aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-pre.c
blob: 5896953ca832055ed42aa3f7136fc117cf378694 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
/* SSA-PRE for trees.
   Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
   Contributed by Daniel Berlin <dan@dberlin.org>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "errors.h"
#include "ggc.h"
#include "tree.h"

/* These RTL headers are needed for basic-block.h.  */
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-inline.h"
#include "tree-flow.h"
#include "tree-gimple.h"
#include "tree-dump.h"
#include "timevar.h"
#include "fibheap.h"
#include "hashtab.h"
#include "tree-iterator.h"
#include "real.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "flags.h"


/*

   Some of the algorithms are also based on Open64's SSAPRE implementation.

   Since the papers are a bit dense to read, take a while to grasp,
   and have a few bugs, i'll give a quick rundown:

   Normally, in non-SSA form, one performs PRE on expressions using
   bit vectors, determining properties for all expressions at once
   through bitmap operations and iterative dataflow.

   SSAPRE, like most non-SSA->SSA algorithm conversions, operates one
   expression at a time, and doesn't use bitvectors or iterative
   dataflow.
   
   It answers the question "Given a single hypothetical temporary
   variable, what expressions could we eliminate.  

   To be able to do this, we need an SSA form for expressions.
   If you are already confused, you likely think an expression, as
   used here, is something like "b_3 = a_2 + 5".  It's not. It's "a +
   5". "a_2 + 5" is an *occurrence* of the expression "a + 5".  Just
   like PRE, it's lexical equivalence that matters.
   Compilers generally give you an SSA form for variables, and maybe
   arrays (and/or conditionals).  But not for expressions.

   GCC doesn't give you one either, so we have to build it.
   Thus, the first steps of SSAPRE are to do just these things.

   First we collect lists of occurrences of expressions we are going
   to operate on.
   Note that:
   Unlike the paper, we don't have to ever add newly formed
   expressions to the list (for normal SSAPRE, anyway), because we
   don't have expressions with more than two operators, and each
   operator is either a constant or a variable.  Thus, no second
   order effects.
   
   Once we have the lists of occurrences, we process one expression
   at a time, doing the following:
   1. Using a slightly modified SSA phi placement algorithm, place
   expression PHI's for expressions.
   2. Using a two step optimistic SSA renaming algorithm, version the
   nodes and link phi operands to their real occurrences, if they
   exist.  This creates a factored graph of our expression SSA occurrences.
   3. Using the factored graph, compute downsafe, avail, and later for
   EPHIs (which are SSA versions of the same named bitvector PRE
   problems)
   4. Using EPHI availability information and versions, compute what
   occurrences need to have saves, and what occurrences can be
   reloaded from an already saved value.
   5. Insert the saves and reloads, and transform EPHIs into regular
   phis of the temporary we use for insertion/saving.  
   
   See http://citeseer.nj.nec.com/chow97new.html, and
   http://citeseer.nj.nec.com/kennedy99partial.html for details of the
   algorithm.
   
   kennedy99partial is newer, and is what this implementation is based
   on.
   
   For strength reduction addition, see
   http://citeseer.nj.nec.com/kennedy98strength.html.

   There is also a paper on sparse register promotion using PRE that
   contains the basic algorithm for load PRE.  The exact title/url of
   the paper escapes me.  

   Lastly, there is a code hoisting extension that open64 performs
   (see opt_ehoist.cxx), but we don't. It's not documented in any
   papers, but not that difficult to understand of implement.  */


/* TODOS:
   Do strength reduction on a +-b and -a, not just a * <constant>.
   */

struct expr_info;
static void clear_all_eref_arrays (void);
static inline bool expr_lexically_eq (const tree, const tree);
static void free_expr_info (struct expr_info *);
static bitmap compute_idfs (bitmap *, tree);
static void set_var_phis (struct expr_info *, tree);
static inline bool names_match_p (const tree, const tree);
static bool is_strred_cand (const tree);
static int pre_expression (struct expr_info *, void *, bitmap);
static bool is_injuring_def (struct expr_info *, tree);
static inline bool okay_injuring_def (tree, tree);
static bool expr_phi_insertion (bitmap *, struct expr_info *);
static tree factor_through_injuries (struct expr_info *, tree, tree, bool *);
static inline tree maybe_find_rhs_use_for_var (tree, tree, unsigned int);
static inline tree find_rhs_use_for_var (tree, tree);
static tree create_ephi_node (basic_block, unsigned int);
static inline int opnum_of_phi (tree, int);
static inline int opnum_of_ephi (const tree, const edge);
static tree subst_phis (struct expr_info *, tree, basic_block, basic_block);
static void generate_expr_as_of_bb (tree, basic_block, basic_block);
static void generate_vops_as_of_bb (tree, basic_block, basic_block);
static void rename_1 (struct expr_info *);
static void process_delayed_rename (struct expr_info *, tree, tree);
static void assign_new_class (tree, varray_type *, varray_type *);
static void create_and_insert_occ_in_preorder_dt_order (struct expr_info *);
static void insert_euse_in_preorder_dt_order (struct expr_info *);
static bool ephi_has_unsafe_arg (tree);
static void reset_down_safe (tree, int);
static void compute_down_safety (struct expr_info *);
static void compute_will_be_avail (struct expr_info *);
static void compute_stops (struct expr_info *);
static bool finalize_1 (struct expr_info *);
static void finalize_2 (struct expr_info *);
static tree occ_identical_to (tree);
static void require_phi (struct expr_info *, basic_block);
static bool really_available_def (tree node);

/* Functions used for an EPHI based depth first search.  */
struct ephi_df_search 
{
  /* Return true if the ephi has been seen.  */
  bool (*seen) (tree);
  /* Mark the ephi as seen.  */
  void (*set_seen) (tree);
  /* Note that the search reaches from one ephi to it's use.  */
  void (*reach_from_to) (tree, int, tree);
  /* Return true if we should start a search from this PHI.  */
  bool (*start_from) (tree);
  /* Return true if we should continue the search to this use.  */
  bool (*continue_from_to) (tree, int, tree);
};
static bool repl_search_seen (tree);
static void repl_search_set_seen (tree);
static void repl_search_reach_from_to (tree, int, tree);
static bool repl_search_start_from (tree);
static bool repl_search_continue_from_to (tree, int, tree);
static bool stops_search_seen (tree);
static void stops_search_set_seen (tree);
static void stops_search_reach_from_to (tree, int, tree);
static bool stops_search_start_from (tree);
static bool stops_search_continue_from_to (tree, int, tree);
static bool cba_search_seen (tree);
static void cba_search_set_seen (tree);
static bool cba_search_start_from (tree);
static bool cba_search_continue_from_to (tree, int, tree);
struct ephi_df_search cant_be_avail_search = {
  cba_search_seen,
  cba_search_set_seen,
  NULL,
  cba_search_start_from,
  cba_search_continue_from_to
};

struct ephi_df_search stops_search = {
  stops_search_seen,
  stops_search_set_seen,
  stops_search_reach_from_to, 
  stops_search_start_from,
  stops_search_continue_from_to
};

  
/* depth-first replacement search used during temp ESSA minimization.  */
struct ephi_df_search replacing_search = {
  repl_search_seen,
  repl_search_set_seen,
  repl_search_reach_from_to,
  repl_search_start_from,
  repl_search_continue_from_to
};

static void do_ephi_df_search_1 (struct ephi_df_search, tree);
static void do_ephi_df_search (struct expr_info *, struct ephi_df_search);

static inline bool any_operand_injured (tree);
static void code_motion (struct expr_info *);
static tree pick_ssa_name (tree stmt);
#if 0
static tree calculate_increment (struct expr_info *, tree);
#endif
static bool can_insert (tree, int);
static void set_save (struct expr_info *, tree);
static tree reaching_def (tree, tree, basic_block, tree);
static tree do_proper_save (tree , tree, int);
static void process_left_occs_and_kills (varray_type, tree);
static tree create_expr_ref (struct expr_info *, tree, enum tree_code,
                             basic_block, tree);
static inline bool ephi_will_be_avail (tree);
static inline tree ephi_at_block (basic_block);
static tree get_default_def (tree, htab_t);
static inline bool same_e_version_real_occ_real_occ (struct expr_info *,
						     const tree, 
						     const tree);
static inline bool load_modified_phi_result (basic_block, tree);
static inline bool same_e_version_phi_result (struct expr_info *,
					      tree, tree, tree);
static inline bool load_modified_real_occ_real_occ (tree, tree);
static inline bool same_e_version_real_occ_phi_opnd (struct expr_info *, 
						     tree, basic_block, 
						     int, tree, bool *);
static inline bool injured_real_occ_real_occ (struct expr_info *,
					      tree, tree);
static inline bool injured_phi_result_real_occ (struct expr_info *,
						tree, tree, basic_block);
static inline bool injured_real_occ_phi_opnd (struct expr_info *,
					      tree, basic_block, int);
static void compute_du_info (struct expr_info *);
static void add_ephi_use (tree, tree, int);
static void insert_one_operand (struct expr_info *, tree, int, tree, edge, 
				tree **);
static void collect_expressions (basic_block, varray_type *);
static int build_dfn_array (basic_block, int);
static int eref_compare (const void *, const void *);


/* Bitmap of E-PHI predecessor operands have already been created. 
   We only create one phi-pred per block.  */
static bitmap created_phi_preds;

/* PRE dominance frontiers.  */
static bitmap *pre_dfs;

/* Number of redundancy classes.  */
static int class_count = 0;


/* Iterated dominance frontiers cache.  */
static bitmap *idfs_cache;

/* Partial redundancies statistics. */
static struct pre_stats_d
{
  int reloads;
  int saves;
  int repairs;
  int newphis;
  int ephi_allocated;
  int ephis_current;
  int eref_allocated;
  int exprs_generated;  
} pre_stats = {0, 0, 0, 0, 0, 0, 0, 0};


/* USE entry in list of uses of ephi's.  */
struct ephi_use_entry
{
  tree phi;
  int opnd_indx;
};

/* PRE Expression specific info.  */  
struct expr_info
{
  /* The actual expression.  */
  tree expr;
  /* The occurrences. */
  varray_type occurs;
  /* The kills. */
  varray_type kills;
  /* The left occurrences. */
  varray_type lefts;
  /* An array of real occurrences. */
  varray_type reals;
  /* True if it's a strength reduction candidate. */
  bool strred_cand;
  /* True if it's a load PRE candidate. */
  bool loadpre_cand;
  /* The euses/ephis in preorder dt order. */
  varray_type euses_dt_order;
  /* The name of the temporary for this expression. */
  tree temp;
};


/* Cache of expressions generated for given phi operand, to avoid
   recomputation and wasting memory.  */
static tree *phi_pred_cache;
static int n_phi_preds;

/* Trying to lookup ephi pred operand indexes takes forever on graphs
   that have high connectivity because it's an O(n) linked list
   traversal.  Thus, we set up a hashtable that tells us the operand
   index for a given edge.  */

typedef struct ephi_pred_index_elt
{
  tree ephi;
  edge edge;
  int opnd;
} ephi_pindex_t;

/* Hash an (ephi, edge, opnd) tuple.  */

static hashval_t
ephi_pindex_hash (const void *p)
{
  const ephi_pindex_t *ep = (const ephi_pindex_t *)p;
  return htab_hash_pointer (ep->ephi) + htab_hash_pointer (ep->edge);
}

/* Determine equality of an (ephi, edge, opnd) tuple.  */

static int
ephi_pindex_eq (const void *p1, const void *p2)
{
  const ephi_pindex_t *ep1 = (const ephi_pindex_t *)p1;
  const ephi_pindex_t *ep2 = (const ephi_pindex_t *)p2;
  
  return ep1->ephi == ep2->ephi && ep1->edge == ep2->edge;
}

/* The (ephi, edge) => opnd mapping hashtable.  */
static htab_t ephi_pindex_htab;

/* Add an ephi predecessor to a PHI.  */

static int
add_ephi_pred (tree phi, tree def, edge e)
{
  int i = EPHI_NUM_ARGS (phi);
  void **slot;
  ephi_pindex_t ep, *epp;
  
  EPHI_ARG_PRED (phi, i) = def;
  EPHI_ARG_EDGE (phi, i) = e;

  ep.ephi = phi;
  ep.edge = e;
  slot = htab_find_slot (ephi_pindex_htab, (void *)&ep, INSERT);
  if (*slot == NULL)
    {
      epp = xmalloc (sizeof (*epp));
      epp->ephi = phi;
      epp->edge = e;
      epp->opnd = i;
      *slot = (void *)epp;
    }
  else 
    abort ();
  
  EPHI_NUM_ARGS (phi)++;
  return i;
}

/* Create a new EPHI node at basic block BB.  */

static tree
create_ephi_node (basic_block bb, unsigned int add)
{
  tree phi;
  int len;
  edge e;
  size_t size;
  bb_ann_t ann;

  for (len = 0, e = bb->pred; e; e = e->pred_next)
    len++;
  size = (sizeof (struct tree_ephi_node)
	  + ((len - 1) * sizeof (struct ephi_arg_d)));

  phi = xmalloc (size);
  memset (phi, 0, size);
  if (add)
    {
      ann = bb_ann (bb);
      if (ann->ephi_nodes == NULL)
	ann->ephi_nodes = phi;
      else
	chainon (ann->ephi_nodes, phi);
    }
  pre_stats.ephi_allocated += size;
  pre_stats.ephis_current += 1;
  TREE_SET_CODE (phi, EPHI_NODE);
  EPHI_NUM_ARGS (phi) = 0;
  EPHI_ARG_CAPACITY (phi) = len;

  /* Associate BB to the PHI node.  */
  set_bb_for_stmt (phi, bb);

  return phi;
}

/* Given DEF (which can be an SSA_NAME or entire statement), and VAR,
   find a use of VAR on the RHS of DEF, if one exists. Abort if we
   can't find one.  */

static inline tree
find_rhs_use_for_var (tree def, tree var)
{
  tree ret = maybe_find_rhs_use_for_var (def, var, 0);
  if (!ret)
    abort ();
  return ret;
}

/* Determine if two trees are referring to the same variable. 
   Handles SSA_NAME vs non SSA_NAME, etc.  Uses operand_equal_p for
   non-trivial cases (INDIRECT_REF and friends).  */

static inline bool
names_match_p (const tree t1, const tree t2)
{
  tree name1, name2;

  if (t1 == t2)
    return true;
  
  if (TREE_CODE (t1) == INDIRECT_REF)
    return names_match_p (TREE_OPERAND (t1, 0), t2);
  
  if (TREE_CODE (t2) == INDIRECT_REF)
    return names_match_p (t1, TREE_OPERAND (t2, 0));
  
  if (TREE_CODE (t1) == SSA_NAME)
    name1 = SSA_NAME_VAR (t1);
  else if (DECL_P (t1))
    name1 = t1;
  else
    name1 = NULL_TREE;

  if (TREE_CODE (t2) == SSA_NAME)
    name2 = SSA_NAME_VAR (t2);
  else if (DECL_P (t2))
    name2 = t2;
  else
    name2 = NULL_TREE;

  if (name1 == NULL_TREE && name2 != NULL_TREE)
    return false;
  if (name2 == NULL_TREE && name1 != NULL_TREE)
    return false;
  if (name1 == NULL_TREE && name2 == NULL_TREE)
    return operand_equal_p (t1, t2, 0);

  return name1 == name2;
}

/* Given DEF (which can be an SSA_NAME or entire statement), and VAR,
   find a use of VAR on the RHS of DEF, if one exists.  Return NULL if
   we cannot find one.  */

static inline tree
maybe_find_rhs_use_for_var (tree def, tree var, unsigned int startpos)
{
  use_optype uses;
  size_t i;

  if (SSA_VAR_P (def))
    {
      if (names_match_p (var, def))
	return def;
      return NULL_TREE;
    }
  get_stmt_operands (def);
  uses = STMT_USE_OPS (def);

  for (i = startpos; i < NUM_USES (uses); i++)
    {
      tree use = USE_OP (uses, i);
      if (names_match_p (use, var))
	return use;
    }
  return NULL_TREE;
}

/* Determine if an injuring def is one which we can repair, and thus,
   ignore for purposes of determining the version of a variable.  */

static inline bool
okay_injuring_def (tree inj, tree var)
{
  /* Acceptable injuries are those which
     1. aren't empty statements.
     2. aren't phi nodes.
     3. contain a use of VAR on the RHS.  */
  if (!inj || IS_EMPTY_STMT (inj)
      || TREE_CODE (inj) == PHI_NODE
      || !maybe_find_rhs_use_for_var (inj, var, 0))
    return false;
  return true;
}

/* Return true if INJ is an injuring definition */

static bool
is_injuring_def (struct expr_info *ei, tree inj)
{
  /* Things that are never injuring definitions. */
  if (!inj || IS_EMPTY_STMT (inj) || TREE_CODE (inj) == PHI_NODE)
    return false;

  /* Things we can't handle. */
  if (TREE_CODE (TREE_OPERAND (inj, 1)) != PLUS_EXPR
      && TREE_CODE (TREE_OPERAND (inj, 1)) != MINUS_EXPR)
    return false;

  /* given inj: a1 = a2 + 5
     expr: a3 * c
     we are testing:
     if (a1 != a3
     || ! (a2 exists)
     || a2 != a3)
     return false

     Or, in English,  if either the assigned-to variable in
     the injury is different from the first variable in the
     expression, or the incremented variable is different from the
     first variable in the expression, punt.

     This makes sure we have something of the form

     a = a {+,-} {expr}
     for an expression like "a * 5".

     This limitation only exists because we don't know how to repair
     other forms of increments/decrements. */
  if (!names_match_p (TREE_OPERAND (inj, 0), TREE_OPERAND (ei->expr, 0))
      || !TREE_OPERAND (TREE_OPERAND (inj, 1), 0)
      || !names_match_p (TREE_OPERAND (TREE_OPERAND (inj, 1), 0),
			 TREE_OPERAND (ei->expr, 0)))
    return false;

  /* If we are strength reducing a multiply, we have the additional
     constraints that
     1. {expr} is 1
     2. {expr} and the RHS of the expression are constants. */
  if (TREE_CODE (ei->expr) == MULT_EXPR)
    {
      tree irhs1;
      tree irhs2;
      tree irhs;
      irhs = TREE_OPERAND (inj, 1);
      irhs1 = TREE_OPERAND (irhs, 0);
      irhs2 = TREE_OPERAND (irhs, 1);

      if (TREE_CODE (irhs2) != INTEGER_CST)
	return false;
      if (tree_low_cst (irhs2, 0) == 1)
	return true;
      if (really_constant_p (irhs2)
	  && really_constant_p (TREE_OPERAND (ei->expr, 1)))
	return true;
      /* We don't currently support "the injury is inside a loop,expr is
	 loop-invariant, and b is either loop-invariant or is
	 another induction variable with respect to the loop." */
      return false;
    }
  return true;
}

/* Find the statement defining VAR, ignoring injuries we can repair.
   START is the first potential injuring def. */

static tree
factor_through_injuries (struct expr_info *ei, tree start, tree var,
			 bool *injured)
{
  tree end = start;

  while (is_injuring_def (ei, SSA_NAME_DEF_STMT (end)))
    {
      if (injured)
	*injured = true;
      end = find_rhs_use_for_var (SSA_NAME_DEF_STMT (end), var);
      if (!okay_injuring_def (SSA_NAME_DEF_STMT (end), var))
	break;
      if (dump_file)
	{
	  fprintf (dump_file, "Found a real injury:");
	  print_generic_stmt (dump_file, SSA_NAME_DEF_STMT (end), dump_flags);
	  fprintf (dump_file, "\n");
	}
      if (injured)
	*injured = true;
      end = find_rhs_use_for_var (SSA_NAME_DEF_STMT (end), var);
    }
  return end;
}

/* Return true if the result of the EPHI, when transformed into a phi,
   will be available.  */

static inline bool
ephi_will_be_avail (tree ephi)
{
  if (!EPHI_CANT_BE_AVAIL (ephi))
    if (EPHI_STOPS (ephi))
      return true;

  return false;
}

/* EUSE node pool.  We allocate EUSE nodes out of this*/
static alloc_pool euse_node_pool;

/* EREF node pool.  We allocate regular EREF nodes (like EEXIT_NODE)
   out of this.  */
static alloc_pool eref_node_pool;


/* To order EREF's in a given block, we assign them each an ID based
   on when we see them.  */
static int eref_id_counter = 0;

/* Creation an expression reference of TYPE.  */

static tree
create_expr_ref (struct expr_info *ei, tree expr, enum tree_code type,
		 basic_block bb, tree parent)
{
  tree ret;
  if (type == EPHI_NODE)
    {
      int len;
      edge e;

      ret = create_ephi_node (bb, 1);
      for (len = 0, e = bb->pred; e; e = e->pred_next)
	len++;
      
      EREF_TEMP (ret) = make_phi_node (ei->temp, len);
    }
  else
    {
      if (type == EUSE_NODE)
	ret = (tree) pool_alloc (euse_node_pool);
      else
	ret = (tree) pool_alloc (eref_node_pool);      
      TREE_SET_CODE (ret, type);
      memset (ret, 0, tree_size (ret));      
      TREE_SET_CODE (ret, type);
      pre_stats.eref_allocated += tree_size (ret);
    }

  EREF_NAME (ret) = expr;
  set_bb_for_stmt (ret, bb);
  EREF_STMT (ret) = parent;
  EREF_SAVE (ret) = false;
  EREF_ID (ret) = eref_id_counter++;
  
  return ret;
}


/* dfphis is a bitmap of where we need to insert ephis due to the
   iterated dominance frontier of an expression.  */

static bitmap dfphis;

/* varphis is a bitmap of where we need to insert ephis due to the
   presence of phis for a variable.  */

static bitmap varphis;


/* Function to recursively figure out where EPHI's need to be placed
   because of PHI's.
   We always place EPHI's where we place PHI's because they are also
   partially anticipated expression points (because some expression
   alteration reaches that merge point).

   We do this recursively, because we have to figure out
   EPHI's for the variables in the PHI as well. */

static void
set_var_phis (struct expr_info *ei, tree phi)
{
  basic_block bb = bb_for_stmt (phi);
  /* If we've already got an EPHI set to be placed in PHI's BB, we
     don't need to do this again. */
  if (!bitmap_bit_p (varphis, bb->index)
	&& !bitmap_bit_p (dfphis, bb->index))
    {
      tree phi_operand;
      int curr_phi_operand;
      bitmap_set_bit (varphis, bb->index);
      for (curr_phi_operand = 0;
           curr_phi_operand < PHI_NUM_ARGS (phi);
           curr_phi_operand++)
        {
          phi_operand = PHI_ARG_DEF (phi, curr_phi_operand);
	  /* For strength reduction, factor through injuries we can
	     repair. */
	  if (ei->strred_cand && TREE_CODE (phi_operand) != PHI_NODE)
	    {
	      phi_operand = factor_through_injuries (ei, phi_operand,
						     SSA_NAME_VAR (phi_operand),
						     NULL);
	      phi_operand = SSA_NAME_DEF_STMT (phi_operand);
	      if (dump_file)
		{
		  fprintf (dump_file, "After factoring through injuries:");
		  print_generic_stmt (dump_file, phi_operand, dump_flags);
		  fprintf (dump_file, "\n");
		}
	    }

	  /* If our phi operand is defined by a phi, we need to
	     record where the phi operands alter the expression as
	     well, and place EPHI's at each point. */
          if (TREE_CODE (phi_operand) == PHI_NODE)
            set_var_phis (ei, phi_operand);
        }
    }
}


/* Clear all the expression reference arrays.  */

static void
clear_all_eref_arrays (void)
{
  basic_block bb;
  bb_ann_t ann;
  
  FOR_ALL_BB (bb)
    {
      ann = bb_ann (bb);
      if (ann->ephi_nodes)
	{
	  free (ann->ephi_nodes);
	  pre_stats.ephis_current -= 1;
	}
      ann->ephi_nodes = NULL;
    }
}

/* EPHI insertion algorithm.  */

static bool
expr_phi_insertion (bitmap *dfs, struct expr_info *ei)
{
  size_t i, j;
  vuse_optype vuses;
  use_optype uses;
  bool retval = true;

  dfphis = BITMAP_XMALLOC ();
  bitmap_zero (dfphis);
  varphis = BITMAP_XMALLOC ();
  bitmap_zero (varphis);
  
  /*  Compute where we need to place EPHIS. There are two types of
      places we need EPHI's: Those places we would normally place a
      PHI for the occurrence (calculated by determining the IDF+ of
      the statement), and those places we need an EPHI due to partial
      anticipation.  */
  for (i = 0; i < VARRAY_ACTIVE_SIZE (ei->occurs); i++)
    {
      tree occurp = VARRAY_TREE (ei->occurs, i);
      tree occur = occurp ? occurp : NULL;
      tree killp = VARRAY_TREE (ei->kills, i);
      tree kill = killp ? killp : NULL;
      tree leftp = VARRAY_TREE (ei->lefts, i);
      tree left = leftp ? leftp : NULL;
      bitmap temp;
      stmt_ann_t ann;

#ifdef ENABLE_CHECKING
      if ((kill && occur) || (left && occur) || (kill && left))
	abort();
#endif
      occurp = occur ? occurp : kill ? killp : leftp;
      occur = occur ? occur : kill ? kill : left;
      temp = compute_idfs (dfs, occur);
      bitmap_a_or_b (dfphis, dfphis, temp);      
      if (kill != NULL)
	continue;
      get_stmt_operands (occurp);     
      ann = stmt_ann (occurp);
      uses = USE_OPS (ann);
      for (j = 0; j < NUM_USES (uses); j ++)
	{
	  tree use = USE_OP (uses, j);
	  if (ei->strred_cand)
	    use = factor_through_injuries (ei, use, SSA_NAME_VAR (use),
					   NULL);
	  if (TREE_CODE (SSA_NAME_DEF_STMT (use)) != PHI_NODE)
	    continue;
	  set_var_phis (ei, SSA_NAME_DEF_STMT (use));
	}
      if (ei->loadpre_cand && TREE_CODE (ei->expr) == INDIRECT_REF)
	{  
	  vuses = VUSE_OPS (ann);
	  for (j = 0; j < NUM_VUSES (vuses); j ++)
	    {
	      tree use = VUSE_OP (vuses, j);
	      if (ei->strred_cand)
		use = factor_through_injuries (ei, use, SSA_NAME_VAR (use),
					       NULL);
	      if (TREE_CODE (SSA_NAME_DEF_STMT (use)) != PHI_NODE)
		continue;
	      set_var_phis (ei, SSA_NAME_DEF_STMT (use));
	    }
	}
    }
  /* Union the results of the dfphis and the varphis to get the
     answer to everywhere we need EPHIS. */
  bitmap_a_or_b (dfphis, dfphis, varphis);

  /* Now create the EPHI's in each of these blocks. */
  EXECUTE_IF_SET_IN_BITMAP(dfphis, 0, i,
  {
    tree ref = create_expr_ref (ei, ei->expr, EPHI_NODE, BASIC_BLOCK (i),
				NULL);
    EREF_PROCESSED (ref) = false;
    EPHI_DOWNSAFE (ref) = true;
    EPHI_DEAD (ref) = true;
  });
#if 0
  /* If there are no phis, we don't have anything to optimize,
     assuming the dominator optimizer took care of it all.  */
  if (bitmap_first_set_bit (dfphis) == -1)
    retval = false;
#endif
  BITMAP_XFREE (dfphis);
  BITMAP_XFREE (varphis);
  return retval;

}

/* Return the EPHI at block BB, if one exists.  */

static inline tree
ephi_at_block (basic_block bb)
{
  bb_ann_t ann = bb_ann (bb);
  if (ann->ephi_nodes)
    return ann->ephi_nodes;
  else
    return NULL_TREE;
}

/* Depth first numbering array.  */
static int *dfn;

/* Build a depth first numbering array to be used in sorting in
   dominator order.  */

static int
build_dfn_array (basic_block bb, int num)
{
  basic_block son;

  if (bb->index >= 0)
    dfn[bb->index] = num;

  for (son = first_dom_son (CDI_DOMINATORS, bb);
       son;
       son = next_dom_son (CDI_DOMINATORS, son))
    num = build_dfn_array (son, ++num);
  return num;
}


/* Compare two EREF's in terms of dominator preorder.  Return -1 if
   ELEM1 goes before ELEM2, 1 if ELEM1 goes after ELEM2, and 0 if they
   are equal.  */

static int
eref_compare (const void *elem1, const void *elem2)
{
  tree t1 = *(tree *)elem1;
  tree t2 = *(tree *)elem2;
  basic_block bb1, bb2; 
  if (t1 == t2)
    return 0;
  bb1 = bb_for_stmt (t1);
  bb2 = bb_for_stmt (t2);
  if (bb1 == bb2)
    {
      if (TREE_CODE (t1) == EEXIT_NODE)
	return 1;
      if (TREE_CODE (t2) == EEXIT_NODE)
	return -1;
      if (TREE_CODE (t1) == EPHI_NODE)
	return -1;
      if (TREE_CODE (t2) == EPHI_NODE)
	return 1;
      if ((TREE_CODE (t1) == EUSE_NODE && EUSE_PHIOP (t1)) 
	  && (TREE_CODE (t2) == EUSE_NODE && !EUSE_PHIOP (t2)))
	return 1;
      if ((TREE_CODE (t1) == EUSE_NODE && !EUSE_PHIOP (t1))
	  && (TREE_CODE (t2) == EUSE_NODE && EUSE_PHIOP (t2)))
	return -1;
      if (TREE_CODE (t1) == EUSE_NODE && TREE_CODE (t2) == EUSE_NODE)
	return EREF_ID (t1) - EREF_ID (t2);
      if (TREE_CODE (t1) == EPHI_NODE && TREE_CODE (t2) == EPHI_NODE)
	abort ();
      
    }
  else
    {
      if (dfn[bb1->index] == dfn[bb2->index])
	{
	  if (dominated_by_p (CDI_DOMINATORS, bb1, bb2))
	    return 1;
	  else
	    return -1;
	}
      else
	return (dfn[bb1->index] < dfn[bb2->index]) ? -1 : 1;
    }

  abort ();
}

/* Create expression references for occurrences, kills, phi operands,
   and the like.  At the same time,  insert the occurrences into the
   ei->euses_dt_order array in the proper order.  If this function had
   any use outside of rename_1, you could split it into two
   functions, one creating, one inserting.  */

static void
create_and_insert_occ_in_preorder_dt_order (struct expr_info *ei)
{
  size_t i;
  edge succ;
  tree curr_phi_pred = NULL_TREE;
  basic_block block;
  
  /* The ephis references were already created, so just push them into
     the euses_dt_order list.  */
  FOR_EACH_BB (block)
  {
    tree ephi = ephi_at_block (block);
    /* The ordering for a given BB is EPHI's, real/left/kill
       occurrences, phi preds, exit occurrences.   */
    if (ephi != NULL_TREE)
      VARRAY_PUSH_TREE (ei->euses_dt_order, ephi);
  }

  /* The non-ephis have to actually be created, so do that, then push
     them into the list.  */

  for (i = 0; i < VARRAY_ACTIVE_SIZE (ei->occurs); i++)
      {
	tree newref;
	tree current;
	current = VARRAY_TREE (ei->occurs, i);
	current = current ? current : VARRAY_TREE (ei->kills, i);
	current = current ? current : VARRAY_TREE (ei->lefts, i);
	block = bb_for_stmt (current);
	if (VARRAY_TREE (ei->kills, i) != NULL)
	  {
	    tree killexpr  = VARRAY_TREE (ei->kills, i);
	    tree killname = ei->expr;
	    newref = create_expr_ref (ei, killname, EKILL_NODE, block, killexpr);
	    VARRAY_PUSH_TREE (ei->euses_dt_order, newref);
	  }
	else if (VARRAY_TREE (ei->lefts, i) != NULL)
	  {
	    tree occurexpr = VARRAY_TREE (ei->lefts, i);
	    tree occurname;
	    occurname = ei->expr;
	    newref = create_expr_ref (ei, occurname, EUSE_NODE, block,
				      occurexpr);
	    EUSE_DEF (newref) = NULL_TREE;
	    EUSE_LVAL (newref) = true;
	    EREF_CLASS (newref) = -1;
	    EUSE_PHIOP (newref) = false;
	    EREF_PROCESSED (newref) = false;
	    VARRAY_PUSH_TREE (ei->euses_dt_order, newref);
	  }
	else
	  {
	    tree occurexpr = VARRAY_TREE (ei->occurs, i);
	    tree occurname;
	    occurname = ei->expr;
	    newref = create_expr_ref (ei, occurname, EUSE_NODE, block,
				      occurexpr);
	    EUSE_DEF (newref) = NULL_TREE;
	    EREF_CLASS (newref) = -1;
	    EUSE_PHIOP (newref) = false;
	    EREF_PROCESSED (newref) = false;
	    VARRAY_PUSH_TREE (ei->euses_dt_order, newref);
	  }
      }

  /* Lastly, we need to create and insert the ephi operand occurrences
     into the list.  */
  FOR_ALL_BB (block)
  {
    /* Insert the phi operand occurrences into the list at the
       successors.*/
    for (succ = block->succ; succ; succ = succ->succ_next)
      {
	if (succ->dest != EXIT_BLOCK_PTR)
	  {
	    tree ephi = ephi_at_block (succ->dest);
	    if (ephi != NULL 
		&& !bitmap_bit_p (created_phi_preds, block->index))
	      {
		tree newref = create_expr_ref (ei, 0, EUSE_NODE, block, NULL);
		curr_phi_pred = newref;
		VARRAY_PUSH_TREE (ei->euses_dt_order, newref);
		EUSE_DEF (newref) = NULL_TREE;
		EREF_CLASS (newref) = -1;
		EUSE_PHIOP (newref) = true;
		EREF_SAVE (newref) = false;
		EREF_RELOAD (newref) = false;
		EUSE_INSERTED (newref) = false;
		EREF_PROCESSED (newref) = false;
		bitmap_set_bit (created_phi_preds, block->index);
		add_ephi_pred (ephi, newref, succ); 
	      }
	    else if (ephi != NULL)
	      {
#ifdef ENABLE_CHECKING
		if (curr_phi_pred == NULL_TREE)
		  abort();
#endif
		add_ephi_pred (ephi, curr_phi_pred, succ);
	      }
	  }	
	else if (succ->dest == EXIT_BLOCK_PTR && !(succ->flags & EDGE_FAKE))
	  {
	    /* No point in inserting exit blocks into heap first, since
	       they'll never be anything on the stack. */
	    tree newref;
	    newref = create_expr_ref (ei, ei->expr, EEXIT_NODE, 
				      block,
				      NULL);
	    VARRAY_PUSH_TREE (ei->euses_dt_order, newref); 
	  }
      }
  }
  qsort (ei->euses_dt_order->data.tree, 
	 VARRAY_ACTIVE_SIZE (ei->euses_dt_order), 
	 sizeof (tree),
	 eref_compare);
}

  
/* Assign a new redundancy class to the occurrence, and push it on the
   renaming stack.  */

static void
assign_new_class (tree occ, varray_type * stack, varray_type * stack2)
{
  /* class(occ) <- count
     Push(occ, stack)
     count <- count + 1
  */
  EREF_CLASS (occ) = class_count;
  VARRAY_PUSH_TREE (*stack, occ);
  if (stack2)
    VARRAY_PUSH_TREE (*stack2, occ);
  class_count++;
}

/* Determine if two real occurrences have the same ESSA version.
   We do this by hashing the expressions and comparing the hash
   values.  Even if they don't match, we then see if this is a
   strength reduction candidate, and if so, if the use is simply
   injured.  */

static inline bool
same_e_version_real_occ_real_occ (struct expr_info *ei,
				  const tree def, const tree use)
{
  hashval_t expr1val;
  hashval_t expr2val;
  vuse_optype vuses;
  size_t i;
  const tree t1 = EREF_STMT (def);
  const tree t2 = EREF_STMT (use);

  expr1val = iterative_hash_expr (TREE_OPERAND (t1, 1), 0);
  expr2val = iterative_hash_expr (TREE_OPERAND (t2, 1), 0);
  
  if (expr1val == expr2val)
    {
      vuses = STMT_VUSE_OPS (t1);
      for (i = 0; i < NUM_VUSES (vuses); i++)
        expr1val = iterative_hash_expr (VUSE_OP (vuses, i), expr1val);
      vuses = STMT_VUSE_OPS (t2);
      for (i = 0; i < NUM_VUSES (vuses); i++)
        expr2val = iterative_hash_expr (VUSE_OP (vuses, i), expr2val);
      if (expr1val != expr2val)
        return false;
    }

  /* If the def is injured, and the expressions have the same value,
     then the use is injured.  */
  if (expr1val == expr2val)
    {
      if (EREF_INJURED (def))
	EREF_INJURED (use) = true;
      return true;
    }

  /* Even if the expressions don't have the same value, it might be
     the case that the use is simply injured, in which case, it's
     still okay.  */
  if (expr1val != expr2val && ei->strred_cand)
    {
      if (injured_real_occ_real_occ (ei, def, use))
	{	
	  EREF_INJURED (use) = true;
	  return true;
	}
    }
  return false;
}  

/* Determine if the use occurrence is injured.
   TODO: Finish actually implementing this.  */

static inline bool
injured_real_occ_real_occ (struct expr_info *ei ATTRIBUTE_UNUSED, 
			   tree def ATTRIBUTE_UNUSED, 
			   tree use ATTRIBUTE_UNUSED)
{
  tree defstmt;
  tree defvar;
  
  defstmt = EREF_STMT (def);
  if (TREE_CODE (TREE_OPERAND (defstmt, 0)) != SSA_NAME)
    return false;
  
  defvar = TREE_OPERAND (defstmt, 0);
  /* XXX: Implement.  */
  return false;
  
}

/* Determine the operand number of edge E in EPHI.  */

static inline int
opnum_of_ephi (const tree ephi, const edge e)
{
  ephi_pindex_t ep, *epp;
  
  ep.ephi = ephi;
  ep.edge = e;
  epp = htab_find (ephi_pindex_htab, &ep);
  if (epp == NULL)
    abort ();
  return epp->opnd;
}

/* Determine the phi operand index for J in PHI.  */

static inline int
opnum_of_phi (tree phi, int j)
{
  int i;
  /* We can't just count predecessors, since tree-ssa.c generates them
     when it sees a phi in the successor during it's traversal.  So the
     order is dependent on the traversal order.  */
  for (i = 0 ; i < PHI_NUM_ARGS (phi); i++)
    if (PHI_ARG_EDGE (phi, i)->src->index == j)
      return i;

  abort();
}

/* Generate EXPR as it would look in basic block PRED (using the phi in
   block BB).  We do this by replacing the variables with the phi
   argument definitions for block J if they are defined by a phi in
   block BB.  */

static void
generate_expr_as_of_bb (tree expr, basic_block pred, basic_block bb)
{
  use_optype uses = STMT_USE_OPS (expr);
  bool replaced_constants = false;
  size_t k;

  for (k = 0; k < NUM_USES (uses); k++)
    {
      tree *vp = USE_OP_PTR (uses, k);
      tree v = *vp;
      tree phi;

      for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
	{
	  if (PHI_RESULT (phi) ==  v)
	    {
	      int opnum = opnum_of_phi (phi, pred->index);
	      tree p = PHI_ARG_DEF (phi, opnum);
	      replace_exp (vp, p);
	      if (!phi_ssa_name_p (p))
		replaced_constants = true;
	      break;
	    }
	}
    }

  /* If we've substituted in new constants, we must be sure to
     simplify the result lest we crash in get_expr_operands.  */
  if (replaced_constants)
    fold_stmt (&expr);
}

/* Generate VUSE ops as they would look in basic block PRED (using the
   phi in block BB).  Done the same way as we do generation of regular
   ops for the bb.  */

static void
generate_vops_as_of_bb (tree expr, basic_block pred, basic_block bb)
{
  vuse_optype vuses = STMT_VUSE_OPS (expr);
  size_t i;

  for (i = 0; i < NUM_VUSES (vuses); i++)
    {
      tree v = VUSE_OP (vuses, i);
      tree phi;

      for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
	{
	  if (PHI_RESULT (phi) == v)
	    {
	      int opnum = opnum_of_phi (phi, pred->index);
	      tree p = PHI_ARG_DEF (phi, opnum);
	      replace_exp (VUSE_OP_PTR (vuses, i), p);
	      break;
	    }
	}
    }
}

/* Make a copy of Z as it would look in basic block PRED, using the PHIs
   in BB. */

static tree
subst_phis (struct expr_info *ei, tree Z, basic_block pred, basic_block bb)
{
  tree stmt_copy;
  size_t i;

  /* Return the cached version, if we have one. */
  if (pred->index < n_phi_preds 
      && phi_pred_cache[pred->index] != NULL_TREE)
    return phi_pred_cache[pred->index];

  /* Otherwise, generate a new expression.  */
  pre_stats.exprs_generated++;
  stmt_copy = unshare_expr (Z);
  create_stmt_ann (stmt_copy);
  modify_stmt (stmt_copy);
  get_stmt_operands (stmt_copy);
  generate_expr_as_of_bb (stmt_copy, pred, bb);
  set_bb_for_stmt (stmt_copy, bb);
  modify_stmt (stmt_copy);
  get_stmt_operands (stmt_copy);

  /* If we have vuses on the original statement, and we still have
     use_ops on the generated expr, we need to copy the vuses.  */ 
  
  if (ei->loadpre_cand
      && NUM_VUSES (STMT_VUSE_OPS (Z)) != 0
      && NUM_USES (STMT_USE_OPS (stmt_copy)) != 0)
    {
      vuse_optype vuses = STMT_VUSE_OPS (Z);
      remove_vuses (stmt_copy);

      start_ssa_stmt_operands (stmt_copy);
      for (i = 0; i < NUM_VUSES (vuses); i++)
        add_vuse (VUSE_OP (vuses, i), stmt_copy);
      finalize_ssa_stmt_operands (stmt_copy);

      generate_vops_as_of_bb (stmt_copy, pred, bb);
    }
  else
    {
      remove_vuses (stmt_copy);
      remove_vdefs (stmt_copy);
    }

  if (pred->index < n_phi_preds)
    phi_pred_cache[pred->index] = stmt_copy;
  return stmt_copy;
}

/* Determine if def and use_tree should have the same e-version.  We do
   this by simply determining if something modifies the expression
   between DEF and USE_TREE.  USE_TREE was generated from the OPND_NUM'th
   operand of the EPHI in USE_BB.  If it is modified, we determine if
   it is simply injured, and thus, okay.  */

static inline bool 
same_e_version_real_occ_phi_opnd (struct expr_info *ei, tree def,
				       basic_block use_bb, int opnd_num,
				       tree use_tree, bool *injured)
{
  bool not_mod = true;
  *injured = false;
  
  if (load_modified_real_occ_real_occ (EREF_STMT (def), 
				       use_tree))
    not_mod = false;
  
  if (not_mod)
    return true;
  else if (ei->strred_cand)
    {
      if (injured_real_occ_phi_opnd (ei, def, use_bb, opnd_num))
	return true;
    }
  return false;
}

/* Determine whether the OPND_NUM'th operand of USE_BB's EPHI is an
   injured version of DEF.  */
static inline bool 
injured_real_occ_phi_opnd (struct expr_info *ei ATTRIBUTE_UNUSED,
				tree def ATTRIBUTE_UNUSED,
				basic_block use_bb ATTRIBUTE_UNUSED, 
				int opnd_num ATTRIBUTE_UNUSED)
{
  /* XXX: Implement. */
  return false;
}

/* Determine whether the expression is modified between DEF and USE,
   by comparing the hash values of the two expressions.  */
static inline bool 
load_modified_real_occ_real_occ (tree def, tree use)
{
  hashval_t expr1val;
  hashval_t expr2val;
  vuse_optype vuses;
  size_t i;
  
  if (TREE_CODE (def) == VA_ARG_EXPR)
    expr1val = iterative_hash_expr (def, 0);
  else
    expr1val = iterative_hash_expr (TREE_OPERAND (def, 1), 0);

  if (TREE_CODE (use) == VA_ARG_EXPR)
    expr2val = iterative_hash_expr (use, 0);
  else
    expr2val = iterative_hash_expr (TREE_OPERAND (use, 1), 0);
  
  if (expr1val == expr2val)
    {
      vuses = STMT_VUSE_OPS (def);
      for (i = 0; i < NUM_VUSES (vuses); i++)
        expr1val = iterative_hash_expr (VUSE_OP (vuses, i), expr1val);
      vuses = STMT_VUSE_OPS (use);
      for (i = 0; i < NUM_VUSES (vuses); i++)
        expr2val = iterative_hash_expr (VUSE_OP (vuses, i), expr2val);
      if (expr1val != expr2val)
	return false;
    }
  return expr1val != expr2val;
}

/* Determine if the expression is modified between the start of BB,
   and the use at USE, ignoring phis.  We do this by simple
   domination, because of the properties of SSA.  */
static bool 
load_modified_phi_result (basic_block bb, tree use)
{
  basic_block defbb = bb_for_stmt (SSA_NAME_DEF_STMT (use));
  if (defbb != bb)
    {
      /* This guards against moving around undefined variables.
	 However, PARM_DECL is special because it *IS* live on entry,
	 so it's not really undefined.  */
      if (!defbb && TREE_CODE (SSA_NAME_VAR (use)) != PARM_DECL)
	return true;
      else if (!defbb && TREE_CODE (SSA_NAME_VAR (use)) == PARM_DECL)
        return false;
      if (dominated_by_p (CDI_DOMINATORS, bb, defbb))
	return false;
    }
  else
    {
      if (TREE_CODE (SSA_NAME_DEF_STMT (use)) == PHI_NODE)
        return false;
    }
  return true;
}

/* Determine if the variables in EXP are modified between DEF and
   USE.  If they are, we have to give a new e-version to the result. 
   For load PRE, we have to check the vuses too.  For strength
   reduction, we need to check whether the modification is a simple
   injury.  */

static bool 
same_e_version_phi_result (struct expr_info *ei, tree def, tree exp,
				tree use)
{
  stmt_ann_t ann = stmt_ann (exp);
  bool not_mod = true;
  size_t i;
  use_optype real_expuses = USE_OPS (ann);
  vuse_optype expuses;
  

  if (NUM_USES (real_expuses) == 0)
    return false;
  
  for (i = 0; i < NUM_USES (real_expuses) && not_mod; i++)
    {
      tree *use1p = USE_OP_PTR (real_expuses, i);
      tree use1;  
      if (!use1p)
	continue;
      use1 = *use1p;
      if (load_modified_phi_result (bb_for_stmt (def), use1))
	not_mod = false;
    }
  
  if (not_mod && ei->loadpre_cand)
    {
      expuses = VUSE_OPS (ann);
      
      for (i = 0; i < NUM_VUSES (expuses) && not_mod; i++)
	{
	  tree use1 = VUSE_OP (expuses, i);
	  if (load_modified_phi_result (bb_for_stmt (def), use1))
	    not_mod = false;
	}
    }
    
  if (not_mod)
    return true;  
  else if (ei->strred_cand)
    {
      if (injured_phi_result_real_occ (ei, def, exp, bb_for_stmt (use)))
	{
	  EREF_INJURED (use) = true;
	  return true;
	}
    }
  
  return false;
}

/* Determine whether USE_TREE is an injured version of DEF.  */

static inline bool
injured_phi_result_real_occ (struct expr_info *ei ATTRIBUTE_UNUSED, 
			     tree def ATTRIBUTE_UNUSED, 
			     tree use_tree ATTRIBUTE_UNUSED,
			     basic_block use_bb ATTRIBUTE_UNUSED)
{
  /* XXX: Implement.  */
  return false;
}

/* Delayed renaming checks to make sure the optimistic assumptions
   about ephi operand versions in rename_1 actually turned out to be
   true.  This requires generating the expressions for each ephi
   operand, and comparing them to the versions of the occurrence it is
   defined by.  
   Delayed rename handling is done like open64 does it.  Basically,
   like the delayed renaming is described in the paper, with
   extensions for strength reduction.  */

static void
process_delayed_rename (struct expr_info *ei, tree use, tree real_occ)
{
  tree exp_phi = use;
  int opnd_num = 0;

  /* We only care about operands we actually have DELAYED_RENAME set
     on.  */
  for (opnd_num = 0; opnd_num < EPHI_NUM_ARGS (exp_phi); opnd_num++)
    {
      tree opnd = EPHI_ARG_DEF (exp_phi, opnd_num);
      if (EPHI_ARG_DELAYED_RENAME (exp_phi, opnd_num))
	{
	  tree def;
	  tree newexp;

	  /* Mark it as being processed, then generate the ephi
	     operand expression.  */
	  EPHI_ARG_DELAYED_RENAME (exp_phi, opnd_num) = false;
	  def = opnd;
	  newexp = subst_phis (ei, real_occ,
			      EPHI_ARG_EDGE (exp_phi, opnd_num)->src,
			      bb_for_stmt (exp_phi));

	  /* For operands defined by EPHIs, we need to compare the
	     generated expression and the phi result.
	     For operands defined by real occurrences, we simply compare
	     the phi operand and the real occurrence.  */
	  if (TREE_CODE (def) == EPHI_NODE)
	    {
	      tree tmp_use = EPHI_ARG_PRED (exp_phi, opnd_num);	     
	      EREF_STMT (tmp_use) = newexp;
	      if (same_e_version_phi_result (ei, def, newexp,
					     tmp_use))
		{
		  
		  if (EREF_INJURED (tmp_use))
		    {
		      EREF_INJURED (tmp_use) = false;
		      EPHI_ARG_INJURED (exp_phi, opnd_num) = true;
		    }
		  if (EREF_STMT (def) == NULL) 
		    {
		      /* If it was injured, we need to make up a new
			 phi result with the actually injured
			 version.  */
		      if (EPHI_ARG_INJURED (exp_phi, opnd_num))
			{
			  /* XXX: Allocate phi result with correct version.  */
			  
			}	
		      EREF_STMT (def) = newexp;
		      process_delayed_rename (ei, def, newexp);
		    }
		}
	      /* If it's not the same version, the defining ephi can't
		 be downsafe, and the operand is not really defined by
		 anything.  */
	      else
		{
		  EPHI_DOWNSAFE (def) = false;
		  EPHI_ARG_DEF (exp_phi, opnd_num) = NULL;		  
		}
	    }
	  else if (TREE_CODE (def) == EUSE_NODE && !EUSE_PHIOP (def))
	    {
	      bool injured = false;
	      if (same_e_version_real_occ_phi_opnd (ei, def, 
						    bb_for_stmt (use),
						    opnd_num, newexp, &injured))
		{
		  tree tmp_use = EPHI_ARG_PRED (exp_phi, opnd_num);
		  EPHI_ARG_HAS_REAL_USE (exp_phi, opnd_num) = true;
		  /*		  EREF_STMT (opnd) = EREF_STMT (def); */
		  if (injured || EREF_INJURED (def))
		    EREF_INJURED (def) = true;
		  if (injured || EREF_INJURED (def))
		    EREF_INJURED (opnd) = true;
		  else
		    EREF_STMT (tmp_use) = EREF_STMT (def);
		  if (EUSE_DEF (def) != NULL)
		    EPHI_ARG_DEF (exp_phi, opnd_num) = EUSE_DEF (def);
		  else
		    EPHI_ARG_DEF (exp_phi, opnd_num) = def;
		}
	      else
		{
		  EPHI_ARG_DEF (exp_phi, opnd_num) = NULL;
		}
	    }
	}
    }
}

/* For the uninitiated, the algorithm is a modified SSA renaming
   algorithm (working on expressions rather than variables) .  We
   attempt to determine which expression occurrences have the same
   ESSA version (we call it class, for equivalence/redundancy class,
   which is what the papers call it.  Open64 calls it e-version), and
   which occurrences are actually operands for an EPHI (since this has
   to be discovered from the program). 

   Renaming is done like Open64 does it.  Basically as the paper says, 
   except that we try to use earlier defined occurrences if they are
   available in order to keep the number of saves down. */

static void
rename_1 (struct expr_info *ei)
{
  tree occur;
  basic_block phi_bb;
  size_t i;
  varray_type stack;

  VARRAY_GENERIC_PTR_NOGC_INIT (stack, 1, "Stack for renaming");

  /* Start by creating and inserting the occurrences in preorder,
     dominator tree into a list.  */
  create_and_insert_occ_in_preorder_dt_order (ei);
  
  /* Walk the occurrences.  */
  for (i = 0; i < VARRAY_ACTIVE_SIZE (ei->euses_dt_order); i++)
    {
      occur = VARRAY_TREE (ei->euses_dt_order, i);
      
      /* The current occurrence can't have the same version as
	 something on the top of the stack unless it is in a basic
	 block dominated by the basic block of the occurrence on the
	 top of the stack.  */
      while (VARRAY_ACTIVE_SIZE (stack) > 0	     
	     && !dominated_by_p (CDI_DOMINATORS,
			     	 bb_for_stmt (occur),
				 bb_for_stmt (VARRAY_TOP_TREE (stack))))
	
	VARRAY_POP (stack);

      /* If the stack is empty, we assign a new version since it isn't
	 dominated by any other version.  */
      if (VARRAY_ACTIVE_SIZE (stack) == 0 || VARRAY_TOP_TREE (stack) == NULL)
	{
	  if (TREE_CODE (occur) == EPHI_NODE)
	    assign_new_class (occur, &stack, NULL);
	  else if (TREE_CODE (occur) == EUSE_NODE && !EUSE_PHIOP (occur))
	    assign_new_class (occur, &stack, NULL);
	}
      else
	{
	  if (TREE_CODE (occur) == EUSE_NODE && !EUSE_PHIOP (occur))
	    {
	      tree tos = VARRAY_TOP_TREE (stack);

	      if (TREE_CODE (tos) == EUSE_NODE && !EUSE_PHIOP (tos))
		{
		  /* If two real occurrences have the same
		     e-version/class, then this occurrence can be
		     defined by the prior occurrence (or whatever
		     the prior occurrence is defined by, if
		     anything).  
		     Otherwise, we have to assign a new version.
		     lvalue occurrences always need a new version,
		     since they are definitions. */
		  if (!EUSE_LVAL (occur) 
		      && same_e_version_real_occ_real_occ (ei, tos, occur))
		    {
		      
		     
		      tree newdef;
		      EREF_CLASS (occur) = EREF_CLASS (tos);
		      newdef = EUSE_DEF (tos) != NULL ? EUSE_DEF (tos) : tos;
		      EUSE_DEF (occur) = newdef;
		    }		 
		  else
		    assign_new_class (occur, &stack, NULL);
		}
	      else if (TREE_CODE (tos) == EPHI_NODE)
		{
		  /* Here we have an ephi occurrence at the top of the
		     stack, and the current occurrence is a real
		     occurrence.  So determine if the real occurrence
		     has the same version as the result of the phi.  
		     If so, then this real occurrence is defined by the
		     EPHI at the top of the stack.
		     If not, the EPHI isn't downsafe (because something
		     must change in between the ephi result and the next
		     occurrence), and we need a new version for the real
		     occurrence.
		     lvalues always need a new version. */
		  if (!EUSE_LVAL (occur)
		      && same_e_version_phi_result (ei, tos, EREF_STMT (occur),
						    occur))
		    {
		      EREF_CLASS (occur) = EREF_CLASS (tos);
		      EUSE_DEF (occur) = tos;
		      EREF_STMT (tos) = EREF_STMT (occur);

		      VARRAY_PUSH_TREE (stack, occur);
		    }
		  else
		    {
		      EPHI_DOWNSAFE (tos) = false;
		      assign_new_class (occur, &stack, NULL);
		    }
		}
	    }
	  /* EPHI occurrences always get new versions. */
	  else if (TREE_CODE (occur) == EPHI_NODE)
	    {	      
	      assign_new_class (occur, &stack, NULL);
	    }
	  /* EPHI operands are optimistcally assumed to be whatever is
	     at the top of the stack at the time we hit the ephi
	     operand occurrence.  The delayed renaming checks this
	     optimistic assumption for validity.  */
	  else if (TREE_CODE (occur) == EUSE_NODE && EUSE_PHIOP (occur))
	    {
	      basic_block pred_bb = bb_for_stmt (occur);
	      edge e;
	      tree tos = VARRAY_TOP_TREE (stack);
	      for (e = pred_bb->succ; e; e = e->succ_next)
		{
		  tree ephi = ephi_at_block (e->dest);
		  if (ephi != NULL_TREE)
		    {
		      int opnum = opnum_of_ephi (ephi, e);

		      EPHI_ARG_DELAYED_RENAME (ephi, opnum) = true;
		      EPHI_ARG_DEF (ephi, opnum) = tos;
		    }
		}	      
	    }
	  /* No EPHI can be downsafe past an exit node.  */
	  else if (TREE_CODE (occur) == EEXIT_NODE)
	    {
	      if (VARRAY_ACTIVE_SIZE (stack) > 0
		  && TREE_CODE (VARRAY_TOP_TREE (stack)) == EPHI_NODE)
		EPHI_DOWNSAFE (VARRAY_TOP_TREE (stack)) = false;
	    }
	}
    }
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      size_t i;
      fprintf (dump_file, "Occurrences for expression ");
      print_generic_expr (dump_file, ei->expr, dump_flags);
      fprintf (dump_file, " after Rename 1\n");
      for (i = 0; i < VARRAY_ACTIVE_SIZE (ei->euses_dt_order); i++)
	{
	  print_generic_expr (dump_file, 
			      VARRAY_TREE (ei->euses_dt_order, i), 1);
	  fprintf (dump_file, "\n");
	}
    }

  /* Now process the renames for EPHI's that actually have the result
     valid and used.  These will be the EPHI's that have the statement
     set above.  */
  FOR_EACH_BB (phi_bb)
  {
    tree ephi = ephi_at_block (phi_bb);
    if (ephi != NULL && EREF_STMT (ephi) != NULL)
      process_delayed_rename (ei, ephi, EREF_STMT (ephi));
  }

  /* If we didn't process the delayed rename for an ephi argument, 
     but thought we needed to, mark the operand as NULL.  Also, if the
     operand was defined by an  EPHI, we can mark it not downsafe
     because there can't have been a real occurrence (or else we would
     have processed a rename for it).  */
  FOR_EACH_BB (phi_bb)
  {
    tree ephi = ephi_at_block (phi_bb);
    if (ephi != NULL)
      {
	int j;
	for (j = 0; j < EPHI_NUM_ARGS (ephi); j++)
	  {
	    if (EPHI_ARG_DELAYED_RENAME (ephi, j))
	      {
		tree def = EPHI_ARG_DEF (ephi, j);
		if (def && TREE_CODE (def) == EPHI_NODE)
		  EPHI_DOWNSAFE (def) = false;
		EPHI_ARG_DEF (ephi, j) = NULL;
	      }
	  }
      }
  }
  VARRAY_FREE (stack);
}

/* Determine if the EPHI has an argument we could never insert
   or extend the lifetime of, such as an argument occurring on 
   an abnormal edge. */

static bool
ephi_has_unsafe_arg (tree ephi)
{
  int i;
  for (i = 0; i < EPHI_NUM_ARGS (ephi); i++)
    if (EPHI_ARG_EDGE (ephi, i)->flags & EDGE_ABNORMAL)
      return true;
  return false;
}

/* Reset down safety flags for non-downsafe ephis. Uses depth first
   search.  */

static void
reset_down_safe (tree currphi, int opnum)
{
  tree ephi;
  int i;

  if (EPHI_ARG_HAS_REAL_USE (currphi, opnum)) 
    return;
  ephi = EPHI_ARG_DEF (currphi, opnum);
  if (!ephi || TREE_CODE (ephi) != EPHI_NODE)
    return;
  if (!EPHI_DOWNSAFE (ephi))
    return;
  EPHI_DOWNSAFE (ephi) = false;
  for (i = 0; i < EPHI_NUM_ARGS (ephi); i++)
    reset_down_safe (ephi, i);
}

/* Compute down_safety using a depth first search.
   This propagates not fully anticipated phi assignments upwards.  */

static void
compute_down_safety (struct expr_info *ei)
{
  size_t i;
  basic_block bb;
  FOR_EACH_BB (bb)
  {
    tree ephi = ephi_at_block (bb);
    if (ephi == NULL_TREE)
      continue;
    if (ephi_has_unsafe_arg (ephi))
      EPHI_DOWNSAFE (ephi) = false;
  }
  for (i = 0; i < VARRAY_ACTIVE_SIZE (ei->euses_dt_order); i++)
    {
      int j;
      tree ephi = VARRAY_TREE (ei->euses_dt_order, i);
      if (TREE_CODE (ephi) != EPHI_NODE)
	continue;

      if (!EPHI_DOWNSAFE (ephi))
	for (j = 0; j < EPHI_NUM_ARGS (ephi); j++)
	  reset_down_safe (ephi, j);
      
    }
}

/* EPHI use node pool. We allocate ephi_use_node's out of this.  */
static alloc_pool ephi_use_pool;

/* Add a use of DEF to it's use list. The use is at operand OPND_INDX
   of USE.  */

static void 
add_ephi_use (tree def, tree use, int opnd_indx)
{
  struct ephi_use_entry *entry;
  if (EPHI_USES (def) == NULL)
    VARRAY_GENERIC_PTR_INIT (EPHI_USES (def), 1, "EPHI uses");
  entry = (struct ephi_use_entry *) pool_alloc (ephi_use_pool);
  entry->phi = use;
  entry->opnd_indx = opnd_indx;
  VARRAY_PUSH_GENERIC_PTR (EPHI_USES (def), entry);  
}
  
/* Compute def-uses of ephis.  */

static void
compute_du_info (struct expr_info *ei)
{
  size_t i;
  for (i = 0; i < VARRAY_ACTIVE_SIZE (ei->euses_dt_order); i++)
    {
      int j;
      tree ephi = VARRAY_TREE (ei->euses_dt_order, i);
      if (TREE_CODE (ephi) != EPHI_NODE)
	continue;
      for (j = 0; j < EPHI_NUM_ARGS (ephi); j++)
	{
	  tree def = EPHI_ARG_DEF (ephi, j);
	  if (def != NULL_TREE)
	    {
	      if (TREE_CODE (def) == EPHI_NODE)
		add_ephi_use (def, ephi, j);
#ifdef ENABLE_CHECKING
	      else
		if (! (TREE_CODE (def) == EUSE_NODE && !EUSE_PHIOP (def)))
		  abort();
#endif
	    }
	}
    }
}

/* STOPS marks what EPHI's/operands stop forward movement. (IE where
   we can't insert past).  */

static void
compute_stops (struct expr_info *ei)
{
  size_t i;
  
  for (i = 0; i < VARRAY_ACTIVE_SIZE (ei->euses_dt_order); i++)
    {
      tree ephi = VARRAY_TREE (ei->euses_dt_order, i);
      int j;
      
      if (TREE_CODE (ephi) != EPHI_NODE)
	continue;
      if (EPHI_CANT_BE_AVAIL (ephi))
	EPHI_STOPS (ephi) = true;
      for (j = 0; j < EPHI_NUM_ARGS (ephi); j++)
	if (EPHI_ARG_HAS_REAL_USE (ephi, j))
	  EPHI_ARG_STOPS (ephi, j) = true;
    }
  do_ephi_df_search (ei, stops_search);
}

/* Compute will_be_avail property, which consists of cant_be_avail and
   stops properties.  */

static void
compute_will_be_avail (struct expr_info *ei)
{
  do_ephi_df_search (ei, cant_be_avail_search);
  compute_stops (ei);  
}

/* Insert the expressions into ei->euses_dt_order in preorder dt order.  */

static void
insert_euse_in_preorder_dt_order (struct expr_info *ei)
{
  varray_type new_euses_dt_order;
  size_t i;
  VARRAY_GENERIC_PTR_NOGC_INIT (new_euses_dt_order, 1, "EUSEs");

  for (i = 0; i < VARRAY_ACTIVE_SIZE (ei->euses_dt_order); i++)
    {
      tree ref = VARRAY_TREE (ei->euses_dt_order, i);
      if (TREE_CODE (ref) == EUSE_NODE || TREE_CODE (ref) == EPHI_NODE)
	VARRAY_PUSH_TREE (new_euses_dt_order, ref);
    }
  VARRAY_FREE (ei->euses_dt_order);
  ei->euses_dt_order = new_euses_dt_order;
  qsort (ei->euses_dt_order->data.tree, 
	 VARRAY_ACTIVE_SIZE (ei->euses_dt_order), 
	 sizeof (tree),
	 eref_compare);

}

/* Determine if we can insert operand OPND_INDX of EPHI.  */

static bool
can_insert (tree ephi, int opnd_indx)
{
  tree def;

  if (EPHI_ARG_DEF (ephi, opnd_indx) == NULL_TREE)
    return true;
  def = EPHI_ARG_DEF (ephi, opnd_indx);
  if (!EPHI_ARG_HAS_REAL_USE (ephi, opnd_indx))
    if (TREE_CODE (def) == EPHI_NODE && !(ephi_will_be_avail (def)))
      return true;
  return false;
}

/* Find the default definition of VAR.
   This is incredibly ugly, since we have to walk back through all
   the definitions to find the one defined by the empty statement.  */

static tree
get_default_def (tree var, htab_t seen)
{
  def_optype defs;
  size_t i;
  tree defstmt = SSA_NAME_DEF_STMT (var);

  if (IS_EMPTY_STMT (defstmt))
    return var;
  *(htab_find_slot (seen, var, INSERT)) = var;
  if (TREE_CODE (defstmt) == PHI_NODE)
    {
      int j;
      for (j = 0; j < PHI_NUM_ARGS (defstmt); j++)
	if (htab_find (seen, PHI_ARG_DEF (defstmt, j)) == NULL)
	  {
	    if (TREE_CODE (PHI_ARG_DEF (defstmt, j)) == SSA_NAME)
	      {
		tree temp = get_default_def (PHI_ARG_DEF (defstmt, j), seen);
		if (temp != NULL_TREE)
		  return temp;
	      }
	  }
    }


  defs = STMT_DEF_OPS (defstmt);
  for (i = 0; i < NUM_DEFS (defs); i++)
    {
      tree def = DEF_OP (defs, i);
      if (SSA_NAME_VAR (def) == SSA_NAME_VAR (var))
	{
	  if (htab_find (seen, def) != NULL)
	    return NULL;
	  return get_default_def (def, seen);
	}
    }

  /* We should never get here.  */
  abort ();
}

/* Hunt down the right reaching def for VAR, starting with BB.  Ignore
   defs in statement IGNORE, and stop if we hit CURRSTMT.  */

static tree
reaching_def (tree var, tree currstmt, basic_block bb, tree ignore)
{
  tree curruse = NULL_TREE;
  block_stmt_iterator bsi;
  basic_block dom;
  tree phi;

  /* Check phis first. */
  for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
    {
      if (phi == currstmt)
	break;
      if (phi == ignore)
	continue;
      if (names_match_p (var, PHI_RESULT (phi)))
	curruse = PHI_RESULT (phi);
    }

  /* We can't walk BB's backwards right now, so we have to walk *all*
     the statements, and choose the last name we find. */
  for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
    {
      tree stmt = bsi_stmt (bsi);
      tree *def;
      def_optype defs;
      size_t i;

      if (stmt == currstmt)
	break;

      get_stmt_operands (stmt);
      defs = STMT_DEF_OPS (stmt);
      for (i = 0; i < NUM_DEFS (defs); i++)
	{
	  def = DEF_OP_PTR (defs, i);
	  if (def && *def != ignore && names_match_p (var, *def))
	    {
	      curruse = *def;
	      break;
	    }
	}
    }
  if (curruse != NULL_TREE)
    return curruse;
  dom = get_immediate_dominator (CDI_DOMINATORS, bb);
  if (bb == ENTRY_BLOCK_PTR)
    {
      htab_t temp;
      temp = htab_create (7, htab_hash_pointer, htab_eq_pointer, NULL);
      curruse = get_default_def (var, temp);
      htab_delete (temp);
    }
  if (!dom)
    return curruse;
  return reaching_def (var, currstmt, dom, ignore);
}

/* Insert one ephi operand that doesn't currently exist as a use.  */

static void
insert_one_operand (struct expr_info *ei, tree ephi, int opnd_indx, 
		    tree x, edge succ, tree **avdefsp)
{
  /* FIXME.  pre_insert_on_edge should probably disappear.  */
  extern void pre_insert_on_edge (edge, tree);
  tree expr;
  tree temp = ei->temp;
  tree copy;
  tree newtemp;
  basic_block bb = bb_for_stmt (x);

  /* Insert definition of expr at end of BB containing x. */
  copy = TREE_OPERAND (EREF_STMT (ephi), 1);
  copy = unshare_expr (copy);
  expr = build (MODIFY_EXPR, TREE_TYPE (ei->expr),
		temp, copy);
  expr = subst_phis (ei, expr, bb, bb_for_stmt (ephi));
  newtemp = make_ssa_name (temp, expr);  
  TREE_OPERAND (expr, 0) = newtemp;
  copy = TREE_OPERAND (expr, 1);
  if (dump_file)
    {
      fprintf (dump_file, "In BB %d, insert save of ", bb->index);
      print_generic_expr (dump_file, expr, dump_flags);
      fprintf (dump_file, " to ");
      print_generic_expr (dump_file, newtemp, dump_flags);
      fprintf (dump_file, " after ");
      print_generic_stmt (dump_file, last_stmt (bb), dump_flags);
      fprintf (dump_file, " (on edge), because of EPHI");
      fprintf (dump_file, " in BB %d\n", bb_for_stmt (ephi)->index);
    }
		      
  /* Do the insertion.  */
  /* ??? Previously we did bizarre searching, presumably to get
     around bugs elsewhere in the infrastructure.  I'm not sure
     if we really should be using pre_insert_on_edge
     or just bsi_insert_after at the end of BB.  */
  pre_insert_on_edge (succ, expr);

  EPHI_ARG_DEF (ephi, opnd_indx)
    = create_expr_ref (ei, ei->expr, EUSE_NODE, bb, 0);
  EUSE_DEF (x) = EPHI_ARG_DEF (ephi, opnd_indx);
  VARRAY_PUSH_TREE (ei->euses_dt_order, EPHI_ARG_DEF (ephi, opnd_indx));
  qsort (ei->euses_dt_order->data.tree, 
	 VARRAY_ACTIVE_SIZE (ei->euses_dt_order), 
	 sizeof (tree),
	 eref_compare);
  EREF_TEMP (EUSE_DEF (x)) = newtemp;
  EREF_RELOAD (EUSE_DEF (x)) = false;
  EREF_SAVE (EUSE_DEF (x)) = false;
  EUSE_INSERTED (EUSE_DEF (x)) = true;
  EUSE_PHIOP (EUSE_DEF (x)) = false;
  EREF_SAVE (x) = false;
  EREF_RELOAD (x) = false;
  EUSE_INSERTED (x) = true;
  EREF_CLASS (x) = class_count++;
  EREF_CLASS (EUSE_DEF (x)) = class_count++;
  *avdefsp = xrealloc (*avdefsp, sizeof (tree) * (class_count + 1));
  (*avdefsp)[class_count - 2] = x;
  (*avdefsp)[class_count - 1] = EUSE_DEF (x);
  pre_stats.saves++;
}

/* First step of finalization.  Determine which expressions are being
   saved and which are being deleted.
   This is done as a simple dominator based availability calculation,
   using the e-versions/redundancy classes.  */

static bool
finalize_1 (struct expr_info *ei)
{
  tree x;
  int nx;
  bool made_a_reload = false;
  size_t i;
  tree *avdefs;
  
  avdefs = xcalloc (class_count + 1, sizeof (tree));

  for (i = 0; i < VARRAY_ACTIVE_SIZE (ei->euses_dt_order); i++)
    {
      x = VARRAY_TREE (ei->euses_dt_order, i);
      nx = EREF_CLASS (x);

      if (TREE_CODE (x) == EPHI_NODE)
	{
	  if (ephi_will_be_avail (x))
	    avdefs[nx] = x;
	}
      else if (TREE_CODE (x) == EUSE_NODE && EUSE_LVAL (x))
	{
	  avdefs[nx] = x;
	}
      else if (TREE_CODE (x) == EUSE_NODE && !EUSE_PHIOP (x))
	{
	  if (avdefs[nx] == NULL
	      || !dominated_by_p (CDI_DOMINATORS, bb_for_stmt (x), 
				  bb_for_stmt (avdefs[nx])))
	    {
	      EREF_RELOAD (x) = false;
	      avdefs[nx] = x;
	      EUSE_DEF (x) = NULL;
	    }
	  else
	    {
	      EREF_RELOAD (x) = true;
	      made_a_reload = true;
	      EUSE_DEF (x) = avdefs[nx];
#ifdef ENABLE_CHECKING
	      if (EREF_CLASS (x) != EREF_CLASS (avdefs[nx]))
		abort ();
#endif
	    }
	}
      else
	{
	  edge succ;
	  basic_block bb = bb_for_stmt (x);
	  /* For each ephi in the successor blocks.  */
	  for (succ = bb->succ; succ; succ = succ->succ_next)
	    {
	      tree ephi = ephi_at_block (succ->dest);
	      if (ephi == NULL_TREE)
		continue;
	      if (ephi_will_be_avail (ephi))
		{
		  int opnd_indx = opnum_of_ephi (ephi, succ);
#ifdef ENABLE_CHECKING
		  if (EPHI_ARG_PRED (ephi, opnd_indx) != x)
		    abort ();
#endif
		  if (can_insert (ephi, opnd_indx))
		    {
		      insert_one_operand (ei, ephi, opnd_indx, x, succ, 
					  &avdefs);
		    }
		  else
		    {
		      nx = EREF_CLASS (EPHI_ARG_DEF (ephi,opnd_indx));
		      EPHI_ARG_DEF (ephi, opnd_indx) = avdefs[nx];
		    }
		}
	    }
	}
    }
  free (avdefs);
  return made_a_reload;
}

/* Mark the necessary SAVE bits on X.  */

static void
set_save (struct expr_info *ei, tree X)
{
  if (TREE_CODE (X) == EUSE_NODE && !EUSE_PHIOP (X))
    EREF_SAVE (X) = true;
  else if (TREE_CODE (X) == EPHI_NODE)
    {
      int curr_phiop;
      for (curr_phiop = 0; curr_phiop < EPHI_NUM_ARGS (X); curr_phiop++)
	{
	  tree w = EPHI_ARG_DEF (X, curr_phiop);
	  if (!EPHI_ARG_PROCESSED2 (X, curr_phiop))
	    {
	      EPHI_ARG_PROCESSED2 (X, curr_phiop) = true;
	      if (w)
		set_save (ei, w);
	    }  
	}
    }
}

/* DFS Search function: Return true if PHI is can't be available.  */

static bool
cba_search_seen (tree phi)
{
  return EPHI_CANT_BE_AVAIL (phi);
}

/* DFS Search function: Mark PHI as can't be available when seen.  */

static void
cba_search_set_seen (tree phi)
{
  EPHI_CANT_BE_AVAIL (phi) = true;
}

/* DFS Search function: Return true if PHI should be marked can't be
   available due to a NULL operand.  */

static bool 
cba_search_start_from (tree phi)
{
  if (!EPHI_DOWNSAFE (phi))
    {
      int i;
      for (i = 0; i < EPHI_NUM_ARGS (phi); i++)
	if (EPHI_ARG_DEF (phi, i) == NULL_TREE 
	    || EPHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
	  return true;
    }
  return false;
}

/* DFS Search function: Return true if the used PHI is not downsafe,
   unless we have a real use for the operand.  */

static bool
cba_search_continue_from_to (tree def_phi ATTRIBUTE_UNUSED,
			     int opnd_indx, 
			     tree use_phi)
{
  if (EPHI_ARG_HAS_REAL_USE (use_phi, opnd_indx) && 
      !(EPHI_ARG_EDGE (use_phi, opnd_indx)->flags & EDGE_ABNORMAL))
    return false;
  if (!EPHI_DOWNSAFE (use_phi))
    return true;
  return false;
}
      
/* DFS Search function: Return true if this PHI stops forward
   movement.  */

static bool
stops_search_seen (tree phi)
{
  return EPHI_STOPS (phi);
}

/* DFS Search function:  Mark the PHI as stopping forward movement.  */

static void
stops_search_set_seen (tree phi)
{
  EPHI_STOPS (phi) = true;
}

/* DFS Search function:  Note that the used phi argument stops forward
   movement.  */

static void
stops_search_reach_from_to (tree def_phi ATTRIBUTE_UNUSED, 
			    int opnd_indx,
			    tree use_phi)
{
  EPHI_ARG_STOPS (use_phi, opnd_indx) = true;
}

/* DFS Search function: Return true if the PHI has any arguments
   stopping forward movement.  */

static bool
stops_search_start_from (tree phi)
{
  int i;
  for (i = 0; i < EPHI_NUM_ARGS (phi); i++)
    if (EPHI_ARG_STOPS (phi, i))
      return true;
  return false;
}

/* DFS Search function:  Return true if the PHI has any arguments
   stopping forward movement.  */

static bool
stops_search_continue_from_to (tree def_phi ATTRIBUTE_UNUSED, 
			       int opnd_indx ATTRIBUTE_UNUSED,
			       tree use_phi)
{
  return stops_search_start_from (use_phi);
}

/* DFS Search function:  Return true if the replacing occurrence is
   known.  */

static bool 
repl_search_seen (tree phi)
{
  return EPHI_REP_OCCUR_KNOWN (phi);
}

/* DFS Search function:  Set the identical_to field and note the
   replacing occurrence is now known.  */

static void 
repl_search_set_seen (tree phi)
{
  int i;
  
#ifdef ENABLE_CHECKING
  if (!ephi_will_be_avail (phi))
    abort ();
#endif
  
  if (EPHI_IDENTICAL_TO (phi) == NULL_TREE)
    {
      for (i = 0; i < EPHI_NUM_ARGS (phi); i++)
	{
	  tree identical_to = occ_identical_to (EPHI_ARG_DEF (phi, i));
	  if (identical_to != NULL_TREE)
	    {
	      if (EPHI_IDENTICAL_TO (phi) == NULL)
		EPHI_IDENTICAL_TO (phi) = identical_to;	      
	      if (EPHI_ARG_INJURED (phi, i))
		EPHI_IDENT_INJURED (phi) = true;
	    }
	}
    }
  EPHI_REP_OCCUR_KNOWN (phi) = true;
}

/* Helper function.  Return true if any argument in the PHI is
   injured.  */

static inline bool
any_operand_injured (tree ephi)
{
  int i;
  for (i = 0; i < EPHI_NUM_ARGS (ephi); i++)
    if (EPHI_ARG_INJURED (ephi, i))
      return true;
  return false;
  
}

/* DFS Search function:  Note the identity of the used phi operand is
   the same as it's defining phi operand, if that phi will be
   available, and it's known.  */

static void
repl_search_reach_from_to (tree def_phi, int opnd_indx ATTRIBUTE_UNUSED,
			   tree use_phi)
{
  if (ephi_will_be_avail (use_phi)
      && EPHI_IDENTITY (use_phi) 
      && EPHI_IDENTICAL_TO (use_phi) == NULL_TREE)
    {
      EPHI_IDENTICAL_TO (use_phi) = EPHI_IDENTICAL_TO (def_phi);
      
      if (EPHI_IDENT_INJURED (def_phi)
	  || any_operand_injured (use_phi))
	EPHI_IDENT_INJURED (use_phi) = true;
    }
}

/* DFS Search function:  Return true if the PHI will be available,
   it's an identity PHI, and it's arguments are identical to
   something.  */

static bool 
repl_search_start_from (tree phi)
{
  if (ephi_will_be_avail (phi) && EPHI_IDENTITY (phi))
    {
      int i;
      for (i = 0; i < EPHI_NUM_ARGS (phi); i++)
	if (occ_identical_to (EPHI_ARG_DEF (phi, i)) != NULL_TREE)
	  return true;    
    }
  return false;
}

/* DFS Search function:  Return true if the using PHI is will be available,
   and identity.  */

static bool
repl_search_continue_from_to (tree def_phi ATTRIBUTE_UNUSED,
			      int opnd_indx ATTRIBUTE_UNUSED,
			      tree use_phi)
{
  return ephi_will_be_avail (use_phi) && EPHI_IDENTITY (use_phi);
}

/* Mark all will-be-avail ephi's in the dominance frontier of BB as
   required.  */

static void
require_phi (struct expr_info *ei, basic_block bb)
{
  size_t i;
  EXECUTE_IF_SET_IN_BITMAP (pre_dfs[bb->index], 0, i,
  {
    tree ephi;
    ephi = ephi_at_block (BASIC_BLOCK (i));
    if (ephi != NULL_TREE 
	&& ephi_will_be_avail (ephi) 
	&& EPHI_IDENTITY (ephi))
      {
	EPHI_IDENTITY (ephi) = false;
	require_phi (ei, BASIC_BLOCK (i));
      }
  });
}

/* Return the occurrence this occurrence is identical to, if one exists.  */

static tree
occ_identical_to (tree t)
{
  if (TREE_CODE (t) == EUSE_NODE && !EUSE_PHIOP (t))
    return t;
  else if (TREE_CODE (t) == EUSE_NODE && EUSE_PHIOP (t))
    return t;
  else if (TREE_CODE (t) == EPHI_NODE)
    { 
      if (EPHI_IDENTITY (t) && EPHI_REP_OCCUR_KNOWN (t))
	return EPHI_IDENTICAL_TO (t);
      else if (!EPHI_IDENTITY (t))
	return t;
    }
  return NULL_TREE;
}

/* Return true if NODE was or is going to be saved.  */
static bool
really_available_def (tree node)
{
  if (TREE_CODE (node) == EUSE_NODE 
      && EUSE_PHIOP (node) 
      && EUSE_INSERTED (node))
    return true;
  if (TREE_CODE (node) == EUSE_NODE
      && EUSE_DEF (node) == NULL_TREE)
    return true;
  return false;
}


/* Second part of the finalize step.  Performs save bit setting, and
   ESSA minimization.  */

static void
finalize_2 (struct expr_info *ei)
{
  size_t i;

  insert_euse_in_preorder_dt_order (ei);
  /* Note which uses need to be saved to a temporary.  */
  for (i = 0; i < VARRAY_ACTIVE_SIZE (ei->euses_dt_order); i++)
    {
      tree ref = VARRAY_TREE (ei->euses_dt_order, i);
      if (TREE_CODE (ref) == EUSE_NODE
	  && !EUSE_PHIOP (ref)
	  && EREF_RELOAD (ref))
	{
	  set_save (ei, EUSE_DEF (ref));
	}
    }

  /* ESSA Minimization.  Determines which phis are identical to other
     phis, and not strictly necessary.  */

  for (i = 0; i < VARRAY_ACTIVE_SIZE (ei->euses_dt_order); i++)
    {
      tree ephi = VARRAY_TREE (ei->euses_dt_order, i);
      if (TREE_CODE (ephi) != EPHI_NODE)
	continue;
      EPHI_IDENTITY (ephi) = true;
      EPHI_IDENTICAL_TO (ephi) = NULL;
    }
  
  for (i = 0; i < VARRAY_ACTIVE_SIZE (ei->euses_dt_order); i++)
    {
      tree ephi = VARRAY_TREE (ei->euses_dt_order, i);
      if (!ephi || TREE_CODE (ephi) != EPHI_NODE)
	continue;      
      if (ephi_will_be_avail (ephi))
	{
	  int k;
	  for (k = 0; k < EPHI_NUM_ARGS (ephi); k++)
	    {
	      if (EPHI_ARG_INJURED (ephi, k))
		require_phi (ei, EPHI_ARG_EDGE (ephi, k)->src);
	      else if (EPHI_ARG_DEF (ephi, k) 
		       && TREE_CODE (EPHI_ARG_DEF (ephi, k)) == EUSE_NODE
		       && really_available_def (EPHI_ARG_DEF (ephi, k)))
		require_phi (ei, bb_for_stmt (EPHI_ARG_DEF (ephi, k)));
	    }
	}
    }
  do_ephi_df_search (ei, replacing_search);
}

/* Perform a DFS on EPHI using the functions in SEARCH. */

static void
do_ephi_df_search_1 (struct ephi_df_search search, tree ephi)
{
  varray_type uses;
  size_t i;
  search.set_seen (ephi);
  
  uses = EPHI_USES (ephi);
  if (!uses)
    return;
  for (i = 0; i < VARRAY_ACTIVE_SIZE (uses); i++)
    {
      struct ephi_use_entry *use = VARRAY_GENERIC_PTR (uses, i);
      if (search.reach_from_to)
	search.reach_from_to (ephi, use->opnd_indx, use->phi);
      if (!search.seen (use->phi) &&
	  search.continue_from_to (ephi, use->opnd_indx, use->phi))
	{
	  do_ephi_df_search_1 (search, use->phi);
	}
    }
}

/* Perform a DFS on the EPHI's, using the functions in SEARCH.  */

static void
do_ephi_df_search (struct expr_info *ei, struct ephi_df_search search) 
{
  size_t i;
  for (i = 0; i < VARRAY_ACTIVE_SIZE (ei->euses_dt_order); i++)
    {
      tree ephi = VARRAY_TREE (ei->euses_dt_order, i);
      if (!ephi || TREE_CODE (ephi) != EPHI_NODE)
	continue;
      if (!search.seen (ephi) 
	  && search.start_from (ephi))
	do_ephi_df_search_1 (search, ephi);
    }
}

#if 0
/* Calculate the increment necessary due to EXPR for the temporary. */
static tree
calculate_increment (struct expr_info *ei, tree expr)
{
  tree incr;

  /*XXX: Currently assume it's like a = a + 5, thus, this will give us the 5.
   */
  incr = TREE_OPERAND (TREE_OPERAND (expr, 1), 1);
  if (TREE_CODE (incr) != INTEGER_CST)
    abort();
  if (TREE_CODE (ei->expr) == MULT_EXPR)
    incr = fold (build (MULT_EXPR, TREE_TYPE (ei->expr),
			incr, TREE_OPERAND (ei->expr, 1)));
#if DEBUGGING_STRRED
  if (dump_file)
    {
      fprintf (dump_file, "Increment calculated to be: ");
      print_generic_expr (dump_file, incr, 0);
      fprintf (dump_file, "\n");
    }
#endif
  return incr;
}
#endif


/* Perform an insertion of EXPR before/after USE, depending on the
   value of BEFORE.  */

static tree
do_proper_save (tree use, tree expr, int before)
{
  basic_block bb = bb_for_stmt (use);
  block_stmt_iterator bsi;

  for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
    {
      if (bsi_stmt (bsi) == use)
	{
	  if (before)
	    bsi_insert_before (&bsi, expr, BSI_SAME_STMT);
	  else
	    bsi_insert_after (&bsi, expr, BSI_SAME_STMT);
	  return use;
	}
    }
  abort ();
}

/* Get the temporary for ESSA node USE.  
   Takes into account minimized ESSA.  */
static tree 
get_temp (tree use)
{
  tree newtemp;
  if (TREE_CODE (use) == EPHI_NODE && EPHI_IDENTITY (use))
    {
      tree newuse = use;
      while  (TREE_CODE (newuse) == EPHI_NODE 
	      && EPHI_IDENTITY (newuse))	    
	{
#ifdef ENABLE_CHECKING
	  if (!EPHI_IDENTICAL_TO (newuse))
	    abort ();
#endif
	  newuse = EPHI_IDENTICAL_TO (newuse);
	  if (TREE_CODE (newuse) != EPHI_NODE)
	    break;
	}
      if (TREE_CODE (EREF_TEMP (newuse)) == PHI_NODE)
	newtemp = PHI_RESULT (EREF_TEMP (newuse));
      else
	newtemp = EREF_TEMP (newuse);    
    }
  else
    {
      if (TREE_CODE (EREF_TEMP (use)) == PHI_NODE)
	newtemp = PHI_RESULT (EREF_TEMP (use));
      else
	newtemp = EREF_TEMP (use);    
    }
  return newtemp;
}

/* Return the side of the statement that contains an SSA name.  */

static tree
pick_ssa_name (tree stmt)
{
  if (TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME)
    return TREE_OPERAND (stmt, 0);
  else if (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME)
    return TREE_OPERAND (stmt, 1);
  else
    abort ();
}

/* Code motion step of SSAPRE.  Take the save bits, and reload bits,
   and perform the saves and reloads.  Also insert new phis where
   necessary.  */

static void
code_motion (struct expr_info *ei)
{
  tree use;
  tree newtemp;
  size_t euse_iter;
  tree temp = ei->temp;
  basic_block bb;

  /* First, add the phi node temporaries so the reaching defs are
     always right. */
  for (euse_iter = 0;
       euse_iter < VARRAY_ACTIVE_SIZE (ei->euses_dt_order);
       euse_iter++)
    {

      use = VARRAY_TREE (ei->euses_dt_order, euse_iter);
      if (TREE_CODE (use) != EPHI_NODE)
	continue;
      if (ephi_will_be_avail (use) && !EPHI_IDENTITY (use))
	{
	  bb = bb_for_stmt (use);
	  /* Add the new PHI node to the list of PHI nodes for block BB.  */
	  bb_ann (bb)->phi_nodes = chainon (phi_nodes (bb), EREF_TEMP (use));
	}
      else if (EPHI_IDENTITY (use))
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Pointless EPHI in block %d\n",
		       bb_for_stmt (use)->index);
	    }
	}
    }
  /* Now do the actual saves and reloads, plus repairs. */
  for (euse_iter = 0;
       euse_iter < VARRAY_ACTIVE_SIZE (ei->euses_dt_order);
       euse_iter++)
    {
      use = VARRAY_TREE (ei->euses_dt_order, euse_iter);
#ifdef ENABLE_CHECKING
      if (TREE_CODE (use) == EUSE_NODE && EUSE_PHIOP (use)
	  && (EREF_RELOAD (use) || EREF_SAVE (use)))
	abort ();
#endif
      if (EREF_SAVE (use) && !EUSE_INSERTED (use))
	{
	  tree newexpr;
	  tree use_stmt;
	  tree copy;
	  basic_block usebb = bb_for_stmt (use);
	  use_stmt = EREF_STMT (use);

	  copy = TREE_OPERAND (use_stmt, 1);
	  copy = unshare_expr (copy);
	  newexpr = build (MODIFY_EXPR, TREE_TYPE (temp), temp, copy);
	  newtemp = make_ssa_name (temp, newexpr);
	  EREF_TEMP (use) = newtemp;	  
	  TREE_OPERAND (newexpr, 0) = newtemp;
	  TREE_OPERAND (use_stmt, 1) = newtemp;

	  if (dump_file)
	    {
	      fprintf (dump_file, "In BB %d, insert save of ",
		       usebb->index);
	      print_generic_expr (dump_file, copy, dump_flags);
	      fprintf (dump_file, " to ");
	      print_generic_expr (dump_file, newtemp, dump_flags);
	      fprintf (dump_file, " before statement ");
	      print_generic_expr (dump_file, use_stmt, dump_flags);
	      fprintf (dump_file, "\n");
	      if (EXPR_HAS_LOCATION (use_stmt))
		fprintf (dump_file, " on line %d\n",
			 EXPR_LINENO (use_stmt));
	    }
	  modify_stmt (newexpr);
	  modify_stmt (use_stmt);
	  set_bb_for_stmt (newexpr, usebb);
	  EREF_STMT (use) = do_proper_save (use_stmt, newexpr, true);
	  pre_stats.saves++;
	}
      else if (EREF_RELOAD (use))
	{
	  tree use_stmt;
	  tree newtemp;

	  use_stmt = EREF_STMT (use);
	  bb = bb_for_stmt (use_stmt);
	  
	  newtemp = get_temp (EUSE_DEF (use));
	  if (!newtemp)
	    abort ();
	  if (dump_file)
	    {
	      fprintf (dump_file, "In BB %d, insert reload of ",
		       bb->index);
	      print_generic_expr (dump_file,
				  TREE_OPERAND (use_stmt, 1), 0);
	      fprintf (dump_file, " from ");
	      print_generic_expr (dump_file, newtemp, dump_flags);
	      fprintf (dump_file, " in statement ");
	      print_generic_stmt (dump_file, use_stmt, dump_flags);
	      fprintf (dump_file, "\n");
	      if (EXPR_HAS_LOCATION (use_stmt))
		fprintf (dump_file, " on line %d\n",
			 EXPR_LINENO (use_stmt));
	    }
	  TREE_OPERAND (use_stmt, 1) = newtemp;
	  EREF_TEMP (use) = newtemp;
	  modify_stmt (use_stmt);
	  pre_stats.reloads++;
	}
    }
  
  /* Now do the phi nodes. */
  for (euse_iter = 0;
       euse_iter < VARRAY_ACTIVE_SIZE (ei->euses_dt_order);
       euse_iter++)
    {
      use = VARRAY_TREE (ei->euses_dt_order, euse_iter);  
      if (TREE_CODE (use) == EPHI_NODE 
	  && ephi_will_be_avail (use) 
	  && !EPHI_IDENTITY (use))
	{
	  int i;
	  tree argdef;
	  bb = bb_for_stmt (use);
	  if (dump_file)
	    {
	      fprintf (dump_file,
		       "In BB %d, insert PHI to replace EPHI\n", bb->index);
	    }
	  newtemp = EREF_TEMP (use);
	  for (i = 0; i < EPHI_NUM_ARGS (use); i++)
	    {
	      tree rdef;
	      argdef = EPHI_ARG_DEF (use, i);
	      if (argdef == use)
		rdef = get_temp (use);
	      else if (EREF_RELOAD (argdef) || EREF_SAVE (argdef))
		rdef = get_temp (argdef);
	      else if (TREE_CODE (argdef) == EPHI_NODE)
		rdef = get_temp (argdef);
	      else if (argdef 
		  && EPHI_ARG_HAS_REAL_USE (use, i) 
		  && EREF_STMT (argdef)
		  && !EPHI_ARG_INJURED (use, i))
		rdef = pick_ssa_name (EREF_STMT (argdef));
	      else
		abort ();
	      	      
	      if (!rdef)
	        abort();
	      add_phi_arg (&newtemp, rdef, EPHI_ARG_EDGE (use, i));
	    }

	  /* Associate BB to the PHI node.  */
	  set_bb_for_stmt (EREF_TEMP (use), bb);
	  pre_stats.newphis++;

	}
    }
}

/* Compute the iterated dominance frontier of a statement.  */

static bitmap
compute_idfs (bitmap * dfs, tree stmt)
{
  fibheap_t worklist;
  sbitmap inworklist, done;
  bitmap idf;
  size_t i;
  basic_block block;
  
  block = bb_for_stmt (stmt);
  if (idfs_cache[block->index] != NULL)
    return idfs_cache[block->index];

  inworklist = sbitmap_alloc (last_basic_block);
  done = sbitmap_alloc (last_basic_block);
  worklist = fibheap_new ();
  sbitmap_zero (inworklist);
  sbitmap_zero (done);

  idf = BITMAP_XMALLOC ();
  bitmap_zero (idf);

  block = bb_for_stmt (stmt);
  fibheap_insert (worklist, block->index, (void *)(size_t)block->index);
  SET_BIT (inworklist, block->index);

  while (!fibheap_empty (worklist))
    {
      int a = (size_t) fibheap_extract_min (worklist);
      if (TEST_BIT (done, a))
	continue;
      SET_BIT (done, a);
      if (idfs_cache[a])
	{
	  bitmap_a_or_b (idf, idf, idfs_cache[a]);
	  EXECUTE_IF_SET_IN_BITMAP (idfs_cache[a], 0, i,
          {
	    SET_BIT (inworklist, i);
	    SET_BIT (done, i);
	  });
	}
      else
	{
	  bitmap_a_or_b (idf, idf, dfs[a]);
	  EXECUTE_IF_SET_IN_BITMAP (dfs[a], 0, i,
          {
	    if (!TEST_BIT (inworklist, i))
	      {
		SET_BIT (inworklist, i);
		fibheap_insert (worklist, i, (void *)i);
	      }
	  });
	}
      
    }
  fibheap_delete (worklist);
  sbitmap_free (inworklist);
  sbitmap_free (done);
  idfs_cache[block->index] = idf;
  return idf;

}

/* Return true if EXPR is a strength reduction candidate. */
static bool
is_strred_cand (const tree expr ATTRIBUTE_UNUSED)
{
#if 0
	if (TREE_CODE (TREE_OPERAND (expr, 1)) != MULT_EXPR
      && TREE_CODE (TREE_OPERAND (expr, 1)) != MINUS_EXPR
      && TREE_CODE (TREE_OPERAND (expr, 1)) != NEGATE_EXPR
      && TREE_CODE (TREE_OPERAND (expr, 1)) != PLUS_EXPR)
    return false;
  return true;
#endif
  return false;
}



/* Determine if two expressions are lexically equivalent. */

static inline bool
expr_lexically_eq (const tree v1, const tree v2)
{
  if (TREE_CODE_CLASS (TREE_CODE (v1)) != TREE_CODE_CLASS (TREE_CODE (v2)))
    return false;
  if (TREE_CODE (v1) != TREE_CODE (v2))
    return false;
  switch (TREE_CODE_CLASS (TREE_CODE (v1)))
    {
    case 'r':
    case '1':
      return names_match_p (TREE_OPERAND (v1, 0), TREE_OPERAND (v2, 0));
    case 'x':
    case 'd':
      return names_match_p (v1, v2);
    case '2':
      {
	bool match;
	match = names_match_p (TREE_OPERAND (v1, 0), TREE_OPERAND (v2, 0));
	if (!match)
	  return false;
	match = names_match_p (TREE_OPERAND (v1, 1), TREE_OPERAND (v2, 1));
	if (!match)
	  return false;
	return true;
      }
    default:
      return false;
    }

}

/* Free an expression info structure.  */

static void
free_expr_info (struct expr_info *v1)
{
  struct expr_info *e1 = (struct expr_info *)v1;
  VARRAY_FREE (e1->occurs);
  VARRAY_FREE (e1->kills);
  VARRAY_FREE (e1->lefts);
  VARRAY_FREE (e1->reals);
  VARRAY_FREE (e1->euses_dt_order);
}

/* Process left occurrences and kills due to EXPR.
   A left occurrence occurs wherever a variable in an expression we
   are PRE'ing is stored to directly in a def, or indirectly because
   of a VDEF of an expression that we VUSE.  */

static void
process_left_occs_and_kills (varray_type bexprs, tree expr)
{
  size_t i, j, k;
  
  stmt_ann_t ann = stmt_ann (expr);
  vdef_optype vdefs;
  vuse_optype vuses;
  def_optype defs;
  defs = DEF_OPS (ann);
  vdefs = VDEF_OPS (ann);
  if (NUM_DEFS (defs) == 0 && NUM_VDEFS (vdefs) == 0)
    return;

  for (j = 0; j < VARRAY_ACTIVE_SIZE (bexprs); j++)
    {
      struct expr_info *ei = VARRAY_GENERIC_PTR (bexprs, j);
      tree vuse_name;
      tree random_occur;
      stmt_ann_t ann;
      
      if (!ei->loadpre_cand)
	continue;
      
      /* If we define the variable itself (IE a in *a, or a in a),
	 it's a left occurrence.  */
      for (i = 0; i < NUM_DEFS (defs); i++)
	{
	  if (names_match_p (DEF_OP (defs, i), ei->expr))    
	    {
	      if (TREE_CODE (expr) == ASM_EXPR)
		{
		  ei->loadpre_cand = false;
		  continue;
		}
	      VARRAY_PUSH_TREE (ei->lefts, expr);
	      VARRAY_PUSH_TREE (ei->occurs, NULL);
	      VARRAY_PUSH_TREE (ei->kills, NULL);
	    }
	}
      
      /* If we VDEF the VUSE of the expression, it's also a left
	 occurrence.  */
      random_occur = VARRAY_TREE (ei->occurs, 0);
      ann = stmt_ann (random_occur);
      vuses = VUSE_OPS (ann);
      if (NUM_VDEFS (vdefs) != 0)
	{
	  for (k = 0; k < NUM_VUSES (vuses); k++)
	    {
	      vuse_name = VUSE_OP (vuses, k);
	      for (i = 0; i < NUM_VDEFS (vdefs); i++)
		{
		  if (names_match_p (VDEF_OP (vdefs, i), vuse_name))
		    {
		      VARRAY_PUSH_TREE (ei->lefts, expr);
		      VARRAY_PUSH_TREE (ei->occurs, NULL);
		      VARRAY_PUSH_TREE (ei->kills, NULL);
		    }
		}
	    }
	}
    }
}

/* Perform SSAPRE on an expression.  */

static int
pre_expression (struct expr_info *slot, void *data, bitmap vars_to_rename)
{
  struct expr_info *ei = (struct expr_info *) slot;
  basic_block bb;

  class_count = 0;
  eref_id_counter = 0;
  
  /* If we don't have two occurrences along any dominated path, and
     it's not load PRE, this is a waste of time.  */

  if (VARRAY_ACTIVE_SIZE (ei->reals) < 2)
    return 1;
  
  memset (&pre_stats, 0, sizeof (struct pre_stats_d));
  
  ei->temp = create_tmp_var (TREE_TYPE (ei->expr), "pretmp");
  add_referenced_tmp_var (ei->temp);

  bitmap_clear (created_phi_preds);
  ephi_pindex_htab = htab_create (500, ephi_pindex_hash, ephi_pindex_eq, free);
  phi_pred_cache = xcalloc (last_basic_block, sizeof (tree));
  n_phi_preds = last_basic_block;

  if (!expr_phi_insertion ((bitmap *)data, ei))
    goto cleanup;  
  rename_1 (ei);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      size_t i;
      fprintf (dump_file, "Occurrences for expression ");
      print_generic_expr (dump_file, ei->expr, dump_flags);
      fprintf (dump_file, " after Rename 2\n");
      for (i = 0; i < VARRAY_ACTIVE_SIZE (ei->euses_dt_order); i++)
	{
	  print_generic_expr (dump_file, 
			      VARRAY_TREE (ei->euses_dt_order, i), 1);
	  fprintf (dump_file, "\n");
	}
    }
  compute_down_safety (ei);
  compute_du_info (ei);
  compute_will_be_avail (ei);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "EPHI's for expression ");
      print_generic_expr (dump_file, ei->expr, dump_flags);
      fprintf (dump_file,
	       " after down safety and will_be_avail computation\n");
      FOR_EACH_BB (bb)
      {
	tree ephi = ephi_at_block (bb);
	if (ephi != NULL)
	  {
	    print_generic_expr (dump_file, ephi, 1);
	    fprintf (dump_file, "\n");
	  }
      }
    }

  if (finalize_1 (ei))
    {
      finalize_2 (ei);
      code_motion (ei);
      if (ei->loadpre_cand)
	bitmap_set_bit (vars_to_rename, var_ann (ei->temp)->uid);
    }

  clear_all_eref_arrays ();
  if (dump_file)
    if (dump_flags & TDF_STATS)
      {
	fprintf (dump_file, "PRE stats:\n");
	fprintf (dump_file, "Reloads:%d\n", pre_stats.reloads);
	fprintf (dump_file, "Saves:%d\n", pre_stats.saves);
	fprintf (dump_file, "Repairs:%d\n", pre_stats.repairs);
	fprintf (dump_file, "New phis:%d\n", pre_stats.newphis);
	fprintf (dump_file, "EPHI memory allocated:%d\n", 
		 pre_stats.ephi_allocated);
	fprintf (dump_file, "EREF memory allocated:%d\n",
		 pre_stats.eref_allocated);
	fprintf (dump_file, "Expressions generated for rename2:%d\n",
		 pre_stats.exprs_generated);
      }
 cleanup:
  free (phi_pred_cache);
  if (ephi_pindex_htab)
    {
      htab_delete (ephi_pindex_htab);
      ephi_pindex_htab = NULL;
    }


  return 0;
}


/* Step 1 - Collect the expressions to perform PRE on.  */

static void 
collect_expressions (basic_block block, varray_type *bexprsp)
{
  size_t k;
  block_stmt_iterator j;
  basic_block son;

  varray_type bexprs = *bexprsp;
  
  for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
    {
      tree stmt = bsi_stmt (j);
      tree expr = stmt;
      tree orig_expr = expr;
      stmt_ann_t ann;
      struct expr_info *slot = NULL;
      
      get_stmt_operands (expr);
      ann = stmt_ann (expr);
      
      if (NUM_USES (USE_OPS (ann)) == 0)
	{
	  process_left_occs_and_kills (bexprs, expr);
	  continue;
	}
      
      if (TREE_CODE (expr) == MODIFY_EXPR)
	expr = TREE_OPERAND (expr, 1);
      if ((TREE_CODE_CLASS (TREE_CODE (expr)) == '2'
	   || TREE_CODE_CLASS (TREE_CODE (expr)) == '<'
	   /*|| TREE_CODE_CLASS (TREE_CODE (expr)) == '1'*/
	   || TREE_CODE (expr) == SSA_NAME
	   || TREE_CODE (expr) == INDIRECT_REF)
	  && !ann->makes_aliased_stores
	  && !ann->has_volatile_ops)
	{
	  bool is_scalar = true;
	  tree origop0 = TREE_OPERAND (orig_expr, 0);
	  
	  if (AGGREGATE_TYPE_P (TREE_TYPE (origop0))
	      || TREE_CODE (TREE_TYPE (origop0)) == COMPLEX_TYPE)
	    is_scalar = false;
	  
	  if (is_scalar 
	      && (TREE_CODE (expr) == SSA_NAME 
		  || (TREE_CODE (expr) == INDIRECT_REF
		      && !DECL_P (TREE_OPERAND (expr, 0)))
		  ||(!DECL_P (TREE_OPERAND (expr, 0))
		     && (!TREE_OPERAND (expr, 1)
			 || !DECL_P (TREE_OPERAND (expr, 1))))))
	    {
	      for (k = 0; k < VARRAY_ACTIVE_SIZE (bexprs); k++)
		{
		  slot = VARRAY_GENERIC_PTR (bexprs, k);
		  if (expr_lexically_eq (slot->expr, expr))
		    break;
		}
	      if (k >= VARRAY_ACTIVE_SIZE (bexprs))
		slot = NULL;
	      if (slot)
		{
		  VARRAY_PUSH_TREE (slot->occurs, orig_expr);
		  VARRAY_PUSH_TREE (slot->kills, NULL);
		  VARRAY_PUSH_TREE (slot->lefts, NULL);
		  VARRAY_PUSH_TREE (slot->reals, stmt);
		  slot->strred_cand &= is_strred_cand (orig_expr);
		}
	      else
		{
		  slot = ggc_alloc (sizeof (struct expr_info));
		  slot->expr = expr;
		  VARRAY_GENERIC_PTR_NOGC_INIT (slot->occurs, 1, "Occurrence");
		  VARRAY_GENERIC_PTR_NOGC_INIT (slot->kills, 1, "Kills");
		  VARRAY_GENERIC_PTR_NOGC_INIT (slot->lefts, 1, "Left occurrences");
		  VARRAY_GENERIC_PTR_NOGC_INIT (slot->reals, 1, "Real occurrences");
		  VARRAY_GENERIC_PTR_NOGC_INIT (slot->euses_dt_order, 1, "EUSEs");
		  
		  VARRAY_PUSH_TREE (slot->occurs, orig_expr);
		  VARRAY_PUSH_TREE (slot->kills, NULL);
		  VARRAY_PUSH_TREE (slot->lefts, NULL);
		  VARRAY_PUSH_TREE (slot->reals, stmt);
		  VARRAY_PUSH_GENERIC_PTR (bexprs, slot);
		  slot->strred_cand = is_strred_cand (orig_expr);
		  slot->loadpre_cand = false;
		  if (TREE_CODE (expr) == SSA_NAME
		      || TREE_CODE (expr) == INDIRECT_REF)
		    slot->loadpre_cand = true;
		}
	    }
	}
      process_left_occs_and_kills (bexprs, orig_expr);
    }
  *bexprsp = bexprs;

  for (son = first_dom_son (CDI_DOMINATORS, block);
       son;
       son = next_dom_son (CDI_DOMINATORS, son))
    collect_expressions (son, bexprsp);
}

/* Main entry point to the SSA-PRE pass.

   PHASE indicates which dump file from the DUMP_FILES array to use when
   dumping debugging information.  */

static void
execute_pre (void)
{
  int currbbs;
  varray_type bexprs;
  size_t k;
  int i;
 
  if (ENTRY_BLOCK_PTR->succ->dest->pred->pred_next)
    if (!(ENTRY_BLOCK_PTR->succ->flags & EDGE_ABNORMAL))
      split_edge (ENTRY_BLOCK_PTR->succ);
 
  euse_node_pool = create_alloc_pool ("EUSE node pool", 
				      sizeof (struct tree_euse_node), 30);
  eref_node_pool = create_alloc_pool ("EREF node pool",
				      sizeof (struct tree_eref_common), 30);
  ephi_use_pool = create_alloc_pool ("EPHI use node pool",
              sizeof (struct ephi_use_entry), 30);
  VARRAY_GENERIC_PTR_INIT (bexprs, 1, "bexprs");
  /* Compute immediate dominators.  */
  calculate_dominance_info (CDI_DOMINATORS);

  /* DCE screws the dom_children up, without bothering to fix it. So fix it. */
  currbbs = n_basic_blocks;
  dfn = xcalloc (last_basic_block + 1, sizeof (int));
  build_dfn_array (ENTRY_BLOCK_PTR, 0);

  /* Initialize IDFS cache.  */
  idfs_cache = xcalloc (currbbs, sizeof (bitmap));

  /* Compute dominance frontiers.  */
  pre_dfs = (bitmap *) xmalloc (sizeof (bitmap) * currbbs);
  for (i = 0; i < currbbs; i++)
     pre_dfs[i] = BITMAP_XMALLOC ();
  compute_dominance_frontiers (pre_dfs);

  created_phi_preds = BITMAP_XMALLOC ();
  
  collect_expressions (ENTRY_BLOCK_PTR, &bexprs);

  ggc_push_context ();
 
  for (k = 0; k < VARRAY_ACTIVE_SIZE (bexprs); k++)
    {
      pre_expression (VARRAY_GENERIC_PTR (bexprs, k), pre_dfs, vars_to_rename);
      free_alloc_pool (euse_node_pool);
      free_alloc_pool (eref_node_pool);
      free_alloc_pool (ephi_use_pool);
      euse_node_pool = create_alloc_pool ("EUSE node pool", 
					  sizeof (struct tree_euse_node), 30);
      eref_node_pool = create_alloc_pool ("EREF node pool",
					  sizeof (struct tree_eref_common), 30);
      ephi_use_pool = create_alloc_pool ("EPHI use node pool",
            sizeof (struct ephi_use_entry), 30);
      free_expr_info (VARRAY_GENERIC_PTR (bexprs, k));
#ifdef ENABLE_CHECKING
      if (pre_stats.ephis_current != 0)
	abort ();
#endif
      ggc_collect (); 
    }

  ggc_pop_context ();

  /* Clean up after PRE.  */
  memset (&pre_stats, 0, sizeof (struct pre_stats_d));
  free_alloc_pool (euse_node_pool);
  free_alloc_pool (eref_node_pool);
  free_alloc_pool (ephi_use_pool);
  VARRAY_CLEAR (bexprs);
  for (i = 0; i < currbbs; i++)
    BITMAP_XFREE (pre_dfs[i]);
  free (pre_dfs);
  BITMAP_XFREE (created_phi_preds);
  for (i = 0; i < currbbs; i++)
    if (idfs_cache[i] != NULL)
      BITMAP_XFREE (idfs_cache[i]);
  
  free (dfn);
  free (idfs_cache);
}

static bool
gate_pre (void)
{
  return flag_tree_pre != 0;
}

struct tree_opt_pass pass_pre = 
{
  "pre",				/* name */
  gate_pre,				/* gate */
  execute_pre,				/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_PRE,				/* tv_id */
  PROP_no_crit_edges | PROP_cfg | PROP_ssa,/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_func | TODO_rename_vars
    | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
};