aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-cfgcleanup.c
blob: 96b95f18ed9d57848c6e257c687481411721f085 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
/* CFG cleanup for trees.
   Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "errors.h"
#include "flags.h"
#include "function.h"
#include "expr.h"
#include "ggc.h"
#include "langhooks.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "timevar.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "toplev.h"
#include "except.h"
#include "cfgloop.h"
#include "cfglayout.h"
#include "hashtab.h"
#include "tree-ssa-propagate.h"

/* Remove any fallthru edge from EV.  Return true if an edge was removed.  */

static bool
remove_fallthru_edge (VEC(edge,gc) *ev)
{
  edge_iterator ei;
  edge e;

  FOR_EACH_EDGE (e, ei, ev)
    if ((e->flags & EDGE_FALLTHRU) != 0)
      {
	remove_edge (e);
	return true;
      }
  return false;
}

/* Disconnect an unreachable block in the control expression starting
   at block BB.  */

static bool
cleanup_control_expr_graph (basic_block bb, block_stmt_iterator bsi)
{
  edge taken_edge;
  bool retval = false;
  tree expr = bsi_stmt (bsi), val;

  if (!single_succ_p (bb))
    {
      edge e;
      edge_iterator ei;

      switch (TREE_CODE (expr))
	{
	case COND_EXPR:
	  val = fold (COND_EXPR_COND (expr));
	  break;

	case SWITCH_EXPR:
	  val = fold (SWITCH_COND (expr));
	  if (TREE_CODE (val) != INTEGER_CST)
	    return false;
	  break;

	default:
	  gcc_unreachable ();
	}

      taken_edge = find_taken_edge (bb, val);
      if (!taken_edge)
	return false;

      /* Remove all the edges except the one that is always executed.  */
      for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
	{
	  if (e != taken_edge)
	    {
	      taken_edge->probability += e->probability;
	      taken_edge->count += e->count;
	      remove_edge (e);
	      retval = true;
	    }
	  else
	    ei_next (&ei);
	}
      if (taken_edge->probability > REG_BR_PROB_BASE)
	taken_edge->probability = REG_BR_PROB_BASE;
    }
  else
    taken_edge = single_succ_edge (bb);

  bsi_remove (&bsi, true);
  taken_edge->flags = EDGE_FALLTHRU;

  /* We removed some paths from the cfg.  */
  free_dominance_info (CDI_DOMINATORS);

  return retval;
}

/* A list of all the noreturn calls passed to modify_stmt.
   cleanup_control_flow uses it to detect cases where a mid-block
   indirect call has been turned into a noreturn call.  When this
   happens, all the instructions after the call are no longer
   reachable and must be deleted as dead.  */

VEC(tree,gc) *modified_noreturn_calls;

/* Try to remove superfluous control structures.  */

static bool
cleanup_control_flow (void)
{
  basic_block bb;
  block_stmt_iterator bsi;
  bool retval = false;
  tree stmt;

  /* Detect cases where a mid-block call is now known not to return.  */
  while (VEC_length (tree, modified_noreturn_calls))
    {
      stmt = VEC_pop (tree, modified_noreturn_calls);
      bb = bb_for_stmt (stmt);
      if (bb != NULL && last_stmt (bb) != stmt && noreturn_call_p (stmt))
	split_block (bb, stmt);
    }

  FOR_EACH_BB (bb)
    {
      bsi = bsi_last (bb);

      if (bsi_end_p (bsi))
	continue;

      stmt = bsi_stmt (bsi);
      if (TREE_CODE (stmt) == COND_EXPR
	  || TREE_CODE (stmt) == SWITCH_EXPR)
	retval |= cleanup_control_expr_graph (bb, bsi);

      /* If we had a computed goto which has a compile-time determinable
	 destination, then we can eliminate the goto.  */
      if (TREE_CODE (stmt) == GOTO_EXPR
	  && TREE_CODE (GOTO_DESTINATION (stmt)) == ADDR_EXPR
	  && TREE_CODE (TREE_OPERAND (GOTO_DESTINATION (stmt), 0)) == LABEL_DECL)
	{
	  edge e;
	  tree label;
	  edge_iterator ei;
	  basic_block target_block;
	  bool removed_edge = false;

	  /* First look at all the outgoing edges.  Delete any outgoing
	     edges which do not go to the right block.  For the one
	     edge which goes to the right block, fix up its flags.  */
	  label = TREE_OPERAND (GOTO_DESTINATION (stmt), 0);
	  target_block = label_to_block (label);
	  for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
	    {
	      if (e->dest != target_block)
		{
		  removed_edge = true;
		  remove_edge (e);
		}
	      else
	        {
		  /* Turn off the EDGE_ABNORMAL flag.  */
		  e->flags &= ~EDGE_ABNORMAL;

		  /* And set EDGE_FALLTHRU.  */
		  e->flags |= EDGE_FALLTHRU;
		  ei_next (&ei);
		}
	    }

	  /* If we removed one or more edges, then we will need to fix the
	     dominators.  It may be possible to incrementally update them.  */
	  if (removed_edge)
	    free_dominance_info (CDI_DOMINATORS);

	  /* Remove the GOTO_EXPR as it is not needed.  The CFG has all the
	     relevant information we need.  */
	  bsi_remove (&bsi, true);
	  retval = true;
	}

      /* Check for indirect calls that have been turned into
	 noreturn calls.  */
      if (noreturn_call_p (stmt) && remove_fallthru_edge (bb->succs))
	{
	  free_dominance_info (CDI_DOMINATORS);
	  retval = true;
	}
    }
  return retval;
}

/* Return true if basic block BB does nothing except pass control
   flow to another block and that we can safely insert a label at
   the start of the successor block.

   As a precondition, we require that BB be not equal to
   ENTRY_BLOCK_PTR.  */

static bool
tree_forwarder_block_p (basic_block bb, bool phi_wanted)
{
  block_stmt_iterator bsi;

  /* BB must have a single outgoing edge.  */
  if (single_succ_p (bb) != 1
      /* If PHI_WANTED is false, BB must not have any PHI nodes.
	 Otherwise, BB must have PHI nodes.  */
      || (phi_nodes (bb) != NULL_TREE) != phi_wanted
      /* BB may not be a predecessor of EXIT_BLOCK_PTR.  */
      || single_succ (bb) == EXIT_BLOCK_PTR
      /* Nor should this be an infinite loop.  */
      || single_succ (bb) == bb
      /* BB may not have an abnormal outgoing edge.  */
      || (single_succ_edge (bb)->flags & EDGE_ABNORMAL))
    return false;

#if ENABLE_CHECKING
  gcc_assert (bb != ENTRY_BLOCK_PTR);
#endif

  /* Now walk through the statements backward.  We can ignore labels,
     anything else means this is not a forwarder block.  */
  for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
    {
      tree stmt = bsi_stmt (bsi);

      switch (TREE_CODE (stmt))
	{
	case LABEL_EXPR:
	  if (DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
	    return false;
	  break;

	default:
	  return false;
	}
    }

  if (find_edge (ENTRY_BLOCK_PTR, bb))
    return false;

  if (current_loops)
    {
      basic_block dest;
      /* Protect loop latches, headers and preheaders.  */
      if (bb->loop_father->header == bb)
	return false;
      dest = EDGE_SUCC (bb, 0)->dest;

      if (dest->loop_father->header == dest)
	return false;
    }

  return true;
}

/* Return true if BB has at least one abnormal incoming edge.  */

static inline bool
has_abnormal_incoming_edge_p (basic_block bb)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, bb->preds)
    if (e->flags & EDGE_ABNORMAL)
      return true;

  return false;
}

/* If all the PHI nodes in DEST have alternatives for E1 and E2 and
   those alternatives are equal in each of the PHI nodes, then return
   true, else return false.  */

static bool
phi_alternatives_equal (basic_block dest, edge e1, edge e2)
{
  int n1 = e1->dest_idx;
  int n2 = e2->dest_idx;
  tree phi;

  for (phi = phi_nodes (dest); phi; phi = PHI_CHAIN (phi))
    {
      tree val1 = PHI_ARG_DEF (phi, n1);
      tree val2 = PHI_ARG_DEF (phi, n2);

      gcc_assert (val1 != NULL_TREE);
      gcc_assert (val2 != NULL_TREE);

      if (!operand_equal_for_phi_arg_p (val1, val2))
	return false;
    }

  return true;
}

/* Removes forwarder block BB.  Returns false if this failed.  If a new
   forwarder block is created due to redirection of edges, it is
   stored to worklist.  */

static bool
remove_forwarder_block (basic_block bb, basic_block **worklist)
{
  edge succ = single_succ_edge (bb), e, s;
  basic_block dest = succ->dest;
  tree label;
  tree phi;
  edge_iterator ei;
  block_stmt_iterator bsi, bsi_to;
  bool seen_abnormal_edge = false;

  /* We check for infinite loops already in tree_forwarder_block_p.
     However it may happen that the infinite loop is created
     afterwards due to removal of forwarders.  */
  if (dest == bb)
    return false;

  /* If the destination block consists of a nonlocal label, do not merge
     it.  */
  label = first_stmt (dest);
  if (label
      && TREE_CODE (label) == LABEL_EXPR
      && DECL_NONLOCAL (LABEL_EXPR_LABEL (label)))
    return false;

  /* If there is an abnormal edge to basic block BB, but not into
     dest, problems might occur during removal of the phi node at out
     of ssa due to overlapping live ranges of registers.

     If there is an abnormal edge in DEST, the problems would occur
     anyway since cleanup_dead_labels would then merge the labels for
     two different eh regions, and rest of exception handling code
     does not like it.

     So if there is an abnormal edge to BB, proceed only if there is
     no abnormal edge to DEST and there are no phi nodes in DEST.  */
  if (has_abnormal_incoming_edge_p (bb))
    {
      seen_abnormal_edge = true;

      if (has_abnormal_incoming_edge_p (dest)
	  || phi_nodes (dest) != NULL_TREE)
	return false;
    }

  /* If there are phi nodes in DEST, and some of the blocks that are
     predecessors of BB are also predecessors of DEST, check that the
     phi node arguments match.  */
  if (phi_nodes (dest))
    {
      FOR_EACH_EDGE (e, ei, bb->preds)
	{
	  s = find_edge (e->src, dest);
	  if (!s)
	    continue;

	  if (!phi_alternatives_equal (dest, succ, s))
	    return false;
	}
    }

  /* Redirect the edges.  */
  for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
    {
      if (e->flags & EDGE_ABNORMAL)
	{
	  /* If there is an abnormal edge, redirect it anyway, and
	     move the labels to the new block to make it legal.  */
	  s = redirect_edge_succ_nodup (e, dest);
	}
      else
	s = redirect_edge_and_branch (e, dest);

      if (s == e)
	{
	  /* Create arguments for the phi nodes, since the edge was not
	     here before.  */
	  for (phi = phi_nodes (dest); phi; phi = PHI_CHAIN (phi))
	    add_phi_arg (phi, PHI_ARG_DEF (phi, succ->dest_idx), s);
	}
      else
	{
	  /* The source basic block might become a forwarder.  We know
	     that it was not a forwarder before, since it used to have
	     at least two outgoing edges, so we may just add it to
	     worklist.  */
	  if (tree_forwarder_block_p (s->src, false))
	    *(*worklist)++ = s->src;
	}
    }

  if (seen_abnormal_edge)
    {
      /* Move the labels to the new block, so that the redirection of
	 the abnormal edges works.  */

      bsi_to = bsi_start (dest);
      for (bsi = bsi_start (bb); !bsi_end_p (bsi); )
	{
	  label = bsi_stmt (bsi);
	  gcc_assert (TREE_CODE (label) == LABEL_EXPR);
	  bsi_remove (&bsi, false);
	  bsi_insert_before (&bsi_to, label, BSI_CONTINUE_LINKING);
	}
    }

  /* Update the dominators.  */
  if (dom_info_available_p (CDI_DOMINATORS))
    {
      basic_block dom, dombb, domdest;

      dombb = get_immediate_dominator (CDI_DOMINATORS, bb);
      domdest = get_immediate_dominator (CDI_DOMINATORS, dest);
      if (domdest == bb)
	{
	  /* Shortcut to avoid calling (relatively expensive)
	     nearest_common_dominator unless necessary.  */
	  dom = dombb;
	}
      else
	dom = nearest_common_dominator (CDI_DOMINATORS, domdest, dombb);

      set_immediate_dominator (CDI_DOMINATORS, dest, dom);
    }

  /* And kill the forwarder block.  */
  delete_basic_block (bb);

  return true;
}

/* Removes forwarder blocks.  */

static bool
cleanup_forwarder_blocks (void)
{
  basic_block bb;
  bool changed = false;
  basic_block *worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);
  basic_block *current = worklist;

  FOR_EACH_BB (bb)
    {
      if (tree_forwarder_block_p (bb, false))
	*current++ = bb;
    }

  while (current != worklist)
    {
      bb = *--current;
      changed |= remove_forwarder_block (bb, &current);
    }

  free (worklist);
  return changed;
}

/* Do one round of CFG cleanup.  */

static bool
cleanup_tree_cfg_1 (void)
{
  bool retval;

  retval = cleanup_control_flow ();
  retval |= delete_unreachable_blocks ();

  /* Forwarder blocks can carry line number information which is
     useful when debugging, so we only clean them up when
     optimizing.  */

  if (optimize > 0)
    {
      /* cleanup_forwarder_blocks can redirect edges out of
	 SWITCH_EXPRs, which can get expensive.  So we want to enable
	 recording of edge to CASE_LABEL_EXPR mappings around the call
	 to cleanup_forwarder_blocks.  */
      start_recording_case_labels ();
      retval |= cleanup_forwarder_blocks ();
      end_recording_case_labels ();
    }

  /* Merging the blocks may create new opportunities for folding
     conditional branches (due to the elimination of single-valued PHI
     nodes).  */
  retval |= merge_seq_blocks ();

  return retval;
}


/* Remove unreachable blocks and other miscellaneous clean up work.
   Return true if the flowgraph was modified, false otherwise.  */

bool
cleanup_tree_cfg (void)
{
  bool retval, changed;

  timevar_push (TV_TREE_CLEANUP_CFG);

  /* Iterate until there are no more cleanups left to do.  If any
     iteration changed the flowgraph, set CHANGED to true.  */
  changed = false;
  do
    {
      retval = cleanup_tree_cfg_1 ();
      changed |= retval;
    }
  while (retval);

  compact_blocks ();

#ifdef ENABLE_CHECKING
  verify_flow_info ();
#endif

  timevar_pop (TV_TREE_CLEANUP_CFG);

  return changed;
}

/* Cleanup cfg and repair loop structures.  */

void
cleanup_tree_cfg_loop (void)
{
  bitmap changed_bbs = BITMAP_ALLOC (NULL);

  cleanup_tree_cfg ();

  fix_loop_structure (current_loops, changed_bbs);
  calculate_dominance_info (CDI_DOMINATORS);

  /* This usually does nothing.  But sometimes parts of cfg that originally
     were inside a loop get out of it due to edge removal (since they
     become unreachable by back edges from latch).  */
  rewrite_into_loop_closed_ssa (changed_bbs, TODO_update_ssa);

  BITMAP_FREE (changed_bbs);

#ifdef ENABLE_CHECKING
  verify_loop_structure (current_loops);
#endif
}

/* Merge the PHI nodes at BB into those at BB's sole successor.  */

static void
remove_forwarder_block_with_phi (basic_block bb)
{
  edge succ = single_succ_edge (bb);
  basic_block dest = succ->dest;
  tree label;
  basic_block dombb, domdest, dom;

  /* We check for infinite loops already in tree_forwarder_block_p.
     However it may happen that the infinite loop is created
     afterwards due to removal of forwarders.  */
  if (dest == bb)
    return;

  /* If the destination block consists of a nonlocal label, do not
     merge it.  */
  label = first_stmt (dest);
  if (label
      && TREE_CODE (label) == LABEL_EXPR
      && DECL_NONLOCAL (LABEL_EXPR_LABEL (label)))
    return;

  /* Redirect each incoming edge to BB to DEST.  */
  while (EDGE_COUNT (bb->preds) > 0)
    {
      edge e = EDGE_PRED (bb, 0), s;
      tree phi;

      s = find_edge (e->src, dest);
      if (s)
	{
	  /* We already have an edge S from E->src to DEST.  If S and
	     E->dest's sole successor edge have the same PHI arguments
	     at DEST, redirect S to DEST.  */
	  if (phi_alternatives_equal (dest, s, succ))
	    {
	      e = redirect_edge_and_branch (e, dest);
	      PENDING_STMT (e) = NULL_TREE;
	      continue;
	    }

	  /* PHI arguments are different.  Create a forwarder block by
	     splitting E so that we can merge PHI arguments on E to
	     DEST.  */
	  e = single_succ_edge (split_edge (e));
	}

      s = redirect_edge_and_branch (e, dest);

      /* redirect_edge_and_branch must not create a new edge.  */
      gcc_assert (s == e);

      /* Add to the PHI nodes at DEST each PHI argument removed at the
	 destination of E.  */
      for (phi = phi_nodes (dest); phi; phi = PHI_CHAIN (phi))
	{
	  tree def = PHI_ARG_DEF (phi, succ->dest_idx);

	  if (TREE_CODE (def) == SSA_NAME)
	    {
	      tree var;

	      /* If DEF is one of the results of PHI nodes removed during
		 redirection, replace it with the PHI argument that used
		 to be on E.  */
	      for (var = PENDING_STMT (e); var; var = TREE_CHAIN (var))
		{
		  tree old_arg = TREE_PURPOSE (var);
		  tree new_arg = TREE_VALUE (var);

		  if (def == old_arg)
		    {
		      def = new_arg;
		      break;
		    }
		}
	    }

	  add_phi_arg (phi, def, s);
	}

      PENDING_STMT (e) = NULL;
    }

  /* Update the dominators.  */
  dombb = get_immediate_dominator (CDI_DOMINATORS, bb);
  domdest = get_immediate_dominator (CDI_DOMINATORS, dest);
  if (domdest == bb)
    {
      /* Shortcut to avoid calling (relatively expensive)
	 nearest_common_dominator unless necessary.  */
      dom = dombb;
    }
  else
    dom = nearest_common_dominator (CDI_DOMINATORS, domdest, dombb);

  set_immediate_dominator (CDI_DOMINATORS, dest, dom);

  /* Remove BB since all of BB's incoming edges have been redirected
     to DEST.  */
  delete_basic_block (bb);
}

/* This pass merges PHI nodes if one feeds into another.  For example,
   suppose we have the following:

  goto <bb 9> (<L9>);

<L8>:;
  tem_17 = foo ();

  # tem_6 = PHI <tem_17(8), tem_23(7)>;
<L9>:;

  # tem_3 = PHI <tem_6(9), tem_2(5)>;
<L10>:;

  Then we merge the first PHI node into the second one like so:

  goto <bb 9> (<L10>);

<L8>:;
  tem_17 = foo ();

  # tem_3 = PHI <tem_23(7), tem_2(5), tem_17(8)>;
<L10>:;
*/

static void
merge_phi_nodes (void)
{
  basic_block *worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);
  basic_block *current = worklist;
  basic_block bb;

  calculate_dominance_info (CDI_DOMINATORS);

  /* Find all PHI nodes that we may be able to merge.  */
  FOR_EACH_BB (bb)
    {
      basic_block dest;

      /* Look for a forwarder block with PHI nodes.  */
      if (!tree_forwarder_block_p (bb, true))
	continue;

      dest = single_succ (bb);

      /* We have to feed into another basic block with PHI
	 nodes.  */
      if (!phi_nodes (dest)
	  /* We don't want to deal with a basic block with
	     abnormal edges.  */
	  || has_abnormal_incoming_edge_p (bb))
	continue;

      if (!dominated_by_p (CDI_DOMINATORS, dest, bb))
	{
	  /* If BB does not dominate DEST, then the PHI nodes at
	     DEST must be the only users of the results of the PHI
	     nodes at BB.  */
	  *current++ = bb;
	}
      else
	{
	  tree phi;
	  unsigned int dest_idx = single_succ_edge (bb)->dest_idx;

	  /* BB dominates DEST.  There may be many users of the PHI
	     nodes in BB.  However, there is still a trivial case we
	     can handle.  If the result of every PHI in BB is used
	     only by a PHI in DEST, then we can trivially merge the
	     PHI nodes from BB into DEST.  */
	  for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
	    {
	      tree result = PHI_RESULT (phi);
	      int num_uses = num_imm_uses (result);
	      use_operand_p imm_use;
	      tree use_stmt;

	      /* If the PHI's result is never used, then we can just
		 ignore it.  */
	      if (num_uses == 0)
		continue;

	      /* Get the single use of the result of this PHI node.  */
  	      if (!single_imm_use (result, &imm_use, &use_stmt)
		  || TREE_CODE (use_stmt) != PHI_NODE
		  || bb_for_stmt (use_stmt) != dest
		  || PHI_ARG_DEF (use_stmt, dest_idx) != result)
		break;
	    }

	  /* If the loop above iterated thorugh all the PHI nodes
	     in BB, then we can merge the PHIs from BB into DEST.  */
	  if (!phi)
	    *current++ = bb;
	}
    }

  /* Now let's drain WORKLIST.  */
  while (current != worklist)
    {
      bb = *--current;
      remove_forwarder_block_with_phi (bb);
    }

  free (worklist);
}

static bool
gate_merge_phi (void)
{
  return 1;
}

struct tree_opt_pass pass_merge_phi = {
  "mergephi",			/* name */
  gate_merge_phi,		/* gate */
  merge_phi_nodes,		/* execute */
  NULL,				/* sub */
  NULL,				/* next */
  0,				/* static_pass_number */
  TV_TREE_MERGE_PHI,		/* tv_id */
  PROP_cfg | PROP_ssa,		/* properties_required */
  0,				/* properties_provided */
  0,				/* properties_destroyed */
  0,				/* todo_flags_start */
  TODO_dump_func | TODO_ggc_collect	/* todo_flags_finish */
  | TODO_verify_ssa,
  0				/* letter */
};
> 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069
/* Reload pseudo regs into hard regs for insns that require hard regs.
   Copyright (C) 1987-2021 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "predict.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "optabs.h"
#include "regs.h"
#include "ira.h"
#include "recog.h"

#include "rtl-error.h"
#include "expr.h"
#include "addresses.h"
#include "cfgrtl.h"
#include "cfgbuild.h"
#include "reload.h"
#include "except.h"
#include "dumpfile.h"
#include "rtl-iter.h"
#include "function-abi.h"

/* This file contains the reload pass of the compiler, which is
   run after register allocation has been done.  It checks that
   each insn is valid (operands required to be in registers really
   are in registers of the proper class) and fixes up invalid ones
   by copying values temporarily into registers for the insns
   that need them.

   The results of register allocation are described by the vector
   reg_renumber; the insns still contain pseudo regs, but reg_renumber
   can be used to find which hard reg, if any, a pseudo reg is in.

   The technique we always use is to free up a few hard regs that are
   called ``reload regs'', and for each place where a pseudo reg
   must be in a hard reg, copy it temporarily into one of the reload regs.

   Reload regs are allocated locally for every instruction that needs
   reloads.  When there are pseudos which are allocated to a register that
   has been chosen as a reload reg, such pseudos must be ``spilled''.
   This means that they go to other hard regs, or to stack slots if no other
   available hard regs can be found.  Spilling can invalidate more
   insns, requiring additional need for reloads, so we must keep checking
   until the process stabilizes.

   For machines with different classes of registers, we must keep track
   of the register class needed for each reload, and make sure that
   we allocate enough reload registers of each class.

   The file reload.c contains the code that checks one insn for
   validity and reports the reloads that it needs.  This file
   is in charge of scanning the entire rtl code, accumulating the
   reload needs, spilling, assigning reload registers to use for
   fixing up each insn, and generating the new insns to copy values
   into the reload registers.  */

struct target_reload default_target_reload;
#if SWITCHABLE_TARGET
struct target_reload *this_target_reload = &default_target_reload;
#endif

#define spill_indirect_levels			\
  (this_target_reload->x_spill_indirect_levels)

/* During reload_as_needed, element N contains a REG rtx for the hard reg
   into which reg N has been reloaded (perhaps for a previous insn).  */
static rtx *reg_last_reload_reg;

/* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
   for an output reload that stores into reg N.  */
static regset_head reg_has_output_reload;

/* Indicates which hard regs are reload-registers for an output reload
   in the current insn.  */
static HARD_REG_SET reg_is_output_reload;

/* Widest mode in which each pseudo reg is referred to (via subreg).  */
static machine_mode *reg_max_ref_mode;

/* Vector to remember old contents of reg_renumber before spilling.  */
static short *reg_old_renumber;

/* During reload_as_needed, element N contains the last pseudo regno reloaded
   into hard register N.  If that pseudo reg occupied more than one register,
   reg_reloaded_contents points to that pseudo for each spill register in
   use; all of these must remain set for an inheritance to occur.  */
static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];

/* During reload_as_needed, element N contains the insn for which
   hard register N was last used.   Its contents are significant only
   when reg_reloaded_valid is set for this register.  */
static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];

/* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid.  */
static HARD_REG_SET reg_reloaded_valid;
/* Indicate if the register was dead at the end of the reload.
   This is only valid if reg_reloaded_contents is set and valid.  */
static HARD_REG_SET reg_reloaded_dead;

/* Number of spill-regs so far; number of valid elements of spill_regs.  */
static int n_spills;

/* In parallel with spill_regs, contains REG rtx's for those regs.
   Holds the last rtx used for any given reg, or 0 if it has never
   been used for spilling yet.  This rtx is reused, provided it has
   the proper mode.  */
static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];

/* In parallel with spill_regs, contains nonzero for a spill reg
   that was stored after the last time it was used.
   The precise value is the insn generated to do the store.  */
static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];

/* This is the register that was stored with spill_reg_store.  This is a
   copy of reload_out / reload_out_reg when the value was stored; if
   reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg.  */
static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];

/* This table is the inverse mapping of spill_regs:
   indexed by hard reg number,
   it contains the position of that reg in spill_regs,
   or -1 for something that is not in spill_regs.

   ?!?  This is no longer accurate.  */
static short spill_reg_order[FIRST_PSEUDO_REGISTER];

/* This reg set indicates registers that can't be used as spill registers for
   the currently processed insn.  These are the hard registers which are live
   during the insn, but not allocated to pseudos, as well as fixed
   registers.  */
static HARD_REG_SET bad_spill_regs;

/* These are the hard registers that can't be used as spill register for any
   insn.  This includes registers used for user variables and registers that
   we can't eliminate.  A register that appears in this set also can't be used
   to retry register allocation.  */
static HARD_REG_SET bad_spill_regs_global;

/* Describes order of use of registers for reloading
   of spilled pseudo-registers.  `n_spills' is the number of
   elements that are actually valid; new ones are added at the end.

   Both spill_regs and spill_reg_order are used on two occasions:
   once during find_reload_regs, where they keep track of the spill registers
   for a single insn, but also during reload_as_needed where they show all
   the registers ever used by reload.  For the latter case, the information
   is calculated during finish_spills.  */
static short spill_regs[FIRST_PSEUDO_REGISTER];

/* This vector of reg sets indicates, for each pseudo, which hard registers
   may not be used for retrying global allocation because the register was
   formerly spilled from one of them.  If we allowed reallocating a pseudo to
   a register that it was already allocated to, reload might not
   terminate.  */
static HARD_REG_SET *pseudo_previous_regs;

/* This vector of reg sets indicates, for each pseudo, which hard
   registers may not be used for retrying global allocation because they
   are used as spill registers during one of the insns in which the
   pseudo is live.  */
static HARD_REG_SET *pseudo_forbidden_regs;

/* All hard regs that have been used as spill registers for any insn are
   marked in this set.  */
static HARD_REG_SET used_spill_regs;

/* Index of last register assigned as a spill register.  We allocate in
   a round-robin fashion.  */
static int last_spill_reg;

/* Record the stack slot for each spilled hard register.  */
static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];

/* Width allocated so far for that stack slot.  */
static poly_uint64_pod spill_stack_slot_width[FIRST_PSEUDO_REGISTER];

/* Record which pseudos needed to be spilled.  */
static regset_head spilled_pseudos;

/* Record which pseudos changed their allocation in finish_spills.  */
static regset_head changed_allocation_pseudos;

/* Used for communication between order_regs_for_reload and count_pseudo.
   Used to avoid counting one pseudo twice.  */
static regset_head pseudos_counted;

/* First uid used by insns created by reload in this function.
   Used in find_equiv_reg.  */
int reload_first_uid;

/* Flag set by local-alloc or global-alloc if anything is live in
   a call-clobbered reg across calls.  */
int caller_save_needed;

/* Set to 1 while reload_as_needed is operating.
   Required by some machines to handle any generated moves differently.  */
int reload_in_progress = 0;

/* This obstack is used for allocation of rtl during register elimination.
   The allocated storage can be freed once find_reloads has processed the
   insn.  */
static struct obstack reload_obstack;

/* Points to the beginning of the reload_obstack.  All insn_chain structures
   are allocated first.  */
static char *reload_startobj;

/* The point after all insn_chain structures.  Used to quickly deallocate
   memory allocated in copy_reloads during calculate_needs_all_insns.  */
static char *reload_firstobj;

/* This points before all local rtl generated by register elimination.
   Used to quickly free all memory after processing one insn.  */
static char *reload_insn_firstobj;

/* List of insn_chain instructions, one for every insn that reload needs to
   examine.  */
class insn_chain *reload_insn_chain;

/* TRUE if we potentially left dead insns in the insn stream and want to
   run DCE immediately after reload, FALSE otherwise.  */
static bool need_dce;

/* List of all insns needing reloads.  */
static class insn_chain *insns_need_reload;

/* This structure is used to record information about register eliminations.
   Each array entry describes one possible way of eliminating a register
   in favor of another.   If there is more than one way of eliminating a
   particular register, the most preferred should be specified first.  */

struct elim_table
{
  int from;			/* Register number to be eliminated.  */
  int to;			/* Register number used as replacement.  */
  poly_int64_pod initial_offset; /* Initial difference between values.  */
  int can_eliminate;		/* Nonzero if this elimination can be done.  */
  int can_eliminate_previous;	/* Value returned by TARGET_CAN_ELIMINATE
				   target hook in previous scan over insns
				   made by reload.  */
  poly_int64_pod offset;	/* Current offset between the two regs.  */
  poly_int64_pod previous_offset; /* Offset at end of previous insn.  */
  int ref_outside_mem;		/* "to" has been referenced outside a MEM.  */
  rtx from_rtx;			/* REG rtx for the register to be eliminated.
				   We cannot simply compare the number since
				   we might then spuriously replace a hard
				   register corresponding to a pseudo
				   assigned to the reg to be eliminated.  */
  rtx to_rtx;			/* REG rtx for the replacement.  */
};

static struct elim_table *reg_eliminate = 0;

/* This is an intermediate structure to initialize the table.  It has
   exactly the members provided by ELIMINABLE_REGS.  */
static const struct elim_table_1
{
  const int from;
  const int to;
} reg_eliminate_1[] =

  ELIMINABLE_REGS;

#define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)

/* Record the number of pending eliminations that have an offset not equal
   to their initial offset.  If nonzero, we use a new copy of each
   replacement result in any insns encountered.  */
int num_not_at_initial_offset;

/* Count the number of registers that we may be able to eliminate.  */
static int num_eliminable;
/* And the number of registers that are equivalent to a constant that
   can be eliminated to frame_pointer / arg_pointer + constant.  */
static int num_eliminable_invariants;

/* For each label, we record the offset of each elimination.  If we reach
   a label by more than one path and an offset differs, we cannot do the
   elimination.  This information is indexed by the difference of the
   number of the label and the first label number.  We can't offset the
   pointer itself as this can cause problems on machines with segmented
   memory.  The first table is an array of flags that records whether we
   have yet encountered a label and the second table is an array of arrays,
   one entry in the latter array for each elimination.  */

static int first_label_num;
static char *offsets_known_at;
static poly_int64_pod (*offsets_at)[NUM_ELIMINABLE_REGS];

vec<reg_equivs_t, va_gc> *reg_equivs;

/* Stack of addresses where an rtx has been changed.  We can undo the 
   changes by popping items off the stack and restoring the original
   value at each location. 

   We use this simplistic undo capability rather than copy_rtx as copy_rtx
   will not make a deep copy of a normally sharable rtx, such as
   (const (plus (symbol_ref) (const_int))).  If such an expression appears
   as R1 in gen_reload_chain_without_interm_reg_p, then a shared
   rtx expression would be changed.  See PR 42431.  */

typedef rtx *rtx_p;
static vec<rtx_p> substitute_stack;

/* Number of labels in the current function.  */

static int num_labels;

static void replace_pseudos_in (rtx *, machine_mode, rtx);
static void maybe_fix_stack_asms (void);
static void copy_reloads (class insn_chain *);
static void calculate_needs_all_insns (int);
static int find_reg (class insn_chain *, int);
static void find_reload_regs (class insn_chain *);
static void select_reload_regs (void);
static void delete_caller_save_insns (void);

static void spill_failure (rtx_insn *, enum reg_class);
static void count_spilled_pseudo (int, int, int);
static void delete_dead_insn (rtx_insn *);
static void alter_reg (int, int, bool);
static void set_label_offsets (rtx, rtx_insn *, int);
static void check_eliminable_occurrences (rtx);
static void elimination_effects (rtx, machine_mode);
static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
static int eliminate_regs_in_insn (rtx_insn *, int);
static void update_eliminable_offsets (void);
static void mark_not_eliminable (rtx, const_rtx, void *);
static void set_initial_elim_offsets (void);
static bool verify_initial_elim_offsets (void);
static void set_initial_label_offsets (void);
static void set_offsets_for_label (rtx_insn *);
static void init_eliminable_invariants (rtx_insn *, bool);
static void init_elim_table (void);
static void free_reg_equiv (void);
static void update_eliminables (HARD_REG_SET *);
static bool update_eliminables_and_spill (void);
static void elimination_costs_in_insn (rtx_insn *);
static void spill_hard_reg (unsigned int, int);
static int finish_spills (int);
static void scan_paradoxical_subregs (rtx);
static void count_pseudo (int);
static void order_regs_for_reload (class insn_chain *);
static void reload_as_needed (int);
static void forget_old_reloads_1 (rtx, const_rtx, void *);
static void forget_marked_reloads (regset);
static int reload_reg_class_lower (const void *, const void *);
static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
				    machine_mode);
static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
				     machine_mode);
static int reload_reg_free_p (unsigned int, int, enum reload_type);
static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
					rtx, rtx, int, int);
static int free_for_value_p (int, machine_mode, int, enum reload_type,
			     rtx, rtx, int, int);
static int allocate_reload_reg (class insn_chain *, int, int);
static int conflicts_with_override (rtx);
static void failed_reload (rtx_insn *, int);
static int set_reload_reg (int, int);
static void choose_reload_regs_init (class insn_chain *, rtx *);
static void choose_reload_regs (class insn_chain *);
static void emit_input_reload_insns (class insn_chain *, struct reload *,
				     rtx, int);
static void emit_output_reload_insns (class insn_chain *, struct reload *,
				      int);
static void do_input_reload (class insn_chain *, struct reload *, int);
static void do_output_reload (class insn_chain *, struct reload *, int);
static void emit_reload_insns (class insn_chain *);
static void delete_output_reload (rtx_insn *, int, int, rtx);
static void delete_address_reloads (rtx_insn *, rtx_insn *);
static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
static void inc_for_reload (rtx, rtx, rtx, poly_int64);
static void substitute (rtx *, const_rtx, rtx);
static bool gen_reload_chain_without_interm_reg_p (int, int);
static int reloads_conflict (int, int);
static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
static rtx_insn *emit_insn_if_valid_for_reload (rtx);

/* Initialize the reload pass.  This is called at the beginning of compilation
   and may be called again if the target is reinitialized.  */

void
init_reload (void)
{
  int i;

  /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
     Set spill_indirect_levels to the number of levels such addressing is
     permitted, zero if it is not permitted at all.  */

  rtx tem
    = gen_rtx_MEM (Pmode,
		   gen_rtx_PLUS (Pmode,
				 gen_rtx_REG (Pmode,
					      LAST_VIRTUAL_REGISTER + 1),
				 gen_int_mode (4, Pmode)));
  spill_indirect_levels = 0;

  while (memory_address_p (QImode, tem))
    {
      spill_indirect_levels++;
      tem = gen_rtx_MEM (Pmode, tem);
    }

  /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)).  */

  tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
  indirect_symref_ok = memory_address_p (QImode, tem);

  /* See if reg+reg is a valid (and offsettable) address.  */

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      tem = gen_rtx_PLUS (Pmode,
			  gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
			  gen_rtx_REG (Pmode, i));

      /* This way, we make sure that reg+reg is an offsettable address.  */
      tem = plus_constant (Pmode, tem, 4);

      for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
	if (!double_reg_address_ok[mode]
	    && memory_address_p ((enum machine_mode)mode, tem))
	  double_reg_address_ok[mode] = 1;
    }

  /* Initialize obstack for our rtl allocation.  */
  if (reload_startobj == NULL)
    {
      gcc_obstack_init (&reload_obstack);
      reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
    }

  INIT_REG_SET (&spilled_pseudos);
  INIT_REG_SET (&changed_allocation_pseudos);
  INIT_REG_SET (&pseudos_counted);
}

/* List of insn chains that are currently unused.  */
static class insn_chain *unused_insn_chains = 0;

/* Allocate an empty insn_chain structure.  */
class insn_chain *
new_insn_chain (void)
{
  class insn_chain *c;

  if (unused_insn_chains == 0)
    {
      c = XOBNEW (&reload_obstack, class insn_chain);
      INIT_REG_SET (&c->live_throughout);
      INIT_REG_SET (&c->dead_or_set);
    }
  else
    {
      c = unused_insn_chains;
      unused_insn_chains = c->next;
    }
  c->is_caller_save_insn = 0;
  c->need_operand_change = 0;
  c->need_reload = 0;
  c->need_elim = 0;
  return c;
}

/* Small utility function to set all regs in hard reg set TO which are
   allocated to pseudos in regset FROM.  */

void
compute_use_by_pseudos (HARD_REG_SET *to, regset from)
{
  unsigned int regno;
  reg_set_iterator rsi;

  EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
    {
      int r = reg_renumber[regno];

      if (r < 0)
	{
	  /* reload_combine uses the information from DF_LIVE_IN,
	     which might still contain registers that have not
	     actually been allocated since they have an
	     equivalence.  */
	  gcc_assert (ira_conflicts_p || reload_completed);
	}
      else
	add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
    }
}

/* Replace all pseudos found in LOC with their corresponding
   equivalences.  */

static void
replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
{
  rtx x = *loc;
  enum rtx_code code;
  const char *fmt;
  int i, j;

  if (! x)
    return;

  code = GET_CODE (x);
  if (code == REG)
    {
      unsigned int regno = REGNO (x);

      if (regno < FIRST_PSEUDO_REGISTER)
	return;

      x = eliminate_regs_1 (x, mem_mode, usage, true, false);
      if (x != *loc)
	{
	  *loc = x;
	  replace_pseudos_in (loc, mem_mode, usage);
	  return;
	}

      if (reg_equiv_constant (regno))
	*loc = reg_equiv_constant (regno);
      else if (reg_equiv_invariant (regno))
	*loc = reg_equiv_invariant (regno);
      else if (reg_equiv_mem (regno))
	*loc = reg_equiv_mem (regno);
      else if (reg_equiv_address (regno))
	*loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
      else
	{
	  gcc_assert (!REG_P (regno_reg_rtx[regno])
		      || REGNO (regno_reg_rtx[regno]) != regno);
	  *loc = regno_reg_rtx[regno];
	}

      return;
    }
  else if (code == MEM)
    {
      replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
      return;
    }

  /* Process each of our operands recursively.  */
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    if (*fmt == 'e')
      replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
    else if (*fmt == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
	replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
}

/* Determine if the current function has an exception receiver block
   that reaches the exit block via non-exceptional edges  */

static bool
has_nonexceptional_receiver (void)
{
  edge e;
  edge_iterator ei;
  basic_block *tos, *worklist, bb;

  /* If we're not optimizing, then just err on the safe side.  */
  if (!optimize)
    return true;

  /* First determine which blocks can reach exit via normal paths.  */
  tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);

  FOR_EACH_BB_FN (bb, cfun)
    bb->flags &= ~BB_REACHABLE;

  /* Place the exit block on our worklist.  */
  EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
  *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);

  /* Iterate: find everything reachable from what we've already seen.  */
  while (tos != worklist)
    {
      bb = *--tos;

      FOR_EACH_EDGE (e, ei, bb->preds)
	if (!(e->flags & EDGE_ABNORMAL))
	  {
	    basic_block src = e->src;

	    if (!(src->flags & BB_REACHABLE))
	      {
		src->flags |= BB_REACHABLE;
		*tos++ = src;
	      }
	  }
    }
  free (worklist);

  /* Now see if there's a reachable block with an exceptional incoming
     edge.  */
  FOR_EACH_BB_FN (bb, cfun)
    if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
      return true;

  /* No exceptional block reached exit unexceptionally.  */
  return false;
}

/* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
   zero elements) to MAX_REG_NUM elements.

   Initialize all new fields to NULL and update REG_EQUIVS_SIZE.  */
void
grow_reg_equivs (void)
{
  int old_size = vec_safe_length (reg_equivs);
  int max_regno = max_reg_num ();
  int i;
  reg_equivs_t ze;

  memset (&ze, 0, sizeof (reg_equivs_t));
  vec_safe_reserve (reg_equivs, max_regno);
  for (i = old_size; i < max_regno; i++)
    reg_equivs->quick_insert (i, ze);
}


/* Global variables used by reload and its subroutines.  */

/* The current basic block while in calculate_elim_costs_all_insns.  */
static basic_block elim_bb;

/* Set during calculate_needs if an insn needs register elimination.  */
static int something_needs_elimination;
/* Set during calculate_needs if an insn needs an operand changed.  */
static int something_needs_operands_changed;
/* Set by alter_regs if we spilled a register to the stack.  */
static bool something_was_spilled;

/* Nonzero means we couldn't get enough spill regs.  */
static int failure;

/* Temporary array of pseudo-register number.  */
static int *temp_pseudo_reg_arr;

/* If a pseudo has no hard reg, delete the insns that made the equivalence.
   If that insn didn't set the register (i.e., it copied the register to
   memory), just delete that insn instead of the equivalencing insn plus
   anything now dead.  If we call delete_dead_insn on that insn, we may
   delete the insn that actually sets the register if the register dies
   there and that is incorrect.  */
static void
remove_init_insns ()
{
  for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    {
      if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
	{
	  rtx list;
	  for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
	    {
	      rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));

	      /* If we already deleted the insn or if it may trap, we can't
		 delete it.  The latter case shouldn't happen, but can
		 if an insn has a variable address, gets a REG_EH_REGION
		 note added to it, and then gets converted into a load
		 from a constant address.  */
	      if (NOTE_P (equiv_insn)
		  || can_throw_internal (equiv_insn))
		;
	      else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
		delete_dead_insn (equiv_insn);
	      else
		SET_INSN_DELETED (equiv_insn);
	    }
	}
    }
}

/* Return true if remove_init_insns will delete INSN.  */
static bool
will_delete_init_insn_p (rtx_insn *insn)
{
  rtx set = single_set (insn);
  if (!set || !REG_P (SET_DEST (set)))
    return false;
  unsigned regno = REGNO (SET_DEST (set));

  if (can_throw_internal (insn))
    return false;

  if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
    return false;

  for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
    {
      rtx equiv_insn = XEXP (list, 0);
      if (equiv_insn == insn)
	return true;
    }
  return false;
}

/* Main entry point for the reload pass.

   FIRST is the first insn of the function being compiled.

   GLOBAL nonzero means we were called from global_alloc
   and should attempt to reallocate any pseudoregs that we
   displace from hard regs we will use for reloads.
   If GLOBAL is zero, we do not have enough information to do that,
   so any pseudo reg that is spilled must go to the stack.

   Return value is TRUE if reload likely left dead insns in the
   stream and a DCE pass should be run to elimiante them.  Else the
   return value is FALSE.  */

bool
reload (rtx_insn *first, int global)
{
  int i, n;
  rtx_insn *insn;
  struct elim_table *ep;
  basic_block bb;
  bool inserted;

  /* Make sure even insns with volatile mem refs are recognizable.  */
  init_recog ();

  failure = 0;

  reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);

  /* Make sure that the last insn in the chain
     is not something that needs reloading.  */
  emit_note (NOTE_INSN_DELETED);

  /* Enable find_equiv_reg to distinguish insns made by reload.  */
  reload_first_uid = get_max_uid ();

  /* Initialize the secondary memory table.  */
  clear_secondary_mem ();

  /* We don't have a stack slot for any spill reg yet.  */
  memset (spill_stack_slot, 0, sizeof spill_stack_slot);
  memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);

  /* Initialize the save area information for caller-save, in case some
     are needed.  */
  init_save_areas ();

  /* Compute which hard registers are now in use
     as homes for pseudo registers.
     This is done here rather than (eg) in global_alloc
     because this point is reached even if not optimizing.  */
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    mark_home_live (i);

  /* A function that has a nonlocal label that can reach the exit
     block via non-exceptional paths must save all call-saved
     registers.  */
  if (cfun->has_nonlocal_label
      && has_nonexceptional_receiver ())
    crtl->saves_all_registers = 1;

  if (crtl->saves_all_registers)
    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
      if (! crtl->abi->clobbers_full_reg_p (i)
	  && ! fixed_regs[i]
	  && ! LOCAL_REGNO (i))
	df_set_regs_ever_live (i, true);

  /* Find all the pseudo registers that didn't get hard regs
     but do have known equivalent constants or memory slots.
     These include parameters (known equivalent to parameter slots)
     and cse'd or loop-moved constant memory addresses.

     Record constant equivalents in reg_equiv_constant
     so they will be substituted by find_reloads.
     Record memory equivalents in reg_mem_equiv so they can
     be substituted eventually by altering the REG-rtx's.  */

  grow_reg_equivs ();
  reg_old_renumber = XCNEWVEC (short, max_regno);
  memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
  pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
  pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);

  CLEAR_HARD_REG_SET (bad_spill_regs_global);

  init_eliminable_invariants (first, true);
  init_elim_table ();

  /* Alter each pseudo-reg rtx to contain its hard reg number.  Assign
     stack slots to the pseudos that lack hard regs or equivalents.
     Do not touch virtual registers.  */

  temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
  for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
    temp_pseudo_reg_arr[n++] = i;

  if (ira_conflicts_p)
    /* Ask IRA to order pseudo-registers for better stack slot
       sharing.  */
    ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_mode);

  for (i = 0; i < n; i++)
    alter_reg (temp_pseudo_reg_arr[i], -1, false);

  /* If we have some registers we think can be eliminated, scan all insns to
     see if there is an insn that sets one of these registers to something
     other than itself plus a constant.  If so, the register cannot be
     eliminated.  Doing this scan here eliminates an extra pass through the
     main reload loop in the most common case where register elimination
     cannot be done.  */
  for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
      note_pattern_stores (PATTERN (insn), mark_not_eliminable, NULL);

  maybe_fix_stack_asms ();

  insns_need_reload = 0;
  something_needs_elimination = 0;

  /* Initialize to -1, which means take the first spill register.  */
  last_spill_reg = -1;

  /* Spill any hard regs that we know we can't eliminate.  */
  CLEAR_HARD_REG_SET (used_spill_regs);
  /* There can be multiple ways to eliminate a register;
     they should be listed adjacently.
     Elimination for any register fails only if all possible ways fail.  */
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
    {
      int from = ep->from;
      int can_eliminate = 0;
      do
	{
          can_eliminate |= ep->can_eliminate;
          ep++;
	}
      while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
      if (! can_eliminate)
	spill_hard_reg (from, 1);
    }

  if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
    spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);

  finish_spills (global);

  /* From now on, we may need to generate moves differently.  We may also
     allow modifications of insns which cause them to not be recognized.
     Any such modifications will be cleaned up during reload itself.  */
  reload_in_progress = 1;

  /* This loop scans the entire function each go-round
     and repeats until one repetition spills no additional hard regs.  */
  for (;;)
    {
      int something_changed;
      poly_int64 starting_frame_size;

      starting_frame_size = get_frame_size ();
      something_was_spilled = false;

      set_initial_elim_offsets ();
      set_initial_label_offsets ();

      /* For each pseudo register that has an equivalent location defined,
	 try to eliminate any eliminable registers (such as the frame pointer)
	 assuming initial offsets for the replacement register, which
	 is the normal case.

	 If the resulting location is directly addressable, substitute
	 the MEM we just got directly for the old REG.

	 If it is not addressable but is a constant or the sum of a hard reg
	 and constant, it is probably not addressable because the constant is
	 out of range, in that case record the address; we will generate
	 hairy code to compute the address in a register each time it is
	 needed.  Similarly if it is a hard register, but one that is not
	 valid as an address register.

	 If the location is not addressable, but does not have one of the
	 above forms, assign a stack slot.  We have to do this to avoid the
	 potential of producing lots of reloads if, e.g., a location involves
	 a pseudo that didn't get a hard register and has an equivalent memory
	 location that also involves a pseudo that didn't get a hard register.

	 Perhaps at some point we will improve reload_when_needed handling
	 so this problem goes away.  But that's very hairy.  */

      for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
	if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
	  {
	    rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
				    NULL_RTX);

	    if (strict_memory_address_addr_space_p
		  (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
		   MEM_ADDR_SPACE (x)))
	      reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
	    else if (CONSTANT_P (XEXP (x, 0))
		     || (REG_P (XEXP (x, 0))
			 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
		     || (GET_CODE (XEXP (x, 0)) == PLUS
			 && REG_P (XEXP (XEXP (x, 0), 0))
			 && (REGNO (XEXP (XEXP (x, 0), 0))
			     < FIRST_PSEUDO_REGISTER)
			 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
	      reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
	    else
	      {
		/* Make a new stack slot.  Then indicate that something
		   changed so we go back and recompute offsets for
		   eliminable registers because the allocation of memory
		   below might change some offset.  reg_equiv_{mem,address}
		   will be set up for this pseudo on the next pass around
		   the loop.  */
		reg_equiv_memory_loc (i) = 0;
		reg_equiv_init (i) = 0;
		alter_reg (i, -1, true);
	      }
	  }

      if (caller_save_needed)
	setup_save_areas ();

      if (maybe_ne (starting_frame_size, 0) && crtl->stack_alignment_needed)
	{
	  /* If we have a stack frame, we must align it now.  The
	     stack size may be a part of the offset computation for
	     register elimination.  So if this changes the stack size,
	     then repeat the elimination bookkeeping.  We don't
	     realign when there is no stack, as that will cause a
	     stack frame when none is needed should
	     TARGET_STARTING_FRAME_OFFSET not be already aligned to
	     STACK_BOUNDARY.  */
	  assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
	}
      /* If we allocated another stack slot, redo elimination bookkeeping.  */
      if (something_was_spilled
	  || maybe_ne (starting_frame_size, get_frame_size ()))
	{
	  if (update_eliminables_and_spill ())
	    finish_spills (0);
	  continue;
	}

      if (caller_save_needed)
	{
	  save_call_clobbered_regs ();
	  /* That might have allocated new insn_chain structures.  */
	  reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
	}

      calculate_needs_all_insns (global);

      if (! ira_conflicts_p)
	/* Don't do it for IRA.  We need this info because we don't
	   change live_throughout and dead_or_set for chains when IRA
	   is used.  */
	CLEAR_REG_SET (&spilled_pseudos);

      something_changed = 0;

      /* If we allocated any new memory locations, make another pass
	 since it might have changed elimination offsets.  */
      if (something_was_spilled
	  || maybe_ne (starting_frame_size, get_frame_size ()))
	something_changed = 1;

      /* Even if the frame size remained the same, we might still have
	 changed elimination offsets, e.g. if find_reloads called
	 force_const_mem requiring the back end to allocate a constant
	 pool base register that needs to be saved on the stack.  */
      else if (!verify_initial_elim_offsets ())
	something_changed = 1;

      if (update_eliminables_and_spill ())
	{
	  finish_spills (0);
	  something_changed = 1;
	}
      else
	{
	  select_reload_regs ();
	  if (failure)
	    goto failed;
	  if (insns_need_reload)
	    something_changed |= finish_spills (global);
	}

      if (! something_changed)
	break;

      if (caller_save_needed)
	delete_caller_save_insns ();

      obstack_free (&reload_obstack, reload_firstobj);
    }

  /* If global-alloc was run, notify it of any register eliminations we have
     done.  */
  if (global)
    for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
      if (ep->can_eliminate)
	mark_elimination (ep->from, ep->to);

  remove_init_insns ();

  /* Use the reload registers where necessary
     by generating move instructions to move the must-be-register
     values into or out of the reload registers.  */

  if (insns_need_reload != 0 || something_needs_elimination
      || something_needs_operands_changed)
    {
      poly_int64 old_frame_size = get_frame_size ();

      reload_as_needed (global);

      gcc_assert (known_eq (old_frame_size, get_frame_size ()));

      gcc_assert (verify_initial_elim_offsets ());
    }

  /* If we were able to eliminate the frame pointer, show that it is no
     longer live at the start of any basic block.  If it ls live by
     virtue of being in a pseudo, that pseudo will be marked live
     and hence the frame pointer will be known to be live via that
     pseudo.  */

  if (! frame_pointer_needed)
    FOR_EACH_BB_FN (bb, cfun)
      bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);

  /* Come here (with failure set nonzero) if we can't get enough spill
     regs.  */
 failed:

  CLEAR_REG_SET (&changed_allocation_pseudos);
  CLEAR_REG_SET (&spilled_pseudos);
  reload_in_progress = 0;

  /* Now eliminate all pseudo regs by modifying them into
     their equivalent memory references.
     The REG-rtx's for the pseudos are modified in place,
     so all insns that used to refer to them now refer to memory.

     For a reg that has a reg_equiv_address, all those insns
     were changed by reloading so that no insns refer to it any longer;
     but the DECL_RTL of a variable decl may refer to it,
     and if so this causes the debugging info to mention the variable.  */

  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    {
      rtx addr = 0;

      if (reg_equiv_mem (i))
	addr = XEXP (reg_equiv_mem (i), 0);

      if (reg_equiv_address (i))
	addr = reg_equiv_address (i);

      if (addr)
	{
	  if (reg_renumber[i] < 0)
	    {
	      rtx reg = regno_reg_rtx[i];

	      REG_USERVAR_P (reg) = 0;
	      PUT_CODE (reg, MEM);
	      XEXP (reg, 0) = addr;
	      if (reg_equiv_memory_loc (i))
		MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
	      else
		MEM_ATTRS (reg) = 0;
	      MEM_NOTRAP_P (reg) = 1;
	    }
	  else if (reg_equiv_mem (i))
	    XEXP (reg_equiv_mem (i), 0) = addr;
	}

      /* We don't want complex addressing modes in debug insns
	 if simpler ones will do, so delegitimize equivalences
	 in debug insns.  */
      if (MAY_HAVE_DEBUG_BIND_INSNS && reg_renumber[i] < 0)
	{
	  rtx reg = regno_reg_rtx[i];
	  rtx equiv = 0;
	  df_ref use, next;

	  if (reg_equiv_constant (i))
	    equiv = reg_equiv_constant (i);
	  else if (reg_equiv_invariant (i))
	    equiv = reg_equiv_invariant (i);
	  else if (reg && MEM_P (reg))
	    equiv = targetm.delegitimize_address (reg);
	  else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
	    equiv = reg;

	  if (equiv == reg)
	    continue;

	  for (use = DF_REG_USE_CHAIN (i); use; use = next)
	    {
	      insn = DF_REF_INSN (use);

	      /* Make sure the next ref is for a different instruction,
		 so that we're not affected by the rescan.  */
	      next = DF_REF_NEXT_REG (use);
	      while (next && DF_REF_INSN (next) == insn)
		next = DF_REF_NEXT_REG (next);

	      if (DEBUG_BIND_INSN_P (insn))
		{
		  if (!equiv)
		    {
		      INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
		      df_insn_rescan_debug_internal (insn);
		    }
		  else
		    INSN_VAR_LOCATION_LOC (insn)
		      = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
					      reg, equiv);
		}
	    }
	}
    }

  /* We must set reload_completed now since the cleanup_subreg_operands call
     below will re-recognize each insn and reload may have generated insns
     which are only valid during and after reload.  */
  reload_completed = 1;

  /* Make a pass over all the insns and delete all USEs which we inserted
     only to tag a REG_EQUAL note on them.  Remove all REG_DEAD and REG_UNUSED
     notes.  Delete all CLOBBER insns, except those that refer to the return
     value and the special mem:BLK CLOBBERs added to prevent the scheduler
     from misarranging variable-array code, and simplify (subreg (reg))
     operands.  Strip and regenerate REG_INC notes that may have been moved
     around.  */

  for (insn = first; insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
      {
	rtx *pnote;

	if (CALL_P (insn))
	  replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
			      VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));

	if ((GET_CODE (PATTERN (insn)) == USE
	     /* We mark with QImode USEs introduced by reload itself.  */
	     && (GET_MODE (insn) == QImode
		 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
	    || (GET_CODE (PATTERN (insn)) == CLOBBER
		&& (!MEM_P (XEXP (PATTERN (insn), 0))
		    || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
		    || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
			&& XEXP (XEXP (PATTERN (insn), 0), 0)
				!= stack_pointer_rtx))
		&& (!REG_P (XEXP (PATTERN (insn), 0))
		    || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
	  {
	    delete_insn (insn);
	    continue;
	  }

	/* Some CLOBBERs may survive until here and still reference unassigned
	   pseudos with const equivalent, which may in turn cause ICE in later
	   passes if the reference remains in place.  */
	if (GET_CODE (PATTERN (insn)) == CLOBBER)
	  replace_pseudos_in (& XEXP (PATTERN (insn), 0),
			      VOIDmode, PATTERN (insn));

	/* Discard obvious no-ops, even without -O.  This optimization
	   is fast and doesn't interfere with debugging.  */
	if (NONJUMP_INSN_P (insn)
	    && GET_CODE (PATTERN (insn)) == SET
	    && REG_P (SET_SRC (PATTERN (insn)))
	    && REG_P (SET_DEST (PATTERN (insn)))
	    && (REGNO (SET_SRC (PATTERN (insn)))
		== REGNO (SET_DEST (PATTERN (insn)))))
	  {
	    delete_insn (insn);
	    continue;
	  }

	pnote = &REG_NOTES (insn);
	while (*pnote != 0)
	  {
	    if (REG_NOTE_KIND (*pnote) == REG_DEAD
		|| REG_NOTE_KIND (*pnote) == REG_UNUSED
		|| REG_NOTE_KIND (*pnote) == REG_INC)
	      *pnote = XEXP (*pnote, 1);
	    else
	      pnote = &XEXP (*pnote, 1);
	  }

	if (AUTO_INC_DEC)
	  add_auto_inc_notes (insn, PATTERN (insn));

	/* Simplify (subreg (reg)) if it appears as an operand.  */
	cleanup_subreg_operands (insn);

	/* Clean up invalid ASMs so that they don't confuse later passes.
	   See PR 21299.  */
	if (asm_noperands (PATTERN (insn)) >= 0)
	  {
	    extract_insn (insn);
	    if (!constrain_operands (1, get_enabled_alternatives (insn)))
	      {
		error_for_asm (insn,
			       "%<asm%> operand has impossible constraints");
		delete_insn (insn);
		continue;
	      }
	  }
      }

  free (temp_pseudo_reg_arr);

  /* Indicate that we no longer have known memory locations or constants.  */
  free_reg_equiv ();

  free (reg_max_ref_mode);
  free (reg_old_renumber);
  free (pseudo_previous_regs);
  free (pseudo_forbidden_regs);

  CLEAR_HARD_REG_SET (used_spill_regs);
  for (i = 0; i < n_spills; i++)
    SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);

  /* Free all the insn_chain structures at once.  */
  obstack_free (&reload_obstack, reload_startobj);
  unused_insn_chains = 0;

  inserted = fixup_abnormal_edges ();

  /* We've possibly turned single trapping insn into multiple ones.  */
  if (cfun->can_throw_non_call_exceptions)
    {
      auto_sbitmap blocks (last_basic_block_for_fn (cfun));
      bitmap_ones (blocks);
      find_many_sub_basic_blocks (blocks);
    }

  if (inserted)
    commit_edge_insertions ();

  /* Replacing pseudos with their memory equivalents might have
     created shared rtx.  Subsequent passes would get confused
     by this, so unshare everything here.  */
  unshare_all_rtl_again (first);

#ifdef STACK_BOUNDARY
  /* init_emit has set the alignment of the hard frame pointer
     to STACK_BOUNDARY.  It is very likely no longer valid if
     the hard frame pointer was used for register allocation.  */
  if (!frame_pointer_needed)
    REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
#endif

  substitute_stack.release ();

  gcc_assert (bitmap_empty_p (&spilled_pseudos));

  reload_completed = !failure;

  return need_dce;
}

/* Yet another special case.  Unfortunately, reg-stack forces people to
   write incorrect clobbers in asm statements.  These clobbers must not
   cause the register to appear in bad_spill_regs, otherwise we'll call
   fatal_insn later.  We clear the corresponding regnos in the live
   register sets to avoid this.
   The whole thing is rather sick, I'm afraid.  */

static void
maybe_fix_stack_asms (void)
{
#ifdef STACK_REGS
  const char *constraints[MAX_RECOG_OPERANDS];
  machine_mode operand_mode[MAX_RECOG_OPERANDS];
  class insn_chain *chain;

  for (chain = reload_insn_chain; chain != 0; chain = chain->next)
    {
      int i, noperands;
      HARD_REG_SET clobbered, allowed;
      rtx pat;

      if (! INSN_P (chain->insn)
	  || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
	continue;
      pat = PATTERN (chain->insn);
      if (GET_CODE (pat) != PARALLEL)
	continue;

      CLEAR_HARD_REG_SET (clobbered);
      CLEAR_HARD_REG_SET (allowed);

      /* First, make a mask of all stack regs that are clobbered.  */
      for (i = 0; i < XVECLEN (pat, 0); i++)
	{
	  rtx t = XVECEXP (pat, 0, i);
	  if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
	    SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
	}

      /* Get the operand values and constraints out of the insn.  */
      decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
			   constraints, operand_mode, NULL);

      /* For every operand, see what registers are allowed.  */
      for (i = 0; i < noperands; i++)
	{
	  const char *p = constraints[i];
	  /* For every alternative, we compute the class of registers allowed
	     for reloading in CLS, and merge its contents into the reg set
	     ALLOWED.  */
	  int cls = (int) NO_REGS;

	  for (;;)
	    {
	      char c = *p;

	      if (c == '\0' || c == ',' || c == '#')
		{
		  /* End of one alternative - mark the regs in the current
		     class, and reset the class.  */
		  allowed |= reg_class_contents[cls];
		  cls = NO_REGS;
		  p++;
		  if (c == '#')
		    do {
		      c = *p++;
		    } while (c != '\0' && c != ',');
		  if (c == '\0')
		    break;
		  continue;
		}

	      switch (c)
		{
		case 'g':
		  cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
		  break;

		default:
		  enum constraint_num cn = lookup_constraint (p);
		  if (insn_extra_address_constraint (cn))
		    cls = (int) reg_class_subunion[cls]
		      [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
					     ADDRESS, SCRATCH)];
		  else
		    cls = (int) reg_class_subunion[cls]
		      [reg_class_for_constraint (cn)];
		  break;
		}
	      p += CONSTRAINT_LEN (c, p);
	    }
	}
      /* Those of the registers which are clobbered, but allowed by the
	 constraints, must be usable as reload registers.  So clear them
	 out of the life information.  */
      allowed &= clobbered;
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	if (TEST_HARD_REG_BIT (allowed, i))
	  {
	    CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
	    CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
	  }
    }

#endif
}

/* Copy the global variables n_reloads and rld into the corresponding elts
   of CHAIN.  */
static void
copy_reloads (class insn_chain *chain)
{
  chain->n_reloads = n_reloads;
  chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
  memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
  reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
}

/* Walk the chain of insns, and determine for each whether it needs reloads
   and/or eliminations.  Build the corresponding insns_need_reload list, and
   set something_needs_elimination as appropriate.  */
static void
calculate_needs_all_insns (int global)
{
  class insn_chain **pprev_reload = &insns_need_reload;
  class insn_chain *chain, *next = 0;

  something_needs_elimination = 0;

  reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
  for (chain = reload_insn_chain; chain != 0; chain = next)
    {
      rtx_insn *insn = chain->insn;

      next = chain->next;

      /* Clear out the shortcuts.  */
      chain->n_reloads = 0;
      chain->need_elim = 0;
      chain->need_reload = 0;
      chain->need_operand_change = 0;

      /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
	 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
	 what effects this has on the known offsets at labels.  */

      if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
	  || (INSN_P (insn) && REG_NOTES (insn) != 0))
	set_label_offsets (insn, insn, 0);

      if (INSN_P (insn))
	{
	  rtx old_body = PATTERN (insn);
	  int old_code = INSN_CODE (insn);
	  rtx old_notes = REG_NOTES (insn);
	  int did_elimination = 0;
	  int operands_changed = 0;

	  /* Skip insns that only set an equivalence.  */
	  if (will_delete_init_insn_p (insn))
	    continue;

	  /* If needed, eliminate any eliminable registers.  */
	  if (num_eliminable || num_eliminable_invariants)
	    did_elimination = eliminate_regs_in_insn (insn, 0);

	  /* Analyze the instruction.  */
	  operands_changed = find_reloads (insn, 0, spill_indirect_levels,
					   global, spill_reg_order);

	  /* If a no-op set needs more than one reload, this is likely
	     to be something that needs input address reloads.  We
	     can't get rid of this cleanly later, and it is of no use
	     anyway, so discard it now.
	     We only do this when expensive_optimizations is enabled,
	     since this complements reload inheritance / output
	     reload deletion, and it can make debugging harder.  */
	  if (flag_expensive_optimizations && n_reloads > 1)
	    {
	      rtx set = single_set (insn);
	      if (set
		  &&
		  ((SET_SRC (set) == SET_DEST (set)
		    && REG_P (SET_SRC (set))
		    && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
		   || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
		       && reg_renumber[REGNO (SET_SRC (set))] < 0
		       && reg_renumber[REGNO (SET_DEST (set))] < 0
		       && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
		       && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
		       && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
				       reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
		{
		  if (ira_conflicts_p)
		    /* Inform IRA about the insn deletion.  */
		    ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
						   REGNO (SET_SRC (set)));
		  delete_insn (insn);
		  /* Delete it from the reload chain.  */
		  if (chain->prev)
		    chain->prev->next = next;
		  else
		    reload_insn_chain = next;
		  if (next)
		    next->prev = chain->prev;
		  chain->next = unused_insn_chains;
		  unused_insn_chains = chain;
		  continue;
		}
	    }
	  if (num_eliminable)
	    update_eliminable_offsets ();

	  /* Remember for later shortcuts which insns had any reloads or
	     register eliminations.  */
	  chain->need_elim = did_elimination;
	  chain->need_reload = n_reloads > 0;
	  chain->need_operand_change = operands_changed;

	  /* Discard any register replacements done.  */
	  if (did_elimination)
	    {
	      obstack_free (&reload_obstack, reload_insn_firstobj);
	      PATTERN (insn) = old_body;
	      INSN_CODE (insn) = old_code;
	      REG_NOTES (insn) = old_notes;
	      something_needs_elimination = 1;
	    }

	  something_needs_operands_changed |= operands_changed;

	  if (n_reloads != 0)
	    {
	      copy_reloads (chain);
	      *pprev_reload = chain;
	      pprev_reload = &chain->next_need_reload;
	    }
	}
    }
  *pprev_reload = 0;
}

/* This function is called from the register allocator to set up estimates
   for the cost of eliminating pseudos which have REG_EQUIV equivalences to
   an invariant.  The structure is similar to calculate_needs_all_insns.  */

void
calculate_elim_costs_all_insns (void)
{
  int *reg_equiv_init_cost;
  basic_block bb;
  int i;

  reg_equiv_init_cost = XCNEWVEC (int, max_regno);
  init_elim_table ();
  init_eliminable_invariants (get_insns (), false);

  set_initial_elim_offsets ();
  set_initial_label_offsets ();

  FOR_EACH_BB_FN (bb, cfun)
    {
      rtx_insn *insn;
      elim_bb = bb;

      FOR_BB_INSNS (bb, insn)
	{
	  /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
	     include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
	     what effects this has on the known offsets at labels.  */

	  if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
	      || (INSN_P (insn) && REG_NOTES (insn) != 0))
	    set_label_offsets (insn, insn, 0);

	  if (INSN_P (insn))
	    {
	      rtx set = single_set (insn);

	      /* Skip insns that only set an equivalence.  */
	      if (set && REG_P (SET_DEST (set))
		  && reg_renumber[REGNO (SET_DEST (set))] < 0
		  && (reg_equiv_constant (REGNO (SET_DEST (set)))
		      || reg_equiv_invariant (REGNO (SET_DEST (set)))))
		{
		  unsigned regno = REGNO (SET_DEST (set));
		  rtx_insn_list *init = reg_equiv_init (regno);
		  if (init)
		    {
		      rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
						false, true);
		      machine_mode mode = GET_MODE (SET_DEST (set));
		      int cost = set_src_cost (t, mode,
					       optimize_bb_for_speed_p (bb));
		      int freq = REG_FREQ_FROM_BB (bb);

		      reg_equiv_init_cost[regno] = cost * freq;
		      continue;
		    }
		}
	      /* If needed, eliminate any eliminable registers.  */
	      if (num_eliminable || num_eliminable_invariants)
		elimination_costs_in_insn (insn);

	      if (num_eliminable)
		update_eliminable_offsets ();
	    }
	}
    }
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    {
      if (reg_equiv_invariant (i))
	{
	  if (reg_equiv_init (i))
	    {
	      int cost = reg_equiv_init_cost[i];
	      if (dump_file)
		fprintf (dump_file,
			 "Reg %d has equivalence, initial gains %d\n", i, cost);
	      if (cost != 0)
		ira_adjust_equiv_reg_cost (i, cost);
	    }
	  else
	    {
	      if (dump_file)
		fprintf (dump_file,
			 "Reg %d had equivalence, but can't be eliminated\n",
			 i);
	      ira_adjust_equiv_reg_cost (i, 0);
	    }
	}
    }

  free (reg_equiv_init_cost);
  free (offsets_known_at);
  free (offsets_at);
  offsets_at = NULL;
  offsets_known_at = NULL;
}

/* Comparison function for qsort to decide which of two reloads
   should be handled first.  *P1 and *P2 are the reload numbers.  */

static int
reload_reg_class_lower (const void *r1p, const void *r2p)
{
  int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
  int t;

  /* Consider required reloads before optional ones.  */
  t = rld[r1].optional - rld[r2].optional;
  if (t != 0)
    return t;

  /* Count all solitary classes before non-solitary ones.  */
  t = ((reg_class_size[(int) rld[r2].rclass] == 1)
       - (reg_class_size[(int) rld[r1].rclass] == 1));
  if (t != 0)
    return t;

  /* Aside from solitaires, consider all multi-reg groups first.  */
  t = rld[r2].nregs - rld[r1].nregs;
  if (t != 0)
    return t;

  /* Consider reloads in order of increasing reg-class number.  */
  t = (int) rld[r1].rclass - (int) rld[r2].rclass;
  if (t != 0)
    return t;

  /* If reloads are equally urgent, sort by reload number,
     so that the results of qsort leave nothing to chance.  */
  return r1 - r2;
}

/* The cost of spilling each hard reg.  */
static int spill_cost[FIRST_PSEUDO_REGISTER];

/* When spilling multiple hard registers, we use SPILL_COST for the first
   spilled hard reg and SPILL_ADD_COST for subsequent regs.  SPILL_ADD_COST
   only the first hard reg for a multi-reg pseudo.  */
static int spill_add_cost[FIRST_PSEUDO_REGISTER];

/* Map of hard regno to pseudo regno currently occupying the hard
   reg.  */
static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];

/* Update the spill cost arrays, considering that pseudo REG is live.  */

static void
count_pseudo (int reg)
{
  int freq = REG_FREQ (reg);
  int r = reg_renumber[reg];
  int nregs;

  /* Ignore spilled pseudo-registers which can be here only if IRA is used.  */
  if (ira_conflicts_p && r < 0)
    return;

  if (REGNO_REG_SET_P (&pseudos_counted, reg)
      || REGNO_REG_SET_P (&spilled_pseudos, reg))
    return;

  SET_REGNO_REG_SET (&pseudos_counted, reg);

  gcc_assert (r >= 0);

  spill_add_cost[r] += freq;
  nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
  while (nregs-- > 0)
    {
      hard_regno_to_pseudo_regno[r + nregs] = reg;
      spill_cost[r + nregs] += freq;
    }
}

/* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
   contents of BAD_SPILL_REGS for the insn described by CHAIN.  */

static void
order_regs_for_reload (class insn_chain *chain)
{
  unsigned i;
  HARD_REG_SET used_by_pseudos;
  HARD_REG_SET used_by_pseudos2;
  reg_set_iterator rsi;

  bad_spill_regs = fixed_reg_set;

  memset (spill_cost, 0, sizeof spill_cost);
  memset (spill_add_cost, 0, sizeof spill_add_cost);
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    hard_regno_to_pseudo_regno[i] = -1;

  /* Count number of uses of each hard reg by pseudo regs allocated to it
     and then order them by decreasing use.  First exclude hard registers
     that are live in or across this insn.  */

  REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
  REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
  bad_spill_regs |= used_by_pseudos;
  bad_spill_regs |= used_by_pseudos2;

  /* Now find out which pseudos are allocated to it, and update
     hard_reg_n_uses.  */
  CLEAR_REG_SET (&pseudos_counted);

  EXECUTE_IF_SET_IN_REG_SET
    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
    {
      count_pseudo (i);
    }
  EXECUTE_IF_SET_IN_REG_SET
    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
    {
      count_pseudo (i);
    }
  CLEAR_REG_SET (&pseudos_counted);
}

/* Vector of reload-numbers showing the order in which the reloads should
   be processed.  */
static short reload_order[MAX_RELOADS];

/* This is used to keep track of the spill regs used in one insn.  */
static HARD_REG_SET used_spill_regs_local;

/* We decided to spill hard register SPILLED, which has a size of
   SPILLED_NREGS.  Determine how pseudo REG, which is live during the insn,
   is affected.  We will add it to SPILLED_PSEUDOS if necessary, and we will
   update SPILL_COST/SPILL_ADD_COST.  */

static void
count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
{
  int freq = REG_FREQ (reg);
  int r = reg_renumber[reg];
  int nregs;

  /* Ignore spilled pseudo-registers which can be here only if IRA is used.  */
  if (ira_conflicts_p && r < 0)
    return;

  gcc_assert (r >= 0);

  nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));

  if (REGNO_REG_SET_P (&spilled_pseudos, reg)
      || spilled + spilled_nregs <= r || r + nregs <= spilled)
    return;

  SET_REGNO_REG_SET (&spilled_pseudos, reg);

  spill_add_cost[r] -= freq;
  while (nregs-- > 0)
    {
      hard_regno_to_pseudo_regno[r + nregs] = -1;
      spill_cost[r + nregs] -= freq;
    }
}

/* Find reload register to use for reload number ORDER.  */

static int
find_reg (class insn_chain *chain, int order)
{
  int rnum = reload_order[order];
  struct reload *rl = rld + rnum;
  int best_cost = INT_MAX;
  int best_reg = -1;
  unsigned int i, j, n;
  int k;
  HARD_REG_SET not_usable;
  HARD_REG_SET used_by_other_reload;
  reg_set_iterator rsi;
  static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
  static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];

  not_usable = (bad_spill_regs
		| bad_spill_regs_global
		| ~reg_class_contents[rl->rclass]);

  CLEAR_HARD_REG_SET (used_by_other_reload);
  for (k = 0; k < order; k++)
    {
      int other = reload_order[k];

      if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
	for (j = 0; j < rld[other].nregs; j++)
	  SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
    }

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
#ifdef REG_ALLOC_ORDER
      unsigned int regno = reg_alloc_order[i];
#else
      unsigned int regno = i;
#endif

      if (! TEST_HARD_REG_BIT (not_usable, regno)
	  && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
	  && targetm.hard_regno_mode_ok (regno, rl->mode))
	{
	  int this_cost = spill_cost[regno];
	  int ok = 1;
	  unsigned int this_nregs = hard_regno_nregs (regno, rl->mode);

	  for (j = 1; j < this_nregs; j++)
	    {
	      this_cost += spill_add_cost[regno + j];
	      if ((TEST_HARD_REG_BIT (not_usable, regno + j))
		  || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
		ok = 0;
	    }
	  if (! ok)
	    continue;

	  if (ira_conflicts_p)
	    {
	      /* Ask IRA to find a better pseudo-register for
		 spilling.  */
	      for (n = j = 0; j < this_nregs; j++)
		{
		  int r = hard_regno_to_pseudo_regno[regno + j];

		  if (r < 0)
		    continue;
		  if (n == 0 || regno_pseudo_regs[n - 1] != r)
		    regno_pseudo_regs[n++] = r;
		}
	      regno_pseudo_regs[n++] = -1;
	      if (best_reg < 0
		  || ira_better_spill_reload_regno_p (regno_pseudo_regs,
						      best_regno_pseudo_regs,
						      rl->in, rl->out,
						      chain->insn))
		{
		  best_reg = regno;
		  for (j = 0;; j++)
		    {
		      best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
		      if (regno_pseudo_regs[j] < 0)
			break;
		    }
		}
	      continue;
	    }

	  if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
	    this_cost--;
	  if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
	    this_cost--;
	  if (this_cost < best_cost
	      /* Among registers with equal cost, prefer caller-saved ones, or
		 use REG_ALLOC_ORDER if it is defined.  */
	      || (this_cost == best_cost
#ifdef REG_ALLOC_ORDER
		  && (inv_reg_alloc_order[regno]
		      < inv_reg_alloc_order[best_reg])
#else
		  && crtl->abi->clobbers_full_reg_p (regno)
		  && !crtl->abi->clobbers_full_reg_p (best_reg)
#endif
		  ))
	    {
	      best_reg = regno;
	      best_cost = this_cost;
	    }
	}
    }
  if (best_reg == -1)
    return 0;

  if (dump_file)
    fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);

  rl->nregs = hard_regno_nregs (best_reg, rl->mode);
  rl->regno = best_reg;

  EXECUTE_IF_SET_IN_REG_SET
    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
    {
      count_spilled_pseudo (best_reg, rl->nregs, j);
    }

  EXECUTE_IF_SET_IN_REG_SET
    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
    {
      count_spilled_pseudo (best_reg, rl->nregs, j);
    }

  for (i = 0; i < rl->nregs; i++)
    {
      gcc_assert (spill_cost[best_reg + i] == 0);
      gcc_assert (spill_add_cost[best_reg + i] == 0);
      gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
      SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
    }
  return 1;
}

/* Find more reload regs to satisfy the remaining need of an insn, which
   is given by CHAIN.
   Do it by ascending class number, since otherwise a reg
   might be spilled for a big class and might fail to count
   for a smaller class even though it belongs to that class.  */

static void
find_reload_regs (class insn_chain *chain)
{
  int i;

  /* In order to be certain of getting the registers we need,
     we must sort the reloads into order of increasing register class.
     Then our grabbing of reload registers will parallel the process
     that provided the reload registers.  */
  for (i = 0; i < chain->n_reloads; i++)
    {
      /* Show whether this reload already has a hard reg.  */
      if (chain->rld[i].reg_rtx)
	{
	  chain->rld[i].regno = REGNO (chain->rld[i].reg_rtx);
	  chain->rld[i].nregs = REG_NREGS (chain->rld[i].reg_rtx);
	}
      else
	chain->rld[i].regno = -1;
      reload_order[i] = i;
    }

  n_reloads = chain->n_reloads;
  memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));

  CLEAR_HARD_REG_SET (used_spill_regs_local);

  if (dump_file)
    fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));

  qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);

  /* Compute the order of preference for hard registers to spill.  */

  order_regs_for_reload (chain);

  for (i = 0; i < n_reloads; i++)
    {
      int r = reload_order[i];

      /* Ignore reloads that got marked inoperative.  */
      if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
	  && ! rld[r].optional
	  && rld[r].regno == -1)
	if (! find_reg (chain, i))
	  {
	    if (dump_file)
	      fprintf (dump_file, "reload failure for reload %d\n", r);
	    spill_failure (chain->insn, rld[r].rclass);
	    failure = 1;
	    return;
	  }
    }

  chain->used_spill_regs = used_spill_regs_local;
  used_spill_regs |= used_spill_regs_local;

  memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
}

static void
select_reload_regs (void)
{
  class insn_chain *chain;

  /* Try to satisfy the needs for each insn.  */
  for (chain = insns_need_reload; chain != 0;
       chain = chain->next_need_reload)
    find_reload_regs (chain);
}

/* Delete all insns that were inserted by emit_caller_save_insns during
   this iteration.  */
static void
delete_caller_save_insns (void)
{
  class insn_chain *c = reload_insn_chain;

  while (c != 0)
    {
      while (c != 0 && c->is_caller_save_insn)
	{
	  class insn_chain *next = c->next;
	  rtx_insn *insn = c->insn;

	  if (c == reload_insn_chain)
	    reload_insn_chain = next;
	  delete_insn (insn);

	  if (next)
	    next->prev = c->prev;
	  if (c->prev)
	    c->prev->next = next;
	  c->next = unused_insn_chains;
	  unused_insn_chains = c;
	  c = next;
	}
      if (c != 0)
	c = c->next;
    }
}

/* Handle the failure to find a register to spill.
   INSN should be one of the insns which needed this particular spill reg.  */

static void
spill_failure (rtx_insn *insn, enum reg_class rclass)
{
  if (asm_noperands (PATTERN (insn)) >= 0)
    error_for_asm (insn, "cannot find a register in class %qs while "
		   "reloading %<asm%>",
		   reg_class_names[rclass]);
  else
    {
      error ("unable to find a register to spill in class %qs",
	     reg_class_names[rclass]);

      if (dump_file)
	{
	  fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
	  debug_reload_to_stream (dump_file);
	}
      fatal_insn ("this is the insn:", insn);
    }
}

/* Delete an unneeded INSN and any previous insns who sole purpose is loading
   data that is dead in INSN.  */

static void
delete_dead_insn (rtx_insn *insn)
{
  rtx_insn *prev = prev_active_insn (insn);
  rtx prev_dest;

  /* If the previous insn sets a register that dies in our insn make
     a note that we want to run DCE immediately after reload.

     We used to delete the previous insn & recurse, but that's wrong for
     block local equivalences.  Instead of trying to figure out the exact
     circumstances where we can delete the potentially dead insns, just
     let DCE do the job.  */
  if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
      && GET_CODE (PATTERN (prev)) == SET
      && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
      && reg_mentioned_p (prev_dest, PATTERN (insn))
      && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
      && ! side_effects_p (SET_SRC (PATTERN (prev))))
    need_dce = 1;

  SET_INSN_DELETED (insn);
}

/* Modify the home of pseudo-reg I.
   The new home is present in reg_renumber[I].

   FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
   or it may be -1, meaning there is none or it is not relevant.
   This is used so that all pseudos spilled from a given hard reg
   can share one stack slot.  */

static void
alter_reg (int i, int from_reg, bool dont_share_p)
{
  /* When outputting an inline function, this can happen
     for a reg that isn't actually used.  */
  if (regno_reg_rtx[i] == 0)
    return;

  /* If the reg got changed to a MEM at rtl-generation time,
     ignore it.  */
  if (!REG_P (regno_reg_rtx[i]))
    return;

  /* Modify the reg-rtx to contain the new hard reg
     number or else to contain its pseudo reg number.  */
  SET_REGNO (regno_reg_rtx[i],
	     reg_renumber[i] >= 0 ? reg_renumber[i] : i);

  /* If we have a pseudo that is needed but has no hard reg or equivalent,
     allocate a stack slot for it.  */

  if (reg_renumber[i] < 0
      && REG_N_REFS (i) > 0
      && reg_equiv_constant (i) == 0
      && (reg_equiv_invariant (i) == 0
	  || reg_equiv_init (i) == 0)
      && reg_equiv_memory_loc (i) == 0)
    {
      rtx x = NULL_RTX;
      machine_mode mode = GET_MODE (regno_reg_rtx[i]);
      poly_uint64 inherent_size = GET_MODE_SIZE (mode);
      unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
      machine_mode wider_mode = wider_subreg_mode (mode, reg_max_ref_mode[i]);
      poly_uint64 total_size = GET_MODE_SIZE (wider_mode);
      /* ??? Seems strange to derive the minimum alignment from the size,
	 but that's the traditional behavior.  For polynomial-size modes,
	 the natural extension is to use the minimum possible size.  */
      unsigned int min_align
	= constant_lower_bound (GET_MODE_BITSIZE (reg_max_ref_mode[i]));
      poly_int64 adjust = 0;

      something_was_spilled = true;

      if (ira_conflicts_p)
	{
	  /* Mark the spill for IRA.  */
	  SET_REGNO_REG_SET (&spilled_pseudos, i);
	  if (!dont_share_p)
	    x = ira_reuse_stack_slot (i, inherent_size, total_size);
	}

      if (x)
	;

      /* Each pseudo reg has an inherent size which comes from its own mode,
	 and a total size which provides room for paradoxical subregs
	 which refer to the pseudo reg in wider modes.

	 We can use a slot already allocated if it provides both
	 enough inherent space and enough total space.
	 Otherwise, we allocate a new slot, making sure that it has no less
	 inherent space, and no less total space, then the previous slot.  */
      else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
	{
	  rtx stack_slot;

	  /* The sizes are taken from a subreg operation, which guarantees
	     that they're ordered.  */
	  gcc_checking_assert (ordered_p (total_size, inherent_size));

	  /* No known place to spill from => no slot to reuse.  */
	  x = assign_stack_local (mode, total_size,
				  min_align > inherent_align
				  || maybe_gt (total_size, inherent_size)
				  ? -1 : 0);

	  stack_slot = x;

	  /* Cancel the big-endian correction done in assign_stack_local.
	     Get the address of the beginning of the slot.  This is so we
	     can do a big-endian correction unconditionally below.  */
	  if (BYTES_BIG_ENDIAN)
	    {
	      adjust = inherent_size - total_size;
	      if (maybe_ne (adjust, 0))
		{
		  poly_uint64 total_bits = total_size * BITS_PER_UNIT;
		  machine_mode mem_mode
		    = int_mode_for_size (total_bits, 1).else_blk ();
		  stack_slot = adjust_address_nv (x, mem_mode, adjust);
		}
	    }

	  if (! dont_share_p && ira_conflicts_p)
	    /* Inform IRA about allocation a new stack slot.  */
	    ira_mark_new_stack_slot (stack_slot, i, total_size);
	}

      /* Reuse a stack slot if possible.  */
      else if (spill_stack_slot[from_reg] != 0
	       && known_ge (spill_stack_slot_width[from_reg], total_size)
	       && known_ge (GET_MODE_SIZE
			    (GET_MODE (spill_stack_slot[from_reg])),
			    inherent_size)
	       && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
	x = spill_stack_slot[from_reg];

      /* Allocate a bigger slot.  */
      else
	{
	  /* Compute maximum size needed, both for inherent size
	     and for total size.  */
	  rtx stack_slot;

	  if (spill_stack_slot[from_reg])
	    {
	      if (partial_subreg_p (mode,
				    GET_MODE (spill_stack_slot[from_reg])))
		mode = GET_MODE (spill_stack_slot[from_reg]);
	      total_size = ordered_max (total_size,
					spill_stack_slot_width[from_reg]);
	      if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
		min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
	    }

	  /* The sizes are taken from a subreg operation, which guarantees
	     that they're ordered.  */
	  gcc_checking_assert (ordered_p (total_size, inherent_size));

	  /* Make a slot with that size.  */
	  x = assign_stack_local (mode, total_size,
				  min_align > inherent_align
				  || maybe_gt (total_size, inherent_size)
				  ? -1 : 0);
	  stack_slot = x;

	  /* Cancel the  big-endian correction done in assign_stack_local.
	     Get the address of the beginning of the slot.  This is so we
	     can do a big-endian correction unconditionally below.  */
	  if (BYTES_BIG_ENDIAN)
	    {
	      adjust = GET_MODE_SIZE (mode) - total_size;
	      if (maybe_ne (adjust, 0))
		{
		  poly_uint64 total_bits = total_size * BITS_PER_UNIT;
		  machine_mode mem_mode
		    = int_mode_for_size (total_bits, 1).else_blk ();
		  stack_slot = adjust_address_nv (x, mem_mode, adjust);
		}
	    }

	  spill_stack_slot[from_reg] = stack_slot;
	  spill_stack_slot_width[from_reg] = total_size;
	}

      /* On a big endian machine, the "address" of the slot
	 is the address of the low part that fits its inherent mode.  */
      adjust += subreg_size_lowpart_offset (inherent_size, total_size);

      /* If we have any adjustment to make, or if the stack slot is the
	 wrong mode, make a new stack slot.  */
      x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);

      /* Set all of the memory attributes as appropriate for a spill.  */
      set_mem_attrs_for_spill (x);

      /* Save the stack slot for later.  */
      reg_equiv_memory_loc (i) = x;
    }
}

/* Mark the slots in regs_ever_live for the hard regs used by
   pseudo-reg number REGNO, accessed in MODE.  */

static void
mark_home_live_1 (int regno, machine_mode mode)
{
  int i, lim;

  i = reg_renumber[regno];
  if (i < 0)
    return;
  lim = end_hard_regno (mode, i);
  while (i < lim)
    df_set_regs_ever_live (i++, true);
}

/* Mark the slots in regs_ever_live for the hard regs
   used by pseudo-reg number REGNO.  */

void
mark_home_live (int regno)
{
  if (reg_renumber[regno] >= 0)
    mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
}

/* This function handles the tracking of elimination offsets around branches.

   X is a piece of RTL being scanned.

   INSN is the insn that it came from, if any.

   INITIAL_P is nonzero if we are to set the offset to be the initial
   offset and zero if we are setting the offset of the label to be the
   current offset.  */

static void
set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
{
  enum rtx_code code = GET_CODE (x);
  rtx tem;
  unsigned int i;
  struct elim_table *p;

  switch (code)
    {
    case LABEL_REF:
      if (LABEL_REF_NONLOCAL_P (x))
	return;

      x = label_ref_label (x);

      /* fall through */

    case CODE_LABEL:
      /* If we know nothing about this label, set the desired offsets.  Note
	 that this sets the offset at a label to be the offset before a label
	 if we don't know anything about the label.  This is not correct for
	 the label after a BARRIER, but is the best guess we can make.  If
	 we guessed wrong, we will suppress an elimination that might have
	 been possible had we been able to guess correctly.  */

      if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
	{
	  for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
	    offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
	      = (initial_p ? reg_eliminate[i].initial_offset
		 : reg_eliminate[i].offset);
	  offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
	}

      /* Otherwise, if this is the definition of a label and it is
	 preceded by a BARRIER, set our offsets to the known offset of
	 that label.  */

      else if (x == insn
	       && (tem = prev_nonnote_insn (insn)) != 0
	       && BARRIER_P (tem))
	set_offsets_for_label (insn);
      else
	/* If neither of the above cases is true, compare each offset
	   with those previously recorded and suppress any eliminations
	   where the offsets disagree.  */

	for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
	  if (maybe_ne (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i],
			(initial_p ? reg_eliminate[i].initial_offset
			 : reg_eliminate[i].offset)))
	    reg_eliminate[i].can_eliminate = 0;

      return;

    case JUMP_TABLE_DATA:
      set_label_offsets (PATTERN (insn), insn, initial_p);
      return;

    case JUMP_INSN:
      set_label_offsets (PATTERN (insn), insn, initial_p);

      /* fall through */

    case INSN:
    case CALL_INSN:
      /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
	 to indirectly and hence must have all eliminations at their
	 initial offsets.  */
      for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
	if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
	  set_label_offsets (XEXP (tem, 0), insn, 1);
      return;

    case PARALLEL:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      /* Each of the labels in the parallel or address vector must be
	 at their initial offsets.  We want the first field for PARALLEL
	 and ADDR_VEC and the second field for ADDR_DIFF_VEC.  */

      for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
	set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
			   insn, initial_p);
      return;

    case SET:
      /* We only care about setting PC.  If the source is not RETURN,
	 IF_THEN_ELSE, or a label, disable any eliminations not at
	 their initial offsets.  Similarly if any arm of the IF_THEN_ELSE
	 isn't one of those possibilities.  For branches to a label,
	 call ourselves recursively.

	 Note that this can disable elimination unnecessarily when we have
	 a non-local goto since it will look like a non-constant jump to
	 someplace in the current function.  This isn't a significant
	 problem since such jumps will normally be when all elimination
	 pairs are back to their initial offsets.  */

      if (SET_DEST (x) != pc_rtx)
	return;

      switch (GET_CODE (SET_SRC (x)))
	{
	case PC:
	case RETURN:
	  return;

	case LABEL_REF:
	  set_label_offsets (SET_SRC (x), insn, initial_p);
	  return;

	case IF_THEN_ELSE:
	  tem = XEXP (SET_SRC (x), 1);
	  if (GET_CODE (tem) == LABEL_REF)
	    set_label_offsets (label_ref_label (tem), insn, initial_p);
	  else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
	    break;

	  tem = XEXP (SET_SRC (x), 2);
	  if (GET_CODE (tem) == LABEL_REF)
	    set_label_offsets (label_ref_label (tem), insn, initial_p);
	  else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
	    break;
	  return;

	default:
	  break;
	}

      /* If we reach here, all eliminations must be at their initial
	 offset because we are doing a jump to a variable address.  */
      for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
	if (maybe_ne (p->offset, p->initial_offset))
	  p->can_eliminate = 0;
      break;

    default:
      break;
    }
}

/* This function examines every reg that occurs in X and adjusts the
   costs for its elimination which are gathered by IRA.  INSN is the
   insn in which X occurs.  We do not recurse into MEM expressions.  */

static void
note_reg_elim_costly (const_rtx x, rtx insn)
{
  subrtx_iterator::array_type array;
  FOR_EACH_SUBRTX (iter, array, x, NONCONST)
    {
      const_rtx x = *iter;
      if (MEM_P (x))
	iter.skip_subrtxes ();
      else if (REG_P (x)
	       && REGNO (x) >= FIRST_PSEUDO_REGISTER
	       && reg_equiv_init (REGNO (x))
	       && reg_equiv_invariant (REGNO (x)))
	{
	  rtx t = reg_equiv_invariant (REGNO (x));
	  rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
	  int cost = set_src_cost (new_rtx, Pmode,
				   optimize_bb_for_speed_p (elim_bb));
	  int freq = REG_FREQ_FROM_BB (elim_bb);

	  if (cost != 0)
	    ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
	}
    }
}

/* Scan X and replace any eliminable registers (such as fp) with a
   replacement (such as sp), plus an offset.

   MEM_MODE is the mode of an enclosing MEM.  We need this to know how
   much to adjust a register for, e.g., PRE_DEC.  Also, if we are inside a
   MEM, we are allowed to replace a sum of a register and the constant zero
   with the register, which we cannot do outside a MEM.  In addition, we need
   to record the fact that a register is referenced outside a MEM.

   If INSN is an insn, it is the insn containing X.  If we replace a REG
   in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
   CLOBBER of the pseudo after INSN so find_equiv_regs will know that
   the REG is being modified.

   Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
   That's used when we eliminate in expressions stored in notes.
   This means, do not set ref_outside_mem even if the reference
   is outside of MEMs.

   If FOR_COSTS is true, we are being called before reload in order to
   estimate the costs of keeping registers with an equivalence unallocated.

   REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
   replacements done assuming all offsets are at their initial values.  If
   they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
   encounter, return the actual location so that find_reloads will do
   the proper thing.  */

static rtx
eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
		  bool may_use_invariant, bool for_costs)
{
  enum rtx_code code = GET_CODE (x);
  struct elim_table *ep;
  int regno;
  rtx new_rtx;
  int i, j;
  const char *fmt;
  int copied = 0;

  if (! current_function_decl)
    return x;

  switch (code)
    {
    CASE_CONST_ANY:
    case CONST:
    case SYMBOL_REF:
    case CODE_LABEL:
    case PC:
    case ASM_INPUT:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case RETURN:
      return x;

    case REG:
      regno = REGNO (x);

      /* First handle the case where we encounter a bare register that
	 is eliminable.  Replace it with a PLUS.  */
      if (regno < FIRST_PSEUDO_REGISTER)
	{
	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
	       ep++)
	    if (ep->from_rtx == x && ep->can_eliminate)
	      return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);

	}
      else if (reg_renumber && reg_renumber[regno] < 0
	       && reg_equivs
	       && reg_equiv_invariant (regno))
	{
	  if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
	    return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
			             mem_mode, insn, true, for_costs);
	  /* There exists at least one use of REGNO that cannot be
	     eliminated.  Prevent the defining insn from being deleted.  */
	  reg_equiv_init (regno) = NULL;
	  if (!for_costs)
	    alter_reg (regno, -1, true);
	}
      return x;

    /* You might think handling MINUS in a manner similar to PLUS is a
       good idea.  It is not.  It has been tried multiple times and every
       time the change has had to have been reverted.

       Other parts of reload know a PLUS is special (gen_reload for example)
       and require special code to handle code a reloaded PLUS operand.

       Also consider backends where the flags register is clobbered by a
       MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
       lea instruction comes to mind).  If we try to reload a MINUS, we
       may kill the flags register that was holding a useful value.

       So, please before trying to handle MINUS, consider reload as a
       whole instead of this little section as well as the backend issues.  */
    case PLUS:
      /* If this is the sum of an eliminable register and a constant, rework
	 the sum.  */
      if (REG_P (XEXP (x, 0))
	  && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
	  && CONSTANT_P (XEXP (x, 1)))
	{
	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
	       ep++)
	    if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
	      {
		/* The only time we want to replace a PLUS with a REG (this
		   occurs when the constant operand of the PLUS is the negative
		   of the offset) is when we are inside a MEM.  We won't want
		   to do so at other times because that would change the
		   structure of the insn in a way that reload can't handle.
		   We special-case the commonest situation in
		   eliminate_regs_in_insn, so just replace a PLUS with a
		   PLUS here, unless inside a MEM.  In DEBUG_INSNs, it is
		   always ok to replace a PLUS with just a REG.  */
		if ((mem_mode != 0 || (insn && DEBUG_INSN_P (insn)))
		    && CONST_INT_P (XEXP (x, 1))
		    && known_eq (INTVAL (XEXP (x, 1)), -ep->previous_offset))
		  return ep->to_rtx;
		else
		  return gen_rtx_PLUS (Pmode, ep->to_rtx,
				       plus_constant (Pmode, XEXP (x, 1),
						      ep->previous_offset));
	      }

	  /* If the register is not eliminable, we are done since the other
	     operand is a constant.  */
	  return x;
	}

      /* If this is part of an address, we want to bring any constant to the
	 outermost PLUS.  We will do this by doing register replacement in
	 our operands and seeing if a constant shows up in one of them.

	 Note that there is no risk of modifying the structure of the insn,
	 since we only get called for its operands, thus we are either
	 modifying the address inside a MEM, or something like an address
	 operand of a load-address insn.  */

      {
	rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
				     for_costs);
	rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
				     for_costs);

	if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
	  {
	    /* If one side is a PLUS and the other side is a pseudo that
	       didn't get a hard register but has a reg_equiv_constant,
	       we must replace the constant here since it may no longer
	       be in the position of any operand.  */
	    if (GET_CODE (new0) == PLUS && REG_P (new1)
		&& REGNO (new1) >= FIRST_PSEUDO_REGISTER
		&& reg_renumber[REGNO (new1)] < 0
		&& reg_equivs
		&& reg_equiv_constant (REGNO (new1)) != 0)
	      new1 = reg_equiv_constant (REGNO (new1));
	    else if (GET_CODE (new1) == PLUS && REG_P (new0)
		     && REGNO (new0) >= FIRST_PSEUDO_REGISTER
		     && reg_renumber[REGNO (new0)] < 0
		     && reg_equiv_constant (REGNO (new0)) != 0)
	      new0 = reg_equiv_constant (REGNO (new0));

	    new_rtx = form_sum (GET_MODE (x), new0, new1);

	    /* As above, if we are not inside a MEM we do not want to
	       turn a PLUS into something else.  We might try to do so here
	       for an addition of 0 if we aren't optimizing.  */
	    if (! mem_mode && GET_CODE (new_rtx) != PLUS)
	      return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
	    else
	      return new_rtx;
	  }
      }
      return x;

    case MULT:
      /* If this is the product of an eliminable register and a
	 constant, apply the distribute law and move the constant out
	 so that we have (plus (mult ..) ..).  This is needed in order
	 to keep load-address insns valid.   This case is pathological.
	 We ignore the possibility of overflow here.  */
      if (REG_P (XEXP (x, 0))
	  && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
	  && CONST_INT_P (XEXP (x, 1)))
	for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
	     ep++)
	  if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
	    {
	      if (! mem_mode
		  /* Refs inside notes or in DEBUG_INSNs don't count for
		     this purpose.  */
		  && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
				      || GET_CODE (insn) == INSN_LIST
				      || DEBUG_INSN_P (insn))))
		ep->ref_outside_mem = 1;

	      return
		plus_constant (Pmode,
			       gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
			       ep->previous_offset * INTVAL (XEXP (x, 1)));
	    }

      /* fall through */

    case CALL:
    case COMPARE:
    /* See comments before PLUS about handling MINUS.  */
    case MINUS:
    case DIV:      case UDIV:
    case MOD:      case UMOD:
    case AND:      case IOR:      case XOR:
    case ROTATERT: case ROTATE:
    case ASHIFTRT: case LSHIFTRT: case ASHIFT:
    case NE:       case EQ:
    case GE:       case GT:       case GEU:    case GTU:
    case LE:       case LT:       case LEU:    case LTU:
      {
	rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
				     for_costs);
	rtx new1 = XEXP (x, 1)
	  ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
			      for_costs) : 0;

	if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
	  return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
      }
      return x;

    case EXPR_LIST:
      /* If we have something in XEXP (x, 0), the usual case, eliminate it.  */
      if (XEXP (x, 0))
	{
	  new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
				      for_costs);
	  if (new_rtx != XEXP (x, 0))
	    {
	      /* If this is a REG_DEAD note, it is not valid anymore.
		 Using the eliminated version could result in creating a
		 REG_DEAD note for the stack or frame pointer.  */
	      if (REG_NOTE_KIND (x) == REG_DEAD)
		return (XEXP (x, 1)
			? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
					    for_costs)
			: NULL_RTX);

	      x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
	    }
	}

      /* fall through */

    case INSN_LIST:
    case INT_LIST:
      /* Now do eliminations in the rest of the chain.  If this was
	 an EXPR_LIST, this might result in allocating more memory than is
	 strictly needed, but it simplifies the code.  */
      if (XEXP (x, 1))
	{
	  new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
				      for_costs);
	  if (new_rtx != XEXP (x, 1))
	    return
	      gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
	}
      return x;

    case PRE_INC:
    case POST_INC:
    case PRE_DEC:
    case POST_DEC:
      /* We do not support elimination of a register that is modified.
	 elimination_effects has already make sure that this does not
	 happen.  */
      return x;

    case PRE_MODIFY:
    case POST_MODIFY:
      /* We do not support elimination of a register that is modified.
	 elimination_effects has already make sure that this does not
	 happen.  The only remaining case we need to consider here is
	 that the increment value may be an eliminable register.  */
      if (GET_CODE (XEXP (x, 1)) == PLUS
	  && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
	{
	  rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
					  insn, true, for_costs);

	  if (new_rtx != XEXP (XEXP (x, 1), 1))
	    return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
				   gen_rtx_PLUS (GET_MODE (x),
						 XEXP (x, 0), new_rtx));
	}
      return x;

    case STRICT_LOW_PART:
    case NEG:          case NOT:
    case SIGN_EXTEND:  case ZERO_EXTEND:
    case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
    case FLOAT:        case FIX:
    case UNSIGNED_FIX: case UNSIGNED_FLOAT:
    case ABS:
    case SQRT:
    case FFS:
    case CLZ:
    case CTZ:
    case POPCOUNT:
    case PARITY:
    case BSWAP:
      new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
				  for_costs);
      if (new_rtx != XEXP (x, 0))
	return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
      return x;

    case SUBREG:
      /* Similar to above processing, but preserve SUBREG_BYTE.
	 Convert (subreg (mem)) to (mem) if not paradoxical.
	 Also, if we have a non-paradoxical (subreg (pseudo)) and the
	 pseudo didn't get a hard reg, we must replace this with the
	 eliminated version of the memory location because push_reload
	 may do the replacement in certain circumstances.  */
      if (REG_P (SUBREG_REG (x))
	  && !paradoxical_subreg_p (x)
	  && reg_equivs
	  && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
	{
	  new_rtx = SUBREG_REG (x);
	}
      else
	new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);

      if (new_rtx != SUBREG_REG (x))
	{
	  poly_int64 x_size = GET_MODE_SIZE (GET_MODE (x));
	  poly_int64 new_size = GET_MODE_SIZE (GET_MODE (new_rtx));

	  if (MEM_P (new_rtx)
	      && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx))
		   /* On RISC machines, combine can create rtl of the form
		      (set (subreg:m1 (reg:m2 R) 0) ...)
		      where m1 < m2, and expects something interesting to
		      happen to the entire word.  Moreover, it will use the
		      (reg:m2 R) later, expecting all bits to be preserved.
		      So if the number of words is the same, preserve the
		      subreg so that push_reload can see it.  */
		   && !(WORD_REGISTER_OPERATIONS
			&& known_equal_after_align_down (x_size - 1,
							 new_size - 1,
							 UNITS_PER_WORD)))
		  || known_eq (x_size, new_size))
	      )
	    return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
	  else if (insn && GET_CODE (insn) == DEBUG_INSN)
	    return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
	  else
	    return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
	}

      return x;

    case MEM:
      /* Our only special processing is to pass the mode of the MEM to our
	 recursive call and copy the flags.  While we are here, handle this
	 case more efficiently.  */

      new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
				  for_costs);
      if (for_costs
	  && memory_address_p (GET_MODE (x), XEXP (x, 0))
	  && !memory_address_p (GET_MODE (x), new_rtx))
	note_reg_elim_costly (XEXP (x, 0), insn);

      return replace_equiv_address_nv (x, new_rtx);

    case USE:
      /* Handle insn_list USE that a call to a pure function may generate.  */
      new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
				  for_costs);
      if (new_rtx != XEXP (x, 0))
	return gen_rtx_USE (GET_MODE (x), new_rtx);
      return x;

    case CLOBBER:
    case ASM_OPERANDS:
      gcc_assert (insn && DEBUG_INSN_P (insn));
      break;

    case SET:
      gcc_unreachable ();

    default:
      break;
    }

  /* Process each of our operands recursively.  If any have changed, make a
     copy of the rtx.  */
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    {
      if (*fmt == 'e')
	{
	  new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
				      for_costs);
	  if (new_rtx != XEXP (x, i) && ! copied)
	    {
	      x = shallow_copy_rtx (x);
	      copied = 1;
	    }
	  XEXP (x, i) = new_rtx;
	}
      else if (*fmt == 'E')
	{
	  int copied_vec = 0;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    {
	      new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
					  for_costs);
	      if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
		{
		  rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
					     XVEC (x, i)->elem);
		  if (! copied)
		    {
		      x = shallow_copy_rtx (x);
		      copied = 1;
		    }
		  XVEC (x, i) = new_v;
		  copied_vec = 1;
		}
	      XVECEXP (x, i, j) = new_rtx;
	    }
	}
    }

  return x;
}

rtx
eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
{
  if (reg_eliminate == NULL)
    {
      gcc_assert (targetm.no_register_allocation);
      return x;
    }
  return eliminate_regs_1 (x, mem_mode, insn, false, false);
}

/* Scan rtx X for modifications of elimination target registers.  Update
   the table of eliminables to reflect the changed state.  MEM_MODE is
   the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM.  */

static void
elimination_effects (rtx x, machine_mode mem_mode)
{
  enum rtx_code code = GET_CODE (x);
  struct elim_table *ep;
  int regno;
  int i, j;
  const char *fmt;

  switch (code)
    {
    CASE_CONST_ANY:
    case CONST:
    case SYMBOL_REF:
    case CODE_LABEL:
    case PC:
    case ASM_INPUT:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case RETURN:
      return;

    case REG:
      regno = REGNO (x);

      /* First handle the case where we encounter a bare register that
	 is eliminable.  Replace it with a PLUS.  */
      if (regno < FIRST_PSEUDO_REGISTER)
	{
	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
	       ep++)
	    if (ep->from_rtx == x && ep->can_eliminate)
	      {
		if (! mem_mode)
		  ep->ref_outside_mem = 1;
		return;
	      }

	}
      else if (reg_renumber[regno] < 0
	       && reg_equivs
	       && reg_equiv_constant (regno)
	       && ! function_invariant_p (reg_equiv_constant (regno)))
	elimination_effects (reg_equiv_constant (regno), mem_mode);
      return;

    case PRE_INC:
    case POST_INC:
    case PRE_DEC:
    case POST_DEC:
    case POST_MODIFY:
    case PRE_MODIFY:
      /* If we modify the source of an elimination rule, disable it.  */
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
	if (ep->from_rtx == XEXP (x, 0))
	  ep->can_eliminate = 0;

      /* If we modify the target of an elimination rule by adding a constant,
	 update its offset.  If we modify the target in any other way, we'll
	 have to disable the rule as well.  */
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
	if (ep->to_rtx == XEXP (x, 0))
	  {
	    poly_int64 size = GET_MODE_SIZE (mem_mode);

	    /* If more bytes than MEM_MODE are pushed, account for them.  */
#ifdef PUSH_ROUNDING
	    if (ep->to_rtx == stack_pointer_rtx)
	      size = PUSH_ROUNDING (size);
#endif
	    if (code == PRE_DEC || code == POST_DEC)
	      ep->offset += size;
	    else if (code == PRE_INC || code == POST_INC)
	      ep->offset -= size;
	    else if (code == PRE_MODIFY || code == POST_MODIFY)
	      {
		if (GET_CODE (XEXP (x, 1)) == PLUS
		    && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
		    && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
		  ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
		else
		  ep->can_eliminate = 0;
	      }
	  }

      /* These two aren't unary operators.  */
      if (code == POST_MODIFY || code == PRE_MODIFY)
	break;

      /* Fall through to generic unary operation case.  */
      gcc_fallthrough ();
    case STRICT_LOW_PART:
    case NEG:          case NOT:
    case SIGN_EXTEND:  case ZERO_EXTEND:
    case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
    case FLOAT:        case FIX:
    case UNSIGNED_FIX: case UNSIGNED_FLOAT:
    case ABS:
    case SQRT:
    case FFS:
    case CLZ:
    case CTZ:
    case POPCOUNT:
    case PARITY:
    case BSWAP:
      elimination_effects (XEXP (x, 0), mem_mode);
      return;

    case SUBREG:
      if (REG_P (SUBREG_REG (x))
	  && !paradoxical_subreg_p (x)
	  && reg_equivs
	  && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
	return;

      elimination_effects (SUBREG_REG (x), mem_mode);
      return;

    case USE:
      /* If using a register that is the source of an eliminate we still
	 think can be performed, note it cannot be performed since we don't
	 know how this register is used.  */
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
	if (ep->from_rtx == XEXP (x, 0))
	  ep->can_eliminate = 0;

      elimination_effects (XEXP (x, 0), mem_mode);
      return;

    case CLOBBER:
      /* If clobbering a register that is the replacement register for an
	 elimination we still think can be performed, note that it cannot
	 be performed.  Otherwise, we need not be concerned about it.  */
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
	if (ep->to_rtx == XEXP (x, 0))
	  ep->can_eliminate = 0;

      elimination_effects (XEXP (x, 0), mem_mode);
      return;

    case SET:
      /* Check for setting a register that we know about.  */
      if (REG_P (SET_DEST (x)))
	{
	  /* See if this is setting the replacement register for an
	     elimination.

	     If DEST is the hard frame pointer, we do nothing because we
	     assume that all assignments to the frame pointer are for
	     non-local gotos and are being done at a time when they are valid
	     and do not disturb anything else.  Some machines want to
	     eliminate a fake argument pointer (or even a fake frame pointer)
	     with either the real frame or the stack pointer.  Assignments to
	     the hard frame pointer must not prevent this elimination.  */

	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
	       ep++)
	    if (ep->to_rtx == SET_DEST (x)
		&& SET_DEST (x) != hard_frame_pointer_rtx)
	      {
		/* If it is being incremented, adjust the offset.  Otherwise,
		   this elimination can't be done.  */
		rtx src = SET_SRC (x);

		if (GET_CODE (src) == PLUS
		    && XEXP (src, 0) == SET_DEST (x)
		    && CONST_INT_P (XEXP (src, 1)))
		  ep->offset -= INTVAL (XEXP (src, 1));
		else
		  ep->can_eliminate = 0;
	      }
	}

      elimination_effects (SET_DEST (x), VOIDmode);
      elimination_effects (SET_SRC (x), VOIDmode);
      return;

    case MEM:
      /* Our only special processing is to pass the mode of the MEM to our
	 recursive call.  */
      elimination_effects (XEXP (x, 0), GET_MODE (x));
      return;

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    {
      if (*fmt == 'e')
	elimination_effects (XEXP (x, i), mem_mode);
      else if (*fmt == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  elimination_effects (XVECEXP (x, i, j), mem_mode);
    }
}

/* Descend through rtx X and verify that no references to eliminable registers
   remain.  If any do remain, mark the involved register as not
   eliminable.  */

static void
check_eliminable_occurrences (rtx x)
{
  const char *fmt;
  int i;
  enum rtx_code code;

  if (x == 0)
    return;

  code = GET_CODE (x);

  if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
    {
      struct elim_table *ep;

      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
	if (ep->from_rtx == x)
	  ep->can_eliminate = 0;
      return;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    {
      if (*fmt == 'e')
	check_eliminable_occurrences (XEXP (x, i));
      else if (*fmt == 'E')
	{
	  int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    check_eliminable_occurrences (XVECEXP (x, i, j));
	}
    }
}

/* Scan INSN and eliminate all eliminable registers in it.

   If REPLACE is nonzero, do the replacement destructively.  Also
   delete the insn as dead it if it is setting an eliminable register.

   If REPLACE is zero, do all our allocations in reload_obstack.

   If no eliminations were done and this insn doesn't require any elimination
   processing (these are not identical conditions: it might be updating sp,
   but not referencing fp; this needs to be seen during reload_as_needed so
   that the offset between fp and sp can be taken into consideration), zero
   is returned.  Otherwise, 1 is returned.  */

static int
eliminate_regs_in_insn (rtx_insn *insn, int replace)
{
  int icode = recog_memoized (insn);
  rtx old_body = PATTERN (insn);
  int insn_is_asm = asm_noperands (old_body) >= 0;
  rtx old_set = single_set (insn);
  rtx new_body;
  int val = 0;
  int i;
  rtx substed_operand[MAX_RECOG_OPERANDS];
  rtx orig_operand[MAX_RECOG_OPERANDS];
  struct elim_table *ep;
  rtx plus_src, plus_cst_src;

  if (! insn_is_asm && icode < 0)
    {
      gcc_assert (DEBUG_INSN_P (insn)
		  || GET_CODE (PATTERN (insn)) == USE
		  || GET_CODE (PATTERN (insn)) == CLOBBER
		  || GET_CODE (PATTERN (insn)) == ASM_INPUT);
      if (DEBUG_BIND_INSN_P (insn))
	INSN_VAR_LOCATION_LOC (insn)
	  = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
      return 0;
    }

  /* We allow one special case which happens to work on all machines we
     currently support: a single set with the source or a REG_EQUAL
     note being a PLUS of an eliminable register and a constant.  */
  plus_src = plus_cst_src = 0;
  if (old_set && REG_P (SET_DEST (old_set)))
    {
      if (GET_CODE (SET_SRC (old_set)) == PLUS)
	plus_src = SET_SRC (old_set);
      /* First see if the source is of the form (plus (...) CST).  */
      if (plus_src
	  && CONST_INT_P (XEXP (plus_src, 1)))
	plus_cst_src = plus_src;
      else if (REG_P (SET_SRC (old_set))
	       || plus_src)
	{
	  /* Otherwise, see if we have a REG_EQUAL note of the form
	     (plus (...) CST).  */
	  rtx links;
	  for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
	    {
	      if ((REG_NOTE_KIND (links) == REG_EQUAL
		   || REG_NOTE_KIND (links) == REG_EQUIV)
		  && GET_CODE (XEXP (links, 0)) == PLUS
		  && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
		{
		  plus_cst_src = XEXP (links, 0);
		  break;
		}
	    }
	}

      /* Check that the first operand of the PLUS is a hard reg or
	 the lowpart subreg of one.  */
      if (plus_cst_src)
	{
	  rtx reg = XEXP (plus_cst_src, 0);
	  if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
	    reg = SUBREG_REG (reg);

	  if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
	    plus_cst_src = 0;
	}
    }
  if (plus_cst_src)
    {
      rtx reg = XEXP (plus_cst_src, 0);
      poly_int64 offset = INTVAL (XEXP (plus_cst_src, 1));

      if (GET_CODE (reg) == SUBREG)
	reg = SUBREG_REG (reg);

      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
	if (ep->from_rtx == reg && ep->can_eliminate)
	  {
	    rtx to_rtx = ep->to_rtx;
	    offset += ep->offset;
	    offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));

	    if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
	      to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
				    to_rtx);
	    /* If we have a nonzero offset, and the source is already
	       a simple REG, the following transformation would
	       increase the cost of the insn by replacing a simple REG
	       with (plus (reg sp) CST).  So try only when we already
	       had a PLUS before.  */
	    if (known_eq (offset, 0) || plus_src)
	      {
		rtx new_src = plus_constant (GET_MODE (to_rtx),
					     to_rtx, offset);

		new_body = old_body;
		if (! replace)
		  {
		    new_body = copy_insn (old_body);
		    if (REG_NOTES (insn))
		      REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
		  }
		PATTERN (insn) = new_body;
		old_set = single_set (insn);

		/* First see if this insn remains valid when we make the
		   change.  If not, try to replace the whole pattern with
		   a simple set (this may help if the original insn was a
		   PARALLEL that was only recognized as single_set due to
		   REG_UNUSED notes).  If this isn't valid either, keep
		   the INSN_CODE the same and let reload fix it up.  */
		if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
		  {
		    rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);

		    if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
		      SET_SRC (old_set) = new_src;
		  }
	      }
	    else
	      break;

	    val = 1;
	    /* This can't have an effect on elimination offsets, so skip right
	       to the end.  */
	    goto done;
	  }
    }

  /* Determine the effects of this insn on elimination offsets.  */
  elimination_effects (old_body, VOIDmode);

  /* Eliminate all eliminable registers occurring in operands that
     can be handled by reload.  */
  extract_insn (insn);
  for (i = 0; i < recog_data.n_operands; i++)
    {
      orig_operand[i] = recog_data.operand[i];
      substed_operand[i] = recog_data.operand[i];

      /* For an asm statement, every operand is eliminable.  */
      if (insn_is_asm || insn_data[icode].operand[i].eliminable)
	{
	  bool is_set_src, in_plus;

	  /* Check for setting a register that we know about.  */
	  if (recog_data.operand_type[i] != OP_IN
	      && REG_P (orig_operand[i]))
	    {
	      /* If we are assigning to a register that can be eliminated, it
		 must be as part of a PARALLEL, since the code above handles
		 single SETs.  We must indicate that we can no longer
		 eliminate this reg.  */
	      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
		   ep++)
		if (ep->from_rtx == orig_operand[i])
		  ep->can_eliminate = 0;
	    }

	  /* Companion to the above plus substitution, we can allow
	     invariants as the source of a plain move.  */
	  is_set_src = false;
	  if (old_set
	      && recog_data.operand_loc[i] == &SET_SRC (old_set))
	    is_set_src = true;
	  in_plus = false;
	  if (plus_src
	      && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
		  || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
	    in_plus = true;

	  substed_operand[i]
	    = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
			        replace ? insn : NULL_RTX,
				is_set_src || in_plus, false);
	  if (substed_operand[i] != orig_operand[i])
	    val = 1;
	  /* Terminate the search in check_eliminable_occurrences at
	     this point.  */
	  *recog_data.operand_loc[i] = 0;

	  /* If an output operand changed from a REG to a MEM and INSN is an
	     insn, write a CLOBBER insn.  */
	  if (recog_data.operand_type[i] != OP_IN
	      && REG_P (orig_operand[i])
	      && MEM_P (substed_operand[i])
	      && replace)
	    emit_insn_after (gen_clobber (orig_operand[i]), insn);
	}
    }

  for (i = 0; i < recog_data.n_dups; i++)
    *recog_data.dup_loc[i]
      = *recog_data.operand_loc[(int) recog_data.dup_num[i]];

  /* If any eliminable remain, they aren't eliminable anymore.  */
  check_eliminable_occurrences (old_body);

  /* Substitute the operands; the new values are in the substed_operand
     array.  */
  for (i = 0; i < recog_data.n_operands; i++)
    *recog_data.operand_loc[i] = substed_operand[i];
  for (i = 0; i < recog_data.n_dups; i++)
    *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];

  /* If we are replacing a body that was a (set X (plus Y Z)), try to
     re-recognize the insn.  We do this in case we had a simple addition
     but now can do this as a load-address.  This saves an insn in this
     common case.
     If re-recognition fails, the old insn code number will still be used,
     and some register operands may have changed into PLUS expressions.
     These will be handled by find_reloads by loading them into a register
     again.  */

  if (val)
    {
      /* If we aren't replacing things permanently and we changed something,
	 make another copy to ensure that all the RTL is new.  Otherwise
	 things can go wrong if find_reload swaps commutative operands
	 and one is inside RTL that has been copied while the other is not.  */
      new_body = old_body;
      if (! replace)
	{
	  new_body = copy_insn (old_body);
	  if (REG_NOTES (insn))
	    REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
	}
      PATTERN (insn) = new_body;

      /* If we had a move insn but now we don't, rerecognize it.  This will
	 cause spurious re-recognition if the old move had a PARALLEL since
	 the new one still will, but we can't call single_set without
	 having put NEW_BODY into the insn and the re-recognition won't
	 hurt in this rare case.  */
      /* ??? Why this huge if statement - why don't we just rerecognize the
	 thing always?  */
      if (! insn_is_asm
	  && old_set != 0
	  && ((REG_P (SET_SRC (old_set))
	       && (GET_CODE (new_body) != SET
		   || !REG_P (SET_SRC (new_body))))
	      /* If this was a load from or store to memory, compare
		 the MEM in recog_data.operand to the one in the insn.
		 If they are not equal, then rerecognize the insn.  */
	      || (old_set != 0
		  && ((MEM_P (SET_SRC (old_set))
		       && SET_SRC (old_set) != recog_data.operand[1])
		      || (MEM_P (SET_DEST (old_set))
			  && SET_DEST (old_set) != recog_data.operand[0])))
	      /* If this was an add insn before, rerecognize.  */
	      || GET_CODE (SET_SRC (old_set)) == PLUS))
	{
	  int new_icode = recog (PATTERN (insn), insn, 0);
	  if (new_icode >= 0)
	    INSN_CODE (insn) = new_icode;
	}
    }

  /* Restore the old body.  If there were any changes to it, we made a copy
     of it while the changes were still in place, so we'll correctly return
     a modified insn below.  */
  if (! replace)
    {
      /* Restore the old body.  */
      for (i = 0; i < recog_data.n_operands; i++)
	/* Restoring a top-level match_parallel would clobber the new_body
	   we installed in the insn.  */
	if (recog_data.operand_loc[i] != &PATTERN (insn))
	  *recog_data.operand_loc[i] = orig_operand[i];
      for (i = 0; i < recog_data.n_dups; i++)
	*recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
    }

  /* Update all elimination pairs to reflect the status after the current
     insn.  The changes we make were determined by the earlier call to
     elimination_effects.

     We also detect cases where register elimination cannot be done,
     namely, if a register would be both changed and referenced outside a MEM
     in the resulting insn since such an insn is often undefined and, even if
     not, we cannot know what meaning will be given to it.  Note that it is
     valid to have a register used in an address in an insn that changes it
     (presumably with a pre- or post-increment or decrement).

     If anything changes, return nonzero.  */

  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    {
      if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
	ep->can_eliminate = 0;

      ep->ref_outside_mem = 0;

      if (maybe_ne (ep->previous_offset, ep->offset))
	val = 1;
    }

 done:
  /* If we changed something, perform elimination in REG_NOTES.  This is
     needed even when REPLACE is zero because a REG_DEAD note might refer
     to a register that we eliminate and could cause a different number
     of spill registers to be needed in the final reload pass than in
     the pre-passes.  */
  if (val && REG_NOTES (insn) != 0)
    REG_NOTES (insn)
      = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
			  false);

  return val;
}

/* Like eliminate_regs_in_insn, but only estimate costs for the use of the
   register allocator.  INSN is the instruction we need to examine, we perform
   eliminations in its operands and record cases where eliminating a reg with
   an invariant equivalence would add extra cost.  */

#pragma GCC diagnostic push
#pragma GCC diagnostic warning "-Wmaybe-uninitialized"
static void
elimination_costs_in_insn (rtx_insn *insn)
{
  int icode = recog_memoized (insn);
  rtx old_body = PATTERN (insn);
  int insn_is_asm = asm_noperands (old_body) >= 0;
  rtx old_set = single_set (insn);
  int i;
  rtx orig_operand[MAX_RECOG_OPERANDS];
  rtx orig_dup[MAX_RECOG_OPERANDS];
  struct elim_table *ep;
  rtx plus_src, plus_cst_src;
  bool sets_reg_p;

  if (! insn_is_asm && icode < 0)
    {
      gcc_assert (DEBUG_INSN_P (insn)
		  || GET_CODE (PATTERN (insn)) == USE
		  || GET_CODE (PATTERN (insn)) == CLOBBER
		  || GET_CODE (PATTERN (insn)) == ASM_INPUT);
      return;
    }

  if (old_set != 0 && REG_P (SET_DEST (old_set))
      && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
    {
      /* Check for setting an eliminable register.  */
      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
	if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
	  return;
    }

  /* We allow one special case which happens to work on all machines we
     currently support: a single set with the source or a REG_EQUAL
     note being a PLUS of an eliminable register and a constant.  */
  plus_src = plus_cst_src = 0;
  sets_reg_p = false;
  if (old_set && REG_P (SET_DEST (old_set)))
    {
      sets_reg_p = true;
      if (GET_CODE (SET_SRC (old_set)) == PLUS)
	plus_src = SET_SRC (old_set);
      /* First see if the source is of the form (plus (...) CST).  */
      if (plus_src
	  && CONST_INT_P (XEXP (plus_src, 1)))
	plus_cst_src = plus_src;
      else if (REG_P (SET_SRC (old_set))
	       || plus_src)
	{
	  /* Otherwise, see if we have a REG_EQUAL note of the form
	     (plus (...) CST).  */
	  rtx links;
	  for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
	    {
	      if ((REG_NOTE_KIND (links) == REG_EQUAL
		   || REG_NOTE_KIND (links) == REG_EQUIV)
		  && GET_CODE (XEXP (links, 0)) == PLUS
		  && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
		{
		  plus_cst_src = XEXP (links, 0);
		  break;
		}
	    }
	}
    }

  /* Determine the effects of this insn on elimination offsets.  */
  elimination_effects (old_body, VOIDmode);

  /* Eliminate all eliminable registers occurring in operands that
     can be handled by reload.  */
  extract_insn (insn);
  int n_dups = recog_data.n_dups;
  for (i = 0; i < n_dups; i++)
    orig_dup[i] = *recog_data.dup_loc[i];

  int n_operands = recog_data.n_operands;
  for (i = 0; i < n_operands; i++)
    {
      orig_operand[i] = recog_data.operand[i];

      /* For an asm statement, every operand is eliminable.  */
      if (insn_is_asm || insn_data[icode].operand[i].eliminable)
	{
	  bool is_set_src, in_plus;

	  /* Check for setting a register that we know about.  */
	  if (recog_data.operand_type[i] != OP_IN
	      && REG_P (orig_operand[i]))
	    {
	      /* If we are assigning to a register that can be eliminated, it
		 must be as part of a PARALLEL, since the code above handles
		 single SETs.  We must indicate that we can no longer
		 eliminate this reg.  */
	      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
		   ep++)
		if (ep->from_rtx == orig_operand[i])
		  ep->can_eliminate = 0;
	    }

	  /* Companion to the above plus substitution, we can allow
	     invariants as the source of a plain move.  */
	  is_set_src = false;
	  if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
	    is_set_src = true;
	  if (is_set_src && !sets_reg_p)
	    note_reg_elim_costly (SET_SRC (old_set), insn);
	  in_plus = false;
	  if (plus_src && sets_reg_p
	      && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
		  || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
	    in_plus = true;

	  eliminate_regs_1 (recog_data.operand[i], VOIDmode,
			    NULL_RTX,
			    is_set_src || in_plus, true);
	  /* Terminate the search in check_eliminable_occurrences at
	     this point.  */
	  *recog_data.operand_loc[i] = 0;
	}
    }

  for (i = 0; i < n_dups; i++)
    *recog_data.dup_loc[i]
      = *recog_data.operand_loc[(int) recog_data.dup_num[i]];

  /* If any eliminable remain, they aren't eliminable anymore.  */
  check_eliminable_occurrences (old_body);

  /* Restore the old body.  */
  for (i = 0; i < n_operands; i++)
    *recog_data.operand_loc[i] = orig_operand[i];
  for (i = 0; i < n_dups; i++)
    *recog_data.dup_loc[i] = orig_dup[i];

  /* Update all elimination pairs to reflect the status after the current
     insn.  The changes we make were determined by the earlier call to
     elimination_effects.  */

  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    {
      if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
	ep->can_eliminate = 0;

      ep->ref_outside_mem = 0;
    }

  return;
}
#pragma GCC diagnostic pop

/* Loop through all elimination pairs.
   Recalculate the number not at initial offset.

   Compute the maximum offset (minimum offset if the stack does not
   grow downward) for each elimination pair.  */

static void
update_eliminable_offsets (void)
{
  struct elim_table *ep;

  num_not_at_initial_offset = 0;
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    {
      ep->previous_offset = ep->offset;
      if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
	num_not_at_initial_offset++;
    }
}

/* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
   replacement we currently believe is valid, mark it as not eliminable if X
   modifies DEST in any way other than by adding a constant integer to it.

   If DEST is the frame pointer, we do nothing because we assume that
   all assignments to the hard frame pointer are nonlocal gotos and are being
   done at a time when they are valid and do not disturb anything else.
   Some machines want to eliminate a fake argument pointer with either the
   frame or stack pointer.  Assignments to the hard frame pointer must not
   prevent this elimination.

   Called via note_stores from reload before starting its passes to scan
   the insns of the function.  */

static void
mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
{
  unsigned int i;

  /* A SUBREG of a hard register here is just changing its mode.  We should
     not see a SUBREG of an eliminable hard register, but check just in
     case.  */
  if (GET_CODE (dest) == SUBREG)
    dest = SUBREG_REG (dest);

  if (dest == hard_frame_pointer_rtx)
    return;

  for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
    if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
	&& (GET_CODE (x) != SET
	    || GET_CODE (SET_SRC (x)) != PLUS
	    || XEXP (SET_SRC (x), 0) != dest
	    || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
      {
	reg_eliminate[i].can_eliminate_previous
	  = reg_eliminate[i].can_eliminate = 0;
	num_eliminable--;
      }
}

/* Verify that the initial elimination offsets did not change since the
   last call to set_initial_elim_offsets.  This is used to catch cases
   where something illegal happened during reload_as_needed that could
   cause incorrect code to be generated if we did not check for it.  */

static bool
verify_initial_elim_offsets (void)
{
  poly_int64 t;
  struct elim_table *ep;

  if (!num_eliminable)
    return true;

  targetm.compute_frame_layout ();
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    {
      INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
      if (maybe_ne (t, ep->initial_offset))
	return false;
    }

  return true;
}

/* Reset all offsets on eliminable registers to their initial values.  */

static void
set_initial_elim_offsets (void)
{
  struct elim_table *ep = reg_eliminate;

  targetm.compute_frame_layout ();
  for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    {
      INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
      ep->previous_offset = ep->offset = ep->initial_offset;
    }

  num_not_at_initial_offset = 0;
}

/* Subroutine of set_initial_label_offsets called via for_each_eh_label.  */

static void
set_initial_eh_label_offset (rtx label)
{
  set_label_offsets (label, NULL, 1);
}

/* Initialize the known label offsets.
   Set a known offset for each forced label to be at the initial offset
   of each elimination.  We do this because we assume that all
   computed jumps occur from a location where each elimination is
   at its initial offset.
   For all other labels, show that we don't know the offsets.  */

static void
set_initial_label_offsets (void)
{
  memset (offsets_known_at, 0, num_labels);

  unsigned int i;
  rtx_insn *insn;
  FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
    set_label_offsets (insn, NULL, 1);

  for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
    if (x->insn ())
      set_label_offsets (x->insn (), NULL, 1);

  for_each_eh_label (set_initial_eh_label_offset);
}

/* Set all elimination offsets to the known values for the code label given
   by INSN.  */

static void
set_offsets_for_label (rtx_insn *insn)
{
  unsigned int i;
  int label_nr = CODE_LABEL_NUMBER (insn);
  struct elim_table *ep;

  num_not_at_initial_offset = 0;
  for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
    {
      ep->offset = ep->previous_offset
		 = offsets_at[label_nr - first_label_num][i];
      if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
	num_not_at_initial_offset++;
    }
}

/* See if anything that happened changes which eliminations are valid.
   For example, on the SPARC, whether or not the frame pointer can
   be eliminated can depend on what registers have been used.  We need
   not check some conditions again (such as flag_omit_frame_pointer)
   since they can't have changed.  */

static void
update_eliminables (HARD_REG_SET *pset)
{
  int previous_frame_pointer_needed = frame_pointer_needed;
  struct elim_table *ep;

  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    if ((ep->from == HARD_FRAME_POINTER_REGNUM
         && targetm.frame_pointer_required ())
	|| ! targetm.can_eliminate (ep->from, ep->to)
	)
      ep->can_eliminate = 0;

  /* Look for the case where we have discovered that we can't replace
     register A with register B and that means that we will now be
     trying to replace register A with register C.  This means we can
     no longer replace register C with register B and we need to disable
     such an elimination, if it exists.  This occurs often with A == ap,
     B == sp, and C == fp.  */

  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    {
      struct elim_table *op;
      int new_to = -1;

      if (! ep->can_eliminate && ep->can_eliminate_previous)
	{
	  /* Find the current elimination for ep->from, if there is a
	     new one.  */
	  for (op = reg_eliminate;
	       op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
	    if (op->from == ep->from && op->can_eliminate)
	      {
		new_to = op->to;
		break;
	      }

	  /* See if there is an elimination of NEW_TO -> EP->TO.  If so,
	     disable it.  */
	  for (op = reg_eliminate;
	       op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
	    if (op->from == new_to && op->to == ep->to)
	      op->can_eliminate = 0;
	}
    }

  /* See if any registers that we thought we could eliminate the previous
     time are no longer eliminable.  If so, something has changed and we
     must spill the register.  Also, recompute the number of eliminable
     registers and see if the frame pointer is needed; it is if there is
     no elimination of the frame pointer that we can perform.  */

  frame_pointer_needed = 1;
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    {
      if (ep->can_eliminate
	  && ep->from == FRAME_POINTER_REGNUM
	  && ep->to != HARD_FRAME_POINTER_REGNUM
	  && (! SUPPORTS_STACK_ALIGNMENT
	      || ! crtl->stack_realign_needed))
	frame_pointer_needed = 0;

      if (! ep->can_eliminate && ep->can_eliminate_previous)
	{
	  ep->can_eliminate_previous = 0;
	  SET_HARD_REG_BIT (*pset, ep->from);
	  num_eliminable--;
	}
    }

  /* If we didn't need a frame pointer last time, but we do now, spill
     the hard frame pointer.  */
  if (frame_pointer_needed && ! previous_frame_pointer_needed)
    SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
}

/* Call update_eliminables an spill any registers we can't eliminate anymore.
   Return true iff a register was spilled.  */

static bool
update_eliminables_and_spill (void)
{
  int i;
  bool did_spill = false;
  HARD_REG_SET to_spill;
  CLEAR_HARD_REG_SET (to_spill);
  update_eliminables (&to_spill);
  used_spill_regs &= ~to_spill;

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (TEST_HARD_REG_BIT (to_spill, i))
      {
	spill_hard_reg (i, 1);
	did_spill = true;

	/* Regardless of the state of spills, if we previously had
	   a register that we thought we could eliminate, but now
	   cannot eliminate, we must run another pass.

	   Consider pseudos which have an entry in reg_equiv_* which
	   reference an eliminable register.  We must make another pass
	   to update reg_equiv_* so that we do not substitute in the
	   old value from when we thought the elimination could be
	   performed.  */
      }
  return did_spill;
}

/* Return true if X is used as the target register of an elimination.  */

bool
elimination_target_reg_p (rtx x)
{
  struct elim_table *ep;

  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    if (ep->to_rtx == x && ep->can_eliminate)
      return true;

  return false;
}

/* Initialize the table of registers to eliminate.
   Pre-condition: global flag frame_pointer_needed has been set before
   calling this function.  */

static void
init_elim_table (void)
{
  struct elim_table *ep;
  const struct elim_table_1 *ep1;

  if (!reg_eliminate)
    reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);

  num_eliminable = 0;

  for (ep = reg_eliminate, ep1 = reg_eliminate_1;
       ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
    {
      ep->from = ep1->from;
      ep->to = ep1->to;
      ep->can_eliminate = ep->can_eliminate_previous
	= (targetm.can_eliminate (ep->from, ep->to)
	   && ! (ep->to == STACK_POINTER_REGNUM
		 && frame_pointer_needed
		 && (! SUPPORTS_STACK_ALIGNMENT
		     || ! stack_realign_fp)));
    }

  /* Count the number of eliminable registers and build the FROM and TO
     REG rtx's.  Note that code in gen_rtx_REG will cause, e.g.,
     gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
     We depend on this.  */
  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
    {
      num_eliminable += ep->can_eliminate;
      ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
      ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
    }
}

/* Find all the pseudo registers that didn't get hard regs
   but do have known equivalent constants or memory slots.
   These include parameters (known equivalent to parameter slots)
   and cse'd or loop-moved constant memory addresses.

   Record constant equivalents in reg_equiv_constant
   so they will be substituted by find_reloads.
   Record memory equivalents in reg_mem_equiv so they can
   be substituted eventually by altering the REG-rtx's.  */

static void
init_eliminable_invariants (rtx_insn *first, bool do_subregs)
{
  int i;
  rtx_insn *insn;

  grow_reg_equivs ();
  if (do_subregs)
    reg_max_ref_mode = XCNEWVEC (machine_mode, max_regno);
  else
    reg_max_ref_mode = NULL;

  num_eliminable_invariants = 0;

  first_label_num = get_first_label_num ();
  num_labels = max_label_num () - first_label_num;

  /* Allocate the tables used to store offset information at labels.  */
  offsets_known_at = XNEWVEC (char, num_labels);
  offsets_at = (poly_int64_pod (*)[NUM_ELIMINABLE_REGS])
    xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (poly_int64));

/* Look for REG_EQUIV notes; record what each pseudo is equivalent
   to.  If DO_SUBREGS is true, also find all paradoxical subregs and
   find largest such for each pseudo.  FIRST is the head of the insn
   list.  */

  for (insn = first; insn; insn = NEXT_INSN (insn))
    {
      rtx set = single_set (insn);

      /* We may introduce USEs that we want to remove at the end, so
	 we'll mark them with QImode.  Make sure there are no
	 previously-marked insns left by say regmove.  */
      if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
	  && GET_MODE (insn) != VOIDmode)
	PUT_MODE (insn, VOIDmode);

      if (do_subregs && NONDEBUG_INSN_P (insn))
	scan_paradoxical_subregs (PATTERN (insn));

      if (set != 0 && REG_P (SET_DEST (set)))
	{
	  rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
	  rtx x;

	  if (! note)
	    continue;

	  i = REGNO (SET_DEST (set));
	  x = XEXP (note, 0);

	  if (i <= LAST_VIRTUAL_REGISTER)
	    continue;

	  /* If flag_pic and we have constant, verify it's legitimate.  */
	  if (!CONSTANT_P (x)
	      || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
	    {
	      /* It can happen that a REG_EQUIV note contains a MEM
		 that is not a legitimate memory operand.  As later
		 stages of reload assume that all addresses found
		 in the reg_equiv_* arrays were originally legitimate,
		 we ignore such REG_EQUIV notes.  */
	      if (memory_operand (x, VOIDmode))
		{
		  /* Always unshare the equivalence, so we can
		     substitute into this insn without touching the
		       equivalence.  */
		  reg_equiv_memory_loc (i) = copy_rtx (x);
		}
	      else if (function_invariant_p (x))
		{
		  machine_mode mode;

		  mode = GET_MODE (SET_DEST (set));
		  if (GET_CODE (x) == PLUS)
		    {
		      /* This is PLUS of frame pointer and a constant,
			 and might be shared.  Unshare it.  */
		      reg_equiv_invariant (i) = copy_rtx (x);
		      num_eliminable_invariants++;
		    }
		  else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
		    {
		      reg_equiv_invariant (i) = x;
		      num_eliminable_invariants++;
		    }
		  else if (targetm.legitimate_constant_p (mode, x))
		    reg_equiv_constant (i) = x;
		  else
		    {
		      reg_equiv_memory_loc (i) = force_const_mem (mode, x);
		      if (! reg_equiv_memory_loc (i))
			reg_equiv_init (i) = NULL;
		    }
		}
	      else
		{
		  reg_equiv_init (i) = NULL;
		  continue;
		}
	    }
	  else
	    reg_equiv_init (i) = NULL;
	}
    }

  if (dump_file)
    for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
      if (reg_equiv_init (i))
	{
	  fprintf (dump_file, "init_insns for %u: ", i);
	  print_inline_rtx (dump_file, reg_equiv_init (i), 20);
	  fprintf (dump_file, "\n");
	}
}

/* Indicate that we no longer have known memory locations or constants.
   Free all data involved in tracking these.  */

static void
free_reg_equiv (void)
{
  int i;

  free (offsets_known_at);
  free (offsets_at);
  offsets_at = 0;
  offsets_known_at = 0;

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (reg_equiv_alt_mem_list (i))
      free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
  vec_free (reg_equivs);
}

/* Kick all pseudos out of hard register REGNO.

   If CANT_ELIMINATE is nonzero, it means that we are doing this spill
   because we found we can't eliminate some register.  In the case, no pseudos
   are allowed to be in the register, even if they are only in a block that
   doesn't require spill registers, unlike the case when we are spilling this
   hard reg to produce another spill register.

   Return nonzero if any pseudos needed to be kicked out.  */

static void
spill_hard_reg (unsigned int regno, int cant_eliminate)
{
  int i;

  if (cant_eliminate)
    {
      SET_HARD_REG_BIT (bad_spill_regs_global, regno);
      df_set_regs_ever_live (regno, true);
    }

  /* Spill every pseudo reg that was allocated to this reg
     or to something that overlaps this reg.  */

  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    if (reg_renumber[i] >= 0
	&& (unsigned int) reg_renumber[i] <= regno
	&& end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
      SET_REGNO_REG_SET (&spilled_pseudos, i);
}

/* After spill_hard_reg was called and/or find_reload_regs was run for all
   insns that need reloads, this function is used to actually spill pseudo
   registers and try to reallocate them.  It also sets up the spill_regs
   array for use by choose_reload_regs.

   GLOBAL nonzero means we should attempt to reallocate any pseudo registers
   that we displace from hard registers.  */

static int
finish_spills (int global)
{
  class insn_chain *chain;
  int something_changed = 0;
  unsigned i;
  reg_set_iterator rsi;

  /* Build the spill_regs array for the function.  */
  /* If there are some registers still to eliminate and one of the spill regs
     wasn't ever used before, additional stack space may have to be
     allocated to store this register.  Thus, we may have changed the offset
     between the stack and frame pointers, so mark that something has changed.

     One might think that we need only set VAL to 1 if this is a call-used
     register.  However, the set of registers that must be saved by the
     prologue is not identical to the call-used set.  For example, the
     register used by the call insn for the return PC is a call-used register,
     but must be saved by the prologue.  */

  n_spills = 0;
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (TEST_HARD_REG_BIT (used_spill_regs, i))
      {
	spill_reg_order[i] = n_spills;
	spill_regs[n_spills++] = i;
	if (num_eliminable && ! df_regs_ever_live_p (i))
	  something_changed = 1;
	df_set_regs_ever_live (i, true);
      }
    else
      spill_reg_order[i] = -1;

  EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
    if (reg_renumber[i] >= 0)
      {
	SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
	/* Mark it as no longer having a hard register home.  */
	reg_renumber[i] = -1;
	if (ira_conflicts_p)
	  /* Inform IRA about the change.  */
	  ira_mark_allocation_change (i);
	/* We will need to scan everything again.  */
	something_changed = 1;
      }

  /* Retry global register allocation if possible.  */
  if (global && ira_conflicts_p)
    {
      unsigned int n;

      memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
      /* For every insn that needs reloads, set the registers used as spill
	 regs in pseudo_forbidden_regs for every pseudo live across the
	 insn.  */
      for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
	{
	  EXECUTE_IF_SET_IN_REG_SET
	    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
	    {
	      pseudo_forbidden_regs[i] |= chain->used_spill_regs;
	    }
	  EXECUTE_IF_SET_IN_REG_SET
	    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
	    {
	      pseudo_forbidden_regs[i] |= chain->used_spill_regs;
	    }
	}

      /* Retry allocating the pseudos spilled in IRA and the
	 reload.  For each reg, merge the various reg sets that
	 indicate which hard regs can't be used, and call
	 ira_reassign_pseudos.  */
      for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
	if (reg_old_renumber[i] != reg_renumber[i])
	  {
	    if (reg_renumber[i] < 0)
	      temp_pseudo_reg_arr[n++] = i;
	    else
	      CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
	  }
      if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
				bad_spill_regs_global,
				pseudo_forbidden_regs, pseudo_previous_regs,
				&spilled_pseudos))
	something_changed = 1;
    }
  /* Fix up the register information in the insn chain.
     This involves deleting those of the spilled pseudos which did not get
     a new hard register home from the live_{before,after} sets.  */
  for (chain = reload_insn_chain; chain; chain = chain->next)
    {
      HARD_REG_SET used_by_pseudos;
      HARD_REG_SET used_by_pseudos2;

      if (! ira_conflicts_p)
	{
	  /* Don't do it for IRA because IRA and the reload still can
	     assign hard registers to the spilled pseudos on next
	     reload iterations.  */
	  AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
	  AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
	}
      /* Mark any unallocated hard regs as available for spills.  That
	 makes inheritance work somewhat better.  */
      if (chain->need_reload)
	{
	  REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
	  REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
	  used_by_pseudos |= used_by_pseudos2;

	  compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
	  compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
	  /* Value of chain->used_spill_regs from previous iteration
	     may be not included in the value calculated here because
	     of possible removing caller-saves insns (see function
	     delete_caller_save_insns.  */
	  chain->used_spill_regs = ~used_by_pseudos & used_spill_regs;
	}
    }

  CLEAR_REG_SET (&changed_allocation_pseudos);
  /* Let alter_reg modify the reg rtx's for the modified pseudos.  */
  for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
    {
      int regno = reg_renumber[i];
      if (reg_old_renumber[i] == regno)
	continue;

      SET_REGNO_REG_SET (&changed_allocation_pseudos, i);

      alter_reg (i, reg_old_renumber[i], false);
      reg_old_renumber[i] = regno;
      if (dump_file)
	{
	  if (regno == -1)
	    fprintf (dump_file, " Register %d now on stack.\n\n", i);
	  else
	    fprintf (dump_file, " Register %d now in %d.\n\n",
		     i, reg_renumber[i]);
	}
    }

  return something_changed;
}

/* Find all paradoxical subregs within X and update reg_max_ref_mode.  */

static void
scan_paradoxical_subregs (rtx x)
{
  int i;
  const char *fmt;
  enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case REG:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
    CASE_CONST_ANY:
    case PC:
    case USE:
    case CLOBBER:
      return;

    case SUBREG:
      if (REG_P (SUBREG_REG (x)))
	{
	  unsigned int regno = REGNO (SUBREG_REG (x));
	  if (partial_subreg_p (reg_max_ref_mode[regno], GET_MODE (x)))
	    {
	      reg_max_ref_mode[regno] = GET_MODE (x);
	      mark_home_live_1 (regno, GET_MODE (x));
	    }
	}
      return;

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	scan_paradoxical_subregs (XEXP (x, i));
      else if (fmt[i] == 'E')
	{
	  int j;
	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    scan_paradoxical_subregs (XVECEXP (x, i, j));
	}
    }
}

/* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
   If *OP_PTR is a paradoxical subreg, try to remove that subreg
   and apply the corresponding narrowing subreg to *OTHER_PTR.
   Return true if the operands were changed, false otherwise.  */

static bool
strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
{
  rtx op, inner, other, tem;

  op = *op_ptr;
  if (!paradoxical_subreg_p (op))
    return false;
  inner = SUBREG_REG (op);

  other = *other_ptr;
  tem = gen_lowpart_common (GET_MODE (inner), other);
  if (!tem)
    return false;

  /* If the lowpart operation turned a hard register into a subreg,
     rather than simplifying it to another hard register, then the
     mode change cannot be properly represented.  For example, OTHER
     might be valid in its current mode, but not in the new one.  */
  if (GET_CODE (tem) == SUBREG
      && REG_P (other)
      && HARD_REGISTER_P (other))
    return false;

  *op_ptr = inner;
  *other_ptr = tem;
  return true;
}

/* A subroutine of reload_as_needed.  If INSN has a REG_EH_REGION note,
   examine all of the reload insns between PREV and NEXT exclusive, and
   annotate all that may trap.  */

static void
fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
{
  rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
  if (note == NULL)
    return;
  if (!insn_could_throw_p (insn))
    remove_note (insn, note);
  copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
}

/* Reload pseudo-registers into hard regs around each insn as needed.
   Additional register load insns are output before the insn that needs it
   and perhaps store insns after insns that modify the reloaded pseudo reg.

   reg_last_reload_reg and reg_reloaded_contents keep track of
   which registers are already available in reload registers.
   We update these for the reloads that we perform,
   as the insns are scanned.  */

static void
reload_as_needed (int live_known)
{
  class insn_chain *chain;
#if AUTO_INC_DEC
  int i;
#endif
  rtx_note *marker;

  memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
  memset (spill_reg_store, 0, sizeof spill_reg_store);
  reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
  INIT_REG_SET (&reg_has_output_reload);
  CLEAR_HARD_REG_SET (reg_reloaded_valid);

  set_initial_elim_offsets ();

  /* Generate a marker insn that we will move around.  */
  marker = emit_note (NOTE_INSN_DELETED);
  unlink_insn_chain (marker, marker);

  for (chain = reload_insn_chain; chain; chain = chain->next)
    {
      rtx_insn *prev = 0;
      rtx_insn *insn = chain->insn;
      rtx_insn *old_next = NEXT_INSN (insn);
#if AUTO_INC_DEC
      rtx_insn *old_prev = PREV_INSN (insn);
#endif

      if (will_delete_init_insn_p (insn))
	continue;

      /* If we pass a label, copy the offsets from the label information
	 into the current offsets of each elimination.  */
      if (LABEL_P (insn))
	set_offsets_for_label (insn);

      else if (INSN_P (insn))
	{
	  regset_head regs_to_forget;
	  INIT_REG_SET (&regs_to_forget);
	  note_stores (insn, forget_old_reloads_1, &regs_to_forget);

	  /* If this is a USE and CLOBBER of a MEM, ensure that any
	     references to eliminable registers have been removed.  */

	  if ((GET_CODE (PATTERN (insn)) == USE
	       || GET_CODE (PATTERN (insn)) == CLOBBER)
	      && MEM_P (XEXP (PATTERN (insn), 0)))
	    XEXP (XEXP (PATTERN (insn), 0), 0)
	      = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
				GET_MODE (XEXP (PATTERN (insn), 0)),
				NULL_RTX);

	  /* If we need to do register elimination processing, do so.
	     This might delete the insn, in which case we are done.  */
	  if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
	    {
	      eliminate_regs_in_insn (insn, 1);
	      if (NOTE_P (insn))
		{
		  update_eliminable_offsets ();
		  CLEAR_REG_SET (&regs_to_forget);
		  continue;
		}
	    }

	  /* If need_elim is nonzero but need_reload is zero, one might think
	     that we could simply set n_reloads to 0.  However, find_reloads
	     could have done some manipulation of the insn (such as swapping
	     commutative operands), and these manipulations are lost during
	     the first pass for every insn that needs register elimination.
	     So the actions of find_reloads must be redone here.  */

	  if (! chain->need_elim && ! chain->need_reload
	      && ! chain->need_operand_change)
	    n_reloads = 0;
	  /* First find the pseudo regs that must be reloaded for this insn.
	     This info is returned in the tables reload_... (see reload.h).
	     Also modify the body of INSN by substituting RELOAD
	     rtx's for those pseudo regs.  */
	  else
	    {
	      CLEAR_REG_SET (&reg_has_output_reload);
	      CLEAR_HARD_REG_SET (reg_is_output_reload);

	      find_reloads (insn, 1, spill_indirect_levels, live_known,
			    spill_reg_order);
	    }

	  if (n_reloads > 0)
	    {
	      rtx_insn *next = NEXT_INSN (insn);

	      /* ??? PREV can get deleted by reload inheritance.
		 Work around this by emitting a marker note.  */
	      prev = PREV_INSN (insn);
	      reorder_insns_nobb (marker, marker, prev);

	      /* Now compute which reload regs to reload them into.  Perhaps
		 reusing reload regs from previous insns, or else output
		 load insns to reload them.  Maybe output store insns too.
		 Record the choices of reload reg in reload_reg_rtx.  */
	      choose_reload_regs (chain);

	      /* Generate the insns to reload operands into or out of
		 their reload regs.  */
	      emit_reload_insns (chain);

	      /* Substitute the chosen reload regs from reload_reg_rtx
		 into the insn's body (or perhaps into the bodies of other
		 load and store insn that we just made for reloading
		 and that we moved the structure into).  */
	      subst_reloads (insn);

	      prev = PREV_INSN (marker);
	      unlink_insn_chain (marker, marker);

	      /* Adjust the exception region notes for loads and stores.  */
	      if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
		fixup_eh_region_note (insn, prev, next);

	      /* Adjust the location of REG_ARGS_SIZE.  */
	      rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
	      if (p)
		{
		  remove_note (insn, p);
		  fixup_args_size_notes (prev, PREV_INSN (next),
					 get_args_size (p));
		}

	      /* If this was an ASM, make sure that all the reload insns
		 we have generated are valid.  If not, give an error
		 and delete them.  */
	      if (asm_noperands (PATTERN (insn)) >= 0)
		for (rtx_insn *p = NEXT_INSN (prev);
		     p != next;
		     p = NEXT_INSN (p))
		  if (p != insn && INSN_P (p)
		      && GET_CODE (PATTERN (p)) != USE
		      && (recog_memoized (p) < 0
			  || (extract_insn (p),
			      !(constrain_operands (1,
				  get_enabled_alternatives (p))))))
		    {
		      error_for_asm (insn,
				     "%<asm%> operand requires "
				     "impossible reload");
		      delete_insn (p);
		    }
	    }

	  if (num_eliminable && chain->need_elim)
	    update_eliminable_offsets ();

	  /* Any previously reloaded spilled pseudo reg, stored in this insn,
	     is no longer validly lying around to save a future reload.
	     Note that this does not detect pseudos that were reloaded
	     for this insn in order to be stored in
	     (obeying register constraints).  That is correct; such reload
	     registers ARE still valid.  */
	  forget_marked_reloads (&regs_to_forget);
	  CLEAR_REG_SET (&regs_to_forget);

	  /* There may have been CLOBBER insns placed after INSN.  So scan
	     between INSN and NEXT and use them to forget old reloads.  */
	  for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
	    if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
	      note_stores (x, forget_old_reloads_1, NULL);

#if AUTO_INC_DEC
	  /* Likewise for regs altered by auto-increment in this insn.
	     REG_INC notes have been changed by reloading:
	     find_reloads_address_1 records substitutions for them,
	     which have been performed by subst_reloads above.  */
	  for (i = n_reloads - 1; i >= 0; i--)
	    {
	      rtx in_reg = rld[i].in_reg;
	      if (in_reg)
		{
		  enum rtx_code code = GET_CODE (in_reg);
		  /* PRE_INC / PRE_DEC will have the reload register ending up
		     with the same value as the stack slot, but that doesn't
		     hold true for POST_INC / POST_DEC.  Either we have to
		     convert the memory access to a true POST_INC / POST_DEC,
		     or we can't use the reload register for inheritance.  */
		  if ((code == POST_INC || code == POST_DEC)
		      && TEST_HARD_REG_BIT (reg_reloaded_valid,
					    REGNO (rld[i].reg_rtx))
		      /* Make sure it is the inc/dec pseudo, and not
			 some other (e.g. output operand) pseudo.  */
		      && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
			  == REGNO (XEXP (in_reg, 0))))

		    {
		      rtx reload_reg = rld[i].reg_rtx;
		      machine_mode mode = GET_MODE (reload_reg);
		      int n = 0;
		      rtx_insn *p;

		      for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
			{
			  /* We really want to ignore REG_INC notes here, so
			     use PATTERN (p) as argument to reg_set_p .  */
			  if (reg_set_p (reload_reg, PATTERN (p)))
			    break;
			  n = count_occurrences (PATTERN (p), reload_reg, 0);
			  if (! n)
			    continue;
			  if (n == 1)
			    {
			      rtx replace_reg
				= gen_rtx_fmt_e (code, mode, reload_reg);

			      validate_replace_rtx_group (reload_reg,
							  replace_reg, p);
			      n = verify_changes (0);

			      /* We must also verify that the constraints
				 are met after the replacement.  Make sure
				 extract_insn is only called for an insn
				 where the replacements were found to be
				 valid so far. */
			      if (n)
				{
				  extract_insn (p);
				  n = constrain_operands (1,
				    get_enabled_alternatives (p));
				}

			      /* If the constraints were not met, then
				 undo the replacement, else confirm it.  */
			      if (!n)
				cancel_changes (0);
			      else
				confirm_change_group ();
			    }
			  break;
			}
		      if (n == 1)
			{
			  add_reg_note (p, REG_INC, reload_reg);
			  /* Mark this as having an output reload so that the
			     REG_INC processing code below won't invalidate
			     the reload for inheritance.  */
			  SET_HARD_REG_BIT (reg_is_output_reload,
					    REGNO (reload_reg));
			  SET_REGNO_REG_SET (&reg_has_output_reload,
					     REGNO (XEXP (in_reg, 0)));
			}
		      else
			forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
					      NULL);
		    }
		  else if ((code == PRE_INC || code == PRE_DEC)
			   && TEST_HARD_REG_BIT (reg_reloaded_valid,
						 REGNO (rld[i].reg_rtx))
			   /* Make sure it is the inc/dec pseudo, and not
			      some other (e.g. output operand) pseudo.  */
			   && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
			       == REGNO (XEXP (in_reg, 0))))
		    {
		      SET_HARD_REG_BIT (reg_is_output_reload,
					REGNO (rld[i].reg_rtx));
		      SET_REGNO_REG_SET (&reg_has_output_reload,
					 REGNO (XEXP (in_reg, 0)));
		    }
		  else if (code == PRE_INC || code == PRE_DEC
			   || code == POST_INC || code == POST_DEC)
		    {
		      int in_regno = REGNO (XEXP (in_reg, 0));

		      if (reg_last_reload_reg[in_regno] != NULL_RTX)
			{
			  int in_hard_regno;
			  bool forget_p = true;

			  in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
			  if (TEST_HARD_REG_BIT (reg_reloaded_valid,
						 in_hard_regno))
			    {
			      for (rtx_insn *x = (old_prev ?
						  NEXT_INSN (old_prev) : insn);
				   x != old_next;
				   x = NEXT_INSN (x))
				if (x == reg_reloaded_insn[in_hard_regno])
				  {
				    forget_p = false;
				    break;
				  }
			    }
			  /* If for some reasons, we didn't set up
			     reg_last_reload_reg in this insn,
			     invalidate inheritance from previous
			     insns for the incremented/decremented
			     register.  Such registers will be not in
			     reg_has_output_reload.  Invalidate it
			     also if the corresponding element in
			     reg_reloaded_insn is also
			     invalidated.  */
			  if (forget_p)
			    forget_old_reloads_1 (XEXP (in_reg, 0),
						  NULL_RTX, NULL);
			}
		    }
		}
	    }
	  /* If a pseudo that got a hard register is auto-incremented,
	     we must purge records of copying it into pseudos without
	     hard registers.  */
	  for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
	    if (REG_NOTE_KIND (x) == REG_INC)
	      {
		/* See if this pseudo reg was reloaded in this insn.
		   If so, its last-reload info is still valid
		   because it is based on this insn's reload.  */
		for (i = 0; i < n_reloads; i++)
		  if (rld[i].out == XEXP (x, 0))
		    break;

		if (i == n_reloads)
		  forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
	      }
#endif
	}
      /* A reload reg's contents are unknown after a label.  */
      if (LABEL_P (insn))
	CLEAR_HARD_REG_SET (reg_reloaded_valid);

      /* Don't assume a reload reg is still good after a call insn
	 if it is a call-used reg, or if it contains a value that will
         be partially clobbered by the call.  */
      else if (CALL_P (insn))
	{
	  reg_reloaded_valid
	    &= ~insn_callee_abi (insn).full_and_partial_reg_clobbers ();

	  /* If this is a call to a setjmp-type function, we must not
	     reuse any reload reg contents across the call; that will
	     just be clobbered by other uses of the register in later
	     code, before the longjmp.  */
	  if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
	    CLEAR_HARD_REG_SET (reg_reloaded_valid);
	}
    }

  /* Clean up.  */
  free (reg_last_reload_reg);
  CLEAR_REG_SET (&reg_has_output_reload);
}

/* Discard all record of any value reloaded from X,
   or reloaded in X from someplace else;
   unless X is an output reload reg of the current insn.

   X may be a hard reg (the reload reg)
   or it may be a pseudo reg that was reloaded from.

   When DATA is non-NULL just mark the registers in regset
   to be forgotten later.  */

static void
forget_old_reloads_1 (rtx x, const_rtx, void *data)
{
  unsigned int regno;
  unsigned int nr;
  regset regs = (regset) data;

  /* note_stores does give us subregs of hard regs,
     subreg_regno_offset requires a hard reg.  */
  while (GET_CODE (x) == SUBREG)
    {
      /* We ignore the subreg offset when calculating the regno,
	 because we are using the entire underlying hard register
	 below.  */
      x = SUBREG_REG (x);
    }

  if (!REG_P (x))
    return;

  regno = REGNO (x);

  if (regno >= FIRST_PSEUDO_REGISTER)
    nr = 1;
  else
    {
      unsigned int i;

      nr = REG_NREGS (x);
      /* Storing into a spilled-reg invalidates its contents.
	 This can happen if a block-local pseudo is allocated to that reg
	 and it wasn't spilled because this block's total need is 0.
	 Then some insn might have an optional reload and use this reg.  */
      if (!regs)
	for (i = 0; i < nr; i++)
	  /* But don't do this if the reg actually serves as an output
	     reload reg in the current instruction.  */
	  if (n_reloads == 0
	      || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
	    {
	      CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
	      spill_reg_store[regno + i] = 0;
	    }
    }

  if (regs)
    while (nr-- > 0)
      SET_REGNO_REG_SET (regs, regno + nr);
  else
    {
      /* Since value of X has changed,
	 forget any value previously copied from it.  */

      while (nr-- > 0)
	/* But don't forget a copy if this is the output reload
	   that establishes the copy's validity.  */
	if (n_reloads == 0
	    || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
	  reg_last_reload_reg[regno + nr] = 0;
     }
}

/* Forget the reloads marked in regset by previous function.  */
static void
forget_marked_reloads (regset regs)
{
  unsigned int reg;
  reg_set_iterator rsi;
  EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
    {
      if (reg < FIRST_PSEUDO_REGISTER
	  /* But don't do this if the reg actually serves as an output
	     reload reg in the current instruction.  */
	  && (n_reloads == 0
	      || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
	  {
	    CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
	    spill_reg_store[reg] = 0;
	  }
      if (n_reloads == 0
	  || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
	reg_last_reload_reg[reg] = 0;
    }
}

/* The following HARD_REG_SETs indicate when each hard register is
   used for a reload of various parts of the current insn.  */

/* If reg is unavailable for all reloads.  */
static HARD_REG_SET reload_reg_unavailable;
/* If reg is in use as a reload reg for a RELOAD_OTHER reload.  */
static HARD_REG_SET reload_reg_used;
/* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I.  */
static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I.  */
static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I.  */
static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I.  */
static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_INPUT reload for operand I.  */
static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I.  */
static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
/* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload.  */
static HARD_REG_SET reload_reg_used_in_op_addr;
/* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload.  */
static HARD_REG_SET reload_reg_used_in_op_addr_reload;
/* If reg is in use for a RELOAD_FOR_INSN reload.  */
static HARD_REG_SET reload_reg_used_in_insn;
/* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload.  */
static HARD_REG_SET reload_reg_used_in_other_addr;

/* If reg is in use as a reload reg for any sort of reload.  */
static HARD_REG_SET reload_reg_used_at_all;

/* If reg is use as an inherited reload.  We just mark the first register
   in the group.  */
static HARD_REG_SET reload_reg_used_for_inherit;

/* Records which hard regs are used in any way, either as explicit use or
   by being allocated to a pseudo during any point of the current insn.  */
static HARD_REG_SET reg_used_in_insn;

/* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
   TYPE. MODE is used to indicate how many consecutive regs are
   actually used.  */

static void
mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
			machine_mode mode)
{
  switch (type)
    {
    case RELOAD_OTHER:
      add_to_hard_reg_set (&reload_reg_used, mode, regno);
      break;

    case RELOAD_FOR_INPUT_ADDRESS:
      add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
      break;

    case RELOAD_FOR_INPADDR_ADDRESS:
      add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
      break;

    case RELOAD_FOR_OUTPUT_ADDRESS:
      add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
      break;

    case RELOAD_FOR_OUTADDR_ADDRESS:
      add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
      break;

    case RELOAD_FOR_OPERAND_ADDRESS:
      add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
      break;

    case RELOAD_FOR_OPADDR_ADDR:
      add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
      break;

    case RELOAD_FOR_OTHER_ADDRESS:
      add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
      break;

    case RELOAD_FOR_INPUT:
      add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
      break;

    case RELOAD_FOR_OUTPUT:
      add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
      break;

    case RELOAD_FOR_INSN:
      add_to_hard_reg_set (&reload_reg_used_in_insn,  mode, regno);
      break;
    }

  add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
}

/* Similarly, but show REGNO is no longer in use for a reload.  */

static void
clear_reload_reg_in_use (unsigned int regno, int opnum,
			 enum reload_type type, machine_mode mode)
{
  unsigned int nregs = hard_regno_nregs (regno, mode);
  unsigned int start_regno, end_regno, r;
  int i;
  /* A complication is that for some reload types, inheritance might
     allow multiple reloads of the same types to share a reload register.
     We set check_opnum if we have to check only reloads with the same
     operand number, and check_any if we have to check all reloads.  */
  int check_opnum = 0;
  int check_any = 0;
  HARD_REG_SET *used_in_set;

  switch (type)
    {
    case RELOAD_OTHER:
      used_in_set = &reload_reg_used;
      break;

    case RELOAD_FOR_INPUT_ADDRESS:
      used_in_set = &reload_reg_used_in_input_addr[opnum];
      break;

    case RELOAD_FOR_INPADDR_ADDRESS:
      check_opnum = 1;
      used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
      break;

    case RELOAD_FOR_OUTPUT_ADDRESS:
      used_in_set = &reload_reg_used_in_output_addr[opnum];
      break;

    case RELOAD_FOR_OUTADDR_ADDRESS:
      check_opnum = 1;
      used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
      break;

    case RELOAD_FOR_OPERAND_ADDRESS:
      used_in_set = &reload_reg_used_in_op_addr;
      break;

    case RELOAD_FOR_OPADDR_ADDR:
      check_any = 1;
      used_in_set = &reload_reg_used_in_op_addr_reload;
      break;

    case RELOAD_FOR_OTHER_ADDRESS:
      used_in_set = &reload_reg_used_in_other_addr;
      check_any = 1;
      break;

    case RELOAD_FOR_INPUT:
      used_in_set = &reload_reg_used_in_input[opnum];
      break;

    case RELOAD_FOR_OUTPUT:
      used_in_set = &reload_reg_used_in_output[opnum];
      break;

    case RELOAD_FOR_INSN:
      used_in_set = &reload_reg_used_in_insn;
      break;
    default:
      gcc_unreachable ();
    }
  /* We resolve conflicts with remaining reloads of the same type by
     excluding the intervals of reload registers by them from the
     interval of freed reload registers.  Since we only keep track of
     one set of interval bounds, we might have to exclude somewhat
     more than what would be necessary if we used a HARD_REG_SET here.
     But this should only happen very infrequently, so there should
     be no reason to worry about it.  */

  start_regno = regno;
  end_regno = regno + nregs;
  if (check_opnum || check_any)
    {
      for (i = n_reloads - 1; i >= 0; i--)
	{
	  if (rld[i].when_needed == type
	      && (check_any || rld[i].opnum == opnum)
	      && rld[i].reg_rtx)
	    {
	      unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
	      unsigned int conflict_end
		= end_hard_regno (rld[i].mode, conflict_start);

	      /* If there is an overlap with the first to-be-freed register,
		 adjust the interval start.  */
	      if (conflict_start <= start_regno && conflict_end > start_regno)
		start_regno = conflict_end;
	      /* Otherwise, if there is a conflict with one of the other
		 to-be-freed registers, adjust the interval end.  */
	      if (conflict_start > start_regno && conflict_start < end_regno)
		end_regno = conflict_start;
	    }
	}
    }

  for (r = start_regno; r < end_regno; r++)
    CLEAR_HARD_REG_BIT (*used_in_set, r);
}

/* 1 if reg REGNO is free as a reload reg for a reload of the sort
   specified by OPNUM and TYPE.  */

static int
reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
{
  int i;

  /* In use for a RELOAD_OTHER means it's not available for anything.  */
  if (TEST_HARD_REG_BIT (reload_reg_used, regno)
      || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
    return 0;

  switch (type)
    {
    case RELOAD_OTHER:
      /* In use for anything means we can't use it for RELOAD_OTHER.  */
      if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
	  || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
	  || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
	  || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
	return 0;

      for (i = 0; i < reload_n_operands; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
	  return 0;

      return 1;

    case RELOAD_FOR_INPUT:
      if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
	  || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
	return 0;

      if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
	return 0;

      /* If it is used for some other input, can't use it.  */
      for (i = 0; i < reload_n_operands; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
	  return 0;

      /* If it is used in a later operand's address, can't use it.  */
      for (i = opnum + 1; i < reload_n_operands; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
	  return 0;

      return 1;

    case RELOAD_FOR_INPUT_ADDRESS:
      /* Can't use a register if it is used for an input address for this
	 operand or used as an input in an earlier one.  */
      if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
	  || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
	return 0;

      for (i = 0; i < opnum; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
	  return 0;

      return 1;

    case RELOAD_FOR_INPADDR_ADDRESS:
      /* Can't use a register if it is used for an input address
	 for this operand or used as an input in an earlier
	 one.  */
      if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
	return 0;

      for (i = 0; i < opnum; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
	  return 0;

      return 1;

    case RELOAD_FOR_OUTPUT_ADDRESS:
      /* Can't use a register if it is used for an output address for this
	 operand or used as an output in this or a later operand.  Note
	 that multiple output operands are emitted in reverse order, so
	 the conflicting ones are those with lower indices.  */
      if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
	return 0;

      for (i = 0; i <= opnum; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
	  return 0;

      return 1;

    case RELOAD_FOR_OUTADDR_ADDRESS:
      /* Can't use a register if it is used for an output address
	 for this operand or used as an output in this or a
	 later operand.  Note that multiple output operands are
	 emitted in reverse order, so the conflicting ones are
	 those with lower indices.  */
      if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
	return 0;

      for (i = 0; i <= opnum; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
	  return 0;

      return 1;

    case RELOAD_FOR_OPERAND_ADDRESS:
      for (i = 0; i < reload_n_operands; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
	  return 0;

      return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));

    case RELOAD_FOR_OPADDR_ADDR:
      for (i = 0; i < reload_n_operands; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
	  return 0;

      return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));

    case RELOAD_FOR_OUTPUT:
      /* This cannot share a register with RELOAD_FOR_INSN reloads, other
	 outputs, or an operand address for this or an earlier output.
	 Note that multiple output operands are emitted in reverse order,
	 so the conflicting ones are those with higher indices.  */
      if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
	return 0;

      for (i = 0; i < reload_n_operands; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
	  return 0;

      for (i = opnum; i < reload_n_operands; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
	  return 0;

      return 1;

    case RELOAD_FOR_INSN:
      for (i = 0; i < reload_n_operands; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
	  return 0;

      return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));

    case RELOAD_FOR_OTHER_ADDRESS:
      return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);

    default:
      gcc_unreachable ();
    }
}

/* Return 1 if the value in reload reg REGNO, as used by the reload with
   the number RELOADNUM, is still available in REGNO at the end of the insn.

   We can assume that the reload reg was already tested for availability
   at the time it is needed, and we should not check this again,
   in case the reg has already been marked in use.  */

static int
reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
{
  int opnum = rld[reloadnum].opnum;
  enum reload_type type = rld[reloadnum].when_needed;
  int i;

  /* See if there is a reload with the same type for this operand, using
     the same register. This case is not handled by the code below.  */
  for (i = reloadnum + 1; i < n_reloads; i++)
    {
      rtx reg;

      if (rld[i].opnum != opnum || rld[i].when_needed != type)
	continue;
      reg = rld[i].reg_rtx;
      if (reg == NULL_RTX)
	continue;
      if (regno >= REGNO (reg) && regno < END_REGNO (reg))
	return 0;
    }
  
  switch (type)
    {
    case RELOAD_OTHER:
      /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
	 its value must reach the end.  */
      return 1;

      /* If this use is for part of the insn,
	 its value reaches if no subsequent part uses the same register.
	 Just like the above function, don't try to do this with lots
	 of fallthroughs.  */

    case RELOAD_FOR_OTHER_ADDRESS:
      /* Here we check for everything else, since these don't conflict
	 with anything else and everything comes later.  */

      for (i = 0; i < reload_n_operands; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
	  return 0;

      return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
	      && ! TEST_HARD_REG_BIT (reload_reg_used, regno));

    case RELOAD_FOR_INPUT_ADDRESS:
    case RELOAD_FOR_INPADDR_ADDRESS:
      /* Similar, except that we check only for this and subsequent inputs
	 and the address of only subsequent inputs and we do not need
	 to check for RELOAD_OTHER objects since they are known not to
	 conflict.  */

      for (i = opnum; i < reload_n_operands; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
	  return 0;

      /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
	 could be killed if the register is also used by reload with type
	 RELOAD_FOR_INPUT_ADDRESS, so check it.  */
      if (type == RELOAD_FOR_INPADDR_ADDRESS
	  && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
	return 0;

      for (i = opnum + 1; i < reload_n_operands; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
	  return 0;

      for (i = 0; i < reload_n_operands; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
	  return 0;

      if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
	return 0;

      return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
	      && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
	      && !TEST_HARD_REG_BIT (reload_reg_used, regno));

    case RELOAD_FOR_INPUT:
      /* Similar to input address, except we start at the next operand for
	 both input and input address and we do not check for
	 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
	 would conflict.  */

      for (i = opnum + 1; i < reload_n_operands; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
	  return 0;

      /* ... fall through ...  */

    case RELOAD_FOR_OPERAND_ADDRESS:
      /* Check outputs and their addresses.  */

      for (i = 0; i < reload_n_operands; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
	  return 0;

      return (!TEST_HARD_REG_BIT (reload_reg_used, regno));

    case RELOAD_FOR_OPADDR_ADDR:
      for (i = 0; i < reload_n_operands; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
	  return 0;

      return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
	      && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
	      && !TEST_HARD_REG_BIT (reload_reg_used, regno));

    case RELOAD_FOR_INSN:
      /* These conflict with other outputs with RELOAD_OTHER.  So
	 we need only check for output addresses.  */

      opnum = reload_n_operands;

      /* fall through */

    case RELOAD_FOR_OUTPUT:
    case RELOAD_FOR_OUTPUT_ADDRESS:
    case RELOAD_FOR_OUTADDR_ADDRESS:
      /* We already know these can't conflict with a later output.  So the
	 only thing to check are later output addresses.
	 Note that multiple output operands are emitted in reverse order,
	 so the conflicting ones are those with lower indices.  */
      for (i = 0; i < opnum; i++)
	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
	  return 0;

      /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
	 could be killed if the register is also used by reload with type
	 RELOAD_FOR_OUTPUT_ADDRESS, so check it.  */
      if (type == RELOAD_FOR_OUTADDR_ADDRESS
	  && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
	return 0;

      return 1;

    default:
      gcc_unreachable ();
    }
}

/* Like reload_reg_reaches_end_p, but check that the condition holds for
   every register in REG.  */

static bool
reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
{
  unsigned int i;

  for (i = REGNO (reg); i < END_REGNO (reg); i++)
    if (!reload_reg_reaches_end_p (i, reloadnum))
      return false;
  return true;
}


/*  Returns whether R1 and R2 are uniquely chained: the value of one
    is used by the other, and that value is not used by any other
    reload for this insn.  This is used to partially undo the decision
    made in find_reloads when in the case of multiple
    RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
    RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
    reloads.  This code tries to avoid the conflict created by that
    change.  It might be cleaner to explicitly keep track of which
    RELOAD_FOR_OPADDR_ADDR reload is associated with which
    RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
    this after the fact. */
static bool
reloads_unique_chain_p (int r1, int r2)
{
  int i;

  /* We only check input reloads.  */
  if (! rld[r1].in || ! rld[r2].in)
    return false;

  /* Avoid anything with output reloads.  */
  if (rld[r1].out || rld[r2].out)
    return false;

  /* "chained" means one reload is a component of the other reload,
     not the same as the other reload.  */
  if (rld[r1].opnum != rld[r2].opnum
      || rtx_equal_p (rld[r1].in, rld[r2].in)
      || rld[r1].optional || rld[r2].optional
      || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
	    || reg_mentioned_p (rld[r2].in, rld[r1].in)))
    return false;

  /* The following loop assumes that r1 is the reload that feeds r2.  */
  if (r1 > r2)
    std::swap (r1, r2);

  for (i = 0; i < n_reloads; i ++)
    /* Look for input reloads that aren't our two */
    if (i != r1 && i != r2 && rld[i].in)
      {
	/* If our reload is mentioned at all, it isn't a simple chain.  */
	if (reg_mentioned_p (rld[r1].in, rld[i].in))
	  return false;
      }
  return true;
}

/* The recursive function change all occurrences of WHAT in *WHERE
   to REPL.  */
static void
substitute (rtx *where, const_rtx what, rtx repl)
{
  const char *fmt;
  int i;
  enum rtx_code code;

  if (*where == 0)
    return;

  if (*where == what || rtx_equal_p (*where, what))
    {
      /* Record the location of the changed rtx.  */
      substitute_stack.safe_push (where);
      *where = repl;
      return;
    }

  code = GET_CODE (*where);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'E')
	{
	  int j;

	  for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
	    substitute (&XVECEXP (*where, i, j), what, repl);
	}
      else if (fmt[i] == 'e')
	substitute (&XEXP (*where, i), what, repl);
    }
}

/* The function returns TRUE if chain of reload R1 and R2 (in any
   order) can be evaluated without usage of intermediate register for
   the reload containing another reload.  It is important to see
   gen_reload to understand what the function is trying to do.  As an
   example, let us have reload chain

      r2: const
      r1: <something> + const

   and reload R2 got reload reg HR.  The function returns true if
   there is a correct insn HR = HR + <something>.  Otherwise,
   gen_reload will use intermediate register (and this is the reload
   reg for R1) to reload <something>.

   We need this function to find a conflict for chain reloads.  In our
   example, if HR = HR + <something> is incorrect insn, then we cannot
   use HR as a reload register for R2.  If we do use it then we get a
   wrong code:

      HR = const
      HR = <something>
      HR = HR + HR

*/
static bool
gen_reload_chain_without_interm_reg_p (int r1, int r2)
{
  /* Assume other cases in gen_reload are not possible for
     chain reloads or do need an intermediate hard registers.  */
  bool result = true;
  int regno, code;
  rtx out, in;
  rtx_insn *insn;
  rtx_insn *last = get_last_insn ();

  /* Make r2 a component of r1.  */
  if (reg_mentioned_p (rld[r1].in, rld[r2].in))
    std::swap (r1, r2);

  gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
  regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
  gcc_assert (regno >= 0);
  out = gen_rtx_REG (rld[r1].mode, regno);
  in = rld[r1].in;
  substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));

  /* If IN is a paradoxical SUBREG, remove it and try to put the
     opposite SUBREG on OUT.  Likewise for a paradoxical SUBREG on OUT.  */
  strip_paradoxical_subreg (&in, &out);

  if (GET_CODE (in) == PLUS
      && (REG_P (XEXP (in, 0))
	  || GET_CODE (XEXP (in, 0)) == SUBREG
	  || MEM_P (XEXP (in, 0)))
      && (REG_P (XEXP (in, 1))
	  || GET_CODE (XEXP (in, 1)) == SUBREG
	  || CONSTANT_P (XEXP (in, 1))
	  || MEM_P (XEXP (in, 1))))
    {
      insn = emit_insn (gen_rtx_SET (out, in));
      code = recog_memoized (insn);
      result = false;

      if (code >= 0)
	{
	  extract_insn (insn);
	  /* We want constrain operands to treat this insn strictly in
	     its validity determination, i.e., the way it would after
	     reload has completed.  */
	  result = constrain_operands (1, get_enabled_alternatives (insn));
	}

      delete_insns_since (last);
    }

  /* Restore the original value at each changed address within R1.  */
  while (!substitute_stack.is_empty ())
    {
      rtx *where = substitute_stack.pop ();
      *where = rld[r2].in;
    }

  return result;
}

/* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
   Return 0 otherwise.

   This function uses the same algorithm as reload_reg_free_p above.  */

static int
reloads_conflict (int r1, int r2)
{
  enum reload_type r1_type = rld[r1].when_needed;
  enum reload_type r2_type = rld[r2].when_needed;
  int r1_opnum = rld[r1].opnum;
  int r2_opnum = rld[r2].opnum;

  /* RELOAD_OTHER conflicts with everything.  */
  if (r2_type == RELOAD_OTHER)
    return 1;

  /* Otherwise, check conflicts differently for each type.  */

  switch (r1_type)
    {
    case RELOAD_FOR_INPUT:
      return (r2_type == RELOAD_FOR_INSN
	      || r2_type == RELOAD_FOR_OPERAND_ADDRESS
	      || r2_type == RELOAD_FOR_OPADDR_ADDR
	      || r2_type == RELOAD_FOR_INPUT
	      || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
		   || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
		  && r2_opnum > r1_opnum));

    case RELOAD_FOR_INPUT_ADDRESS:
      return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
	      || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));

    case RELOAD_FOR_INPADDR_ADDRESS:
      return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
	      || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));

    case RELOAD_FOR_OUTPUT_ADDRESS:
      return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
	      || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));

    case RELOAD_FOR_OUTADDR_ADDRESS:
      return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
	      || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));

    case RELOAD_FOR_OPERAND_ADDRESS:
      return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
	      || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
		  && (!reloads_unique_chain_p (r1, r2)
		      || !gen_reload_chain_without_interm_reg_p (r1, r2))));

    case RELOAD_FOR_OPADDR_ADDR:
      return (r2_type == RELOAD_FOR_INPUT
	      || r2_type == RELOAD_FOR_OPADDR_ADDR);

    case RELOAD_FOR_OUTPUT:
      return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
	      || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
		   || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
		  && r2_opnum >= r1_opnum));

    case RELOAD_FOR_INSN:
      return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
	      || r2_type == RELOAD_FOR_INSN
	      || r2_type == RELOAD_FOR_OPERAND_ADDRESS);

    case RELOAD_FOR_OTHER_ADDRESS:
      return r2_type == RELOAD_FOR_OTHER_ADDRESS;

    case RELOAD_OTHER:
      return 1;

    default:
      gcc_unreachable ();
    }
}

/* Indexed by reload number, 1 if incoming value
   inherited from previous insns.  */
static char reload_inherited[MAX_RELOADS];

/* For an inherited reload, this is the insn the reload was inherited from,
   if we know it.  Otherwise, this is 0.  */
static rtx_insn *reload_inheritance_insn[MAX_RELOADS];

/* If nonzero, this is a place to get the value of the reload,
   rather than using reload_in.  */
static rtx reload_override_in[MAX_RELOADS];

/* For each reload, the hard register number of the register used,
   or -1 if we did not need a register for this reload.  */
static int reload_spill_index[MAX_RELOADS];

/* Index X is the value of rld[X].reg_rtx, adjusted for the input mode.  */
static rtx reload_reg_rtx_for_input[MAX_RELOADS];

/* Index X is the value of rld[X].reg_rtx, adjusted for the output mode.  */
static rtx reload_reg_rtx_for_output[MAX_RELOADS];

/* Subroutine of free_for_value_p, used to check a single register.
   START_REGNO is the starting regno of the full reload register
   (possibly comprising multiple hard registers) that we are considering.  */

static int
reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
			     enum reload_type type, rtx value, rtx out,
			     int reloadnum, int ignore_address_reloads)
{
  int time1;
  /* Set if we see an input reload that must not share its reload register
     with any new earlyclobber, but might otherwise share the reload
     register with an output or input-output reload.  */
  int check_earlyclobber = 0;
  int i;
  int copy = 0;

  if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
    return 0;

  if (out == const0_rtx)
    {
      copy = 1;
      out = NULL_RTX;
    }

  /* We use some pseudo 'time' value to check if the lifetimes of the
     new register use would overlap with the one of a previous reload
     that is not read-only or uses a different value.
     The 'time' used doesn't have to be linear in any shape or form, just
     monotonic.
     Some reload types use different 'buckets' for each operand.
     So there are MAX_RECOG_OPERANDS different time values for each
     such reload type.
     We compute TIME1 as the time when the register for the prospective
     new reload ceases to be live, and TIME2 for each existing
     reload as the time when that the reload register of that reload
     becomes live.
     Where there is little to be gained by exact lifetime calculations,
     we just make conservative assumptions, i.e. a longer lifetime;
     this is done in the 'default:' cases.  */
  switch (type)
    {
    case RELOAD_FOR_OTHER_ADDRESS:
      /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads.  */
      time1 = copy ? 0 : 1;
      break;
    case RELOAD_OTHER:
      time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
      break;
      /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
	 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT.  By adding 0 / 1 / 2 ,
	 respectively, to the time values for these, we get distinct time
	 values.  To get distinct time values for each operand, we have to
	 multiply opnum by at least three.  We round that up to four because
	 multiply by four is often cheaper.  */
    case RELOAD_FOR_INPADDR_ADDRESS:
      time1 = opnum * 4 + 2;
      break;
    case RELOAD_FOR_INPUT_ADDRESS:
      time1 = opnum * 4 + 3;
      break;
    case RELOAD_FOR_INPUT:
      /* All RELOAD_FOR_INPUT reloads remain live till the instruction
	 executes (inclusive).  */
      time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
      break;
    case RELOAD_FOR_OPADDR_ADDR:
      /* opnum * 4 + 4
	 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
      time1 = MAX_RECOG_OPERANDS * 4 + 1;
      break;
    case RELOAD_FOR_OPERAND_ADDRESS:
      /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
	 is executed.  */
      time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
      break;
    case RELOAD_FOR_OUTADDR_ADDRESS:
      time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
      break;
    case RELOAD_FOR_OUTPUT_ADDRESS:
      time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
      break;
    default:
      time1 = MAX_RECOG_OPERANDS * 5 + 5;
    }

  for (i = 0; i < n_reloads; i++)
    {
      rtx reg = rld[i].reg_rtx;
      if (reg && REG_P (reg)
	  && (unsigned) regno - true_regnum (reg) < REG_NREGS (reg)
	  && i != reloadnum)
	{
	  rtx other_input = rld[i].in;

	  /* If the other reload loads the same input value, that
	     will not cause a conflict only if it's loading it into
	     the same register.  */
	  if (true_regnum (reg) != start_regno)
	    other_input = NULL_RTX;
	  if (! other_input || ! rtx_equal_p (other_input, value)
	      || rld[i].out || out)
	    {
	      int time2;
	      switch (rld[i].when_needed)
		{
		case RELOAD_FOR_OTHER_ADDRESS:
		  time2 = 0;
		  break;
		case RELOAD_FOR_INPADDR_ADDRESS:
		  /* find_reloads makes sure that a
		     RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
		     by at most one - the first -
		     RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS .  If the
		     address reload is inherited, the address address reload
		     goes away, so we can ignore this conflict.  */
		  if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
		      && ignore_address_reloads
		      /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
			 Then the address address is still needed to store
			 back the new address.  */
		      && ! rld[reloadnum].out)
		    continue;
		  /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
		     RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
		     reloads go away.  */
		  if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
		      && ignore_address_reloads
		      /* Unless we are reloading an auto_inc expression.  */
		      && ! rld[reloadnum].out)
		    continue;
		  time2 = rld[i].opnum * 4 + 2;
		  break;
		case RELOAD_FOR_INPUT_ADDRESS:
		  if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
		      && ignore_address_reloads
		      && ! rld[reloadnum].out)
		    continue;
		  time2 = rld[i].opnum * 4 + 3;
		  break;
		case RELOAD_FOR_INPUT:
		  time2 = rld[i].opnum * 4 + 4;
		  check_earlyclobber = 1;
		  break;
		  /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
		     == MAX_RECOG_OPERAND * 4  */
		case RELOAD_FOR_OPADDR_ADDR:
		  if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
		      && ignore_address_reloads
		      && ! rld[reloadnum].out)
		    continue;
		  time2 = MAX_RECOG_OPERANDS * 4 + 1;
		  break;
		case RELOAD_FOR_OPERAND_ADDRESS:
		  time2 = MAX_RECOG_OPERANDS * 4 + 2;
		  check_earlyclobber = 1;
		  break;
		case RELOAD_FOR_INSN:
		  time2 = MAX_RECOG_OPERANDS * 4 + 3;
		  break;
		case RELOAD_FOR_OUTPUT:
		  /* All RELOAD_FOR_OUTPUT reloads become live just after the
		     instruction is executed.  */
		  time2 = MAX_RECOG_OPERANDS * 4 + 4;
		  break;
		  /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
		     the RELOAD_FOR_OUTPUT reloads, so assign it the same time
		     value.  */
		case RELOAD_FOR_OUTADDR_ADDRESS:
		  if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
		      && ignore_address_reloads
		      && ! rld[reloadnum].out)
		    continue;
		  time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
		  break;
		case RELOAD_FOR_OUTPUT_ADDRESS:
		  time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
		  break;
		case RELOAD_OTHER:
		  /* If there is no conflict in the input part, handle this
		     like an output reload.  */
		  if (! rld[i].in || rtx_equal_p (other_input, value))
		    {
		      time2 = MAX_RECOG_OPERANDS * 4 + 4;
		      /* Earlyclobbered outputs must conflict with inputs.  */
		      if (earlyclobber_operand_p (rld[i].out))
			time2 = MAX_RECOG_OPERANDS * 4 + 3;

		      break;
		    }
		  time2 = 1;
		  /* RELOAD_OTHER might be live beyond instruction execution,
		     but this is not obvious when we set time2 = 1.  So check
		     here if there might be a problem with the new reload
		     clobbering the register used by the RELOAD_OTHER.  */
		  if (out)
		    return 0;
		  break;
		default:
		  return 0;
		}
	      if ((time1 >= time2
		   && (! rld[i].in || rld[i].out
		       || ! rtx_equal_p (other_input, value)))
		  || (out && rld[reloadnum].out_reg
		      && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
		return 0;
	    }
	}
    }

  /* Earlyclobbered outputs must conflict with inputs.  */
  if (check_earlyclobber && out && earlyclobber_operand_p (out))
    return 0;

  return 1;
}

/* Return 1 if the value in reload reg REGNO, as used by a reload
   needed for the part of the insn specified by OPNUM and TYPE,
   may be used to load VALUE into it.

   MODE is the mode in which the register is used, this is needed to
   determine how many hard regs to test.

   Other read-only reloads with the same value do not conflict
   unless OUT is nonzero and these other reloads have to live while
   output reloads live.
   If OUT is CONST0_RTX, this is a special case: it means that the
   test should not be for using register REGNO as reload register, but
   for copying from register REGNO into the reload register.

   RELOADNUM is the number of the reload we want to load this value for;
   a reload does not conflict with itself.

   When IGNORE_ADDRESS_RELOADS is set, we cannot have conflicts with
   reloads that load an address for the very reload we are considering.

   The caller has to make sure that there is no conflict with the return
   register.  */

static int
free_for_value_p (int regno, machine_mode mode, int opnum,
		  enum reload_type type, rtx value, rtx out, int reloadnum,
		  int ignore_address_reloads)
{
  int nregs = hard_regno_nregs (regno, mode);
  while (nregs-- > 0)
    if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
				       value, out, reloadnum,
				       ignore_address_reloads))
      return 0;
  return 1;
}

/* Return nonzero if the rtx X is invariant over the current function.  */
/* ??? Actually, the places where we use this expect exactly what is
   tested here, and not everything that is function invariant.  In
   particular, the frame pointer and arg pointer are special cased;
   pic_offset_table_rtx is not, and we must not spill these things to
   memory.  */

int
function_invariant_p (const_rtx x)
{
  if (CONSTANT_P (x))
    return 1;
  if (x == frame_pointer_rtx || x == arg_pointer_rtx)
    return 1;
  if (GET_CODE (x) == PLUS
      && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
      && GET_CODE (XEXP (x, 1)) == CONST_INT)
    return 1;
  return 0;
}

/* Determine whether the reload reg X overlaps any rtx'es used for
   overriding inheritance.  Return nonzero if so.  */

static int
conflicts_with_override (rtx x)
{
  int i;
  for (i = 0; i < n_reloads; i++)
    if (reload_override_in[i]
	&& reg_overlap_mentioned_p (x, reload_override_in[i]))
      return 1;
  return 0;
}

/* Give an error message saying we failed to find a reload for INSN,
   and clear out reload R.  */
static void
failed_reload (rtx_insn *insn, int r)
{
  if (asm_noperands (PATTERN (insn)) < 0)
    /* It's the compiler's fault.  */
    fatal_insn ("could not find a spill register", insn);

  /* It's the user's fault; the operand's mode and constraint
     don't match.  Disable this reload so we don't crash in final.  */
  error_for_asm (insn,
		 "%<asm%> operand constraint incompatible with operand size");
  rld[r].in = 0;
  rld[r].out = 0;
  rld[r].reg_rtx = 0;
  rld[r].optional = 1;
  rld[r].secondary_p = 1;
}

/* I is the index in SPILL_REG_RTX of the reload register we are to allocate
   for reload R.  If it's valid, get an rtx for it.  Return nonzero if
   successful.  */
static int
set_reload_reg (int i, int r)
{
  int regno;
  rtx reg = spill_reg_rtx[i];

  if (reg == 0 || GET_MODE (reg) != rld[r].mode)
    spill_reg_rtx[i] = reg
      = gen_rtx_REG (rld[r].mode, spill_regs[i]);

  regno = true_regnum (reg);

  /* Detect when the reload reg can't hold the reload mode.
     This used to be one `if', but Sequent compiler can't handle that.  */
  if (targetm.hard_regno_mode_ok (regno, rld[r].mode))
    {
      machine_mode test_mode = VOIDmode;
      if (rld[r].in)
	test_mode = GET_MODE (rld[r].in);
      /* If rld[r].in has VOIDmode, it means we will load it
	 in whatever mode the reload reg has: to wit, rld[r].mode.
	 We have already tested that for validity.  */
      /* Aside from that, we need to test that the expressions
	 to reload from or into have modes which are valid for this
	 reload register.  Otherwise the reload insns would be invalid.  */
      if (! (rld[r].in != 0 && test_mode != VOIDmode
	     && !targetm.hard_regno_mode_ok (regno, test_mode)))
	if (! (rld[r].out != 0
	       && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out))))
	  {
	    /* The reg is OK.  */
	    last_spill_reg = i;

	    /* Mark as in use for this insn the reload regs we use
	       for this.  */
	    mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
				    rld[r].when_needed, rld[r].mode);

	    rld[r].reg_rtx = reg;
	    reload_spill_index[r] = spill_regs[i];
	    return 1;
	  }
    }
  return 0;
}

/* Find a spill register to use as a reload register for reload R.
   LAST_RELOAD is nonzero if this is the last reload for the insn being
   processed.

   Set rld[R].reg_rtx to the register allocated.

   We return 1 if successful, or 0 if we couldn't find a spill reg and
   we didn't change anything.  */

static int
allocate_reload_reg (class insn_chain *chain ATTRIBUTE_UNUSED, int r,
		     int last_reload)
{
  int i, pass, count;

  /* If we put this reload ahead, thinking it is a group,
     then insist on finding a group.  Otherwise we can grab a
     reg that some other reload needs.
     (That can happen when we have a 68000 DATA_OR_FP_REG
     which is a group of data regs or one fp reg.)
     We need not be so restrictive if there are no more reloads
     for this insn.

     ??? Really it would be nicer to have smarter handling
     for that kind of reg class, where a problem like this is normal.
     Perhaps those classes should be avoided for reloading
     by use of more alternatives.  */

  int force_group = rld[r].nregs > 1 && ! last_reload;

  /* If we want a single register and haven't yet found one,
     take any reg in the right class and not in use.
     If we want a consecutive group, here is where we look for it.

     We use three passes so we can first look for reload regs to
     reuse, which are already in use for other reloads in this insn,
     and only then use additional registers which are not "bad", then
     finally any register.

     I think that maximizing reuse is needed to make sure we don't
     run out of reload regs.  Suppose we have three reloads, and
     reloads A and B can share regs.  These need two regs.
     Suppose A and B are given different regs.
     That leaves none for C.  */
  for (pass = 0; pass < 3; pass++)
    {
      /* I is the index in spill_regs.
	 We advance it round-robin between insns to use all spill regs
	 equally, so that inherited reloads have a chance
	 of leapfrogging each other.  */

      i = last_spill_reg;

      for (count = 0; count < n_spills; count++)
	{
	  int rclass = (int) rld[r].rclass;
	  int regnum;

	  i++;
	  if (i >= n_spills)
	    i -= n_spills;
	  regnum = spill_regs[i];

	  if ((reload_reg_free_p (regnum, rld[r].opnum,
				  rld[r].when_needed)
	       || (rld[r].in
		   /* We check reload_reg_used to make sure we
		      don't clobber the return register.  */
		   && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
		   && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
					rld[r].when_needed, rld[r].in,
					rld[r].out, r, 1)))
	      && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
	      && targetm.hard_regno_mode_ok (regnum, rld[r].mode)
	      /* Look first for regs to share, then for unshared.  But
		 don't share regs used for inherited reloads; they are
		 the ones we want to preserve.  */
	      && (pass
		  || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
					 regnum)
		      && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
					      regnum))))
	    {
	      int nr = hard_regno_nregs (regnum, rld[r].mode);

	      /* During the second pass we want to avoid reload registers
		 which are "bad" for this reload.  */
	      if (pass == 1
		  && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
		continue;

	      /* Avoid the problem where spilling a GENERAL_OR_FP_REG
		 (on 68000) got us two FP regs.  If NR is 1,
		 we would reject both of them.  */
	      if (force_group)
		nr = rld[r].nregs;
	      /* If we need only one reg, we have already won.  */
	      if (nr == 1)
		{
		  /* But reject a single reg if we demand a group.  */
		  if (force_group)
		    continue;
		  break;
		}
	      /* Otherwise check that as many consecutive regs as we need
		 are available here.  */
	      while (nr > 1)
		{
		  int regno = regnum + nr - 1;
		  if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
			&& spill_reg_order[regno] >= 0
			&& reload_reg_free_p (regno, rld[r].opnum,
					      rld[r].when_needed)))
		    break;
		  nr--;
		}
	      if (nr == 1)
		break;
	    }
	}

      /* If we found something on the current pass, omit later passes.  */
      if (count < n_spills)
	break;
    }

  /* We should have found a spill register by now.  */
  if (count >= n_spills)
    return 0;

  /* I is the index in SPILL_REG_RTX of the reload register we are to
     allocate.  Get an rtx for it and find its register number.  */

  return set_reload_reg (i, r);
}

/* Initialize all the tables needed to allocate reload registers.
   CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
   is the array we use to restore the reg_rtx field for every reload.  */

static void
choose_reload_regs_init (class insn_chain *chain, rtx *save_reload_reg_rtx)
{
  int i;

  for (i = 0; i < n_reloads; i++)
    rld[i].reg_rtx = save_reload_reg_rtx[i];

  memset (reload_inherited, 0, MAX_RELOADS);
  memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
  memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));

  CLEAR_HARD_REG_SET (reload_reg_used);
  CLEAR_HARD_REG_SET (reload_reg_used_at_all);
  CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
  CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
  CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
  CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);

  CLEAR_HARD_REG_SET (reg_used_in_insn);
  {
    HARD_REG_SET tmp;
    REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
    reg_used_in_insn |= tmp;
    REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
    reg_used_in_insn |= tmp;
    compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
    compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
  }

  for (i = 0; i < reload_n_operands; i++)
    {
      CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
      CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
      CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
      CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
      CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
      CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
    }

  reload_reg_unavailable = ~chain->used_spill_regs;

  CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);

  for (i = 0; i < n_reloads; i++)
    /* If we have already decided to use a certain register,
       don't use it in another way.  */
    if (rld[i].reg_rtx)
      mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
			      rld[i].when_needed, rld[i].mode);
}

/* If X is not a subreg, return it unmodified.  If it is a subreg,
   look up whether we made a replacement for the SUBREG_REG.  Return
   either the replacement or the SUBREG_REG.  */

static rtx
replaced_subreg (rtx x)
{
  if (GET_CODE (x) == SUBREG)
    return find_replacement (&SUBREG_REG (x));
  return x;
}

/* Compute the offset to pass to subreg_regno_offset, for a pseudo of
   mode OUTERMODE that is available in a hard reg of mode INNERMODE.
   SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
   otherwise it is NULL.  */

static poly_int64
compute_reload_subreg_offset (machine_mode outermode,
			      rtx subreg,
			      machine_mode innermode)
{
  poly_int64 outer_offset;
  machine_mode middlemode;

  if (!subreg)
    return subreg_lowpart_offset (outermode, innermode);

  outer_offset = SUBREG_BYTE (subreg);
  middlemode = GET_MODE (SUBREG_REG (subreg));

  /* If SUBREG is paradoxical then return the normal lowpart offset
     for OUTERMODE and INNERMODE.  Our caller has already checked
     that OUTERMODE fits in INNERMODE.  */
  if (paradoxical_subreg_p (outermode, middlemode))
    return subreg_lowpart_offset (outermode, innermode);

  /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
     plus the normal lowpart offset for MIDDLEMODE and INNERMODE.  */
  return outer_offset + subreg_lowpart_offset (middlemode, innermode);
}

/* Assign hard reg targets for the pseudo-registers we must reload
   into hard regs for this insn.
   Also output the instructions to copy them in and out of the hard regs.

   For machines with register classes, we are responsible for
   finding a reload reg in the proper class.  */

static void
choose_reload_regs (class insn_chain *chain)
{
  rtx_insn *insn = chain->insn;
  int i, j;
  unsigned int max_group_size = 1;
  enum reg_class group_class = NO_REGS;
  int pass, win, inheritance;

  rtx save_reload_reg_rtx[MAX_RELOADS];

  /* In order to be certain of getting the registers we need,
     we must sort the reloads into order of increasing register class.
     Then our grabbing of reload registers will parallel the process
     that provided the reload registers.

     Also note whether any of the reloads wants a consecutive group of regs.
     If so, record the maximum size of the group desired and what
     register class contains all the groups needed by this insn.  */

  for (j = 0; j < n_reloads; j++)
    {
      reload_order[j] = j;
      if (rld[j].reg_rtx != NULL_RTX)
	{
	  gcc_assert (REG_P (rld[j].reg_rtx)
		      && HARD_REGISTER_P (rld[j].reg_rtx));
	  reload_spill_index[j] = REGNO (rld[j].reg_rtx);
	}
      else
	reload_spill_index[j] = -1;

      if (rld[j].nregs > 1)
	{
	  max_group_size = MAX (rld[j].nregs, max_group_size);
	  group_class
	    = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
	}

      save_reload_reg_rtx[j] = rld[j].reg_rtx;
    }

  if (n_reloads > 1)
    qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);

  /* If -O, try first with inheritance, then turning it off.
     If not -O, don't do inheritance.
     Using inheritance when not optimizing leads to paradoxes
     with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
     because one side of the comparison might be inherited.  */
  win = 0;
  for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
    {
      choose_reload_regs_init (chain, save_reload_reg_rtx);

      /* Process the reloads in order of preference just found.
	 Beyond this point, subregs can be found in reload_reg_rtx.

	 This used to look for an existing reloaded home for all of the
	 reloads, and only then perform any new reloads.  But that could lose
	 if the reloads were done out of reg-class order because a later
	 reload with a looser constraint might have an old home in a register
	 needed by an earlier reload with a tighter constraint.

	 To solve this, we make two passes over the reloads, in the order
	 described above.  In the first pass we try to inherit a reload
	 from a previous insn.  If there is a later reload that needs a
	 class that is a proper subset of the class being processed, we must
	 also allocate a spill register during the first pass.

	 Then make a second pass over the reloads to allocate any reloads
	 that haven't been given registers yet.  */

      for (j = 0; j < n_reloads; j++)
	{
	  int r = reload_order[j];
	  rtx search_equiv = NULL_RTX;

	  /* Ignore reloads that got marked inoperative.  */
	  if (rld[r].out == 0 && rld[r].in == 0
	      && ! rld[r].secondary_p)
	    continue;

	  /* If find_reloads chose to use reload_in or reload_out as a reload
	     register, we don't need to chose one.  Otherwise, try even if it
	     found one since we might save an insn if we find the value lying
	     around.
	     Try also when reload_in is a pseudo without a hard reg.  */
	  if (rld[r].in != 0 && rld[r].reg_rtx != 0
	      && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
		  || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
		      && !MEM_P (rld[r].in)
		      && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
	    continue;

#if 0 /* No longer needed for correct operation.
	 It might give better code, or might not; worth an experiment?  */
	  /* If this is an optional reload, we can't inherit from earlier insns
	     until we are sure that any non-optional reloads have been allocated.
	     The following code takes advantage of the fact that optional reloads
	     are at the end of reload_order.  */
	  if (rld[r].optional != 0)
	    for (i = 0; i < j; i++)
	      if ((rld[reload_order[i]].out != 0
		   || rld[reload_order[i]].in != 0
		   || rld[reload_order[i]].secondary_p)
		  && ! rld[reload_order[i]].optional
		  && rld[reload_order[i]].reg_rtx == 0)
		allocate_reload_reg (chain, reload_order[i], 0);
#endif

	  /* First see if this pseudo is already available as reloaded
	     for a previous insn.  We cannot try to inherit for reloads
	     that are smaller than the maximum number of registers needed
	     for groups unless the register we would allocate cannot be used
	     for the groups.

	     We could check here to see if this is a secondary reload for
	     an object that is already in a register of the desired class.
	     This would avoid the need for the secondary reload register.
	     But this is complex because we can't easily determine what
	     objects might want to be loaded via this reload.  So let a
	     register be allocated here.  In `emit_reload_insns' we suppress
	     one of the loads in the case described above.  */

	  if (inheritance)
	    {
	      poly_int64 byte = 0;
	      int regno = -1;
	      machine_mode mode = VOIDmode;
	      rtx subreg = NULL_RTX;

	      if (rld[r].in == 0)
		;
	      else if (REG_P (rld[r].in))
		{
		  regno = REGNO (rld[r].in);
		  mode = GET_MODE (rld[r].in);
		}
	      else if (REG_P (rld[r].in_reg))
		{
		  regno = REGNO (rld[r].in_reg);
		  mode = GET_MODE (rld[r].in_reg);
		}
	      else if (GET_CODE (rld[r].in_reg) == SUBREG
		       && REG_P (SUBREG_REG (rld[r].in_reg)))
		{
		  regno = REGNO (SUBREG_REG (rld[r].in_reg));
		  if (regno < FIRST_PSEUDO_REGISTER)
		    regno = subreg_regno (rld[r].in_reg);
		  else
		    {
		      subreg = rld[r].in_reg;
		      byte = SUBREG_BYTE (subreg);
		    }
		  mode = GET_MODE (rld[r].in_reg);
		}
#if AUTO_INC_DEC
	      else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
		       && REG_P (XEXP (rld[r].in_reg, 0)))
		{
		  regno = REGNO (XEXP (rld[r].in_reg, 0));
		  mode = GET_MODE (XEXP (rld[r].in_reg, 0));
		  rld[r].out = rld[r].in;
		}
#endif
#if 0
	      /* This won't work, since REGNO can be a pseudo reg number.
		 Also, it takes much more hair to keep track of all the things
		 that can invalidate an inherited reload of part of a pseudoreg.  */
	      else if (GET_CODE (rld[r].in) == SUBREG
		       && REG_P (SUBREG_REG (rld[r].in)))
		regno = subreg_regno (rld[r].in);
#endif

	      if (regno >= 0
		  && reg_last_reload_reg[regno] != 0
		  && (known_ge
		      (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno])),
		       GET_MODE_SIZE (mode) + byte))
		  /* Verify that the register it's in can be used in
		     mode MODE.  */
		  && (REG_CAN_CHANGE_MODE_P
		      (REGNO (reg_last_reload_reg[regno]),
		       GET_MODE (reg_last_reload_reg[regno]),
		       mode)))
		{
		  enum reg_class rclass = rld[r].rclass, last_class;
		  rtx last_reg = reg_last_reload_reg[regno];

		  i = REGNO (last_reg);
		  byte = compute_reload_subreg_offset (mode,
						       subreg,
						       GET_MODE (last_reg));
		  i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
		  last_class = REGNO_REG_CLASS (i);

		  if (reg_reloaded_contents[i] == regno
		      && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
		      && targetm.hard_regno_mode_ok (i, rld[r].mode)
		      && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
			  /* Even if we can't use this register as a reload
			     register, we might use it for reload_override_in,
			     if copying it to the desired class is cheap
			     enough.  */
			  || ((register_move_cost (mode, last_class, rclass)
			       < memory_move_cost (mode, rclass, true))
			      && (secondary_reload_class (1, rclass, mode,
							  last_reg)
				  == NO_REGS)
			      && !(targetm.secondary_memory_needed
				   (mode, last_class, rclass))))
		      && (rld[r].nregs == max_group_size
			  || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
						  i))
		      && free_for_value_p (i, rld[r].mode, rld[r].opnum,
					   rld[r].when_needed, rld[r].in,
					   const0_rtx, r, 1))
		    {
		      /* If a group is needed, verify that all the subsequent
			 registers still have their values intact.  */
		      int nr = hard_regno_nregs (i, rld[r].mode);
		      int k;

		      for (k = 1; k < nr; k++)
			if (reg_reloaded_contents[i + k] != regno
			    || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
			  break;

		      if (k == nr)
			{
			  int i1;
			  int bad_for_class;

			  last_reg = (GET_MODE (last_reg) == mode
				      ? last_reg : gen_rtx_REG (mode, i));

			  bad_for_class = 0;
			  for (k = 0; k < nr; k++)
			    bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
								  i+k);

			  /* We found a register that contains the
			     value we need.  If this register is the
			     same as an `earlyclobber' operand of the
			     current insn, just mark it as a place to
			     reload from since we can't use it as the
			     reload register itself.  */

			  for (i1 = 0; i1 < n_earlyclobbers; i1++)
			    if (reg_overlap_mentioned_for_reload_p
				(reg_last_reload_reg[regno],
				 reload_earlyclobbers[i1]))
			      break;

			  if (i1 != n_earlyclobbers
			      || ! (free_for_value_p (i, rld[r].mode,
						      rld[r].opnum,
						      rld[r].when_needed, rld[r].in,
						      rld[r].out, r, 1))
			      /* Don't use it if we'd clobber a pseudo reg.  */
			      || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
				  && rld[r].out
				  && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
			      /* Don't clobber the frame pointer.  */
			      || (i == HARD_FRAME_POINTER_REGNUM
				  && frame_pointer_needed
				  && rld[r].out)
			      /* Don't really use the inherited spill reg
				 if we need it wider than we've got it.  */
			      || paradoxical_subreg_p (rld[r].mode, mode)
			      || bad_for_class

			      /* If find_reloads chose reload_out as reload
				 register, stay with it - that leaves the
				 inherited register for subsequent reloads.  */
			      || (rld[r].out && rld[r].reg_rtx
				  && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
			    {
			      if (! rld[r].optional)
				{
				  reload_override_in[r] = last_reg;
				  reload_inheritance_insn[r]
				    = reg_reloaded_insn[i];
				}
			    }
			  else
			    {
			      int k;
			      /* We can use this as a reload reg.  */
			      /* Mark the register as in use for this part of
				 the insn.  */
			      mark_reload_reg_in_use (i,
						      rld[r].opnum,
						      rld[r].when_needed,
						      rld[r].mode);
			      rld[r].reg_rtx = last_reg;
			      reload_inherited[r] = 1;
			      reload_inheritance_insn[r]
				= reg_reloaded_insn[i];
			      reload_spill_index[r] = i;
			      for (k = 0; k < nr; k++)
				SET_HARD_REG_BIT (reload_reg_used_for_inherit,
						  i + k);
			    }
			}
		    }
		}
	    }

	  /* Here's another way to see if the value is already lying around.  */
	  if (inheritance
	      && rld[r].in != 0
	      && ! reload_inherited[r]
	      && rld[r].out == 0
	      && (CONSTANT_P (rld[r].in)
		  || GET_CODE (rld[r].in) == PLUS
		  || REG_P (rld[r].in)
		  || MEM_P (rld[r].in))
	      && (rld[r].nregs == max_group_size
		  || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
	    search_equiv = rld[r].in;

	  if (search_equiv)
	    {
	      rtx equiv
		= find_equiv_reg (search_equiv, insn, rld[r].rclass,
				  -1, NULL, 0, rld[r].mode);
	      int regno = 0;

	      if (equiv != 0)
		{
		  if (REG_P (equiv))
		    regno = REGNO (equiv);
		  else
		    {
		      /* This must be a SUBREG of a hard register.
			 Make a new REG since this might be used in an
			 address and not all machines support SUBREGs
			 there.  */
		      gcc_assert (GET_CODE (equiv) == SUBREG);
		      regno = subreg_regno (equiv);
		      equiv = gen_rtx_REG (rld[r].mode, regno);
		      /* If we choose EQUIV as the reload register, but the
			 loop below decides to cancel the inheritance, we'll
			 end up reloading EQUIV in rld[r].mode, not the mode
			 it had originally.  That isn't safe when EQUIV isn't
			 available as a spill register since its value might
			 still be live at this point.  */
		      for (i = regno; i < regno + (int) rld[r].nregs; i++)
			if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
			  equiv = 0;
		    }
		}

	      /* If we found a spill reg, reject it unless it is free
		 and of the desired class.  */
	      if (equiv != 0)
		{
		  int regs_used = 0;
		  int bad_for_class = 0;
		  int max_regno = regno + rld[r].nregs;

		  for (i = regno; i < max_regno; i++)
		    {
		      regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
						      i);
		      bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
							   i);
		    }

		  if ((regs_used
		       && ! free_for_value_p (regno, rld[r].mode,
					      rld[r].opnum, rld[r].when_needed,
					      rld[r].in, rld[r].out, r, 1))
		      || bad_for_class)
		    equiv = 0;
		}

	      if (equiv != 0
		  && !targetm.hard_regno_mode_ok (regno, rld[r].mode))
		equiv = 0;

	      /* We found a register that contains the value we need.
		 If this register is the same as an `earlyclobber' operand
		 of the current insn, just mark it as a place to reload from
		 since we can't use it as the reload register itself.  */

	      if (equiv != 0)
		for (i = 0; i < n_earlyclobbers; i++)
		  if (reg_overlap_mentioned_for_reload_p (equiv,
							  reload_earlyclobbers[i]))
		    {
		      if (! rld[r].optional)
			reload_override_in[r] = equiv;
		      equiv = 0;
		      break;
		    }

	      /* If the equiv register we have found is explicitly clobbered
		 in the current insn, it depends on the reload type if we
		 can use it, use it for reload_override_in, or not at all.
		 In particular, we then can't use EQUIV for a
		 RELOAD_FOR_OUTPUT_ADDRESS reload.  */

	      if (equiv != 0)
		{
		  if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
		    switch (rld[r].when_needed)
		      {
		      case RELOAD_FOR_OTHER_ADDRESS:
		      case RELOAD_FOR_INPADDR_ADDRESS:
		      case RELOAD_FOR_INPUT_ADDRESS:
		      case RELOAD_FOR_OPADDR_ADDR:
			break;
		      case RELOAD_OTHER:
		      case RELOAD_FOR_INPUT:
		      case RELOAD_FOR_OPERAND_ADDRESS:
			if (! rld[r].optional)
			  reload_override_in[r] = equiv;
			/* Fall through.  */
		      default:
			equiv = 0;
			break;
		      }
		  else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
		    switch (rld[r].when_needed)
		      {
		      case RELOAD_FOR_OTHER_ADDRESS:
		      case RELOAD_FOR_INPADDR_ADDRESS:
		      case RELOAD_FOR_INPUT_ADDRESS:
		      case RELOAD_FOR_OPADDR_ADDR:
		      case RELOAD_FOR_OPERAND_ADDRESS:
		      case RELOAD_FOR_INPUT:
			break;
		      case RELOAD_OTHER:
			if (! rld[r].optional)
			  reload_override_in[r] = equiv;
			/* Fall through.  */
		      default:
			equiv = 0;
			break;
		      }
		}

	      /* If we found an equivalent reg, say no code need be generated
		 to load it, and use it as our reload reg.  */
	      if (equiv != 0
		  && (regno != HARD_FRAME_POINTER_REGNUM
		      || !frame_pointer_needed))
		{
		  int nr = hard_regno_nregs (regno, rld[r].mode);
		  int k;
		  rld[r].reg_rtx = equiv;
		  reload_spill_index[r] = regno;
		  reload_inherited[r] = 1;

		  /* If reg_reloaded_valid is not set for this register,
		     there might be a stale spill_reg_store lying around.
		     We must clear it, since otherwise emit_reload_insns
		     might delete the store.  */
		  if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
		    spill_reg_store[regno] = NULL;
		  /* If any of the hard registers in EQUIV are spill
		     registers, mark them as in use for this insn.  */
		  for (k = 0; k < nr; k++)
		    {
		      i = spill_reg_order[regno + k];
		      if (i >= 0)
			{
			  mark_reload_reg_in_use (regno, rld[r].opnum,
						  rld[r].when_needed,
						  rld[r].mode);
			  SET_HARD_REG_BIT (reload_reg_used_for_inherit,
					    regno + k);
			}
		    }
		}
	    }

	  /* If we found a register to use already, or if this is an optional
	     reload, we are done.  */
	  if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
	    continue;

#if 0
	  /* No longer needed for correct operation.  Might or might
	     not give better code on the average.  Want to experiment?  */

	  /* See if there is a later reload that has a class different from our
	     class that intersects our class or that requires less register
	     than our reload.  If so, we must allocate a register to this
	     reload now, since that reload might inherit a previous reload
	     and take the only available register in our class.  Don't do this
	     for optional reloads since they will force all previous reloads
	     to be allocated.  Also don't do this for reloads that have been
	     turned off.  */

	  for (i = j + 1; i < n_reloads; i++)
	    {
	      int s = reload_order[i];

	      if ((rld[s].in == 0 && rld[s].out == 0
		   && ! rld[s].secondary_p)
		  || rld[s].optional)
		continue;

	      if ((rld[s].rclass != rld[r].rclass
		   && reg_classes_intersect_p (rld[r].rclass,
					       rld[s].rclass))
		  || rld[s].nregs < rld[r].nregs)
		break;
	    }

	  if (i == n_reloads)
	    continue;

	  allocate_reload_reg (chain, r, j == n_reloads - 1);
#endif
	}

      /* Now allocate reload registers for anything non-optional that
	 didn't get one yet.  */
      for (j = 0; j < n_reloads; j++)
	{
	  int r = reload_order[j];

	  /* Ignore reloads that got marked inoperative.  */
	  if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
	    continue;

	  /* Skip reloads that already have a register allocated or are
	     optional.  */
	  if (rld[r].reg_rtx != 0 || rld[r].optional)
	    continue;

	  if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
	    break;
	}

      /* If that loop got all the way, we have won.  */
      if (j == n_reloads)
	{
	  win = 1;
	  break;
	}

      /* Loop around and try without any inheritance.  */
    }

  if (! win)
    {
      /* First undo everything done by the failed attempt
	 to allocate with inheritance.  */
      choose_reload_regs_init (chain, save_reload_reg_rtx);

      /* Some sanity tests to verify that the reloads found in the first
	 pass are identical to the ones we have now.  */
      gcc_assert (chain->n_reloads == n_reloads);

      for (i = 0; i < n_reloads; i++)
	{
	  if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
	    continue;
	  gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
	  for (j = 0; j < n_spills; j++)
	    if (spill_regs[j] == chain->rld[i].regno)
	      if (! set_reload_reg (j, i))
		failed_reload (chain->insn, i);
	}
    }

  /* If we thought we could inherit a reload, because it seemed that
     nothing else wanted the same reload register earlier in the insn,
     verify that assumption, now that all reloads have been assigned.
     Likewise for reloads where reload_override_in has been set.  */

  /* If doing expensive optimizations, do one preliminary pass that doesn't
     cancel any inheritance, but removes reloads that have been needed only
     for reloads that we know can be inherited.  */
  for (pass = flag_expensive_optimizations; pass >= 0; pass--)
    {
      for (j = 0; j < n_reloads; j++)
	{
	  int r = reload_order[j];
	  rtx check_reg;
	  rtx tem;
	  if (reload_inherited[r] && rld[r].reg_rtx)
	    check_reg = rld[r].reg_rtx;
	  else if (reload_override_in[r]
		   && (REG_P (reload_override_in[r])
		       || GET_CODE (reload_override_in[r]) == SUBREG))
	    check_reg = reload_override_in[r];
	  else
	    continue;
	  if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
				  rld[r].opnum, rld[r].when_needed, rld[r].in,
				  (reload_inherited[r]
				   ? rld[r].out : const0_rtx),
				  r, 1))
	    {
	      if (pass)
		continue;
	      reload_inherited[r] = 0;
	      reload_override_in[r] = 0;
	    }
	  /* If we can inherit a RELOAD_FOR_INPUT, or can use a
	     reload_override_in, then we do not need its related
	     RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
	     likewise for other reload types.
	     We handle this by removing a reload when its only replacement
	     is mentioned in reload_in of the reload we are going to inherit.
	     A special case are auto_inc expressions; even if the input is
	     inherited, we still need the address for the output.  We can
	     recognize them because they have RELOAD_OUT set to RELOAD_IN.
	     If we succeeded removing some reload and we are doing a preliminary
	     pass just to remove such reloads, make another pass, since the
	     removal of one reload might allow us to inherit another one.  */
	  else if (rld[r].in
		   && rld[r].out != rld[r].in
		   && remove_address_replacements (rld[r].in))
	    {
	      if (pass)
	        pass = 2;
	    }
	  /* If we needed a memory location for the reload, we also have to
	     remove its related reloads.  */
	  else if (rld[r].in
		   && rld[r].out != rld[r].in
		   && (tem = replaced_subreg (rld[r].in), REG_P (tem))		   
		   && REGNO (tem) < FIRST_PSEUDO_REGISTER
		   && (targetm.secondary_memory_needed
		       (rld[r].inmode, REGNO_REG_CLASS (REGNO (tem)),
			rld[r].rclass))
		   && remove_address_replacements
		      (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
					  rld[r].when_needed)))
	    {
	      if (pass)
	        pass = 2;
	    }
	}
    }

  /* Now that reload_override_in is known valid,
     actually override reload_in.  */
  for (j = 0; j < n_reloads; j++)
    if (reload_override_in[j])
      rld[j].in = reload_override_in[j];

  /* If this reload won't be done because it has been canceled or is
     optional and not inherited, clear reload_reg_rtx so other
     routines (such as subst_reloads) don't get confused.  */
  for (j = 0; j < n_reloads; j++)
    if (rld[j].reg_rtx != 0
	&& ((rld[j].optional && ! reload_inherited[j])
	    || (rld[j].in == 0 && rld[j].out == 0
		&& ! rld[j].secondary_p)))
      {
	int regno = true_regnum (rld[j].reg_rtx);

	if (spill_reg_order[regno] >= 0)
	  clear_reload_reg_in_use (regno, rld[j].opnum,
				   rld[j].when_needed, rld[j].mode);
	rld[j].reg_rtx = 0;
	reload_spill_index[j] = -1;
      }

  /* Record which pseudos and which spill regs have output reloads.  */
  for (j = 0; j < n_reloads; j++)
    {
      int r = reload_order[j];

      i = reload_spill_index[r];

      /* I is nonneg if this reload uses a register.
	 If rld[r].reg_rtx is 0, this is an optional reload
	 that we opted to ignore.  */
      if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
	  && rld[r].reg_rtx != 0)
	{
	  int nregno = REGNO (rld[r].out_reg);
	  int nr = 1;

	  if (nregno < FIRST_PSEUDO_REGISTER)
	    nr = hard_regno_nregs (nregno, rld[r].mode);

	  while (--nr >= 0)
	    SET_REGNO_REG_SET (&reg_has_output_reload,
			       nregno + nr);

	  if (i >= 0)
	    add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);

	  gcc_assert (rld[r].when_needed == RELOAD_OTHER
		      || rld[r].when_needed == RELOAD_FOR_OUTPUT
		      || rld[r].when_needed == RELOAD_FOR_INSN);
	}
    }
}

/* Deallocate the reload register for reload R.  This is called from
   remove_address_replacements.  */

void
deallocate_reload_reg (int r)
{
  int regno;

  if (! rld[r].reg_rtx)
    return;
  regno = true_regnum (rld[r].reg_rtx);
  rld[r].reg_rtx = 0;
  if (spill_reg_order[regno] >= 0)
    clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
			     rld[r].mode);
  reload_spill_index[r] = -1;
}

/* These arrays are filled by emit_reload_insns and its subroutines.  */
static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
static rtx_insn *other_input_address_reload_insns = 0;
static rtx_insn *other_input_reload_insns = 0;
static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
static rtx_insn *operand_reload_insns = 0;
static rtx_insn *other_operand_reload_insns = 0;
static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];

/* Values to be put in spill_reg_store are put here first.  Instructions
   must only be placed here if the associated reload register reaches
   the end of the instruction's reload sequence.  */
static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
static HARD_REG_SET reg_reloaded_died;

/* Check if *RELOAD_REG is suitable as an intermediate or scratch register
   of class NEW_CLASS with mode NEW_MODE.  Or alternatively, if alt_reload_reg
   is nonzero, if that is suitable.  On success, change *RELOAD_REG to the
   adjusted register, and return true.  Otherwise, return false.  */
static bool
reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
			    enum reg_class new_class,
			    machine_mode new_mode)

{
  rtx reg;

  for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
    {
      unsigned regno = REGNO (reg);

      if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
	continue;
      if (GET_MODE (reg) != new_mode)
	{
	  if (!targetm.hard_regno_mode_ok (regno, new_mode))
	    continue;
	  if (hard_regno_nregs (regno, new_mode) > REG_NREGS (reg))
	    continue;
	  reg = reload_adjust_reg_for_mode (reg, new_mode);
	}
      *reload_reg = reg;
      return true;
    }
  return false;
}

/* Check if *RELOAD_REG is suitable as a scratch register for the reload
   pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
   nonzero, if that is suitable.  On success, change *RELOAD_REG to the
   adjusted register, and return true.  Otherwise, return false.  */
static bool
reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
			     enum insn_code icode)

{
  enum reg_class new_class = scratch_reload_class (icode);
  machine_mode new_mode = insn_data[(int) icode].operand[2].mode;

  return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
				     new_class, new_mode);
}

/* Generate insns to perform reload RL, which is for the insn in CHAIN and
   has the number J.  OLD contains the value to be used as input.  */

static void
emit_input_reload_insns (class insn_chain *chain, struct reload *rl,
			 rtx old, int j)
{
  rtx_insn *insn = chain->insn;
  rtx reloadreg;
  rtx oldequiv_reg = 0;
  rtx oldequiv = 0;
  int special = 0;
  machine_mode mode;
  rtx_insn **where;

  /* delete_output_reload is only invoked properly if old contains
     the original pseudo register.  Since this is replaced with a
     hard reg when RELOAD_OVERRIDE_IN is set, see if we can
     find the pseudo in RELOAD_IN_REG.  This is also used to
     determine whether a secondary reload is needed.  */
  if (reload_override_in[j]
      && (REG_P (rl->in_reg)
	  || (GET_CODE (rl->in_reg) == SUBREG
	      && REG_P (SUBREG_REG (rl->in_reg)))))
    {
      oldequiv = old;
      old = rl->in_reg;
    }
  if (oldequiv == 0)
    oldequiv = old;
  else if (REG_P (oldequiv))
    oldequiv_reg = oldequiv;
  else if (GET_CODE (oldequiv) == SUBREG)
    oldequiv_reg = SUBREG_REG (oldequiv);

  reloadreg = reload_reg_rtx_for_input[j];
  mode = GET_MODE (reloadreg);

  /* If we are reloading from a register that was recently stored in
     with an output-reload, see if we can prove there was
     actually no need to store the old value in it.  */

  if (optimize && REG_P (oldequiv)
      && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
      && spill_reg_store[REGNO (oldequiv)]
      && REG_P (old)
      && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
	  || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
			  rl->out_reg)))
    delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);

  /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
     OLDEQUIV.  */

  while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
    oldequiv = SUBREG_REG (oldequiv);
  if (GET_MODE (oldequiv) != VOIDmode
      && mode != GET_MODE (oldequiv))
    oldequiv = gen_lowpart_SUBREG (mode, oldequiv);

  /* Switch to the right place to emit the reload insns.  */
  switch (rl->when_needed)
    {
    case RELOAD_OTHER:
      where = &other_input_reload_insns;
      break;
    case RELOAD_FOR_INPUT:
      where = &input_reload_insns[rl->opnum];
      break;
    case RELOAD_FOR_INPUT_ADDRESS:
      where = &input_address_reload_insns[rl->opnum];
      break;
    case RELOAD_FOR_INPADDR_ADDRESS:
      where = &inpaddr_address_reload_insns[rl->opnum];
      break;
    case RELOAD_FOR_OUTPUT_ADDRESS:
      where = &output_address_reload_insns[rl->opnum];
      break;
    case RELOAD_FOR_OUTADDR_ADDRESS:
      where = &outaddr_address_reload_insns[rl->opnum];
      break;
    case RELOAD_FOR_OPERAND_ADDRESS:
      where = &operand_reload_insns;
      break;
    case RELOAD_FOR_OPADDR_ADDR:
      where = &other_operand_reload_insns;
      break;
    case RELOAD_FOR_OTHER_ADDRESS:
      where = &other_input_address_reload_insns;
      break;
    default:
      gcc_unreachable ();
    }

  push_to_sequence (*where);

  /* Auto-increment addresses must be reloaded in a special way.  */
  if (rl->out && ! rl->out_reg)
    {
      /* We are not going to bother supporting the case where a
	 incremented register can't be copied directly from
	 OLDEQUIV since this seems highly unlikely.  */
      gcc_assert (rl->secondary_in_reload < 0);

      if (reload_inherited[j])
	oldequiv = reloadreg;

      old = XEXP (rl->in_reg, 0);

      /* Prevent normal processing of this reload.  */
      special = 1;
      /* Output a special code sequence for this case.  */
      inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
    }

  /* If we are reloading a pseudo-register that was set by the previous
     insn, see if we can get rid of that pseudo-register entirely
     by redirecting the previous insn into our reload register.  */

  else if (optimize && REG_P (old)
	   && REGNO (old) >= FIRST_PSEUDO_REGISTER
	   && dead_or_set_p (insn, old)
	   /* This is unsafe if some other reload
	      uses the same reg first.  */
	   && ! conflicts_with_override (reloadreg)
	   && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
				rl->when_needed, old, rl->out, j, 0))
    {
      rtx_insn *temp = PREV_INSN (insn);
      while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
	temp = PREV_INSN (temp);
      if (temp
	  && NONJUMP_INSN_P (temp)
	  && GET_CODE (PATTERN (temp)) == SET
	  && SET_DEST (PATTERN (temp)) == old
	  /* Make sure we can access insn_operand_constraint.  */
	  && asm_noperands (PATTERN (temp)) < 0
	  /* This is unsafe if operand occurs more than once in current
	     insn.  Perhaps some occurrences aren't reloaded.  */
	  && count_occurrences (PATTERN (insn), old, 0) == 1)
	{
	  rtx old = SET_DEST (PATTERN (temp));
	  /* Store into the reload register instead of the pseudo.  */
	  SET_DEST (PATTERN (temp)) = reloadreg;

	  /* Verify that resulting insn is valid. 

	     Note that we have replaced the destination of TEMP with
	     RELOADREG.  If TEMP references RELOADREG within an
	     autoincrement addressing mode, then the resulting insn
	     is ill-formed and we must reject this optimization.  */
	  extract_insn (temp);
	  if (constrain_operands (1, get_enabled_alternatives (temp))
	      && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
	    {
	      /* If the previous insn is an output reload, the source is
		 a reload register, and its spill_reg_store entry will
		 contain the previous destination.  This is now
		 invalid.  */
	      if (REG_P (SET_SRC (PATTERN (temp)))
		  && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
		{
		  spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
		  spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
		}

	      /* If these are the only uses of the pseudo reg,
		 pretend for GDB it lives in the reload reg we used.  */
	      if (REG_N_DEATHS (REGNO (old)) == 1
		  && REG_N_SETS (REGNO (old)) == 1)
		{
		  reg_renumber[REGNO (old)] = REGNO (reloadreg);
		  if (ira_conflicts_p)
		    /* Inform IRA about the change.  */
		    ira_mark_allocation_change (REGNO (old));
		  alter_reg (REGNO (old), -1, false);
		}
	      special = 1;

	      /* Adjust any debug insns between temp and insn.  */
	      while ((temp = NEXT_INSN (temp)) != insn)
		if (DEBUG_BIND_INSN_P (temp))
		  INSN_VAR_LOCATION_LOC (temp)
		    = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
					    old, reloadreg);
		else
		  gcc_assert (DEBUG_INSN_P (temp) || NOTE_P (temp));
	    }
	  else
	    {
	      SET_DEST (PATTERN (temp)) = old;
	    }
	}
    }

  /* We can't do that, so output an insn to load RELOADREG.  */

  /* If we have a secondary reload, pick up the secondary register
     and icode, if any.  If OLDEQUIV and OLD are different or
     if this is an in-out reload, recompute whether or not we
     still need a secondary register and what the icode should
     be.  If we still need a secondary register and the class or
     icode is different, go back to reloading from OLD if using
     OLDEQUIV means that we got the wrong type of register.  We
     cannot have different class or icode due to an in-out reload
     because we don't make such reloads when both the input and
     output need secondary reload registers.  */

  if (! special && rl->secondary_in_reload >= 0)
    {
      rtx second_reload_reg = 0;
      rtx third_reload_reg = 0;
      int secondary_reload = rl->secondary_in_reload;
      rtx real_oldequiv = oldequiv;
      rtx real_old = old;
      rtx tmp;
      enum insn_code icode;
      enum insn_code tertiary_icode = CODE_FOR_nothing;

      /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
	 and similarly for OLD.
	 See comments in get_secondary_reload in reload.c.  */
      /* If it is a pseudo that cannot be replaced with its
	 equivalent MEM, we must fall back to reload_in, which
	 will have all the necessary substitutions registered.
	 Likewise for a pseudo that can't be replaced with its
	 equivalent constant.

	 Take extra care for subregs of such pseudos.  Note that
	 we cannot use reg_equiv_mem in this case because it is
	 not in the right mode.  */

      tmp = oldequiv;
      if (GET_CODE (tmp) == SUBREG)
	tmp = SUBREG_REG (tmp);
      if (REG_P (tmp)
	  && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
	  && (reg_equiv_memory_loc (REGNO (tmp)) != 0
	      || reg_equiv_constant (REGNO (tmp)) != 0))
	{
	  if (! reg_equiv_mem (REGNO (tmp))
	      || num_not_at_initial_offset
	      || GET_CODE (oldequiv) == SUBREG)
	    real_oldequiv = rl->in;
	  else
	    real_oldequiv = reg_equiv_mem (REGNO (tmp));
	}

      tmp = old;
      if (GET_CODE (tmp) == SUBREG)
	tmp = SUBREG_REG (tmp);
      if (REG_P (tmp)
	  && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
	  && (reg_equiv_memory_loc (REGNO (tmp)) != 0
	      || reg_equiv_constant (REGNO (tmp)) != 0))
	{
	  if (! reg_equiv_mem (REGNO (tmp))
	      || num_not_at_initial_offset
	      || GET_CODE (old) == SUBREG)
	    real_old = rl->in;
	  else
	    real_old = reg_equiv_mem (REGNO (tmp));
	}

      second_reload_reg = rld[secondary_reload].reg_rtx;
      if (rld[secondary_reload].secondary_in_reload >= 0)
	{
	  int tertiary_reload = rld[secondary_reload].secondary_in_reload;

	  third_reload_reg = rld[tertiary_reload].reg_rtx;
	  tertiary_icode = rld[secondary_reload].secondary_in_icode;
	  /* We'd have to add more code for quartary reloads.  */
	  gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
	}
      icode = rl->secondary_in_icode;

      if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
	  || (rl->in != 0 && rl->out != 0))
	{
	  secondary_reload_info sri, sri2;
	  enum reg_class new_class, new_t_class;

	  sri.icode = CODE_FOR_nothing;
	  sri.prev_sri = NULL;
	  new_class
	    = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
							 rl->rclass, mode,
							 &sri);

	  if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
	    second_reload_reg = 0;
	  else if (new_class == NO_REGS)
	    {
	      if (reload_adjust_reg_for_icode (&second_reload_reg,
					       third_reload_reg,
					       (enum insn_code) sri.icode))
		{
		  icode = (enum insn_code) sri.icode;
		  third_reload_reg = 0;
		}
	      else
		{
		  oldequiv = old;
		  real_oldequiv = real_old;
		}
	    }
	  else if (sri.icode != CODE_FOR_nothing)
	    /* We currently lack a way to express this in reloads.  */
	    gcc_unreachable ();
	  else
	    {
	      sri2.icode = CODE_FOR_nothing;
	      sri2.prev_sri = &sri;
	      new_t_class
		= (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
							     new_class, mode,
							     &sri);
	      if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
		{
		  if (reload_adjust_reg_for_temp (&second_reload_reg,
						  third_reload_reg,
						  new_class, mode))
		    {
		      third_reload_reg = 0;
		      tertiary_icode = (enum insn_code) sri2.icode;
		    }
		  else
		    {
		      oldequiv = old;
		      real_oldequiv = real_old;
		    }
		}
	      else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
		{
		  rtx intermediate = second_reload_reg;

		  if (reload_adjust_reg_for_temp (&intermediate, NULL,
						  new_class, mode)
		      && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
						      ((enum insn_code)
						       sri2.icode)))
		    {
		      second_reload_reg = intermediate;
		      tertiary_icode = (enum insn_code) sri2.icode;
		    }
		  else
		    {
		      oldequiv = old;
		      real_oldequiv = real_old;
		    }
		}
	      else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
		{
		  rtx intermediate = second_reload_reg;

		  if (reload_adjust_reg_for_temp (&intermediate, NULL,
						  new_class, mode)
		      && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
						      new_t_class, mode))
		    {
		      second_reload_reg = intermediate;
		      tertiary_icode = (enum insn_code) sri2.icode;
		    }
		  else
		    {
		      oldequiv = old;
		      real_oldequiv = real_old;
		    }
		}
	      else
		{
		  /* This could be handled more intelligently too.  */
		  oldequiv = old;
		  real_oldequiv = real_old;
		}
	    }
	}

      /* If we still need a secondary reload register, check
	 to see if it is being used as a scratch or intermediate
	 register and generate code appropriately.  If we need
	 a scratch register, use REAL_OLDEQUIV since the form of
	 the insn may depend on the actual address if it is
	 a MEM.  */

      if (second_reload_reg)
	{
	  if (icode != CODE_FOR_nothing)
	    {
	      /* We'd have to add extra code to handle this case.  */
	      gcc_assert (!third_reload_reg);

	      emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
					  second_reload_reg));
	      special = 1;
	    }
	  else
	    {
	      /* See if we need a scratch register to load the
		 intermediate register (a tertiary reload).  */
	      if (tertiary_icode != CODE_FOR_nothing)
		{
		  emit_insn ((GEN_FCN (tertiary_icode)
			      (second_reload_reg, real_oldequiv,
			       third_reload_reg)));
		}
	      else if (third_reload_reg)
		{
		  gen_reload (third_reload_reg, real_oldequiv,
			      rl->opnum,
			      rl->when_needed);
		  gen_reload (second_reload_reg, third_reload_reg,
			      rl->opnum,
			      rl->when_needed);
		}
	      else
		gen_reload (second_reload_reg, real_oldequiv,
			    rl->opnum,
			    rl->when_needed);

	      oldequiv = second_reload_reg;
	    }
	}
    }

  if (! special && ! rtx_equal_p (reloadreg, oldequiv))
    {
      rtx real_oldequiv = oldequiv;

      if ((REG_P (oldequiv)
	   && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
	   && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
	       || reg_equiv_constant (REGNO (oldequiv)) != 0))
	  || (GET_CODE (oldequiv) == SUBREG
	      && REG_P (SUBREG_REG (oldequiv))
	      && (REGNO (SUBREG_REG (oldequiv))
		  >= FIRST_PSEUDO_REGISTER)
	      && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
		  || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
	  || (CONSTANT_P (oldequiv)
	      && (targetm.preferred_reload_class (oldequiv,
						  REGNO_REG_CLASS (REGNO (reloadreg)))
		  == NO_REGS)))
	real_oldequiv = rl->in;
      gen_reload (reloadreg, real_oldequiv, rl->opnum,
		  rl->when_needed);
    }

  if (cfun->can_throw_non_call_exceptions)
    copy_reg_eh_region_note_forward (insn, get_insns (), NULL);

  /* End this sequence.  */
  *where = get_insns ();
  end_sequence ();

  /* Update reload_override_in so that delete_address_reloads_1
     can see the actual register usage.  */
  if (oldequiv_reg)
    reload_override_in[j] = oldequiv;
}

/* Generate insns to for the output reload RL, which is for the insn described
   by CHAIN and has the number J.  */
static void
emit_output_reload_insns (class insn_chain *chain, struct reload *rl,
			  int j)
{
  rtx reloadreg;
  rtx_insn *insn = chain->insn;
  int special = 0;
  rtx old = rl->out;
  machine_mode mode;
  rtx_insn *p;
  rtx rl_reg_rtx;

  if (rl->when_needed == RELOAD_OTHER)
    start_sequence ();
  else
    push_to_sequence (output_reload_insns[rl->opnum]);

  rl_reg_rtx = reload_reg_rtx_for_output[j];
  mode = GET_MODE (rl_reg_rtx);

  reloadreg = rl_reg_rtx;

  /* If we need two reload regs, set RELOADREG to the intermediate
     one, since it will be stored into OLD.  We might need a secondary
     register only for an input reload, so check again here.  */

  if (rl->secondary_out_reload >= 0)
    {
      rtx real_old = old;
      int secondary_reload = rl->secondary_out_reload;
      int tertiary_reload = rld[secondary_reload].secondary_out_reload;

      if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
	  && reg_equiv_mem (REGNO (old)) != 0)
	real_old = reg_equiv_mem (REGNO (old));

      if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
	{
	  rtx second_reloadreg = reloadreg;
	  reloadreg = rld[secondary_reload].reg_rtx;

	  /* See if RELOADREG is to be used as a scratch register
	     or as an intermediate register.  */
	  if (rl->secondary_out_icode != CODE_FOR_nothing)
	    {
	      /* We'd have to add extra code to handle this case.  */
	      gcc_assert (tertiary_reload < 0);

	      emit_insn ((GEN_FCN (rl->secondary_out_icode)
			  (real_old, second_reloadreg, reloadreg)));
	      special = 1;
	    }
	  else
	    {
	      /* See if we need both a scratch and intermediate reload
		 register.  */

	      enum insn_code tertiary_icode
		= rld[secondary_reload].secondary_out_icode;

	      /* We'd have to add more code for quartary reloads.  */
	      gcc_assert (tertiary_reload < 0
			  || rld[tertiary_reload].secondary_out_reload < 0);

	      if (GET_MODE (reloadreg) != mode)
		reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);

	      if (tertiary_icode != CODE_FOR_nothing)
		{
		  rtx third_reloadreg = rld[tertiary_reload].reg_rtx;

		  /* Copy primary reload reg to secondary reload reg.
		     (Note that these have been swapped above, then
		     secondary reload reg to OLD using our insn.)  */

		  /* If REAL_OLD is a paradoxical SUBREG, remove it
		     and try to put the opposite SUBREG on
		     RELOADREG.  */
		  strip_paradoxical_subreg (&real_old, &reloadreg);

		  gen_reload (reloadreg, second_reloadreg,
			      rl->opnum, rl->when_needed);
		  emit_insn ((GEN_FCN (tertiary_icode)
			      (real_old, reloadreg, third_reloadreg)));
		  special = 1;
		}

	      else
		{
		  /* Copy between the reload regs here and then to
		     OUT later.  */

		  gen_reload (reloadreg, second_reloadreg,
			      rl->opnum, rl->when_needed);
		  if (tertiary_reload >= 0)
		    {
		      rtx third_reloadreg = rld[tertiary_reload].reg_rtx;

		      gen_reload (third_reloadreg, reloadreg,
				  rl->opnum, rl->when_needed);
		      reloadreg = third_reloadreg;
		    }
		}
	    }
	}
    }

  /* Output the last reload insn.  */
  if (! special)
    {
      rtx set;

      /* Don't output the last reload if OLD is not the dest of
	 INSN and is in the src and is clobbered by INSN.  */
      if (! flag_expensive_optimizations
	  || !REG_P (old)
	  || !(set = single_set (insn))
	  || rtx_equal_p (old, SET_DEST (set))
	  || !reg_mentioned_p (old, SET_SRC (set))
	  || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
	       && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
	gen_reload (old, reloadreg, rl->opnum,
		    rl->when_needed);
    }

  /* Look at all insns we emitted, just to be safe.  */
  for (p = get_insns (); p; p = NEXT_INSN (p))
    if (INSN_P (p))
      {
	rtx pat = PATTERN (p);

	/* If this output reload doesn't come from a spill reg,
	   clear any memory of reloaded copies of the pseudo reg.
	   If this output reload comes from a spill reg,
	   reg_has_output_reload will make this do nothing.  */
	note_stores (p, forget_old_reloads_1, NULL);

	if (reg_mentioned_p (rl_reg_rtx, pat))
	  {
	    rtx set = single_set (insn);
	    if (reload_spill_index[j] < 0
		&& set
		&& SET_SRC (set) == rl_reg_rtx)
	      {
		int src = REGNO (SET_SRC (set));

		reload_spill_index[j] = src;
		SET_HARD_REG_BIT (reg_is_output_reload, src);
		if (find_regno_note (insn, REG_DEAD, src))
		  SET_HARD_REG_BIT (reg_reloaded_died, src);
	      }
	    if (HARD_REGISTER_P (rl_reg_rtx))
	      {
		int s = rl->secondary_out_reload;
		set = single_set (p);
		/* If this reload copies only to the secondary reload
		   register, the secondary reload does the actual
		   store.  */
		if (s >= 0 && set == NULL_RTX)
		  /* We can't tell what function the secondary reload
		     has and where the actual store to the pseudo is
		     made; leave new_spill_reg_store alone.  */
		  ;
		else if (s >= 0
			 && SET_SRC (set) == rl_reg_rtx
			 && SET_DEST (set) == rld[s].reg_rtx)
		  {
		    /* Usually the next instruction will be the
		       secondary reload insn;  if we can confirm
		       that it is, setting new_spill_reg_store to
		       that insn will allow an extra optimization.  */
		    rtx s_reg = rld[s].reg_rtx;
		    rtx_insn *next = NEXT_INSN (p);
		    rld[s].out = rl->out;
		    rld[s].out_reg = rl->out_reg;
		    set = single_set (next);
		    if (set && SET_SRC (set) == s_reg
			&& reload_reg_rtx_reaches_end_p (s_reg, s))
		      {
			SET_HARD_REG_BIT (reg_is_output_reload,
					  REGNO (s_reg));
			new_spill_reg_store[REGNO (s_reg)] = next;
		      }
		  }
		else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
		  new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
	      }
	  }
      }

  if (rl->when_needed == RELOAD_OTHER)
    {
      emit_insn (other_output_reload_insns[rl->opnum]);
      other_output_reload_insns[rl->opnum] = get_insns ();
    }
  else
    output_reload_insns[rl->opnum] = get_insns ();

  if (cfun->can_throw_non_call_exceptions)
    copy_reg_eh_region_note_forward (insn, get_insns (), NULL);

  end_sequence ();
}

/* Do input reloading for reload RL, which is for the insn described by CHAIN
   and has the number J.  */
static void
do_input_reload (class insn_chain *chain, struct reload *rl, int j)
{
  rtx_insn *insn = chain->insn;
  rtx old = (rl->in && MEM_P (rl->in)
	     ? rl->in_reg : rl->in);
  rtx reg_rtx = rl->reg_rtx;

  if (old && reg_rtx)
    {
      machine_mode mode;

      /* Determine the mode to reload in.
	 This is very tricky because we have three to choose from.
	 There is the mode the insn operand wants (rl->inmode).
	 There is the mode of the reload register RELOADREG.
	 There is the intrinsic mode of the operand, which we could find
	 by stripping some SUBREGs.
	 It turns out that RELOADREG's mode is irrelevant:
	 we can change that arbitrarily.

	 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
	 then the reload reg may not support QImode moves, so use SImode.
	 If foo is in memory due to spilling a pseudo reg, this is safe,
	 because the QImode value is in the least significant part of a
	 slot big enough for a SImode.  If foo is some other sort of
	 memory reference, then it is impossible to reload this case,
	 so previous passes had better make sure this never happens.

	 Then consider a one-word union which has SImode and one of its
	 members is a float, being fetched as (SUBREG:SF union:SI).
	 We must fetch that as SFmode because we could be loading into
	 a float-only register.  In this case OLD's mode is correct.

	 Consider an immediate integer: it has VOIDmode.  Here we need
	 to get a mode from something else.

	 In some cases, there is a fourth mode, the operand's
	 containing mode.  If the insn specifies a containing mode for
	 this operand, it overrides all others.

	 I am not sure whether the algorithm here is always right,
	 but it does the right things in those cases.  */

      mode = GET_MODE (old);
      if (mode == VOIDmode)
	mode = rl->inmode;

      /* We cannot use gen_lowpart_common since it can do the wrong thing
	 when REG_RTX has a multi-word mode.  Note that REG_RTX must
	 always be a REG here.  */
      if (GET_MODE (reg_rtx) != mode)
	reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
    }
  reload_reg_rtx_for_input[j] = reg_rtx;

  if (old != 0
      /* AUTO_INC reloads need to be handled even if inherited.  We got an
	 AUTO_INC reload if reload_out is set but reload_out_reg isn't.  */
      && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
      && ! rtx_equal_p (reg_rtx, old)
      && reg_rtx != 0)
    emit_input_reload_insns (chain, rld + j, old, j);

  /* When inheriting a wider reload, we have a MEM in rl->in,
     e.g. inheriting a SImode output reload for
     (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10)))  */
  if (optimize && reload_inherited[j] && rl->in
      && MEM_P (rl->in)
      && MEM_P (rl->in_reg)
      && reload_spill_index[j] >= 0
      && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
    rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];

  /* If we are reloading a register that was recently stored in with an
     output-reload, see if we can prove there was
     actually no need to store the old value in it.  */

  if (optimize
      && (reload_inherited[j] || reload_override_in[j])
      && reg_rtx
      && REG_P (reg_rtx)
      && spill_reg_store[REGNO (reg_rtx)] != 0
#if 0
      /* There doesn't seem to be any reason to restrict this to pseudos
	 and doing so loses in the case where we are copying from a
	 register of the wrong class.  */
      && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
#endif
      /* The insn might have already some references to stackslots
	 replaced by MEMs, while reload_out_reg still names the
	 original pseudo.  */
      && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
	  || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
    delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
}

/* Do output reloading for reload RL, which is for the insn described by
   CHAIN and has the number J.
   ??? At some point we need to support handling output reloads of
   JUMP_INSNs.  */
static void
do_output_reload (class insn_chain *chain, struct reload *rl, int j)
{
  rtx note, old;
  rtx_insn *insn = chain->insn;
  /* If this is an output reload that stores something that is
     not loaded in this same reload, see if we can eliminate a previous
     store.  */
  rtx pseudo = rl->out_reg;
  rtx reg_rtx = rl->reg_rtx;

  if (rl->out && reg_rtx)
    {
      machine_mode mode;

      /* Determine the mode to reload in.
	 See comments above (for input reloading).  */
      mode = GET_MODE (rl->out);
      if (mode == VOIDmode)
	{
	  /* VOIDmode should never happen for an output.  */
	  if (asm_noperands (PATTERN (insn)) < 0)
	    /* It's the compiler's fault.  */
	    fatal_insn ("VOIDmode on an output", insn);
	  error_for_asm (insn, "output operand is constant in %<asm%>");
	  /* Prevent crash--use something we know is valid.  */
	  mode = word_mode;
	  rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
	}
      if (GET_MODE (reg_rtx) != mode)
	reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
    }
  reload_reg_rtx_for_output[j] = reg_rtx;

  if (pseudo
      && optimize
      && REG_P (pseudo)
      && ! rtx_equal_p (rl->in_reg, pseudo)
      && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
      && reg_last_reload_reg[REGNO (pseudo)])
    {
      int pseudo_no = REGNO (pseudo);
      int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);

      /* We don't need to test full validity of last_regno for
	 inherit here; we only want to know if the store actually
	 matches the pseudo.  */
      if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
	  && reg_reloaded_contents[last_regno] == pseudo_no
	  && spill_reg_store[last_regno]
	  && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
	delete_output_reload (insn, j, last_regno, reg_rtx);
    }

  old = rl->out_reg;
  if (old == 0
      || reg_rtx == 0
      || rtx_equal_p (old, reg_rtx))
    return;

  /* An output operand that dies right away does need a reload,
     but need not be copied from it.  Show the new location in the
     REG_UNUSED note.  */
  if ((REG_P (old) || GET_CODE (old) == SCRATCH)
      && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
    {
      XEXP (note, 0) = reg_rtx;
      return;
    }
  /* Likewise for a SUBREG of an operand that dies.  */
  else if (GET_CODE (old) == SUBREG
	   && REG_P (SUBREG_REG (old))
	   && (note = find_reg_note (insn, REG_UNUSED,
				     SUBREG_REG (old))) != 0)
    {
      XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
      return;
    }
  else if (GET_CODE (old) == SCRATCH)
    /* If we aren't optimizing, there won't be a REG_UNUSED note,
       but we don't want to make an output reload.  */
    return;

  /* If is a JUMP_INSN, we can't support output reloads yet.  */
  gcc_assert (NONJUMP_INSN_P (insn));

  emit_output_reload_insns (chain, rld + j, j);
}

/* A reload copies values of MODE from register SRC to register DEST.
   Return true if it can be treated for inheritance purposes like a
   group of reloads, each one reloading a single hard register.  The
   caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
   occupy the same number of hard registers.  */

static bool
inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
		     int src ATTRIBUTE_UNUSED,
		     machine_mode mode ATTRIBUTE_UNUSED)
{
  return (REG_CAN_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
	  && REG_CAN_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
}

/* Output insns to reload values in and out of the chosen reload regs.  */

static void
emit_reload_insns (class insn_chain *chain)
{
  rtx_insn *insn = chain->insn;

  int j;

  CLEAR_HARD_REG_SET (reg_reloaded_died);

  for (j = 0; j < reload_n_operands; j++)
    input_reload_insns[j] = input_address_reload_insns[j]
      = inpaddr_address_reload_insns[j]
      = output_reload_insns[j] = output_address_reload_insns[j]
      = outaddr_address_reload_insns[j]
      = other_output_reload_insns[j] = 0;
  other_input_address_reload_insns = 0;
  other_input_reload_insns = 0;
  operand_reload_insns = 0;
  other_operand_reload_insns = 0;

  /* Dump reloads into the dump file.  */
  if (dump_file)
    {
      fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
      debug_reload_to_stream (dump_file);
    }

  for (j = 0; j < n_reloads; j++)
    if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
      {
	unsigned int i;

	for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
	  new_spill_reg_store[i] = 0;
      }

  /* Now output the instructions to copy the data into and out of the
     reload registers.  Do these in the order that the reloads were reported,
     since reloads of base and index registers precede reloads of operands
     and the operands may need the base and index registers reloaded.  */

  for (j = 0; j < n_reloads; j++)
    {
      do_input_reload (chain, rld + j, j);
      do_output_reload (chain, rld + j, j);
    }

  /* Now write all the insns we made for reloads in the order expected by
     the allocation functions.  Prior to the insn being reloaded, we write
     the following reloads:

     RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.

     RELOAD_OTHER reloads.

     For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
     by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
     RELOAD_FOR_INPUT reload for the operand.

     RELOAD_FOR_OPADDR_ADDRS reloads.

     RELOAD_FOR_OPERAND_ADDRESS reloads.

     After the insn being reloaded, we write the following:

     For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
     by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
     RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
     reloads for the operand.  The RELOAD_OTHER output reloads are
     output in descending order by reload number.  */

  emit_insn_before (other_input_address_reload_insns, insn);
  emit_insn_before (other_input_reload_insns, insn);

  for (j = 0; j < reload_n_operands; j++)
    {
      emit_insn_before (inpaddr_address_reload_insns[j], insn);
      emit_insn_before (input_address_reload_insns[j], insn);
      emit_insn_before (input_reload_insns[j], insn);
    }

  emit_insn_before (other_operand_reload_insns, insn);
  emit_insn_before (operand_reload_insns, insn);

  for (j = 0; j < reload_n_operands; j++)
    {
      rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
      x = emit_insn_after (output_address_reload_insns[j], x);
      x = emit_insn_after (output_reload_insns[j], x);
      emit_insn_after (other_output_reload_insns[j], x);
    }

  /* For all the spill regs newly reloaded in this instruction,
     record what they were reloaded from, so subsequent instructions
     can inherit the reloads.

     Update spill_reg_store for the reloads of this insn.
     Copy the elements that were updated in the loop above.  */

  for (j = 0; j < n_reloads; j++)
    {
      int r = reload_order[j];
      int i = reload_spill_index[r];

      /* If this is a non-inherited input reload from a pseudo, we must
	 clear any memory of a previous store to the same pseudo.  Only do
	 something if there will not be an output reload for the pseudo
	 being reloaded.  */
      if (rld[r].in_reg != 0
	  && ! (reload_inherited[r] || reload_override_in[r]))
	{
	  rtx reg = rld[r].in_reg;

	  if (GET_CODE (reg) == SUBREG)
	    reg = SUBREG_REG (reg);

	  if (REG_P (reg)
	      && REGNO (reg) >= FIRST_PSEUDO_REGISTER
	      && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
	    {
	      int nregno = REGNO (reg);

	      if (reg_last_reload_reg[nregno])
		{
		  int last_regno = REGNO (reg_last_reload_reg[nregno]);

		  if (reg_reloaded_contents[last_regno] == nregno)
		    spill_reg_store[last_regno] = 0;
		}
	    }
	}

      /* I is nonneg if this reload used a register.
	 If rld[r].reg_rtx is 0, this is an optional reload
	 that we opted to ignore.  */

      if (i >= 0 && rld[r].reg_rtx != 0)
	{
	  int nr = hard_regno_nregs (i, GET_MODE (rld[r].reg_rtx));
	  int k;

	  /* For a multi register reload, we need to check if all or part
	     of the value lives to the end.  */
	  for (k = 0; k < nr; k++)
	    if (reload_reg_reaches_end_p (i + k, r))
	      CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);

	  /* Maybe the spill reg contains a copy of reload_out.  */
	  if (rld[r].out != 0
	      && (REG_P (rld[r].out)
		  || (rld[r].out_reg
		      ? REG_P (rld[r].out_reg)
		      /* The reload value is an auto-modification of
			 some kind.  For PRE_INC, POST_INC, PRE_DEC
			 and POST_DEC, we record an equivalence
			 between the reload register and the operand
			 on the optimistic assumption that we can make
			 the equivalence hold.  reload_as_needed must
			 then either make it hold or invalidate the
			 equivalence.

			 PRE_MODIFY and POST_MODIFY addresses are reloaded
			 somewhat differently, and allowing them here leads
			 to problems.  */
		      : (GET_CODE (rld[r].out) != POST_MODIFY
			 && GET_CODE (rld[r].out) != PRE_MODIFY))))
	    {
	      rtx reg;

	      reg = reload_reg_rtx_for_output[r];
	      if (reload_reg_rtx_reaches_end_p (reg, r))
		{
		  machine_mode mode = GET_MODE (reg);
		  int regno = REGNO (reg);
		  int nregs = REG_NREGS (reg);
		  rtx out = (REG_P (rld[r].out)
			     ? rld[r].out
			     : rld[r].out_reg
			     ? rld[r].out_reg
/* AUTO_INC */		     : XEXP (rld[r].in_reg, 0));
		  int out_regno = REGNO (out);
		  int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
				   : hard_regno_nregs (out_regno, mode));
		  bool piecemeal;

		  spill_reg_store[regno] = new_spill_reg_store[regno];
		  spill_reg_stored_to[regno] = out;
		  reg_last_reload_reg[out_regno] = reg;

		  piecemeal = (HARD_REGISTER_NUM_P (out_regno)
			       && nregs == out_nregs
			       && inherit_piecemeal_p (out_regno, regno, mode));

		  /* If OUT_REGNO is a hard register, it may occupy more than
		     one register.  If it does, say what is in the
		     rest of the registers assuming that both registers
		     agree on how many words the object takes.  If not,
		     invalidate the subsequent registers.  */

		  if (HARD_REGISTER_NUM_P (out_regno))
		    for (k = 1; k < out_nregs; k++)
		      reg_last_reload_reg[out_regno + k]
			= (piecemeal ? regno_reg_rtx[regno + k] : 0);

		  /* Now do the inverse operation.  */
		  for (k = 0; k < nregs; k++)
		    {
		      CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
		      reg_reloaded_contents[regno + k]
			= (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
			   ? out_regno
			   : out_regno + k);
		      reg_reloaded_insn[regno + k] = insn;
		      SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
		    }
		}
	    }
	  /* Maybe the spill reg contains a copy of reload_in.  Only do
	     something if there will not be an output reload for
	     the register being reloaded.  */
	  else if (rld[r].out_reg == 0
		   && rld[r].in != 0
		   && ((REG_P (rld[r].in)
			&& !HARD_REGISTER_P (rld[r].in)
			&& !REGNO_REG_SET_P (&reg_has_output_reload,
					     REGNO (rld[r].in)))
		       || (REG_P (rld[r].in_reg)
			   && !REGNO_REG_SET_P (&reg_has_output_reload,
						REGNO (rld[r].in_reg))))
		   && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
	    {
	      rtx reg;

	      reg = reload_reg_rtx_for_input[r];
	      if (reload_reg_rtx_reaches_end_p (reg, r))
		{
		  machine_mode mode;
		  int regno;
		  int nregs;
		  int in_regno;
		  int in_nregs;
		  rtx in;
		  bool piecemeal;

		  mode = GET_MODE (reg);
		  regno = REGNO (reg);
		  nregs = REG_NREGS (reg);
		  if (REG_P (rld[r].in)
		      && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
		    in = rld[r].in;
		  else if (REG_P (rld[r].in_reg))
		    in = rld[r].in_reg;
		  else
		    in = XEXP (rld[r].in_reg, 0);
		  in_regno = REGNO (in);

		  in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
			      : hard_regno_nregs (in_regno, mode));

		  reg_last_reload_reg[in_regno] = reg;

		  piecemeal = (HARD_REGISTER_NUM_P (in_regno)
			       && nregs == in_nregs
			       && inherit_piecemeal_p (regno, in_regno, mode));

		  if (HARD_REGISTER_NUM_P (in_regno))
		    for (k = 1; k < in_nregs; k++)
		      reg_last_reload_reg[in_regno + k]
			= (piecemeal ? regno_reg_rtx[regno + k] : 0);

		  /* Unless we inherited this reload, show we haven't
		     recently done a store.
		     Previous stores of inherited auto_inc expressions
		     also have to be discarded.  */
		  if (! reload_inherited[r]
		      || (rld[r].out && ! rld[r].out_reg))
		    spill_reg_store[regno] = 0;

		  for (k = 0; k < nregs; k++)
		    {
		      CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
		      reg_reloaded_contents[regno + k]
			= (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
			   ? in_regno
			   : in_regno + k);
		      reg_reloaded_insn[regno + k] = insn;
		      SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
		    }
		}
	    }
	}

      /* The following if-statement was #if 0'd in 1.34 (or before...).
	 It's reenabled in 1.35 because supposedly nothing else
	 deals with this problem.  */

      /* If a register gets output-reloaded from a non-spill register,
	 that invalidates any previous reloaded copy of it.
	 But forget_old_reloads_1 won't get to see it, because
	 it thinks only about the original insn.  So invalidate it here.
	 Also do the same thing for RELOAD_OTHER constraints where the
	 output is discarded.  */
      if (i < 0
	  && ((rld[r].out != 0
	       && (REG_P (rld[r].out)
		   || (MEM_P (rld[r].out)
		       && REG_P (rld[r].out_reg))))
	      || (rld[r].out == 0 && rld[r].out_reg
		  && REG_P (rld[r].out_reg))))
	{
	  rtx out = ((rld[r].out && REG_P (rld[r].out))
		     ? rld[r].out : rld[r].out_reg);
	  int out_regno = REGNO (out);
	  machine_mode mode = GET_MODE (out);

	  /* REG_RTX is now set or clobbered by the main instruction.
	     As the comment above explains, forget_old_reloads_1 only
	     sees the original instruction, and there is no guarantee
	     that the original instruction also clobbered REG_RTX.
	     For example, if find_reloads sees that the input side of
	     a matched operand pair dies in this instruction, it may
	     use the input register as the reload register.

	     Calling forget_old_reloads_1 is a waste of effort if
	     REG_RTX is also the output register.

	     If we know that REG_RTX holds the value of a pseudo
	     register, the code after the call will record that fact.  */
	  if (rld[r].reg_rtx && rld[r].reg_rtx != out)
	    forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);

	  if (!HARD_REGISTER_NUM_P (out_regno))
	    {
	      rtx src_reg;
	      rtx_insn *store_insn = NULL;

	      reg_last_reload_reg[out_regno] = 0;

	      /* If we can find a hard register that is stored, record
		 the storing insn so that we may delete this insn with
		 delete_output_reload.  */
	      src_reg = reload_reg_rtx_for_output[r];

	      if (src_reg)
		{
		  if (reload_reg_rtx_reaches_end_p (src_reg, r))
		    store_insn = new_spill_reg_store[REGNO (src_reg)];
		  else
		    src_reg = NULL_RTX;
		}
	      else
		{
		  /* If this is an optional reload, try to find the
		     source reg from an input reload.  */
		  rtx set = single_set (insn);
		  if (set && SET_DEST (set) == rld[r].out)
		    {
		      int k;

		      src_reg = SET_SRC (set);
		      store_insn = insn;
		      for (k = 0; k < n_reloads; k++)
			{
			  if (rld[k].in == src_reg)
			    {
			      src_reg = reload_reg_rtx_for_input[k];
			      break;
			    }
			}
		    }
		}
	      if (src_reg && REG_P (src_reg)
		  && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
		{
		  int src_regno, src_nregs, k;
		  rtx note;

		  gcc_assert (GET_MODE (src_reg) == mode);
		  src_regno = REGNO (src_reg);
		  src_nregs = hard_regno_nregs (src_regno, mode);
		  /* The place where to find a death note varies with
		     PRESERVE_DEATH_INFO_REGNO_P .  The condition is not
		     necessarily checked exactly in the code that moves
		     notes, so just check both locations.  */
		  note = find_regno_note (insn, REG_DEAD, src_regno);
		  if (! note && store_insn)
		    note = find_regno_note (store_insn, REG_DEAD, src_regno);
		  for (k = 0; k < src_nregs; k++)
		    {
		      spill_reg_store[src_regno + k] = store_insn;
		      spill_reg_stored_to[src_regno + k] = out;
		      reg_reloaded_contents[src_regno + k] = out_regno;
		      reg_reloaded_insn[src_regno + k] = store_insn;
		      CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
		      SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
		      SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
		      if (note)
			SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
		      else
			CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
		    }
		  reg_last_reload_reg[out_regno] = src_reg;
		  /* We have to set reg_has_output_reload here, or else
		     forget_old_reloads_1 will clear reg_last_reload_reg
		     right away.  */
		  SET_REGNO_REG_SET (&reg_has_output_reload,
				     out_regno);
		}
	    }
	  else
	    {
	      int k, out_nregs = hard_regno_nregs (out_regno, mode);

	      for (k = 0; k < out_nregs; k++)
		reg_last_reload_reg[out_regno + k] = 0;
	    }
	}
    }
  reg_reloaded_dead |= reg_reloaded_died;
}

/* Go through the motions to emit INSN and test if it is strictly valid.
   Return the emitted insn if valid, else return NULL.  */

static rtx_insn *
emit_insn_if_valid_for_reload (rtx pat)
{
  rtx_insn *last = get_last_insn ();
  int code;

  rtx_insn *insn = emit_insn (pat);
  code = recog_memoized (insn);

  if (code >= 0)
    {
      extract_insn (insn);
      /* We want constrain operands to treat this insn strictly in its
	 validity determination, i.e., the way it would after reload has
	 completed.  */
      if (constrain_operands (1, get_enabled_alternatives (insn)))
	return insn;
    }

  delete_insns_since (last);
  return NULL;
}

/* Emit code to perform a reload from IN (which may be a reload register) to
   OUT (which may also be a reload register).  IN or OUT is from operand
   OPNUM with reload type TYPE.

   Returns first insn emitted.  */

static rtx_insn *
gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
{
  rtx_insn *last = get_last_insn ();
  rtx_insn *tem;
  rtx tem1, tem2;

  /* If IN is a paradoxical SUBREG, remove it and try to put the
     opposite SUBREG on OUT.  Likewise for a paradoxical SUBREG on OUT.  */
  if (!strip_paradoxical_subreg (&in, &out))
    strip_paradoxical_subreg (&out, &in);

  /* How to do this reload can get quite tricky.  Normally, we are being
     asked to reload a simple operand, such as a MEM, a constant, or a pseudo
     register that didn't get a hard register.  In that case we can just
     call emit_move_insn.

     We can also be asked to reload a PLUS that adds a register or a MEM to
     another register, constant or MEM.  This can occur during frame pointer
     elimination and while reloading addresses.  This case is handled by
     trying to emit a single insn to perform the add.  If it is not valid,
     we use a two insn sequence.

     Or we can be asked to reload an unary operand that was a fragment of
     an addressing mode, into a register.  If it isn't recognized as-is,
     we try making the unop operand and the reload-register the same:
     (set reg:X (unop:X expr:Y))
     -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).

     Finally, we could be called to handle an 'o' constraint by putting
     an address into a register.  In that case, we first try to do this
     with a named pattern of "reload_load_address".  If no such pattern
     exists, we just emit a SET insn and hope for the best (it will normally
     be valid on machines that use 'o').

     This entire process is made complex because reload will never
     process the insns we generate here and so we must ensure that
     they will fit their constraints and also by the fact that parts of
     IN might be being reloaded separately and replaced with spill registers.
     Because of this, we are, in some sense, just guessing the right approach
     here.  The one listed above seems to work.

     ??? At some point, this whole thing needs to be rethought.  */

  if (GET_CODE (in) == PLUS
      && (REG_P (XEXP (in, 0))
	  || GET_CODE (XEXP (in, 0)) == SUBREG
	  || MEM_P (XEXP (in, 0)))
      && (REG_P (XEXP (in, 1))
	  || GET_CODE (XEXP (in, 1)) == SUBREG
	  || CONSTANT_P (XEXP (in, 1))
	  || MEM_P (XEXP (in, 1))))
    {
      /* We need to compute the sum of a register or a MEM and another
	 register, constant, or MEM, and put it into the reload
	 register.  The best possible way of doing this is if the machine
	 has a three-operand ADD insn that accepts the required operands.

	 The simplest approach is to try to generate such an insn and see if it
	 is recognized and matches its constraints.  If so, it can be used.

	 It might be better not to actually emit the insn unless it is valid,
	 but we need to pass the insn as an operand to `recog' and
	 `extract_insn' and it is simpler to emit and then delete the insn if
	 not valid than to dummy things up.  */

      rtx op0, op1, tem;
      rtx_insn *insn;
      enum insn_code code;

      op0 = find_replacement (&XEXP (in, 0));
      op1 = find_replacement (&XEXP (in, 1));

      /* Since constraint checking is strict, commutativity won't be
	 checked, so we need to do that here to avoid spurious failure
	 if the add instruction is two-address and the second operand
	 of the add is the same as the reload reg, which is frequently
	 the case.  If the insn would be A = B + A, rearrange it so
	 it will be A = A + B as constrain_operands expects.  */

      if (REG_P (XEXP (in, 1))
	  && REGNO (out) == REGNO (XEXP (in, 1)))
	tem = op0, op0 = op1, op1 = tem;

      if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
	in = gen_rtx_PLUS (GET_MODE (in), op0, op1);

      insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
      if (insn)
	return insn;

      /* If that failed, we must use a conservative two-insn sequence.

	 Use a move to copy one operand into the reload register.  Prefer
	 to reload a constant, MEM or pseudo since the move patterns can
	 handle an arbitrary operand.  If OP1 is not a constant, MEM or
	 pseudo and OP1 is not a valid operand for an add instruction, then
	 reload OP1.

	 After reloading one of the operands into the reload register, add
	 the reload register to the output register.

	 If there is another way to do this for a specific machine, a
	 DEFINE_PEEPHOLE should be specified that recognizes the sequence
	 we emit below.  */

      code = optab_handler (add_optab, GET_MODE (out));

      if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
	  || (REG_P (op1)
	      && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
	  || (code != CODE_FOR_nothing
	      && !insn_operand_matches (code, 2, op1)))
	tem = op0, op0 = op1, op1 = tem;

      gen_reload (out, op0, opnum, type);

      /* If OP0 and OP1 are the same, we can use OUT for OP1.