Decimal128 f_from)
{
  union { _Decimal64 c; decDouble f; } to;
  union { _Decimal128 c; decQuad f; } from;
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);
  from.c = f_from;
  to.f = *decDoubleFromWider (&to.f, &from.f, &context);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
  return to.c;
}
#endif

#if defined (L_dd_to_si) || defined (L_td_to_si) \
  || defined (L_dd_to_usi) || defined (L_td_to_usi)
/* Use decNumber to convert directly from decimal float to integer types.  */
INT_TYPE
DFP_TO_INT (DFP_C_TYPE x)
{
  union { DFP_C_TYPE c; decFloat f; } u;
  decContext context;
  INT_TYPE i;

  decContextDefault (&context, DEC_INIT_DECIMAL128);
  context.round = DEC_ROUND_DOWN;
  u.c = x;
  i = DEC_FLOAT_TO_INT (&u.f, &context, context.round);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
  return i;
}
#endif

#if defined (L_sd_to_si) || (L_sd_to_usi)
/* Use decNumber to convert directly from decimal float to integer types.  */
INT_TYPE
DFP_TO_INT (_Decimal32 x)
{
  union { _Decimal32 c; decSingle f; } u32;
  decDouble f64;
  decContext context;
  INT_TYPE i;

  decContextDefault (&context, DEC_INIT_DECIMAL128);
  context.round = DEC_ROUND_DOWN;
  u32.c = x;
  f64 = *decSingleToWider (&u32.f, &f64);
  i = DEC_FLOAT_TO_INT (&f64, &context, context.round);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
  return i;
}
#endif

#if defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di) \
  || defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi)
/* decNumber doesn't provide support for conversions to 64-bit integer
   types, so do it the hard way.  */
INT_TYPE
DFP_TO_INT (DFP_C_TYPE x)
{
  /* decNumber's decimal* types have the same format as C's _Decimal*
     types, but they have different calling conventions.  */

  /* TODO: Decimal float to integer conversions should raise FE_INVALID
     if the result value does not fit into the result type.  */

  IEEE_TYPE s;
  char buf[BUFMAX];
  char *pos;
  decNumber qval, n1, n2;
  decContext context;

  /* Use a large context to avoid losing precision.  */
  decContextDefault (&context, DEC_INIT_DECIMAL128);
  /* Need non-default rounding mode here.  */
  context.round = DEC_ROUND_DOWN;

  HOST_TO_IEEE (x, &s);
  TO_INTERNAL (&s, &n1);
  /* Rescale if the exponent is less than zero.  */
  decNumberToIntegralValue (&n2, &n1, &context);
  /* Get a value to use for the quantize call.  */
  decNumberFromString (&qval, "1.", &context);
  /* Force the exponent to zero.  */
  decNumberQuantize (&n1, &n2, &qval, &context);
  /* Get a string, which at this point will not include an exponent.  */
  decNumberToString (&n1, buf);
  /* Ignore the fractional part.  */
  pos = strchr (buf, '.');
  if (pos)
    *pos = 0;
  /* Use a C library function to convert to the integral type.  */
  return STR_TO_INT (buf, NULL, 10);
}
#endif

#if defined (L_si_to_dd) || defined (L_si_to_td) \
  || defined (L_usi_to_dd) || defined (L_usi_to_td)
/* Use decNumber to convert directly from integer to decimal float types.  */
DFP_C_TYPE
INT_TO_DFP (INT_TYPE i)
{
  union { DFP_C_TYPE c; decFloat f; } u;

  u.f = *DEC_FLOAT_FROM_INT (&u.f, i);
  return u.c;
}
#endif

#if defined (L_si_to_sd) || defined (L_usi_to_sd)
_Decimal32
/* Use decNumber to convert directly from integer to decimal float types.  */
INT_TO_DFP (INT_TYPE i)
{
  union { _Decimal32 c; decSingle f; } u32;
  decDouble f64;
  decContext context;

  decContextDefault (&context, DEC_INIT_DECIMAL128);
  f64 = *DEC_FLOAT_FROM_INT (&f64, i);
  u32.f = *decSingleFromWider (&u32.f, &f64, &context);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
  return u32.c;
}
#endif

#if defined (L_di_to_sd) || defined (L_di_to_dd) || defined (L_di_to_td) \
  || defined (L_udi_to_sd) || defined (L_udi_to_dd) || defined (L_udi_to_td)
/* decNumber doesn't provide support for conversions from 64-bit integer
   types, so do it the hard way.  */
DFP_C_TYPE
INT_TO_DFP (INT_TYPE i)
{
  DFP_C_TYPE f;
  IEEE_TYPE s;
  char buf[BUFMAX];
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);

  /* Use a C library function to get a floating point string.  */
  sprintf (buf, INT_FMT ".", CAST_FOR_FMT(i));
  /* Convert from the floating point string to a decimal* type.  */
  FROM_STRING (&s, buf, &context);
  IEEE_TO_HOST (s, &f);

  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);

  return f;
}
#endif

#if defined (L_sd_to_sf) || defined (L_dd_to_sf) || defined (L_td_to_sf) \
 || defined (L_sd_to_df) || defined (L_dd_to_df) || defined (L_td_to_df) \
 || defined (L_sd_to_kf) || defined (L_dd_to_kf) || defined (L_td_to_kf) \
 || ((defined (L_sd_to_xf) || defined (L_dd_to_xf) || defined (L_td_to_xf)) \
     && LONG_DOUBLE_HAS_XF_MODE) \
 || ((defined (L_sd_to_tf) || defined (L_dd_to_tf) || defined (L_td_to_tf)) \
     && LONG_DOUBLE_HAS_TF_MODE)
BFP_TYPE
DFP_TO_BFP (DFP_C_TYPE f)
{
  IEEE_TYPE s;
  char buf[BUFMAX];

  HOST_TO_IEEE (f, &s);
  /* Write the value to a string.  */
  TO_STRING (&s, buf);
  /* Read it as the binary floating point type and return that.  */
  return STR_TO_BFP (buf, NULL);
}
#endif
                                                                                
#if defined (L_sf_to_sd) || defined (L_sf_to_dd) || defined (L_sf_to_td) \
 || defined (L_df_to_sd) || defined (L_df_to_dd) || defined (L_df_to_td) \
 || defined (L_kf_to_sd) || defined (L_kf_to_dd) || defined (L_kf_to_td) \
 || ((defined (L_xf_to_sd) || defined (L_xf_to_dd) || defined (L_xf_to_td)) \
     && LONG_DOUBLE_HAS_XF_MODE) \
 || ((defined (L_tf_to_sd) || defined (L_tf_to_dd) || defined (L_tf_to_td)) \
     && LONG_DOUBLE_HAS_TF_MODE)
DFP_C_TYPE
BFP_TO_DFP (BFP_TYPE x)
{
  DFP_C_TYPE f;
  IEEE_TYPE s;
  char buf[BUFMAX];
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);

  /* Use the sprintf library function to write the floating point value to a
     string.

     If we are handling the IEEE 128-bit floating point on PowerPC, use the
     special function __sprintfkf instead of sprintf.  This function allows us
     to use __sprintfieee128 if we have a new enough GLIBC, and it can fall back
     to using the traditional sprintf via conversion to IBM 128-bit if the glibc
     is older.  */
  BFP_SPRINTF (buf, BFP_FMT, (BFP_VIA_TYPE) x);

  /* Convert from the floating point string to a decimal* type.  */
  FROM_STRING (&s, buf, &context);
  IEEE_TO_HOST (s, &f);

  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    {
      /* decNumber exception flags we care about here.  */
      int ieee_flags;
      int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Invalid_operation
		      | DEC_IEEE_854_Overflow | DEC_IEEE_854_Underflow;
      dec_flags &= context.status;
      ieee_flags = DFP_IEEE_FLAGS (dec_flags);
      if (ieee_flags != 0)
        DFP_HANDLE_EXCEPTIONS (ieee_flags);
    }

  return f;
}
#endif

#if defined (L_unord_sd) || defined (L_unord_dd) || defined (L_unord_td)
CMPtype
DFP_UNORD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  decNumber arg1, arg2;
  IEEE_TYPE a, b;

  HOST_TO_IEEE (arg_a, &a);
  HOST_TO_IEEE (arg_b, &b);
  TO_INTERNAL (&a, &arg1);
  TO_INTERNAL (&b, &arg2);
  return (decNumberIsNaN (&arg1) || decNumberIsNaN (&arg2));
}
#endif /* L_unord_sd || L_unord_dd || L_unord_td */