aboutsummaryrefslogtreecommitdiff
path: root/gcc/stack-ptr-mod.c
blob: ff67dec5c74dfdd8c995e0b3303affb8fad15b9a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
/* Discover if the stack pointer is modified in a function.
   Copyright (C) 2007-2016 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "df.h"
#include "emit-rtl.h"
#include "tree-pass.h"

/* Determine if the stack pointer is constant over the life of the function.
   Only useful before prologues have been emitted.  */

static void
notice_stack_pointer_modification_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED,
				     void *data ATTRIBUTE_UNUSED)
{
  if (x == stack_pointer_rtx
      /* The stack pointer is only modified indirectly as the result
	 of a push until later.  See the comments in rtl.texi
	 regarding Embedded Side-Effects on Addresses.  */
      || (MEM_P (x)
	  && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
	  && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
    crtl->sp_is_unchanging = 0;
}

  /* Some targets can emit simpler epilogues if they know that sp was
     not ever modified during the function.  After reload, of course,
     we've already emitted the epilogue so there's no sense searching.  */

namespace {

const pass_data pass_data_stack_ptr_mod =
{
  RTL_PASS, /* type */
  "*stack_ptr_mod", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_stack_ptr_mod : public rtl_opt_pass
{
public:
  pass_stack_ptr_mod (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_stack_ptr_mod, ctxt)
  {}

  /* opt_pass methods: */
  virtual unsigned int execute (function *);

}; // class pass_stack_ptr_mod

unsigned int
pass_stack_ptr_mod::execute (function *fun)
{
  basic_block bb;
  rtx_insn *insn;

  /* Assume that the stack pointer is unchanging if alloca hasn't
     been used.  */
  crtl->sp_is_unchanging = !fun->calls_alloca;
  if (crtl->sp_is_unchanging)
    FOR_EACH_BB_FN (bb, fun)
      FOR_BB_INSNS (bb, insn)
        {
	  if (INSN_P (insn))
	    {
	      /* Check if insn modifies the stack pointer.  */
	      note_stores (PATTERN (insn),
			   notice_stack_pointer_modification_1,
			   NULL);
	      if (! crtl->sp_is_unchanging)
		return 0;
	    }
	}

  /* The value coming into this pass was 0, and the exit block uses
     are based on this.  If the value is now 1, we need to redo the
     exit block uses.  */
  if (df && crtl->sp_is_unchanging)
    df_update_exit_block_uses ();

  return 0;
}

} // anon namespace

rtl_opt_pass *
make_pass_stack_ptr_mod (gcc::context *ctxt)
{
  return new pass_stack_ptr_mod (ctxt);
}
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
/* Tree based points-to analysis
   Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
   Contributed by Daniel Berlin <dberlin@dberlin.org>

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   GCC is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "obstack.h"
#include "bitmap.h"
#include "flags.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "tree.h"
#include "tree-flow.h"
#include "tree-inline.h"
#include "varray.h"
#include "diagnostic.h"
#include "toplev.h"
#include "gimple.h"
#include "hashtab.h"
#include "function.h"
#include "cgraph.h"
#include "tree-pass.h"
#include "timevar.h"
#include "alloc-pool.h"
#include "splay-tree.h"
#include "params.h"
#include "cgraph.h"
#include "alias.h"
#include "pointer-set.h"

/* The idea behind this analyzer is to generate set constraints from the
   program, then solve the resulting constraints in order to generate the
   points-to sets.

   Set constraints are a way of modeling program analysis problems that
   involve sets.  They consist of an inclusion constraint language,
   describing the variables (each variable is a set) and operations that
   are involved on the variables, and a set of rules that derive facts
   from these operations.  To solve a system of set constraints, you derive
   all possible facts under the rules, which gives you the correct sets
   as a consequence.

   See  "Efficient Field-sensitive pointer analysis for C" by "David
   J. Pearce and Paul H. J. Kelly and Chris Hankin, at
   http://citeseer.ist.psu.edu/pearce04efficient.html

   Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
   of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
   http://citeseer.ist.psu.edu/heintze01ultrafast.html

   There are three types of real constraint expressions, DEREF,
   ADDRESSOF, and SCALAR.  Each constraint expression consists
   of a constraint type, a variable, and an offset.

   SCALAR is a constraint expression type used to represent x, whether
   it appears on the LHS or the RHS of a statement.
   DEREF is a constraint expression type used to represent *x, whether
   it appears on the LHS or the RHS of a statement.
   ADDRESSOF is a constraint expression used to represent &x, whether
   it appears on the LHS or the RHS of a statement.

   Each pointer variable in the program is assigned an integer id, and
   each field of a structure variable is assigned an integer id as well.

   Structure variables are linked to their list of fields through a "next
   field" in each variable that points to the next field in offset
   order.
   Each variable for a structure field has

   1. "size", that tells the size in bits of that field.
   2. "fullsize, that tells the size in bits of the entire structure.
   3. "offset", that tells the offset in bits from the beginning of the
   structure to this field.

   Thus,
   struct f
   {
     int a;
     int b;
   } foo;
   int *bar;

   looks like

   foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
   foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
   bar -> id 3, size 32, offset 0, fullsize 32, next NULL


  In order to solve the system of set constraints, the following is
  done:

  1. Each constraint variable x has a solution set associated with it,
  Sol(x).

  2. Constraints are separated into direct, copy, and complex.
  Direct constraints are ADDRESSOF constraints that require no extra
  processing, such as P = &Q
  Copy constraints are those of the form P = Q.
  Complex constraints are all the constraints involving dereferences
  and offsets (including offsetted copies).

  3. All direct constraints of the form P = &Q are processed, such
  that Q is added to Sol(P)

  4. All complex constraints for a given constraint variable are stored in a
  linked list attached to that variable's node.

  5. A directed graph is built out of the copy constraints. Each
  constraint variable is a node in the graph, and an edge from
  Q to P is added for each copy constraint of the form P = Q

  6. The graph is then walked, and solution sets are
  propagated along the copy edges, such that an edge from Q to P
  causes Sol(P) <- Sol(P) union Sol(Q).

  7.  As we visit each node, all complex constraints associated with
  that node are processed by adding appropriate copy edges to the graph, or the
  appropriate variables to the solution set.

  8. The process of walking the graph is iterated until no solution
  sets change.

  Prior to walking the graph in steps 6 and 7, We perform static
  cycle elimination on the constraint graph, as well
  as off-line variable substitution.

  TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
  on and turned into anything), but isn't.  You can just see what offset
  inside the pointed-to struct it's going to access.

  TODO: Constant bounded arrays can be handled as if they were structs of the
  same number of elements.

  TODO: Modeling heap and incoming pointers becomes much better if we
  add fields to them as we discover them, which we could do.

  TODO: We could handle unions, but to be honest, it's probably not
  worth the pain or slowdown.  */

static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
htab_t heapvar_for_stmt;

static bool use_field_sensitive = true;
static int in_ipa_mode = 0;

/* Used for predecessor bitmaps. */
static bitmap_obstack predbitmap_obstack;

/* Used for points-to sets.  */
static bitmap_obstack pta_obstack;

/* Used for oldsolution members of variables. */
static bitmap_obstack oldpta_obstack;

/* Used for per-solver-iteration bitmaps.  */
static bitmap_obstack iteration_obstack;

static unsigned int create_variable_info_for (tree, const char *);
typedef struct constraint_graph *constraint_graph_t;
static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);

struct constraint;
typedef struct constraint *constraint_t;

DEF_VEC_P(constraint_t);
DEF_VEC_ALLOC_P(constraint_t,heap);

#define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d)	\
  if (a)						\
    EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)

static struct constraint_stats
{
  unsigned int total_vars;
  unsigned int nonpointer_vars;
  unsigned int unified_vars_static;
  unsigned int unified_vars_dynamic;
  unsigned int iterations;
  unsigned int num_edges;
  unsigned int num_implicit_edges;
  unsigned int points_to_sets_created;
} stats;

struct variable_info
{
  /* ID of this variable  */
  unsigned int id;

  /* True if this is a variable created by the constraint analysis, such as
     heap variables and constraints we had to break up.  */
  unsigned int is_artificial_var:1;

  /* True if this is a special variable whose solution set should not be
     changed.  */
  unsigned int is_special_var:1;

  /* True for variables whose size is not known or variable.  */
  unsigned int is_unknown_size_var:1;

  /* True for (sub-)fields that represent a whole variable.  */
  unsigned int is_full_var : 1;

  /* True if this is a heap variable.  */
  unsigned int is_heap_var:1;

  /* True if we may not use TBAA to prune references to this
     variable.  This is used for C++ placement new.  */
  unsigned int no_tbaa_pruning : 1;

  /* True if this field may contain pointers.  */
  unsigned int may_have_pointers : 1;

  /* A link to the variable for the next field in this structure.  */
  struct variable_info *next;

  /* Offset of this variable, in bits, from the base variable  */
  unsigned HOST_WIDE_INT offset;

  /* Size of the variable, in bits.  */
  unsigned HOST_WIDE_INT size;

  /* Full size of the base variable, in bits.  */
  unsigned HOST_WIDE_INT fullsize;

  /* Name of this variable */
  const char *name;

  /* Tree that this variable is associated with.  */
  tree decl;

  /* Points-to set for this variable.  */
  bitmap solution;

  /* Old points-to set for this variable.  */
  bitmap oldsolution;
};
typedef struct variable_info *varinfo_t;

static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
						   unsigned HOST_WIDE_INT);
static varinfo_t lookup_vi_for_tree (tree);

/* Pool of variable info structures.  */
static alloc_pool variable_info_pool;

DEF_VEC_P(varinfo_t);

DEF_VEC_ALLOC_P(varinfo_t, heap);

/* Table of variable info structures for constraint variables.
   Indexed directly by variable info id.  */
static VEC(varinfo_t,heap) *varmap;

/* Return the varmap element N */

static inline varinfo_t
get_varinfo (unsigned int n)
{
  return VEC_index (varinfo_t, varmap, n);
}

/* Static IDs for the special variables.  */
enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
       escaped_id = 3, nonlocal_id = 4, callused_id = 5,
       storedanything_id = 6, integer_id = 7 };

/* Variable that represents the unknown pointer.  */
static varinfo_t var_anything;
static tree anything_tree;

/* Variable that represents the NULL pointer.  */
static varinfo_t var_nothing;
static tree nothing_tree;

/* Variable that represents read only memory.  */
static varinfo_t var_readonly;
static tree readonly_tree;

/* Variable that represents escaped memory.  */
static varinfo_t var_escaped;
static tree escaped_tree;

/* Variable that represents nonlocal memory.  */
static varinfo_t var_nonlocal;
static tree nonlocal_tree;

/* Variable that represents call-used memory.  */
static varinfo_t var_callused;
static tree callused_tree;

/* Variable that represents variables that are stored to anything.  */
static varinfo_t var_storedanything;
static tree storedanything_tree;

/* Variable that represents integers.  This is used for when people do things
   like &0->a.b.  */
static varinfo_t var_integer;
static tree integer_tree;

/* Lookup a heap var for FROM, and return it if we find one.  */

static tree
heapvar_lookup (tree from)
{
  struct tree_map *h, in;
  in.base.from = from;

  h = (struct tree_map *) htab_find_with_hash (heapvar_for_stmt, &in,
					       htab_hash_pointer (from));
  if (h)
    return h->to;
  return NULL_TREE;
}

/* Insert a mapping FROM->TO in the heap var for statement
   hashtable.  */

static void
heapvar_insert (tree from, tree to)
{
  struct tree_map *h;
  void **loc;

  h = GGC_NEW (struct tree_map);
  h->hash = htab_hash_pointer (from);
  h->base.from = from;
  h->to = to;
  loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->hash, INSERT);
  *(struct tree_map **) loc = h;
}

/* Return a new variable info structure consisting for a variable
   named NAME, and using constraint graph node NODE.  */

static varinfo_t
new_var_info (tree t, unsigned int id, const char *name)
{
  varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
  tree var;

  ret->id = id;
  ret->name = name;
  ret->decl = t;
  ret->is_artificial_var = false;
  ret->is_heap_var = false;
  ret->is_special_var = false;
  ret->is_unknown_size_var = false;
  ret->is_full_var = false;
  ret->may_have_pointers = true;
  var = t;
  if (TREE_CODE (var) == SSA_NAME)
    var = SSA_NAME_VAR (var);
  ret->no_tbaa_pruning = (DECL_P (var)
			  && POINTER_TYPE_P (TREE_TYPE (var))
			  && DECL_NO_TBAA_P (var));
  ret->solution = BITMAP_ALLOC (&pta_obstack);
  ret->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
  ret->next = NULL;
  return ret;
}

typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;

/* An expression that appears in a constraint.  */

struct constraint_expr
{
  /* Constraint type.  */
  constraint_expr_type type;

  /* Variable we are referring to in the constraint.  */
  unsigned int var;

  /* Offset, in bits, of this constraint from the beginning of
     variables it ends up referring to.

     IOW, in a deref constraint, we would deref, get the result set,
     then add OFFSET to each member.   */
  HOST_WIDE_INT offset;
};

/* Use 0x8000... as special unknown offset.  */
#define UNKNOWN_OFFSET ((HOST_WIDE_INT)-1 << (HOST_BITS_PER_WIDE_INT-1))

typedef struct constraint_expr ce_s;
DEF_VEC_O(ce_s);
DEF_VEC_ALLOC_O(ce_s, heap);
static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool);
static void get_constraint_for (tree, VEC(ce_s, heap) **);
static void do_deref (VEC (ce_s, heap) **);

/* Our set constraints are made up of two constraint expressions, one
   LHS, and one RHS.

   As described in the introduction, our set constraints each represent an
   operation between set valued variables.
*/
struct constraint
{
  struct constraint_expr lhs;
  struct constraint_expr rhs;
};

/* List of constraints that we use to build the constraint graph from.  */

static VEC(constraint_t,heap) *constraints;
static alloc_pool constraint_pool;


DEF_VEC_I(int);
DEF_VEC_ALLOC_I(int, heap);

/* The constraint graph is represented as an array of bitmaps
   containing successor nodes.  */

struct constraint_graph
{
  /* Size of this graph, which may be different than the number of
     nodes in the variable map.  */
  unsigned int size;

  /* Explicit successors of each node. */
  bitmap *succs;

  /* Implicit predecessors of each node (Used for variable
     substitution). */
  bitmap *implicit_preds;

  /* Explicit predecessors of each node (Used for variable substitution).  */
  bitmap *preds;

  /* Indirect cycle representatives, or -1 if the node has no indirect
     cycles.  */
  int *indirect_cycles;

  /* Representative node for a node.  rep[a] == a unless the node has
     been unified. */
  unsigned int *rep;

  /* Equivalence class representative for a label.  This is used for
     variable substitution.  */
  int *eq_rep;

  /* Pointer equivalence label for a node.  All nodes with the same
     pointer equivalence label can be unified together at some point
     (either during constraint optimization or after the constraint
     graph is built).  */
  unsigned int *pe;

  /* Pointer equivalence representative for a label.  This is used to
     handle nodes that are pointer equivalent but not location
     equivalent.  We can unite these once the addressof constraints
     are transformed into initial points-to sets.  */
  int *pe_rep;

  /* Pointer equivalence label for each node, used during variable
     substitution.  */
  unsigned int *pointer_label;

  /* Location equivalence label for each node, used during location
     equivalence finding.  */
  unsigned int *loc_label;

  /* Pointed-by set for each node, used during location equivalence
     finding.  This is pointed-by rather than pointed-to, because it
     is constructed using the predecessor graph.  */
  bitmap *pointed_by;

  /* Points to sets for pointer equivalence.  This is *not* the actual
     points-to sets for nodes.  */
  bitmap *points_to;

  /* Bitmap of nodes where the bit is set if the node is a direct
     node.  Used for variable substitution.  */
  sbitmap direct_nodes;

  /* Bitmap of nodes where the bit is set if the node is address
     taken.  Used for variable substitution.  */
  bitmap address_taken;

  /* Vector of complex constraints for each graph node.  Complex
     constraints are those involving dereferences or offsets that are
     not 0.  */
  VEC(constraint_t,heap) **complex;
};

static constraint_graph_t graph;

/* During variable substitution and the offline version of indirect
   cycle finding, we create nodes to represent dereferences and
   address taken constraints.  These represent where these start and
   end.  */
#define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
#define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))

/* Return the representative node for NODE, if NODE has been unioned
   with another NODE.
   This function performs path compression along the way to finding
   the representative.  */

static unsigned int
find (unsigned int node)
{
  gcc_assert (node < graph->size);
  if (graph->rep[node] != node)
    return graph->rep[node] = find (graph->rep[node]);
  return node;
}

/* Union the TO and FROM nodes to the TO nodes.
   Note that at some point in the future, we may want to do
   union-by-rank, in which case we are going to have to return the
   node we unified to.  */

static bool
unite (unsigned int to, unsigned int from)
{
  gcc_assert (to < graph->size && from < graph->size);
  if (to != from && graph->rep[from] != to)
    {
      graph->rep[from] = to;
      return true;
    }
  return false;
}

/* Create a new constraint consisting of LHS and RHS expressions.  */

static constraint_t
new_constraint (const struct constraint_expr lhs,
		const struct constraint_expr rhs)
{
  constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
  ret->lhs = lhs;
  ret->rhs = rhs;
  return ret;
}

/* Print out constraint C to FILE.  */

static void
dump_constraint (FILE *file, constraint_t c)
{
  if (c->lhs.type == ADDRESSOF)
    fprintf (file, "&");
  else if (c->lhs.type == DEREF)
    fprintf (file, "*");
  fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
  if (c->lhs.offset == UNKNOWN_OFFSET)
    fprintf (file, " + UNKNOWN");
  else if (c->lhs.offset != 0)
    fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
  fprintf (file, " = ");
  if (c->rhs.type == ADDRESSOF)
    fprintf (file, "&");
  else if (c->rhs.type == DEREF)
    fprintf (file, "*");
  fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
  if (c->rhs.offset == UNKNOWN_OFFSET)
    fprintf (file, " + UNKNOWN");
  else if (c->rhs.offset != 0)
    fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
  fprintf (file, "\n");
}


void debug_constraint (constraint_t);
void debug_constraints (void);
void debug_constraint_graph (void);
void debug_solution_for_var (unsigned int);
void debug_sa_points_to_info (void);

/* Print out constraint C to stderr.  */

void
debug_constraint (constraint_t c)
{
  dump_constraint (stderr, c);
}

/* Print out all constraints to FILE */

static void
dump_constraints (FILE *file)
{
  int i;
  constraint_t c;
  for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
    dump_constraint (file, c);
}

/* Print out all constraints to stderr.  */

void
debug_constraints (void)
{
  dump_constraints (stderr);
}

/* Print out to FILE the edge in the constraint graph that is created by
   constraint c. The edge may have a label, depending on the type of
   constraint that it represents. If complex1, e.g: a = *b, then the label
   is "=*", if complex2, e.g: *a = b, then the label is "*=", if
   complex with an offset, e.g: a = b + 8, then the label is "+".
   Otherwise the edge has no label.  */

static void
dump_constraint_edge (FILE *file, constraint_t c)
{
  if (c->rhs.type != ADDRESSOF)
    {
      const char *src = get_varinfo (c->rhs.var)->name;
      const char *dst = get_varinfo (c->lhs.var)->name;
      fprintf (file, "  \"%s\" -> \"%s\" ", src, dst);
      /* Due to preprocessing of constraints, instructions like *a = *b are
         illegal; thus, we do not have to handle such cases.  */
      if (c->lhs.type == DEREF)
        fprintf (file, " [ label=\"*=\" ] ;\n");
      else if (c->rhs.type == DEREF)
        fprintf (file, " [ label=\"=*\" ] ;\n");
      else
        {
          /* We must check the case where the constraint is an offset.
             In this case, it is treated as a complex constraint.  */
          if (c->rhs.offset != c->lhs.offset)
            fprintf (file, " [ label=\"+\" ] ;\n");
          else
            fprintf (file, " ;\n");
        }
    }
}

/* Print the constraint graph in dot format.  */

static void
dump_constraint_graph (FILE *file)
{
  unsigned int i=0, size;
  constraint_t c;

  /* Only print the graph if it has already been initialized:  */
  if (!graph)
    return;

  /* Print the constraints used to produce the constraint graph. The
     constraints will be printed as comments in the dot file:  */
  fprintf (file, "\n\n/* Constraints used in the constraint graph:\n");
  dump_constraints (file);
  fprintf (file, "*/\n");

  /* Prints the header of the dot file:  */
  fprintf (file, "\n\n// The constraint graph in dot format:\n");
  fprintf (file, "strict digraph {\n");
  fprintf (file, "  node [\n    shape = box\n  ]\n");
  fprintf (file, "  edge [\n    fontsize = \"12\"\n  ]\n");
  fprintf (file, "\n  // List of nodes in the constraint graph:\n");

  /* The next lines print the nodes in the graph. In order to get the
     number of nodes in the graph, we must choose the minimum between the
     vector VEC (varinfo_t, varmap) and graph->size. If the graph has not
     yet been initialized, then graph->size == 0, otherwise we must only
     read nodes that have an entry in VEC (varinfo_t, varmap).  */
  size = VEC_length (varinfo_t, varmap);
  size = size < graph->size ? size : graph->size;
  for (i = 0; i < size; i++)
    {
      const char *name = get_varinfo (graph->rep[i])->name;
      fprintf (file, "  \"%s\" ;\n", name);
    }

  /* Go over the list of constraints printing the edges in the constraint
     graph.  */
  fprintf (file, "\n  // The constraint edges:\n");
  for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
    if (c)
      dump_constraint_edge (file, c);

  /* Prints the tail of the dot file. By now, only the closing bracket.  */
  fprintf (file, "}\n\n\n");
}

/* Print out the constraint graph to stderr.  */

void
debug_constraint_graph (void)
{
  dump_constraint_graph (stderr);
}

/* SOLVER FUNCTIONS

   The solver is a simple worklist solver, that works on the following
   algorithm:

   sbitmap changed_nodes = all zeroes;
   changed_count = 0;
   For each node that is not already collapsed:
       changed_count++;
       set bit in changed nodes

   while (changed_count > 0)
   {
     compute topological ordering for constraint graph

     find and collapse cycles in the constraint graph (updating
     changed if necessary)

     for each node (n) in the graph in topological order:
       changed_count--;

       Process each complex constraint associated with the node,
       updating changed if necessary.

       For each outgoing edge from n, propagate the solution from n to
       the destination of the edge, updating changed as necessary.

   }  */

/* Return true if two constraint expressions A and B are equal.  */

static bool
constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
{
  return a.type == b.type && a.var == b.var && a.offset == b.offset;
}

/* Return true if constraint expression A is less than constraint expression
   B.  This is just arbitrary, but consistent, in order to give them an
   ordering.  */

static bool
constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
{
  if (a.type == b.type)
    {
      if (a.var == b.var)
	return a.offset < b.offset;
      else
	return a.var < b.var;
    }
  else
    return a.type < b.type;
}

/* Return true if constraint A is less than constraint B.  This is just
   arbitrary, but consistent, in order to give them an ordering.  */

static bool
constraint_less (const constraint_t a, const constraint_t b)
{
  if (constraint_expr_less (a->lhs, b->lhs))
    return true;
  else if (constraint_expr_less (b->lhs, a->lhs))
    return false;
  else
    return constraint_expr_less (a->rhs, b->rhs);
}

/* Return true if two constraints A and B are equal.  */

static bool
constraint_equal (struct constraint a, struct constraint b)
{
  return constraint_expr_equal (a.lhs, b.lhs)
    && constraint_expr_equal (a.rhs, b.rhs);
}


/* Find a constraint LOOKFOR in the sorted constraint vector VEC */

static constraint_t
constraint_vec_find (VEC(constraint_t,heap) *vec,
		     struct constraint lookfor)
{
  unsigned int place;
  constraint_t found;

  if (vec == NULL)
    return NULL;

  place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
  if (place >= VEC_length (constraint_t, vec))
    return NULL;
  found = VEC_index (constraint_t, vec, place);
  if (!constraint_equal (*found, lookfor))
    return NULL;
  return found;
}

/* Union two constraint vectors, TO and FROM.  Put the result in TO.  */

static void
constraint_set_union (VEC(constraint_t,heap) **to,
		      VEC(constraint_t,heap) **from)
{
  int i;
  constraint_t c;

  for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
    {
      if (constraint_vec_find (*to, *c) == NULL)
	{
	  unsigned int place = VEC_lower_bound (constraint_t, *to, c,
						constraint_less);
	  VEC_safe_insert (constraint_t, heap, *to, place, c);
	}
    }
}

/* Expands the solution in SET to all sub-fields of variables included.
   Union the expanded result into RESULT.  */

static void
solution_set_expand (bitmap result, bitmap set)
{
  bitmap_iterator bi;
  bitmap vars = NULL;
  unsigned j;

  /* In a first pass record all variables we need to add all
     sub-fields off.  This avoids quadratic behavior.  */
  EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
    {
      varinfo_t v = get_varinfo (j);
      if (v->is_artificial_var
	  || v->is_full_var)
	continue;
      v = lookup_vi_for_tree (v->decl);
      if (vars == NULL)
	vars = BITMAP_ALLOC (NULL);
      bitmap_set_bit (vars, v->id);
    }

  /* In the second pass now do the addition to the solution and
     to speed up solving add it to the delta as well.  */
  if (vars != NULL)
    {
      EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
	{
	  varinfo_t v = get_varinfo (j);
	  for (; v != NULL; v = v->next)
	    bitmap_set_bit (result, v->id);
	}
      BITMAP_FREE (vars);
    }
}

/* Take a solution set SET, add OFFSET to each member of the set, and
   overwrite SET with the result when done.  */

static void
solution_set_add (bitmap set, HOST_WIDE_INT offset)
{
  bitmap result = BITMAP_ALLOC (&iteration_obstack);
  unsigned int i;
  bitmap_iterator bi;

  /* If the offset is unknown we have to expand the solution to
     all subfields.  */
  if (offset == UNKNOWN_OFFSET)
    {
      solution_set_expand (set, set);
      return;
    }

  EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
    {
      varinfo_t vi = get_varinfo (i);

      /* If this is a variable with just one field just set its bit
         in the result.  */
      if (vi->is_artificial_var
	  || vi->is_unknown_size_var
	  || vi->is_full_var)
	bitmap_set_bit (result, i);
      else
	{
	  unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;

	  /* If the offset makes the pointer point to before the
	     variable use offset zero for the field lookup.  */
	  if (offset < 0
	      && fieldoffset > vi->offset)
	    fieldoffset = 0;

	  if (offset != 0)
	    vi = first_or_preceding_vi_for_offset (vi, fieldoffset);

	  bitmap_set_bit (result, vi->id);
	  /* If the result is not exactly at fieldoffset include the next
	     field as well.  See get_constraint_for_ptr_offset for more
	     rationale.  */
	  if (vi->offset != fieldoffset
	      && vi->next != NULL)
	    bitmap_set_bit (result, vi->next->id);
	}
    }

  bitmap_copy (set, result);
  BITMAP_FREE (result);
}

/* Union solution sets TO and FROM, and add INC to each member of FROM in the
   process.  */

static bool
set_union_with_increment  (bitmap to, bitmap from, HOST_WIDE_INT inc)
{
  if (inc == 0)
    return bitmap_ior_into (to, from);
  else
    {
      bitmap tmp;
      bool res;

      tmp = BITMAP_ALLOC (&iteration_obstack);
      bitmap_copy (tmp, from);
      solution_set_add (tmp, inc);
      res = bitmap_ior_into (to, tmp);
      BITMAP_FREE (tmp);
      return res;
    }
}

/* Insert constraint C into the list of complex constraints for graph
   node VAR.  */

static void
insert_into_complex (constraint_graph_t graph,
		     unsigned int var, constraint_t c)
{
  VEC (constraint_t, heap) *complex = graph->complex[var];
  unsigned int place = VEC_lower_bound (constraint_t, complex, c,
					constraint_less);

  /* Only insert constraints that do not already exist.  */
  if (place >= VEC_length (constraint_t, complex)
      || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
    VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
}


/* Condense two variable nodes into a single variable node, by moving
   all associated info from SRC to TO.  */

static void
merge_node_constraints (constraint_graph_t graph, unsigned int to,
			unsigned int from)
{
  unsigned int i;
  constraint_t c;

  gcc_assert (find (from) == to);

  /* Move all complex constraints from src node into to node  */
  for (i = 0; VEC_iterate (constraint_t, graph->complex[from], i, c); i++)
    {
      /* In complex constraints for node src, we may have either
	 a = *src, and *src = a, or an offseted constraint which are
	 always added to the rhs node's constraints.  */

      if (c->rhs.type == DEREF)
	c->rhs.var = to;
      else if (c->lhs.type == DEREF)
	c->lhs.var = to;
      else
	c->rhs.var = to;
    }
  constraint_set_union (&graph->complex[to], &graph->complex[from]);
  VEC_free (constraint_t, heap, graph->complex[from]);
  graph->complex[from] = NULL;
}


/* Remove edges involving NODE from GRAPH.  */

static void
clear_edges_for_node (constraint_graph_t graph, unsigned int node)
{
  if (graph->succs[node])
    BITMAP_FREE (graph->succs[node]);
}

/* Merge GRAPH nodes FROM and TO into node TO.  */

static void
merge_graph_nodes (constraint_graph_t graph, unsigned int to,
		   unsigned int from)
{
  if (graph->indirect_cycles[from] != -1)
    {
      /* If we have indirect cycles with the from node, and we have
	 none on the to node, the to node has indirect cycles from the
	 from node now that they are unified.
	 If indirect cycles exist on both, unify the nodes that they
	 are in a cycle with, since we know they are in a cycle with
	 each other.  */
      if (graph->indirect_cycles[to] == -1)
	graph->indirect_cycles[to] = graph->indirect_cycles[from];
    }

  /* Merge all the successor edges.  */
  if (graph->succs[from])
    {
      if (!graph->succs[to])
	graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
      bitmap_ior_into (graph->succs[to],
		       graph->succs[from]);
    }

  clear_edges_for_node (graph, from);
}


/* Add an indirect graph edge to GRAPH, going from TO to FROM if
   it doesn't exist in the graph already.  */

static void
add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
			 unsigned int from)
{
  if (to == from)
    return;

  if (!graph->implicit_preds[to])
    graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);

  if (bitmap_set_bit (graph->implicit_preds[to], from))
    stats.num_implicit_edges++;
}

/* Add a predecessor graph edge to GRAPH, going from TO to FROM if
   it doesn't exist in the graph already.
   Return false if the edge already existed, true otherwise.  */

static void
add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
		     unsigned int from)
{
  if (!graph->preds[to])
    graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
  bitmap_set_bit (graph->preds[to], from);
}

/* Add a graph edge to GRAPH, going from FROM to TO if
   it doesn't exist in the graph already.
   Return false if the edge already existed, true otherwise.  */

static bool
add_graph_edge (constraint_graph_t graph, unsigned int to,
		unsigned int from)
{
  if (to == from)
    {
      return false;
    }
  else
    {
      bool r = false;

      if (!graph->succs[from])
	graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
      if (bitmap_set_bit (graph->succs[from], to))
	{
	  r = true;
	  if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
	    stats.num_edges++;
	}
      return r;
    }
}


/* Return true if {DEST.SRC} is an existing graph edge in GRAPH.  */

static bool
valid_graph_edge (constraint_graph_t graph, unsigned int src,
		  unsigned int dest)
{
  return (graph->succs[dest]
	  && bitmap_bit_p (graph->succs[dest], src));
}

/* Initialize the constraint graph structure to contain SIZE nodes.  */

static void
init_graph (unsigned int size)
{
  unsigned int j;

  graph = XCNEW (struct constraint_graph);
  graph->size = size;
  graph->succs = XCNEWVEC (bitmap, graph->size);
  graph->indirect_cycles = XNEWVEC (int, graph->size);
  graph->rep = XNEWVEC (unsigned int, graph->size);
  graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
  graph->pe = XCNEWVEC (unsigned int, graph->size);
  graph->pe_rep = XNEWVEC (int, graph->size);

  for (j = 0; j < graph->size; j++)
    {
      graph->rep[j] = j;
      graph->pe_rep[j] = -1;
      graph->indirect_cycles[j] = -1;
    }
}

/* Build the constraint graph, adding only predecessor edges right now.  */

static void
build_pred_graph (void)
{
  int i;
  constraint_t c;
  unsigned int j;

  graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
  graph->preds = XCNEWVEC (bitmap, graph->size);
  graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
  graph->loc_label = XCNEWVEC (unsigned int, graph->size);
  graph->pointed_by = XCNEWVEC (bitmap, graph->size);
  graph->points_to = XCNEWVEC (bitmap, graph->size);
  graph->eq_rep = XNEWVEC (int, graph->size);
  graph->direct_nodes = sbitmap_alloc (graph->size);
  graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
  sbitmap_zero (graph->direct_nodes);

  for (j = 0; j < FIRST_REF_NODE; j++)
    {
      if (!get_varinfo (j)->is_special_var)
	SET_BIT (graph->direct_nodes, j);
    }

  for (j = 0; j < graph->size; j++)
    graph->eq_rep[j] = -1;

  for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
    graph->indirect_cycles[j] = -1;

  for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
    {
      struct constraint_expr lhs = c->lhs;
      struct constraint_expr rhs = c->rhs;
      unsigned int lhsvar = lhs.var;
      unsigned int rhsvar = rhs.var;

      if (lhs.type == DEREF)
	{
	  /* *x = y.  */
	  if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
	    add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
	}
      else if (rhs.type == DEREF)
	{
	  /* x = *y */
	  if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
	    add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
	  else
	    RESET_BIT (graph->direct_nodes, lhsvar);
	}
      else if (rhs.type == ADDRESSOF)
	{
	  varinfo_t v;

	  /* x = &y */
	  if (graph->points_to[lhsvar] == NULL)
	    graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
	  bitmap_set_bit (graph->points_to[lhsvar], rhsvar);

	  if (graph->pointed_by[rhsvar] == NULL)
	    graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
	  bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);

	  /* Implicitly, *x = y */
	  add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);

	  /* All related variables are no longer direct nodes.  */
	  RESET_BIT (graph->direct_nodes, rhsvar);
          v = get_varinfo (rhsvar);
          if (!v->is_full_var)
            {
              v = lookup_vi_for_tree (v->decl);
              do
                {
                  RESET_BIT (graph->direct_nodes, v->id);
                  v = v->next;
                }
              while (v != NULL);
            }
	  bitmap_set_bit (graph->address_taken, rhsvar);
	}
      else if (lhsvar > anything_id
	       && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
	{
	  /* x = y */
	  add_pred_graph_edge (graph, lhsvar, rhsvar);
	  /* Implicitly, *x = *y */
	  add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
				   FIRST_REF_NODE + rhsvar);
	}
      else if (lhs.offset != 0 || rhs.offset != 0)
	{
	  if (rhs.offset != 0)
	    RESET_BIT (graph->direct_nodes, lhs.var);
	  else if (lhs.offset != 0)
	    RESET_BIT (graph->direct_nodes, rhs.var);
	}
    }
}

/* Build the constraint graph, adding successor edges.  */

static void
build_succ_graph (void)
{
  unsigned i, t;
  constraint_t c;

  for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
    {
      struct constraint_expr lhs;
      struct constraint_expr rhs;
      unsigned int lhsvar;
      unsigned int rhsvar;

      if (!c)
	continue;

      lhs = c->lhs;
      rhs = c->rhs;
      lhsvar = find (lhs.var);
      rhsvar = find (rhs.var);

      if (lhs.type == DEREF)
	{
	  if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
	    add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
	}
      else if (rhs.type == DEREF)
	{
	  if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
	    add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
	}
      else if (rhs.type == ADDRESSOF)
	{
	  /* x = &y */
	  gcc_assert (find (rhs.var) == rhs.var);
	  bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
	}
      else if (lhsvar > anything_id
	       && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
	{
	  add_graph_edge (graph, lhsvar, rhsvar);
	}
    }

  /* Add edges from STOREDANYTHING to all non-direct nodes.  */
  t = find (storedanything_id);
  for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
    {
      if (!TEST_BIT (graph->direct_nodes, i))
	add_graph_edge (graph, find (i), t);
    }
}


/* Changed variables on the last iteration.  */
static unsigned int changed_count;
static sbitmap changed;

DEF_VEC_I(unsigned);
DEF_VEC_ALLOC_I(unsigned,heap);


/* Strongly Connected Component visitation info.  */

struct scc_info
{
  sbitmap visited;
  sbitmap deleted;
  unsigned int *dfs;
  unsigned int *node_mapping;
  int current_index;
  VEC(unsigned,heap) *scc_stack;
};


/* Recursive routine to find strongly connected components in GRAPH.
   SI is the SCC info to store the information in, and N is the id of current
   graph node we are processing.

   This is Tarjan's strongly connected component finding algorithm, as
   modified by Nuutila to keep only non-root nodes on the stack.
   The algorithm can be found in "On finding the strongly connected
   connected components in a directed graph" by Esko Nuutila and Eljas
   Soisalon-Soininen, in Information Processing Letters volume 49,
   number 1, pages 9-14.  */

static void
scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
{
  unsigned int i;
  bitmap_iterator bi;
  unsigned int my_dfs;

  SET_BIT (si->visited, n);
  si->dfs[n] = si->current_index ++;
  my_dfs = si->dfs[n];

  /* Visit all the successors.  */
  EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
    {
      unsigned int w;

      if (i > LAST_REF_NODE)
	break;

      w = find (i);
      if (TEST_BIT (si->deleted, w))
	continue;

      if (!TEST_BIT (si->visited, w))
	scc_visit (graph, si, w);
      {
	unsigned int t = find (w);
	unsigned int nnode = find (n);
	gcc_assert (nnode == n);

	if (si->dfs[t] < si->dfs[nnode])
	  si->dfs[n] = si->dfs[t];
      }
    }

  /* See if any components have been identified.  */
  if (si->dfs[n] == my_dfs)
    {
      if (VEC_length (unsigned, si->scc_stack) > 0
	  && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
	{
	  bitmap scc = BITMAP_ALLOC (NULL);
	  bool have_ref_node = n >= FIRST_REF_NODE;
	  unsigned int lowest_node;
	  bitmap_iterator bi;

	  bitmap_set_bit (scc, n);

	  while (VEC_length (unsigned, si->scc_stack) != 0
		 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
	    {
	      unsigned int w = VEC_pop (unsigned, si->scc_stack);

	      bitmap_set_bit (scc, w);
	      if (w >= FIRST_REF_NODE)
		have_ref_node = true;
	    }

	  lowest_node = bitmap_first_set_bit (scc);
	  gcc_assert (lowest_node < FIRST_REF_NODE);

	  /* Collapse the SCC nodes into a single node, and mark the
	     indirect cycles.  */
	  EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
	    {
	      if (i < FIRST_REF_NODE)
		{
		  if (unite (lowest_node, i))
		    unify_nodes (graph, lowest_node, i, false);
		}
	      else
		{
		  unite (lowest_node, i);
		  graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
		}
	    }
	}
      SET_BIT (si->deleted, n);
    }
  else
    VEC_safe_push (unsigned, heap, si->scc_stack, n);
}

/* Unify node FROM into node TO, updating the changed count if
   necessary when UPDATE_CHANGED is true.  */

static void
unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
	     bool update_changed)
{

  gcc_assert (to != from && find (to) == to);
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Unifying %s to %s\n",
	     get_varinfo (from)->name,
	     get_varinfo (to)->name);

  if (update_changed)
    stats.unified_vars_dynamic++;
  else
    stats.unified_vars_static++;

  merge_graph_nodes (graph, to, from);
  merge_node_constraints (graph, to, from);

  if (get_varinfo (from)->no_tbaa_pruning)
    get_varinfo (to)->no_tbaa_pruning = true;

  /* Mark TO as changed if FROM was changed. If TO was already marked
     as changed, decrease the changed count.  */

  if (update_changed && TEST_BIT (changed, from))
    {
      RESET_BIT (changed, from);
      if (!TEST_BIT (changed, to))
	SET_BIT (changed, to);
      else
	{
	  gcc_assert (changed_count > 0);
	  changed_count--;
	}
    }
  if (get_varinfo (from)->solution)
    {
      /* If the solution changes because of the merging, we need to mark
	 the variable as changed.  */
      if (bitmap_ior_into (get_varinfo (to)->solution,
			   get_varinfo (from)->solution))
	{
	  if (update_changed && !TEST_BIT (changed, to))
	    {
	      SET_BIT (changed, to);
	      changed_count++;
	    }
	}
      
      BITMAP_FREE (get_varinfo (from)->solution);
      BITMAP_FREE (get_varinfo (from)->oldsolution);
      
      if (stats.iterations > 0)
	{
	  BITMAP_FREE (get_varinfo (to)->oldsolution);
	  get_varinfo (to)->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
	}
    }
  if (valid_graph_edge (graph, to, to))
    {
      if (graph->succs[to])
	bitmap_clear_bit (graph->succs[to], to);
    }
}

/* Information needed to compute the topological ordering of a graph.  */

struct topo_info
{
  /* sbitmap of visited nodes.  */
  sbitmap visited;
  /* Array that stores the topological order of the graph, *in
     reverse*.  */
  VEC(unsigned,heap) *topo_order;
};


/* Initialize and return a topological info structure.  */

static struct topo_info *
init_topo_info (void)
{
  size_t size = graph->size;
  struct topo_info *ti = XNEW (struct topo_info);
  ti->visited = sbitmap_alloc (size);
  sbitmap_zero (ti->visited);
  ti->topo_order = VEC_alloc (unsigned, heap, 1);
  return ti;
}


/* Free the topological sort info pointed to by TI.  */

static void
free_topo_info (struct topo_info *ti)
{
  sbitmap_free (ti->visited);
  VEC_free (unsigned, heap, ti->topo_order);
  free (ti);
}

/* Visit the graph in topological order, and store the order in the
   topo_info structure.  */

static void
topo_visit (constraint_graph_t graph, struct topo_info *ti,
	    unsigned int n)
{
  bitmap_iterator bi;
  unsigned int j;

  SET_BIT (ti->visited, n);

  if (graph->succs[n])
    EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
      {
	if (!TEST_BIT (ti->visited, j))
	  topo_visit (graph, ti, j);
      }

  VEC_safe_push (unsigned, heap, ti->topo_order, n);
}

/* Process a constraint C that represents x = *(y + off), using DELTA as the
   starting solution for y.  */

static void
do_sd_constraint (constraint_graph_t graph, constraint_t c,
		  bitmap delta)
{
  unsigned int lhs = c->lhs.var;
  bool flag = false;
  bitmap sol = get_varinfo (lhs)->solution;
  unsigned int j;
  bitmap_iterator bi;
  HOST_WIDE_INT roffset = c->rhs.offset;

  /* Our IL does not allow this.  */
  gcc_assert (c->lhs.offset == 0);

  /* If the solution of Y contains anything it is good enough to transfer
     this to the LHS.  */
  if (bitmap_bit_p (delta, anything_id))
    {
      flag |= bitmap_set_bit (sol, anything_id);
      goto done;
    }

  /* If we do not know at with offset the rhs is dereferenced compute
     the reachability set of DELTA, conservatively assuming it is
     dereferenced at all valid offsets.  */
  if (roffset == UNKNOWN_OFFSET)
    {
      solution_set_expand (delta, delta);
      /* No further offset processing is necessary.  */
      roffset = 0;
    }

  /* For each variable j in delta (Sol(y)), add
     an edge in the graph from j to x, and union Sol(j) into Sol(x).  */
  EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
    {
      varinfo_t v = get_varinfo (j);
      HOST_WIDE_INT fieldoffset = v->offset + roffset;
      unsigned int t;

      if (v->is_full_var)
	fieldoffset = v->offset;
      else if (roffset != 0)
	v = first_vi_for_offset (v, fieldoffset);
      /* If the access is outside of the variable we can ignore it.  */
      if (!v)
	continue;

      do
	{
	  t = find (v->id);

	  /* Adding edges from the special vars is pointless.
	     They don't have sets that can change.  */
	  if (get_varinfo (t)->is_special_var)
	    flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
	  /* Merging the solution from ESCAPED needlessly increases
	     the set.  Use ESCAPED as representative instead.  */
	  else if (v->id == escaped_id)
	    flag |= bitmap_set_bit (sol, escaped_id);
	  else if (add_graph_edge (graph, lhs, t))
	    flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);

	  /* If the variable is not exactly at the requested offset
	     we have to include the next one.  */
	  if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
	      || v->next == NULL)
	    break;

	  v = v->next;
	  fieldoffset = v->offset;
	}
      while (1);
    }

done:
  /* If the LHS solution changed, mark the var as changed.  */
  if (flag)
    {
      get_varinfo (lhs)->solution = sol;
      if (!TEST_BIT (changed, lhs))
	{
	  SET_BIT (changed, lhs);
	  changed_count++;
	}
    }
}

/* Process a constraint C that represents *(x + off) = y using DELTA
   as the starting solution for x.  */

static void
do_ds_constraint (constraint_t c, bitmap delta)
{
  unsigned int rhs = c->rhs.var;
  bitmap sol = get_varinfo (rhs)->solution;
  unsigned int j;
  bitmap_iterator bi;
  HOST_WIDE_INT loff = c->lhs.offset;

  /* Our IL does not allow this.  */
  gcc_assert (c->rhs.offset == 0);

  /* If the solution of y contains ANYTHING simply use the ANYTHING
     solution.  This avoids needlessly increasing the points-to sets.  */
  if (bitmap_bit_p (sol, anything_id))
    sol = get_varinfo (find (anything_id))->solution;

  /* If the solution for x contains ANYTHING we have to merge the
     solution of y into all pointer variables which we do via
     STOREDANYTHING.  */
  if (bitmap_bit_p (delta, anything_id))
    {
      unsigned t = find (storedanything_id);
      if (add_graph_edge (graph, t, rhs))
	{
	  if (bitmap_ior_into (get_varinfo (t)->solution, sol))
	    {
	      if (!TEST_BIT (changed, t))
		{
		  SET_BIT (changed, t);
		  changed_count++;
		}
	    }
	}
      return;
    }

  /* If we do not know at with offset the rhs is dereferenced compute
     the reachability set of DELTA, conservatively assuming it is
     dereferenced at all valid offsets.  */
  if (loff == UNKNOWN_OFFSET)
    {
      solution_set_expand (delta, delta);
      loff = 0;
    }

  /* For each member j of delta (Sol(x)), add an edge from y to j and
     union Sol(y) into Sol(j) */
  EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
    {
      varinfo_t v = get_varinfo (j);
      unsigned int t;
      HOST_WIDE_INT fieldoffset = v->offset + loff;

      if (v->is_special_var)
	continue;

      if (v->is_full_var)
	fieldoffset = v->offset;
      else if (loff != 0)
	v = first_vi_for_offset (v, fieldoffset);
      /* If the access is outside of the variable we can ignore it.  */
      if (!v)
	continue;

      do
	{
	  if (v->may_have_pointers)
	    {
	      t = find (v->id);
	      if (add_graph_edge (graph, t, rhs))
		{
		  if (bitmap_ior_into (get_varinfo (t)->solution, sol))
		    {
		      if (t == rhs)
			sol = get_varinfo (rhs)->solution;
		      if (!TEST_BIT (changed, t))
			{
			  SET_BIT (changed, t);
			  changed_count++;
			}
		    }
		}
	    }

	  /* If the variable is not exactly at the requested offset
	     we have to include the next one.  */
	  if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
	      || v->next == NULL)
	    break;

	  v = v->next;
	  fieldoffset = v->offset;
	}
      while (1);
    }
}

/* Handle a non-simple (simple meaning requires no iteration),
   constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved).  */

static void
do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
{
  if (c->lhs.type == DEREF)
    {
      if (c->rhs.type == ADDRESSOF)
	{
	  gcc_unreachable();
	}
      else
	{
	  /* *x = y */
	  do_ds_constraint (c, delta);
	}
    }
  else if (c->rhs.type == DEREF)
    {
      /* x = *y */
      if (!(get_varinfo (c->lhs.var)->is_special_var))
	do_sd_constraint (graph, c, delta);
    }
  else
    {
      bitmap tmp;
      bitmap solution;
      bool flag = false;

      gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
      solution = get_varinfo (c->rhs.var)->solution;
      tmp = get_varinfo (c->lhs.var)->solution;

      flag = set_union_with_increment (tmp, solution, c->rhs.offset);

      if (flag)
	{
	  get_varinfo (c->lhs.var)->solution = tmp;
	  if (!TEST_BIT (changed, c->lhs.var))
	    {
	      SET_BIT (changed, c->lhs.var);
	      changed_count++;
	    }
	}
    }
}

/* Initialize and return a new SCC info structure.  */

static struct scc_info *
init_scc_info (size_t size)
{
  struct scc_info *si = XNEW (struct scc_info);
  size_t i;

  si->current_index = 0;
  si->visited = sbitmap_alloc (size);
  sbitmap_zero (si->visited);
  si->deleted = sbitmap_alloc (size);
  sbitmap_zero (si->deleted);
  si->node_mapping = XNEWVEC (unsigned int, size);
  si->dfs = XCNEWVEC (unsigned int, size);

  for (i = 0; i < size; i++)
    si->node_mapping[i] = i;

  si->scc_stack = VEC_alloc (unsigned, heap, 1);
  return si;
}

/* Free an SCC info structure pointed to by SI */

static void
free_scc_info (struct scc_info *si)
{
  sbitmap_free (si->visited);
  sbitmap_free (si->deleted);
  free (si->node_mapping);
  free (si->dfs);
  VEC_free (unsigned, heap, si->scc_stack);
  free (si);
}


/* Find indirect cycles in GRAPH that occur, using strongly connected
   components, and note them in the indirect cycles map.

   This technique comes from Ben Hardekopf and Calvin Lin,
   "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
   Lines of Code", submitted to PLDI 2007.  */

static void
find_indirect_cycles (constraint_graph_t graph)
{
  unsigned int i;
  unsigned int size = graph->size;
  struct scc_info *si = init_scc_info (size);

  for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
    if (!TEST_BIT (si->visited, i) && find (i) == i)
      scc_visit (graph, si, i);

  free_scc_info (si);
}

/* Compute a topological ordering for GRAPH, and store the result in the
   topo_info structure TI.  */

static void
compute_topo_order (constraint_graph_t graph,
		    struct topo_info *ti)
{
  unsigned int i;
  unsigned int size = graph->size;

  for (i = 0; i != size; ++i)
    if (!TEST_BIT (ti->visited, i) && find (i) == i)
      topo_visit (graph, ti, i);
}

/* Structure used to for hash value numbering of pointer equivalence
   classes.  */

typedef struct equiv_class_label
{
  hashval_t hashcode;
  unsigned int equivalence_class;
  bitmap labels;
} *equiv_class_label_t;
typedef const struct equiv_class_label *const_equiv_class_label_t;

/* A hashtable for mapping a bitmap of labels->pointer equivalence
   classes.  */
static htab_t pointer_equiv_class_table;

/* A hashtable for mapping a bitmap of labels->location equivalence
   classes.  */
static htab_t location_equiv_class_table;

/* Hash function for a equiv_class_label_t */

static hashval_t
equiv_class_label_hash (const void *p)
{
  const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
  return ecl->hashcode;
}

/* Equality function for two equiv_class_label_t's.  */

static int
equiv_class_label_eq (const void *p1, const void *p2)
{
  const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
  const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
  return bitmap_equal_p (eql1->labels, eql2->labels);
}

/* Lookup a equivalence class in TABLE by the bitmap of LABELS it
   contains.  */

static unsigned int
equiv_class_lookup (htab_t table, bitmap labels)
{
  void **slot;
  struct equiv_class_label ecl;

  ecl.labels = labels;
  ecl.hashcode = bitmap_hash (labels);

  slot = htab_find_slot_with_hash (table, &ecl,
				   ecl.hashcode, NO_INSERT);
  if (!slot)
    return 0;
  else
    return ((equiv_class_label_t) *slot)->equivalence_class;
}


/* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
   to TABLE.  */

static void
equiv_class_add (htab_t table, unsigned int equivalence_class,
		 bitmap labels)
{
  void **slot;
  equiv_class_label_t ecl = XNEW (struct equiv_class_label);

  ecl->labels = labels;
  ecl->equivalence_class = equivalence_class;
  ecl->hashcode = bitmap_hash (labels);

  slot = htab_find_slot_with_hash (table, ecl,
				   ecl->hashcode, INSERT);
  gcc_assert (!*slot);
  *slot = (void *) ecl;
}

/* Perform offline variable substitution.

   This is a worst case quadratic time way of identifying variables
   that must have equivalent points-to sets, including those caused by
   static cycles, and single entry subgraphs, in the constraint graph.

   The technique is described in "Exploiting Pointer and Location
   Equivalence to Optimize Pointer Analysis. In the 14th International
   Static Analysis Symposium (SAS), August 2007."  It is known as the
   "HU" algorithm, and is equivalent to value numbering the collapsed
   constraint graph including evaluating unions.

   The general method of finding equivalence classes is as follows:
   Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
   Initialize all non-REF nodes to be direct nodes.
   For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
   variable}
   For each constraint containing the dereference, we also do the same
   thing.

   We then compute SCC's in the graph and unify nodes in the same SCC,
   including pts sets.

   For each non-collapsed node x:
    Visit all unvisited explicit incoming edges.
    Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
    where y->x.
    Lookup the equivalence class for pts(x).
     If we found one, equivalence_class(x) = found class.
     Otherwise, equivalence_class(x) = new class, and new_class is
    added to the lookup table.

   All direct nodes with the same equivalence class can be replaced
   with a single representative node.
   All unlabeled nodes (label == 0) are not pointers and all edges
   involving them can be eliminated.
   We perform these optimizations during rewrite_constraints

   In addition to pointer equivalence class finding, we also perform
   location equivalence class finding.  This is the set of variables
   that always appear together in points-to sets.  We use this to
   compress the size of the points-to sets.  */

/* Current maximum pointer equivalence class id.  */
static int pointer_equiv_class;

/* Current maximum location equivalence class id.  */
static int location_equiv_class;

/* Recursive routine to find strongly connected components in GRAPH,
   and label it's nodes with DFS numbers.  */

static void
condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
{
  unsigned int i;
  bitmap_iterator bi;
  unsigned int my_dfs;

  gcc_assert (si->node_mapping[n] == n);
  SET_BIT (si->visited, n);
  si->dfs[n] = si->current_index ++;
  my_dfs = si->dfs[n];

  /* Visit all the successors.  */
  EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
    {
      unsigned int w = si->node_mapping[i];

      if (TEST_BIT (si->deleted, w))
	continue;

      if (!TEST_BIT (si->visited, w))
	condense_visit (graph, si, w);
      {
	unsigned int t = si->node_mapping[w];
	unsigned int nnode = si->node_mapping[n];
	gcc_assert (nnode == n);

	if (si->dfs[t] < si->dfs[nnode])
	  si->dfs[n] = si->dfs[t];
      }
    }

  /* Visit all the implicit predecessors.  */
  EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
    {
      unsigned int w = si->node_mapping[i];

      if (TEST_BIT (si->deleted, w))
	continue;

      if (!TEST_BIT (si->visited, w))
	condense_visit (graph, si, w);
      {
	unsigned int t = si->node_mapping[w];
	unsigned int nnode = si->node_mapping[n];
	gcc_assert (nnode == n);

	if (si->dfs[t] < si->dfs[nnode])
	  si->dfs[n] = si->dfs[t];
      }
    }

  /* See if any components have been identified.  */
  if (si->dfs[n] == my_dfs)
    {
      while (VEC_length (unsigned, si->scc_stack) != 0
	     && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
	{
	  unsigned int w = VEC_pop (unsigned, si->scc_stack);
	  si->node_mapping[w] = n;

	  if (!TEST_BIT (graph->direct_nodes, w))
	    RESET_BIT (graph->direct_nodes, n);

	  /* Unify our nodes.  */
	  if (graph->preds[w])
	    {
	      if (!graph->preds[n])
		graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
	      bitmap_ior_into (graph->preds[n], graph->preds[w]);
	    }
	  if (graph->implicit_preds[w])
	    {
	      if (!graph->implicit_preds[n])
		graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
	      bitmap_ior_into (graph->implicit_preds[n],
			       graph->implicit_preds[w]);
	    }
	  if (graph->points_to[w])
	    {
	      if (!graph->points_to[n])
		graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
	      bitmap_ior_into (graph->points_to[n],
			       graph->points_to[w]);
	    }
	}
      SET_BIT (si->deleted, n);
    }
  else
    VEC_safe_push (unsigned, heap, si->scc_stack, n);
}

/* Label pointer equivalences.  */

static void
label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
{
  unsigned int i;
  bitmap_iterator bi;
  SET_BIT (si->visited, n);

  if (!graph->points_to[n])
    graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);

  /* Label and union our incoming edges's points to sets.  */
  EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
    {
      unsigned int w = si->node_mapping[i];
      if (!TEST_BIT (si->visited, w))
	label_visit (graph, si, w);

      /* Skip unused edges  */
      if (w == n || graph->pointer_label[w] == 0)
	continue;

      if (graph->points_to[w])
	bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
    }
  /* Indirect nodes get fresh variables.  */
  if (!TEST_BIT (graph->direct_nodes, n))
    bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);

  if (!bitmap_empty_p (graph->points_to[n]))
    {
      unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
					       graph->points_to[n]);
      if (!label)
	{
	  label = pointer_equiv_class++;
	  equiv_class_add (pointer_equiv_class_table,
			   label, graph->points_to[n]);
	}
      graph->pointer_label[n] = label;
    }
}

/* Perform offline variable substitution, discovering equivalence
   classes, and eliminating non-pointer variables.  */

static struct scc_info *
perform_var_substitution (constraint_graph_t graph)
{
  unsigned int i;
  unsigned int size = graph->size;
  struct scc_info *si = init_scc_info (size);

  bitmap_obstack_initialize (&iteration_obstack);
  pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
					   equiv_class_label_eq, free);
  location_equiv_class_table = htab_create (511, equiv_class_label_hash,
					    equiv_class_label_eq, free);
  pointer_equiv_class = 1;
  location_equiv_class = 1;

  /* Condense the nodes, which means to find SCC's, count incoming
     predecessors, and unite nodes in SCC's.  */
  for (i = 0; i < FIRST_REF_NODE; i++)
    if (!TEST_BIT (si->visited, si->node_mapping[i]))
      condense_visit (graph, si, si->node_mapping[i]);

  sbitmap_zero (si->visited);
  /* Actually the label the nodes for pointer equivalences  */
  for (i = 0; i < FIRST_REF_NODE; i++)
    if (!TEST_BIT (si->visited, si->node_mapping[i]))
      label_visit (graph, si, si->node_mapping[i]);

  /* Calculate location equivalence labels.  */
  for (i = 0; i < FIRST_REF_NODE; i++)
    {
      bitmap pointed_by;
      bitmap_iterator bi;
      unsigned int j;
      unsigned int label;

      if (!graph->pointed_by[i])
	continue;
      pointed_by = BITMAP_ALLOC (&iteration_obstack);

      /* Translate the pointed-by mapping for pointer equivalence
	 labels.  */
      EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
	{
	  bitmap_set_bit (pointed_by,
			  graph->pointer_label[si->node_mapping[j]]);
	}
      /* The original pointed_by is now dead.  */
      BITMAP_FREE (graph->pointed_by[i]);

      /* Look up the location equivalence label if one exists, or make
	 one otherwise.  */
      label = equiv_class_lookup (location_equiv_class_table,
				  pointed_by);
      if (label == 0)
	{
	  label = location_equiv_class++;
	  equiv_class_add (location_equiv_class_table,
			   label, pointed_by);
	}
      else
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Found location equivalence for node %s\n",
		     get_varinfo (i)->name);
	  BITMAP_FREE (pointed_by);
	}
      graph->loc_label[i] = label;

    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    for (i = 0; i < FIRST_REF_NODE; i++)
      {
	bool direct_node = TEST_BIT (graph->direct_nodes, i);
	fprintf (dump_file,
		 "Equivalence classes for %s node id %d:%s are pointer: %d"
		 ", location:%d\n",
		 direct_node ? "Direct node" : "Indirect node", i,
		 get_varinfo (i)->name,
		 graph->pointer_label[si->node_mapping[i]],
		 graph->loc_label[si->node_mapping[i]]);
      }

  /* Quickly eliminate our non-pointer variables.  */

  for (i = 0; i < FIRST_REF_NODE; i++)
    {
      unsigned int node = si->node_mapping[i];

      if (graph->pointer_label[node] == 0)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file,
		     "%s is a non-pointer variable, eliminating edges.\n",
		     get_varinfo (node)->name);
	  stats.nonpointer_vars++;
	  clear_edges_for_node (graph, node);
	}
    }

  return si;
}

/* Free information that was only necessary for variable
   substitution.  */

static void
free_var_substitution_info (struct scc_info *si)
{
  free_scc_info (si);
  free (graph->pointer_label);
  free (graph->loc_label);
  free (graph->pointed_by);
  free (graph->points_to);
  free (graph->eq_rep);
  sbitmap_free (graph->direct_nodes);
  htab_delete (pointer_equiv_class_table);
  htab_delete (location_equiv_class_table);
  bitmap_obstack_release (&iteration_obstack);
}

/* Return an existing node that is equivalent to NODE, which has
   equivalence class LABEL, if one exists.  Return NODE otherwise.  */

static unsigned int
find_equivalent_node (constraint_graph_t graph,
		      unsigned int node, unsigned int label)
{
  /* If the address version of this variable is unused, we can
     substitute it for anything else with the same label.
     Otherwise, we know the pointers are equivalent, but not the
     locations, and we can unite them later.  */

  if (!bitmap_bit_p (graph->address_taken, node))
    {
      gcc_assert (label < graph->size);

      if (graph->eq_rep[label] != -1)
	{
	  /* Unify the two variables since we know they are equivalent.  */
	  if (unite (graph->eq_rep[label], node))
	    unify_nodes (graph, graph->eq_rep[label], node, false);
	  return graph->eq_rep[label];
	}
      else
	{
	  graph->eq_rep[label] = node;
	  graph->pe_rep[label] = node;
	}
    }
  else
    {
      gcc_assert (label < graph->size);
      graph->pe[node] = label;
      if (graph->pe_rep[label] == -1)
	graph->pe_rep[label] = node;
    }

  return node;
}

/* Unite pointer equivalent but not location equivalent nodes in
   GRAPH.  This may only be performed once variable substitution is
   finished.  */

static void
unite_pointer_equivalences (constraint_graph_t graph)
{
  unsigned int i;

  /* Go through the pointer equivalences and unite them to their
     representative, if they aren't already.  */
  for (i = 0; i < FIRST_REF_NODE; i++)
    {
      unsigned int label = graph->pe[i];
      if (label)
	{
	  int label_rep = graph->pe_rep[label];
	  
	  if (label_rep == -1)
	    continue;
	  
	  label_rep = find (label_rep);
	  if (label_rep >= 0 && unite (label_rep, find (i)))
	    unify_nodes (graph, label_rep, i, false);
	}
    }
}

/* Move complex constraints to the GRAPH nodes they belong to.  */

static void
move_complex_constraints (constraint_graph_t graph)
{
  int i;
  constraint_t c;

  for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
    {
      if (c)
	{
	  struct constraint_expr lhs = c->lhs;
	  struct constraint_expr rhs = c->rhs;

	  if (lhs.type == DEREF)
	    {
	      insert_into_complex (graph, lhs.var, c);
	    }
	  else if (rhs.type == DEREF)
	    {
	      if (!(get_varinfo (lhs.var)->is_special_var))
		insert_into_complex (graph, rhs.var, c);
	    }
	  else if (rhs.type != ADDRESSOF && lhs.var > anything_id
		   && (lhs.offset != 0 || rhs.offset != 0))
	    {
	      insert_into_complex (graph, rhs.var, c);
	    }
	}
    }
}


/* Optimize and rewrite complex constraints while performing
   collapsing of equivalent nodes.  SI is the SCC_INFO that is the
   result of perform_variable_substitution.  */

static void
rewrite_constraints (constraint_graph_t graph,
		     struct scc_info *si)
{
  int i;
  unsigned int j;
  constraint_t c;

  for (j = 0; j < graph->size; j++)
    gcc_assert (find (j) == j);

  for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
    {
      struct constraint_expr lhs = c->lhs;
      struct constraint_expr rhs = c->rhs;
      unsigned int lhsvar = find (lhs.var);
      unsigned int rhsvar = find (rhs.var);
      unsigned int lhsnode, rhsnode;
      unsigned int lhslabel, rhslabel;

      lhsnode = si->node_mapping[lhsvar];
      rhsnode = si->node_mapping[rhsvar];
      lhslabel = graph->pointer_label[lhsnode];
      rhslabel = graph->pointer_label[rhsnode];

      /* See if it is really a non-pointer variable, and if so, ignore
	 the constraint.  */
      if (lhslabel == 0)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      
	      fprintf (dump_file, "%s is a non-pointer variable,"
		       "ignoring constraint:",
		       get_varinfo (lhs.var)->name);
	      dump_constraint (dump_file, c);
	    }
	  VEC_replace (constraint_t, constraints, i, NULL);
	  continue;
	}

      if (rhslabel == 0)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      
	      fprintf (dump_file, "%s is a non-pointer variable,"
		       "ignoring constraint:",
		       get_varinfo (rhs.var)->name);
	      dump_constraint (dump_file, c);
	    }
	  VEC_replace (constraint_t, constraints, i, NULL);
	  continue;
	}

      lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
      rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
      c->lhs.var = lhsvar;
      c->rhs.var = rhsvar;

    }
}

/* Eliminate indirect cycles involving NODE.  Return true if NODE was
   part of an SCC, false otherwise.  */

static bool
eliminate_indirect_cycles (unsigned int node)
{
  if (graph->indirect_cycles[node] != -1
      && !bitmap_empty_p (get_varinfo (node)->solution))
    {
      unsigned int i;
      VEC(unsigned,heap) *queue = NULL;
      int queuepos;
      unsigned int to = find (graph->indirect_cycles[node]);
      bitmap_iterator bi;

      /* We can't touch the solution set and call unify_nodes
	 at the same time, because unify_nodes is going to do
	 bitmap unions into it. */

      EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
	{
	  if (find (i) == i && i != to)
	    {
	      if (unite (to, i))
		VEC_safe_push (unsigned, heap, queue, i);
	    }
	}

      for (queuepos = 0;
	   VEC_iterate (unsigned, queue, queuepos, i);
	   queuepos++)
	{
	  unify_nodes (graph, to, i, true);
	}
      VEC_free (unsigned, heap, queue);
      return true;
    }
  return false;
}

/* Solve the constraint graph GRAPH using our worklist solver.
   This is based on the PW* family of solvers from the "Efficient Field
   Sensitive Pointer Analysis for C" paper.
   It works by iterating over all the graph nodes, processing the complex
   constraints and propagating the copy constraints, until everything stops
   changed.  This corresponds to steps 6-8 in the solving list given above.  */

static void
solve_graph (constraint_graph_t graph)
{
  unsigned int size = graph->size;
  unsigned int i;
  bitmap pts;

  changed_count = 0;
  changed = sbitmap_alloc (size);
  sbitmap_zero (changed);

  /* Mark all initial non-collapsed nodes as changed.  */
  for (i = 0; i < size; i++)
    {
      varinfo_t ivi = get_varinfo (i);
      if (find (i) == i && !bitmap_empty_p (ivi->solution)
	  && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
	      || VEC_length (constraint_t, graph->complex[i]) > 0))
	{
	  SET_BIT (changed, i);
	  changed_count++;
	}
    }

  /* Allocate a bitmap to be used to store the changed bits.  */
  pts = BITMAP_ALLOC (&pta_obstack);

  while (changed_count > 0)
    {
      unsigned int i;
      struct topo_info *ti = init_topo_info ();
      stats.iterations++;

      bitmap_obstack_initialize (&iteration_obstack);

      compute_topo_order (graph, ti);

      while (VEC_length (unsigned, ti->topo_order) != 0)
	{

	  i = VEC_pop (unsigned, ti->topo_order);

	  /* If this variable is not a representative, skip it.  */
	  if (find (i) != i)
	    continue;

	  /* In certain indirect cycle cases, we may merge this
	     variable to another.  */
	  if (eliminate_indirect_cycles (i) && find (i) != i)
	    continue;

	  /* If the node has changed, we need to process the
	     complex constraints and outgoing edges again.  */
	  if (TEST_BIT (changed, i))
	    {
	      unsigned int j;
	      constraint_t c;
	      bitmap solution;
	      VEC(constraint_t,heap) *complex = graph->complex[i];
	      bool solution_empty;

	      RESET_BIT (changed, i);
	      changed_count--;

	      /* Compute the changed set of solution bits.  */
	      bitmap_and_compl (pts, get_varinfo (i)->solution,
				get_varinfo (i)->oldsolution);

	      if (bitmap_empty_p (pts))
		continue;

	      bitmap_ior_into (get_varinfo (i)->oldsolution, pts);

	      solution = get_varinfo (i)->solution;
	      solution_empty = bitmap_empty_p (solution);

	      /* Process the complex constraints */
	      for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
		{
		  /* XXX: This is going to unsort the constraints in
		     some cases, which will occasionally add duplicate
		     constraints during unification.  This does not
		     affect correctness.  */
		  c->lhs.var = find (c->lhs.var);
		  c->rhs.var = find (c->rhs.var);

		  /* The only complex constraint that can change our
		     solution to non-empty, given an empty solution,
		     is a constraint where the lhs side is receiving
		     some set from elsewhere.  */
		  if (!solution_empty || c->lhs.type != DEREF)
		    do_complex_constraint (graph, c, pts);
		}

	      solution_empty = bitmap_empty_p (solution);

	      if (!solution_empty)
		{
		  bitmap_iterator bi;
		  unsigned eff_escaped_id = find (escaped_id);

		  /* Propagate solution to all successors.  */
		  EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
						0, j, bi)
		    {
		      bitmap tmp;
		      bool flag;

		      unsigned int to = find (j);
		      tmp = get_varinfo (to)->solution;
		      flag = false;

		      /* Don't try to propagate to ourselves.  */
		      if (to == i)
			continue;

		      /* If we propagate from ESCAPED use ESCAPED as
		         placeholder.  */
		      if (i == eff_escaped_id)
			flag = bitmap_set_bit (tmp, escaped_id);
		      else
			flag = set_union_with_increment (tmp, pts, 0);

		      if (flag)
			{
			  get_varinfo (to)->solution = tmp;
			  if (!TEST_BIT (changed, to))
			    {
			      SET_BIT (changed, to);
			      changed_count++;
			    }
			}
		    }
		}
	    }
	}
      free_topo_info (ti);
      bitmap_obstack_release (&iteration_obstack);
    }

  BITMAP_FREE (pts);
  sbitmap_free (changed);
  bitmap_obstack_release (&oldpta_obstack);
}

/* Map from trees to variable infos.  */
static struct pointer_map_t *vi_for_tree;


/* Insert ID as the variable id for tree T in the vi_for_tree map.  */

static void
insert_vi_for_tree (tree t, varinfo_t vi)
{
  void **slot = pointer_map_insert (vi_for_tree, t);
  gcc_assert (vi);
  gcc_assert (*slot == NULL);
  *slot = vi;
}

/* Find the variable info for tree T in VI_FOR_TREE.  If T does not
   exist in the map, return NULL, otherwise, return the varinfo we found.  */

static varinfo_t
lookup_vi_for_tree (tree t)
{
  void **slot = pointer_map_contains (vi_for_tree, t);
  if (slot == NULL)
    return NULL;

  return (varinfo_t) *slot;
}

/* Return a printable name for DECL  */

static const char *
alias_get_name (tree decl)
{
  const char *res = get_name (decl);
  char *temp;
  int num_printed = 0;

  if (res != NULL)
    return res;

  res = "NULL";
  if (!dump_file)
    return res;

  if (TREE_CODE (decl) == SSA_NAME)
    {
      num_printed = asprintf (&temp, "%s_%u",
			      alias_get_name (SSA_NAME_VAR (decl)),
			      SSA_NAME_VERSION (decl));
    }
  else if (DECL_P (decl))
    {
      num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
    }
  if (num_printed > 0)
    {
      res = ggc_strdup (temp);
      free (temp);
    }
  return res;
}

/* Find the variable id for tree T in the map.
   If T doesn't exist in the map, create an entry for it and return it.  */

static varinfo_t
get_vi_for_tree (tree t)
{
  void **slot = pointer_map_contains (vi_for_tree, t);
  if (slot == NULL)
    return get_varinfo (create_variable_info_for (t, alias_get_name (t)));

  return (varinfo_t) *slot;
}

/* Get a constraint expression for a new temporary variable.  */

static struct constraint_expr
get_constraint_exp_for_temp (tree t)
{
  struct constraint_expr cexpr;

  gcc_assert (SSA_VAR_P (t));

  cexpr.type = SCALAR;
  cexpr.var = get_vi_for_tree (t)->id;
  cexpr.offset = 0;

  return cexpr;
}

/* Get a constraint expression vector from an SSA_VAR_P node.
   If address_p is true, the result will be taken its address of.  */

static void
get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
{
  struct constraint_expr cexpr;
  varinfo_t vi;

  /* We allow FUNCTION_DECLs here even though it doesn't make much sense.  */
  gcc_assert (SSA_VAR_P (t) || DECL_P (t));

  /* For parameters, get at the points-to set for the actual parm
     decl.  */
  if (TREE_CODE (t) == SSA_NAME
      && TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
      && SSA_NAME_IS_DEFAULT_DEF (t))
    {
      get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
      return;
    }

  vi = get_vi_for_tree (t);
  cexpr.var = vi->id;
  cexpr.type = SCALAR;
  cexpr.offset = 0;
  /* If we determine the result is "anything", and we know this is readonly,
     say it points to readonly memory instead.  */
  if (cexpr.var == anything_id && TREE_READONLY (t))
    {
      gcc_unreachable ();
      cexpr.type = ADDRESSOF;
      cexpr.var = readonly_id;
    }

  /* If we are not taking the address of the constraint expr, add all
     sub-fiels of the variable as well.  */
  if (!address_p)
    {
      for (; vi; vi = vi->next)
	{
	  cexpr.var = vi->id;
	  VEC_safe_push (ce_s, heap, *results, &cexpr);
	}
      return;
    }

  VEC_safe_push (ce_s, heap, *results, &cexpr);
}

/* Process constraint T, performing various simplifications and then
   adding it to our list of overall constraints.  */

static void
process_constraint (constraint_t t)
{
  struct constraint_expr rhs = t->rhs;
  struct constraint_expr lhs = t->lhs;

  gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
  gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));

  /* If we didn't get any useful constraint from the lhs we get
     &ANYTHING as fallback from get_constraint_for.  Deal with
     it here by turning it into *ANYTHING.  */
  if (lhs.type == ADDRESSOF
      && lhs.var == anything_id)
    lhs.type = DEREF;

  /* ADDRESSOF on the lhs is invalid.  */
  gcc_assert (lhs.type != ADDRESSOF);

  /* This can happen in our IR with things like n->a = *p */
  if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
    {
      /* Split into tmp = *rhs, *lhs = tmp */
      tree rhsdecl = get_varinfo (rhs.var)->decl;
      tree pointertype = TREE_TYPE (rhsdecl);
      tree pointedtotype = TREE_TYPE (pointertype);
      tree tmpvar = create_tmp_var_raw (pointedtotype, "doubledereftmp");
      struct constraint_expr tmplhs = get_constraint_exp_for_temp (tmpvar);

      process_constraint (new_constraint (tmplhs, rhs));
      process_constraint (new_constraint (lhs, tmplhs));
    }
  else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
    {
      /* Split into tmp = &rhs, *lhs = tmp */
      tree rhsdecl = get_varinfo (rhs.var)->decl;
      tree pointertype = TREE_TYPE (rhsdecl);
      tree tmpvar = create_tmp_var_raw (pointertype, "derefaddrtmp");
      struct constraint_expr tmplhs = get_constraint_exp_for_temp (tmpvar);

      process_constraint (new_constraint (tmplhs, rhs));
      process_constraint (new_constraint (lhs, tmplhs));
    }
  else
    {
      gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
      VEC_safe_push (constraint_t, heap, constraints, t);
    }
}

/* Return true if T is a type that could contain pointers.  */

static bool
type_could_have_pointers (tree type)
{
  if (POINTER_TYPE_P (type))
    return true;

  if (TREE_CODE (type) == ARRAY_TYPE)
    return type_could_have_pointers (TREE_TYPE (type));

  return AGGREGATE_TYPE_P (type);
}

/* Return true if T is a variable of a type that could contain
   pointers.  */

static bool
could_have_pointers (tree t)
{
  return type_could_have_pointers (TREE_TYPE (t));
}

/* Return the position, in bits, of FIELD_DECL from the beginning of its
   structure.  */

static HOST_WIDE_INT
bitpos_of_field (const tree fdecl)
{

  if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
      || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
    return -1;

  return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * 8
	  + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
}


/* Get constraint expressions for offsetting PTR by OFFSET.  Stores the
   resulting constraint expressions in *RESULTS.  */

static void
get_constraint_for_ptr_offset (tree ptr, tree offset,
			       VEC (ce_s, heap) **results)
{
  struct constraint_expr *c;
  unsigned int j, n;
  HOST_WIDE_INT rhsunitoffset, rhsoffset;

  /* If we do not do field-sensitive PTA adding offsets to pointers
     does not change the points-to solution.  */
  if (!use_field_sensitive)
    {
      get_constraint_for (ptr, results);
      return;
    }

  /* If the offset is not a non-negative integer constant that fits
     in a HOST_WIDE_INT, we have to fall back to a conservative
     solution which includes all sub-fields of all pointed-to
     variables of ptr.  */
  if (!host_integerp (offset, 0))
    rhsoffset = UNKNOWN_OFFSET;
  else
    {
      /* Make sure the bit-offset also fits.  */
      rhsunitoffset = TREE_INT_CST_LOW (offset);
      rhsoffset = rhsunitoffset * BITS_PER_UNIT;
      if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
	rhsoffset = UNKNOWN_OFFSET;
    }

  get_constraint_for (ptr, results);
  if (rhsoffset == 0)
    return;

  /* As we are eventually appending to the solution do not use
     VEC_iterate here.  */
  n = VEC_length (ce_s, *results);
  for (j = 0; j < n; j++)
    {
      varinfo_t curr;
      c = VEC_index (ce_s, *results, j);
      curr = get_varinfo (c->var);

      if (c->type == ADDRESSOF
	  /* If this varinfo represents a full variable just use it.  */
	  && curr->is_full_var)
	c->offset = 0;
      else if (c->type == ADDRESSOF
	       /* If we do not know the offset add all subfields.  */
	       && rhsoffset == UNKNOWN_OFFSET)
	{
	  varinfo_t temp = lookup_vi_for_tree (curr->decl);
	  do
	    {
	      struct constraint_expr c2;
	      c2.var = temp->id;
	      c2.type = ADDRESSOF;
	      c2.offset = 0;
	      VEC_safe_push (ce_s, heap, *results, &c2);
	      temp = temp->next;
	    }
	  while (temp);
	}
      else if (c->type == ADDRESSOF)
	{
	  varinfo_t temp;
	  unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;

	  /* Search the sub-field which overlaps with the
	     pointed-to offset.  If the result is outside of the variable
	     we have to provide a conservative result, as the variable is
	     still reachable from the resulting pointer (even though it
	     technically cannot point to anything).  The last and first
	     sub-fields are such conservative results.
	     ???  If we always had a sub-field for &object + 1 then
	     we could represent this in a more precise way.  */
	  if (rhsoffset < 0
	      && curr->offset < offset)
	    offset = 0;
	  temp = first_or_preceding_vi_for_offset (curr, offset);

	  /* If the found variable is not exactly at the pointed to
	     result, we have to include the next variable in the
	     solution as well.  Otherwise two increments by offset / 2
	     do not result in the same or a conservative superset
	     solution.  */
	  if (temp->offset != offset
	      && temp->next != NULL)
	    {
	      struct constraint_expr c2;
	      c2.var = temp->next->id;
	      c2.type = ADDRESSOF;
	      c2.offset = 0;
	      VEC_safe_push (ce_s, heap, *results, &c2);
	    }
	  c->var = temp->id;
	  c->offset = 0;
	}
      else
	c->offset = rhsoffset;
    }
}


/* Given a COMPONENT_REF T, return the constraint_expr vector for it.
   If address_p is true the result will be taken its address of.  */

static void
get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
				  bool address_p)
{
  tree orig_t = t;
  HOST_WIDE_INT bitsize = -1;
  HOST_WIDE_INT bitmaxsize = -1;
  HOST_WIDE_INT bitpos;
  tree forzero;
  struct constraint_expr *result;

  /* Some people like to do cute things like take the address of
     &0->a.b */
  forzero = t;
  while (!SSA_VAR_P (forzero) && !CONSTANT_CLASS_P (forzero))
    forzero = TREE_OPERAND (forzero, 0);

  if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
    {
      struct constraint_expr temp;

      temp.offset = 0;
      temp.var = integer_id;
      temp.type = SCALAR;
      VEC_safe_push (ce_s, heap, *results, &temp);
      return;
    }

  t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);

  /* Pretend to take the address of the base, we'll take care of
     adding the required subset of sub-fields below.  */
  get_constraint_for_1 (t, results, true);
  gcc_assert (VEC_length (ce_s, *results) == 1);
  result = VEC_last (ce_s, *results);

  if (result->type == SCALAR
      && get_varinfo (result->var)->is_full_var)
    /* For single-field vars do not bother about the offset.  */
    result->offset = 0;
  else if (result->type == SCALAR)
    {
      /* In languages like C, you can access one past the end of an
	 array.  You aren't allowed to dereference it, so we can
	 ignore this constraint. When we handle pointer subtraction,
	 we may have to do something cute here.  */

      if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
	  && bitmaxsize != 0)
	{
	  /* It's also not true that the constraint will actually start at the
	     right offset, it may start in some padding.  We only care about
	     setting the constraint to the first actual field it touches, so
	     walk to find it.  */
	  struct constraint_expr cexpr = *result;
	  varinfo_t curr;
	  VEC_pop (ce_s, *results);
	  cexpr.offset = 0;
	  for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
	    {
	      if (ranges_overlap_p (curr->offset, curr->size,
				    bitpos, bitmaxsize))
		{
		  cexpr.var = curr->id;
		  VEC_safe_push (ce_s, heap, *results, &cexpr);
		  if (address_p)
		    break;
		}
	    }
	  /* If we are going to take the address of this field then
	     to be able to compute reachability correctly add at least
	     the last field of the variable.  */
	  if (address_p
	      && VEC_length (ce_s, *results) == 0)
	    {
	      curr = get_varinfo (cexpr.var);
	      while (curr->next != NULL)
		curr = curr->next;
	      cexpr.var = curr->id;
	      VEC_safe_push (ce_s, heap, *results, &cexpr);
	    }
	  else
	    /* Assert that we found *some* field there. The user couldn't be
	       accessing *only* padding.  */
	    /* Still the user could access one past the end of an array
	       embedded in a struct resulting in accessing *only* padding.  */
	    gcc_assert (VEC_length (ce_s, *results) >= 1
			|| ref_contains_array_ref (orig_t));
	}
      else if (bitmaxsize == 0)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Access to zero-sized part of variable,"
		     "ignoring\n");
	}
      else
	if (dump_file && (dump_flags & TDF_DETAILS))
	  fprintf (dump_file, "Access to past the end of variable, ignoring\n");
    }
  else if (result->type == DEREF)
    {
      /* If we do not know exactly where the access goes say so.  Note
	 that only for non-structure accesses we know that we access
	 at most one subfiled of any variable.  */
      if (bitpos == -1
	  || bitsize != bitmaxsize
	  || AGGREGATE_TYPE_P (TREE_TYPE (orig_t)))
	result->offset = UNKNOWN_OFFSET;
      else
	result->offset = bitpos;
    }
  else if (result->type == ADDRESSOF)
    {
      /* We can end up here for component references on a
         VIEW_CONVERT_EXPR <>(&foobar).  */
      result->type = SCALAR;
      result->var = anything_id;
      result->offset = 0;
    }
  else
    gcc_unreachable ();
}


/* Dereference the constraint expression CONS, and return the result.
   DEREF (ADDRESSOF) = SCALAR
   DEREF (SCALAR) = DEREF
   DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
   This is needed so that we can handle dereferencing DEREF constraints.  */

static void
do_deref (VEC (ce_s, heap) **constraints)
{
  struct constraint_expr *c;
  unsigned int i = 0;

  for (i = 0; VEC_iterate (ce_s, *constraints, i, c); i++)
    {
      if (c->type == SCALAR)
	c->type = DEREF;
      else if (c->type == ADDRESSOF)
	c->type = SCALAR;
      else if (c->type == DEREF)
	{
	  tree tmpvar = create_tmp_var_raw (ptr_type_node, "dereftmp");
	  struct constraint_expr tmplhs = get_constraint_exp_for_temp (tmpvar);
	  process_constraint (new_constraint (tmplhs, *c));
	  c->var = tmplhs.var;
	}
      else
	gcc_unreachable ();
    }
}

/* Given a tree T, return the constraint expression for it.  */

static void
get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p)
{
  struct constraint_expr temp;

  /* x = integer is all glommed to a single variable, which doesn't
     point to anything by itself.  That is, of course, unless it is an
     integer constant being treated as a pointer, in which case, we
     will return that this is really the addressof anything.  This
     happens below, since it will fall into the default case. The only
     case we know something about an integer treated like a pointer is
     when it is the NULL pointer, and then we just say it points to
     NULL.

     Do not do that if -fno-delete-null-pointer-checks though, because
     in that case *NULL does not fail, so it _should_ alias *anything.
     It is not worth adding a new option or renaming the existing one,
     since this case is relatively obscure.  */
  if (flag_delete_null_pointer_checks
      && ((TREE_CODE (t) == INTEGER_CST
	   && integer_zerop (t))
	  /* The only valid CONSTRUCTORs in gimple with pointer typed
	     elements are zero-initializer.  */
	  || TREE_CODE (t) == CONSTRUCTOR))
    {
      temp.var = nothing_id;
      temp.type = ADDRESSOF;
      temp.offset = 0;
      VEC_safe_push (ce_s, heap, *results, &temp);
      return;
    }

  /* String constants are read-only.  */
  if (TREE_CODE (t) == STRING_CST)
    {
      temp.var = readonly_id;
      temp.type = SCALAR;
      temp.offset = 0;
      VEC_safe_push (ce_s, heap, *results, &temp);
      return;
    }

  switch (TREE_CODE_CLASS (TREE_CODE (t)))
    {
    case tcc_expression:
      {
	switch (TREE_CODE (t))
	  {
	  case ADDR_EXPR:
	    {
	      struct constraint_expr *c;
	      unsigned int i;
	      tree exp = TREE_OPERAND (t, 0);

	      get_constraint_for_1 (exp, results, true);

	      for (i = 0; VEC_iterate (ce_s, *results, i, c); i++)
		{
		  if (c->type == DEREF)
		    c->type = SCALAR;
		  else
		    c->type = ADDRESSOF;
		}
	      return;
	    }
	    break;
	  default:;
	  }
	break;
      }
    case tcc_reference:
      {
	switch (TREE_CODE (t))
	  {
	  case INDIRECT_REF:
	    {
	      get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
	      do_deref (results);
	      return;
	    }
	  case ARRAY_REF:
	  case ARRAY_RANGE_REF:
	  case COMPONENT_REF:
	    get_constraint_for_component_ref (t, results, address_p);
	    return;
	  case VIEW_CONVERT_EXPR:
	    get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
	    return;
	  /* We are missing handling for TARGET_MEM_REF here.  */
	  default:;
	  }
	break;
      }
    case tcc_exceptional:
      {
	switch (TREE_CODE (t))
	  {
	  case SSA_NAME:
	    {
	      get_constraint_for_ssa_var (t, results, address_p);
	      return;
	    }
	  default:;
	  }
	break;
      }
    case tcc_declaration:
      {
	get_constraint_for_ssa_var (t, results, address_p);
	return;
      }
    default:;
    }

  /* The default fallback is a constraint from anything.  */
  temp.type = ADDRESSOF;
  temp.var = anything_id;
  temp.offset = 0;
  VEC_safe_push (ce_s, heap, *results, &temp);
}

/* Given a gimple tree T, return the constraint expression vector for it.  */

static void
get_constraint_for (tree t, VEC (ce_s, heap) **results)
{
  gcc_assert (VEC_length (ce_s, *results) == 0);

  get_constraint_for_1 (t, results, false);
}

/* Handle aggregate copies by expanding into copies of the respective
   fields of the structures.  */

static void
do_structure_copy (tree lhsop, tree rhsop)
{
  struct constraint_expr *lhsp, *rhsp;
  VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
  unsigned j;

  get_constraint_for (lhsop, &lhsc);
  get_constraint_for (rhsop, &rhsc);
  lhsp = VEC_index (ce_s, lhsc, 0);
  rhsp = VEC_index (ce_s, rhsc, 0);
  if (lhsp->type == DEREF
      || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
      || rhsp->type == DEREF)
    {
      struct constraint_expr tmp;
      tree tmpvar = create_tmp_var_raw (ptr_type_node,
					"structcopydereftmp");
      tmp.var = get_vi_for_tree (tmpvar)->id;
      tmp.type = SCALAR;
      tmp.offset = 0;
      for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); ++j)
	process_constraint (new_constraint (tmp, *rhsp));
      for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); ++j)
	process_constraint (new_constraint (*lhsp, tmp));
    }
  else if (lhsp->type == SCALAR
	   && (rhsp->type == SCALAR
	       || rhsp->type == ADDRESSOF))
    {
      tree lhsbase, rhsbase;
      HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
      HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
      unsigned k = 0;
      lhsbase = get_ref_base_and_extent (lhsop, &lhsoffset,
					 &lhssize, &lhsmaxsize);
      rhsbase = get_ref_base_and_extent (rhsop, &rhsoffset,
					 &rhssize, &rhsmaxsize);
      for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp);)
	{
	  varinfo_t lhsv, rhsv;
	  rhsp = VEC_index (ce_s, rhsc, k);
	  lhsv = get_varinfo (lhsp->var);
	  rhsv = get_varinfo (rhsp->var);
	  if (lhsv->may_have_pointers
	      && ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
				   rhsv->offset + lhsoffset, rhsv->size))
	    process_constraint (new_constraint (*lhsp, *rhsp));
	  if (lhsv->offset + rhsoffset + lhsv->size
	      > rhsv->offset + lhsoffset + rhsv->size)
	    {
	      ++k;
	      if (k >= VEC_length (ce_s, rhsc))
		break;
	    }
	  else
	    ++j;
	}
    }
  else
    gcc_unreachable ();

  VEC_free (ce_s, heap, lhsc);
  VEC_free (ce_s, heap, rhsc);
}

/* Create a constraint ID = OP.  */

static void
make_constraint_to (unsigned id, tree op)
{
  VEC(ce_s, heap) *rhsc = NULL;
  struct constraint_expr *c;
  struct constraint_expr includes;
  unsigned int j;

  includes.var = id;
  includes.offset = 0;
  includes.type = SCALAR;

  get_constraint_for (op, &rhsc);
  for (j = 0; VEC_iterate (ce_s, rhsc, j, c); j++)
    process_constraint (new_constraint (includes, *c));
  VEC_free (ce_s, heap, rhsc);
}

/* Make constraints necessary to make OP escape.  */

static void
make_escape_constraint (tree op)
{
  make_constraint_to (escaped_id, op);
}

/* For non-IPA mode, generate constraints necessary for a call on the
   RHS.  */

static void
handle_rhs_call (gimple stmt, VEC(ce_s, heap) **results)
{
  struct constraint_expr rhsc;
  unsigned i;

  for (i = 0; i < gimple_call_num_args (stmt); ++i)
    {
      tree arg = gimple_call_arg (stmt, i);

      /* Find those pointers being passed, and make sure they end up
	 pointing to anything.  */
      if (could_have_pointers (arg))
	make_escape_constraint (arg);
    }

  /* The static chain escapes as well.  */
  if (gimple_call_chain (stmt))
    make_escape_constraint (gimple_call_chain (stmt));

  /* Regular functions return nonlocal memory.  */
  rhsc.var = nonlocal_id;
  rhsc.offset = 0;
  rhsc.type = SCALAR;
  VEC_safe_push (ce_s, heap, *results, &rhsc);
}

/* For non-IPA mode, generate constraints necessary for a call
   that returns a pointer and assigns it to LHS.  This simply makes
   the LHS point to global and escaped variables.  */

static void
handle_lhs_call (tree lhs, int flags, VEC(ce_s, heap) *rhsc)
{
  VEC(ce_s, heap) *lhsc = NULL;
  unsigned int j;
  struct constraint_expr *lhsp;

  get_constraint_for (lhs, &lhsc);

  if (flags & ECF_MALLOC)
    {
      struct constraint_expr rhsc;
      tree heapvar = heapvar_lookup (lhs);
      varinfo_t vi;

      if (heapvar == NULL)
	{
	  heapvar = create_tmp_var_raw (ptr_type_node, "HEAP");
	  DECL_EXTERNAL (heapvar) = 1;
	  get_var_ann (heapvar)->is_heapvar = 1;
	  if (gimple_referenced_vars (cfun))
	    add_referenced_var (heapvar);
	  heapvar_insert (lhs, heapvar);
	}

      rhsc.var = create_variable_info_for (heapvar,
					   alias_get_name (heapvar));
      vi = get_varinfo (rhsc.var);
      vi->is_artificial_var = 1;
      vi->is_heap_var = 1;
      vi->is_unknown_size_var = true;
      vi->fullsize = ~0;
      vi->size = ~0;
      rhsc.type = ADDRESSOF;
      rhsc.offset = 0;
      for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
	process_constraint (new_constraint (*lhsp, rhsc));
    }
  else if (VEC_length (ce_s, rhsc) > 0)
    {
      struct constraint_expr *lhsp, *rhsp;
      unsigned int i, j;
      /* If the store is to a global decl make sure to
	 add proper escape constraints.  */
      lhs = get_base_address (lhs);
      if (lhs
	  && DECL_P (lhs)
	  && is_global_var (lhs))
	{
	  struct constraint_expr tmpc;
	  tmpc.var = escaped_id;
	  tmpc.offset = 0;
	  tmpc.type = SCALAR;
	  VEC_safe_push (ce_s, heap, lhsc, &tmpc);
	}
      for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
	for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); ++j)
	  process_constraint (new_constraint (*lhsp, *rhsp));
    }
  VEC_free (ce_s, heap, lhsc);
}

/* For non-IPA mode, generate constraints necessary for a call of a
   const function that returns a pointer in the statement STMT.  */

static void
handle_const_call (gimple stmt, VEC(ce_s, heap) **results)
{
  struct constraint_expr rhsc, tmpc;
  tree tmpvar = NULL_TREE;
  unsigned int k;

  /* Treat nested const functions the same as pure functions as far
     as the static chain is concerned.  */
  if (gimple_call_chain (stmt))
    {
      make_constraint_to (callused_id, gimple_call_chain (stmt));
      rhsc.var = callused_id;
      rhsc.offset = 0;
      rhsc.type = SCALAR;
      VEC_safe_push (ce_s, heap, *results, &rhsc);
    }

  /* May return arguments.  */
  for (k = 0; k < gimple_call_num_args (stmt); ++k)
    {
      tree arg = gimple_call_arg (stmt, k);

      if (could_have_pointers (arg))
	{
	  VEC(ce_s, heap) *argc = NULL;
	  struct constraint_expr *argp;
	  int i;

	  /* We always use a temporary here, otherwise we end up with
	     a quadratic amount of constraints for
	       large_struct = const_call (large_struct);
	     with field-sensitive PTA.  */
	  if (tmpvar == NULL_TREE)
	    {
	      tmpvar = create_tmp_var_raw (ptr_type_node, "consttmp");
	      tmpc = get_constraint_exp_for_temp (tmpvar);
	    }

	  get_constraint_for (arg, &argc);
	  for (i = 0; VEC_iterate (ce_s, argc, i, argp); i++)
	    process_constraint (new_constraint (tmpc, *argp));
	  VEC_free (ce_s, heap, argc);
	}
    }
  if (tmpvar != NULL_TREE)
    VEC_safe_push (ce_s, heap, *results, &tmpc);

  /* May return addresses of globals.  */
  rhsc.var = nonlocal_id;
  rhsc.offset = 0;
  rhsc.type = ADDRESSOF;
  VEC_safe_push (ce_s, heap, *results, &rhsc);
}

/* For non-IPA mode, generate constraints necessary for a call to a
   pure function in statement STMT.  */

static void
handle_pure_call (gimple stmt, VEC(ce_s, heap) **results)
{
  struct constraint_expr rhsc;
  unsigned i;
  bool need_callused = false;

  /* Memory reached from pointer arguments is call-used.  */
  for (i = 0; i < gimple_call_num_args (stmt); ++i)
    {
      tree arg = gimple_call_arg (stmt, i);

      if (could_have_pointers (arg))
	{
	  make_constraint_to (callused_id, arg);
	  need_callused = true;
	}
    }

  /* The static chain is used as well.  */
  if (gimple_call_chain (stmt))
    {
      make_constraint_to (callused_id, gimple_call_chain (stmt));
      need_callused = true;
    }

  /* Pure functions may return callused and nonlocal memory.  */
  if (need_callused)
    {
      rhsc.var = callused_id;
      rhsc.offset = 0;
      rhsc.type = SCALAR;
      VEC_safe_push (ce_s, heap, *results, &rhsc);
    }
  rhsc.var = nonlocal_id;
  rhsc.offset = 0;
  rhsc.type = SCALAR;
  VEC_safe_push (ce_s, heap, *results, &rhsc);
}

/* Walk statement T setting up aliasing constraints according to the
   references found in T.  This function is the main part of the
   constraint builder.  AI points to auxiliary alias information used
   when building alias sets and computing alias grouping heuristics.  */

static void
find_func_aliases (gimple origt)
{
  gimple t = origt;
  VEC(ce_s, heap) *lhsc = NULL;
  VEC(ce_s, heap) *rhsc = NULL;
  struct constraint_expr *c;
  enum escape_type stmt_escape_type;

  /* Now build constraints expressions.  */
  if (gimple_code (t) == GIMPLE_PHI)
    {
      gcc_assert (!AGGREGATE_TYPE_P (TREE_TYPE (gimple_phi_result (t))));

      /* Only care about pointers and structures containing
	 pointers.  */
      if (could_have_pointers (gimple_phi_result (t)))
	{
	  size_t i;
	  unsigned int j;

	  /* For a phi node, assign all the arguments to
	     the result.  */
	  get_constraint_for (gimple_phi_result (t), &lhsc);
	  for (i = 0; i < gimple_phi_num_args (t); i++)
	    {
	      tree rhstype;
	      tree strippedrhs = PHI_ARG_DEF (t, i);

	      STRIP_NOPS (strippedrhs);
	      rhstype = TREE_TYPE (strippedrhs);
	      get_constraint_for (gimple_phi_arg_def (t, i), &rhsc);

	      for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
		{
		  struct constraint_expr *c2;
		  while (VEC_length (ce_s, rhsc) > 0)
		    {
		      c2 = VEC_last (ce_s, rhsc);
		      process_constraint (new_constraint (*c, *c2));
		      VEC_pop (ce_s, rhsc);
		    }
		}
	    }
	}
    }
  /* In IPA mode, we need to generate constraints to pass call
     arguments through their calls.   There are two cases,
     either a GIMPLE_CALL returning a value, or just a plain
     GIMPLE_CALL when we are not.

     In non-ipa mode, we need to generate constraints for each
     pointer passed by address.  */
  else if (is_gimple_call (t))
    {
      if (!in_ipa_mode)
	{
	  VEC(ce_s, heap) *rhsc = NULL;
	  int flags = gimple_call_flags (t);

	  /* Const functions can return their arguments and addresses
	     of global memory but not of escaped memory.  */
	  if (flags & (ECF_CONST|ECF_NOVOPS))
	    {
	      if (gimple_call_lhs (t)
		  && could_have_pointers (gimple_call_lhs (t)))
		handle_const_call (t, &rhsc);
	    }
	  /* Pure functions can return addresses in and of memory
	     reachable from their arguments, but they are not an escape
	     point for reachable memory of their arguments.  */
	  else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
	    handle_pure_call (t, &rhsc);
	  else
	    handle_rhs_call (t, &rhsc);
	  if (gimple_call_lhs (t)
	      && could_have_pointers (gimple_call_lhs (t)))
	    handle_lhs_call (gimple_call_lhs (t), flags, rhsc);
	  VEC_free (ce_s, heap, rhsc);
	}
      else
	{
	  tree lhsop;
	  varinfo_t fi;
	  int i = 1;
	  size_t j;
	  tree decl;

	  lhsop = gimple_call_lhs (t);
	  decl = gimple_call_fndecl (t);

	  /* If we can directly resolve the function being called, do so.
	     Otherwise, it must be some sort of indirect expression that
	     we should still be able to handle.  */
	  if (decl)
	    fi = get_vi_for_tree (decl);
	  else
	    {
	      decl = gimple_call_fn (t);
	      fi = get_vi_for_tree (decl);
	    }

	  /* Assign all the passed arguments to the appropriate incoming
	     parameters of the function.  */
	  for (j = 0; j < gimple_call_num_args (t); j++)
	    {
	      struct constraint_expr lhs ;
	      struct constraint_expr *rhsp;
	      tree arg = gimple_call_arg (t, j);

	      get_constraint_for (arg, &rhsc);
	      if (TREE_CODE (decl) != FUNCTION_DECL)
		{
		  lhs.type = DEREF;
		  lhs.var = fi->id;
		  lhs.offset = i;
		}
	      else
		{
		  lhs.type = SCALAR;
		  lhs.var = first_vi_for_offset (fi, i)->id;
		  lhs.offset = 0;
		}
	      while (VEC_length (ce_s, rhsc) != 0)
		{
		  rhsp = VEC_last (ce_s, rhsc);
		  process_constraint (new_constraint (lhs, *rhsp));
		  VEC_pop (ce_s, rhsc);
		}
	      i++;
	    }

	  /* If we are returning a value, assign it to the result.  */
	  if (lhsop)
	    {
	      struct constraint_expr rhs;
	      struct constraint_expr *lhsp;
	      unsigned int j = 0;

	      get_constraint_for (lhsop, &lhsc);
	      if (TREE_CODE (decl) != FUNCTION_DECL)
		{
		  rhs.type = DEREF;
		  rhs.var = fi->id;
		  rhs.offset = i;
		}
	      else
		{
		  rhs.type = SCALAR;
		  rhs.var = first_vi_for_offset (fi, i)->id;
		  rhs.offset = 0;
		}
	      for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
		process_constraint (new_constraint (*lhsp, rhs));
	    }
	}
    }
  /* Otherwise, just a regular assignment statement.  Only care about
     operations with pointer result, others are dealt with as escape
     points if they have pointer operands.  */
  else if (is_gimple_assign (t)
	   && could_have_pointers (gimple_assign_lhs (t)))
    {
      /* Otherwise, just a regular assignment statement.  */
      tree lhsop = gimple_assign_lhs (t);
      tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;

      if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
	do_structure_copy (lhsop, rhsop);
      else
	{
	  unsigned int j;
	  struct constraint_expr temp;
	  get_constraint_for (lhsop, &lhsc);

	  if (gimple_assign_rhs_code (t) == POINTER_PLUS_EXPR)
	    get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
					   gimple_assign_rhs2 (t), &rhsc);
	  else if ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
		    && !(POINTER_TYPE_P (gimple_expr_type (t))
			 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
		   || gimple_assign_single_p (t))
	    get_constraint_for (rhsop, &rhsc);
	  else
	    {
	      temp.type = ADDRESSOF;
	      temp.var = anything_id;
	      temp.offset = 0;
	      VEC_safe_push (ce_s, heap, rhsc, &temp);
	    }
	  for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
	    {
	      struct constraint_expr *c2;
	      unsigned int k;

	      for (k = 0; VEC_iterate (ce_s, rhsc, k, c2); k++)
		process_constraint (new_constraint (*c, *c2));
	    }
	}
    }
  else if (gimple_code (t) == GIMPLE_CHANGE_DYNAMIC_TYPE)
    {
      unsigned int j;

      get_constraint_for (gimple_cdt_location (t), &lhsc);
      for (j = 0; VEC_iterate (ce_s, lhsc, j, c); ++j)
	get_varinfo (c->var)->no_tbaa_pruning = true;
    }

  stmt_escape_type = is_escape_site (t);
  if (stmt_escape_type == ESCAPE_STORED_IN_GLOBAL)
    {
      gcc_assert (is_gimple_assign (t));
      if (gimple_assign_rhs_code (t) == ADDR_EXPR)
	{
	  tree rhs = gimple_assign_rhs1 (t);
	  tree base = get_base_address (TREE_OPERAND (rhs, 0));
	  if (base
	      && (!DECL_P (base)
		  || !is_global_var (base)))
	    make_escape_constraint (rhs);
	}
      else if (get_gimple_rhs_class (gimple_assign_rhs_code (t))
	       == GIMPLE_SINGLE_RHS)
	{
	  if (could_have_pointers (gimple_assign_rhs1 (t)))
	    make_escape_constraint (gimple_assign_rhs1 (t));
	}
      else
	gcc_unreachable ();
    }
  else if (stmt_escape_type == ESCAPE_BAD_CAST)
    {
      gcc_assert (is_gimple_assign (t));
      gcc_assert (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
		  || gimple_assign_rhs_code (t) == VIEW_CONVERT_EXPR);
      make_escape_constraint (gimple_assign_rhs1 (t));
    }
  else if (stmt_escape_type == ESCAPE_TO_ASM)
    {
      unsigned i, noutputs;
      const char **oconstraints;
      const char *constraint;
      bool allows_mem, allows_reg, is_inout;

      noutputs = gimple_asm_noutputs (t);
      oconstraints = XALLOCAVEC (const char *, noutputs);

      for (i = 0; i < noutputs; ++i)
	{
	  tree link = gimple_asm_output_op (t, i);
	  tree op = TREE_VALUE (link);

	  constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
	  oconstraints[i] = constraint;
	  parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
				   &allows_reg, &is_inout);

	  /* A memory constraint makes the address of the operand escape.  */
	  if (!allows_reg && allows_mem)
	    make_escape_constraint (build_fold_addr_expr (op));

	  /* The asm may read global memory, so outputs may point to
	     any global memory.  */
	  if (op && could_have_pointers (op))
	    {
	      VEC(ce_s, heap) *lhsc = NULL;
	      struct constraint_expr rhsc, *lhsp;
	      unsigned j;
	      get_constraint_for (op, &lhsc);
	      rhsc.var = nonlocal_id;
	      rhsc.offset = 0;
	      rhsc.type = SCALAR;
	      for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
		process_constraint (new_constraint (*lhsp, rhsc));
	      VEC_free (ce_s, heap, lhsc);
	    }
	}
      for (i = 0; i < gimple_asm_ninputs (t); ++i)
	{
	  tree link = gimple_asm_input_op (t, i);
	  tree op = TREE_VALUE (link);

	  constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));

	  parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
				  &allows_mem, &allows_reg);

	  /* A memory constraint makes the address of the operand escape.  */
	  if (!allows_reg && allows_mem)
	    make_escape_constraint (build_fold_addr_expr (op));
	  /* Strictly we'd only need the constraint to ESCAPED if
	     the asm clobbers memory, otherwise using CALLUSED
	     would be enough.  */
	  else if (op && could_have_pointers (op))
	    make_escape_constraint (op);
	}
    }

  VEC_free (ce_s, heap, rhsc);
  VEC_free (ce_s, heap, lhsc);
}


/* Find the first varinfo in the same variable as START that overlaps with
   OFFSET.  Return NULL if we can't find one.  */

static varinfo_t
first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
{
  /* If the offset is outside of the variable, bail out.  */
  if (offset >= start->fullsize)
    return NULL;

  /* If we cannot reach offset from start, lookup the first field
     and start from there.  */
  if (start->offset > offset)
    start = lookup_vi_for_tree (start->decl);

  while (start)
    {
      /* We may not find a variable in the field list with the actual
	 offset when when we have glommed a structure to a variable.
	 In that case, however, offset should still be within the size
	 of the variable. */
      if (offset >= start->offset
	  && offset < (start->offset + start->size))
	return start;

      start= start->next;
    }

  return NULL;
}

/* Find the first varinfo in the same variable as START that overlaps with
   OFFSET.  If there is no such varinfo the varinfo directly preceding
   OFFSET is returned.  */

static varinfo_t
first_or_preceding_vi_for_offset (varinfo_t start,
				  unsigned HOST_WIDE_INT offset)
{
  /* If we cannot reach offset from start, lookup the first field
     and start from there.  */
  if (start->offset > offset)
    start = lookup_vi_for_tree (start->decl);

  /* We may not find a variable in the field list with the actual
     offset when when we have glommed a structure to a variable.
     In that case, however, offset should still be within the size
     of the variable.
     If we got beyond the offset we look for return the field
     directly preceding offset which may be the last field.  */
  while (start->next
	 && offset >= start->offset
	 && !(offset < (start->offset + start->size)))
    start = start->next;

  return start;
}


/* Insert the varinfo FIELD into the field list for BASE, at the front
   of the list.  */

static void
insert_into_field_list (varinfo_t base, varinfo_t field)
{
  varinfo_t prev = base;
  varinfo_t curr = base->next;

  field->next = curr;
  prev->next = field;
}

/* Insert the varinfo FIELD into the field list for BASE, ordered by
   offset.  */

static void
insert_into_field_list_sorted (varinfo_t base, varinfo_t field)
{
  varinfo_t prev = base;
  varinfo_t curr = base->next;

  if (curr == NULL)
    {
      prev->next = field;
      field->next = NULL;
    }
  else
    {
      while (curr)
	{
	  if (field->offset <= curr->offset)
	    break;
	  prev = curr;
	  curr = curr->next;
	}
      field->next = prev->next;
      prev->next = field;
    }
}

/* This structure is used during pushing fields onto the fieldstack
   to track the offset of the field, since bitpos_of_field gives it
   relative to its immediate containing type, and we want it relative
   to the ultimate containing object.  */

struct fieldoff
{
  /* Offset from the base of the base containing object to this field.  */
  HOST_WIDE_INT offset;

  /* Size, in bits, of the field.  */
  unsigned HOST_WIDE_INT size;

  unsigned has_unknown_size : 1;

  unsigned may_have_pointers : 1;
};
typedef struct fieldoff fieldoff_s;

DEF_VEC_O(fieldoff_s);
DEF_VEC_ALLOC_O(fieldoff_s,heap);

/* qsort comparison function for two fieldoff's PA and PB */

static int
fieldoff_compare (const void *pa, const void *pb)
{
  const fieldoff_s *foa = (const fieldoff_s *)pa;
  const fieldoff_s *fob = (const fieldoff_s *)pb;
  unsigned HOST_WIDE_INT foasize, fobsize;

  if (foa->offset < fob->offset)
    return -1;
  else if (foa->offset > fob->offset)
    return 1;

  foasize = foa->size;
  fobsize = fob->size;
  if (foasize < fobsize)
    return -1;
  else if (foasize > fobsize)
    return 1;
  return 0;
}

/* Sort a fieldstack according to the field offset and sizes.  */
static void
sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
{
  qsort (VEC_address (fieldoff_s, fieldstack),
	 VEC_length (fieldoff_s, fieldstack),
	 sizeof (fieldoff_s),
	 fieldoff_compare);
}

/* Return true if V is a tree that we can have subvars for.
   Normally, this is any aggregate type.  Also complex
   types which are not gimple registers can have subvars.  */

static inline bool
var_can_have_subvars (const_tree v)
{
  /* Volatile variables should never have subvars.  */
  if (TREE_THIS_VOLATILE (v))
    return false;

  /* Non decls or memory tags can never have subvars.  */
  if (!DECL_P (v))
    return false;

  /* Aggregates without overlapping fields can have subvars.  */
  if (TREE_CODE (TREE_TYPE (v)) == RECORD_TYPE)
    return true;

  return false;
}

/* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
   the fields of TYPE onto fieldstack, recording their offsets along
   the way.

   OFFSET is used to keep track of the offset in this entire
   structure, rather than just the immediately containing structure.
   Returns the number of fields pushed.  */

static int
push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
			     HOST_WIDE_INT offset)
{
  tree field;
  int count = 0;

  if (TREE_CODE (type) != RECORD_TYPE)
    return 0;

  /* If the vector of fields is growing too big, bail out early.
     Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
     sure this fails.  */
  if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
    return 0;

  for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
    if (TREE_CODE (field) == FIELD_DECL)
      {
	bool push = false;
	int pushed = 0;
	HOST_WIDE_INT foff = bitpos_of_field (field);

	if (!var_can_have_subvars (field)
	    || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
	    || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
	  push = true;
	else if (!(pushed = push_fields_onto_fieldstack
		   (TREE_TYPE (field), fieldstack, offset + foff))
		 && (DECL_SIZE (field)
		     && !integer_zerop (DECL_SIZE (field))))
	  /* Empty structures may have actual size, like in C++.  So
	     see if we didn't push any subfields and the size is
	     nonzero, push the field onto the stack.  */
	  push = true;

	if (push)
	  {
	    fieldoff_s *pair = NULL;
	    bool has_unknown_size = false;

	    if (!VEC_empty (fieldoff_s, *fieldstack))
	      pair = VEC_last (fieldoff_s, *fieldstack);

	    if (!DECL_SIZE (field)
		|| !host_integerp (DECL_SIZE (field), 1))
	      has_unknown_size = true;

	    /* If adjacent fields do not contain pointers merge them.  */
	    if (pair
		&& !pair->may_have_pointers
		&& !could_have_pointers (field)
		&& !pair->has_unknown_size
		&& !has_unknown_size
		&& pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
	      {
		pair = VEC_last (fieldoff_s, *fieldstack);
		pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
	      }
	    else
	      {
		pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
		pair->offset = offset + foff;
		pair->has_unknown_size = has_unknown_size;
		if (!has_unknown_size)
		  pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
		else
		  pair->size = -1;
		pair->may_have_pointers = could_have_pointers (field);
		count++;
	      }
	  }
	else
	  count += pushed;
      }

  return count;
}

/* Create a constraint ID = &FROM.  */

static void
make_constraint_from (varinfo_t vi, int from)
{
  struct constraint_expr lhs, rhs;

  lhs.var = vi->id;
  lhs.offset = 0;
  lhs.type = SCALAR;

  rhs.var = from;
  rhs.offset = 0;
  rhs.type = ADDRESSOF;
  process_constraint (new_constraint (lhs, rhs));
}

/* Create a constraint ID = FROM.  */

static void
make_copy_constraint (varinfo_t vi, int from)
{
  struct constraint_expr lhs, rhs;

  lhs.var = vi->id;
  lhs.offset = 0;
  lhs.type = SCALAR;

  rhs.var = from;
  rhs.offset = 0;
  rhs.type = SCALAR;
  process_constraint (new_constraint (lhs, rhs));
}

/* Count the number of arguments DECL has, and set IS_VARARGS to true
   if it is a varargs function.  */

static unsigned int
count_num_arguments (tree decl, bool *is_varargs)
{
  unsigned int i = 0;
  tree t;

  for (t = TYPE_ARG_TYPES (TREE_TYPE (decl));
       t;
       t = TREE_CHAIN (t))
    {
      if (TREE_VALUE (t) == void_type_node)
	break;
      i++;
    }

  if (!t)
    *is_varargs = true;
  return i;
}

/* Creation function node for DECL, using NAME, and return the index
   of the variable we've created for the function.  */

static unsigned int
create_function_info_for (tree decl, const char *name)
{
  unsigned int index = VEC_length (varinfo_t, varmap);
  varinfo_t vi;
  tree arg;
  unsigned int i;
  bool is_varargs = false;

  /* Create the variable info.  */

  vi = new_var_info (decl, index, name);
  vi->decl = decl;
  vi->offset = 0;
  vi->size = 1;
  vi->fullsize = count_num_arguments (decl, &is_varargs) + 1;
  insert_vi_for_tree (vi->decl, vi);
  VEC_safe_push (varinfo_t, heap, varmap, vi);

  stats.total_vars++;

  /* If it's varargs, we don't know how many arguments it has, so we
     can't do much.  */
  if (is_varargs)
    {
      vi->fullsize = ~0;
      vi->size = ~0;
      vi->is_unknown_size_var = true;
      return index;
    }


  arg = DECL_ARGUMENTS (decl);

  /* Set up variables for each argument.  */
  for (i = 1; i < vi->fullsize; i++)
    {
      varinfo_t argvi;
      const char *newname;
      char *tempname;
      unsigned int newindex;
      tree argdecl = decl;

      if (arg)
	argdecl = arg;

      newindex = VEC_length (varinfo_t, varmap);
      asprintf (&tempname, "%s.arg%d", name, i-1);
      newname = ggc_strdup (tempname);
      free (tempname);

      argvi = new_var_info (argdecl, newindex, newname);
      argvi->decl = argdecl;
      VEC_safe_push (varinfo_t, heap, varmap, argvi);
      argvi->offset = i;
      argvi->size = 1;
      argvi->is_full_var = true;
      argvi->fullsize = vi->fullsize;
      insert_into_field_list_sorted (vi, argvi);
      stats.total_vars ++;
      if (arg)
	{
	  insert_vi_for_tree (arg, argvi);
	  arg = TREE_CHAIN (arg);
	}
    }

  /* Create a variable for the return var.  */
  if (DECL_RESULT (decl) != NULL
      || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
    {
      varinfo_t resultvi;
      const char *newname;
      char *tempname;
      unsigned int newindex;
      tree resultdecl = decl;

      vi->fullsize ++;

      if (DECL_RESULT (decl))
	resultdecl = DECL_RESULT (decl);

      newindex = VEC_length (varinfo_t, varmap);
      asprintf (&tempname, "%s.result", name);
      newname = ggc_strdup (tempname);
      free (tempname);

      resultvi = new_var_info (resultdecl, newindex, newname);
      resultvi->decl = resultdecl;
      VEC_safe_push (varinfo_t, heap, varmap, resultvi);
      resultvi->offset = i;
      resultvi->size = 1;
      resultvi->fullsize = vi->fullsize;
      resultvi->is_full_var = true;
      insert_into_field_list_sorted (vi, resultvi);
      stats.total_vars ++;
      if (DECL_RESULT (decl))
	insert_vi_for_tree (DECL_RESULT (decl), resultvi);
    }
  return index;
}


/* Return true if FIELDSTACK contains fields that overlap.
   FIELDSTACK is assumed to be sorted by offset.  */

static bool
check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
{
  fieldoff_s *fo = NULL;
  unsigned int i;
  HOST_WIDE_INT lastoffset = -1;

  for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
    {
      if (fo->offset == lastoffset)
	return true;
      lastoffset = fo->offset;
    }
  return false;
}

/* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
   This will also create any varinfo structures necessary for fields
   of DECL.  */

static unsigned int
create_variable_info_for (tree decl, const char *name)
{
  unsigned int index = VEC_length (varinfo_t, varmap);
  varinfo_t vi;
  tree decl_type = TREE_TYPE (decl);
  tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
  bool is_global = DECL_P (decl) ? is_global_var (decl) : false;
  VEC (fieldoff_s,heap) *fieldstack = NULL;

  if (TREE_CODE (decl) == FUNCTION_DECL && in_ipa_mode)
    return create_function_info_for (decl, name);

  if (var_can_have_subvars (decl) && use_field_sensitive
      && (!var_ann (decl)
	  || var_ann (decl)->noalias_state == 0)
      && (!var_ann (decl)
	  || !var_ann (decl)->is_heapvar))
    push_fields_onto_fieldstack (decl_type, &fieldstack, 0);

  /* If the variable doesn't have subvars, we may end up needing to
     sort the field list and create fake variables for all the
     fields.  */
  vi = new_var_info (decl, index, name);
  vi->decl = decl;
  vi->offset = 0;
  vi->may_have_pointers = could_have_pointers (decl);
  if (!declsize
      || !host_integerp (declsize, 1))
    {
      vi->is_unknown_size_var = true;
      vi->fullsize = ~0;
      vi->size = ~0;
    }
  else
    {
      vi->fullsize = TREE_INT_CST_LOW (declsize);
      vi->size = vi->fullsize;
    }

  insert_vi_for_tree (vi->decl, vi);
  VEC_safe_push (varinfo_t, heap, varmap, vi);
  if (is_global && (!flag_whole_program || !in_ipa_mode)
      && vi->may_have_pointers)
    {
      if (var_ann (decl)
	  && var_ann (decl)->noalias_state == NO_ALIAS_ANYTHING)
	make_constraint_from (vi, vi->id);
      else
	make_copy_constraint (vi, nonlocal_id);
    }

  stats.total_vars++;
  if (use_field_sensitive
      && !vi->is_unknown_size_var
      && var_can_have_subvars (decl)
      && VEC_length (fieldoff_s, fieldstack) > 1
      && VEC_length (fieldoff_s, fieldstack) <= MAX_FIELDS_FOR_FIELD_SENSITIVE)
    {
      unsigned int newindex = VEC_length (varinfo_t, varmap);
      fieldoff_s *fo = NULL;
      bool notokay = false;
      unsigned int i;

      for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
	{
	  if (fo->has_unknown_size
	      || fo->offset < 0)
	    {
	      notokay = true;
	      break;
	    }
	}

      /* We can't sort them if we have a field with a variable sized type,
	 which will make notokay = true.  In that case, we are going to return
	 without creating varinfos for the fields anyway, so sorting them is a
	 waste to boot.  */
      if (!notokay)
	{
	  sort_fieldstack (fieldstack);
	  /* Due to some C++ FE issues, like PR 22488, we might end up
	     what appear to be overlapping fields even though they,
	     in reality, do not overlap.  Until the C++ FE is fixed,
	     we will simply disable field-sensitivity for these cases.  */
	  notokay = check_for_overlaps (fieldstack);
	}


      if (VEC_length (fieldoff_s, fieldstack) != 0)
	fo = VEC_index (fieldoff_s, fieldstack, 0);

      if (fo == NULL || notokay)
	{
	  vi->is_unknown_size_var = 1;
	  vi->fullsize = ~0;
	  vi->size = ~0;
	  vi->is_full_var = true;
	  VEC_free (fieldoff_s, heap, fieldstack);
	  return index;
	}

      vi->size = fo->size;
      vi->offset = fo->offset;
      vi->may_have_pointers = fo->may_have_pointers;
      for (i = VEC_length (fieldoff_s, fieldstack) - 1;
	   i >= 1 && VEC_iterate (fieldoff_s, fieldstack, i, fo);
	   i--)
	{
	  varinfo_t newvi;
	  const char *newname = "NULL";
	  char *tempname;

	  newindex = VEC_length (varinfo_t, varmap);
	  if (dump_file)
	    {
	      asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
			"+" HOST_WIDE_INT_PRINT_DEC,
			vi->name, fo->offset, fo->size);
	      newname = ggc_strdup (tempname);
	      free (tempname);
	    }
	  newvi = new_var_info (decl, newindex, newname);
	  newvi->offset = fo->offset;
	  newvi->size = fo->size;
	  newvi->fullsize = vi->fullsize;
	  newvi->may_have_pointers = fo->may_have_pointers;
	  insert_into_field_list (vi, newvi);
	  VEC_safe_push (varinfo_t, heap, varmap, newvi);
	  if (is_global && (!flag_whole_program || !in_ipa_mode)
	      && newvi->may_have_pointers)
	    make_copy_constraint (newvi, nonlocal_id);

	  stats.total_vars++;
	}
    }
  else
    vi->is_full_var = true;

  VEC_free (fieldoff_s, heap, fieldstack);

  return index;
}

/* Print out the points-to solution for VAR to FILE.  */

static void
dump_solution_for_var (FILE *file, unsigned int var)
{
  varinfo_t vi = get_varinfo (var);
  unsigned int i;
  bitmap_iterator bi;

  if (find (var) != var)
    {
      varinfo_t vipt = get_varinfo (find (var));
      fprintf (file, "%s = same as %s\n", vi->name, vipt->name);
    }
  else
    {
      fprintf (file, "%s = { ", vi->name);
      EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
	{
	  fprintf (file, "%s ", get_varinfo (i)->name);
	}
      fprintf (file, "}");
      if (vi->no_tbaa_pruning)
	fprintf (file, " no-tbaa-pruning");
      fprintf (file, "\n");
    }
}

/* Print the points-to solution for VAR to stdout.  */

void
debug_solution_for_var (unsigned int var)
{
  dump_solution_for_var (stdout, var);
}

/* Create varinfo structures for all of the variables in the
   function for intraprocedural mode.  */

static void
intra_create_variable_infos (void)
{
  tree t;
  struct constraint_expr lhs, rhs;

  /* For each incoming pointer argument arg, create the constraint ARG
     = NONLOCAL or a dummy variable if flag_argument_noalias is set.  */
  for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
    {
      varinfo_t p;

      if (!could_have_pointers (t))
	continue;

      /* If flag_argument_noalias is set, then function pointer
	 arguments are guaranteed not to point to each other.  In that
	 case, create an artificial variable PARM_NOALIAS and the
	 constraint ARG = &PARM_NOALIAS.  */
      if (POINTER_TYPE_P (TREE_TYPE (t)) && flag_argument_noalias > 0)
	{
	  varinfo_t vi;
	  tree heapvar = heapvar_lookup (t);

	  lhs.offset = 0;
	  lhs.type = SCALAR;
	  lhs.var  = get_vi_for_tree (t)->id;

	  if (heapvar == NULL_TREE)
	    {
	      var_ann_t ann;
	      heapvar = create_tmp_var_raw (ptr_type_node,
					    "PARM_NOALIAS");
	      DECL_EXTERNAL (heapvar) = 1;
	      if (gimple_referenced_vars (cfun))
		add_referenced_var (heapvar);

	      heapvar_insert (t, heapvar);

	      ann = get_var_ann (heapvar);
	      ann->is_heapvar = 1;
	      if (flag_argument_noalias == 1)
		ann->noalias_state = NO_ALIAS;
	      else if (flag_argument_noalias == 2)
		ann->noalias_state = NO_ALIAS_GLOBAL;
	      else if (flag_argument_noalias == 3)
		ann->noalias_state = NO_ALIAS_ANYTHING;
	      else
		gcc_unreachable ();
	    }

	  vi = get_vi_for_tree (heapvar);
	  vi->is_artificial_var = 1;
	  vi->is_heap_var = 1;
	  vi->is_unknown_size_var = true;
	  vi->fullsize = ~0;
	  vi->size = ~0;
	  rhs.var = vi->id;
	  rhs.type = ADDRESSOF;
	  rhs.offset = 0;
	  for (p = get_varinfo (lhs.var); p; p = p->next)
	    {
	      struct constraint_expr temp = lhs;
	      temp.var = p->id;
	      process_constraint (new_constraint (temp, rhs));
	    }
	}
      else
	{
	  varinfo_t arg_vi = get_vi_for_tree (t);

	  for (p = arg_vi; p; p = p->next)
	    make_constraint_from (p, nonlocal_id);
	}
    }

  /* Add a constraint for a result decl that is passed by reference.  */
  if (DECL_RESULT (cfun->decl)
      && DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
    {
      varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));

      for (p = result_vi; p; p = p->next)
	make_constraint_from (p, nonlocal_id);
    }

  /* Add a constraint for the incoming static chain parameter.  */
  if (cfun->static_chain_decl != NULL_TREE)
    {
      varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);

      for (p = chain_vi; p; p = p->next)
	make_constraint_from (p, nonlocal_id);
    }
}

/* Structure used to put solution bitmaps in a hashtable so they can
   be shared among variables with the same points-to set.  */

typedef struct shared_bitmap_info
{
  bitmap pt_vars;
  hashval_t hashcode;
} *shared_bitmap_info_t;
typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;

static htab_t shared_bitmap_table;

/* Hash function for a shared_bitmap_info_t */

static hashval_t
shared_bitmap_hash (const void *p)
{
  const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
  return bi->hashcode;
}

/* Equality function for two shared_bitmap_info_t's. */

static int
shared_bitmap_eq (const void *p1, const void *p2)
{
  const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
  const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
  return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
}

/* Lookup a bitmap in the shared bitmap hashtable, and return an already
   existing instance if there is one, NULL otherwise.  */

static bitmap
shared_bitmap_lookup (bitmap pt_vars)
{
  void **slot;
  struct shared_bitmap_info sbi;

  sbi.pt_vars = pt_vars;
  sbi.hashcode = bitmap_hash (pt_vars);

  slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
				   sbi.hashcode, NO_INSERT);
  if (!slot)
    return NULL;
  else
    return ((shared_bitmap_info_t) *slot)->pt_vars;
}


/* Add a bitmap to the shared bitmap hashtable.  */

static void
shared_bitmap_add (bitmap pt_vars)
{
  void **slot;
  shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);

  sbi->pt_vars = pt_vars;
  sbi->hashcode = bitmap_hash (pt_vars);

  slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
				   sbi->hashcode, INSERT);
  gcc_assert (!*slot);
  *slot = (void *) sbi;
}


/* Set bits in INTO corresponding to the variable uids in solution set FROM.
   If MEM_ALIAS_SET is not zero, we also use type based alias analysis to
   prune the points-to sets with this alias-set.
   Returns the number of pruned variables and updates the vars_contains_global
   member of *PT .  */

static unsigned
set_uids_in_ptset (bitmap into, bitmap from,
		   alias_set_type mem_alias_set, struct pt_solution *pt)
{
  unsigned int i;
  bitmap_iterator bi;
  unsigned pruned = 0;

  EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
    {
      varinfo_t vi = get_varinfo (i);

      /* The only artificial variables that are allowed in a may-alias
	 set are heap variables.  */
      if (vi->is_artificial_var && !vi->is_heap_var)
	continue;

      if (TREE_CODE (vi->decl) == VAR_DECL
	  || TREE_CODE (vi->decl) == PARM_DECL
	  || TREE_CODE (vi->decl) == RESULT_DECL)
	{
	  /* Don't type prune artificial vars or points-to sets
	     for pointers that have not been dereferenced or with
	     type-based pruning disabled.  */
	  if (!vi->is_artificial_var
	      && !vi->no_tbaa_pruning
	      && mem_alias_set != 0)
	    {
	      alias_set_type var_alias_set = get_alias_set (vi->decl);
	      if (mem_alias_set != var_alias_set
		  && !alias_set_subset_of (mem_alias_set, var_alias_set))
		{
		  ++pruned;
		  continue;
		}
	    }

	  /* Add the decl to the points-to set.  Note that the points-to
	     set contains global variables.  */
	  bitmap_set_bit (into, DECL_UID (vi->decl));
	  if (is_global_var (vi->decl))
	    pt->vars_contains_global = true;
	}
    }

  return pruned;
}


static bool have_alias_info = false;

/* Emit a note for the pointer initialization point DEF.  */

static void
emit_pointer_definition (tree ptr, bitmap visited)
{
  gimple def = SSA_NAME_DEF_STMT (ptr);
  if (gimple_code (def) == GIMPLE_PHI)
    {
      use_operand_p argp;
      ssa_op_iter oi;

      FOR_EACH_PHI_ARG (argp, def, oi, SSA_OP_USE)
	{
	  tree arg = USE_FROM_PTR (argp);
	  if (TREE_CODE (arg) == SSA_NAME)
	    {
	      if (bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
		emit_pointer_definition (arg, visited);
	    }
	  else
	    inform (0, "initialized from %qE", arg);
	}
    }
  else if (!gimple_nop_p (def))
    inform (gimple_location (def), "initialized from here");
}

/* Emit a strict aliasing warning for dereferencing the pointer PTR.  */

static void
emit_alias_warning (tree ptr)
{
  gimple use;
  imm_use_iterator ui;
  bool warned = false;

  FOR_EACH_IMM_USE_STMT (use, ui, ptr)
    {
      tree deref = NULL_TREE;

      if (gimple_has_lhs (use))
	{
	  tree lhs = get_base_address (gimple_get_lhs (use));
	  if (lhs
	      && INDIRECT_REF_P (lhs)
	      && TREE_OPERAND (lhs, 0) == ptr)
	    deref = lhs;
	}
      if (gimple_assign_single_p (use))
	{
	  tree rhs = get_base_address (gimple_assign_rhs1 (use));
	  if (rhs
	      && INDIRECT_REF_P (rhs)
	      && TREE_OPERAND (rhs, 0) == ptr)
	    deref = rhs;
	}
      else if (is_gimple_call (use))
	{
	  unsigned i;
	  for (i = 0; i < gimple_call_num_args (use); ++i)
	    {
	      tree op = get_base_address (gimple_call_arg (use, i));
	      if (op
		  && INDIRECT_REF_P (op)
		  && TREE_OPERAND (op, 0) == ptr)
		deref = op;
	    }
	}
      if (deref
	  && !TREE_NO_WARNING (deref))
	{
	  TREE_NO_WARNING (deref) = 1;
	  warned |= warning_at (gimple_location (use), OPT_Wstrict_aliasing,
				"dereferencing pointer %qD does break "
				"strict-aliasing rules", SSA_NAME_VAR (ptr));
	}
    }
  if (warned)
    {
      bitmap visited = BITMAP_ALLOC (NULL);
      emit_pointer_definition (ptr, visited);
      BITMAP_FREE (visited);
    }
}

/* Compute the points-to solution *PT for the variable VI.
   Prunes the points-to set based on TBAA rules if DO_TBAA_PRUNING
   is true.  Returns the number of TBAA pruned variables from the
   points-to set.  */

static unsigned int
find_what_var_points_to (varinfo_t vi, struct pt_solution *pt,
			 bool do_tbaa_pruning)
{
  unsigned int i, pruned;
  bitmap_iterator bi;
  bitmap finished_solution;
  bitmap result;
  tree ptr = vi->decl;
  alias_set_type mem_alias_set;

  memset (pt, 0, sizeof (struct pt_solution));

  /* This variable may have been collapsed, let's get the real
     variable.  */
  vi = get_varinfo (find (vi->id));

  /* Translate artificial variables into SSA_NAME_PTR_INFO
     attributes.  */
  EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
    {
      varinfo_t vi = get_varinfo (i);

      if (vi->is_artificial_var)
	{
	  if (vi->id == nothing_id)
	    pt->null = 1;
	  else if (vi->id == escaped_id)
	    pt->escaped = 1;
	  else if (vi->id == callused_id)
	    gcc_unreachable ();
	  else if (vi->id == nonlocal_id)
	    pt->nonlocal = 1;
	  else if (vi->is_heap_var)
	    /* We represent heapvars in the points-to set properly.  */
	    ;
	  else if (vi->id == anything_id
		   || vi->id == readonly_id
		   || vi->id == integer_id)
	    pt->anything = 1;
	}
    }

  /* Instead of doing extra work, simply do not create
     elaborate points-to information for pt_anything pointers.  */
  if (pt->anything)
    return 0;

  /* Share the final set of variables when possible.  */
  finished_solution = BITMAP_GGC_ALLOC ();
  stats.points_to_sets_created++;

  if (TREE_CODE (ptr) == SSA_NAME)
    ptr = SSA_NAME_VAR (ptr);

  /* If the pointer decl is marked that no TBAA is to be applied,
     do not do tbaa pruning.  */
  if (!do_tbaa_pruning
      || DECL_NO_TBAA_P (ptr))
    mem_alias_set = 0;
  else
    mem_alias_set = get_deref_alias_set (ptr);
  pruned = set_uids_in_ptset (finished_solution, vi->solution,
			      mem_alias_set, pt);
  result = shared_bitmap_lookup (finished_solution);
  if (!result)
    {
      shared_bitmap_add (finished_solution);
      pt->vars = finished_solution;
    }
  else
    {
      pt->vars = result;
      bitmap_clear (finished_solution);
    }

  return pruned;
}

/* Given a pointer variable P, fill in its points-to set.  Apply
   type-based pruning if IS_DEREFERENCED is true.  */

static void
find_what_p_points_to (tree p, bool is_dereferenced)
{
  struct ptr_info_def *pi;
  unsigned int pruned;
  tree lookup_p = p;
  varinfo_t vi;

  /* For parameters, get at the points-to set for the actual parm
     decl.  */
  if (TREE_CODE (p) == SSA_NAME
      && TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
      && SSA_NAME_IS_DEFAULT_DEF (p))
    lookup_p = SSA_NAME_VAR (p);

  vi = lookup_vi_for_tree (lookup_p);
  if (!vi)
    return;

  pi = get_ptr_info (p);
  pruned = find_what_var_points_to (vi, &pi->pt, is_dereferenced);

  if (!(pi->pt.anything || pi->pt.nonlocal || pi->pt.escaped)
      && bitmap_empty_p (pi->pt.vars)
      && pruned > 0
      && is_dereferenced
      && warn_strict_aliasing > 0
      && !SSA_NAME_IS_DEFAULT_DEF (p))
    {
      if (dump_file && dump_flags & TDF_DETAILS)
	{
	  fprintf (dump_file, "alias warning for ");
	  print_generic_expr (dump_file, p, 0);
	  fprintf (dump_file, "\n");
	}
      emit_alias_warning (p);
    }
}


/* Query statistics for points-to solutions.  */

static struct {
  unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
  unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
  unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
  unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
} pta_stats;

void
dump_pta_stats (FILE *s)
{
  fprintf (s, "\nPTA query stats:\n");
  fprintf (s, "  pt_solution_includes: "
	   HOST_WIDE_INT_PRINT_DEC" disambiguations, "
	   HOST_WIDE_INT_PRINT_DEC" queries\n",
	   pta_stats.pt_solution_includes_no_alias,
	   pta_stats.pt_solution_includes_no_alias
	   + pta_stats.pt_solution_includes_may_alias);
  fprintf (s, "  pt_solutions_intersect: "
	   HOST_WIDE_INT_PRINT_DEC" disambiguations, "
	   HOST_WIDE_INT_PRINT_DEC" queries\n",
	   pta_stats.pt_solutions_intersect_no_alias,
	   pta_stats.pt_solutions_intersect_no_alias
	   + pta_stats.pt_solutions_intersect_may_alias);