aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-pre.c
blob: 5c32bc2878775147e98d6a0b5c1ecea52ae91f28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
/* SSA-PRE for trees.
   Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
   Contributed by Daniel Berlin <dan@dberlin.org> and Steven Bosscher
   <stevenb@suse.de> 

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "errors.h"
#include "ggc.h"
#include "tree.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-inline.h"
#include "tree-flow.h"
#include "tree-gimple.h"
#include "tree-dump.h"
#include "timevar.h"
#include "fibheap.h"
#include "hashtab.h"
#include "tree-iterator.h"
#include "real.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "flags.h"
#include "splay-tree.h"
#include "bitmap.h"
#include "langhooks.h"

/* TODO:
   
   1. Implement load value numbering.
   2. Speed up insert_aux so that we can use it all the time.  It
      spends most of it's time in quadratic value replacement.
   3. Avail sets can be shared by making an avail_find_leader that
      walks up the dominator tree and looks in those avail sets.
      This might affect code optimality, it's unclear right now.
   4. Load motion can be performed by value numbering the loads the
      same as we do other expressions.  This requires iterative
      hashing the vuses into the values.  Right now we simply assign
      a new value every time we see a statement with a vuse.
   5. Strength reduction can be performed by anticipating expressions
      we can repair later on.
   6. Our canonicalization of expressions during lookups don't take
      constants into account very well.  In particular, we don't fold
      anywhere, so we can get situations where we stupidly think
      something is a new value (a + 1 + 1 vs a + 2).  This is somewhat
      expensive to fix, but it does expose a lot more eliminations.
      It may or not be worth it, depending on how critical you
      consider PRE vs just plain GRE.
*/   

/* For ease of terminology, "expression node" in the below refers to
   every expression node but MODIFY_EXPR, because MODIFY_EXPR's represent
   the actual statement containing the expressions we care about, and
   we cache the value number by putting it in the expression.  */

/* Basic algorithm
   
   First we walk the statements to generate the AVAIL sets, the
   EXP_GEN sets, and the tmp_gen sets.  EXP_GEN sets represent the
   generation of values/expressions by a given block.  We use them
   when computing the ANTIC sets.  The AVAIL sets consist of
   SSA_NAME's that represent values, so we know what values are
   available in what blocks.  AVAIL is a forward dataflow problem.  In
   SSA, values are never killed, so we don't need a kill set, or a
   fixpoint iteration, in order to calculate the AVAIL sets.  In
   traditional parlance, AVAIL sets tell us the downsafety of the
   expressions/values.
   
   Next, we generate the ANTIC sets.  These sets represent the
   anticipatable expressions.  ANTIC is a backwards dataflow
   problem.An expression is anticipatable in a given block if it could
   be generated in that block.  This means that if we had to perform
   an insertion in that block, of the value of that expression, we
   could.  Calculating the ANTIC sets requires phi translation of
   expressions, because the flow goes backwards through phis.  We must
   iterate to a fixpoint of the ANTIC sets, because we have a kill
   set.  Even in SSA form, values are not live over the entire
   function, only from their definition point onwards.  So we have to
   remove values from the ANTIC set once we go past the definition
   point of the leaders that make them up.
   compute_antic/compute_antic_aux performs this computation.

   Third, we perform insertions to make partially redundant
   expressions fully redundant.

   An expression is partially redundant (excluding partial
   anticipation) if:

   1. It is AVAIL in some, but not all, of the predecessors of a
      given block.
   2. It is ANTIC in all the predecessors.

   In order to make it fully redundant, we insert the expression into
   the predecessors where it is not available, but is ANTIC.
   insert/insert_aux performs this insertion.

   Fourth, we eliminate fully redundant expressions.
   This is a simple statement walk that replaces redundant
   calculations  with the now available values.  */

/* Representations of value numbers:

   Value numbers are represented using the "value handle" approach.
   This means that each SSA_NAME (and for other reasons to be
   disclosed in a moment, expression nodes) has a value handle that
   can be retrieved through get_value_handle.  This value handle, *is*
   the value number of the SSA_NAME.  You can pointer compare the
   value handles for equivalence purposes.

   For debugging reasons, the value handle is internally more than
   just a number, it is a VAR_DECL named "value.x", where x is a
   unique number for each value number in use.  This allows
   expressions with SSA_NAMES replaced by value handles to still be
   pretty printed in a sane way.  They simply print as "value.3 *
   value.5", etc.  

   Expression nodes have value handles associated with them as a
   cache.  Otherwise, we'd have to look them up again in the hash
   table This makes significant difference (factor of two or more) on
   some test cases.  They can be thrown away after the pass is
   finished.  */

/* Representation of expressions on value numbers: 

   In some portions of this code, you will notice we allocate "fake"
   analogues to the expression we are value numbering, and replace the
   operands with the values of the expression.  Since we work on
   values, and not just names, we canonicalize expressions to value
   expressions for use in the ANTIC sets, the EXP_GEN set, etc.  

   This is theoretically unnecessary, it just saves a bunch of
   repeated get_value_handle and find_leader calls in the remainder of
   the code, trading off temporary memory usage for speed.  The tree
   nodes aren't actually creating more garbage, since they are
   allocated in a special pools which are thrown away at the end of
   this pass.  

   All of this also means that if you print the EXP_GEN or ANTIC sets,
   you will see "value.5 + value.7" in the set, instead of "a_55 +
   b_66" or something.  The only thing that actually cares about
   seeing the value leaders is phi translation, and it needs to be
   able to find the leader for a value in an arbitrary block, so this
   "value expression" form is perfect for it (otherwise you'd do
   get_value_handle->find_leader->translate->get_value_handle->find_leader).*/


/* Representation of sets:

   Sets are represented as doubly linked lists kept in topological
   order, with an optional supporting bitmap of values present in the
   set.  The sets represent values, and the elements can be values or
   expressions.  The elements can appear in different sets, but each
   element can only appear once in each set.

   Since each node in the set represents a value, we also want to be
   able to map expression, set pairs to something that tells us
   whether the value is present is a set.  We use a per-set bitmap for
   that.  The value handles also point to a linked list of the
   expressions they represent via a tree annotation.  This is mainly
   useful only for debugging, since we don't do identity lookups.  */


/* A value set element.  Basically a single linked list of
   expressions/values.  */
typedef struct value_set_node
{
  /* An expression.  */
  tree expr;

  /* A pointer to the next element of the value set.  */
  struct value_set_node *next;
} *value_set_node_t;


/* A value set.  This is a singly linked list of value_set_node
   elements with a possible bitmap that tells us what values exist in
   the set.  This set must be kept in topologically sorted order.  */
typedef struct value_set
{
  /* The head of the list.  Used for iterating over the list in
     order.  */
  value_set_node_t head;

  /* The tail of the list.  Used for tail insertions, which are
     necessary to keep the set in topologically sorted order because
     of how the set is built.  */
  value_set_node_t tail;
  
  /* The length of the list.  */
  size_t length;
  
  /* True if the set is indexed, which means it contains a backing
     bitmap for quick determination of whether certain values exist in the
     set.  */
  bool indexed;
  
  /* The bitmap of values that exist in the set.  May be NULL in an
     empty or non-indexed set.  */
  bitmap values;
  
} *value_set_t;

/* All of the following sets, except for TMP_GEN, are indexed.
   TMP_GEN is only ever iterated over, we never check what values
   exist in it.  */

typedef struct bb_value_sets
{
  /* The EXP_GEN set, which represents expressions/values generated in
     a basic block.  */
  value_set_t exp_gen;

  /* The PHI_GEN set, which represents PHI results generated in a
     basic block.  */
  value_set_t phi_gen;

  /* The TMP_GEN set, which represents results/temporaries genererated
     in a basic block. IE the LHS of an expression.  */
  value_set_t tmp_gen;

  /* The AVAIL_OUT set, which represents which values are available in
     a given basic block.  */
  value_set_t avail_out;

  /* The ANTIC_IN set, which represents which values are anticiptable
     in a given basic block.  */
  value_set_t antic_in;

  /* The NEW_SETS set, which is used during insertion to augment the
     AVAIL_OUT set of blocks with the new insertions performed during
     the current iteration.  */
  value_set_t new_sets;
} *bb_value_sets_t;

#define EXP_GEN(BB)	((bb_value_sets_t) ((BB)->aux))->exp_gen
#define PHI_GEN(BB)	((bb_value_sets_t) ((BB)->aux))->phi_gen
#define TMP_GEN(BB)	((bb_value_sets_t) ((BB)->aux))->tmp_gen
#define AVAIL_OUT(BB)	((bb_value_sets_t) ((BB)->aux))->avail_out
#define ANTIC_IN(BB)	((bb_value_sets_t) ((BB)->aux))->antic_in
#define NEW_SETS(BB)	((bb_value_sets_t) ((BB)->aux))->new_sets

/* This structure is used to keep track of statistics on what
   optimization PRE was able to perform.  */
static struct
{
  /* The number of RHS computations eliminated by PRE.  */
  int eliminations;

  /* The number of new expressions/temporaries generated by PRE.  */
  int insertions;

  /* The number of new PHI nodes added by PRE.  */
  int phis;
} pre_stats;

static tree find_leader (value_set_t, tree);
static void value_insert_into_set (value_set_t, tree);
static void insert_into_set (value_set_t, tree);
static value_set_t set_new  (bool);
static bool is_undefined_value (tree);
static tree create_expression_by_pieces (basic_block, tree, tree);

/* We can add and remove elements and entries to and from sets
   and hash tables, so we use alloc pools for them.  */

static alloc_pool value_set_pool;
static alloc_pool value_set_node_pool;
static alloc_pool binary_node_pool;
static alloc_pool unary_node_pool;


/* The phi_translate_table caches phi translations for a given
   expression and predecessor.  */

static htab_t phi_translate_table;

/* A three tuple {e, pred, v} used to cache phi translations in the
   phi_translate_table.  */

typedef struct expr_pred_trans_d
{
  /* The expression. */
  tree e;

  /* The predecessor block along which we translated the expression.  */
  basic_block pred;

  /* The value that resulted from the translation.  */
  tree v;

  /* The hashcode for the expression, pred pair. This is cached for
     speed reasons.  */
  hashval_t hashcode;
} *expr_pred_trans_t;

/* Return the hash value for a phi translation table entry.  */

static hashval_t
expr_pred_trans_hash (const void *p)
{
  const expr_pred_trans_t ve = (expr_pred_trans_t) p;
  return ve->hashcode;
}

/* Return true if two phi translation table entries are the same.
   P1 and P2 should point to the expr_pred_trans_t's to be compared.*/

static int
expr_pred_trans_eq (const void *p1, const void *p2)
{
  const expr_pred_trans_t ve1 = (expr_pred_trans_t) p1;
  const expr_pred_trans_t ve2 = (expr_pred_trans_t) p2;
  basic_block b1 = ve1->pred;
  basic_block b2 = ve2->pred;

  
  /* If they are not translations for the same basic block, they can't
     be equal.  */
  if (b1 != b2)
    return false;

  /* If they are for the same basic block, determine if the
     expressions are equal.   */  
  if (expressions_equal_p (ve1->e, ve2->e))
    return true;
  
  return false;
}

/* Search in the phi translation table for the translation of
   expression E in basic block PRED. Return the translated value, if
   found, NULL otherwise. */ 

static inline tree
phi_trans_lookup (tree e, basic_block pred)
{
  void **slot;
  struct expr_pred_trans_d ept;
  ept.e = e;
  ept.pred = pred;
  ept.hashcode = vn_compute (e, (unsigned long) pred);
  slot = htab_find_slot_with_hash (phi_translate_table, &ept, ept.hashcode,
				   NO_INSERT);
  if (!slot)
    return NULL;
  else
    return ((expr_pred_trans_t) *slot)->v;
}


/* Add the tuple mapping from {expression E, basic block PRED} to
   value V, to the phi translation table.  */

static inline void
phi_trans_add (tree e, tree v, basic_block pred)
{
  void **slot;
  expr_pred_trans_t new_pair = xmalloc (sizeof (*new_pair));
  new_pair->e = e;
  new_pair->pred = pred;
  new_pair->v = v;
  new_pair->hashcode = vn_compute (e, (unsigned long) pred);
  slot = htab_find_slot_with_hash (phi_translate_table, new_pair,
				   new_pair->hashcode, INSERT);
  if (*slot)
    free (*slot);
  *slot = (void *) new_pair;
}

/* Add expression E to the expression set of value V.  */

void
add_to_value (tree v, tree e)
{
  /* For values representing non-CST nodes, but still function
     invariant things we mark TREE_CONSTANT as true and set the tree
     chain to the actual constant.  This is because unlike values
     involving expressions, which are only available to use where the
     expressions are live, a function invariant can be remade
     anywhere, and thus, is available everywhere, just like a constant.  */
  if (TREE_CODE_CLASS (TREE_CODE (v)) == 'c')
    return;
  else if (is_gimple_min_invariant (v))
    {
      TREE_CONSTANT (v) = true;
      TREE_CHAIN (v) = e;
      return;
    }

  if (VALUE_HANDLE_EXPR_SET (v) == NULL)
    VALUE_HANDLE_EXPR_SET (v) = set_new (false);

  insert_into_set (VALUE_HANDLE_EXPR_SET (v), e);
}


/* Return true if value V exists in the bitmap for SET.  */

static inline bool
value_exists_in_set_bitmap (value_set_t set, tree v)
{
  if (!set->values)
    return false;

  return bitmap_bit_p (set->values, VALUE_HANDLE_ID (v));
}


/* Remove value V from the bitmap for SET.  */

static void
value_remove_from_set_bitmap (value_set_t set, tree v)
{
#ifdef ENABLE_CHECKING
  if (!set->indexed)
    abort ();
#endif

  if (!set->values)
    return;

  bitmap_clear_bit (set->values, VALUE_HANDLE_ID (v));
}


/* Insert the value number V into the bitmap of values existing in
   SET.  */

static inline void
value_insert_into_set_bitmap (value_set_t set, tree v)
{
#ifdef ENABLE_CHECKING
  if (!set->indexed)
    abort ();
#endif

  if (set->values == NULL)
    {
      set->values = BITMAP_GGC_ALLOC ();
      bitmap_clear (set->values);
    }

  bitmap_set_bit (set->values, VALUE_HANDLE_ID (v));
}


/* Create a new set.  */

static value_set_t
set_new  (bool indexed)
{
  value_set_t ret;
  ret = pool_alloc (value_set_pool);
  ret->head = ret->tail = NULL;
  ret->length = 0;
  ret->indexed = indexed;
  ret->values = NULL;
  return ret;
}


/* Insert EXPR into SET.  */

static void
insert_into_set (value_set_t set, tree expr)
{
  value_set_node_t newnode = pool_alloc (value_set_node_pool);
  tree val = get_value_handle (expr);
  
  if (val == NULL)
    abort ();

  /* For indexed sets, insert the value into the set value bitmap.
     For all sets, add it to the linked list and increment the list
     length.  */
  if (set->indexed)
    value_insert_into_set_bitmap (set, val);

  newnode->next = NULL;
  newnode->expr = expr;
  set->length ++;
  if (set->head == NULL)
    {
      set->head = set->tail = newnode;
    }
  else
    {
      set->tail->next = newnode;
      set->tail = newnode;
    }
}

/* Copy the set ORIG to the set DEST.  */

static void
set_copy (value_set_t dest, value_set_t orig)
{
  value_set_node_t node;
 
  if (!orig || !orig->head)
    return;

  for (node = orig->head;
       node;
       node = node->next)
    {
      insert_into_set (dest, node->expr);
    }
}

/* Remove EXPR from SET.  */

static void
set_remove (value_set_t set, tree expr)
{
  value_set_node_t node, prev;

  /* Remove the value of EXPR from the bitmap, decrement the set
     length, and remove it from the actual double linked list.  */ 
  value_remove_from_set_bitmap (set, get_value_handle (expr));
  set->length--;
  prev = NULL;
  for (node = set->head; 
       node != NULL; 
       prev = node, node = node->next)
    {
      if (node->expr == expr)
	{
	  if (prev == NULL)
	    set->head = node->next;
	  else
	    prev->next= node->next;
 
	  if (node == set->tail)
	    set->tail = prev;
	  pool_free (value_set_node_pool, node);
	  return;
	}
    }
}

/* Return true if SET contains the value VAL.  */

static bool
set_contains_value (value_set_t set, tree val)
{
  /* All true constants are in every set.  */
  if (TREE_CODE_CLASS (TREE_CODE (val)) == 'c')
    return true;
  /* This is only referring to the flag above that we set on
     values referring to invariants, because we know that we
     are dealing with one of the value handles we created.  */

  if (TREE_CONSTANT (val))
    return true;
  
  if (set->length == 0)
    return false;
  
  return value_exists_in_set_bitmap (set, val);
}

/* Replace the leader for the value LOOKFOR in SET with EXPR.  */

static void
set_replace_value (value_set_t set, tree lookfor, tree expr)
{
  value_set_node_t node = set->head;

  /* The lookup is probably more expensive than walking the linked
     list when we have only a small number of nodes.  */
  if (!set_contains_value (set, lookfor))
    return;

  for (node = set->head;
       node;
       node = node->next)
    {
      if (get_value_handle (node->expr) == lookfor)
	{
	  node->expr = expr;
	  return;
	}
    }
}

/* Return true if the set contains expression (not value) EXPR.  */

static bool
set_contains (value_set_t set, tree expr)
{
  value_set_node_t node;
  
  for (node = set->head;
       node;
       node = node->next)
    {
      if (operand_equal_p (node->expr, expr, 0))
	return true;
    }
  return false;
}

/* Subtract set B from set A, and return the new set.  */

static value_set_t
set_subtract (value_set_t a, value_set_t b, bool indexed)
{
  value_set_t ret = set_new (indexed);
  value_set_node_t node;
  for (node = a->head;
       node;
       node = node->next)
    {
      if (!set_contains (b, node->expr))
	insert_into_set (ret, node->expr);
    }
  return ret;
}

/* Return true if two sets are equal. */

static bool
set_equal (value_set_t a, value_set_t b)
{
  value_set_node_t node;

  if (a->length != b->length)
    return false;
  for (node = a->head;
       node;
       node = node->next)
    {
      if (!set_contains_value (b, get_value_handle (node->expr)))
	return false;
    }
  return true;
}

/* Replace the value for EXPR in SET with EXPR.  */
static void
value_replace_in_set (value_set_t set, tree expr)
{
  tree val = get_value_handle (expr);

  if (set->length == 0)
    return;
  
  set_replace_value (set, val, expr);
}

/* Insert the value for EXPR into SET, if it doesn't exist already.  */

static void
value_insert_into_set (value_set_t set, tree expr)
{
  tree val = get_value_handle (expr);

  /* Constant and invariant values exist everywhere, and thus,
     actually keeping them in the sets is pointless.  */
  if (TREE_CONSTANT (val))
    return;

  if (!set_contains_value (set, val))
    insert_into_set (set, expr);
}


/* Print out the value_set SET to OUTFILE.  */

static void
print_value_set (FILE *outfile, value_set_t set,
		 const char *setname, int blockindex)
{
  value_set_node_t node;
  fprintf (outfile, "%s[%d] := { ", setname, blockindex);
  if (set)
    {
      for (node = set->head;
	   node;
	   node = node->next)
	{
	  print_generic_expr (outfile, node->expr, 0);
	  
	  fprintf (outfile, " (");
	  print_generic_expr (outfile, get_value_handle (node->expr), 0);
	  fprintf (outfile, ") ");
		     
	  if (node->next)
	    fprintf (outfile, ", ");
	}
    }

  fprintf (outfile, " }\n");
}

/* Print out the expressions that have VAL to OUTFILE.  */

void
print_value_expressions (FILE *outfile, tree val)
{
  if (VALUE_HANDLE_EXPR_SET (val))
    {
      char s[10];
      sprintf (s, "VH.%04d", VALUE_HANDLE_ID (val));
      print_value_set (outfile, VALUE_HANDLE_EXPR_SET (val), s, 0);
    }
}


void
debug_value_expressions (tree val)
{
  print_value_expressions (stderr, val);
}

  
void debug_value_set (value_set_t, const char *, int);

void
debug_value_set (value_set_t set, const char *setname, int blockindex)
{
  print_value_set (stderr, set, setname, blockindex);
}

/* Translate EXPR using phis in PHIBLOCK, so that it has the values of
   the phis in PRED.  Return NULL if we can't find a leader for each
   part of the translated expression.  */

static tree
phi_translate (tree expr, value_set_t set,  basic_block pred,
	       basic_block phiblock)
{
  tree phitrans = NULL;
  tree oldexpr = expr;
  
  if (expr == NULL)
    return NULL;

  /* Phi translations of a given expression don't change,  */
  phitrans = phi_trans_lookup (expr, pred);
  if (phitrans)
    return phitrans;
  
  
  switch (TREE_CODE_CLASS (TREE_CODE (expr)))
    {
    case '2':
      {
	tree oldop1 = TREE_OPERAND (expr, 0);
	tree oldop2 = TREE_OPERAND (expr, 1);
	tree newop1;
	tree newop2;
	tree newexpr;
	
	newop1 = phi_translate (find_leader (set, oldop1),
				set, pred, phiblock);
	if (newop1 == NULL)
	  return NULL;
	newop2 = phi_translate (find_leader (set, oldop2),
				set, pred, phiblock);
	if (newop2 == NULL)
	  return NULL;
	if (newop1 != oldop1 || newop2 != oldop2)
	  {
	    newexpr = pool_alloc (binary_node_pool);
	    memcpy (newexpr, expr, tree_size (expr));
	    create_tree_ann (newexpr);
	    TREE_OPERAND (newexpr, 0) = newop1 == oldop1 ? oldop1 : get_value_handle (newop1);
	    TREE_OPERAND (newexpr, 1) = newop2 == oldop2 ? oldop2 : get_value_handle (newop2);
	    vn_lookup_or_add (newexpr);
	    expr = newexpr;
	    phi_trans_add (oldexpr, newexpr, pred);	    
	  }
      }
      break;
      /* XXX: Until we have PRE of loads working, none will be ANTIC.
       */
    case 'r':
      return NULL;
      break;
    case '1':
      {
	tree oldop1 = TREE_OPERAND (expr, 0);
	tree newop1;
	tree newexpr;

	newop1 = phi_translate (find_leader (set, oldop1),
				set, pred, phiblock);
	if (newop1 == NULL)
	  return NULL;
	if (newop1 != oldop1)
	  {
	    newexpr = pool_alloc (unary_node_pool);
	    memcpy (newexpr, expr, tree_size (expr));
	    create_tree_ann (newexpr);	 
	    TREE_OPERAND (newexpr, 0) = get_value_handle (newop1);
	    vn_lookup_or_add (newexpr);
	    expr = newexpr;
	    phi_trans_add (oldexpr, newexpr, pred);
	  }
      }
      break;
    case 'd':
      abort ();
    case 'x':
      {
	tree phi = NULL;
	int i;
	if (TREE_CODE (expr) != SSA_NAME)
	  abort ();
	if (TREE_CODE (SSA_NAME_DEF_STMT (expr)) == PHI_NODE)
	  phi = SSA_NAME_DEF_STMT (expr);
	else
	  return expr;
	
	for (i = 0; i < PHI_NUM_ARGS (phi); i++)
	  if (PHI_ARG_EDGE (phi, i)->src == pred)
	    {
	      tree val;
	      if (is_undefined_value (PHI_ARG_DEF (phi, i)))
		return NULL;
	      val = vn_lookup_or_add (PHI_ARG_DEF (phi, i));
	      return PHI_ARG_DEF (phi, i);
	    }
      }
      break;
    }
  return expr;
}

static void
phi_translate_set (value_set_t dest, value_set_t set, basic_block pred,
		   basic_block phiblock)
{
  value_set_node_t node;
  for (node = set->head;
       node;
       node = node->next)
    {
      tree translated;
      translated = phi_translate (node->expr, set, pred, phiblock);
      phi_trans_add (node->expr, translated, pred);
      
      if (translated != NULL)
	value_insert_into_set (dest, translated);
    } 
}

/* Find the leader for a value (IE the name representing that
   value) in a given set, and return it.  Return NULL if no leader is
   found.  */

static tree
find_leader (value_set_t set, tree val)
{
  value_set_node_t node;

  if (val == NULL)
    return NULL;
  /* True constants represent themselves.  */
  if (TREE_CODE_CLASS (TREE_CODE (val)) == 'c')
    return val;
  /* Invariants are still represented by values, since they may be
     more than a single _CST node.  */  
  if (TREE_CONSTANT (val))
    return TREE_CHAIN (val);

  if (set->length == 0)
    return NULL;
  
  if (value_exists_in_set_bitmap (set, val))
    {
      for (node = set->head;
	   node;
	   node = node->next)
	{
	  if (get_value_handle (node->expr) == val)
	    return node->expr;
	}
    }
  return NULL;
}

/* Determine if the expression EXPR is valid in SET.  This means that
   we have a leader for each part of the expression (if it consists of
   values), or the expression is an SSA_NAME.  

   NB:  We never should run into a case where we have SSA_NAME +
   SSA_NAME or SSA_NAME + value.  The sets valid_in_set is called on,
   the ANTIC sets, will only ever have SSA_NAME's or binary value
   expression (IE VALUE1 + VALUE2)  */

static bool
valid_in_set (value_set_t set, tree expr)
{
  switch (TREE_CODE_CLASS (TREE_CODE (expr)))
    {
    case '2':
      {
	tree op1 = TREE_OPERAND (expr, 0);
	tree op2 = TREE_OPERAND (expr, 1);
	return set_contains_value (set, op1) && set_contains_value (set, op2);
      }
      break;
    case '1':
      {
	tree op1 = TREE_OPERAND (expr, 0);
	return set_contains_value (set, op1);
      }
      break;
      /* XXX: Until PRE of loads works, no reference nodes are ANTIC.
       */
    case 'r':
      {
	return false;
      }
    case 'x':
      {
	if (TREE_CODE (expr) == SSA_NAME)
	  return true;
	abort ();
      }
    case 'c':
      abort ();
    }
  return false;
}

/* Clean the set of expressions that are no longer valid in SET.  This
   means expressions that are made up of values we have no leaders for
   in SET.  */

static void
clean (value_set_t set)
{
  value_set_node_t node;
  value_set_node_t next;
  node = set->head;
  while (node)
    {
      next = node->next;
      if (!valid_in_set (set, node->expr))	
	set_remove (set, node->expr);
      node = next;
    }
}

/* Compute the ANTIC set for BLOCK.

ANTIC_OUT[BLOCK] = intersection of ANTIC_IN[b] for all succ(BLOCK), if
succs(BLOCK) > 1
ANTIC_OUT[BLOCK] = phi_translate (ANTIC_IN[succ(BLOCK)]) if
succs(BLOCK) == 1

ANTIC_IN[BLOCK] = clean(ANTIC_OUT[BLOCK] U EXP_GEN[BLOCK] -
TMP_GEN[BLOCK])

Iterate until fixpointed.

XXX: It would be nice to either write a set_clear, and use it for
antic_out, or to mark the antic_out set as deleted at the end
of this routine, so that the pool can hand the same memory back out
again for the next antic_out.  */


static bool
compute_antic_aux (basic_block block)
{
  basic_block son;
  edge e;
  bool changed = false;
  value_set_t S, old, ANTIC_OUT;
  value_set_node_t node;
  
  ANTIC_OUT = S = NULL;
  /* If any edges from predecessors are abnormal, antic_in is empty, so
     punt.  Remember that the block has an incoming abnormal edge by
     setting the BB_VISITED flag.  */
  if (! (block->flags & BB_VISITED))
    {
      for (e = block->pred; e; e = e->pred_next)
 	if (e->flags & EDGE_ABNORMAL)
 	  {
 	    block->flags |= BB_VISITED;
 	    break;
 	  }
    }
  if (block->flags & BB_VISITED)
    {
      S = NULL;
      goto visit_sons;
    }
  

  old = set_new (false);
  set_copy (old, ANTIC_IN (block));
  ANTIC_OUT = set_new (true);

  /* If the block has no successors, ANTIC_OUT is empty, because it is
     the exit block.  */
  if (block->succ == NULL);

  /* If we have one successor, we could have some phi nodes to
     translate through.  */
  else if (block->succ->succ_next == NULL)
    {
      phi_translate_set (ANTIC_OUT, ANTIC_IN(block->succ->dest),
			 block, block->succ->dest);
    }
  /* If we have multiple successors, we take the intersection of all of
     them.  */
  else
    {
      varray_type worklist;
      edge e;
      size_t i;
      basic_block bprime, first;

      VARRAY_BB_INIT (worklist, 1, "succ");
      e = block->succ;
      while (e)
	{
	  VARRAY_PUSH_BB (worklist, e->dest);
	  e = e->succ_next;
	}
      first = VARRAY_BB (worklist, 0);
      set_copy (ANTIC_OUT, ANTIC_IN (first));

      for (i = 1; i < VARRAY_ACTIVE_SIZE (worklist); i++)
	{
	  bprime = VARRAY_BB (worklist, i);
	  node = ANTIC_OUT->head;
	  while (node)
	    {
	      tree val;
	      value_set_node_t next = node->next;
	      val = get_value_handle (node->expr);
	      if (!set_contains_value (ANTIC_IN (bprime), val))
		set_remove (ANTIC_OUT, node->expr);
	      node = next;
	    }
	}
      VARRAY_CLEAR (worklist);
    }

  /* Generate ANTIC_OUT - TMP_GEN */
  S = set_subtract (ANTIC_OUT, TMP_GEN (block), false);

  /* Start ANTIC_IN with EXP_GEN - TMP_GEN */
  ANTIC_IN (block) = set_subtract (EXP_GEN (block),TMP_GEN (block), true);
  
  /* Then union in the ANTIC_OUT - TMP_GEN values, to get ANTIC_OUT U
     EXP_GEN - TMP_GEN */
  for (node = S->head;
       node;
       node = node->next)
    {
      value_insert_into_set (ANTIC_IN (block), node->expr);
    }
  clean (ANTIC_IN (block));
  

  if (!set_equal (old, ANTIC_IN (block)))
    changed = true;

 visit_sons:
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      if (ANTIC_OUT)
	print_value_set (dump_file, ANTIC_OUT, "ANTIC_OUT", block->index);
      print_value_set (dump_file, ANTIC_IN (block), "ANTIC_IN", block->index);
      if (S)
	print_value_set (dump_file, S, "S", block->index);

    }

  for (son = first_dom_son (CDI_POST_DOMINATORS, block);
       son;
       son = next_dom_son (CDI_POST_DOMINATORS, son))
    {
      changed |= compute_antic_aux (son);
    }
  return changed;
}

/* Compute ANTIC sets.  */

static void
compute_antic (void)
{
  bool changed = true;
  basic_block bb;
  int num_iterations = 0;
  FOR_ALL_BB (bb)
    {
      ANTIC_IN (bb) = set_new (true);
      if (bb->flags & BB_VISITED)
	abort ();
    }

  while (changed)
    {
      num_iterations++;
      changed = false;
      changed = compute_antic_aux (EXIT_BLOCK_PTR);
    }
  FOR_ALL_BB (bb)
    {
      bb->flags &= ~BB_VISITED;
    }
  if (num_iterations > 2 && dump_file && (dump_flags & TDF_STATS))
    fprintf (dump_file, "compute_antic required %d iterations\n", num_iterations);
}


/* Find a leader for an expression, or generate one using
   create_expression_by_pieces if it's ANTIC but
   complex.  
   BLOCK is the basic_block we are looking for leaders in.
   EXPR is the expression to find a leader or generate for. 
   STMTS is the statement list to put the inserted expressions on.
   Returns the SSA_NAME of the LHS of the generated expression or the
   leader.  */

static tree
find_or_generate_expression (basic_block block, tree expr, tree stmts)
{
  tree genop;
  genop = find_leader (AVAIL_OUT (block), expr);
  /* Depending on the order we process DOM branches in, the value
     may not have propagated to all the dom children yet during
     this iteration.  In this case, the value will always be in
     the NEW_SETS for us already, having been propogated from our
     dominator.  */
  if (genop == NULL)
    genop = find_leader (NEW_SETS (block), expr);
  /* If it's still NULL, see if it is a complex expression, and if
     so, generate it recursively, otherwise, abort, because it's
     not really .  */
  if (genop == NULL)
    {
      genop = VALUE_HANDLE_EXPR_SET (expr)->head->expr;
      if (TREE_CODE_CLASS (TREE_CODE (genop)) != '1'
	  && TREE_CODE_CLASS (TREE_CODE (genop)) != '2')
	abort ();
      genop = create_expression_by_pieces (block, genop, stmts);
    }
  return genop;
}

  
/* Create an expression in pieces, so that we can handle very complex
   expressions that may be ANTIC, but not necessary GIMPLE.  
   BLOCK is the basic block the expression will be inserted into,
   EXPR is the expression to insert (in value form)
   STMTS is a statement list to append the necessary insertions into.

   This function will abort if we hit some value that shouldn't be
   ANTIC but is (IE there is no leader for it, or its components).
   This function may also generate expressions that are themselves
   partially or fully redundant.  Those that are will be either made
   fully redundant during the next iteration of insert (for partially
   redundant ones), or eliminated by eliminate (for fully redundant
   ones).  */

static tree
create_expression_by_pieces (basic_block block, tree expr, tree stmts)
{
  tree name = NULL_TREE;
  tree newexpr = NULL_TREE;
  tree v;
  
  switch (TREE_CODE_CLASS (TREE_CODE (expr)))
    {
    case '2':
      {
	tree_stmt_iterator tsi;
	tree genop1, genop2;
	tree temp;
	tree op1 = TREE_OPERAND (expr, 0);
	tree op2 = TREE_OPERAND (expr, 1);
	genop1 = find_or_generate_expression (block, op1, stmts);
	genop2 = find_or_generate_expression (block, op2, stmts);
	temp = create_tmp_var (TREE_TYPE (expr), "pretmp");
	add_referenced_tmp_var (temp);
	newexpr = build (TREE_CODE (expr), TREE_TYPE (expr), 
			 genop1, genop2);
	newexpr = build (MODIFY_EXPR, TREE_TYPE (expr),
			 temp, newexpr);
	name = make_ssa_name (temp, newexpr);
	TREE_OPERAND (newexpr, 0) = name;
	tsi = tsi_last (stmts);
	tsi_link_after (&tsi, newexpr, TSI_CONTINUE_LINKING);
	pre_stats.insertions++;
	break;
      }
    case '1':
      {
	tree_stmt_iterator tsi;
	tree genop1;
	tree temp;
	tree op1 = TREE_OPERAND (expr, 0);
	genop1 = find_or_generate_expression (block, op1, stmts);
	temp = create_tmp_var (TREE_TYPE (expr), "pretmp");
	add_referenced_tmp_var (temp);
	newexpr = build (TREE_CODE (expr), TREE_TYPE (expr), 
			 genop1);
	newexpr = build (MODIFY_EXPR, TREE_TYPE (expr),
			 temp, newexpr);
	name = make_ssa_name (temp, newexpr);
	TREE_OPERAND (newexpr, 0) = name;
	tsi = tsi_last (stmts);
	tsi_link_after (&tsi, newexpr, TSI_CONTINUE_LINKING);
	pre_stats.insertions++;

	break;
      }
    default:
      abort ();
      
    }
  v = get_value_handle (expr);
  vn_add (name, v);
  insert_into_set (NEW_SETS (block), name);
  value_insert_into_set (AVAIL_OUT (block), name);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {				    
      fprintf (dump_file, "Inserted ");
      print_generic_expr (dump_file, newexpr, 0);
      fprintf (dump_file, " in predecessor %d\n", block->index);
    }
  return name;
}
      
/* Perform insertion of partially redundant values.
   For BLOCK, do the following:
   1.  Propagate the NEW_SETS of the dominator into the current block.
   If the block has multiple predecessors, 
       2a. Iterate over the ANTIC expressions for the block to see if
           any of them are partially redundant.
       2b. If so, insert them into the necessary predecessors to make
           the expression fully redundant.
       2c. Insert a new PHI merging the values of the predecessors.
       2d. Insert the new PHI, and the new expressions, into the
           NEW_SETS set.  
   3. Recursively call ourselves on the dominator children of BLOCK.

*/
static bool
insert_aux (basic_block block)
{
  basic_block son;
  bool new_stuff = false;

  if (block)
    {
      value_set_node_t e;
      basic_block dom;
      dom = get_immediate_dominator (CDI_DOMINATORS, block);
      if (dom)
	{
	  e = NEW_SETS (dom)->head;
	  while (e)
	    {
	      insert_into_set (NEW_SETS (block), e->expr);
	      value_replace_in_set (AVAIL_OUT (block), e->expr);
	      e = e->next;
	    }
	  if (block->pred->pred_next)
	    {
	      value_set_node_t node;
	      for (node = ANTIC_IN (block)->head;
		   node;
		   node = node->next)
		{
		  if (TREE_CODE_CLASS (TREE_CODE (node->expr)) == '2'
		      || TREE_CODE_CLASS (TREE_CODE (node->expr)) == '1')
		    {
		      tree *avail;
		      tree val;
		      bool by_some = false;
		      bool cant_insert = false;
		      bool all_same = true;
		      tree first_s = NULL;
		      edge pred;
		      basic_block bprime;
		      tree eprime;

		      val = get_value_handle (node->expr);
		      if (set_contains_value (PHI_GEN (block), val))
			continue; 
		      if (set_contains_value (AVAIL_OUT (dom), val))
			{
			  if (dump_file && (dump_flags & TDF_DETAILS))
			    fprintf (dump_file, "Found fully redundant value\n");
			  continue;
			}
		    		    
		      avail = xcalloc (last_basic_block, sizeof (tree));
		      for (pred = block->pred;
			   pred;
			   pred = pred->pred_next)
			{
			  tree vprime;
			  tree edoubleprime;
			  bprime = pred->src;
			  eprime = phi_translate (node->expr,
						  ANTIC_IN (block),
						  bprime, block);

			  /* eprime will generally only be NULL if the
			     value of the expression, translated
			     through the PHI for this predecessor, is
			     undefined.  If that is the case, we can't
			     make the expression fully redundant,
			     because its value is undefined along a
			     predecessor path.  We can thus break out
			     early because it doesn't matter what the
			     rest of the results are.  */
			  if (eprime == NULL)
			    {
			      cant_insert = true;
			      break;
			    }

			  vprime = get_value_handle (eprime);
			  if (!vprime)
			    abort ();			  
			  edoubleprime = find_leader (AVAIL_OUT (bprime),
						      vprime);
			  if (edoubleprime == NULL)
			    {
			      avail[bprime->index] = eprime;
			      all_same = false;
			    }
			  else
			    {
			      avail[bprime->index] = edoubleprime;
			      by_some = true; 
			      if (first_s == NULL)
				first_s = edoubleprime;
			      else if (first_s != edoubleprime)
				all_same = false;
			      if (first_s != edoubleprime 
				  && operand_equal_p (first_s, edoubleprime, 0))
				abort ();
			    }
			}
		      /* If we can insert it, it's not the same value
			 already existing along every predecessor, and
			 it's defined by some predecessor, it is
			 partially redundant.  */
		      if (!cant_insert && !all_same && by_some)
			{
			  tree type = TREE_TYPE (avail[block->pred->src->index]);
			  tree temp;
			  if (dump_file && (dump_flags & TDF_DETAILS))
			    {
			      fprintf (dump_file, "Found partial redundancy for expression ");
			      print_generic_expr (dump_file, node->expr, 0);
			      fprintf (dump_file, "\n");
			    }

			  /* Make the necessary insertions. */
			  for (pred = block->pred;
			       pred;
			       pred = pred->pred_next)
			    {
			      tree stmts = alloc_stmt_list ();
			      tree builtexpr;
			      bprime = pred->src;
			      eprime = avail[bprime->index];
			      if (TREE_CODE_CLASS (TREE_CODE (eprime)) == '2'
				  || TREE_CODE_CLASS (TREE_CODE (eprime)) == '1')
				{
				  builtexpr = create_expression_by_pieces (bprime,
									   eprime,
									   stmts);
				  bsi_insert_on_edge (pred, stmts);
				  bsi_commit_edge_inserts (NULL);
				  avail[bprime->index] = builtexpr;
				}			      
			    } 
			  /* Now build a phi for the new variable.  */
			  temp = create_tmp_var (type, "prephitmp");
			  add_referenced_tmp_var (temp);
			  temp = create_phi_node (temp, block);
			  vn_add (PHI_RESULT (temp), val);

#if 0
			  if (!set_contains_value (AVAIL_OUT (block), val))
			    insert_into_set (AVAIL_OUT (block), 
					     PHI_RESULT (temp));
			  else
#endif
			    value_replace_in_set (AVAIL_OUT (block), 
						 PHI_RESULT (temp));
			  for (pred = block->pred;
			       pred;
			       pred = pred->pred_next)
			    {
			      add_phi_arg (&temp, avail[pred->src->index],
					   pred);
			    }
			  if (dump_file && (dump_flags & TDF_DETAILS))
			    {
			      fprintf (dump_file, "Created phi ");
			      print_generic_expr (dump_file, temp, 0);
			      fprintf (dump_file, " in block %d\n", block->index);
			    }
			  pre_stats.phis++;
			  new_stuff = true;
			  insert_into_set (NEW_SETS (block),
					   PHI_RESULT (temp));
			  insert_into_set (PHI_GEN (block),
					   PHI_RESULT (temp));
			}

		      free (avail);
		    }
		}
	    }
	}
    }
  for (son = first_dom_son (CDI_DOMINATORS, block);
       son;
       son = next_dom_son (CDI_DOMINATORS, son))
    {
      new_stuff |= insert_aux (son);
    }

  return new_stuff;
}

/* Perform insertion of partially redundant values.  */

static void
insert (void)
{
  bool new_stuff = true;
  basic_block bb;
  int num_iterations = 0;

  FOR_ALL_BB (bb)
    NEW_SETS (bb) = set_new (true);
  
  while (new_stuff)
    {
      num_iterations++;
      new_stuff = false;
      new_stuff = insert_aux (ENTRY_BLOCK_PTR);
    }
  if (num_iterations > 2 && dump_file && (dump_flags & TDF_STATS))
    fprintf (dump_file, "insert required %d iterations\n", num_iterations);
}


/* Return true if EXPR has no defining statement in this procedure,
   *AND* isn't a live-on-entry parameter.  */

static bool
is_undefined_value (tree expr)
{  
#ifdef ENABLE_CHECKING
  /* We should never be handed DECL's  */
  if (DECL_P (expr))
    abort ();
#endif

  if (TREE_CODE (expr) == SSA_NAME)
    {
      /* XXX: Is this the correct test?  */
      if (TREE_CODE (SSA_NAME_VAR (expr)) == PARM_DECL)
	return false;
      if (IS_EMPTY_STMT (SSA_NAME_DEF_STMT (expr)))
	return true;
    }

  return false;
}

/* Compute the AVAIL set for BLOCK.
   This function performs value numbering of the statements in BLOCK. 
   The AVAIL sets are built from information we glean while doing this
   value numbering, since the AVAIL sets contain only entry per
   value.

   
   AVAIL_IN[BLOCK] = AVAIL_OUT[dom(BLOCK)].
   AVAIL_OUT[BLOCK] = AVAIL_IN[BLOCK] U PHI_GEN[BLOCK] U
   TMP_GEN[BLOCK].
*/

static void
compute_avail (basic_block block)
{
  basic_block son;
  
  /* For arguments with default definitions, we pretend they are
     defined in the entry block.  */
  if (block == ENTRY_BLOCK_PTR)
    {
      tree param;
      for (param = DECL_ARGUMENTS (current_function_decl);
	   param;
	   param = TREE_CHAIN (param))
	{
	  if (default_def (param) != NULL)
	    {
	      tree val;
	      tree def = default_def (param);
	      val = vn_lookup_or_add (def);
	      insert_into_set (TMP_GEN (block), def);
	      value_insert_into_set (AVAIL_OUT (block), def);
	    }
	}
    }
  else if (block)
    {
      block_stmt_iterator bsi;
      tree stmt, phi;
      basic_block dom;

      dom = get_immediate_dominator (CDI_DOMINATORS, block);
      if (dom)
	set_copy (AVAIL_OUT (block), AVAIL_OUT (dom));

      for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
	{
	  /* Ignore virtual PHIs until we can do PRE on expressions
	     with virtual operands.  */
	  if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
	    continue;

	  vn_lookup_or_add (PHI_RESULT (phi));
	  value_insert_into_set (AVAIL_OUT (block), PHI_RESULT (phi));
	  insert_into_set (PHI_GEN (block), PHI_RESULT (phi));
	}

      for (bsi = bsi_start (block); !bsi_end_p (bsi); bsi_next (&bsi))
	{
	  tree op0, op1;
	  stmt = bsi_stmt (bsi);
	  get_stmt_operands (stmt);
	  
	  if (NUM_VUSES (STMT_VUSE_OPS (stmt))
	      || NUM_V_MUST_DEFS (STMT_V_MUST_DEF_OPS (stmt))
	      || NUM_V_MAY_DEFS (STMT_V_MAY_DEF_OPS (stmt))
	      || stmt_ann (stmt)->has_volatile_ops)
	    {
	      size_t j;
	      for (j = 0; j < NUM_DEFS (STMT_DEF_OPS (stmt)); j++)
		{
		  tree def = DEF_OP (STMT_DEF_OPS (stmt), j);
		  vn_lookup_or_add (def);
		  insert_into_set (TMP_GEN (block), def);
		  value_insert_into_set (AVAIL_OUT (block), def);
		}
	      for (j = 0; j < NUM_USES (STMT_USE_OPS (stmt)); j++)
		{
		  tree use = USE_OP (STMT_USE_OPS (stmt), j);
		  if (TREE_CODE (use) == SSA_NAME)
		    {
		      vn_lookup_or_add (use);
		      insert_into_set (TMP_GEN (block), use);
		      value_insert_into_set (AVAIL_OUT (block), use);
		    }
		}
	      continue;
	    }

	  if (TREE_CODE (stmt) == MODIFY_EXPR)
	    {
	      op0 = TREE_OPERAND (stmt, 0);
	      if (TREE_CODE (op0) != SSA_NAME)
		continue;
	      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0))
		continue;
	      op1 = TREE_OPERAND (stmt, 1);
	      STRIP_USELESS_TYPE_CONVERSION (op1);
	      if (is_gimple_min_invariant (op1))
		{
		  vn_add (op0, vn_lookup_or_add (op1));
		  insert_into_set (TMP_GEN (block), op0);
		  value_insert_into_set (AVAIL_OUT (block), op0);
		}
	      else if (TREE_CODE_CLASS (TREE_CODE (op1)) == '2')
		{
		  tree bop1, bop2;
		  tree val, val1, val2;
		  tree newt;
		  bop1 = TREE_OPERAND (op1, 0);
		  bop2 = TREE_OPERAND (op1, 1);
		  val1 = vn_lookup_or_add (bop1);
		  val2 = vn_lookup_or_add (bop2);
 
		  newt = pool_alloc (binary_node_pool);
		  memcpy (newt, op1, tree_size (op1));
		  TREE_OPERAND (newt, 0) = val1;
		  TREE_OPERAND (newt, 1) = val2;
		  val = vn_lookup_or_add (newt);
		  vn_add (op0, val);
		  if (!is_undefined_value (bop1))
		    value_insert_into_set (EXP_GEN (block), bop1);
		  if (!is_undefined_value (bop2))
		    value_insert_into_set (EXP_GEN (block), bop2);
		  value_insert_into_set (EXP_GEN (block), newt);
		  insert_into_set (TMP_GEN (block), op0);
		  value_insert_into_set (AVAIL_OUT (block), op0);  
		}
	      else if (TREE_CODE_CLASS (TREE_CODE (op1)) == '1'
		       && !is_gimple_cast (op1))
		{
		  tree uop;
		  tree val, val1;
		  tree newt;
		  uop = TREE_OPERAND (op1, 0);
		  val1 = vn_lookup_or_add (uop);
		  newt = pool_alloc (unary_node_pool);
		  memcpy (newt, op1, tree_size (op1));
		  TREE_OPERAND (newt, 0) = val1;
		  val = vn_lookup_or_add (newt);
		  vn_add (op0, val);
		  if (!is_undefined_value (uop))
		    value_insert_into_set (EXP_GEN (block), uop);
		  value_insert_into_set (EXP_GEN (block), newt);
		  insert_into_set (TMP_GEN (block), op0);
		  value_insert_into_set (AVAIL_OUT (block), op0);
		}
	      else if (TREE_CODE (op1) == SSA_NAME)
		{
		  tree val = vn_lookup_or_add (op1);
		  vn_add (op0, val);
		  if (!is_undefined_value (op1))
		    value_insert_into_set (EXP_GEN (block), op1);
		  insert_into_set (TMP_GEN (block), op0);
		  value_insert_into_set (AVAIL_OUT (block), op0);
		}
	      else
		{
		  size_t j;
		  for (j = 0; j < NUM_DEFS (STMT_DEF_OPS (stmt)); j++)
		    {
		      tree def = DEF_OP (STMT_DEF_OPS (stmt), j);
		      vn_lookup_or_add (def);
		      insert_into_set (TMP_GEN (block), def);
		      value_insert_into_set (AVAIL_OUT (block), def);
		      if (def != op0)
			abort ();
		    }
		  for (j = 0; j < NUM_USES (STMT_USE_OPS (stmt)); j++)
		    {
		      tree use = USE_OP (STMT_USE_OPS (stmt), j);
		      if (TREE_CODE (use) == SSA_NAME)
			{
			  vn_lookup_or_add (use);
			  insert_into_set (TMP_GEN (block), use);
			  value_insert_into_set (AVAIL_OUT (block), use);
			}
		    }
		}
	    }
	  else
	    {
	      size_t j;
	      for (j = 0; j < NUM_DEFS (STMT_DEF_OPS (stmt)); j++)
		{
		  tree def = DEF_OP (STMT_DEF_OPS (stmt), j);
		  vn_lookup_or_add (def);
		  insert_into_set (TMP_GEN (block), def);
		  value_insert_into_set (AVAIL_OUT (block), def);
		}
	      for (j = 0; j < NUM_USES (STMT_USE_OPS (stmt)); j++)
		{
		  tree use = USE_OP (STMT_USE_OPS (stmt), j);
		  if (TREE_CODE (use) == SSA_NAME)
		    {
		      vn_lookup_or_add (use);
		      insert_into_set (TMP_GEN (block), use);
		      value_insert_into_set (AVAIL_OUT (block), use);
		    }
		}
	    }
	}
    }

  for (son = first_dom_son (CDI_DOMINATORS, block);
       son;
       son = next_dom_son (CDI_DOMINATORS, son))
    compute_avail (son);
}


/* Eliminate fully redundant computations.  */

static void
eliminate (void)
{
  basic_block b;

  FOR_EACH_BB (b)
    {
      block_stmt_iterator i;
      
      for (i = bsi_start (b); !bsi_end_p (i); bsi_next (&i))
        {
          tree stmt = bsi_stmt (i);

          if (NUM_VUSES (STMT_VUSE_OPS (stmt))
              || NUM_V_MUST_DEFS (STMT_V_MUST_DEF_OPS (stmt))
	      || NUM_V_MAY_DEFS (STMT_V_MAY_DEF_OPS (stmt))
	      || stmt_ann (stmt)->has_volatile_ops)
            continue;

          /* Lookup the RHS of the expression, see if we have an
	     available computation for it. If so, replace the RHS with
	     the available computation.  */
	  if (TREE_CODE (stmt) == MODIFY_EXPR)
            {
              tree t = TREE_OPERAND (stmt, 0);
              tree expr = TREE_OPERAND (stmt, 1);
              tree sprime;
	      /* There is no point in eliminating NOP_EXPR, it isn't
		 supposed to generate any code.  */
	      if (TREE_CODE (expr) == NOP_EXPR
		  || (TREE_CODE_CLASS (TREE_CODE (expr)) != '2' 
		   && TREE_CODE_CLASS (TREE_CODE (expr)) != '1'))
		continue;

	      sprime = find_leader (AVAIL_OUT (b), vn_lookup (t));
              if (sprime 
		  && sprime != t 
		  && may_propagate_copy (sprime, TREE_OPERAND (stmt, 1)))
                {
		  if (dump_file && (dump_flags & TDF_DETAILS))
		    {
		      fprintf (dump_file, "Replaced ");
		      print_generic_expr (dump_file, expr, 0);
		      fprintf (dump_file, " with ");
		      print_generic_expr (dump_file, sprime, 0);
		      fprintf (dump_file, " in ");
		      print_generic_stmt (dump_file, stmt, 0);
		    }
		  pre_stats.eliminations++;
                  propagate_tree_value (&TREE_OPERAND (stmt, 1), sprime);
                  modify_stmt (stmt);
                }
            }
        }
    }
}


/* Main entry point to the SSA-PRE pass.

   PHASE indicates which dump file from the DUMP_FILES array to use when
   dumping debugging information.  */

static void
execute_pre (void)
{
  size_t tsize;
  basic_block bb;
  memset (&pre_stats, 0, sizeof (pre_stats));
  FOR_ALL_BB (bb)
    {
      bb->aux = xcalloc (1, sizeof (struct bb_value_sets));
    }
  phi_translate_table = htab_create (511, expr_pred_trans_hash,
				     expr_pred_trans_eq,
				     free);
  value_set_pool = create_alloc_pool ("Value sets",
				      sizeof (struct value_set), 30);
  value_set_node_pool = create_alloc_pool ("Value set nodes",
				       sizeof (struct value_set_node), 30);
  calculate_dominance_info (CDI_POST_DOMINATORS);
  calculate_dominance_info (CDI_DOMINATORS);
  tsize = tree_size (build (PLUS_EXPR, void_type_node, NULL_TREE,
			    NULL_TREE));
  binary_node_pool = create_alloc_pool ("Binary tree nodes", tsize, 30);
  tsize = tree_size (build1 (NEGATE_EXPR, void_type_node, NULL_TREE));
  unary_node_pool = create_alloc_pool ("Unary tree nodes", tsize, 30);

  FOR_ALL_BB (bb)
    {
      EXP_GEN (bb) = set_new (true);
      PHI_GEN (bb) = set_new (true);
      TMP_GEN (bb) = set_new (false);
      AVAIL_OUT (bb) = set_new (true);
    }

  compute_avail (ENTRY_BLOCK_PTR);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      FOR_ALL_BB (bb)
	{
	  print_value_set (dump_file, EXP_GEN (bb), "exp_gen", bb->index);
	  print_value_set (dump_file, TMP_GEN (bb), "tmp_gen", bb->index);
	  print_value_set (dump_file, AVAIL_OUT (bb), "avail_out", bb->index);
	}
    }

  /* Insert can get quite slow on an incredibly large number of basic
     blocks due to some quadratic behavior.  Until this behavior is
     fixed, don't run it when he have an incredibly large number of
     bb's.  If we aren't going to run insert, there is no point in
     computing ANTIC, either, even though it's plenty fast.  */
 
  if (n_basic_blocks < 4000)
    {
      compute_antic ();
      
      insert ();
    }
  eliminate ();
  
  if (dump_file && (dump_flags & TDF_STATS))
    {
      fprintf (dump_file, "Insertions:%d\n", pre_stats.insertions);
      fprintf (dump_file, "New PHIs:%d\n", pre_stats.phis);
      fprintf (dump_file, "Eliminated:%d\n", pre_stats.eliminations);
    }

  free_alloc_pool (value_set_pool);
  free_alloc_pool (value_set_node_pool);
  free_alloc_pool (binary_node_pool);
  free_alloc_pool (unary_node_pool);
  htab_delete (phi_translate_table);
  
  FOR_ALL_BB (bb)
    {
      free (bb->aux);
      bb->aux = NULL;
    }
  free_dominance_info (CDI_POST_DOMINATORS);
}

static bool
gate_pre (void)
{
  return flag_tree_pre != 0;
}

struct tree_opt_pass pass_pre =
{
  "pre",				/* name */
  gate_pre,				/* gate */
  execute_pre,				/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_PRE,				/* tv_id */
  PROP_no_crit_edges | PROP_cfg | PROP_ssa,/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
};