aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa.c
blob: eb6f9676617370d7ae1222f0c426b94d93dbda7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
/* Miscellaneous SSA utility functions.
   Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "rtl.h"
#include "tm_p.h"
#include "ggc.h"
#include "langhooks.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "errors.h"
#include "expr.h"
#include "function.h"
#include "diagnostic.h"
#include "bitmap.h"
#include "tree-flow.h"
#include "tree-gimple.h"
#include "tree-inline.h"
#include "varray.h"
#include "timevar.h"
#include "tree-alias-common.h"
#include "hashtab.h"
#include "tree-dump.h"
#include "tree-pass.h"


/* Remove edge E and remove the corresponding arguments from the PHI nodes
   in E's destination block.  */

void
ssa_remove_edge (edge e)
{
  tree phi, next;

  /* Remove the appropriate PHI arguments in E's destination block.  */
  for (phi = phi_nodes (e->dest); phi; phi = next)
    {
      next = PHI_CHAIN (phi);
      remove_phi_arg (phi, e->src);
    }

  remove_edge (e);
}

/* Remove the corresponding arguments from the PHI nodes in E's
   destination block and redirect it to DEST.  Return redirected edge.
   The list of removed arguments is stored in PENDING_STMT (e).  */

edge
ssa_redirect_edge (edge e, basic_block dest)
{
  tree phi, next;
  tree list = NULL, *last = &list;
  tree src, dst, node;
  int i;

  /* Remove the appropriate PHI arguments in E's destination block.  */
  for (phi = phi_nodes (e->dest); phi; phi = next)
    {
      next = PHI_CHAIN (phi);

      i = phi_arg_from_edge (phi, e);
      if (i < 0)
	continue;

      src = PHI_ARG_DEF (phi, i);
      dst = PHI_RESULT (phi);
      node = build_tree_list (dst, src);
      *last = node;
      last = &TREE_CHAIN (node);

      remove_phi_arg_num (phi, i);
    }

  e = redirect_edge_succ_nodup (e, dest);
  PENDING_STMT (e) = list;

  return e;
}


/* Return true if SSA_NAME is malformed and mark it visited.

   IS_VIRTUAL is true if this SSA_NAME was found inside a virtual
      operand.  */

static bool
verify_ssa_name (tree ssa_name, bool is_virtual)
{
  TREE_VISITED (ssa_name) = 1;

  if (TREE_CODE (ssa_name) != SSA_NAME)
    {
      error ("Expected an SSA_NAME object");
      return true;
    }

  if (TREE_TYPE (ssa_name) != TREE_TYPE (SSA_NAME_VAR (ssa_name)))
    {
      error ("Type mismatch between an SSA_NAME and its symbol.");
      return true;
    }

  if (SSA_NAME_IN_FREE_LIST (ssa_name))
    {
      error ("Found an SSA_NAME that had been released into the free pool");
      return true;
    }

  if (is_virtual && is_gimple_reg (ssa_name))
    {
      error ("Found a virtual definition for a GIMPLE register");
      return true;
    }

  if (!is_virtual && !is_gimple_reg (ssa_name))
    {
      error ("Found a real definition for a non-register");
      return true;
    }

  return false;
}


/* Return true if the definition of SSA_NAME at block BB is malformed.

   STMT is the statement where SSA_NAME is created.

   DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME
      version numbers.  If DEFINITION_BLOCK[SSA_NAME_VERSION] is set,
      it means that the block in that array slot contains the
      definition of SSA_NAME.

   IS_VIRTUAL is true if SSA_NAME is created by a V_MAY_DEF or a
      V_MUST_DEF.  */

static bool
verify_def (basic_block bb, basic_block *definition_block, tree ssa_name,
	    tree stmt, bool is_virtual)
{
  if (verify_ssa_name (ssa_name, is_virtual))
    goto err;

  if (definition_block[SSA_NAME_VERSION (ssa_name)])
    {
      error ("SSA_NAME created in two different blocks %i and %i",
	     definition_block[SSA_NAME_VERSION (ssa_name)]->index, bb->index);
      goto err;
    }

  definition_block[SSA_NAME_VERSION (ssa_name)] = bb;

  if (SSA_NAME_DEF_STMT (ssa_name) != stmt)
    {
      error ("SSA_NAME_DEF_STMT is wrong");
      fprintf (stderr, "Expected definition statement:\n");
      debug_generic_stmt (SSA_NAME_DEF_STMT (ssa_name));
      fprintf (stderr, "\nActual definition statement:\n");
      debug_generic_stmt (stmt);
      goto err;
    }

  return false;

err:
  fprintf (stderr, "while verifying SSA_NAME ");
  print_generic_expr (stderr, ssa_name, 0);
  fprintf (stderr, " in statement\n");
  debug_generic_stmt (stmt);

  return true;
}


/* Return true if the use of SSA_NAME at statement STMT in block BB is
   malformed.

   DEF_BB is the block where SSA_NAME was found to be created.

   IDOM contains immediate dominator information for the flowgraph.

   CHECK_ABNORMAL is true if the caller wants to check whether this use
      is flowing through an abnormal edge (only used when checking PHI
      arguments).

   IS_VIRTUAL is true if SSA_NAME is created by a V_MAY_DEF or a
      V_MUST_DEF.  */

static bool
verify_use (basic_block bb, basic_block def_bb, tree ssa_name,
	    tree stmt, bool check_abnormal, bool is_virtual)
{
  bool err = false;

  err = verify_ssa_name (ssa_name, is_virtual);

  if (IS_EMPTY_STMT (SSA_NAME_DEF_STMT (ssa_name))
      && var_ann (SSA_NAME_VAR (ssa_name))->default_def == ssa_name)
    ; /* Default definitions have empty statements.  Nothing to do.  */
  else if (!def_bb)
    {
      error ("Missing definition");
      err = true;
    }
  else if (bb != def_bb
	   && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
    {
      error ("Definition in block %i does not dominate use in block %i",
	     def_bb->index, bb->index);
      err = true;
    }

  if (check_abnormal
      && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
    {
      error ("SSA_NAME_OCCURS_IN_ABNORMAL_PHI should be set");
      err = true;
    }

  if (err)
    {
      fprintf (stderr, "for SSA_NAME: ");
      debug_generic_expr (ssa_name);
      fprintf (stderr, "in statement:\n");
      debug_generic_stmt (stmt);
    }

  return err;
}


/* Return true if any of the arguments for PHI node PHI at block BB is
   malformed.

   IDOM contains immediate dominator information for the flowgraph.

   DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME version
      numbers.  If DEFINITION_BLOCK[SSA_NAME_VERSION] is set, it means that the
      block in that array slot contains the definition of SSA_NAME.  */

static bool
verify_phi_args (tree phi, basic_block bb, basic_block *definition_block)
{
  edge e;
  bool err = false;
  int i, phi_num_args = PHI_NUM_ARGS (phi);

  /* Mark all the incoming edges.  */
  for (e = bb->pred; e; e = e->pred_next)
    e->aux = (void *) 1;

  for (i = 0; i < phi_num_args; i++)
    {
      tree op = PHI_ARG_DEF (phi, i);

      e = PHI_ARG_EDGE (phi, i);

      if (TREE_CODE (op) == SSA_NAME)
	err = verify_use (e->src, definition_block[SSA_NAME_VERSION (op)], op,
			  phi, e->flags & EDGE_ABNORMAL,
			  !is_gimple_reg (PHI_RESULT (phi)));

      if (e->dest != bb)
	{
	  error ("Wrong edge %d->%d for PHI argument\n",
	         e->src->index, e->dest->index, bb->index);
	  err = true;
	}

      if (e->aux == (void *) 0)
	{
	  error ("PHI argument flowing through dead edge %d->%d\n",
	         e->src->index, e->dest->index);
	  err = true;
	}

      if (e->aux == (void *) 2)
	{
	  error ("PHI argument duplicated for edge %d->%d\n", e->src->index,
	         e->dest->index);
	  err = true;
	}

      if (err)
	{
	  fprintf (stderr, "PHI argument\n");
	  debug_generic_stmt (op);
	  goto error;
	}

      e->aux = (void *) 2;
    }

  for (e = bb->pred; e; e = e->pred_next)
    {
      if (e->aux != (void *) 2)
	{
	  error ("No argument flowing through edge %d->%d\n", e->src->index,
		 e->dest->index);
	  err = true;
	  goto error;
	}
      e->aux = (void *) 0;
    }

error:
  if (err)
    {
      fprintf (stderr, "for PHI node\n");
      debug_generic_stmt (phi);
    }


  return err;
}


static void
verify_flow_insensitive_alias_info (void)
{
  size_t i;
  tree var;
  bitmap visited = BITMAP_XMALLOC ();

  for (i = 0; i < num_referenced_vars; i++)
    {
      size_t j;
      var_ann_t ann;
      varray_type may_aliases;

      var = referenced_var (i);
      ann = var_ann (var);
      may_aliases = ann->may_aliases;

      for (j = 0; may_aliases && j < VARRAY_ACTIVE_SIZE (may_aliases); j++)
	{
	  tree alias = VARRAY_TREE (may_aliases, j);

	  bitmap_set_bit (visited, var_ann (alias)->uid);

	  if (!may_be_aliased (alias))
	    {
	      error ("Non-addressable variable inside an alias set.");
	      debug_variable (alias);
	      goto err;
	    }
	}
    }

  for (i = 0; i < num_referenced_vars; i++)
    {
      var_ann_t ann;

      var = referenced_var (i);
      ann = var_ann (var);

      if (ann->mem_tag_kind == NOT_A_TAG
	  && ann->is_alias_tag
	  && !bitmap_bit_p (visited, ann->uid))
	{
	  error ("Addressable variable that is an alias tag but is not in any alias set.");
	  goto err;
	}
    }

  BITMAP_XFREE (visited);
  return;

err:
  debug_variable (var);
  internal_error ("verify_flow_insensitive_alias_info failed.");
}


static void
verify_flow_sensitive_alias_info (void)
{
  size_t i;
  tree ptr;

  for (i = 1; i < num_ssa_names; i++)
    {
      var_ann_t ann;
      struct ptr_info_def *pi;

      ptr = ssa_name (i);
      ann = var_ann (SSA_NAME_VAR (ptr));
      pi = SSA_NAME_PTR_INFO (ptr);

      /* We only care for pointers that are actually referenced in the
	 program.  */
      if (!TREE_VISITED (ptr) || !POINTER_TYPE_P (TREE_TYPE (ptr)))
	continue;

      /* RESULT_DECL is special.  If it's a GIMPLE register, then it
	 is only written-to only once in the return statement.
	 Otherwise, aggregate RESULT_DECLs may be written-to more than
	 once in virtual operands.  */
      if (TREE_CODE (SSA_NAME_VAR (ptr)) == RESULT_DECL
	  && is_gimple_reg (ptr))
	continue;

      if (pi == NULL)
	continue;

      if (pi->is_dereferenced && !pi->name_mem_tag && !ann->type_mem_tag)
	{
	  error ("Dereferenced pointers should have a name or a type tag");
	  goto err;
	}

      if (pi->pt_anything && (pi->pt_malloc || pi->pt_vars))
	{
	  error ("Pointers that point to anything should not point to malloc or other vars");
	  goto err;
	}
      
      if (pi->pt_malloc && pi->pt_vars)
	{
	  error ("Pointers pointing to malloc get a unique tag and cannot point to other vars");
	  goto err;
	}

      if (pi->name_mem_tag
	  && !pi->pt_malloc
	  && (pi->pt_vars == NULL
	      || bitmap_first_set_bit (pi->pt_vars) < 0))
	{
	  error ("Pointers with a memory tag, should have points-to sets or point to malloc");
	  goto err;
	}

      if (pi->value_escapes_p
	  && pi->name_mem_tag
	  && !is_call_clobbered (pi->name_mem_tag))
	{
	  error ("Pointer escapes but its name tag is not call-clobbered.");
	  goto err;
	}

      if (pi->name_mem_tag && pi->pt_vars)
	{
	  size_t j;

	  for (j = i + 1; j < num_ssa_names; j++)
	    {
	      tree ptr2 = ssa_name (j);
	      struct ptr_info_def *pi2 = SSA_NAME_PTR_INFO (ptr2);

	      if (!TREE_VISITED (ptr2) || !POINTER_TYPE_P (TREE_TYPE (ptr2)))
		continue;

	      if (pi2
		  && pi2->name_mem_tag
		  && pi2->pt_vars
		  && bitmap_first_set_bit (pi2->pt_vars) >= 0
		  && pi->name_mem_tag != pi2->name_mem_tag
		  && bitmap_equal_p (pi->pt_vars, pi2->pt_vars))
		{
		  error ("Two pointers with different name tags and identical points-to sets");
		  debug_variable (ptr2);
		  goto err;
		}
	    }
	}
    }

  return;

err:
  debug_variable (ptr);
  internal_error ("verify_flow_sensitive_alias_info failed.");
}


/* Verify the consistency of aliasing information.  */

static void
verify_alias_info (void)
{
  verify_flow_sensitive_alias_info ();
  verify_flow_insensitive_alias_info ();
}


/* Verify common invariants in the SSA web.
   TODO: verify the variable annotations.  */

void
verify_ssa (void)
{
  size_t i;
  basic_block bb;
  basic_block *definition_block = xcalloc (num_ssa_names, sizeof (basic_block));

  timevar_push (TV_TREE_SSA_VERIFY);

  /* Keep track of SSA names present in the IL.  */
  for (i = 1; i < num_ssa_names; i++)
    TREE_VISITED (ssa_name (i)) = 0;

  calculate_dominance_info (CDI_DOMINATORS);

  /* Verify and register all the SSA_NAME definitions found in the
     function.  */
  FOR_EACH_BB (bb)
    {
      tree phi;
      block_stmt_iterator bsi;

      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
	if (verify_def (bb, definition_block, PHI_RESULT (phi), phi,
			!is_gimple_reg (PHI_RESULT (phi))))
	  goto err;

      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
	{
	  tree stmt;
	  stmt_ann_t ann;
	  unsigned int j;
	  v_may_def_optype v_may_defs;
	  v_must_def_optype v_must_defs;
	  def_optype defs;

	  stmt = bsi_stmt (bsi);
	  ann = stmt_ann (stmt);
	  get_stmt_operands (stmt);

	  v_may_defs = V_MAY_DEF_OPS (ann);
	  if (ann->makes_aliased_stores && NUM_V_MAY_DEFS (v_may_defs) == 0)
	    {
	      error ("Statement makes aliased stores, but has no V_MAY_DEFS");
	      debug_generic_stmt (stmt);
	      goto err;
	    }
	    
	  for (j = 0; j < NUM_V_MAY_DEFS (v_may_defs); j++)
	    {
	      tree op = V_MAY_DEF_RESULT (v_may_defs, j);
	      if (verify_def (bb, definition_block, op, stmt, true))
		goto err;
	    }
          
	  v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
	  for (j = 0; j < NUM_V_MUST_DEFS (v_must_defs); j++)
	    {
	      tree op = V_MUST_DEF_OP (v_must_defs, j);
	      if (verify_def (bb, definition_block, op, stmt, true))
		goto err;
	    }

	  defs = DEF_OPS (ann);
	  for (j = 0; j < NUM_DEFS (defs); j++)
	    {
	      tree op = DEF_OP (defs, j);
	      if (verify_def (bb, definition_block, op, stmt, false))
		goto err;
	    }
	}
    }


  /* Now verify all the uses and make sure they agree with the definitions
     found in the previous pass.  */
  FOR_EACH_BB (bb)
    {
      edge e;
      tree phi;
      block_stmt_iterator bsi;

      /* Make sure that all edges have a clear 'aux' field.  */
      for (e = bb->pred; e; e = e->pred_next)
	{
	  if (e->aux)
	    {
	      error ("AUX pointer initialized for edge %d->%d\n", e->src->index,
		      e->dest->index);
	      goto err;
	    }
	}

      /* Verify the arguments for every PHI node in the block.  */
      for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
	if (verify_phi_args (phi, bb, definition_block))
	  goto err;

      /* Now verify all the uses and vuses in every statement of the block.  */
      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
	{
	  tree stmt = bsi_stmt (bsi);
	  stmt_ann_t ann = stmt_ann (stmt);
	  unsigned int j;
	  vuse_optype vuses;
	  v_may_def_optype v_may_defs;
	  use_optype uses;

	  vuses = VUSE_OPS (ann); 
	  for (j = 0; j < NUM_VUSES (vuses); j++)
	    {
	      tree op = VUSE_OP (vuses, j);
	      if (verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
			      op, stmt, false, true))
		goto err;
	    }

	  v_may_defs = V_MAY_DEF_OPS (ann);
	  for (j = 0; j < NUM_V_MAY_DEFS (v_may_defs); j++)
	    {
	      tree op = V_MAY_DEF_OP (v_may_defs, j);
	      if (verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
			      op, stmt, false, true))
		goto err;
	    }

	  uses = USE_OPS (ann);
	  for (j = 0; j < NUM_USES (uses); j++)
	    {
	      tree op = USE_OP (uses, j);
	      if (verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
			      op, stmt, false, false))
		goto err;
	    }
	}
    }

  /* Finally, verify alias information.  */
  verify_alias_info ();

  free (definition_block);
  timevar_pop (TV_TREE_SSA_VERIFY);
  return;

err:
  internal_error ("verify_ssa failed.");
}


/* Initialize global DFA and SSA structures.  */

void
init_tree_ssa (void)
{
  VARRAY_TREE_INIT (referenced_vars, 20, "referenced_vars");
  call_clobbered_vars = BITMAP_XMALLOC ();
  addressable_vars = BITMAP_XMALLOC ();
  init_ssa_operands ();
  init_ssanames ();
  init_phinodes ();
  global_var = NULL_TREE;
}


/* Deallocate memory associated with SSA data structures for FNDECL.  */

void
delete_tree_ssa (void)
{
  size_t i;
  basic_block bb;
  block_stmt_iterator bsi;

  /* Remove annotations from every tree in the function.  */
  FOR_EACH_BB (bb)
    for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
      bsi_stmt (bsi)->common.ann = NULL;

  /* Remove annotations from every referenced variable.  */
  if (referenced_vars)
    {
      for (i = 0; i < num_referenced_vars; i++)
	referenced_var (i)->common.ann = NULL;
      referenced_vars = NULL;
    }

  fini_ssanames ();
  fini_phinodes ();
  fini_ssa_operands ();

  global_var = NULL_TREE;
  BITMAP_XFREE (call_clobbered_vars);
  call_clobbered_vars = NULL;
  BITMAP_XFREE (addressable_vars);
  addressable_vars = NULL;
}


/* Return true if EXPR is a useless type conversion, otherwise return
   false.  */

bool
tree_ssa_useless_type_conversion_1 (tree outer_type, tree inner_type)
{
  /* If the inner and outer types are effectively the same, then
     strip the type conversion and enter the equivalence into
     the table.  */
  if (inner_type == outer_type
     || (lang_hooks.types_compatible_p (inner_type, outer_type)))
    return true;

  /* If both types are pointers and the outer type is a (void *), then
     the conversion is not necessary.  The opposite is not true since
     that conversion would result in a loss of information if the
     equivalence was used.  Consider an indirect function call where
     we need to know the exact type of the function to correctly
     implement the ABI.  */
  else if (POINTER_TYPE_P (inner_type)
           && POINTER_TYPE_P (outer_type)
	   && TREE_CODE (TREE_TYPE (outer_type)) == VOID_TYPE)
    return true;

  /* Pointers and references are equivalent once we get to GENERIC,
     so strip conversions that just switch between them.  */
  else if (POINTER_TYPE_P (inner_type)
           && POINTER_TYPE_P (outer_type)
           && lang_hooks.types_compatible_p (TREE_TYPE (inner_type),
					     TREE_TYPE (outer_type)))
    return true;

  /* If both the inner and outer types are integral types, then the
     conversion is not necessary if they have the same mode and
     signedness and precision, and both or neither are boolean.  Some
     code assumes an invariant that boolean types stay boolean and do
     not become 1-bit bit-field types.  Note that types with precision
     not using all bits of the mode (such as bit-field types in C)
     mean that testing of precision is necessary.  */
  else if (INTEGRAL_TYPE_P (inner_type)
           && INTEGRAL_TYPE_P (outer_type)
	   && TYPE_MODE (inner_type) == TYPE_MODE (outer_type)
	   && TYPE_UNSIGNED (inner_type) == TYPE_UNSIGNED (outer_type)
	   && TYPE_PRECISION (inner_type) == TYPE_PRECISION (outer_type))
    {
      bool first_boolean = (TREE_CODE (inner_type) == BOOLEAN_TYPE);
      bool second_boolean = (TREE_CODE (outer_type) == BOOLEAN_TYPE);
      if (first_boolean == second_boolean)
	return true;
    }

  /* Recurse for complex types.  */
  else if (TREE_CODE (inner_type) == COMPLEX_TYPE
	   && TREE_CODE (outer_type) == COMPLEX_TYPE
	   && tree_ssa_useless_type_conversion_1 (TREE_TYPE (outer_type),
						  TREE_TYPE (inner_type)))
    return true;

  return false;
}

/* Return true if EXPR is a useless type conversion, otherwise return
   false.  */

bool
tree_ssa_useless_type_conversion (tree expr)
{
  /* If we have an assignment that merely uses a NOP_EXPR to change
     the top of the RHS to the type of the LHS and the type conversion
     is "safe", then strip away the type conversion so that we can
     enter LHS = RHS into the const_and_copies table.  */
  if (TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR
      || TREE_CODE (expr) == VIEW_CONVERT_EXPR
      || TREE_CODE (expr) == NON_LVALUE_EXPR)
    return tree_ssa_useless_type_conversion_1 (TREE_TYPE (expr),
					       TREE_TYPE (TREE_OPERAND (expr,
									0)));


  return false;
}


/* Internal helper for walk_use_def_chains.  VAR, FN and DATA are as
   described in walk_use_def_chains.
   
   VISITED is a bitmap used to mark visited SSA_NAMEs to avoid
      infinite loops.

   IS_DFS is true if the caller wants to perform a depth-first search
      when visiting PHI nodes.  A DFS will visit each PHI argument and
      call FN after each one.  Otherwise, all the arguments are
      visited first and then FN is called with each of the visited
      arguments in a separate pass.  */

static bool
walk_use_def_chains_1 (tree var, walk_use_def_chains_fn fn, void *data,
		       bitmap visited, bool is_dfs)
{
  tree def_stmt;

  if (bitmap_bit_p (visited, SSA_NAME_VERSION (var)))
    return false;

  bitmap_set_bit (visited, SSA_NAME_VERSION (var));

  def_stmt = SSA_NAME_DEF_STMT (var);

  if (TREE_CODE (def_stmt) != PHI_NODE)
    {
      /* If we reached the end of the use-def chain, call FN.  */
      return fn (var, def_stmt, data);
    }
  else
    {
      int i;

      /* When doing a breadth-first search, call FN before following the
	 use-def links for each argument.  */
      if (!is_dfs)
	for (i = 0; i < PHI_NUM_ARGS (def_stmt); i++)
	  if (fn (PHI_ARG_DEF (def_stmt, i), def_stmt, data))
	    return true;

      /* Follow use-def links out of each PHI argument.  */
      for (i = 0; i < PHI_NUM_ARGS (def_stmt); i++)
	{
	  tree arg = PHI_ARG_DEF (def_stmt, i);
	  if (TREE_CODE (arg) == SSA_NAME
	      && walk_use_def_chains_1 (arg, fn, data, visited, is_dfs))
	    return true;
	}

      /* When doing a depth-first search, call FN after following the
	 use-def links for each argument.  */
      if (is_dfs)
	for (i = 0; i < PHI_NUM_ARGS (def_stmt); i++)
	  if (fn (PHI_ARG_DEF (def_stmt, i), def_stmt, data))
	    return true;
    }
  
  return false;
}
  


/* Walk use-def chains starting at the SSA variable VAR.  Call
   function FN at each reaching definition found.  FN takes three
   arguments: VAR, its defining statement (DEF_STMT) and a generic
   pointer to whatever state information that FN may want to maintain
   (DATA).  FN is able to stop the walk by returning true, otherwise
   in order to continue the walk, FN should return false.  

   Note, that if DEF_STMT is a PHI node, the semantics are slightly
   different.  The first argument to FN is no longer the original
   variable VAR, but the PHI argument currently being examined.  If FN
   wants to get at VAR, it should call PHI_RESULT (PHI).

   If IS_DFS is true, this function will:

	1- walk the use-def chains for all the PHI arguments, and,
	2- call (*FN) (ARG, PHI, DATA) on all the PHI arguments.

   If IS_DFS is false, the two steps above are done in reverse order
   (i.e., a breadth-first search).  */


void
walk_use_def_chains (tree var, walk_use_def_chains_fn fn, void *data,
                     bool is_dfs)
{
  tree def_stmt;

#if defined ENABLE_CHECKING
  if (TREE_CODE (var) != SSA_NAME)
    abort ();
#endif

  def_stmt = SSA_NAME_DEF_STMT (var);

  /* We only need to recurse if the reaching definition comes from a PHI
     node.  */
  if (TREE_CODE (def_stmt) != PHI_NODE)
    (*fn) (var, def_stmt, data);
  else
    {
      bitmap visited = BITMAP_XMALLOC ();
      walk_use_def_chains_1 (var, fn, data, visited, is_dfs);
      BITMAP_XFREE (visited);
    }
}


/* Replaces VAR with REPL in memory reference expression *X in
   statement STMT.  */

static void
propagate_into_addr (tree stmt, tree var, tree *x, tree repl)
{
  tree new_var, ass_stmt, addr_var;
  basic_block bb;
  block_stmt_iterator bsi;

  /* There is nothing special to handle in the other cases.  */
  if (TREE_CODE (repl) != ADDR_EXPR)
    return;
  addr_var = TREE_OPERAND (repl, 0);

  while (TREE_CODE (*x) == ARRAY_REF
	 || TREE_CODE (*x) == COMPONENT_REF
	 || TREE_CODE (*x) == BIT_FIELD_REF)
    x = &TREE_OPERAND (*x, 0);

  if (TREE_CODE (*x) != INDIRECT_REF
      || TREE_OPERAND (*x, 0) != var)
    return;

  if (TREE_TYPE (*x) == TREE_TYPE (addr_var))
    {
      *x = addr_var;
      mark_new_vars_to_rename (stmt, vars_to_rename);
      return;
    }


  /* Frontends sometimes produce expressions like *&a instead of a[0].
     Create a temporary variable to handle this case.  */
  ass_stmt = build2 (MODIFY_EXPR, void_type_node, NULL_TREE, repl);
  new_var = duplicate_ssa_name (var, ass_stmt);
  TREE_OPERAND (*x, 0) = new_var;
  TREE_OPERAND (ass_stmt, 0) = new_var;

  bb = bb_for_stmt (stmt);
  tree_block_label (bb);
  bsi = bsi_after_labels (bb);
  bsi_insert_after (&bsi, ass_stmt, BSI_NEW_STMT);

  mark_new_vars_to_rename (stmt, vars_to_rename);
}

/* Replaces immediate uses of VAR by REPL.  */

static void
replace_immediate_uses (tree var, tree repl)
{
  use_optype uses;
  vuse_optype vuses;
  v_may_def_optype v_may_defs;
  int i, j, n;
  dataflow_t df;
  tree stmt;
  stmt_ann_t ann;
  bool mark_new_vars;

  df = get_immediate_uses (SSA_NAME_DEF_STMT (var));
  n = num_immediate_uses (df);

  for (i = 0; i < n; i++)
    {
      stmt = immediate_use (df, i);
      ann = stmt_ann (stmt);

      if (TREE_CODE (stmt) == PHI_NODE)
	{
	  for (j = 0; j < PHI_NUM_ARGS (stmt); j++)
	    if (PHI_ARG_DEF (stmt, j) == var)
	      {
		SET_PHI_ARG_DEF (stmt, j, repl);
		if (TREE_CODE (repl) == SSA_NAME
		    && PHI_ARG_EDGE (stmt, j)->flags & EDGE_ABNORMAL)
		  SSA_NAME_OCCURS_IN_ABNORMAL_PHI (repl) = 1;
	      }

	  continue;
	}

      get_stmt_operands (stmt);
      mark_new_vars = false;
      if (is_gimple_reg (SSA_NAME_VAR (var)))
	{
	  if (TREE_CODE (stmt) == MODIFY_EXPR)
	    {
	      propagate_into_addr (stmt, var, &TREE_OPERAND (stmt, 0), repl);
	      propagate_into_addr (stmt, var, &TREE_OPERAND (stmt, 1), repl);
	    }

	  uses = USE_OPS (ann);
	  for (j = 0; j < (int) NUM_USES (uses); j++)
	    if (USE_OP (uses, j) == var)
	      {
		propagate_value (USE_OP_PTR (uses, j), repl);
		mark_new_vars = POINTER_TYPE_P (TREE_TYPE (repl));
	      }
	}
      else
	{
	  vuses = VUSE_OPS (ann);
	  for (j = 0; j < (int) NUM_VUSES (vuses); j++)
	    if (VUSE_OP (vuses, j) == var)
	      propagate_value (VUSE_OP_PTR (vuses, j), repl);

	  v_may_defs = V_MAY_DEF_OPS (ann);
	  for (j = 0; j < (int) NUM_V_MAY_DEFS (v_may_defs); j++)
	    if (V_MAY_DEF_OP (v_may_defs, j) == var)
	      propagate_value (V_MAY_DEF_OP_PTR (v_may_defs, j), repl);
	}

      /* If REPL is a pointer, it may have different memory tags associated
	 with it.  For instance, VAR may have had a name tag while REPL
	 only had a type tag.  In these cases, the virtual operands (if
	 any) in the statement will refer to different symbols which need
	 to be renamed.  */
      if (mark_new_vars)
	mark_new_vars_to_rename (stmt, vars_to_rename);
      else
	modify_stmt (stmt);
    }
}

/* Gets the value VAR is equivalent to according to EQ_TO.  */

static tree
get_eq_name (tree *eq_to, tree var)
{
  unsigned ver;
  tree val = var;

  while (TREE_CODE (val) == SSA_NAME)
    {
      ver = SSA_NAME_VERSION (val);
      if (!eq_to[ver])
	break;

      val = eq_to[ver];
    }

  while (TREE_CODE (var) == SSA_NAME)
    {
      ver = SSA_NAME_VERSION (var);
      if (!eq_to[ver])
	break;

      var = eq_to[ver];
      eq_to[ver] = val;
    }

  return val;
}

/* Checks whether phi node PHI is redundant and if it is, records the ssa name
   its result is redundant to to EQ_TO array.  */

static void
check_phi_redundancy (tree phi, tree *eq_to)
{
  tree val = NULL_TREE, def, res = PHI_RESULT (phi), stmt;
  unsigned i, ver = SSA_NAME_VERSION (res), n;
  dataflow_t df;

  /* It is unlikely that such large phi node would be redundant.  */
  if (PHI_NUM_ARGS (phi) > 16)
    return;

  for (i = 0; i < (unsigned) PHI_NUM_ARGS (phi); i++)
    {
      def = PHI_ARG_DEF (phi, i);

      if (TREE_CODE (def) == SSA_NAME)
	{
	  def = get_eq_name (eq_to, def);
	  if (def == res)
	    continue;
	}

      if (val
	  && !operand_equal_p (val, def, 0))
	return;

      val = def;
    }

  /* At least one of the arguments should not be equal to the result, or
     something strange is happening.  */
  if (!val)
    abort ();

  if (get_eq_name (eq_to, res) == val)
    return;

  if (!may_propagate_copy (res, val))
    return;

  eq_to[ver] = val;

  df = get_immediate_uses (SSA_NAME_DEF_STMT (res));
  n = num_immediate_uses (df);

  for (i = 0; i < n; i++)
    {
      stmt = immediate_use (df, i);

      if (TREE_CODE (stmt) == PHI_NODE)
	check_phi_redundancy (stmt, eq_to);
    }
}

/* Removes redundant phi nodes.

   A redundant PHI node is a PHI node where all of its PHI arguments
   are the same value, excluding any PHI arguments which are the same
   as the PHI result.

   A redundant PHI node is effectively a copy, so we forward copy propagate
   which removes all uses of the destination of the PHI node then
   finally we delete the redundant PHI node.

   Note that if we can not copy propagate the PHI node, then the PHI
   will not be removed.  Thus we do not have to worry about dependencies
   between PHIs and the problems serializing PHIs into copies creates. 
   
   The most important effect of this pass is to remove degenerate PHI
   nodes created by removing unreachable code.  */

void
kill_redundant_phi_nodes (void)
{
  tree *eq_to;
  unsigned i, old_num_ssa_names;
  basic_block bb;
  tree phi, var, repl, stmt;

  /* The EQ_TO[VER] holds the value by that the ssa name VER should be
     replaced.  If EQ_TO[VER] is ssa name and it is decided to replace it by
     other value, it may be necessary to follow the chain till the final value.
     We perform path shortening (replacing the entries of the EQ_TO array with
     heads of these chains) whenever we access the field to prevent quadratic
     complexity (probably would not occur in practice anyway, but let us play
     it safe).  */
  eq_to = xcalloc (num_ssa_names, sizeof (tree));

  /* We have had cases where computing immediate uses takes a
     significant amount of compile time.  If we run into such
     problems here, we may want to only compute immediate uses for
     a subset of all the SSA_NAMEs instead of computing it for
     all of the SSA_NAMEs.  */
  compute_immediate_uses (TDFA_USE_OPS | TDFA_USE_VOPS, NULL);
  old_num_ssa_names = num_ssa_names;

  FOR_EACH_BB (bb)
    {
      for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
	{
	  var = PHI_RESULT (phi);
	  check_phi_redundancy (phi, eq_to);
	}
    }

  /* Now propagate the values.  */
  for (i = 0; i < old_num_ssa_names; i++)
    {
      if (!ssa_name (i))
	continue;

      repl = get_eq_name (eq_to, ssa_name (i));
      if (repl != ssa_name (i))
	replace_immediate_uses (ssa_name (i), repl);
    }

  /* And remove the dead phis.  */
  for (i = 0; i < old_num_ssa_names; i++)
    {
      if (!ssa_name (i))
	continue;

      repl = get_eq_name (eq_to, ssa_name (i));
      if (repl != ssa_name (i))
	{
	  stmt = SSA_NAME_DEF_STMT (ssa_name (i));
	  remove_phi_node (stmt, NULL_TREE, bb_for_stmt (stmt));
	}
    }

  free_df ();
  free (eq_to);
}

struct tree_opt_pass pass_redundant_phi =
{
  "redphi",				/* name */
  NULL,					/* gate */
  kill_redundant_phi_nodes,		/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  0,					/* tv_id */
  PROP_cfg | PROP_ssa | PROP_alias,	/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_func | TODO_rename_vars 
    | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
};

/* Emit warnings for uninitialized variables.  This is done in two passes.

   The first pass notices real uses of SSA names with default definitions.
   Such uses are unconditionally uninitialized, and we can be certain that
   such a use is a mistake.  This pass is run before most optimizations,
   so that we catch as many as we can.

   The second pass follows PHI nodes to find uses that are potentially
   uninitialized.  In this case we can't necessarily prove that the use
   is really uninitialized.  This pass is run after most optimizations,
   so that we thread as many jumps and possible, and delete as much dead
   code as possible, in order to reduce false positives.  We also look
   again for plain uninitialized variables, since optimization may have
   changed conditionally uninitialized to unconditionally uninitialized.  */

/* Emit a warning for T, an SSA_NAME, being uninitialized.  The exact
   warning text is in MSGID and LOCUS may contain a location or be null.  */

static void
warn_uninit (tree t, const char *msgid, location_t *locus)
{
  tree var = SSA_NAME_VAR (t);
  tree def = SSA_NAME_DEF_STMT (t);

  /* Default uses (indicated by an empty definition statement),
     are uninitialized.  */
  if (!IS_EMPTY_STMT (def))
    return;

  /* Except for PARMs of course, which are always initialized.  */
  if (TREE_CODE (var) == PARM_DECL)
    return;

  /* Hard register variables get their initial value from the ether.  */
  if (DECL_HARD_REGISTER (var))
    return;

  /* TREE_NO_WARNING either means we already warned, or the front end
     wishes to suppress the warning.  */
  if (TREE_NO_WARNING (var))
    return;

  if (!locus)
    locus = &DECL_SOURCE_LOCATION (var);
  warning (msgid, locus, var);
  TREE_NO_WARNING (var) = 1;
}
   
/* Called via walk_tree, look for SSA_NAMEs that have empty definitions
   and warn about them.  */

static tree
warn_uninitialized_var (tree *tp, int *walk_subtrees, void *data)
{
  location_t *locus = data;
  tree t = *tp;

  /* We only do data flow with SSA_NAMEs, so that's all we can warn about.  */
  if (TREE_CODE (t) == SSA_NAME)
    {
      warn_uninit (t, "%H'%D' is used uninitialized in this function", locus);
      *walk_subtrees = 0;
    }
  else if (DECL_P (t) || TYPE_P (t))
    *walk_subtrees = 0;

  return NULL_TREE;
}

/* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
   and warn about them.  */

static void
warn_uninitialized_phi (tree phi)
{
  int i, n = PHI_NUM_ARGS (phi);

  /* Don't look at memory tags.  */
  if (!is_gimple_reg (PHI_RESULT (phi)))
    return;

  for (i = 0; i < n; ++i)
    {
      tree op = PHI_ARG_DEF (phi, i);
      if (TREE_CODE (op) == SSA_NAME)
	warn_uninit (op, "%H'%D' may be used uninitialized in this function",
		     NULL);
    }
}

static void
execute_early_warn_uninitialized (void)
{
  block_stmt_iterator bsi;
  basic_block bb;

  FOR_EACH_BB (bb)
    for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
      walk_tree (bsi_stmt_ptr (bsi), warn_uninitialized_var,
		 EXPR_LOCUS (bsi_stmt (bsi)), NULL);
}

static void
execute_late_warn_uninitialized (void)
{
  basic_block bb;
  tree phi;

  /* Re-do the plain uninitialized variable check, as optimization may have
     straightened control flow.  Do this first so that we don't accidentally
     get a "may be" warning when we'd have seen an "is" warning later.  */
  execute_early_warn_uninitialized ();

  FOR_EACH_BB (bb)
    for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
      warn_uninitialized_phi (phi);
}

static bool
gate_warn_uninitialized (void)
{
  return warn_uninitialized != 0;
}

struct tree_opt_pass pass_early_warn_uninitialized =
{
  NULL,					/* name */
  gate_warn_uninitialized,		/* gate */
  execute_early_warn_uninitialized,	/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  0,					/* tv_id */
  PROP_ssa,				/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  0					/* todo_flags_finish */
};

struct tree_opt_pass pass_late_warn_uninitialized =
{
  NULL,					/* name */
  gate_warn_uninitialized,		/* gate */
  execute_late_warn_uninitialized,	/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  0,					/* tv_id */
  PROP_ssa,				/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  0					/* todo_flags_finish */
};