1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
|
; SF format is:
;
; [sign] 1.[23bits] E[8bits(n-127)]
;
; SEEEEEEE Emmmmmmm mmmmmmmm mmmmmmmm
;
; [A+0] mmmmmmmm
; [A+1] mmmmmmmm
; [A+2] Emmmmmmm
; [A+3] SEEEEEEE
;
; Special values (xxx != 0):
;
; s1111111 10000000 00000000 00000000 infinity
; s1111111 1xxxxxxx xxxxxxxx xxxxxxxx NaN
; s0000000 00000000 00000000 00000000 zero
; s0000000 0xxxxxxx xxxxxxxx xxxxxxxx denormals
;
; Note that CMPtype is "signed char" for rl78
;
#include "vregs.h"
#define Z PSW.6
START_FUNC ___negsf2
;; Negate the floating point value.
;; Input at [SP+4]..[SP+7].
;; Output to R8..R11.
movw ax, [SP+4]
movw r8, ax
movw ax, [SP+6]
xor a, #0x80
movw r10, ax
ret
END_FUNC ___negsf2
;; ------------------internal functions used by later code --------------
START_FUNC __int_isnan
;; [HL] points to value, returns Z if it's a NaN
mov a, [hl+2]
and a, #0x80
mov x, a
mov a, [hl+3]
and a, #0x7f
cmpw ax, #0x7f80
skz
ret ; return NZ if not NaN
mov a, [hl+2]
and a, #0x7f
or a, [hl+1]
or a, [hl]
bnz $1f
clr1 Z ; Z, normal
ret
1:
set1 Z ; nan
ret
END_FUNC __int_isnan
START_FUNC __int_eithernan
;; call from toplevel functions, returns Z if either number is a NaN,
;; or NZ if both are OK.
movw ax, sp
addw ax, #8
movw hl, ax
call $!__int_isnan
bz $1f
movw ax, sp
addw ax, #12
movw hl, ax
call $!__int_isnan
1:
ret
END_FUNC __int_eithernan
START_FUNC __int_iszero
;; [HL] points to value, returns Z if it's zero
mov a, [hl+3]
and a, #0x7f
or a, [hl+2]
or a, [hl+1]
or a, [hl]
ret
END_FUNC __int_iszero
START_FUNC __int_cmpsf
;; This is always called from some other function here,
;; so the stack offsets are adjusted accordingly.
;; X [SP+8] <=> Y [SP+12] : <a> <=> 0
movw ax, sp
addw ax, #8
movw hl, ax
call $!__int_iszero
bnz $1f
movw ax, sp
addw ax, #12
movw hl, ax
call $!__int_iszero
bnz $2f
;; At this point, both args are zero.
mov a, #0
ret
2:
movw ax, sp
addw ax, #8
movw hl, ax
1:
;; At least one arg is non-zero so we can just compare magnitudes.
;; Args are [HL] and [HL+4].
mov a, [HL+3]
xor a, [HL+7]
mov1 cy, a.7
bnc $1f
mov a, [HL+3]
sar a, 7
or a, #1
ret
1: ;; Signs the same, compare magnitude. It's safe to lump
;; the sign bits, exponent, and mantissa together here, since they're
;; stored in the right sequence.
movw ax, [HL+2]
cmpw ax, [HL+6]
bc $ybig_cmpsf ; branch if X < Y
bnz $xbig_cmpsf ; branch if X > Y
movw ax, [HL]
cmpw ax, [HL+4]
bc $ybig_cmpsf ; branch if X < Y
bnz $xbig_cmpsf ; branch if X > Y
mov a, #0
ret
xbig_cmpsf: ; |X| > |Y| so return A = 1 if pos, 0xff if neg
mov a, [HL+3]
sar a, 7
or a, #1
ret
ybig_cmpsf: ; |X| < |Y| so return A = 0xff if pos, 1 if neg
mov a, [HL+3]
xor a, #0x80
sar a, 7
or a, #1
ret
END_FUNC __int_cmpsf
;; ----------------------------------------------------------
START_FUNC ___cmpsf2
;; This functions calculates "A <=> B". That is, if A is less than B
;; they return -1, if A is greater than B, they return 1, and if A
;; and B are equal they return 0. If either argument is NaN the
;; behaviour is undefined.
;; Input at [SP+4]..[SP+7].
;; Output to R8..R9.
call $!__int_eithernan
bnz $1f
movw r8, #1
ret
1:
call $!__int_cmpsf
mov r8, a
sar a, 7
mov r9, a
ret
END_FUNC ___cmpsf2
;; ----------------------------------------------------------
;; These functions are all basically the same as ___cmpsf2
;; except that they define how they handle NaNs.
START_FUNC ___eqsf2
;; Returns zero iff neither argument is NaN
;; and both arguments are equal.
START_ANOTHER_FUNC ___nesf2
;; Returns non-zero iff either argument is NaN or the arguments are
;; unequal. Effectively __nesf2 is the same as __eqsf2
START_ANOTHER_FUNC ___lesf2
;; Returns a value less than or equal to zero if neither
;; argument is NaN, and the first is less than or equal to the second.
START_ANOTHER_FUNC ___ltsf2
;; Returns a value less than zero if neither argument is
;; NaN, and the first is strictly less than the second.
;; Input at [SP+4]..[SP+7].
;; Output to R8.
mov r8, #1
;;; Fall through
START_ANOTHER_FUNC __int_cmp_common
call $!__int_eithernan
sknz
;; return value (pre-filled-in below) for "either is nan"
ret
call $!__int_cmpsf
mov r8, a
ret
END_ANOTHER_FUNC __int_cmp_common
END_ANOTHER_FUNC ___ltsf2
END_ANOTHER_FUNC ___lesf2
END_ANOTHER_FUNC ___nesf2
END_FUNC ___eqsf2
START_FUNC ___gesf2
;; Returns a value greater than or equal to zero if neither argument
;; is a NaN and the first is greater than or equal to the second.
START_ANOTHER_FUNC ___gtsf2
;; Returns a value greater than zero if neither argument
;; is NaN, and the first is strictly greater than the second.
mov r8, #0xffff
br $__int_cmp_common
END_ANOTHER_FUNC ___gtsf2
END_FUNC ___gesf2
;; ----------------------------------------------------------
START_FUNC ___unordsf2
;; Returns a nonzero value if either argument is NaN, otherwise 0.
call $!__int_eithernan
movw r8, #0
sknz ; this is from the call, not the movw
movw r8, #1
ret
END_FUNC ___unordsf2
;; ----------------------------------------------------------
START_FUNC ___fixsfsi
;; Converts its floating point argument into a signed long,
;; rounding toward zero.
;; The behaviour with NaNs and Infinities is not well defined.
;; We choose to return 0 for NaNs, -INTMAX for -inf and INTMAX for +inf.
;; This matches the behaviour of the C function in libgcc2.c.
;; Input at [SP+4]..[SP+7], result is in (lsb) R8..R11 (msb).
;; Special case handling for infinities as __fixunssfsi
;; will not give us the values that we want.
movw ax, sp
addw ax, #4
movw hl, ax
call !!__int_isinf
bnz $1f
mov a, [SP+7]
bt a.7, $2f
;; +inf
movw r8, #-1
movw r10, #0x7fff
ret
;; -inf
2: mov r8, #0
mov r10, #0x8000
ret
;; Load the value into r10:r11:X:A
1: movw ax, [SP+4]
movw r10, ax
movw ax, [SP+6]
;; If the value is positive we can just use __fixunssfsi
bf a.7, $__int_fixunssfsi
;; Otherwise we negate the value, call __fixunssfsi and
;; then negate its result.
clr1 a.7
call $!__int_fixunssfsi
movw ax, #0
subw ax, r8
movw r8, ax
movw ax, #0
sknc
decw ax
subw ax, r10
movw r10, ax
;; Check for a positive result (which should only happen when
;; __fixunssfsi returns UINTMAX or 0). In such cases just return 0.
mov a, r11
bt a.7, $1f
movw r10,#0x0
movw r8, #0x0
1: ret
END_FUNC ___fixsfsi
START_FUNC ___fixunssfsi
;; Converts its floating point argument into an unsigned long
;; rounding towards zero. Negative arguments all become zero.
;; We choose to return 0 for NaNs and -inf, but UINTMAX for +inf.
;; This matches the behaviour of the C function in libgcc2.c.
;; Input at [SP+4]..[SP+7], result is in (lsb) R8..R11 (msb)
;; Get the input value.
movw ax, [SP+4]
movw r10, ax
movw ax, [SP+6]
;; Fall through into the internal function.
.global __int_fixunssfsi
__int_fixunssfsi:
;; Input in (lsb) r10.r11.x.a (msb).
;; Test for a negative input. We shift the other bits at the
;; same time so that A ends up holding the whole exponent:
;;
;; before:
;; SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM
;; A X R11 R10
;;
;; after:
;; EEEEEEEE MMMMMMM0 MMMMMMMM MMMMMMMM
;; A X R11 R10
shlw ax, 1
bnc $1f
;; Return zero.
2: movw r8, #0
movw r10, #0
ret
;; An exponent of -1 is either a NaN or infinity.
1: cmp a, #-1
bnz $3f
;; For NaN we return 0. For infinity we return UINTMAX.
mov a, x
or a, r10
or a, r11
cmp0 a
bnz $2b
6: movw r8, #-1 ; -1 => UINT_MAX
movw r10, #-1
ret
;; If the exponent is negative the value is < 1 and so the
;; converted value is 0. Note we must allow for the bias
;; applied to the exponent. Thus a value of 127 in the
;; EEEEEEEE bits actually represents an exponent of 0, whilst
;; a value less than 127 actually represents a negative exponent.
;; Also if the EEEEEEEE bits are all zero then this represents
;; either a denormal value or 0.0. Either way for these values
;; we return 0.
3: sub a, #127
bc $2b
;; A now holds the bias adjusted exponent, which is known to be >= 0.
;; If the exponent is > 31 then the conversion will overflow.
cmp a, #32
bnc $6b
4:
;; Save the exponent in H. We increment it by one because we want
;; to be sure that the loop below will always execute at least once.
inc a
mov h, a
;; Get the top 24 bits of the mantissa into A:X:R10
;; Include the implicit 1-bit that is inherent in the IEEE fp format.
;;
;; before:
;; EEEEEEEE MMMMMMM0 MMMMMMMM MMMMMMMM
;; H X R11 R10
;; after:
;; EEEEEEEE 1MMMMMMM MMMMMMMM MMMMMMMM
;; H A X R10
mov a, r11
xch a, x
shr a, 1
set1 a.7
;; Clear B:C:R12:R13
movw bc, #0
movw r12, #0
;; Shift bits from the mantissa (A:X:R10) into (B:C:R12:R13),
;; decrementing the exponent as we go.
;; before:
;; MMMMMMMM MMMMMMMM MMMMMMMM xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
;; A X R10 B C R12 R13
;; first iter:
;; MMMMMMMM MMMMMMMM MMMMMMM0 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxM
;; A X R10 B C R12 R13
;; second iter:
;; MMMMMMMM MMMMMMMM MMMMMM00 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxMM
;; A X R10 B C R12 R13
;; etc.
5:
xch a, r10
shl a, 1
xch a, r10
rolwc ax, 1
xch a, r13
rolc a, 1
xch a, r13
xch a, r12
rolc a, 1
xch a, r12
rolwc bc, 1
dec h
bnz $5b
;; Result is currently in (lsb) r13.r12. c. b. (msb),
;; Move it into (lsb) r8. r9. r10. r11 (msb).
mov a, r13
mov r8, a
mov a, r12
mov r9, a
mov a, c
mov r10, a
mov a, b
mov r11, a
ret
END_FUNC ___fixunssfsi
;; ------------------------------------------------------------------------
START_FUNC ___floatsisf
;; Converts its signed long argument into a floating point.
;; Argument in [SP+4]..[SP+7]. Result in R8..R11.
;; Get the argument.
movw ax, [SP+4]
movw bc, ax
movw ax, [SP+6]
;; Test the sign bit. If the value is positive then drop into
;; the unsigned conversion routine.
bf a.7, $2f
;; If negative convert to positive ...
movw hl, ax
movw ax, #0
subw ax, bc
movw bc, ax
movw ax, #0
sknc
decw ax
subw ax, hl
;; If the result is negative then the input was 0x80000000 and
;; we want to return -0.0, which will not happen if we call
;; __int_floatunsisf.
bt a.7, $1f
;; Call the unsigned conversion routine.
call $!__int_floatunsisf
;; Negate the result.
set1 r11.7
;; Done.
ret
1: ;; Return -0.0 aka 0xcf000000
clrb a
mov r8, a
mov r9, a
mov r10, a
mov a, #0xcf
mov r11, a
ret
START_ANOTHER_FUNC ___floatunsisf
;; Converts its unsigned long argument into a floating point.
;; Argument in [SP+4]..[SP+7]. Result in R8..R11.
;; Get the argument.
movw ax, [SP+4]
movw bc, ax
movw ax, [SP+6]
2: ;; Internal entry point from __floatsisf
;; Input in AX (high) and BC (low)
.global __int_floatunsisf
__int_floatunsisf:
;; Special case handling for zero.
cmpw ax, #0
bnz $1f
movw ax, bc
cmpw ax, #0
movw ax, #0
bnz $1f
;; Return 0.0
movw r8, ax
movw r10, ax
ret
1: ;; Pre-load the loop count/exponent.
;; Exponents are biased by 0x80 and we start the loop knowing that
;; we are going to skip the highest set bit. Hence the highest value
;; that we can get for the exponent is 0x1e (bits from input) + 0x80 = 0x9e.
mov h, #0x9e
;; Move bits off the top of AX:BC until we hit a 1 bit.
;; Decrement the count of remaining bits as we go.
2: shlw bc, 1
rolwc ax, 1
bc $3f
dec h
br $2b
;; Ignore the first one bit - it is implicit in the IEEE format.
;; The count of remaining bits is the exponent.
;; Assemble the final floating point value. We have...
;; before:
;; EEEEEEEE MMMMMMMM MMMMMMMM MMMMMMMM xxxxxxxx
;; H A X B C
;; after:
;; 0EEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM
;; R11 R10 R9 R8
3: shrw ax, 1
mov r10, a
mov a, x
mov r9, a
mov a, b
rorc a, 1
;; If the bottom bit of B was set before we shifted it out then we
;; need to round the result up. Unless none of the bits in C are set.
;; In this case we are exactly half-way between two values, and we
;; round towards an even value. We round up by increasing the
;; mantissa by 1. If this results in a zero mantissa we have to
;; increment the exponent. We round down by ignoring the dropped bits.
bnc $4f
cmp0 c
sknz
bf a.0, $4f
5: ;; Round the mantissa up by 1.
add a, #1
addc r9, #0
addc r10, #0
bf r10.7, $4f
inc h
clr1 r10.7
4: mov r8, a
mov a, h
shr a, 1
mov r11, a
sknc
set1 r10.7
ret
END_ANOTHER_FUNC ___floatunsisf
END_FUNC ___floatsisf
|