1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
|
/* Optimization of PHI nodes by converting them into straightline code.
Copyright (C) 2004 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "errors.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "flags.h"
#include "tm_p.h"
#include "basic-block.h"
#include "timevar.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-dump.h"
#include "langhooks.h"
static void tree_ssa_phiopt (void);
static bool conditional_replacement (basic_block, tree, tree, tree);
static bool value_replacement (basic_block, tree, tree, tree);
static void replace_phi_with_stmt (block_stmt_iterator, basic_block,
basic_block, tree, tree);
static bool candidate_bb_for_phi_optimization (basic_block,
basic_block *,
basic_block *);
/* This pass eliminates PHI nodes which can be trivially implemented as
an assignment from a conditional expression. ie if we have something
like:
bb0:
if (cond) goto bb2; else goto bb1;
bb1:
bb2:
x = PHI (0 (bb1), 1 (bb0)
We can rewrite that as:
bb0:
bb1:
bb2:
x = cond;
bb1 will become unreachable and bb0 and bb2 will almost always
be merged into a single block. This occurs often due to gimplification
of conditionals.
Also done is the following optimization:
bb0:
if (a != b) goto bb2; else goto bb1;
bb1:
bb2:
x = PHI (a (bb1), b (bb0))
We can rewrite that as:
bb0:
bb1:
bb2:
x = b;
This can sometimes occur as a result of other optimizations. A
similar transformation is done by the ifcvt RTL optimizer. */
static void
tree_ssa_phiopt (void)
{
basic_block bb;
bool removed_phis = false;
/* Search every basic block for PHI nodes we may be able to optimize. */
FOR_EACH_BB (bb)
{
tree arg0, arg1, phi;
/* We're searching for blocks with one PHI node which has two
arguments. */
phi = phi_nodes (bb);
if (phi && TREE_CHAIN (phi) == NULL
&& PHI_NUM_ARGS (phi) == 2)
{
arg0 = PHI_ARG_DEF (phi, 0);
arg1 = PHI_ARG_DEF (phi, 1);
/* Do the replacement of conditional if it can be done. */
if (conditional_replacement (bb, phi, arg0, arg1)
|| value_replacement (bb, phi, arg0, arg1))
{
/* We have done the replacement so we need to rebuild the
cfg when this pass is complete. */
removed_phis = true;
}
}
}
/* If we removed any PHIs, then we have unreachable blocks and blocks
which need to be merged in the CFG. */
if (removed_phis)
cleanup_tree_cfg ();
}
/* BB is a basic block which has only one PHI node with precisely two
arguments.
Examine both of BB's predecessors to see if one ends with a
COND_EXPR and the other is an empty block. If so, then we may
be able to optimize PHI nodes at the start of BB.
If so, mark store the block with the COND_EXPR into COND_BLOCK_P
and the other block into OTHER_BLOCK_P and return true, otherwise
return false. */
static bool
candidate_bb_for_phi_optimization (basic_block bb,
basic_block *cond_block_p,
basic_block *other_block_p)
{
tree last0, last1;
block_stmt_iterator bsi;
basic_block cond_block, other_block;
/* One of the alternatives must come from a block ending with
a COND_EXPR. The other block must be entirely empty, except
for labels. */
last0 = last_stmt (bb->pred->src);
last1 = last_stmt (bb->pred->pred_next->src);
if (last0 && TREE_CODE (last0) == COND_EXPR)
{
cond_block = bb->pred->src;
other_block = bb->pred->pred_next->src;
}
else if (last1 && TREE_CODE (last1) == COND_EXPR)
{
other_block = bb->pred->src;
cond_block = bb->pred->pred_next->src;
}
else
return false;
/* COND_BLOCK must have precisely two successors. We indirectly
verify that those successors are BB and OTHER_BLOCK. */
if (!cond_block->succ
|| !cond_block->succ->succ_next
|| cond_block->succ->succ_next->succ_next
|| (cond_block->succ->flags & EDGE_ABNORMAL) != 0
|| (cond_block->succ->succ_next->flags & EDGE_ABNORMAL) != 0)
return false;
/* OTHER_BLOCK must have a single predecessor which is COND_BLOCK,
OTHER_BLOCK must have a single successor which is BB and
OTHER_BLOCK must have no PHI nodes. */
if (!other_block->pred
|| other_block->pred->src != cond_block
|| other_block->pred->pred_next
|| !other_block->succ
|| other_block->succ->dest != bb
|| other_block->succ->succ_next
|| phi_nodes (other_block))
return false;
/* OTHER_BLOCK must have no executable statements. */
bsi = bsi_start (other_block);
while (!bsi_end_p (bsi)
&& (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR
|| IS_EMPTY_STMT (bsi_stmt (bsi))))
bsi_next (&bsi);
if (!bsi_end_p (bsi))
return false;
*cond_block_p = cond_block;
*other_block_p = other_block;
/* Everything looks OK. */
return true;
}
/* Replace PHI in block BB with statement NEW. NEW is inserted after
BSI. Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
is known to have two edges, one of which must reach BB). */
static void
replace_phi_with_stmt (block_stmt_iterator bsi, basic_block bb,
basic_block cond_block, tree phi, tree new)
{
/* Insert our new statement at the head of our block. */
bsi_insert_after (&bsi, new, BSI_NEW_STMT);
/* Register our new statement as the defining statement for
the result. */
SSA_NAME_DEF_STMT (PHI_RESULT (phi)) = new;
/* Remove the now useless PHI node.
We do not want to use remove_phi_node since that releases the
SSA_NAME as well and the SSA_NAME is still being used. */
release_phi_node (phi);
bb_ann (bb)->phi_nodes = NULL;
/* Disconnect the edge leading into the empty block. That will
make the empty block unreachable and it will be removed later. */
if (cond_block->succ->dest == bb)
{
cond_block->succ->flags |= EDGE_FALLTHRU;
cond_block->succ->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
ssa_remove_edge (cond_block->succ->succ_next);
}
else
{
cond_block->succ->succ_next->flags |= EDGE_FALLTHRU;
cond_block->succ->succ_next->flags
&= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
ssa_remove_edge (cond_block->succ);
}
/* Eliminate the COND_EXPR at the end of COND_BLOCK. */
bsi = bsi_last (cond_block);
bsi_remove (&bsi);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
cond_block->index,
bb->index);
}
/* The function conditional_replacement does the main work of doing the
conditional replacement. Return true if the replacement is done.
Otherwise return false.
BB is the basic block where the replacement is going to be done on. ARG0
is argument 0 from PHI. Likewise for ARG1. */
static bool
conditional_replacement (basic_block bb, tree phi, tree arg0, tree arg1)
{
tree result;
tree old_result = NULL;
basic_block other_block = NULL;
basic_block cond_block = NULL;
tree new, cond;
block_stmt_iterator bsi;
edge true_edge, false_edge;
tree new_var = NULL;
/* The PHI arguments have the constants 0 and 1, then convert
it to the conditional. */
if ((integer_zerop (arg0) && integer_onep (arg1))
|| (integer_zerop (arg1) && integer_onep (arg0)))
;
else
return false;
if (!candidate_bb_for_phi_optimization (bb, &cond_block, &other_block))
return false;
/* If the condition is not a naked SSA_NAME and its type does not
match the type of the result, then we have to create a new
variable to optimize this case as it would likely create
non-gimple code when the condition was converted to the
result's type. */
cond = COND_EXPR_COND (last_stmt (cond_block));
result = PHI_RESULT (phi);
if (TREE_CODE (cond) != SSA_NAME
&& !lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
{
new_var = make_rename_temp (TREE_TYPE (cond), NULL);
old_result = cond;
cond = new_var;
}
/* If the condition was a naked SSA_NAME and the type is not the
same as the type of the result, then convert the type of the
condition. */
if (!lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
cond = fold_convert (TREE_TYPE (result), cond);
/* We need to know which is the true edge and which is the false
edge so that we know when to invert the condition below. */
extract_true_false_edges_from_block (cond_block, &true_edge, &false_edge);
/* Insert our new statement at the head of our block. */
bsi = bsi_start (bb);
if (old_result)
{
tree new1;
if (TREE_CODE_CLASS (TREE_CODE (old_result)) != '<')
return false;
new1 = build (TREE_CODE (old_result), TREE_TYPE (result),
TREE_OPERAND (old_result, 0),
TREE_OPERAND (old_result, 1));
new1 = build (MODIFY_EXPR, TREE_TYPE (result), new_var, new1);
bsi_insert_after (&bsi, new1, BSI_NEW_STMT);
}
/* At this point we know we have a COND_EXPR with two successors.
One successor is BB, the other successor is an empty block which
falls through into BB.
There is a single PHI node at the join point (BB) and its arguments
are constants (0, 1).
So, given the condition COND, and the two PHI arguments, we can
rewrite this PHI into non-branching code:
dest = (COND) or dest = COND'
We use the condition as-is if the argument associated with the
true edge has the value one or the argument associated with the
false edge as the value zero. Note that those conditions are not
the same since only one of the outgoing edges from the COND_EXPR
will directly reach BB and thus be associated with an argument. */
if ((PHI_ARG_EDGE (phi, 0) == true_edge && integer_onep (arg0))
|| (PHI_ARG_EDGE (phi, 0) == false_edge && integer_zerop (arg0))
|| (PHI_ARG_EDGE (phi, 1) == true_edge && integer_onep (arg1))
|| (PHI_ARG_EDGE (phi, 1) == false_edge && integer_zerop (arg1)))
{
new = build (MODIFY_EXPR, TREE_TYPE (PHI_RESULT (phi)),
PHI_RESULT (phi), cond);
}
else
{
tree cond1 = invert_truthvalue (cond);
cond = cond1;
/* If what we get back is a conditional expression, there is no
way that it can be gimple. */
if (TREE_CODE (cond) == COND_EXPR)
return false;
/* If what we get back is not gimple try to create it as gimple by
using a temporary variable. */
if (is_gimple_cast (cond)
&& !is_gimple_val (TREE_OPERAND (cond, 0)))
{
tree temp = TREE_OPERAND (cond, 0);
tree new_var_1 = make_rename_temp (TREE_TYPE (temp), NULL);
new = build (MODIFY_EXPR, TREE_TYPE (new_var_1), new_var_1, temp);
bsi_insert_after (&bsi, new, BSI_NEW_STMT);
cond = fold_convert (TREE_TYPE (result), new_var_1);
}
if (TREE_CODE (cond) == TRUTH_NOT_EXPR
&& !is_gimple_val (TREE_OPERAND (cond, 0)))
return false;
new = build (MODIFY_EXPR, TREE_TYPE (PHI_RESULT (phi)),
PHI_RESULT (phi), cond);
}
replace_phi_with_stmt (bsi, bb, cond_block, phi, new);
/* Note that we optimized this PHI. */
return true;
}
/* The function value_replacement does the main work of doing the value
replacement. Return true if the replacement is done. Otherwise return
false.
BB is the basic block where the replacement is going to be done on. ARG0
is argument 0 from the PHI. Likewise for ARG1. */
static bool
value_replacement (basic_block bb, tree phi, tree arg0, tree arg1)
{
tree result;
basic_block other_block = NULL;
basic_block cond_block = NULL;
tree new, cond;
edge true_edge, false_edge;
/* If the type says honor signed zeros we cannot do this
optimization. */
if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
return false;
if (!candidate_bb_for_phi_optimization (bb, &cond_block, &other_block))
return false;
cond = COND_EXPR_COND (last_stmt (cond_block));
result = PHI_RESULT (phi);
/* This transformation is only valid for equality comparisons. */
if (TREE_CODE (cond) != NE_EXPR && TREE_CODE (cond) != EQ_EXPR)
return false;
/* We need to know which is the true edge and which is the false
edge so that we know if have abs or negative abs. */
extract_true_false_edges_from_block (cond_block, &true_edge, &false_edge);
/* At this point we know we have a COND_EXPR with two successors.
One successor is BB, the other successor is an empty block which
falls through into BB.
The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
There is a single PHI node at the join point (BB) with two arguments.
We now need to verify that the two arguments in the PHI node match
the two arguments to the equality comparison. */
if ((operand_equal_p (arg0, TREE_OPERAND (cond, 0), 0)
&& operand_equal_p (arg1, TREE_OPERAND (cond, 1), 0))
|| (operand_equal_p (arg1, TREE_OPERAND (cond, 0), 0)
&& operand_equal_p (arg0, TREE_OPERAND (cond, 1), 0)))
{
edge e;
tree arg;
e = (TREE_CODE (cond) == NE_EXPR ? true_edge : false_edge);
if (PHI_ARG_EDGE (phi, 0) == e)
arg = arg0;
else
arg = arg1;
/* Build the new assignment. */
new = build (MODIFY_EXPR, TREE_TYPE (result), result, arg);
replace_phi_with_stmt (bsi_start (bb), bb, cond_block, phi, new);
/* Note that we optimized this PHI. */
return true;
}
return false;
}
/* Always do these optimizations if we have SSA
trees to work on. */
static bool
gate_phiopt (void)
{
return 1;
}
struct tree_opt_pass pass_phiopt =
{
"phiopt", /* name */
gate_phiopt, /* gate */
tree_ssa_phiopt, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_PHIOPT, /* tv_id */
PROP_cfg | PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func | TODO_ggc_collect /* todo_flags_finish */
| TODO_verify_ssa | TODO_rename_vars
| TODO_verify_flow
};
|