aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-eh.c
blob: 85379e63d8bb4318a8e95ebe63f6ecbf50fbc0e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
/* Exception handling semantics and decomposition for trees.
   Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "flags.h"
#include "function.h"
#include "except.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "tree-inline.h"
#include "tree-iterator.h"
#include "tree-pass.h"
#include "timevar.h"
#include "langhooks.h"
#include "ggc.h"
#include "toplev.h"


/* Nonzero if we are using EH to handle cleanups.  */
static int using_eh_for_cleanups_p = 0;

void
using_eh_for_cleanups (void)
{
  using_eh_for_cleanups_p = 1;
}

/* Misc functions used in this file.  */

/* Compare and hash for any structure which begins with a canonical
   pointer.  Assumes all pointers are interchangeable, which is sort
   of already assumed by gcc elsewhere IIRC.  */

static int
struct_ptr_eq (const void *a, const void *b)
{
  const void * const * x = (const void * const *) a;
  const void * const * y = (const void * const *) b;
  return *x == *y;
}

static hashval_t
struct_ptr_hash (const void *a)
{
  const void * const * x = (const void * const *) a;
  return (size_t)*x >> 4;
}


/* Remember and lookup EH region data for arbitrary statements.
   Really this means any statement that could_throw_p.  We could
   stuff this information into the stmt_ann data structure, but:

   (1) We absolutely rely on this information being kept until
   we get to rtl.  Once we're done with lowering here, if we lose
   the information there's no way to recover it!

   (2) There are many more statements that *cannot* throw as
   compared to those that can.  We should be saving some amount
   of space by only allocating memory for those that can throw.  */

static void
record_stmt_eh_region (struct eh_region *region, tree t)
{
  if (!region)
    return;

  add_stmt_to_eh_region (t, get_eh_region_number (region));
}

void
add_stmt_to_eh_region_fn (struct function *ifun, tree t, int num)
{
  struct throw_stmt_node *n;
  void **slot;

  gcc_assert (num >= 0);
  gcc_assert (TREE_CODE (t) != RESX_EXPR);

  n = GGC_NEW (struct throw_stmt_node);
  n->stmt = t;
  n->region_nr = num;

  if (!get_eh_throw_stmt_table (ifun))
    set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
						    struct_ptr_eq,
						    ggc_free));

  slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
  gcc_assert (!*slot);
  *slot = n;
  /* ??? For the benefit of calls.c, converting all this to rtl,
     we need to record the call expression, not just the outer
     modify statement.  */
  if (TREE_CODE (t) == MODIFY_EXPR
      && (t = get_call_expr_in (t)))
    add_stmt_to_eh_region_fn (ifun, t, num);
}

void
add_stmt_to_eh_region (tree t, int num)
{
  add_stmt_to_eh_region_fn (cfun, t, num);
}

bool
remove_stmt_from_eh_region_fn (struct function *ifun, tree t)
{
  struct throw_stmt_node dummy;
  void **slot;

  if (!get_eh_throw_stmt_table (ifun))
    return false;

  dummy.stmt = t;
  slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
                        NO_INSERT);
  if (slot)
    {
      htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
      /* ??? For the benefit of calls.c, converting all this to rtl,
	 we need to record the call expression, not just the outer
	 modify statement.  */
      if (TREE_CODE (t) == MODIFY_EXPR
	  && (t = get_call_expr_in (t)))
	remove_stmt_from_eh_region_fn (ifun, t);
      return true;
    }
  else
    return false;
}

bool
remove_stmt_from_eh_region (tree t)
{
  return remove_stmt_from_eh_region_fn (cfun, t);
}

int
lookup_stmt_eh_region_fn (struct function *ifun, tree t)
{
  struct throw_stmt_node *p, n;

  if (!get_eh_throw_stmt_table (ifun))
    return -2;

  n.stmt = t;
  p = (struct throw_stmt_node *) htab_find (get_eh_throw_stmt_table (ifun),
                                            &n);

  return (p ? p->region_nr : -1);
}

int
lookup_stmt_eh_region (tree t)
{
  /* We can get called from initialized data when -fnon-call-exceptions
     is on; prevent crash.  */
  if (!cfun)
    return -1;
  return lookup_stmt_eh_region_fn (cfun, t);
}


/* First pass of EH node decomposition.  Build up a tree of TRY_FINALLY_EXPR
   nodes and LABEL_DECL nodes.  We will use this during the second phase to
   determine if a goto leaves the body of a TRY_FINALLY_EXPR node.  */

struct finally_tree_node
{
  tree child, parent;
};

/* Note that this table is *not* marked GTY.  It is short-lived.  */
static htab_t finally_tree;

static void
record_in_finally_tree (tree child, tree parent)
{
  struct finally_tree_node *n;
  void **slot;

  n = XNEW (struct finally_tree_node);
  n->child = child;
  n->parent = parent;

  slot = htab_find_slot (finally_tree, n, INSERT);
  gcc_assert (!*slot);
  *slot = n;
}

static void
collect_finally_tree (tree t, tree region)
{
 tailrecurse:
  switch (TREE_CODE (t))
    {
    case LABEL_EXPR:
      record_in_finally_tree (LABEL_EXPR_LABEL (t), region);
      break;

    case TRY_FINALLY_EXPR:
      record_in_finally_tree (t, region);
      collect_finally_tree (TREE_OPERAND (t, 0), t);
      t = TREE_OPERAND (t, 1);
      goto tailrecurse;

    case TRY_CATCH_EXPR:
      collect_finally_tree (TREE_OPERAND (t, 0), region);
      t = TREE_OPERAND (t, 1);
      goto tailrecurse;

    case CATCH_EXPR:
      t = CATCH_BODY (t);
      goto tailrecurse;

    case EH_FILTER_EXPR:
      t = EH_FILTER_FAILURE (t);
      goto tailrecurse;

    case STATEMENT_LIST:
      {
	tree_stmt_iterator i;
	for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
	  collect_finally_tree (tsi_stmt (i), region);
      }
      break;

    default:
      /* A type, a decl, or some kind of statement that we're not
	 interested in.  Don't walk them.  */
      break;
    }
}

/* Use the finally tree to determine if a jump from START to TARGET
   would leave the try_finally node that START lives in.  */

static bool
outside_finally_tree (tree start, tree target)
{
  struct finally_tree_node n, *p;

  do
    {
      n.child = start;
      p = (struct finally_tree_node *) htab_find (finally_tree, &n);
      if (!p)
	return true;
      start = p->parent;
    }
  while (start != target);

  return false;
}

/* Second pass of EH node decomposition.  Actually transform the TRY_FINALLY
   and TRY_CATCH nodes into a set of gotos, magic labels, and eh regions.
   The eh region creation is straight-forward, but frobbing all the gotos
   and such into shape isn't.  */

/* State of the world while lowering.  */

struct leh_state
{
  /* What's "current" while constructing the eh region tree.  These
     correspond to variables of the same name in cfun->eh, which we
     don't have easy access to.  */
  struct eh_region *cur_region;
  struct eh_region *prev_try;

  /* Processing of TRY_FINALLY requires a bit more state.  This is
     split out into a separate structure so that we don't have to
     copy so much when processing other nodes.  */
  struct leh_tf_state *tf;
};

struct leh_tf_state
{
  /* Pointer to the TRY_FINALLY node under discussion.  The try_finally_expr
     is the original TRY_FINALLY_EXPR.  We need to retain this so that
     outside_finally_tree can reliably reference the tree used in the
     collect_finally_tree data structures.  */
  tree try_finally_expr;
  tree *top_p;

  /* The state outside this try_finally node.  */
  struct leh_state *outer;

  /* The exception region created for it.  */
  struct eh_region *region;

  /* The GOTO_QUEUE is is an array of GOTO_EXPR and RETURN_EXPR statements
     that are seen to escape this TRY_FINALLY_EXPR node.  */
  struct goto_queue_node {
    tree stmt;
    tree repl_stmt;
    tree cont_stmt;
    int index;
  } *goto_queue;
  size_t goto_queue_size;
  size_t goto_queue_active;

  /* The set of unique labels seen as entries in the goto queue.  */
  VEC(tree,heap) *dest_array;

  /* A label to be added at the end of the completed transformed
     sequence.  It will be set if may_fallthru was true *at one time*,
     though subsequent transformations may have cleared that flag.  */
  tree fallthru_label;

  /* A label that has been registered with except.c to be the
     landing pad for this try block.  */
  tree eh_label;

  /* True if it is possible to fall out the bottom of the try block.
     Cleared if the fallthru is converted to a goto.  */
  bool may_fallthru;

  /* True if any entry in goto_queue is a RETURN_EXPR.  */
  bool may_return;

  /* True if the finally block can receive an exception edge.
     Cleared if the exception case is handled by code duplication.  */
  bool may_throw;
};

static void lower_eh_filter (struct leh_state *, tree *);
static void lower_eh_constructs_1 (struct leh_state *, tree *);

/* Comparison function for qsort/bsearch.  We're interested in
   searching goto queue elements for source statements.  */

static int
goto_queue_cmp (const void *x, const void *y)
{
  tree a = ((const struct goto_queue_node *)x)->stmt;
  tree b = ((const struct goto_queue_node *)y)->stmt;
  return (a == b ? 0 : a < b ? -1 : 1);
}

/* Search for STMT in the goto queue.  Return the replacement,
   or null if the statement isn't in the queue.  */

static tree
find_goto_replacement (struct leh_tf_state *tf, tree stmt)
{
  struct goto_queue_node tmp, *ret;
  tmp.stmt = stmt;
  ret = (struct goto_queue_node *)
     bsearch (&tmp, tf->goto_queue, tf->goto_queue_active,
		 sizeof (struct goto_queue_node), goto_queue_cmp);
  return (ret ? ret->repl_stmt : NULL);
}

/* A subroutine of replace_goto_queue_1.  Handles the sub-clauses of a
   lowered COND_EXPR.  If, by chance, the replacement is a simple goto,
   then we can just splat it in, otherwise we add the new stmts immediately
   after the COND_EXPR and redirect.  */

static void
replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
				tree_stmt_iterator *tsi)
{
  tree new, one, label;

  new = find_goto_replacement (tf, *tp);
  if (!new)
    return;

  one = expr_only (new);
  if (one && TREE_CODE (one) == GOTO_EXPR)
    {
      *tp = one;
      return;
    }

  label = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
  *tp = build_and_jump (&LABEL_EXPR_LABEL (label));

  tsi_link_after (tsi, label, TSI_CONTINUE_LINKING);
  tsi_link_after (tsi, new, TSI_CONTINUE_LINKING);
}

/* The real work of replace_goto_queue.  Returns with TSI updated to
   point to the next statement.  */

static void replace_goto_queue_stmt_list (tree, struct leh_tf_state *);

static void
replace_goto_queue_1 (tree t, struct leh_tf_state *tf, tree_stmt_iterator *tsi)
{
  switch (TREE_CODE (t))
    {
    case GOTO_EXPR:
    case RETURN_EXPR:
      t = find_goto_replacement (tf, t);
      if (t)
	{
	  tsi_link_before (tsi, t, TSI_SAME_STMT);
	  tsi_delink (tsi);
	  return;
	}
      break;

    case COND_EXPR:
      replace_goto_queue_cond_clause (&COND_EXPR_THEN (t), tf, tsi);
      replace_goto_queue_cond_clause (&COND_EXPR_ELSE (t), tf, tsi);
      break;

    case TRY_FINALLY_EXPR:
    case TRY_CATCH_EXPR:
      replace_goto_queue_stmt_list (TREE_OPERAND (t, 0), tf);
      replace_goto_queue_stmt_list (TREE_OPERAND (t, 1), tf);
      break;
    case CATCH_EXPR:
      replace_goto_queue_stmt_list (CATCH_BODY (t), tf);
      break;
    case EH_FILTER_EXPR:
      replace_goto_queue_stmt_list (EH_FILTER_FAILURE (t), tf);
      break;

    case STATEMENT_LIST:
      gcc_unreachable ();

    default:
      /* These won't have gotos in them.  */
      break;
    }

  tsi_next (tsi);
}

/* A subroutine of replace_goto_queue.  Handles STATEMENT_LISTs.  */

static void
replace_goto_queue_stmt_list (tree t, struct leh_tf_state *tf)
{
  tree_stmt_iterator i = tsi_start (t);
  while (!tsi_end_p (i))
    replace_goto_queue_1 (tsi_stmt (i), tf, &i);
}

/* Replace all goto queue members.  */

static void
replace_goto_queue (struct leh_tf_state *tf)
{
  if (tf->goto_queue_active == 0)
    return;
  replace_goto_queue_stmt_list (*tf->top_p, tf);
}

/* For any GOTO_EXPR or RETURN_EXPR, decide whether it leaves a try_finally
   node, and if so record that fact in the goto queue associated with that
   try_finally node.  */

static void
maybe_record_in_goto_queue (struct leh_state *state, tree stmt)
{
  struct leh_tf_state *tf = state->tf;
  struct goto_queue_node *q;
  size_t active, size;
  int index;

  if (!tf)
    return;

  switch (TREE_CODE (stmt))
    {
    case GOTO_EXPR:
      {
	tree lab = GOTO_DESTINATION (stmt);

	/* Computed and non-local gotos do not get processed.  Given
	   their nature we can neither tell whether we've escaped the
	   finally block nor redirect them if we knew.  */
	if (TREE_CODE (lab) != LABEL_DECL)
	  return;

	/* No need to record gotos that don't leave the try block.  */
	if (! outside_finally_tree (lab, tf->try_finally_expr))
	  return;

	if (! tf->dest_array)
	  {
	    tf->dest_array = VEC_alloc (tree, heap, 10);
	    VEC_quick_push (tree, tf->dest_array, lab);
	    index = 0;
	  }
	else
	  {
	    int n = VEC_length (tree, tf->dest_array);
	    for (index = 0; index < n; ++index)
	      if (VEC_index (tree, tf->dest_array, index) == lab)
		break;
	    if (index == n)
	      VEC_safe_push (tree, heap, tf->dest_array, lab);
	  }
      }
      break;

    case RETURN_EXPR:
      tf->may_return = true;
      index = -1;
      break;

    default:
      gcc_unreachable ();
    }

  active = tf->goto_queue_active;
  size = tf->goto_queue_size;
  if (active >= size)
    {
      size = (size ? size * 2 : 32);
      tf->goto_queue_size = size;
      tf->goto_queue
         = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
    }

  q = &tf->goto_queue[active];
  tf->goto_queue_active = active + 1;

  memset (q, 0, sizeof (*q));
  q->stmt = stmt;
  q->index = index;
}

#ifdef ENABLE_CHECKING
/* We do not process SWITCH_EXPRs for now.  As long as the original source
   was in fact structured, and we've not yet done jump threading, then none
   of the labels will leave outer TRY_FINALLY_EXPRs.  Verify this.  */

static void
verify_norecord_switch_expr (struct leh_state *state, tree switch_expr)
{
  struct leh_tf_state *tf = state->tf;
  size_t i, n;
  tree vec;

  if (!tf)
    return;

  vec = SWITCH_LABELS (switch_expr);
  n = TREE_VEC_LENGTH (vec);

  for (i = 0; i < n; ++i)
    {
      tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
      gcc_assert (!outside_finally_tree (lab, tf->try_finally_expr));
    }
}
#else
#define verify_norecord_switch_expr(state, switch_expr)
#endif

/* Redirect a RETURN_EXPR pointed to by STMT_P to FINLAB.  Place in CONT_P
   whatever is needed to finish the return.  If MOD is non-null, insert it
   before the new branch.  RETURN_VALUE_P is a cache containing a temporary
   variable to be used in manipulating the value returned from the function.  */

static void
do_return_redirection (struct goto_queue_node *q, tree finlab, tree mod,
		       tree *return_value_p)
{
  tree ret_expr = TREE_OPERAND (q->stmt, 0);
  tree x;

  if (ret_expr)
    {
      /* The nasty part about redirecting the return value is that the
	 return value itself is to be computed before the FINALLY block
	 is executed.  e.g.

		int x;
		int foo (void)
		{
		  x = 0;
		  try {
		    return x;
		  } finally {
		    x++;
		  }
		}

	  should return 0, not 1.  Arrange for this to happen by copying
	  computed the return value into a local temporary.  This also
	  allows us to redirect multiple return statements through the
	  same destination block; whether this is a net win or not really
	  depends, I guess, but it does make generation of the switch in
	  lower_try_finally_switch easier.  */

      switch (TREE_CODE (ret_expr))
	{
	case RESULT_DECL:
	  if (!*return_value_p)
	    *return_value_p = ret_expr;
	  else
	    gcc_assert (*return_value_p == ret_expr);
	  q->cont_stmt = q->stmt;
	  break;

	case MODIFY_EXPR:
	  {
	    tree result = TREE_OPERAND (ret_expr, 0);
	    tree new, old = TREE_OPERAND (ret_expr, 1);

	    if (!*return_value_p)
	      {
		if (aggregate_value_p (TREE_TYPE (result),
				      TREE_TYPE (current_function_decl)))
		  /* If this function returns in memory, copy the argument
		    into the return slot now.  Otherwise, we might need to
		    worry about magic return semantics, so we need to use a
		    temporary to hold the value until we're actually ready
		    to return.  */
		  new = result;
		else
		  new = create_tmp_var (TREE_TYPE (old), "rettmp");
		*return_value_p = new;
	      }
	    else
	      new = *return_value_p;

	    x = build2 (MODIFY_EXPR, TREE_TYPE (new), new, old);
	    append_to_statement_list (x, &q->repl_stmt);

	    if (new == result)
	      x = result;
	    else
	      x = build2 (MODIFY_EXPR, TREE_TYPE (result), result, new);
	    q->cont_stmt = build1 (RETURN_EXPR, void_type_node, x);
	  }

	default:
	  gcc_unreachable ();
	}
    }
  else
    {
      /* If we don't return a value, all return statements are the same.  */
      q->cont_stmt = q->stmt;
    }

  if (mod)
    append_to_statement_list (mod, &q->repl_stmt);

  x = build1 (GOTO_EXPR, void_type_node, finlab);
  append_to_statement_list (x, &q->repl_stmt);
}

/* Similar, but easier, for GOTO_EXPR.  */

static void
do_goto_redirection (struct goto_queue_node *q, tree finlab, tree mod)
{
  tree x;

  q->cont_stmt = q->stmt;
  if (mod)
    append_to_statement_list (mod, &q->repl_stmt);

  x = build1 (GOTO_EXPR, void_type_node, finlab);
  append_to_statement_list (x, &q->repl_stmt);
}

/* We want to transform
	try { body; } catch { stuff; }
   to
	body; goto over; lab: stuff; over:

   T is a TRY_FINALLY or TRY_CATCH node.  LAB is the label that
   should be placed before the second operand, or NULL.  OVER is
   an existing label that should be put at the exit, or NULL.  */

static void
frob_into_branch_around (tree *tp, tree lab, tree over)
{
  tree x, op1;

  op1 = TREE_OPERAND (*tp, 1);
  *tp = TREE_OPERAND (*tp, 0);

  if (block_may_fallthru (*tp))
    {
      if (!over)
	over = create_artificial_label ();
      x = build1 (GOTO_EXPR, void_type_node, over);
      append_to_statement_list (x, tp);
    }

  if (lab)
    {
      x = build1 (LABEL_EXPR, void_type_node, lab);
      append_to_statement_list (x, tp);
    }

  append_to_statement_list (op1, tp);

  if (over)
    {
      x = build1 (LABEL_EXPR, void_type_node, over);
      append_to_statement_list (x, tp);
    }
}

/* A subroutine of lower_try_finally.  Duplicate the tree rooted at T.
   Make sure to record all new labels found.  */

static tree
lower_try_finally_dup_block (tree t, struct leh_state *outer_state)
{
  tree region = NULL;

  t = unsave_expr_now (t);

  if (outer_state->tf)
    region = outer_state->tf->try_finally_expr;
  collect_finally_tree (t, region);

  return t;
}

/* A subroutine of lower_try_finally.  Create a fallthru label for
   the given try_finally state.  The only tricky bit here is that
   we have to make sure to record the label in our outer context.  */

static tree
lower_try_finally_fallthru_label (struct leh_tf_state *tf)
{
  tree label = tf->fallthru_label;
  if (!label)
    {
      label = create_artificial_label ();
      tf->fallthru_label = label;
      if (tf->outer->tf)
        record_in_finally_tree (label, tf->outer->tf->try_finally_expr);
    }
  return label;
}

/* A subroutine of lower_try_finally.  If lang_protect_cleanup_actions
   returns non-null, then the language requires that the exception path out
   of a try_finally be treated specially.  To wit: the code within the
   finally block may not itself throw an exception.  We have two choices here.
   First we can duplicate the finally block and wrap it in a must_not_throw
   region.  Second, we can generate code like

	try {
	  finally_block;
	} catch {
	  if (fintmp == eh_edge)
	    protect_cleanup_actions;
	}

   where "fintmp" is the temporary used in the switch statement generation
   alternative considered below.  For the nonce, we always choose the first
   option.

   THIS_STATE may be null if this is a try-cleanup, not a try-finally.  */

static void
honor_protect_cleanup_actions (struct leh_state *outer_state,
			       struct leh_state *this_state,
			       struct leh_tf_state *tf)
{
  tree protect_cleanup_actions, finally, x;
  tree_stmt_iterator i;
  bool finally_may_fallthru;

  /* First check for nothing to do.  */
  if (lang_protect_cleanup_actions)
    protect_cleanup_actions = lang_protect_cleanup_actions ();
  else
    protect_cleanup_actions = NULL;

  finally = TREE_OPERAND (*tf->top_p, 1);

  /* If the EH case of the finally block can fall through, this may be a
     structure of the form
	try {
	  try {
	    throw ...;
	  } cleanup {
	    try {
	      throw ...;
	    } catch (...) {
	    }
	  }
	} catch (...) {
	  yyy;
	}
    E.g. with an inline destructor with an embedded try block.  In this
    case we must save the runtime EH data around the nested exception.

    This complication means that any time the previous runtime data might
    be used (via fallthru from the finally) we handle the eh case here,
    whether or not protect_cleanup_actions is active.  */

  finally_may_fallthru = block_may_fallthru (finally);
  if (!finally_may_fallthru && !protect_cleanup_actions)
    return;

  /* Duplicate the FINALLY block.  Only need to do this for try-finally,
     and not for cleanups.  */
  if (this_state)
    finally = lower_try_finally_dup_block (finally, outer_state);

  /* Resume execution after the exception.  Adding this now lets
     lower_eh_filter not add unnecessary gotos, as it is clear that
     we never fallthru from this copy of the finally block.  */
  if (finally_may_fallthru)
    {
      tree save_eptr, save_filt;

      save_eptr = create_tmp_var (ptr_type_node, "save_eptr");
      save_filt = create_tmp_var (integer_type_node, "save_filt");

      i = tsi_start (finally);
      x = build0 (EXC_PTR_EXPR, ptr_type_node);
      x = build2 (MODIFY_EXPR, void_type_node, save_eptr, x);
      tsi_link_before (&i, x, TSI_CONTINUE_LINKING);

      x = build0 (FILTER_EXPR, integer_type_node);
      x = build2 (MODIFY_EXPR, void_type_node, save_filt, x);
      tsi_link_before (&i, x, TSI_CONTINUE_LINKING);

      i = tsi_last (finally);
      x = build0 (EXC_PTR_EXPR, ptr_type_node);
      x = build2 (MODIFY_EXPR, void_type_node, x, save_eptr);
      tsi_link_after (&i, x, TSI_CONTINUE_LINKING);

      x = build0 (FILTER_EXPR, integer_type_node);
      x = build2 (MODIFY_EXPR, void_type_node, x, save_filt);
      tsi_link_after (&i, x, TSI_CONTINUE_LINKING);

      x = build_resx (get_eh_region_number (tf->region));
      tsi_link_after (&i, x, TSI_CONTINUE_LINKING);
    }

  /* Wrap the block with protect_cleanup_actions as the action.  */
  if (protect_cleanup_actions)
    {
      x = build2 (EH_FILTER_EXPR, void_type_node, NULL, NULL);
      append_to_statement_list (protect_cleanup_actions, &EH_FILTER_FAILURE (x));
      EH_FILTER_MUST_NOT_THROW (x) = 1;
      finally = build2 (TRY_CATCH_EXPR, void_type_node, finally, x);
      lower_eh_filter (outer_state, &finally);
    }
  else
    lower_eh_constructs_1 (outer_state, &finally);

  /* Hook this up to the end of the existing try block.  If we
     previously fell through the end, we'll have to branch around.
     This means adding a new goto, and adding it to the queue.  */

  i = tsi_last (TREE_OPERAND (*tf->top_p, 0));

  if (tf->may_fallthru)
    {
      x = lower_try_finally_fallthru_label (tf);
      x = build1 (GOTO_EXPR, void_type_node, x);
      tsi_link_after (&i, x, TSI_CONTINUE_LINKING);

      if (this_state)
        maybe_record_in_goto_queue (this_state, x);

      tf->may_fallthru = false;
    }

  x = build1 (LABEL_EXPR, void_type_node, tf->eh_label);
  tsi_link_after (&i, x, TSI_CONTINUE_LINKING);
  tsi_link_after (&i, finally, TSI_CONTINUE_LINKING);

  /* Having now been handled, EH isn't to be considered with
     the rest of the outgoing edges.  */
  tf->may_throw = false;
}

/* A subroutine of lower_try_finally.  We have determined that there is
   no fallthru edge out of the finally block.  This means that there is
   no outgoing edge corresponding to any incoming edge.  Restructure the
   try_finally node for this special case.  */

static void
lower_try_finally_nofallthru (struct leh_state *state, struct leh_tf_state *tf)
{
  tree x, finally, lab, return_val;
  struct goto_queue_node *q, *qe;

  if (tf->may_throw)
    lab = tf->eh_label;
  else
    lab = create_artificial_label ();

  finally = TREE_OPERAND (*tf->top_p, 1);
  *tf->top_p = TREE_OPERAND (*tf->top_p, 0);

  x = build1 (LABEL_EXPR, void_type_node, lab);
  append_to_statement_list (x, tf->top_p);

  return_val = NULL;
  q = tf->goto_queue;
  qe = q + tf->goto_queue_active;
  for (; q < qe; ++q)
    if (q->index < 0)
      do_return_redirection (q, lab, NULL, &return_val);
    else
      do_goto_redirection (q, lab, NULL);

  replace_goto_queue (tf);

  lower_eh_constructs_1 (state, &finally);
  append_to_statement_list (finally, tf->top_p);
}

/* A subroutine of lower_try_finally.  We have determined that there is
   exactly one destination of the finally block.  Restructure the
   try_finally node for this special case.  */

static void
lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
{
  struct goto_queue_node *q, *qe;
  tree x, finally, finally_label;

  finally = TREE_OPERAND (*tf->top_p, 1);
  *tf->top_p = TREE_OPERAND (*tf->top_p, 0);

  lower_eh_constructs_1 (state, &finally);

  if (tf->may_throw)
    {
      /* Only reachable via the exception edge.  Add the given label to
         the head of the FINALLY block.  Append a RESX at the end.  */

      x = build1 (LABEL_EXPR, void_type_node, tf->eh_label);
      append_to_statement_list (x, tf->top_p);

      append_to_statement_list (finally, tf->top_p);

      x = build_resx (get_eh_region_number (tf->region));

      append_to_statement_list (x, tf->top_p);

      return;
    }

  if (tf->may_fallthru)
    {
      /* Only reachable via the fallthru edge.  Do nothing but let
	 the two blocks run together; we'll fall out the bottom.  */
      append_to_statement_list (finally, tf->top_p);
      return;
    }

  finally_label = create_artificial_label ();
  x = build1 (LABEL_EXPR, void_type_node, finally_label);
  append_to_statement_list (x, tf->top_p);

  append_to_statement_list (finally, tf->top_p);

  q = tf->goto_queue;
  qe = q + tf->goto_queue_active;

  if (tf->may_return)
    {
      /* Reachable by return expressions only.  Redirect them.  */
      tree return_val = NULL;
      for (; q < qe; ++q)
	do_return_redirection (q, finally_label, NULL, &return_val);
      replace_goto_queue (tf);
    }
  else
    {
      /* Reachable by goto expressions only.  Redirect them.  */
      for (; q < qe; ++q)
	do_goto_redirection (q, finally_label, NULL);
      replace_goto_queue (tf);

      if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
	{
	  /* Reachable by goto to fallthru label only.  Redirect it
	     to the new label (already created, sadly), and do not
	     emit the final branch out, or the fallthru label.  */
	  tf->fallthru_label = NULL;
	  return;
	}
    }

  append_to_statement_list (tf->goto_queue[0].cont_stmt, tf->top_p);
  maybe_record_in_goto_queue (state, tf->goto_queue[0].cont_stmt);
}

/* A subroutine of lower_try_finally.  There are multiple edges incoming
   and outgoing from the finally block.  Implement this by duplicating the
   finally block for every destination.  */

static void
lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
{
  tree finally, new_stmt;
  tree x;

  finally = TREE_OPERAND (*tf->top_p, 1);
  *tf->top_p = TREE_OPERAND (*tf->top_p, 0);

  new_stmt = NULL_TREE;

  if (tf->may_fallthru)
    {
      x = lower_try_finally_dup_block (finally, state);
      lower_eh_constructs_1 (state, &x);
      append_to_statement_list (x, &new_stmt);

      x = lower_try_finally_fallthru_label (tf);
      x = build1 (GOTO_EXPR, void_type_node, x);
      append_to_statement_list (x, &new_stmt);
    }

  if (tf->may_throw)
    {
      x = build1 (LABEL_EXPR, void_type_node, tf->eh_label);
      append_to_statement_list (x, &new_stmt);

      x = lower_try_finally_dup_block (finally, state);
      lower_eh_constructs_1 (state, &x);
      append_to_statement_list (x, &new_stmt);

      x = build_resx (get_eh_region_number (tf->region));
      append_to_statement_list (x, &new_stmt);
    }

  if (tf->goto_queue)
    {
      struct goto_queue_node *q, *qe;
      tree return_val = NULL;
      int return_index, index;
      struct labels_s
      {
	struct goto_queue_node *q;
	tree label;
      } *labels;

      return_index = VEC_length (tree, tf->dest_array);
      labels = XCNEWVEC (struct labels_s, return_index + 1);

      q = tf->goto_queue;
      qe = q + tf->goto_queue_active;
      for (; q < qe; q++)
	{
	  index = q->index < 0 ? return_index : q->index;

	  if (!labels[index].q)
	    labels[index].q = q;
	}

      for (index = 0; index < return_index + 1; index++)
	{
	  tree lab;

	  q = labels[index].q;
	  if (! q)
	    continue;

	  lab = labels[index].label = create_artificial_label ();

	  if (index == return_index)
	    do_return_redirection (q, lab, NULL, &return_val);
	  else
	    do_goto_redirection (q, lab, NULL);

	  x = build1 (LABEL_EXPR, void_type_node, lab);
	  append_to_statement_list (x, &new_stmt);

	  x = lower_try_finally_dup_block (finally, state);
	  lower_eh_constructs_1 (state, &x);
	  append_to_statement_list (x, &new_stmt);

	  append_to_statement_list (q->cont_stmt, &new_stmt);
	  maybe_record_in_goto_queue (state, q->cont_stmt);
	}

      for (q = tf->goto_queue; q < qe; q++)
	{
	  tree lab;

	  index = q->index < 0 ? return_index : q->index;

	  if (labels[index].q == q)
	    continue;

	  lab = labels[index].label;

	  if (index == return_index)
	    do_return_redirection (q, lab, NULL, &return_val);
	  else
	    do_goto_redirection (q, lab, NULL);
	}
	
      replace_goto_queue (tf);
      free (labels);
    }

  /* Need to link new stmts after running replace_goto_queue due
     to not wanting to process the same goto stmts twice.  */
  append_to_statement_list (new_stmt, tf->top_p);
}

/* A subroutine of lower_try_finally.  There are multiple edges incoming
   and outgoing from the finally block.  Implement this by instrumenting
   each incoming edge and creating a switch statement at the end of the
   finally block that branches to the appropriate destination.  */

static void
lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
{
  struct goto_queue_node *q, *qe;
  tree return_val = NULL;
  tree finally, finally_tmp, finally_label;
  int return_index, eh_index, fallthru_index;
  int nlabels, ndests, j, last_case_index;
  tree case_label_vec, switch_stmt, last_case, switch_body;
  tree x;

  /* Mash the TRY block to the head of the chain.  */
  finally = TREE_OPERAND (*tf->top_p, 1);
  *tf->top_p = TREE_OPERAND (*tf->top_p, 0);

  /* Lower the finally block itself.  */
  lower_eh_constructs_1 (state, &finally);

  /* Prepare for switch statement generation.  */
  nlabels = VEC_length (tree, tf->dest_array);
  return_index = nlabels;
  eh_index = return_index + tf->may_return;
  fallthru_index = eh_index + tf->may_throw;
  ndests = fallthru_index + tf->may_fallthru;

  finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
  finally_label = create_artificial_label ();

  case_label_vec = make_tree_vec (ndests);
  switch_stmt = build3 (SWITCH_EXPR, integer_type_node, finally_tmp,
		        NULL_TREE, case_label_vec);
  switch_body = NULL;
  last_case = NULL;
  last_case_index = 0;

  /* Begin inserting code for getting to the finally block.  Things
     are done in this order to correspond to the sequence the code is
     layed out.  */

  if (tf->may_fallthru)
    {
      x = build2 (MODIFY_EXPR, void_type_node, finally_tmp,
		  build_int_cst (NULL_TREE, fallthru_index));
      append_to_statement_list (x, tf->top_p);

      if (tf->may_throw)
	{
	  x = build1 (GOTO_EXPR, void_type_node, finally_label);
	  append_to_statement_list (x, tf->top_p);
	}


      last_case = build3 (CASE_LABEL_EXPR, void_type_node,
			  build_int_cst (NULL_TREE, fallthru_index), NULL,
			  create_artificial_label ());
      TREE_VEC_ELT (case_label_vec, last_case_index) = last_case;
      last_case_index++;

      x = build1 (LABEL_EXPR, void_type_node, CASE_LABEL (last_case));
      append_to_statement_list (x, &switch_body);

      x = lower_try_finally_fallthru_label (tf);
      x = build1 (GOTO_EXPR, void_type_node, x);
      append_to_statement_list (x, &switch_body);
    }

  if (tf->may_throw)
    {
      x = build1 (LABEL_EXPR, void_type_node, tf->eh_label);
      append_to_statement_list (x, tf->top_p);

      x = build2 (MODIFY_EXPR, void_type_node, finally_tmp,
		  build_int_cst (NULL_TREE, eh_index));
      append_to_statement_list (x, tf->top_p);

      last_case = build3 (CASE_LABEL_EXPR, void_type_node,
			  build_int_cst (NULL_TREE, eh_index), NULL,
			  create_artificial_label ());
      TREE_VEC_ELT (case_label_vec, last_case_index) = last_case;
      last_case_index++;

      x = build1 (LABEL_EXPR, void_type_node, CASE_LABEL (last_case));
      append_to_statement_list (x, &switch_body);
      x = build_resx (get_eh_region_number (tf->region));
      append_to_statement_list (x, &switch_body);
    }

  x = build1 (LABEL_EXPR, void_type_node, finally_label);
  append_to_statement_list (x, tf->top_p);

  append_to_statement_list (finally, tf->top_p);

  /* Redirect each incoming goto edge.  */
  q = tf->goto_queue;
  qe = q + tf->goto_queue_active;
  j = last_case_index + tf->may_return;
  for (; q < qe; ++q)
    {
      tree mod;
      int switch_id, case_index;

      if (q->index < 0)
	{
	  mod = build2 (MODIFY_EXPR, void_type_node, finally_tmp,
		        build_int_cst (NULL_TREE, return_index));
	  do_return_redirection (q, finally_label, mod, &return_val);
	  switch_id = return_index;
	}
      else
	{
	  mod = build2 (MODIFY_EXPR, void_type_node, finally_tmp,
		        build_int_cst (NULL_TREE, q->index));
	  do_goto_redirection (q, finally_label, mod);
	  switch_id = q->index;
	}

      case_index = j + q->index;
      if (!TREE_VEC_ELT (case_label_vec, case_index))
	TREE_VEC_ELT (case_label_vec, case_index)
	  = build3 (CASE_LABEL_EXPR, void_type_node,
		    build_int_cst (NULL_TREE, switch_id), NULL,
		    /* We store the cont_stmt in the
		       CASE_LABEL, so that we can recover it
		       in the loop below.  We don't create
		       the new label while walking the
		       goto_queue because pointers don't
		       offer a stable order.  */
		    q->cont_stmt);
    }
  for (j = last_case_index; j < last_case_index + nlabels; j++)
    {
      tree label;
      tree cont_stmt;

      last_case = TREE_VEC_ELT (case_label_vec, j);

      gcc_assert (last_case);

      cont_stmt = CASE_LABEL (last_case);

      label = create_artificial_label ();
      CASE_LABEL (last_case) = label;

      x = build1 (LABEL_EXPR, void_type_node, label);
      append_to_statement_list (x, &switch_body);
      append_to_statement_list (cont_stmt, &switch_body);
      maybe_record_in_goto_queue (state, cont_stmt);
    }
  replace_goto_queue (tf);

  /* Make sure that the last case is the default label, as one is required.
     Then sort the labels, which is also required in GIMPLE.  */
  CASE_LOW (last_case) = NULL;
  sort_case_labels (case_label_vec);

  /* Need to link switch_stmt after running replace_goto_queue due
     to not wanting to process the same goto stmts twice.  */
  append_to_statement_list (switch_stmt, tf->top_p);
  append_to_statement_list (switch_body, tf->top_p);
}

/* Decide whether or not we are going to duplicate the finally block.
   There are several considerations.

   First, if this is Java, then the finally block contains code
   written by the user.  It has line numbers associated with it,
   so duplicating the block means it's difficult to set a breakpoint.
   Since controlling code generation via -g is verboten, we simply
   never duplicate code without optimization.

   Second, we'd like to prevent egregious code growth.  One way to
   do this is to estimate the size of the finally block, multiply
   that by the number of copies we'd need to make, and compare against
   the estimate of the size of the switch machinery we'd have to add.  */

static bool
decide_copy_try_finally (int ndests, tree finally)
{
  int f_estimate, sw_estimate;

  if (!optimize)
    return false;

  /* Finally estimate N times, plus N gotos.  */
  f_estimate = estimate_num_insns (finally);
  f_estimate = (f_estimate + 1) * ndests;

  /* Switch statement (cost 10), N variable assignments, N gotos.  */
  sw_estimate = 10 + 2 * ndests;

  /* Optimize for size clearly wants our best guess.  */
  if (optimize_size)
    return f_estimate < sw_estimate;

  /* ??? These numbers are completely made up so far.  */
  if (optimize > 1)
    return f_estimate < 100 || f_estimate < sw_estimate * 2;
  else
    return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
}

/* A subroutine of lower_eh_constructs_1.  Lower a TRY_FINALLY_EXPR nodes
   to a sequence of labels and blocks, plus the exception region trees
   that record all the magic.  This is complicated by the need to
   arrange for the FINALLY block to be executed on all exits.  */

static void
lower_try_finally (struct leh_state *state, tree *tp)
{
  struct leh_tf_state this_tf;
  struct leh_state this_state;
  int ndests;

  /* Process the try block.  */

  memset (&this_tf, 0, sizeof (this_tf));
  this_tf.try_finally_expr = *tp;
  this_tf.top_p = tp;
  this_tf.outer = state;
  if (using_eh_for_cleanups_p)
    this_tf.region
      = gen_eh_region_cleanup (state->cur_region, state->prev_try);
  else
    this_tf.region = NULL;

  this_state.cur_region = this_tf.region;
  this_state.prev_try = state->prev_try;
  this_state.tf = &this_tf;

  lower_eh_constructs_1 (&this_state, &TREE_OPERAND (*tp, 0));

  /* Determine if the try block is escaped through the bottom.  */
  this_tf.may_fallthru = block_may_fallthru (TREE_OPERAND (*tp, 0));

  /* Determine if any exceptions are possible within the try block.  */
  if (using_eh_for_cleanups_p)
    this_tf.may_throw = get_eh_region_may_contain_throw (this_tf.region);
  if (this_tf.may_throw)
    {
      this_tf.eh_label = create_artificial_label ();
      set_eh_region_tree_label (this_tf.region, this_tf.eh_label);
      honor_protect_cleanup_actions (state, &this_state, &this_tf);
    }

  /* Sort the goto queue for efficient searching later.  */
  if (this_tf.goto_queue_active > 1)
    qsort (this_tf.goto_queue, this_tf.goto_queue_active,
	   sizeof (struct goto_queue_node), goto_queue_cmp);

  /* Determine how many edges (still) reach the finally block.  Or rather,
     how many destinations are reached by the finally block.  Use this to
     determine how we process the finally block itself.  */

  ndests = VEC_length (tree, this_tf.dest_array);
  ndests += this_tf.may_fallthru;
  ndests += this_tf.may_return;
  ndests += this_tf.may_throw;

  /* If the FINALLY block is not reachable, dike it out.  */
  if (ndests == 0)
    *tp = TREE_OPERAND (*tp, 0);

  /* If the finally block doesn't fall through, then any destination
     we might try to impose there isn't reached either.  There may be
     some minor amount of cleanup and redirection still needed.  */
  else if (!block_may_fallthru (TREE_OPERAND (*tp, 1)))
    lower_try_finally_nofallthru (state, &this_tf);

  /* We can easily special-case redirection to a single destination.  */
  else if (ndests == 1)
    lower_try_finally_onedest (state, &this_tf);

  else if (decide_copy_try_finally (ndests, TREE_OPERAND (*tp, 1)))
    lower_try_finally_copy (state, &this_tf);
  else
    lower_try_finally_switch (state, &this_tf);

  /* If someone requested we add a label at the end of the transformed
     block, do so.  */
  if (this_tf.fallthru_label)
    {
      tree x = build1 (LABEL_EXPR, void_type_node, this_tf.fallthru_label);
      append_to_statement_list (x, tp);
    }

  VEC_free (tree, heap, this_tf.dest_array);
  if (this_tf.goto_queue)
    free (this_tf.goto_queue);
}

/* A subroutine of lower_eh_constructs_1.  Lower a TRY_CATCH_EXPR with a
   list of CATCH_EXPR nodes to a sequence of labels and blocks, plus the
   exception region trees that record all the magic.  */

static void
lower_catch (struct leh_state *state, tree *tp)
{
  struct eh_region *try_region;
  struct leh_state this_state;
  tree_stmt_iterator i;
  tree out_label;

  try_region = gen_eh_region_try (state->cur_region);
  this_state.cur_region = try_region;
  this_state.prev_try = try_region;
  this_state.tf = state->tf;

  lower_eh_constructs_1 (&this_state, &TREE_OPERAND (*tp, 0));

  if (!get_eh_region_may_contain_throw (try_region))
    {
      *tp = TREE_OPERAND (*tp, 0);
      return;
    }

  out_label = NULL;
  for (i = tsi_start (TREE_OPERAND (*tp, 1)); !tsi_end_p (i); )
    {
      struct eh_region *catch_region;
      tree catch, x, eh_label;

      catch = tsi_stmt (i);
      catch_region = gen_eh_region_catch (try_region, CATCH_TYPES (catch));

      this_state.cur_region = catch_region;
      this_state.prev_try = state->prev_try;
      lower_eh_constructs_1 (&this_state, &CATCH_BODY (catch));

      eh_label = create_artificial_label ();
      set_eh_region_tree_label (catch_region, eh_label);

      x = build1 (LABEL_EXPR, void_type_node, eh_label);
      tsi_link_before (&i, x, TSI_SAME_STMT);

      if (block_may_fallthru (CATCH_BODY (catch)))
	{
	  if (!out_label)
	    out_label = create_artificial_label ();

	  x = build1 (GOTO_EXPR, void_type_node, out_label);
	  append_to_statement_list (x, &CATCH_BODY (catch));
	}

      tsi_link_before (&i, CATCH_BODY (catch), TSI_SAME_STMT);
      tsi_delink (&i);
    }

  frob_into_branch_around (tp, NULL, out_label);
}

/* A subroutine of lower_eh_constructs_1.  Lower a TRY_CATCH_EXPR with a
   EH_FILTER_EXPR to a sequence of labels and blocks, plus the exception
   region trees that record all the magic.  */

static void
lower_eh_filter (struct leh_state *state, tree *tp)
{
  struct leh_state this_state;
  struct eh_region *this_region;
  tree inner = expr_first (TREE_OPERAND (*tp, 1));
  tree eh_label;

  if (EH_FILTER_MUST_NOT_THROW (inner))
    this_region = gen_eh_region_must_not_throw (state->cur_region);
  else
    this_region = gen_eh_region_allowed (state->cur_region,
					 EH_FILTER_TYPES (inner));
  this_state = *state;
  this_state.cur_region = this_region;

  lower_eh_constructs_1 (&this_state, &TREE_OPERAND (*tp, 0));

  if (!get_eh_region_may_contain_throw (this_region))
    {
      *tp = TREE_OPERAND (*tp, 0);
      return;
    }

  lower_eh_constructs_1 (state, &EH_FILTER_FAILURE (inner));
  TREE_OPERAND (*tp, 1) = EH_FILTER_FAILURE (inner);

  eh_label = create_artificial_label ();
  set_eh_region_tree_label (this_region, eh_label);

  frob_into_branch_around (tp, eh_label, NULL);
}

/* Implement a cleanup expression.  This is similar to try-finally,
   except that we only execute the cleanup block for exception edges.  */

static void
lower_cleanup (struct leh_state *state, tree *tp)
{
  struct leh_state this_state;
  struct eh_region *this_region;
  struct leh_tf_state fake_tf;

  /* If not using eh, then exception-only cleanups are no-ops.  */
  if (!flag_exceptions)
    {
      *tp = TREE_OPERAND (*tp, 0);
      lower_eh_constructs_1 (state, tp);
      return;
    }

  this_region = gen_eh_region_cleanup (state->cur_region, state->prev_try);
  this_state = *state;
  this_state.cur_region = this_region;

  lower_eh_constructs_1 (&this_state, &TREE_OPERAND (*tp, 0));

  if (!get_eh_region_may_contain_throw (this_region))
    {
      *tp = TREE_OPERAND (*tp, 0);
      return;
    }

  /* Build enough of a try-finally state so that we can reuse
     honor_protect_cleanup_actions.  */
  memset (&fake_tf, 0, sizeof (fake_tf));
  fake_tf.top_p = tp;
  fake_tf.outer = state;
  fake_tf.region = this_region;
  fake_tf.may_fallthru = block_may_fallthru (TREE_OPERAND (*tp, 0));
  fake_tf.may_throw = true;

  fake_tf.eh_label = create_artificial_label ();
  set_eh_region_tree_label (this_region, fake_tf.eh_label);

  honor_protect_cleanup_actions (state, NULL, &fake_tf);

  if (fake_tf.may_throw)
    {
      /* In this case honor_protect_cleanup_actions had nothing to do,
	 and we should process this normally.  */
      lower_eh_constructs_1 (state, &TREE_OPERAND (*tp, 1));
      frob_into_branch_around (tp, fake_tf.eh_label, fake_tf.fallthru_label);
    }
  else
    {
      /* In this case honor_protect_cleanup_actions did nearly all of
	 the work.  All we have left is to append the fallthru_label.  */

      *tp = TREE_OPERAND (*tp, 0);
      if (fake_tf.fallthru_label)
	{
	  tree x = build1 (LABEL_EXPR, void_type_node, fake_tf.fallthru_label);
	  append_to_statement_list (x, tp);
	}
    }
}

/* Main loop for lowering eh constructs.  */

static void
lower_eh_constructs_1 (struct leh_state *state, tree *tp)
{
  tree_stmt_iterator i;
  tree t = *tp;

  switch (TREE_CODE (t))
    {
    case COND_EXPR:
      lower_eh_constructs_1 (state, &COND_EXPR_THEN (t));
      lower_eh_constructs_1 (state, &COND_EXPR_ELSE (t));
      break;

    case CALL_EXPR:
      /* Look for things that can throw exceptions, and record them.  */
      if (state->cur_region && tree_could_throw_p (t))
	{
	  record_stmt_eh_region (state->cur_region, t);
	  note_eh_region_may_contain_throw (state->cur_region);
	}
      break;

    case MODIFY_EXPR:
      /* Look for things that can throw exceptions, and record them.  */
      if (state->cur_region && tree_could_throw_p (t))
	{
	  record_stmt_eh_region (state->cur_region, t);
	  note_eh_region_may_contain_throw (state->cur_region);
	}
      break;

    case GOTO_EXPR:
    case RETURN_EXPR:
      maybe_record_in_goto_queue (state, t);
      break;
    case SWITCH_EXPR:
      verify_norecord_switch_expr (state, t);
      break;

    case TRY_FINALLY_EXPR:
      lower_try_finally (state, tp);
      break;

    case TRY_CATCH_EXPR:
      i = tsi_start (TREE_OPERAND (t, 1));
      switch (TREE_CODE (tsi_stmt (i)))
	{
	case CATCH_EXPR:
	  lower_catch (state, tp);
	  break;
	case EH_FILTER_EXPR:
	  lower_eh_filter (state, tp);
	  break;
	default:
	  lower_cleanup (state, tp);
	  break;
	}
      break;

    case STATEMENT_LIST:
      for (i = tsi_start (t); !tsi_end_p (i); )
	{
	  lower_eh_constructs_1 (state, tsi_stmt_ptr (i));
	  t = tsi_stmt (i);
	  if (TREE_CODE (t) == STATEMENT_LIST)
	    {
	      tsi_link_before (&i, t, TSI_SAME_STMT);
	      tsi_delink (&i);
	    }
	  else
	    tsi_next (&i);
	}
      break;

    default:
      /* A type, a decl, or some kind of statement that we're not
	 interested in.  Don't walk them.  */
      break;
    }
}

static void
lower_eh_constructs (void)
{
  struct leh_state null_state;
  tree *tp = &DECL_SAVED_TREE (current_function_decl);

  finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);

  collect_finally_tree (*tp, NULL);

  memset (&null_state, 0, sizeof (null_state));
  lower_eh_constructs_1 (&null_state, tp);

  htab_delete (finally_tree);

  collect_eh_region_array ();
}

struct tree_opt_pass pass_lower_eh =
{
  "eh",					/* name */
  NULL,					/* gate */
  lower_eh_constructs,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_EH,				/* tv_id */
  PROP_gimple_lcf,			/* properties_required */
  PROP_gimple_leh,			/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_dump_func,			/* todo_flags_finish */
  0					/* letter */
};


/* Construct EH edges for STMT.  */

static void
make_eh_edge (struct eh_region *region, void *data)
{
  tree stmt, lab;
  basic_block src, dst;

  stmt = (tree) data;
  lab = get_eh_region_tree_label (region);

  src = bb_for_stmt (stmt);
  dst = label_to_block (lab);

  make_edge (src, dst, EDGE_ABNORMAL | EDGE_EH);
}

void
make_eh_edges (tree stmt)
{
  int region_nr;
  bool is_resx;

  if (TREE_CODE (stmt) == RESX_EXPR)
    {
      region_nr = TREE_INT_CST_LOW (TREE_OPERAND (stmt, 0));
      is_resx = true;
    }
  else
    {
      region_nr = lookup_stmt_eh_region (stmt);
      if (region_nr < 0)
	return;
      is_resx = false;
    }

  foreach_reachable_handler (region_nr, is_resx, make_eh_edge, stmt);
}

static bool mark_eh_edge_found_error;

/* Mark edge make_eh_edge would create for given region by setting it aux
   field, output error if something goes wrong.  */
static void
mark_eh_edge (struct eh_region *region, void *data)
{
  tree stmt, lab;
  basic_block src, dst;
  edge e;

  stmt = (tree) data;
  lab = get_eh_region_tree_label (region);

  src = bb_for_stmt (stmt);
  dst = label_to_block (lab);

  e = find_edge (src, dst);
  if (!e)
    {
      error ("EH edge %i->%i is missing", src->index, dst->index);
      mark_eh_edge_found_error = true;
    }
  else if (!(e->flags & EDGE_EH))
    {
      error ("EH edge %i->%i miss EH flag", src->index, dst->index);
      mark_eh_edge_found_error = true;
    }
  else if (e->aux)
    {
      /* ??? might not be mistake.  */
      error ("EH edge %i->%i has duplicated regions", src->index, dst->index);
      mark_eh_edge_found_error = true;
    }
  else
    e->aux = (void *)1;
}

/* Verify that BB containing stmt as last stmt has precisely the edges
   make_eh_edges would create.  */
bool
verify_eh_edges (tree stmt)
{
  int region_nr;
  bool is_resx;
  basic_block bb = bb_for_stmt (stmt);
  edge_iterator ei;
  edge e;

  FOR_EACH_EDGE (e, ei, bb->succs)
    gcc_assert (!e->aux);
  mark_eh_edge_found_error = false;
  if (TREE_CODE (stmt) == RESX_EXPR)
    {
      region_nr = TREE_INT_CST_LOW (TREE_OPERAND (stmt, 0));
      is_resx = true;
    }
  else
    {
      region_nr = lookup_stmt_eh_region (stmt);
      if (region_nr < 0)
	{
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    if (e->flags & EDGE_EH)
	      {
		error ("BB %i can not throw but has EH edges", bb->index);
		return true;
	      }
	   return false;
	}
      if (!tree_could_throw_p (stmt))
	{
	  error ("BB %i last statement has incorrectly set region", bb->index);
	  return true;
	}
      is_resx = false;
    }

  foreach_reachable_handler (region_nr, is_resx, mark_eh_edge, stmt);
  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      if ((e->flags & EDGE_EH) && !e->aux)
	{
	  error ("unnecessary EH edge %i->%i", bb->index, e->dest->index);
	  mark_eh_edge_found_error = true;
	  return true;
	}
      e->aux = NULL;
    }
  return mark_eh_edge_found_error;
}


/* Return true if the expr can trap, as in dereferencing an invalid pointer
   location or floating point arithmetic.  C.f. the rtl version, may_trap_p.
   This routine expects only GIMPLE lhs or rhs input.  */

bool
tree_could_trap_p (tree expr)
{
  enum tree_code code = TREE_CODE (expr);
  bool honor_nans = false;
  bool honor_snans = false;
  bool fp_operation = false;
  bool honor_trapv = false;
  tree t, base;

  if (TREE_CODE_CLASS (code) == tcc_comparison
      || TREE_CODE_CLASS (code) == tcc_unary
      || TREE_CODE_CLASS (code) == tcc_binary)
    {
      t = TREE_TYPE (expr);
      fp_operation = FLOAT_TYPE_P (t);
      if (fp_operation)
	{
	  honor_nans = flag_trapping_math && !flag_finite_math_only;
	  honor_snans = flag_signaling_nans != 0;
	}
      else if (INTEGRAL_TYPE_P (t) && TYPE_TRAP_SIGNED (t))
	honor_trapv = true;
    }

 restart:
  switch (code)
    {
    case TARGET_MEM_REF:
      /* For TARGET_MEM_REFs use the information based on the original
	 reference.  */
      expr = TMR_ORIGINAL (expr);
      code = TREE_CODE (expr);
      goto restart;

    case COMPONENT_REF:
    case REALPART_EXPR:
    case IMAGPART_EXPR:
    case BIT_FIELD_REF:
    case WITH_SIZE_EXPR:
      expr = TREE_OPERAND (expr, 0);
      code = TREE_CODE (expr);
      goto restart;

    case ARRAY_RANGE_REF:
      /* Let us be conservative here for now.  We might be checking bounds of
	 the access similarly to the case below.  */
      if (!TREE_THIS_NOTRAP (expr))
	return true;

      base = TREE_OPERAND (expr, 0);
      return tree_could_trap_p (base);

    case ARRAY_REF:
      base = TREE_OPERAND (expr, 0);
      if (tree_could_trap_p (base))
	return true;

      if (TREE_THIS_NOTRAP (expr))
	return false;

      return !in_array_bounds_p (expr);

    case INDIRECT_REF:
    case ALIGN_INDIRECT_REF:
    case MISALIGNED_INDIRECT_REF:
      return !TREE_THIS_NOTRAP (expr);

    case ASM_EXPR:
      return TREE_THIS_VOLATILE (expr);

    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case EXACT_DIV_EXPR:
    case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case TRUNC_MOD_EXPR:
    case RDIV_EXPR:
      if (honor_snans || honor_trapv)
	return true;
      if (fp_operation)
	return flag_trapping_math;
      t = TREE_OPERAND (expr, 1);
      if (!TREE_CONSTANT (t) || integer_zerop (t))
        return true;
      return false;

    case LT_EXPR:
    case LE_EXPR:
    case GT_EXPR:
    case GE_EXPR:
    case LTGT_EXPR:
      /* Some floating point comparisons may trap.  */
      return honor_nans;

    case EQ_EXPR:
    case NE_EXPR:
    case UNORDERED_EXPR:
    case ORDERED_EXPR:
    case UNLT_EXPR:
    case UNLE_EXPR:
    case UNGT_EXPR:
    case UNGE_EXPR:
    case UNEQ_EXPR:
      return honor_snans;

    case CONVERT_EXPR:
    case FIX_TRUNC_EXPR:
    case FIX_CEIL_EXPR:
    case FIX_FLOOR_EXPR:
    case FIX_ROUND_EXPR:
      /* Conversion of floating point might trap.  */
      return honor_nans;

    case NEGATE_EXPR:
    case ABS_EXPR:
    case CONJ_EXPR:
      /* These operations don't trap with floating point.  */
      if (honor_trapv)
	return true;
      return false;

    case PLUS_EXPR:
    case MINUS_EXPR:
    case MULT_EXPR:
      /* Any floating arithmetic may trap.  */
      if (fp_operation && flag_trapping_math)
	return true;
      if (honor_trapv)
	return true;
      return false;

    case CALL_EXPR:
      t = get_callee_fndecl (expr);
      /* Assume that calls to weak functions may trap.  */
      if (!t || !DECL_P (t) || DECL_WEAK (t))
	return true;
      return false;

    default:
      /* Any floating arithmetic may trap.  */
      if (fp_operation && flag_trapping_math)
	return true;
      return false;
    }
}

bool
tree_could_throw_p (tree t)
{
  if (!flag_exceptions)
    return false;
  if (TREE_CODE (t) == MODIFY_EXPR)
    {
      if (flag_non_call_exceptions
	  && tree_could_trap_p (TREE_OPERAND (t, 0)))
	return true;
      t = TREE_OPERAND (t, 1);
    }

  if (TREE_CODE (t) == WITH_SIZE_EXPR)
    t = TREE_OPERAND (t, 0);
  if (TREE_CODE (t) == CALL_EXPR)
    return (call_expr_flags (t) & ECF_NOTHROW) == 0;
  if (flag_non_call_exceptions)
    return tree_could_trap_p (t);
  return false;
}

bool
tree_can_throw_internal (tree stmt)
{
  int region_nr;
  bool is_resx = false;

  if (TREE_CODE (stmt) == RESX_EXPR)
    region_nr = TREE_INT_CST_LOW (TREE_OPERAND (stmt, 0)), is_resx = true;
  else
    region_nr = lookup_stmt_eh_region (stmt);
  if (region_nr < 0)
    return false;
  return can_throw_internal_1 (region_nr, is_resx);
}

bool
tree_can_throw_external (tree stmt)
{
  int region_nr;
  bool is_resx = false;

  if (TREE_CODE (stmt) == RESX_EXPR)
    region_nr = TREE_INT_CST_LOW (TREE_OPERAND (stmt, 0)), is_resx = true;
  else
    region_nr = lookup_stmt_eh_region (stmt);
  if (region_nr < 0)
    return tree_could_throw_p (stmt);
  else
    return can_throw_external_1 (region_nr, is_resx);
}

/* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
   OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
   in the table if it should be in there.  Return TRUE if a replacement was
   done that my require an EH edge purge.  */

bool 
maybe_clean_or_replace_eh_stmt (tree old_stmt, tree new_stmt) 
{
  int region_nr = lookup_stmt_eh_region (old_stmt);

  if (region_nr >= 0)
    {
      bool new_stmt_could_throw = tree_could_throw_p (new_stmt);

      if (new_stmt == old_stmt && new_stmt_could_throw)
	return false;

      remove_stmt_from_eh_region (old_stmt);
      if (new_stmt_could_throw)
	{
	  add_stmt_to_eh_region (new_stmt, region_nr);
	  return false;
	}
      else
	return true;
    }

  return false;
}

#ifdef ENABLE_CHECKING
static int
verify_eh_throw_stmt_node (void **slot, void *data ATTRIBUTE_UNUSED)
{
  struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;

  gcc_assert (node->stmt->common.ann == NULL);
  return 1;
}

void
verify_eh_throw_table_statements (void)
{
  if (!get_eh_throw_stmt_table (cfun))
    return;
  htab_traverse (get_eh_throw_stmt_table (cfun),
		 verify_eh_throw_stmt_node,
		 NULL);
}

#endif
, int base) { gfc_se se; tree tmp; /* Get the descriptor for the array to be scalarized. */ gcc_assert (ss->expr->expr_type == EXPR_VARIABLE); gfc_init_se (&se, NULL); se.descriptor_only = 1; gfc_conv_expr_lhs (&se, ss->expr); gfc_add_block_to_block (block, &se.pre); ss->data.info.descriptor = se.expr; ss->string_length = se.string_length; if (base) { /* Also the data pointer. */ tmp = gfc_conv_array_data (se.expr); /* If this is a variable or address of a variable we use it directly. Otherwise we must evaluate it now to avoid breaking dependency analysis by pulling the expressions for elemental array indices inside the loop. */ if (!(DECL_P (tmp) || (TREE_CODE (tmp) == ADDR_EXPR && DECL_P (TREE_OPERAND (tmp, 0))))) tmp = gfc_evaluate_now (tmp, block); ss->data.info.data = tmp; tmp = gfc_conv_array_offset (se.expr); ss->data.info.offset = gfc_evaluate_now (tmp, block); } } /* Initialize a gfc_loopinfo structure. */ void gfc_init_loopinfo (gfc_loopinfo * loop) { int n; memset (loop, 0, sizeof (gfc_loopinfo)); gfc_init_block (&loop->pre); gfc_init_block (&loop->post); /* Initially scalarize in order. */ for (n = 0; n < GFC_MAX_DIMENSIONS; n++) loop->order[n] = n; loop->ss = gfc_ss_terminator; } /* Copies the loop variable info to a gfc_se structure. Does not copy the SS chain. */ void gfc_copy_loopinfo_to_se (gfc_se * se, gfc_loopinfo * loop) { se->loop = loop; } /* Return an expression for the data pointer of an array. */ tree gfc_conv_array_data (tree descriptor) { tree type; type = TREE_TYPE (descriptor); if (GFC_ARRAY_TYPE_P (type)) { if (TREE_CODE (type) == POINTER_TYPE) return descriptor; else { /* Descriptorless arrays. */ return gfc_build_addr_expr (NULL, descriptor); } } else return gfc_conv_descriptor_data (descriptor); } /* Return an expression for the base offset of an array. */ tree gfc_conv_array_offset (tree descriptor) { tree type; type = TREE_TYPE (descriptor); if (GFC_ARRAY_TYPE_P (type)) return GFC_TYPE_ARRAY_OFFSET (type); else return gfc_conv_descriptor_offset (descriptor); } /* Get an expression for the array stride. */ tree gfc_conv_array_stride (tree descriptor, int dim) { tree tmp; tree type; type = TREE_TYPE (descriptor); /* For descriptorless arrays use the array size. */ tmp = GFC_TYPE_ARRAY_STRIDE (type, dim); if (tmp != NULL_TREE) return tmp; tmp = gfc_conv_descriptor_stride (descriptor, gfc_rank_cst[dim]); return tmp; } /* Like gfc_conv_array_stride, but for the lower bound. */ tree gfc_conv_array_lbound (tree descriptor, int dim) { tree tmp; tree type; type = TREE_TYPE (descriptor); tmp = GFC_TYPE_ARRAY_LBOUND (type, dim); if (tmp != NULL_TREE) return tmp; tmp = gfc_conv_descriptor_lbound (descriptor, gfc_rank_cst[dim]); return tmp; } /* Like gfc_conv_array_stride, but for the upper bound. */ tree gfc_conv_array_ubound (tree descriptor, int dim) { tree tmp; tree type; type = TREE_TYPE (descriptor); tmp = GFC_TYPE_ARRAY_UBOUND (type, dim); if (tmp != NULL_TREE) return tmp; /* This should only ever happen when passing an assumed shape array as an actual parameter. The value will never be used. */ if (GFC_ARRAY_TYPE_P (TREE_TYPE (descriptor))) return gfc_index_zero_node; tmp = gfc_conv_descriptor_ubound (descriptor, gfc_rank_cst[dim]); return tmp; } /* Translate an array reference. The descriptor should be in se->expr. Do not use this function, it wil be removed soon. */ /*GCC ARRAYS*/ static void gfc_conv_array_index_ref (gfc_se * se, tree pointer, tree * indices, tree offset, int dimen) { tree array; tree tmp; tree index; int n; array = gfc_build_indirect_ref (pointer); index = offset; for (n = 0; n < dimen; n++) { /* index = index + stride[n]*indices[n] */ tmp = gfc_conv_array_stride (se->expr, n); tmp = fold (build2 (MULT_EXPR, gfc_array_index_type, indices[n], tmp)); index = fold (build2 (PLUS_EXPR, gfc_array_index_type, index, tmp)); } /* Result = data[index]. */ tmp = gfc_build_array_ref (array, index); /* Check we've used the correct number of dimensions. */ gcc_assert (TREE_CODE (TREE_TYPE (tmp)) != ARRAY_TYPE); se->expr = tmp; } /* Generate code to perform an array index bound check. */ static tree gfc_trans_array_bound_check (gfc_se * se, tree descriptor, tree index, int n) { tree cond; tree fault; tree tmp; if (!flag_bounds_check) return index; index = gfc_evaluate_now (index, &se->pre); /* Check lower bound. */ tmp = gfc_conv_array_lbound (descriptor, n); fault = fold (build2 (LT_EXPR, boolean_type_node, index, tmp)); /* Check upper bound. */ tmp = gfc_conv_array_ubound (descriptor, n); cond = fold (build2 (GT_EXPR, boolean_type_node, index, tmp)); fault = fold (build2 (TRUTH_OR_EXPR, boolean_type_node, fault, cond)); gfc_trans_runtime_check (fault, gfc_strconst_fault, &se->pre); return index; } /* A reference to an array vector subscript. Uses recursion to handle nested vector subscripts. */ static tree gfc_conv_vector_array_index (gfc_se * se, tree index, gfc_ss * ss) { tree descsave; tree indices[GFC_MAX_DIMENSIONS]; gfc_array_ref *ar; gfc_ss_info *info; int n; gcc_assert (ss && ss->type == GFC_SS_VECTOR); /* Save the descriptor. */ descsave = se->expr; info = &ss->data.info; se->expr = info->descriptor; ar = &info->ref->u.ar; for (n = 0; n < ar->dimen; n++) { switch (ar->dimen_type[n]) { case DIMEN_ELEMENT: gcc_assert (info->subscript[n] != gfc_ss_terminator && info->subscript[n]->type == GFC_SS_SCALAR); indices[n] = info->subscript[n]->data.scalar.expr; break; case DIMEN_RANGE: indices[n] = index; break; case DIMEN_VECTOR: index = gfc_conv_vector_array_index (se, index, info->subscript[n]); indices[n] = gfc_trans_array_bound_check (se, info->descriptor, index, n); break; default: gcc_unreachable (); } } /* Get the index from the vector. */ gfc_conv_array_index_ref (se, info->data, indices, info->offset, ar->dimen); index = se->expr; /* Put the descriptor back. */ se->expr = descsave; return index; } /* Return the offset for an index. Performs bound checking for elemental dimensions. Single element references are processed separately. */ static tree gfc_conv_array_index_offset (gfc_se * se, gfc_ss_info * info, int dim, int i, gfc_array_ref * ar, tree stride) { tree index; /* Get the index into the array for this dimension. */ if (ar) { gcc_assert (ar->type != AR_ELEMENT); if (ar->dimen_type[dim] == DIMEN_ELEMENT) { gcc_assert (i == -1); /* Elemental dimension. */ gcc_assert (info->subscript[dim] && info->subscript[dim]->type == GFC_SS_SCALAR); /* We've already translated this value outside the loop. */ index = info->subscript[dim]->data.scalar.expr; index = gfc_trans_array_bound_check (se, info->descriptor, index, dim); } else { /* Scalarized dimension. */ gcc_assert (info && se->loop); /* Multiply the loop variable by the stride and dela. */ index = se->loop->loopvar[i]; index = fold (build2 (MULT_EXPR, gfc_array_index_type, index, info->stride[i])); index = fold (build2 (PLUS_EXPR, gfc_array_index_type, index, info->delta[i])); if (ar->dimen_type[dim] == DIMEN_VECTOR) { /* Handle vector subscripts. */ index = gfc_conv_vector_array_index (se, index, info->subscript[dim]); index = gfc_trans_array_bound_check (se, info->descriptor, index, dim); } else gcc_assert (ar->dimen_type[dim] == DIMEN_RANGE); } } else { /* Temporary array or derived type component. */ gcc_assert (se->loop); index = se->loop->loopvar[se->loop->order[i]]; if (!integer_zerop (info->delta[i])) index = fold (build2 (PLUS_EXPR, gfc_array_index_type, index, info->delta[i])); } /* Multiply by the stride. */ index = fold (build2 (MULT_EXPR, gfc_array_index_type, index, stride)); return index; } /* Build a scalarized reference to an array. */ static void gfc_conv_scalarized_array_ref (gfc_se * se, gfc_array_ref * ar) { gfc_ss_info *info; tree index; tree tmp; int n; info = &se->ss->data.info; if (ar) n = se->loop->order[0]; else n = 0; index = gfc_conv_array_index_offset (se, info, info->dim[n], n, ar, info->stride0); /* Add the offset for this dimension to the stored offset for all other dimensions. */ index = fold (build2 (PLUS_EXPR, gfc_array_index_type, index, info->offset)); tmp = gfc_build_indirect_ref (info->data); se->expr = gfc_build_array_ref (tmp, index); } /* Translate access of temporary array. */ void gfc_conv_tmp_array_ref (gfc_se * se) { se->string_length = se->ss->string_length; gfc_conv_scalarized_array_ref (se, NULL); } /* Build an array reference. se->expr already holds the array descriptor. This should be either a variable, indirect variable reference or component reference. For arrays which do not have a descriptor, se->expr will be the data pointer. a(i, j, k) = base[offset + i * stride[0] + j * stride[1] + k * stride[2]]*/ void gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar) { int n; tree index; tree tmp; tree stride; tree fault; gfc_se indexse; /* Handle scalarized references separately. */ if (ar->type != AR_ELEMENT) { gfc_conv_scalarized_array_ref (se, ar); return; } index = gfc_index_zero_node; fault = gfc_index_zero_node; /* Calculate the offsets from all the dimensions. */ for (n = 0; n < ar->dimen; n++) { /* Calculate the index for this dimension. */ gfc_init_se (&indexse, NULL); gfc_conv_expr_type (&indexse, ar->start[n], gfc_array_index_type); gfc_add_block_to_block (&se->pre, &indexse.pre); if (flag_bounds_check) { /* Check array bounds. */ tree cond; indexse.expr = gfc_evaluate_now (indexse.expr, &se->pre); tmp = gfc_conv_array_lbound (se->expr, n); cond = fold (build2 (LT_EXPR, boolean_type_node, indexse.expr, tmp)); fault = fold (build2 (TRUTH_OR_EXPR, boolean_type_node, fault, cond)); tmp = gfc_conv_array_ubound (se->expr, n); cond = fold (build2 (GT_EXPR, boolean_type_node, indexse.expr, tmp)); fault = fold (build2 (TRUTH_OR_EXPR, boolean_type_node, fault, cond)); } /* Multiply the index by the stride. */ stride = gfc_conv_array_stride (se->expr, n); tmp = fold (build2 (MULT_EXPR, gfc_array_index_type, indexse.expr, stride)); /* And add it to the total. */ index = fold (build2 (PLUS_EXPR, gfc_array_index_type, index, tmp)); } if (flag_bounds_check) gfc_trans_runtime_check (fault, gfc_strconst_fault, &se->pre); tmp = gfc_conv_array_offset (se->expr); if (!integer_zerop (tmp)) index = fold (build2 (PLUS_EXPR, gfc_array_index_type, index, tmp)); /* Access the calculated element. */ tmp = gfc_conv_array_data (se->expr); tmp = gfc_build_indirect_ref (tmp); se->expr = gfc_build_array_ref (tmp, index); } /* Generate the code to be executed immediately before entering a scalarization loop. */ static void gfc_trans_preloop_setup (gfc_loopinfo * loop, int dim, int flag, stmtblock_t * pblock) { tree index; tree stride; gfc_ss_info *info; gfc_ss *ss; gfc_se se; int i; /* This code will be executed before entering the scalarization loop for this dimension. */ for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) { if ((ss->useflags & flag) == 0) continue; if (ss->type != GFC_SS_SECTION && ss->type != GFC_SS_FUNCTION && ss->type != GFC_SS_CONSTRUCTOR && ss->type != GFC_SS_COMPONENT) continue; info = &ss->data.info; if (dim >= info->dimen) continue; if (dim == info->dimen - 1) { /* For the outermost loop calculate the offset due to any elemental dimensions. It will have been initialized with the base offset of the array. */ if (info->ref) { for (i = 0; i < info->ref->u.ar.dimen; i++) { if (info->ref->u.ar.dimen_type[i] != DIMEN_ELEMENT) continue; gfc_init_se (&se, NULL); se.loop = loop; se.expr = info->descriptor; stride = gfc_conv_array_stride (info->descriptor, i); index = gfc_conv_array_index_offset (&se, info, i, -1, &info->ref->u.ar, stride); gfc_add_block_to_block (pblock, &se.pre); info->offset = fold (build2 (PLUS_EXPR, gfc_array_index_type, info->offset, index)); info->offset = gfc_evaluate_now (info->offset, pblock); } i = loop->order[0]; stride = gfc_conv_array_stride (info->descriptor, info->dim[i]); } else stride = gfc_conv_array_stride (info->descriptor, 0); /* Calculate the stride of the innermost loop. Hopefully this will allow the backend optimizers to do their stuff more effectively. */ info->stride0 = gfc_evaluate_now (stride, pblock); } else { /* Add the offset for the previous loop dimension. */ gfc_array_ref *ar; if (info->ref) { ar = &info->ref->u.ar; i = loop->order[dim + 1]; } else { ar = NULL; i = dim + 1; } gfc_init_se (&se, NULL); se.loop = loop; se.expr = info->descriptor; stride = gfc_conv_array_stride (info->descriptor, info->dim[i]); index = gfc_conv_array_index_offset (&se, info, info->dim[i], i, ar, stride); gfc_add_block_to_block (pblock, &se.pre); info->offset = fold (build2 (PLUS_EXPR, gfc_array_index_type, info->offset, index)); info->offset = gfc_evaluate_now (info->offset, pblock); } /* Remember this offset for the second loop. */ if (dim == loop->temp_dim - 1) info->saved_offset = info->offset; } } /* Start a scalarized expression. Creates a scope and declares loop variables. */ void gfc_start_scalarized_body (gfc_loopinfo * loop, stmtblock_t * pbody) { int dim; int n; int flags; gcc_assert (!loop->array_parameter); for (dim = loop->dimen - 1; dim >= 0; dim--) { n = loop->order[dim]; gfc_start_block (&loop->code[n]); /* Create the loop variable. */ loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "S"); if (dim < loop->temp_dim) flags = 3; else flags = 1; /* Calculate values that will be constant within this loop. */ gfc_trans_preloop_setup (loop, dim, flags, &loop->code[n]); } gfc_start_block (pbody); } /* Generates the actual loop code for a scalarization loop. */ static void gfc_trans_scalarized_loop_end (gfc_loopinfo * loop, int n, stmtblock_t * pbody) { stmtblock_t block; tree cond; tree tmp; tree loopbody; tree exit_label; loopbody = gfc_finish_block (pbody); /* Initialize the loopvar. */ gfc_add_modify_expr (&loop->code[n], loop->loopvar[n], loop->from[n]); exit_label = gfc_build_label_decl (NULL_TREE); /* Generate the loop body. */ gfc_init_block (&block); /* The exit condition. */ cond = build2 (GT_EXPR, boolean_type_node, loop->loopvar[n], loop->to[n]); tmp = build1_v (GOTO_EXPR, exit_label); TREE_USED (exit_label) = 1; tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt ()); gfc_add_expr_to_block (&block, tmp); /* The main body. */ gfc_add_expr_to_block (&block, loopbody); /* Increment the loopvar. */ tmp = build2 (PLUS_EXPR, gfc_array_index_type, loop->loopvar[n], gfc_index_one_node); gfc_add_modify_expr (&block, loop->loopvar[n], tmp); /* Build the loop. */ tmp = gfc_finish_block (&block); tmp = build1_v (LOOP_EXPR, tmp); gfc_add_expr_to_block (&loop->code[n], tmp); /* Add the exit label. */ tmp = build1_v (LABEL_EXPR, exit_label); gfc_add_expr_to_block (&loop->code[n], tmp); } /* Finishes and generates the loops for a scalarized expression. */ void gfc_trans_scalarizing_loops (gfc_loopinfo * loop, stmtblock_t * body) { int dim; int n; gfc_ss *ss; stmtblock_t *pblock; tree tmp; pblock = body; /* Generate the loops. */ for (dim = 0; dim < loop->dimen; dim++) { n = loop->order[dim]; gfc_trans_scalarized_loop_end (loop, n, pblock); loop->loopvar[n] = NULL_TREE; pblock = &loop->code[n]; } tmp = gfc_finish_block (pblock); gfc_add_expr_to_block (&loop->pre, tmp); /* Clear all the used flags. */ for (ss = loop->ss; ss; ss = ss->loop_chain) ss->useflags = 0; } /* Finish the main body of a scalarized expression, and start the secondary copying body. */ void gfc_trans_scalarized_loop_boundary (gfc_loopinfo * loop, stmtblock_t * body) { int dim; int n; stmtblock_t *pblock; gfc_ss *ss; pblock = body; /* We finish as many loops as are used by the temporary. */ for (dim = 0; dim < loop->temp_dim - 1; dim++) { n = loop->order[dim]; gfc_trans_scalarized_loop_end (loop, n, pblock); loop->loopvar[n] = NULL_TREE; pblock = &loop->code[n]; } /* We don't want to finish the outermost loop entirely. */ n = loop->order[loop->temp_dim - 1]; gfc_trans_scalarized_loop_end (loop, n, pblock); /* Restore the initial offsets. */ for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) { if ((ss->useflags & 2) == 0) continue; if (ss->type != GFC_SS_SECTION && ss->type != GFC_SS_FUNCTION && ss->type != GFC_SS_CONSTRUCTOR && ss->type != GFC_SS_COMPONENT) continue; ss->data.info.offset = ss->data.info.saved_offset; } /* Restart all the inner loops we just finished. */ for (dim = loop->temp_dim - 2; dim >= 0; dim--) { n = loop->order[dim]; gfc_start_block (&loop->code[n]); loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "Q"); gfc_trans_preloop_setup (loop, dim, 2, &loop->code[n]); } /* Start a block for the secondary copying code. */ gfc_start_block (body); } /* Calculate the upper bound of an array section. */ static tree gfc_conv_section_upper_bound (gfc_ss * ss, int n, stmtblock_t * pblock) { int dim; gfc_ss *vecss; gfc_expr *end; tree desc; tree bound; gfc_se se; gcc_assert (ss->type == GFC_SS_SECTION); /* For vector array subscripts we want the size of the vector. */ dim = ss->data.info.dim[n]; vecss = ss; while (vecss->data.info.ref->u.ar.dimen_type[dim] == DIMEN_VECTOR) { vecss = vecss->data.info.subscript[dim]; gcc_assert (vecss && vecss->type == GFC_SS_VECTOR); dim = vecss->data.info.dim[0]; } gcc_assert (vecss->data.info.ref->u.ar.dimen_type[dim] == DIMEN_RANGE); end = vecss->data.info.ref->u.ar.end[dim]; desc = vecss->data.info.descriptor; if (end) { /* The upper bound was specified. */ gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, end, gfc_array_index_type); gfc_add_block_to_block (pblock, &se.pre); bound = se.expr; } else { /* No upper bound was specified, so use the bound of the array. */ bound = gfc_conv_array_ubound (desc, dim); } return bound; } /* Calculate the lower bound of an array section. */ static void gfc_conv_section_startstride (gfc_loopinfo * loop, gfc_ss * ss, int n) { gfc_expr *start; gfc_expr *stride; gfc_ss *vecss; tree desc; gfc_se se; gfc_ss_info *info; int dim; info = &ss->data.info; dim = info->dim[n]; /* For vector array subscripts we want the size of the vector. */ vecss = ss; while (vecss->data.info.ref->u.ar.dimen_type[dim] == DIMEN_VECTOR) { vecss = vecss->data.info.subscript[dim]; gcc_assert (vecss && vecss->type == GFC_SS_VECTOR); /* Get the descriptors for the vector subscripts as well. */ if (!vecss->data.info.descriptor) gfc_conv_ss_descriptor (&loop->pre, vecss, !loop->array_parameter); dim = vecss->data.info.dim[0]; } gcc_assert (vecss->data.info.ref->u.ar.dimen_type[dim] == DIMEN_RANGE); start = vecss->data.info.ref->u.ar.start[dim]; stride = vecss->data.info.ref->u.ar.stride[dim]; desc = vecss->data.info.descriptor; /* Calculate the start of the range. For vector subscripts this will be the range of the vector. */ if (start) { /* Specified section start. */ gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, start, gfc_array_index_type); gfc_add_block_to_block (&loop->pre, &se.pre); info->start[n] = se.expr; } else { /* No lower bound specified so use the bound of the array. */ info->start[n] = gfc_conv_array_lbound (desc, dim); } info->start[n] = gfc_evaluate_now (info->start[n], &loop->pre); /* Calculate the stride. */ if (stride == NULL) info->stride[n] = gfc_index_one_node; else { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, stride, gfc_array_index_type); gfc_add_block_to_block (&loop->pre, &se.pre); info->stride[n] = gfc_evaluate_now (se.expr, &loop->pre); } } /* Calculates the range start and stride for a SS chain. Also gets the descriptor and data pointer. The range of vector subscripts is the size of the vector. Array bounds are also checked. */ void gfc_conv_ss_startstride (gfc_loopinfo * loop) { int n; tree tmp; gfc_ss *ss; gfc_ss *vecss; tree desc; loop->dimen = 0; /* Determine the rank of the loop. */ for (ss = loop->ss; ss != gfc_ss_terminator && loop->dimen == 0; ss = ss->loop_chain) { switch (ss->type) { case GFC_SS_SECTION: case GFC_SS_CONSTRUCTOR: case GFC_SS_FUNCTION: case GFC_SS_COMPONENT: loop->dimen = ss->data.info.dimen; break; default: break; } } if (loop->dimen == 0) gfc_todo_error ("Unable to determine rank of expression"); /* Loop over all the SS in the chain. */ for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) { if (ss->expr && ss->expr->shape && !ss->shape) ss->shape = ss->expr->shape; switch (ss->type) { case GFC_SS_SECTION: /* Get the descriptor for the array. */ gfc_conv_ss_descriptor (&loop->pre, ss, !loop->array_parameter); for (n = 0; n < ss->data.info.dimen; n++) gfc_conv_section_startstride (loop, ss, n); break; case GFC_SS_CONSTRUCTOR: case GFC_SS_FUNCTION: for (n = 0; n < ss->data.info.dimen; n++) { ss->data.info.start[n] = gfc_index_zero_node; ss->data.info.stride[n] = gfc_index_one_node; } break; default: break; } } /* The rest is just runtime bound checking. */ if (flag_bounds_check) { stmtblock_t block; tree fault; tree bound; tree end; tree size[GFC_MAX_DIMENSIONS]; gfc_ss_info *info; int dim; gfc_start_block (&block); fault = integer_zero_node; for (n = 0; n < loop->dimen; n++) size[n] = NULL_TREE; for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) { if (ss->type != GFC_SS_SECTION) continue; /* TODO: range checking for mapped dimensions. */ info = &ss->data.info; /* This only checks scalarized dimensions, elemental dimensions are checked later. */ for (n = 0; n < loop->dimen; n++) { dim = info->dim[n]; vecss = ss; while (vecss->data.info.ref->u.ar.dimen_type[dim] == DIMEN_VECTOR) { vecss = vecss->data.info.subscript[dim]; gcc_assert (vecss && vecss->type == GFC_SS_VECTOR); dim = vecss->data.info.dim[0]; } gcc_assert (vecss->data.info.ref->u.ar.dimen_type[dim] == DIMEN_RANGE); desc = vecss->data.info.descriptor; /* Check lower bound. */ bound = gfc_conv_array_lbound (desc, dim); tmp = info->start[n]; tmp = fold (build2 (LT_EXPR, boolean_type_node, tmp, bound)); fault = fold (build2 (TRUTH_OR_EXPR, boolean_type_node, fault, tmp)); /* Check the upper bound. */ bound = gfc_conv_array_ubound (desc, dim); end = gfc_conv_section_upper_bound (ss, n, &block); tmp = fold (build2 (GT_EXPR, boolean_type_node, end, bound)); fault = fold (build2 (TRUTH_OR_EXPR, boolean_type_node, fault, tmp)); /* Check the section sizes match. */ tmp = fold (build2 (MINUS_EXPR, gfc_array_index_type, end, info->start[n])); tmp = fold (build2 (FLOOR_DIV_EXPR, gfc_array_index_type, tmp, info->stride[n])); /* We remember the size of the first section, and check all the others against this. */ if (size[n]) { tmp = fold (build2 (NE_EXPR, boolean_type_node, tmp, size[n])); fault = build2 (TRUTH_OR_EXPR, boolean_type_node, fault, tmp); } else size[n] = gfc_evaluate_now (tmp, &block); } } gfc_trans_runtime_check (fault, gfc_strconst_bounds, &block); tmp = gfc_finish_block (&block); gfc_add_expr_to_block (&loop->pre, tmp); } } /* Return true if the two SS could be aliased, i.e. both point to the same data object. */ /* TODO: resolve aliases based on frontend expressions. */ static int gfc_could_be_alias (gfc_ss * lss, gfc_ss * rss) { gfc_ref *lref; gfc_ref *rref; gfc_symbol *lsym; gfc_symbol *rsym; lsym = lss->expr->symtree->n.sym; rsym = rss->expr->symtree->n.sym; if (gfc_symbols_could_alias (lsym, rsym)) return 1; if (rsym->ts.type != BT_DERIVED && lsym->ts.type != BT_DERIVED) return 0; /* For derived types we must check all the component types. We can ignore array references as these will have the same base type as the previous component ref. */ for (lref = lss->expr->ref; lref != lss->data.info.ref; lref = lref->next) { if (lref->type != REF_COMPONENT) continue; if (gfc_symbols_could_alias (lref->u.c.sym, rsym)) return 1; for (rref = rss->expr->ref; rref != rss->data.info.ref; rref = rref->next) { if (rref->type != REF_COMPONENT) continue; if (gfc_symbols_could_alias (lref->u.c.sym, rref->u.c.sym)) return 1; } } for (rref = rss->expr->ref; rref != rss->data.info.ref; rref = rref->next) { if (rref->type != REF_COMPONENT) break; if (gfc_symbols_could_alias (rref->u.c.sym, lsym)) return 1; } return 0; } /* Resolve array data dependencies. Creates a temporary if required. */ /* TODO: Calc dependencies with gfc_expr rather than gfc_ss, and move to dependency.c. */ void gfc_conv_resolve_dependencies (gfc_loopinfo * loop, gfc_ss * dest, gfc_ss * rss) { gfc_ss *ss; gfc_ref *lref; gfc_ref *rref; gfc_ref *aref; int nDepend = 0; int temp_dim = 0; loop->temp_ss = NULL; aref = dest->data.info.ref; temp_dim = 0; for (ss = rss; ss != gfc_ss_terminator; ss = ss->next) { if (ss->type != GFC_SS_SECTION) continue; if (gfc_could_be_alias (dest, ss)) { nDepend = 1; break; } if (dest->expr->symtree->n.sym == ss->expr->symtree->n.sym) { lref = dest->expr->ref; rref = ss->expr->ref; nDepend = gfc_dep_resolver (lref, rref); #if 0 /* TODO : loop shifting. */ if (nDepend == 1) { /* Mark the dimensions for LOOP SHIFTING */ for (n = 0; n < loop->dimen; n++) { int dim = dest->data.info.dim[n]; if (lref->u.ar.dimen_type[dim] == DIMEN_VECTOR) depends[n] = 2; else if (! gfc_is_same_range (&lref->u.ar, &rref->u.ar, dim, 0)) depends[n] = 1; } /* Put all the dimensions with dependencies in the innermost loops. */ dim = 0; for (n = 0; n < loop->dimen; n++) { gcc_assert (loop->order[n] == n); if (depends[n]) loop->order[dim++] = n; } temp_dim = dim; for (n = 0; n < loop->dimen; n++) { if (! depends[n]) loop->order[dim++] = n; } gcc_assert (dim == loop->dimen); break; } #endif } } if (nDepend == 1) { loop->temp_ss = gfc_get_ss (); loop->temp_ss->type = GFC_SS_TEMP; loop->temp_ss->data.temp.type = gfc_get_element_type (TREE_TYPE (dest->data.info.descriptor)); loop->temp_ss->string_length = NULL_TREE; loop->temp_ss->data.temp.dimen = loop->dimen; loop->temp_ss->next = gfc_ss_terminator; gfc_add_ss_to_loop (loop, loop->temp_ss); } else loop->temp_ss = NULL; } /* Initialize the scalarization loop. Creates the loop variables. Determines the range of the loop variables. Creates a temporary if required. Calculates how to transform from loop variables to array indices for each expression. Also generates code for scalar expressions which have been moved outside the loop. */ void gfc_conv_loop_setup (gfc_loopinfo * loop) { int n; int dim; gfc_ss_info *info; gfc_ss_info *specinfo; gfc_ss *ss; tree tmp; tree len; gfc_ss *loopspec[GFC_MAX_DIMENSIONS]; mpz_t *cshape; mpz_t i; mpz_init (i); for (n = 0; n < loop->dimen; n++) { loopspec[n] = NULL; /* We use one SS term, and use that to determine the bounds of the loop for this dimension. We try to pick the simplest term. */ for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) { if (ss->shape) { /* The frontend has worked out the size for us. */ loopspec[n] = ss; continue; } if (ss->type == GFC_SS_CONSTRUCTOR) { /* An unknown size constructor will always be rank one. Higher rank constructors will either have known shape, or still be wrapped in a call to reshape. */ gcc_assert (loop->dimen == 1); /* Try to figure out the size of the constructor. */ /* TODO: avoid this by making the frontend set the shape. */ gfc_get_array_cons_size (&i, ss->expr->value.constructor); /* A negative value means we failed. */ if (mpz_sgn (i) > 0) { mpz_sub_ui (i, i, 1); loop->to[n] = gfc_conv_mpz_to_tree (i, gfc_index_integer_kind); loopspec[n] = ss; } continue; } /* TODO: Pick the best bound if we have a choice between a function and something else. */ if (ss->type == GFC_SS_FUNCTION) { loopspec[n] = ss; continue; } if (ss->type != GFC_SS_SECTION) continue; if (loopspec[n]) specinfo = &loopspec[n]->data.info; else specinfo = NULL; info = &ss->data.info; /* Criteria for choosing a loop specifier (most important first): stride of one known stride known lower bound known upper bound */ if (!specinfo) loopspec[n] = ss; /* TODO: Is != constructor correct? */ else if (loopspec[n]->type != GFC_SS_CONSTRUCTOR) { if (integer_onep (info->stride[n]) && !integer_onep (specinfo->stride[n])) loopspec[n] = ss; else if (INTEGER_CST_P (info->stride[n]) && !INTEGER_CST_P (specinfo->stride[n])) loopspec[n] = ss; else if (INTEGER_CST_P (info->start[n]) && !INTEGER_CST_P (specinfo->start[n])) loopspec[n] = ss; /* We don't work out the upper bound. else if (INTEGER_CST_P (info->finish[n]) && ! INTEGER_CST_P (specinfo->finish[n])) loopspec[n] = ss; */ } } if (!loopspec[n]) gfc_todo_error ("Unable to find scalarization loop specifier"); info = &loopspec[n]->data.info; /* Set the extents of this range. */ cshape = loopspec[n]->shape; if (cshape && INTEGER_CST_P (info->start[n]) && INTEGER_CST_P (info->stride[n])) { loop->from[n] = info->start[n]; mpz_set (i, cshape[n]); mpz_sub_ui (i, i, 1); /* To = from + (size - 1) * stride. */ tmp = gfc_conv_mpz_to_tree (i, gfc_index_integer_kind); if (!integer_onep (info->stride[n])) tmp = fold (build2 (MULT_EXPR, gfc_array_index_type, tmp, info->stride[n])); loop->to[n] = fold (build2 (PLUS_EXPR, gfc_array_index_type, loop->from[n], tmp)); } else { loop->from[n] = info->start[n]; switch (loopspec[n]->type) { case GFC_SS_CONSTRUCTOR: gcc_assert (info->dimen == 1); gcc_assert (loop->to[n]); break; case GFC_SS_SECTION: loop->to[n] = gfc_conv_section_upper_bound (loopspec[n], n, &loop->pre); break; case GFC_SS_FUNCTION: /* The loop bound will be set when we generate the call. */ gcc_assert (loop->to[n] == NULL_TREE); break; default: gcc_unreachable (); } } /* Transform everything so we have a simple incrementing variable. */ if (integer_onep (info->stride[n])) info->delta[n] = gfc_index_zero_node; else { /* Set the delta for this section. */ info->delta[n] = gfc_evaluate_now (loop->from[n], &loop->pre); /* Number of iterations is (end - start + step) / step. with start = 0, this simplifies to last = end / step; for (i = 0; i<=last; i++){...}; */ tmp = fold (build2 (MINUS_EXPR, gfc_array_index_type, loop->to[n], loop->from[n])); tmp = fold (build2 (TRUNC_DIV_EXPR, gfc_array_index_type, tmp, info->stride[n])); loop->to[n] = gfc_evaluate_now (tmp, &loop->pre); /* Make the loop variable start at 0. */ loop->from[n] = gfc_index_zero_node; } } /* Add all the scalar code that can be taken out of the loops. This may include calculating the loop bounds, so do it before allocating the temporary. */ gfc_add_loop_ss_code (loop, loop->ss, false); /* If we want a temporary then create it. */ if (loop->temp_ss != NULL) { gcc_assert (loop->temp_ss->type == GFC_SS_TEMP); tmp = loop->temp_ss->data.temp.type; len = loop->temp_ss->string_length; n = loop->temp_ss->data.temp.dimen; memset (&loop->temp_ss->data.info, 0, sizeof (gfc_ss_info)); loop->temp_ss->type = GFC_SS_SECTION; loop->temp_ss->data.info.dimen = n; gfc_trans_allocate_temp_array (loop, &loop->temp_ss->data.info, tmp); } for (n = 0; n < loop->temp_dim; n++) loopspec[loop->order[n]] = NULL; mpz_clear (i); /* For array parameters we don't have loop variables, so don't calculate the translations. */ if (loop->array_parameter) return; /* Calculate the translation from loop variables to array indices. */ for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) { if (ss->type != GFC_SS_SECTION && ss->type != GFC_SS_COMPONENT) continue; info = &ss->data.info; for (n = 0; n < info->dimen; n++) { dim = info->dim[n]; /* If we are specifying the range the delta is already set. */ if (loopspec[n] != ss) { /* Calculate the offset relative to the loop variable. First multiply by the stride. */ tmp = fold (build2 (MULT_EXPR, gfc_array_index_type, loop->from[n], info->stride[n])); /* Then subtract this from our starting value. */ tmp = fold (build2 (MINUS_EXPR, gfc_array_index_type, info->start[n], tmp)); info->delta[n] = gfc_evaluate_now (tmp, &loop->pre); } } } } /* Fills in an array descriptor, and returns the size of the array. The size will be a simple_val, ie a variable or a constant. Also calculates the offset of the base. Returns the size of the array. { stride = 1; offset = 0; for (n = 0; n < rank; n++) { a.lbound[n] = specified_lower_bound; offset = offset + a.lbond[n] * stride; size = 1 - lbound; a.ubound[n] = specified_upper_bound; a.stride[n] = stride; size = ubound + size; //size = ubound + 1 - lbound stride = stride * size; } return (stride); } */ /*GCC ARRAYS*/ static tree gfc_array_init_size (tree descriptor, int rank, tree * poffset, gfc_expr ** lower, gfc_expr ** upper, stmtblock_t * pblock) { tree type; tree tmp; tree size; tree offset; tree stride; gfc_expr *ubound; gfc_se se; int n; type = TREE_TYPE (descriptor); stride = gfc_index_one_node; offset = gfc_index_zero_node; /* Set the dtype. */ tmp = gfc_conv_descriptor_dtype (descriptor); gfc_add_modify_expr (pblock, tmp, gfc_get_dtype (TREE_TYPE (descriptor))); for (n = 0; n < rank; n++) { /* We have 3 possibilities for determining the size of the array: lower == NULL => lbound = 1, ubound = upper[n] upper[n] = NULL => lbound = 1, ubound = lower[n] upper[n] != NULL => lbound = lower[n], ubound = upper[n] */ ubound = upper[n]; /* Set lower bound. */ gfc_init_se (&se, NULL); if (lower == NULL) se.expr = gfc_index_one_node; else { gcc_assert (lower[n]); if (ubound) { gfc_conv_expr_type (&se, lower[n], gfc_array_index_type); gfc_add_block_to_block (pblock, &se.pre); } else { se.expr = gfc_index_one_node; ubound = lower[n]; } } tmp = gfc_conv_descriptor_lbound (descriptor, gfc_rank_cst[n]); gfc_add_modify_expr (pblock, tmp, se.expr); /* Work out the offset for this component. */ tmp = fold (build2 (MULT_EXPR, gfc_array_index_type, se.expr, stride)); offset = fold (build2 (MINUS_EXPR, gfc_array_index_type, offset, tmp)); /* Start the calculation for the size of this dimension. */ size = build2 (MINUS_EXPR, gfc_array_index_type, gfc_index_one_node, se.expr); /* Set upper bound. */ gfc_init_se (&se, NULL); gcc_assert (ubound); gfc_conv_expr_type (&se, ubound, gfc_array_index_type); gfc_add_block_to_block (pblock, &se.pre); tmp = gfc_conv_descriptor_ubound (descriptor, gfc_rank_cst[n]); gfc_add_modify_expr (pblock, tmp, se.expr); /* Store the stride. */ tmp = gfc_conv_descriptor_stride (descriptor, gfc_rank_cst[n]); gfc_add_modify_expr (pblock, tmp, stride); /* Calculate the size of this dimension. */ size = fold (build2 (PLUS_EXPR, gfc_array_index_type, se.expr, size)); /* Multiply the stride by the number of elements in this dimension. */ stride = fold (build2 (MULT_EXPR, gfc_array_index_type, stride, size)); stride = gfc_evaluate_now (stride, pblock); } /* The stride is the number of elements in the array, so multiply by the size of an element to get the total size. */ tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type)); size = fold (build2 (MULT_EXPR, gfc_array_index_type, stride, tmp)); if (poffset != NULL) { offset = gfc_evaluate_now (offset, pblock); *poffset = offset; } size = gfc_evaluate_now (size, pblock); return size; } /* Initializes the descriptor and generates a call to _gfor_allocate. Does the work for an ALLOCATE statement. */ /*GCC ARRAYS*/ void gfc_array_allocate (gfc_se * se, gfc_ref * ref, tree pstat) { tree tmp; tree pointer; tree allocate; tree offset; tree size; gfc_expr **lower; gfc_expr **upper; /* Figure out the size of the array. */ switch (ref->u.ar.type) { case AR_ELEMENT: lower = NULL; upper = ref->u.ar.start; break; case AR_FULL: gcc_assert (ref->u.ar.as->type == AS_EXPLICIT); lower = ref->u.ar.as->lower; upper = ref->u.ar.as->upper; break; case AR_SECTION: lower = ref->u.ar.start; upper = ref->u.ar.end; break; default: gcc_unreachable (); break; } size = gfc_array_init_size (se->expr, ref->u.ar.as->rank, &offset, lower, upper, &se->pre); /* Allocate memory to store the data. */ tmp = gfc_conv_descriptor_data (se->expr); pointer = gfc_build_addr_expr (NULL, tmp); pointer = gfc_evaluate_now (pointer, &se->pre); if (TYPE_PRECISION (gfc_array_index_type) == 32) allocate = gfor_fndecl_allocate; else if (TYPE_PRECISION (gfc_array_index_type) == 64) allocate = gfor_fndecl_allocate64; else gcc_unreachable (); tmp = gfc_chainon_list (NULL_TREE, pointer); tmp = gfc_chainon_list (tmp, size); tmp = gfc_chainon_list (tmp, pstat); tmp = gfc_build_function_call (allocate, tmp); gfc_add_expr_to_block (&se->pre, tmp); pointer = gfc_conv_descriptor_data (se->expr); tmp = gfc_conv_descriptor_offset (se->expr); gfc_add_modify_expr (&se->pre, tmp, offset); } /* Deallocate an array variable. Also used when an allocated variable goes out of scope. */ /*GCC ARRAYS*/ tree gfc_array_deallocate (tree descriptor) { tree var; tree tmp; stmtblock_t block; gfc_start_block (&block); /* Get a pointer to the data. */ tmp = gfc_conv_descriptor_data (descriptor); tmp = gfc_build_addr_expr (NULL, tmp); var = gfc_create_var (TREE_TYPE (tmp), "ptr"); gfc_add_modify_expr (&block, var, tmp); /* Parameter is the address of the data component. */ tmp = gfc_chainon_list (NULL_TREE, var); tmp = gfc_chainon_list (tmp, integer_zero_node); tmp = gfc_build_function_call (gfor_fndecl_deallocate, tmp); gfc_add_expr_to_block (&block, tmp); return gfc_finish_block (&block); } /* Create an array constructor from an initialization expression. We assume the frontend already did any expansions and conversions. */ tree gfc_conv_array_initializer (tree type, gfc_expr * expr) { gfc_constructor *c; tree list; tree tmp; mpz_t maxval; gfc_se se; HOST_WIDE_INT hi; unsigned HOST_WIDE_INT lo; tree index, range; list = NULL_TREE; switch (expr->expr_type) { case EXPR_CONSTANT: case EXPR_STRUCTURE: /* A single scalar or derived type value. Create an array with all elements equal to that value. */ gfc_init_se (&se, NULL); if (expr->expr_type == EXPR_CONSTANT) gfc_conv_constant (&se, expr); else gfc_conv_structure (&se, expr, 1); tmp = TYPE_MAX_VALUE (TYPE_DOMAIN (type)); gcc_assert (tmp && INTEGER_CST_P (tmp)); hi = TREE_INT_CST_HIGH (tmp); lo = TREE_INT_CST_LOW (tmp); lo++; if (lo == 0) hi++; /* This will probably eat buckets of memory for large arrays. */ while (hi != 0 || lo != 0) { list = tree_cons (NULL_TREE, se.expr, list); if (lo == 0) hi--; lo--; } break; case EXPR_ARRAY: /* Create a list of all the elements. */ for (c = expr->value.constructor; c; c = c->next) { if (c->iterator) { /* Problems occur when we get something like integer :: a(lots) = (/(i, i=1,lots)/) */ /* TODO: Unexpanded array initializers. */ internal_error ("Possible frontend bug: array constructor not expanded"); } if (mpz_cmp_si (c->n.offset, 0) != 0) index = gfc_conv_mpz_to_tree (c->n.offset, gfc_index_integer_kind); else index = NULL_TREE; mpz_init (maxval); if (mpz_cmp_si (c->repeat, 0) != 0) { tree tmp1, tmp2; mpz_set (maxval, c->repeat); mpz_add (maxval, c->n.offset, maxval); mpz_sub_ui (maxval, maxval, 1); tmp2 = gfc_conv_mpz_to_tree (maxval, gfc_index_integer_kind); if (mpz_cmp_si (c->n.offset, 0) != 0) { mpz_add_ui (maxval, c->n.offset, 1); tmp1 = gfc_conv_mpz_to_tree (maxval, gfc_index_integer_kind); } else tmp1 = gfc_conv_mpz_to_tree (c->n.offset, gfc_index_integer_kind); range = build2 (RANGE_EXPR, integer_type_node, tmp1, tmp2); } else range = NULL; mpz_clear (maxval); gfc_init_se (&se, NULL); switch (c->expr->expr_type) { case EXPR_CONSTANT: gfc_conv_constant (&se, c->expr); if (range == NULL_TREE) list = tree_cons (index, se.expr, list); else { if (index != NULL_TREE) list = tree_cons (index, se.expr, list); list = tree_cons (range, se.expr, list); } break; case EXPR_STRUCTURE: gfc_conv_structure (&se, c->expr, 1); list = tree_cons (index, se.expr, list); break; default: gcc_unreachable (); } } /* We created the list in reverse order. */ list = nreverse (list); break; default: gcc_unreachable (); } /* Create a constructor from the list of elements. */ tmp = build1 (CONSTRUCTOR, type, list); TREE_CONSTANT (tmp) = 1; TREE_INVARIANT (tmp) = 1; return tmp; } /* Generate code to evaluate non-constant array bounds. Sets *poffset and returns the size (in elements) of the array. */ static tree gfc_trans_array_bounds (tree type, gfc_symbol * sym, tree * poffset, stmtblock_t * pblock) { gfc_array_spec *as; tree size; tree stride; tree offset; tree ubound; tree lbound; tree tmp; gfc_se se; int dim; as = sym->as; size = gfc_index_one_node; offset = gfc_index_zero_node; for (dim = 0; dim < as->rank; dim++) { /* Evaluate non-constant array bound expressions. */ lbound = GFC_TYPE_ARRAY_LBOUND (type, dim); if (as->lower[dim] && !INTEGER_CST_P (lbound)) { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, as->lower[dim], gfc_array_index_type); gfc_add_block_to_block (pblock, &se.pre); gfc_add_modify_expr (pblock, lbound, se.expr); } ubound = GFC_TYPE_ARRAY_UBOUND (type, dim); if (as->upper[dim] && !INTEGER_CST_P (ubound)) { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, as->upper[dim], gfc_array_index_type); gfc_add_block_to_block (pblock, &se.pre); gfc_add_modify_expr (pblock, ubound, se.expr); } /* The offset of this dimension. offset = offset - lbound * stride. */ tmp = fold (build2 (MULT_EXPR, gfc_array_index_type, lbound, size)); offset = fold (build2 (MINUS_EXPR, gfc_array_index_type, offset, tmp)); /* The size of this dimension, and the stride of the next. */ if (dim + 1 < as->rank) stride = GFC_TYPE_ARRAY_STRIDE (type, dim + 1); else stride = NULL_TREE; if (ubound != NULL_TREE && !(stride && INTEGER_CST_P (stride))) { /* Calculate stride = size * (ubound + 1 - lbound). */ tmp = fold (build2 (MINUS_EXPR, gfc_array_index_type, gfc_index_one_node, lbound)); tmp = fold (build2 (PLUS_EXPR, gfc_array_index_type, ubound, tmp)); tmp = fold (build2 (MULT_EXPR, gfc_array_index_type, size, tmp)); if (stride) gfc_add_modify_expr (pblock, stride, tmp); else stride = gfc_evaluate_now (tmp, pblock); } size = stride; } *poffset = offset; return size; } /* Generate code to initialize/allocate an array variable. */ tree gfc_trans_auto_array_allocation (tree decl, gfc_symbol * sym, tree fnbody) { stmtblock_t block; tree type; tree tmp; tree fndecl; tree size; tree offset; bool onstack; gcc_assert (!(sym->attr.pointer || sym->attr.allocatable)); /* Do nothing for USEd variables. */ if (sym->attr.use_assoc) return fnbody; type = TREE_TYPE (decl); gcc_assert (GFC_ARRAY_TYPE_P (type)); onstack = TREE_CODE (type) != POINTER_TYPE; gfc_start_block (&block); /* Evaluate character string length. */ if (sym->ts.type == BT_CHARACTER && onstack && !INTEGER_CST_P (sym->ts.cl->backend_decl)) { gfc_trans_init_string_length (sym->ts.cl, &block); /* Emit a DECL_EXPR for this variable, which will cause the gimplifier to allocate storage, and all that good stuff. */ tmp = build1 (DECL_EXPR, TREE_TYPE (decl), decl); gfc_add_expr_to_block (&block, tmp); } if (onstack) { gfc_add_expr_to_block (&block, fnbody); return gfc_finish_block (&block); } type = TREE_TYPE (type); gcc_assert (!sym->attr.use_assoc); gcc_assert (!TREE_STATIC (decl)); gcc_assert (!sym->module); if (sym->ts.type == BT_CHARACTER && !INTEGER_CST_P (sym->ts.cl->backend_decl)) gfc_trans_init_string_length (sym->ts.cl, &block); size = gfc_trans_array_bounds (type, sym, &offset, &block); /* The size is the number of elements in the array, so multiply by the size of an element to get the total size. */ tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type)); size = fold (build2 (MULT_EXPR, gfc_array_index_type, size, tmp)); /* Allocate memory to hold the data. */ tmp = gfc_chainon_list (NULL_TREE, size); if (gfc_index_integer_kind == 4) fndecl = gfor_fndecl_internal_malloc; else if (gfc_index_integer_kind == 8) fndecl = gfor_fndecl_internal_malloc64; else gcc_unreachable (); tmp = gfc_build_function_call (fndecl, tmp); tmp = fold (convert (TREE_TYPE (decl), tmp)); gfc_add_modify_expr (&block, decl, tmp); /* Set offset of the array. */ if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL) gfc_add_modify_expr (&block, GFC_TYPE_ARRAY_OFFSET (type), offset); /* Automatic arrays should not have initializers. */ gcc_assert (!sym->value); gfc_add_expr_to_block (&block, fnbody); /* Free the temporary. */ tmp = convert (pvoid_type_node, decl); tmp = gfc_chainon_list (NULL_TREE, tmp); tmp = gfc_build_function_call (gfor_fndecl_internal_free, tmp); gfc_add_expr_to_block (&block, tmp); return gfc_finish_block (&block); } /* Generate entry and exit code for g77 calling convention arrays. */ tree gfc_trans_g77_array (gfc_symbol * sym, tree body) { tree parm; tree type; locus loc; tree offset; tree tmp; stmtblock_t block; gfc_get_backend_locus (&loc); gfc_set_backend_locus (&sym->declared_at); /* Descriptor type. */ parm = sym->backend_decl; type = TREE_TYPE (parm); gcc_assert (GFC_ARRAY_TYPE_P (type)); gfc_start_block (&block); if (sym->ts.type == BT_CHARACTER && TREE_CODE (sym->ts.cl->backend_decl) == VAR_DECL) gfc_trans_init_string_length (sym->ts.cl, &block); /* Evaluate the bounds of the array. */ gfc_trans_array_bounds (type, sym, &offset, &block); /* Set the offset. */ if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL) gfc_add_modify_expr (&block, GFC_TYPE_ARRAY_OFFSET (type), offset); /* Set the pointer itself if we aren't using the parameter directly. */ if (TREE_CODE (parm) != PARM_DECL) { tmp = convert (TREE_TYPE (parm), GFC_DECL_SAVED_DESCRIPTOR (parm)); gfc_add_modify_expr (&block, parm, tmp); } tmp = gfc_finish_block (&block); gfc_set_backend_locus (&loc); gfc_start_block (&block); /* Add the initialization code to the start of the function. */ gfc_add_expr_to_block (&block, tmp); gfc_add_expr_to_block (&block, body); return gfc_finish_block (&block); } /* Modify the descriptor of an array parameter so that it has the correct lower bound. Also move the upper bound accordingly. If the array is not packed, it will be copied into a temporary. For each dimension we set the new lower and upper bounds. Then we copy the stride and calculate the offset for this dimension. We also work out what the stride of a packed array would be, and see it the two match. If the array need repacking, we set the stride to the values we just calculated, recalculate the offset and copy the array data. Code is also added to copy the data back at the end of the function. */ tree gfc_trans_dummy_array_bias (gfc_symbol * sym, tree tmpdesc, tree body) { tree size; tree type; tree offset; locus loc; stmtblock_t block; stmtblock_t cleanup; tree lbound; tree ubound; tree dubound; tree dlbound; tree dumdesc; tree tmp; tree stmt; tree stride; tree stmt_packed; tree stmt_unpacked; tree partial; gfc_se se; int n; int checkparm; int no_repack; bool optional_arg; /* Do nothing for pointer and allocatable arrays. */ if (sym->attr.pointer || sym->attr.allocatable) return body; if (sym->attr.dummy && gfc_is_nodesc_array (sym)) return gfc_trans_g77_array (sym, body); gfc_get_backend_locus (&loc); gfc_set_backend_locus (&sym->declared_at); /* Descriptor type. */ type = TREE_TYPE (tmpdesc); gcc_assert (GFC_ARRAY_TYPE_P (type)); dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc); dumdesc = gfc_build_indirect_ref (dumdesc); gfc_start_block (&block); if (sym->ts.type == BT_CHARACTER && TREE_CODE (sym->ts.cl->backend_decl) == VAR_DECL) gfc_trans_init_string_length (sym->ts.cl, &block); checkparm = (sym->as->type == AS_EXPLICIT && flag_bounds_check); no_repack = !(GFC_DECL_PACKED_ARRAY (tmpdesc) || GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc)); if (GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc)) { /* For non-constant shape arrays we only check if the first dimension is contiguous. Repacking higher dimensions wouldn't gain us anything as we still don't know the array stride. */ partial = gfc_create_var (boolean_type_node, "partial"); TREE_USED (partial) = 1; tmp = gfc_conv_descriptor_stride (dumdesc, gfc_rank_cst[0]); tmp = fold (build2 (EQ_EXPR, boolean_type_node, tmp, integer_one_node)); gfc_add_modify_expr (&block, partial, tmp); } else { partial = NULL_TREE; } /* The naming of stmt_unpacked and stmt_packed may be counter-intuitive here, however I think it does the right thing. */ if (no_repack) { /* Set the first stride. */ stride = gfc_conv_descriptor_stride (dumdesc, gfc_rank_cst[0]); stride = gfc_evaluate_now (stride, &block); tmp = build2 (EQ_EXPR, boolean_type_node, stride, integer_zero_node); tmp = build3 (COND_EXPR, gfc_array_index_type, tmp, gfc_index_one_node, stride); stride = GFC_TYPE_ARRAY_STRIDE (type, 0); gfc_add_modify_expr (&block, stride, tmp); /* Allow the user to disable array repacking. */ stmt_unpacked = NULL_TREE; } else { gcc_assert (integer_onep (GFC_TYPE_ARRAY_STRIDE (type, 0))); /* A library call to repack the array if necessary. */ tmp = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc); tmp = gfc_chainon_list (NULL_TREE, tmp); stmt_unpacked = gfc_build_function_call (gfor_fndecl_in_pack, tmp); stride = gfc_index_one_node; } /* This is for the case where the array data is used directly without calling the repack function. */ if (no_repack || partial != NULL_TREE) stmt_packed = gfc_conv_descriptor_data (dumdesc); else stmt_packed = NULL_TREE; /* Assign the data pointer. */ if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE) { /* Don't repack unknown shape arrays when the first stride is 1. */ tmp = build3 (COND_EXPR, TREE_TYPE (stmt_packed), partial, stmt_packed, stmt_unpacked); } else tmp = stmt_packed != NULL_TREE ? stmt_packed : stmt_unpacked; gfc_add_modify_expr (&block, tmpdesc, fold_convert (type, tmp)); offset = gfc_index_zero_node; size = gfc_index_one_node; /* Evaluate the bounds of the array. */ for (n = 0; n < sym->as->rank; n++) { if (checkparm || !sym->as->upper[n]) { /* Get the bounds of the actual parameter. */ dubound = gfc_conv_descriptor_ubound (dumdesc, gfc_rank_cst[n]); dlbound = gfc_conv_descriptor_lbound (dumdesc, gfc_rank_cst[n]); } else { dubound = NULL_TREE; dlbound = NULL_TREE; } lbound = GFC_TYPE_ARRAY_LBOUND (type, n); if (!INTEGER_CST_P (lbound)) { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, sym->as->upper[n], gfc_array_index_type); gfc_add_block_to_block (&block, &se.pre); gfc_add_modify_expr (&block, lbound, se.expr); } ubound = GFC_TYPE_ARRAY_UBOUND (type, n); /* Set the desired upper bound. */ if (sym->as->upper[n]) { /* We know what we want the upper bound to be. */ if (!INTEGER_CST_P (ubound)) { gfc_init_se (&se, NULL); gfc_conv_expr_type (&se, sym->as->upper[n], gfc_array_index_type); gfc_add_block_to_block (&block, &se.pre); gfc_add_modify_expr (&block, ubound, se.expr); } /* Check the sizes match. */ if (checkparm) { /* Check (ubound(a) - lbound(a) == ubound(b) - lbound(b)). */ tmp = fold (build2 (MINUS_EXPR, gfc_array_index_type, ubound, lbound)); stride = build2 (MINUS_EXPR, gfc_array_index_type, dubound, dlbound); tmp = fold (build2 (NE_EXPR, gfc_array_index_type, tmp, stride)); gfc_trans_runtime_check (tmp, gfc_strconst_bounds, &block); } } else { /* For assumed shape arrays move the upper bound by the same amount as the lower bound. */ tmp = build2 (MINUS_EXPR, gfc_array_index_type, dubound, dlbound); tmp = fold (build2 (PLUS_EXPR, gfc_array_index_type, tmp, lbound)); gfc_add_modify_expr (&block, ubound, tmp); } /* The offset of this dimension. offset = offset - lbound * stride. */ tmp = fold (build2 (MULT_EXPR, gfc_array_index_type, lbound, stride)); offset = fold (build2 (MINUS_EXPR, gfc_array_index_type, offset, tmp)); /* The size of this dimension, and the stride of the next. */ if (n + 1 < sym->as->rank) { stride = GFC_TYPE_ARRAY_STRIDE (type, n + 1); if (no_repack || partial != NULL_TREE) { stmt_unpacked = gfc_conv_descriptor_stride (dumdesc, gfc_rank_cst[n+1]); } /* Figure out the stride if not a known constant. */ if (!INTEGER_CST_P (stride)) { if (no_repack) stmt_packed = NULL_TREE; else { /* Calculate stride = size * (ubound + 1 - lbound). */ tmp = fold (build2 (MINUS_EXPR, gfc_array_index_type, gfc_index_one_node, lbound)); tmp = fold (build2 (PLUS_EXPR, gfc_array_index_type, ubound, tmp)); size = fold (build2 (MULT_EXPR, gfc_array_index_type, size, tmp)); stmt_packed = size; } /* Assign the stride. */ if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE) tmp = build3 (COND_EXPR, gfc_array_index_type, partial, stmt_unpacked, stmt_packed); else tmp = (stmt_packed != NULL_TREE) ? stmt_packed : stmt_unpacked; gfc_add_modify_expr (&block, stride, tmp); } } } /* Set the offset. */ if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL) gfc_add_modify_expr (&block, GFC_TYPE_ARRAY_OFFSET (type), offset); stmt = gfc_finish_block (&block); gfc_start_block (&block); /* Only do the entry/initialization code if the arg is present. */ dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc); optional_arg = sym->attr.optional || sym->ns->proc_name->attr.entry_master; if (optional_arg) { tmp = gfc_conv_expr_present (sym); stmt = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt ()); } gfc_add_expr_to_block (&block, stmt); /* Add the main function body. */ gfc_add_expr_to_block (&block, body); /* Cleanup code. */ if (!no_repack) { gfc_start_block (&cleanup); if (sym->attr.intent != INTENT_IN) { /* Copy the data back. */ tmp = gfc_chainon_list (NULL_TREE, dumdesc); tmp = gfc_chainon_list (tmp, tmpdesc); tmp = gfc_build_function_call (gfor_fndecl_in_unpack, tmp); gfc_add_expr_to_block (&cleanup, tmp); } /* Free the temporary. */ tmp = gfc_chainon_list (NULL_TREE, tmpdesc); tmp = gfc_build_function_call (gfor_fndecl_internal_free, tmp); gfc_add_expr_to_block (&cleanup, tmp); stmt = gfc_finish_block (&cleanup); /* Only do the cleanup if the array was repacked. */ tmp = gfc_build_indirect_ref (dumdesc); tmp = gfc_conv_descriptor_data (tmp); tmp = build2 (NE_EXPR, boolean_type_node, tmp, tmpdesc); stmt = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt ()); if (optional_arg) { tmp = gfc_conv_expr_present (sym); stmt = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt ()); } gfc_add_expr_to_block (&block, stmt); } /* We don't need to free any memory allocated by internal_pack as it will be freed at the end of the function by pop_context. */ return gfc_finish_block (&block); } /* Convert an array for passing as an actual parameter. Expressions and vector subscripts are evaluated and stored in a temporary, which is then passed. For whole arrays the descriptor is passed. For array sections a modified copy of the descriptor is passed, but using the original data. Also used for array pointer assignments by setting se->direct_byref. */ void gfc_conv_expr_descriptor (gfc_se * se, gfc_expr * expr, gfc_ss * ss) { gfc_loopinfo loop; gfc_ss *secss; gfc_ss_info *info; int need_tmp; int n; tree tmp; tree desc; stmtblock_t block; tree start; tree offset; int full; gfc_ss *vss; gfc_ref *ref; gcc_assert (ss != gfc_ss_terminator); /* TODO: Pass constant array constructors without a temporary. */ /* Special case things we know we can pass easily. */ switch (expr->expr_type) { case EXPR_VARIABLE: /* If we have a linear array section, we can pass it directly. Otherwise we need to copy it into a temporary. */ /* Find the SS for the array section. */ secss = ss; while (secss != gfc_ss_terminator && secss->type != GFC_SS_SECTION) secss = secss->next; gcc_assert (secss != gfc_ss_terminator); need_tmp = 0; for (n = 0; n < secss->data.info.dimen; n++) { vss = secss->data.info.subscript[secss->data.info.dim[n]]; if (vss && vss->type == GFC_SS_VECTOR) need_tmp = 1; } info = &secss->data.info; /* Get the descriptor for the array. */ gfc_conv_ss_descriptor (&se->pre, secss, 0); desc = info->descriptor; if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc))) { /* Create a new descriptor if the array doesn't have one. */ full = 0; } else if (info->ref->u.ar.type == AR_FULL) full = 1; else if (se->direct_byref) full = 0; else { ref = info->ref; gcc_assert (ref->u.ar.type == AR_SECTION); full = 1; for (n = 0; n < ref->u.ar.dimen; n++) { /* Detect passing the full array as a section. This could do even more checking, but it doesn't seem worth it. */ if (ref->u.ar.start[n] || ref->u.ar.end[n] || (ref->u.ar.stride[n] && !gfc_expr_is_one (ref->u.ar.stride[n], 0))) { full = 0; break; } } } /* Check for substring references. */ ref = expr->ref; if (!need_tmp && ref && expr->ts.type == BT_CHARACTER) { while (ref->next) ref = ref->next; if (ref->type == REF_SUBSTRING) { /* In general character substrings need a copy. Character array strides are expressed as multiples of the element size (consistent with other array types), not in characters. */ full = 0; need_tmp = 1; } } if (full) { if (se->direct_byref) { /* Copy the descriptor for pointer assignments. */ gfc_add_modify_expr (&se->pre, se->expr, desc); } else if (se->want_pointer) { /* We pass full arrays directly. This means that pointers and allocatable arrays should also work. */ se->expr = gfc_build_addr_expr (NULL_TREE, desc); } else { se->expr = desc; } if (expr->ts.type == BT_CHARACTER) se->string_length = gfc_get_expr_charlen (expr); return; } break; case EXPR_FUNCTION: /* A transformational function return value will be a temporary array descriptor. We still need to go through the scalarizer to create the descriptor. Elemental functions ar handled as arbitrary expressions, i.e. copy to a temporary. */ secss = ss; /* Look for the SS for this function. */ while (secss != gfc_ss_terminator && (secss->type != GFC_SS_FUNCTION || secss->expr != expr)) secss = secss->next; if (se->direct_byref) { gcc_assert (secss != gfc_ss_terminator); /* For pointer assignments pass the descriptor directly. */ se->ss = secss; se->expr = gfc_build_addr_expr (NULL, se->expr); gfc_conv_expr (se, expr); return; } if (secss == gfc_ss_terminator) { /* Elemental function. */ need_tmp = 1; info = NULL; } else { /* Transformational function. */ info = &secss->data.info; need_tmp = 0; } break; default: /* Something complicated. Copy it into a temporary. */ need_tmp = 1; secss = NULL; info = NULL; break; } gfc_init_loopinfo (&loop); /* Associate the SS with the loop. */ gfc_add_ss_to_loop (&loop, ss); /* Tell the scalarizer not to bother creating loop variables, etc. */ if (!need_tmp) loop.array_parameter = 1; else gcc_assert (se->want_pointer && !se->direct_byref); /* Setup the scalarizing loops and bounds. */ gfc_conv_ss_startstride (&loop); if (need_tmp) { /* Tell the scalarizer to make a temporary. */ loop.temp_ss = gfc_get_ss (); loop.temp_ss->type = GFC_SS_TEMP; loop.temp_ss->next = gfc_ss_terminator; loop.temp_ss->data.temp.type = gfc_typenode_for_spec (&expr->ts); /* ... which can hold our string, if present. */ if (expr->ts.type == BT_CHARACTER) se->string_length = loop.temp_ss->string_length = TYPE_SIZE_UNIT (loop.temp_ss->data.temp.type); else loop.temp_ss->string_length = NULL; loop.temp_ss->data.temp.dimen = loop.dimen; gfc_add_ss_to_loop (&loop, loop.temp_ss); } gfc_conv_loop_setup (&loop); if (need_tmp) { /* Copy into a temporary and pass that. We don't need to copy the data back because expressions and vector subscripts must be INTENT_IN. */ /* TODO: Optimize passing function return values. */ gfc_se lse; gfc_se rse; /* Start the copying loops. */ gfc_mark_ss_chain_used (loop.temp_ss, 1); gfc_mark_ss_chain_used (ss, 1); gfc_start_scalarized_body (&loop, &block); /* Copy each data element. */ gfc_init_se (&lse, NULL); gfc_copy_loopinfo_to_se (&lse, &loop); gfc_init_se (&rse, NULL); gfc_copy_loopinfo_to_se (&rse, &loop); lse.ss = loop.temp_ss; rse.ss = ss; gfc_conv_scalarized_array_ref (&lse, NULL); gfc_conv_expr_val (&rse, expr); gfc_add_block_to_block (&block, &rse.pre); gfc_add_block_to_block (&block, &lse.pre); gfc_add_modify_expr (&block, lse.expr, rse.expr); /* Finish the copying loops. */ gfc_trans_scalarizing_loops (&loop, &block); /* Set the first stride component to zero to indicate a temporary. */ desc = loop.temp_ss->data.info.descriptor; tmp = gfc_conv_descriptor_stride (desc, gfc_rank_cst[0]); gfc_add_modify_expr (&loop.pre, tmp, gfc_index_zero_node); gcc_assert (is_gimple_lvalue (desc)); se->expr = gfc_build_addr_expr (NULL, desc); } else if (expr->expr_type == EXPR_FUNCTION) { desc = info->descriptor; if (se->want_pointer) se->expr = gfc_build_addr_expr (NULL_TREE, desc); else se->expr = desc; if (expr->ts.type == BT_CHARACTER) se->string_length = expr->symtree->n.sym->ts.cl->backend_decl; } else { /* We pass sections without copying to a temporary. Make a new descriptor and point it at the section we want. The loop variable limits will be the limits of the section. A function may decide to repack the array to speed up access, but we're not bothered about that here. */ int dim; tree parm; tree parmtype; tree stride; tree from; tree to; tree base; /* Set the string_length for a character array. */ if (expr->ts.type == BT_CHARACTER) se->string_length = gfc_get_expr_charlen (expr); desc = info->descriptor; gcc_assert (secss && secss != gfc_ss_terminator); if (se->direct_byref) { /* For pointer assignments we fill in the destination. */ parm = se->expr; parmtype = TREE_TYPE (parm); } else { /* Otherwise make a new one. */ parmtype = gfc_get_element_type (TREE_TYPE (desc)); parmtype = gfc_get_array_type_bounds (parmtype, loop.dimen, loop.from, loop.to, 0); parm = gfc_create_var (parmtype, "parm"); } offset = gfc_index_zero_node; dim = 0; /* The following can be somewhat confusing. We have two descriptors, a new one and the original array. {parm, parmtype, dim} refer to the new one. {desc, type, n, secss, loop} refer to the original, which maybe a descriptorless array. The bounds of the scalarization are the bounds of the section. We don't have to worry about numeric overflows when calculating the offsets because all elements are within the array data. */ /* Set the dtype. */ tmp = gfc_conv_descriptor_dtype (parm); gfc_add_modify_expr (&loop.pre, tmp, gfc_get_dtype (parmtype)); if (se->direct_byref) base = gfc_index_zero_node; else base = NULL_TREE; for (n = 0; n < info->ref->u.ar.dimen; n++) { stride = gfc_conv_array_stride (desc, n); /* Work out the offset. */ if (info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT) { gcc_assert (info->subscript[n] && info->subscript[n]->type == GFC_SS_SCALAR); start = info->subscript[n]->data.scalar.expr; } else { /* Check we haven't somehow got out of sync. */ gcc_assert (info->dim[dim] == n); /* Evaluate and remember the start of the section. */ start = info->start[dim]; stride = gfc_evaluate_now (stride, &loop.pre); } tmp = gfc_conv_array_lbound (desc, n); tmp = fold (build2 (MINUS_EXPR, TREE_TYPE (tmp), start, tmp)); tmp = fold (build2 (MULT_EXPR, TREE_TYPE (tmp), tmp, stride)); offset = fold (build2 (PLUS_EXPR, TREE_TYPE (tmp), offset, tmp)); if (info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT) { /* For elemental dimensions, we only need the offset. */ continue; } /* Vector subscripts need copying and are handled elsewhere. */ gcc_assert (info->ref->u.ar.dimen_type[n] == DIMEN_RANGE); /* Set the new lower bound. */ from = loop.from[dim]; to = loop.to[dim]; if (!integer_onep (from)) { /* Make sure the new section starts at 1. */ tmp = fold (build2 (MINUS_EXPR, gfc_array_index_type, gfc_index_one_node, from)); to = fold (build2 (PLUS_EXPR, gfc_array_index_type, to, tmp)); from = gfc_index_one_node; } tmp = gfc_conv_descriptor_lbound (parm, gfc_rank_cst[dim]); gfc_add_modify_expr (&loop.pre, tmp, from); /* Set the new upper bound. */ tmp = gfc_conv_descriptor_ubound (parm, gfc_rank_cst[dim]); gfc_add_modify_expr (&loop.pre, tmp, to); /* Multiply the stride by the section stride to get the total stride. */ stride = fold (build2 (MULT_EXPR, gfc_array_index_type, stride, info->stride[dim])); if (se->direct_byref) base = fold (build2 (MINUS_EXPR, TREE_TYPE (base), base, stride)); /* Store the new stride. */ tmp = gfc_conv_descriptor_stride (parm, gfc_rank_cst[dim]); gfc_add_modify_expr (&loop.pre, tmp, stride); dim++; } /* Point the data pointer at the first element in the section. */ tmp = gfc_conv_array_data (desc); tmp = gfc_build_indirect_ref (tmp); tmp = gfc_build_array_ref (tmp, offset); offset = gfc_build_addr_expr (gfc_array_dataptr_type (desc), tmp); tmp = gfc_conv_descriptor_data (parm); gfc_add_modify_expr (&loop.pre, tmp, fold_convert (TREE_TYPE (tmp), offset)); if (se->direct_byref) { /* Set the offset. */ tmp = gfc_conv_descriptor_offset (parm); gfc_add_modify_expr (&loop.pre, tmp, base); } else { /* Only the callee knows what the correct offset it, so just set it to zero here. */ tmp = gfc_conv_descriptor_offset (parm); gfc_add_modify_expr (&loop.pre, tmp, gfc_index_zero_node); } if (!se->direct_byref) { /* Get a pointer to the new descriptor. */ if (se->want_pointer) se->expr = gfc_build_addr_expr (NULL, parm); else se->expr = parm; } } gfc_add_block_to_block (&se->pre, &loop.pre); gfc_add_block_to_block (&se->post, &loop.post); /* Cleanup the scalarizer. */ gfc_cleanup_loop (&loop); } /* Convert an array for passing as an actual parameter. */ /* TODO: Optimize passing g77 arrays. */ void gfc_conv_array_parameter (gfc_se * se, gfc_expr * expr, gfc_ss * ss, int g77) { tree ptr; tree desc; tree tmp; tree stmt; gfc_symbol *sym; stmtblock_t block; /* Passing address of the array if it is not pointer or assumed-shape. */ if (expr->expr_type == EXPR_VARIABLE && expr->ref->u.ar.type == AR_FULL && g77) { sym = expr->symtree->n.sym; tmp = gfc_get_symbol_decl (sym); if (sym->ts.type == BT_CHARACTER) se->string_length = sym->ts.cl->backend_decl; if (!sym->attr.pointer && sym->as->type != AS_ASSUMED_SHAPE && !sym->attr.allocatable) { /* Some variables are declared directly, others are declared as pointers and allocated on the heap. */ if (sym->attr.dummy || POINTER_TYPE_P (TREE_TYPE (tmp))) se->expr = tmp; else se->expr = gfc_build_addr_expr (NULL, tmp); return; } if (sym->attr.allocatable) { se->expr = gfc_conv_array_data (tmp); return; } } se->want_pointer = 1; gfc_conv_expr_descriptor (se, expr, ss); if (g77) { desc = se->expr; /* Repack the array. */ tmp = gfc_chainon_list (NULL_TREE, desc); ptr = gfc_build_function_call (gfor_fndecl_in_pack, tmp); ptr = gfc_evaluate_now (ptr, &se->pre); se->expr = ptr; gfc_start_block (&block); /* Copy the data back. */ tmp = gfc_chainon_list (NULL_TREE, desc); tmp = gfc_chainon_list (tmp, ptr); tmp = gfc_build_function_call (gfor_fndecl_in_unpack, tmp); gfc_add_expr_to_block (&block, tmp); /* Free the temporary. */ tmp = convert (pvoid_type_node, ptr); tmp = gfc_chainon_list (NULL_TREE, tmp); tmp = gfc_build_function_call (gfor_fndecl_internal_free, tmp); gfc_add_expr_to_block (&block, tmp); stmt = gfc_finish_block (&block); gfc_init_block (&block); /* Only if it was repacked. This code needs to be executed before the loop cleanup code. */ tmp = gfc_build_indirect_ref (desc); tmp = gfc_conv_array_data (tmp); tmp = build2 (NE_EXPR, boolean_type_node, ptr, tmp); tmp = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt ()); gfc_add_expr_to_block (&block, tmp); gfc_add_block_to_block (&block, &se->post); gfc_init_block (&se->post); gfc_add_block_to_block (&se->post, &block); } } /* NULLIFY an allocated/pointer array on function entry, free it on exit. */ tree gfc_trans_deferred_array (gfc_symbol * sym, tree body) { tree type; tree tmp; tree descriptor; tree deallocate; stmtblock_t block; stmtblock_t fnblock; locus loc; /* Make sure the frontend gets these right. */ if (!(sym->attr.pointer || sym->attr.allocatable)) fatal_error ("Possible frontend bug: Deferred array size without pointer or allocatable attribute."); gfc_init_block (&fnblock); gcc_assert (TREE_CODE (sym->backend_decl) == VAR_DECL); if (sym->ts.type == BT_CHARACTER && !INTEGER_CST_P (sym->ts.cl->backend_decl)) gfc_trans_init_string_length (sym->ts.cl, &fnblock); /* Parameter and use associated variables don't need anything special. */ if (sym->attr.dummy || sym->attr.use_assoc) { gfc_add_expr_to_block (&fnblock, body); return gfc_finish_block (&fnblock); } gfc_get_backend_locus (&loc); gfc_set_backend_locus (&sym->declared_at); descriptor = sym->backend_decl; if (TREE_STATIC (descriptor)) { /* SAVEd variables are not freed on exit. */ gfc_trans_static_array_pointer (sym); return body; } /* Get the descriptor type. */ type = TREE_TYPE (sym->backend_decl); gcc_assert (GFC_DESCRIPTOR_TYPE_P (type)); /* NULLIFY the data pointer. */ tmp = gfc_conv_descriptor_data (descriptor); gfc_add_modify_expr (&fnblock, tmp, convert (TREE_TYPE (tmp), integer_zero_node)); gfc_add_expr_to_block (&fnblock, body); gfc_set_backend_locus (&loc); /* Allocatable arrays need to be freed when they go out of scope. */ if (sym->attr.allocatable) { gfc_start_block (&block); /* Deallocate if still allocated at the end of the procedure. */ deallocate = gfc_array_deallocate (descriptor); tmp = gfc_conv_descriptor_data (descriptor); tmp = build2 (NE_EXPR, boolean_type_node, tmp, integer_zero_node); tmp = build3_v (COND_EXPR, tmp, deallocate, build_empty_stmt ()); gfc_add_expr_to_block (&block, tmp); tmp = gfc_finish_block (&block); gfc_add_expr_to_block (&fnblock, tmp); } return gfc_finish_block (&fnblock); } /************ Expression Walking Functions ******************/ /* Walk a variable reference. Possible extension - multiple component subscripts. x(:,:) = foo%a(:)%b(:) Transforms to forall (i=..., j=...) x(i,j) = foo%a(j)%b(i) end forall This adds a fair amout of complexity because you need to deal with more than one ref. Maybe handle in a similar manner to vector subscripts. Maybe not worth the effort. */ static gfc_ss * gfc_walk_variable_expr (gfc_ss * ss, gfc_expr * expr) { gfc_ref *ref; gfc_array_ref *ar; gfc_ss *newss; gfc_ss *head; int n; for (ref = expr->ref; ref; ref = ref->next) { /* We're only interested in array sections. */ if (ref->type != REF_ARRAY) continue; ar = &ref->u.ar; switch (ar->type) { case AR_ELEMENT: /* TODO: Take elemental array references out of scalarization loop. */ break; case AR_FULL: newss = gfc_get_ss (); newss->type = GFC_SS_SECTION; newss->expr = expr; newss->next = ss; newss->data.info.dimen = ar->as->rank; newss->data.info.ref = ref; /* Make sure array is the same as array(:,:), this way we don't need to special case all the time. */ ar->dimen = ar->as->rank; for (n = 0; n < ar->dimen; n++) { newss->data.info.dim[n] = n; ar->dimen_type[n] = DIMEN_RANGE; gcc_assert (ar->start[n] == NULL); gcc_assert (ar->end[n] == NULL); gcc_assert (ar->stride[n] == NULL); } return newss; case AR_SECTION: newss = gfc_get_ss (); newss->type = GFC_SS_SECTION; newss->expr = expr; newss->next = ss; newss->data.info.dimen = 0; newss->data.info.ref = ref; head = newss; /* We add SS chains for all the subscripts in the section. */ for (n = 0; n < ar->dimen; n++) { gfc_ss *indexss; switch (ar->dimen_type[n]) { case DIMEN_ELEMENT: /* Add SS for elemental (scalar) subscripts. */ gcc_assert (ar->start[n]); indexss = gfc_get_ss (); indexss->type = GFC_SS_SCALAR; indexss->expr = ar->start[n]; indexss->next = gfc_ss_terminator; indexss->loop_chain = gfc_ss_terminator; newss->data.info.subscript[n] = indexss; break; case DIMEN_RANGE: /* We don't add anything for sections, just remember this dimension for later. */ newss->data.info.dim[newss->data.info.dimen] = n; newss->data.info.dimen++; break; case DIMEN_VECTOR: /* Get a SS for the vector. This will not be added to the chain directly. */ indexss = gfc_walk_expr (ar->start[n]); if (indexss == gfc_ss_terminator) internal_error ("scalar vector subscript???"); /* We currently only handle really simple vector subscripts. */ if (indexss->next != gfc_ss_terminator) gfc_todo_error ("vector subscript expressions"); indexss->loop_chain = gfc_ss_terminator; /* Mark this as a vector subscript. We don't add this directly into the chain, but as a subscript of the existing SS for this term. */ indexss->type = GFC_SS_VECTOR; newss->data.info.subscript[n] = indexss; /* Also remember this dimension. */ newss->data.info.dim[newss->data.info.dimen] = n; newss->data.info.dimen++; break; default: /* We should know what sort of section it is by now. */ gcc_unreachable (); } } /* We should have at least one non-elemental dimension. */ gcc_assert (newss->data.info.dimen > 0); return head; break; default: /* We should know what sort of section it is by now. */ gcc_unreachable (); } } return ss; } /* Walk an expression operator. If only one operand of a binary expression is scalar, we must also add the scalar term to the SS chain. */ static gfc_ss * gfc_walk_op_expr (gfc_ss * ss, gfc_expr * expr) { gfc_ss *head; gfc_ss *head2; gfc_ss *newss; head = gfc_walk_subexpr (ss, expr->value.op.op1); if (expr->value.op.op2 == NULL) head2 = head; else head2 = gfc_walk_subexpr (head, expr->value.op.op2); /* All operands are scalar. Pass back and let the caller deal with it. */ if (head2 == ss) return head2; /* All operands require scalarization. */ if (head != ss && (expr->value.op.op2 == NULL || head2 != head)) return head2; /* One of the operands needs scalarization, the other is scalar. Create a gfc_ss for the scalar expression. */ newss = gfc_get_ss (); newss->type = GFC_SS_SCALAR; if (head == ss) { /* First operand is scalar. We build the chain in reverse order, so add the scarar SS after the second operand. */ head = head2; while (head && head->next != ss) head = head->next; /* Check we haven't somehow broken the chain. */ gcc_assert (head); newss->next = ss; head->next = newss; newss->expr = expr->value.op.op1; } else /* head2 == head */ { gcc_assert (head2 == head); /* Second operand is scalar. */ newss->next = head2; head2 = newss; newss->expr = expr->value.op.op2; } return head2; } /* Reverse a SS chain. */ static gfc_ss * gfc_reverse_ss (gfc_ss * ss) { gfc_ss *next; gfc_ss *head; gcc_assert (ss != NULL); head = gfc_ss_terminator; while (ss != gfc_ss_terminator) { next = ss->next; /* Check we didn't somehow break the chain. */ gcc_assert (next != NULL); ss->next = head; head = ss; ss = next; } return (head); } /* Walk the arguments of an elemental function. */ gfc_ss * gfc_walk_elemental_function_args (gfc_ss * ss, gfc_expr * expr, gfc_ss_type type) { gfc_actual_arglist *arg; int scalar; gfc_ss *head; gfc_ss *tail; gfc_ss *newss; head = gfc_ss_terminator; tail = NULL; scalar = 1; for (arg = expr->value.function.actual; arg; arg = arg->next) { if (!arg->expr) continue; newss = gfc_walk_subexpr (head, arg->expr); if (newss == head) { /* Scalar argument. */ newss = gfc_get_ss (); newss->type = type; newss->expr = arg->expr; newss->next = head; } else scalar = 0; head = newss; if (!tail) { tail = head; while (tail->next != gfc_ss_terminator) tail = tail->next; } } if (scalar) { /* If all the arguments are scalar we don't need the argument SS. */ gfc_free_ss_chain (head); /* Pass it back. */ return ss; } /* Add it onto the existing chain. */ tail->next = ss; return head; } /* Walk a function call. Scalar functions are passed back, and taken out of scalarization loops. For elemental functions we walk their arguments. The result of functions returning arrays is stored in a temporary outside the loop, so that the function is only called once. Hence we do not need to walk their arguments. */ static gfc_ss * gfc_walk_function_expr (gfc_ss * ss, gfc_expr * expr) { gfc_ss *newss; gfc_intrinsic_sym *isym; gfc_symbol *sym; isym = expr->value.function.isym; /* Handle intrinsic functions separately. */ if (isym) return gfc_walk_intrinsic_function (ss, expr, isym); sym = expr->value.function.esym; if (!sym) sym = expr->symtree->n.sym; /* A function that returns arrays. */ if (gfc_return_by_reference (sym) && sym->result->attr.dimension) { newss = gfc_get_ss (); newss->type = GFC_SS_FUNCTION; newss->expr = expr; newss->next = ss; newss->data.info.dimen = expr->rank; return newss; } /* Walk the parameters of an elemental function. For now we always pass by reference. */ if (sym->attr.elemental) return gfc_walk_elemental_function_args (ss, expr, GFC_SS_REFERENCE); /* Scalar functions are OK as these are evaluated outside the scalarization loop. Pass back and let the caller deal with it. */ return ss; } /* An array temporary is constructed for array constructors. */ static gfc_ss * gfc_walk_array_constructor (gfc_ss * ss, gfc_expr * expr) { gfc_ss *newss; int n; newss = gfc_get_ss (); newss->type = GFC_SS_CONSTRUCTOR; newss->expr = expr; newss->next = ss; newss->data.info.dimen = expr->rank; for (n = 0; n < expr->rank; n++) newss->data.info.dim[n] = n; return newss; } /* Walk an expression. Add walked expressions to the head of the SS chain. A wholy scalar expression will not be added. */ static gfc_ss * gfc_walk_subexpr (gfc_ss * ss, gfc_expr * expr) { gfc_ss *head; switch (expr->expr_type) { case EXPR_VARIABLE: head = gfc_walk_variable_expr (ss, expr); return head; case EXPR_OP: head = gfc_walk_op_expr (ss, expr); return head; case EXPR_FUNCTION: head = gfc_walk_function_expr (ss, expr); return head; case EXPR_CONSTANT: case EXPR_NULL: case EXPR_STRUCTURE: /* Pass back and let the caller deal with it. */ break; case EXPR_ARRAY: head = gfc_walk_array_constructor (ss, expr); return head; case EXPR_SUBSTRING: /* Pass back and let the caller deal with it. */ break; default: internal_error ("bad expression type during walk (%d)", expr->expr_type); } return ss; } /* Entry point for expression walking. A return value equal to the passed chain means this is a scalar expression. It is up to the caller to take whatever action is necessary to translate these. */ gfc_ss * gfc_walk_expr (gfc_expr * expr) { gfc_ss *res; res = gfc_walk_subexpr (gfc_ss_terminator, expr); return gfc_reverse_ss (res); }