aboutsummaryrefslogtreecommitdiff
path: root/gcc/sched-rgn.c
blob: 88545b29b0945e2c8fe676b48d916522a5b36bfb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
/* Instruction scheduling pass.
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002 Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
   and currently maintained by, Jim Wilson (wilson@cygnus.com)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

/* This pass implements list scheduling within basic blocks.  It is
   run twice: (1) after flow analysis, but before register allocation,
   and (2) after register allocation.

   The first run performs interblock scheduling, moving insns between
   different blocks in the same "region", and the second runs only
   basic block scheduling.

   Interblock motions performed are useful motions and speculative
   motions, including speculative loads.  Motions requiring code
   duplication are not supported.  The identification of motion type
   and the check for validity of speculative motions requires
   construction and analysis of the function's control flow graph.

   The main entry point for this pass is schedule_insns(), called for
   each function.  The work of the scheduler is organized in three
   levels: (1) function level: insns are subject to splitting,
   control-flow-graph is constructed, regions are computed (after
   reload, each region is of one block), (2) region level: control
   flow graph attributes required for interblock scheduling are
   computed (dominators, reachability, etc.), data dependences and
   priorities are computed, and (3) block level: insns in the block
   are actually scheduled.  */

#include "config.h"
#include "system.h"
#include "toplev.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "regs.h"
#include "function.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "except.h"
#include "toplev.h"
#include "recog.h"
#include "cfglayout.h"
#include "sched-int.h"
#include "target.h"

/* Define when we want to do count REG_DEAD notes before and after scheduling
   for sanity checking.  We can't do that when conditional execution is used,
   as REG_DEAD exist only for unconditional deaths.  */

#if !defined (HAVE_conditional_execution) && defined (ENABLE_CHECKING)
#define CHECK_DEAD_NOTES 1
#else
#define CHECK_DEAD_NOTES 0
#endif


#ifdef INSN_SCHEDULING
/* Some accessor macros for h_i_d members only used within this file.  */
#define INSN_REF_COUNT(INSN)	(h_i_d[INSN_UID (INSN)].ref_count)
#define FED_BY_SPEC_LOAD(insn)	(h_i_d[INSN_UID (insn)].fed_by_spec_load)
#define IS_LOAD_INSN(insn)	(h_i_d[INSN_UID (insn)].is_load_insn)

#define MAX_RGN_BLOCKS 10
#define MAX_RGN_INSNS 100

/* nr_inter/spec counts interblock/speculative motion for the function.  */
static int nr_inter, nr_spec;

/* Control flow graph edges are kept in circular lists.  */
typedef struct
{
  int from_block;
  int to_block;
  int next_in;
  int next_out;
}
haifa_edge;
static haifa_edge *edge_table;

#define NEXT_IN(edge) (edge_table[edge].next_in)
#define NEXT_OUT(edge) (edge_table[edge].next_out)
#define FROM_BLOCK(edge) (edge_table[edge].from_block)
#define TO_BLOCK(edge) (edge_table[edge].to_block)

/* Number of edges in the control flow graph.  (In fact, larger than
   that by 1, since edge 0 is unused.)  */
static int nr_edges;

/* Circular list of incoming/outgoing edges of a block.  */
static int *in_edges;
static int *out_edges;

#define IN_EDGES(block) (in_edges[block])
#define OUT_EDGES(block) (out_edges[block])

static int is_cfg_nonregular PARAMS ((void));
static int build_control_flow PARAMS ((struct edge_list *));
static void new_edge PARAMS ((int, int));

/* A region is the main entity for interblock scheduling: insns
   are allowed to move between blocks in the same region, along
   control flow graph edges, in the 'up' direction.  */
typedef struct
{
  int rgn_nr_blocks;		/* Number of blocks in region.  */
  int rgn_blocks;		/* cblocks in the region (actually index in rgn_bb_table).  */
}
region;

/* Number of regions in the procedure.  */
static int nr_regions;

/* Table of region descriptions.  */
static region *rgn_table;

/* Array of lists of regions' blocks.  */
static int *rgn_bb_table;

/* Topological order of blocks in the region (if b2 is reachable from
   b1, block_to_bb[b2] > block_to_bb[b1]).  Note: A basic block is
   always referred to by either block or b, while its topological
   order name (in the region) is refered to by bb.  */
static int *block_to_bb;

/* The number of the region containing a block.  */
static int *containing_rgn;

#define RGN_NR_BLOCKS(rgn) (rgn_table[rgn].rgn_nr_blocks)
#define RGN_BLOCKS(rgn) (rgn_table[rgn].rgn_blocks)
#define BLOCK_TO_BB(block) (block_to_bb[block])
#define CONTAINING_RGN(block) (containing_rgn[block])

void debug_regions PARAMS ((void));
static void find_single_block_region PARAMS ((void));
static void find_rgns PARAMS ((struct edge_list *, dominance_info));
static int too_large PARAMS ((int, int *, int *));

extern void debug_live PARAMS ((int, int));

/* Blocks of the current region being scheduled.  */
static int current_nr_blocks;
static int current_blocks;

/* The mapping from bb to block.  */
#define BB_TO_BLOCK(bb) (rgn_bb_table[current_blocks + (bb)])

typedef struct
{
  int *first_member;		/* Pointer to the list start in bitlst_table.  */
  int nr_members;		/* The number of members of the bit list.  */
}
bitlst;

static int bitlst_table_last;
static int bitlst_table_size;
static int *bitlst_table;

static void extract_bitlst PARAMS ((sbitmap, bitlst *));

/* Target info declarations.

   The block currently being scheduled is referred to as the "target" block,
   while other blocks in the region from which insns can be moved to the
   target are called "source" blocks.  The candidate structure holds info
   about such sources: are they valid?  Speculative?  Etc.  */
typedef bitlst bblst;
typedef struct
{
  char is_valid;
  char is_speculative;
  int src_prob;
  bblst split_bbs;
  bblst update_bbs;
}
candidate;

static candidate *candidate_table;

/* A speculative motion requires checking live information on the path
   from 'source' to 'target'.  The split blocks are those to be checked.
   After a speculative motion, live information should be modified in
   the 'update' blocks.

   Lists of split and update blocks for each candidate of the current
   target are in array bblst_table.  */
static int *bblst_table, bblst_size, bblst_last;

#define IS_VALID(src) ( candidate_table[src].is_valid )
#define IS_SPECULATIVE(src) ( candidate_table[src].is_speculative )
#define SRC_PROB(src) ( candidate_table[src].src_prob )

/* The bb being currently scheduled.  */
static int target_bb;

/* List of edges.  */
typedef bitlst edgelst;

/* Target info functions.  */
static void split_edges PARAMS ((int, int, edgelst *));
static void compute_trg_info PARAMS ((int));
void debug_candidate PARAMS ((int));
void debug_candidates PARAMS ((int));

/* Dominators array: dom[i] contains the sbitmap of dominators of
   bb i in the region.  */
static sbitmap *dom;

/* bb 0 is the only region entry.  */
#define IS_RGN_ENTRY(bb) (!bb)

/* Is bb_src dominated by bb_trg.  */
#define IS_DOMINATED(bb_src, bb_trg)                                 \
( TEST_BIT (dom[bb_src], bb_trg) )

/* Probability: Prob[i] is a float in [0, 1] which is the probability
   of bb i relative to the region entry.  */
static float *prob;

/* The probability of bb_src, relative to bb_trg.  Note, that while the
   'prob[bb]' is a float in [0, 1], this macro returns an integer
   in [0, 100].  */
#define GET_SRC_PROB(bb_src, bb_trg) ((int) (100.0 * (prob[bb_src] / \
						      prob[bb_trg])))

/* Bit-set of edges, where bit i stands for edge i.  */
typedef sbitmap edgeset;

/* Number of edges in the region.  */
static int rgn_nr_edges;

/* Array of size rgn_nr_edges.  */
static int *rgn_edges;


/* Mapping from each edge in the graph to its number in the rgn.  */
static int *edge_to_bit;
#define EDGE_TO_BIT(edge) (edge_to_bit[edge])

/* The split edges of a source bb is different for each target
   bb.  In order to compute this efficiently, the 'potential-split edges'
   are computed for each bb prior to scheduling a region.  This is actually
   the split edges of each bb relative to the region entry.

   pot_split[bb] is the set of potential split edges of bb.  */
static edgeset *pot_split;

/* For every bb, a set of its ancestor edges.  */
static edgeset *ancestor_edges;

static void compute_dom_prob_ps PARAMS ((int));

#define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
#define IS_SPECULATIVE_INSN(INSN) (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
#define INSN_BB(INSN) (BLOCK_TO_BB (BLOCK_NUM (INSN)))

/* Parameters affecting the decision of rank_for_schedule().
   ??? Nope.  But MIN_PROBABILITY is used in copmute_trg_info.  */
#define MIN_PROBABILITY 40

/* Speculative scheduling functions.  */
static int check_live_1 PARAMS ((int, rtx));
static void update_live_1 PARAMS ((int, rtx));
static int check_live PARAMS ((rtx, int));
static void update_live PARAMS ((rtx, int));
static void set_spec_fed PARAMS ((rtx));
static int is_pfree PARAMS ((rtx, int, int));
static int find_conditional_protection PARAMS ((rtx, int));
static int is_conditionally_protected PARAMS ((rtx, int, int));
static int may_trap_exp PARAMS ((rtx, int));
static int haifa_classify_insn PARAMS ((rtx));
static int is_prisky PARAMS ((rtx, int, int));
static int is_exception_free PARAMS ((rtx, int, int));

static bool sets_likely_spilled PARAMS ((rtx));
static void sets_likely_spilled_1 PARAMS ((rtx, rtx, void *));
static void add_branch_dependences PARAMS ((rtx, rtx));
static void compute_block_backward_dependences PARAMS ((int));
void debug_dependencies PARAMS ((void));

static void init_regions PARAMS ((void));
static void schedule_region PARAMS ((int));
static rtx concat_INSN_LIST PARAMS ((rtx, rtx));
static void concat_insn_mem_list PARAMS ((rtx, rtx, rtx *, rtx *));
static void propagate_deps PARAMS ((int, struct deps *));
static void free_pending_lists PARAMS ((void));

/* Functions for construction of the control flow graph.  */

/* Return 1 if control flow graph should not be constructed, 0 otherwise.

   We decide not to build the control flow graph if there is possibly more
   than one entry to the function, if computed branches exist, of if we
   have nonlocal gotos.  */

static int
is_cfg_nonregular ()
{
  basic_block b;
  rtx insn;
  RTX_CODE code;

  /* If we have a label that could be the target of a nonlocal goto, then
     the cfg is not well structured.  */
  if (nonlocal_goto_handler_labels)
    return 1;

  /* If we have any forced labels, then the cfg is not well structured.  */
  if (forced_labels)
    return 1;

  /* If this function has a computed jump, then we consider the cfg
     not well structured.  */
  if (current_function_has_computed_jump)
    return 1;

  /* If we have exception handlers, then we consider the cfg not well
     structured.  ?!?  We should be able to handle this now that flow.c
     computes an accurate cfg for EH.  */
  if (current_function_has_exception_handlers ())
    return 1;

  /* If we have non-jumping insns which refer to labels, then we consider
     the cfg not well structured.  */
  /* Check for labels referred to other thn by jumps.  */
  FOR_EACH_BB (b)
    for (insn = b->head;; insn = NEXT_INSN (insn))
      {
	code = GET_CODE (insn);
	if (GET_RTX_CLASS (code) == 'i' && code != JUMP_INSN)
	  {
	    rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);

	    if (note
		&& ! (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
		      && find_reg_note (NEXT_INSN (insn), REG_LABEL,
					XEXP (note, 0))))
	      return 1;
	  }

	if (insn == b->end)
	  break;
      }

  /* All the tests passed.  Consider the cfg well structured.  */
  return 0;
}

/* Build the control flow graph and set nr_edges.

   Instead of trying to build a cfg ourselves, we rely on flow to
   do it for us.  Stamp out useless code (and bug) duplication.

   Return nonzero if an irregularity in the cfg is found which would
   prevent cross block scheduling.  */

static int
build_control_flow (edge_list)
     struct edge_list *edge_list;
{
  int i, unreachable, num_edges;
  basic_block b;

  /* This already accounts for entry/exit edges.  */
  num_edges = NUM_EDGES (edge_list);

  /* Unreachable loops with more than one basic block are detected
     during the DFS traversal in find_rgns.

     Unreachable loops with a single block are detected here.  This
     test is redundant with the one in find_rgns, but it's much
    cheaper to go ahead and catch the trivial case here.  */
  unreachable = 0;
  FOR_EACH_BB (b)
    {
      if (b->pred == NULL
	  || (b->pred->src == b
	      && b->pred->pred_next == NULL))
	unreachable = 1;
    }

  /* ??? We can kill these soon.  */
  in_edges = (int *) xcalloc (last_basic_block, sizeof (int));
  out_edges = (int *) xcalloc (last_basic_block, sizeof (int));
  edge_table = (haifa_edge *) xcalloc (num_edges, sizeof (haifa_edge));

  nr_edges = 0;
  for (i = 0; i < num_edges; i++)
    {
      edge e = INDEX_EDGE (edge_list, i);

      if (e->dest != EXIT_BLOCK_PTR
	  && e->src != ENTRY_BLOCK_PTR)
	new_edge (e->src->index, e->dest->index);
    }

  /* Increment by 1, since edge 0 is unused.  */
  nr_edges++;

  return unreachable;
}

/* Record an edge in the control flow graph from SOURCE to TARGET.

   In theory, this is redundant with the s_succs computed above, but
   we have not converted all of haifa to use information from the
   integer lists.  */

static void
new_edge (source, target)
     int source, target;
{
  int e, next_edge;
  int curr_edge, fst_edge;

  /* Check for duplicates.  */
  fst_edge = curr_edge = OUT_EDGES (source);
  while (curr_edge)
    {
      if (FROM_BLOCK (curr_edge) == source
	  && TO_BLOCK (curr_edge) == target)
	{
	  return;
	}

      curr_edge = NEXT_OUT (curr_edge);

      if (fst_edge == curr_edge)
	break;
    }

  e = ++nr_edges;

  FROM_BLOCK (e) = source;
  TO_BLOCK (e) = target;

  if (OUT_EDGES (source))
    {
      next_edge = NEXT_OUT (OUT_EDGES (source));
      NEXT_OUT (OUT_EDGES (source)) = e;
      NEXT_OUT (e) = next_edge;
    }
  else
    {
      OUT_EDGES (source) = e;
      NEXT_OUT (e) = e;
    }

  if (IN_EDGES (target))
    {
      next_edge = NEXT_IN (IN_EDGES (target));
      NEXT_IN (IN_EDGES (target)) = e;
      NEXT_IN (e) = next_edge;
    }
  else
    {
      IN_EDGES (target) = e;
      NEXT_IN (e) = e;
    }
}

/* Translate a bit-set SET to a list BL of the bit-set members.  */

static void
extract_bitlst (set, bl)
     sbitmap set;
     bitlst *bl;
{
  int i;

  /* bblst table space is reused in each call to extract_bitlst.  */
  bitlst_table_last = 0;

  bl->first_member = &bitlst_table[bitlst_table_last];
  bl->nr_members = 0;

  /* Iterate over each word in the bitset.  */
  EXECUTE_IF_SET_IN_SBITMAP (set, 0, i,
  {
    bitlst_table[bitlst_table_last++] = i;
    (bl->nr_members)++;
  });

}

/* Functions for the construction of regions.  */

/* Print the regions, for debugging purposes.  Callable from debugger.  */

void
debug_regions ()
{
  int rgn, bb;

  fprintf (sched_dump, "\n;;   ------------ REGIONS ----------\n\n");
  for (rgn = 0; rgn < nr_regions; rgn++)
    {
      fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
	       rgn_table[rgn].rgn_nr_blocks);
      fprintf (sched_dump, ";;\tbb/block: ");

      for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
	{
	  current_blocks = RGN_BLOCKS (rgn);

	  if (bb != BLOCK_TO_BB (BB_TO_BLOCK (bb)))
	    abort ();

	  fprintf (sched_dump, " %d/%d ", bb, BB_TO_BLOCK (bb));
	}

      fprintf (sched_dump, "\n\n");
    }
}

/* Build a single block region for each basic block in the function.
   This allows for using the same code for interblock and basic block
   scheduling.  */

static void
find_single_block_region ()
{
  basic_block bb;

  nr_regions = 0;

  FOR_EACH_BB (bb)
    {
      rgn_bb_table[nr_regions] = bb->index;
      RGN_NR_BLOCKS (nr_regions) = 1;
      RGN_BLOCKS (nr_regions) = nr_regions;
      CONTAINING_RGN (bb->index) = nr_regions;
      BLOCK_TO_BB (bb->index) = 0;
      nr_regions++;
    }
}

/* Update number of blocks and the estimate for number of insns
   in the region.  Return 1 if the region is "too large" for interblock
   scheduling (compile time considerations), otherwise return 0.  */

static int
too_large (block, num_bbs, num_insns)
     int block, *num_bbs, *num_insns;
{
  (*num_bbs)++;
  (*num_insns) += (INSN_LUID (BLOCK_END (block)) -
		   INSN_LUID (BLOCK_HEAD (block)));
  if ((*num_bbs > MAX_RGN_BLOCKS) || (*num_insns > MAX_RGN_INSNS))
    return 1;
  else
    return 0;
}

/* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
   is still an inner loop.  Put in max_hdr[blk] the header of the most inner
   loop containing blk.  */
#define UPDATE_LOOP_RELATIONS(blk, hdr)		\
{						\
  if (max_hdr[blk] == -1)			\
    max_hdr[blk] = hdr;				\
  else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr])	\
    RESET_BIT (inner, hdr);			\
  else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr])	\
    {						\
      RESET_BIT (inner,max_hdr[blk]);		\
      max_hdr[blk] = hdr;			\
    }						\
}

/* Find regions for interblock scheduling.

   A region for scheduling can be:

     * A loop-free procedure, or

     * A reducible inner loop, or

     * A basic block not contained in any other region.

   ?!? In theory we could build other regions based on extended basic
   blocks or reverse extended basic blocks.  Is it worth the trouble?

   Loop blocks that form a region are put into the region's block list
   in topological order.

   This procedure stores its results into the following global (ick) variables

     * rgn_nr
     * rgn_table
     * rgn_bb_table
     * block_to_bb
     * containing region

   We use dominator relationships to avoid making regions out of non-reducible
   loops.

   This procedure needs to be converted to work on pred/succ lists instead
   of edge tables.  That would simplify it somewhat.  */

static void
find_rgns (edge_list, dom)
     struct edge_list *edge_list;
     dominance_info dom;
{
  int *max_hdr, *dfs_nr, *stack, *degree;
  char no_loops = 1;
  int node, child, loop_head, i, head, tail;
  int count = 0, sp, idx = 0, current_edge = out_edges[0];
  int num_bbs, num_insns, unreachable;
  int too_large_failure;
  basic_block bb;

  /* Note if an edge has been passed.  */
  sbitmap passed;

  /* Note if a block is a natural loop header.  */
  sbitmap header;

  /* Note if a block is a natural inner loop header.  */
  sbitmap inner;

  /* Note if a block is in the block queue.  */
  sbitmap in_queue;

  /* Note if a block is in the block queue.  */
  sbitmap in_stack;

  int num_edges = NUM_EDGES (edge_list);

  /* Perform a DFS traversal of the cfg.  Identify loop headers, inner loops
     and a mapping from block to its loop header (if the block is contained
     in a loop, else -1).

     Store results in HEADER, INNER, and MAX_HDR respectively, these will
     be used as inputs to the second traversal.

     STACK, SP and DFS_NR are only used during the first traversal.  */

  /* Allocate and initialize variables for the first traversal.  */
  max_hdr = (int *) xmalloc (last_basic_block * sizeof (int));
  dfs_nr = (int *) xcalloc (last_basic_block, sizeof (int));
  stack = (int *) xmalloc (nr_edges * sizeof (int));

  inner = sbitmap_alloc (last_basic_block);
  sbitmap_ones (inner);

  header = sbitmap_alloc (last_basic_block);
  sbitmap_zero (header);

  passed = sbitmap_alloc (nr_edges);
  sbitmap_zero (passed);

  in_queue = sbitmap_alloc (last_basic_block);
  sbitmap_zero (in_queue);

  in_stack = sbitmap_alloc (last_basic_block);
  sbitmap_zero (in_stack);

  for (i = 0; i < last_basic_block; i++)
    max_hdr[i] = -1;

  /* DFS traversal to find inner loops in the cfg.  */

  sp = -1;
  while (1)
    {
      if (current_edge == 0 || TEST_BIT (passed, current_edge))
	{
	  /* We have reached a leaf node or a node that was already
	     processed.  Pop edges off the stack until we find
	     an edge that has not yet been processed.  */
	  while (sp >= 0
		 && (current_edge == 0 || TEST_BIT (passed, current_edge)))
	    {
	      /* Pop entry off the stack.  */
	      current_edge = stack[sp--];
	      node = FROM_BLOCK (current_edge);
	      child = TO_BLOCK (current_edge);
	      RESET_BIT (in_stack, child);
	      if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
		UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
	      current_edge = NEXT_OUT (current_edge);
	    }

	  /* See if have finished the DFS tree traversal.  */
	  if (sp < 0 && TEST_BIT (passed, current_edge))
	    break;

	  /* Nope, continue the traversal with the popped node.  */
	  continue;
	}

      /* Process a node.  */
      node = FROM_BLOCK (current_edge);
      child = TO_BLOCK (current_edge);
      SET_BIT (in_stack, node);
      dfs_nr[node] = ++count;

      /* If the successor is in the stack, then we've found a loop.
	 Mark the loop, if it is not a natural loop, then it will
	 be rejected during the second traversal.  */
      if (TEST_BIT (in_stack, child))
	{
	  no_loops = 0;
	  SET_BIT (header, child);
	  UPDATE_LOOP_RELATIONS (node, child);
	  SET_BIT (passed, current_edge);
	  current_edge = NEXT_OUT (current_edge);
	  continue;
	}

      /* If the child was already visited, then there is no need to visit
	 it again.  Just update the loop relationships and restart
	 with a new edge.  */
      if (dfs_nr[child])
	{
	  if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
	    UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
	  SET_BIT (passed, current_edge);
	  current_edge = NEXT_OUT (current_edge);
	  continue;
	}

      /* Push an entry on the stack and continue DFS traversal.  */
      stack[++sp] = current_edge;
      SET_BIT (passed, current_edge);
      current_edge = OUT_EDGES (child);

      /* This is temporary until haifa is converted to use rth's new
	 cfg routines which have true entry/exit blocks and the
	 appropriate edges from/to those blocks.

	 Generally we update dfs_nr for a node when we process its
	 out edge.  However, if the node has no out edge then we will
	 not set dfs_nr for that node.  This can confuse the scheduler
	 into thinking that we have unreachable blocks, which in turn
	 disables cross block scheduling.

	 So, if we have a node with no out edges, go ahead and mark it
	 as reachable now.  */
      if (current_edge == 0)
	dfs_nr[child] = ++count;
    }

  /* Another check for unreachable blocks.  The earlier test in
     is_cfg_nonregular only finds unreachable blocks that do not
     form a loop.

     The DFS traversal will mark every block that is reachable from
     the entry node by placing a nonzero value in dfs_nr.  Thus if
     dfs_nr is zero for any block, then it must be unreachable.  */
  unreachable = 0;
  FOR_EACH_BB (bb)
    if (dfs_nr[bb->index] == 0)
      {
	unreachable = 1;
	break;
      }

  /* Gross.  To avoid wasting memory, the second pass uses the dfs_nr array
     to hold degree counts.  */
  degree = dfs_nr;

  FOR_EACH_BB (bb)
    degree[bb->index] = 0;
  for (i = 0; i < num_edges; i++)
    {
      edge e = INDEX_EDGE (edge_list, i);

      if (e->dest != EXIT_BLOCK_PTR)
	degree[e->dest->index]++;
    }

  /* Do not perform region scheduling if there are any unreachable
     blocks.  */
  if (!unreachable)
    {
      int *queue;

      if (no_loops)
	SET_BIT (header, 0);

      /* Second travsersal:find reducible inner loops and topologically sort
	 block of each region.  */

      queue = (int *) xmalloc (n_basic_blocks * sizeof (int));

      /* Find blocks which are inner loop headers.  We still have non-reducible
	 loops to consider at this point.  */
      FOR_EACH_BB (bb)
	{
	  if (TEST_BIT (header, bb->index) && TEST_BIT (inner, bb->index))
	    {
	      edge e;
	      basic_block jbb;

	      /* Now check that the loop is reducible.  We do this separate
		 from finding inner loops so that we do not find a reducible
		 loop which contains an inner non-reducible loop.

		 A simple way to find reducible/natural loops is to verify
		 that each block in the loop is dominated by the loop
		 header.

		 If there exists a block that is not dominated by the loop
		 header, then the block is reachable from outside the loop
		 and thus the loop is not a natural loop.  */
	      FOR_EACH_BB (jbb)
		{
		  /* First identify blocks in the loop, except for the loop
		     entry block.  */
		  if (bb->index == max_hdr[jbb->index] && bb != jbb)
		    {
		      /* Now verify that the block is dominated by the loop
			 header.  */
		      if (!dominated_by_p (dom, jbb, bb))
			break;
		    }
		}

	      /* If we exited the loop early, then I is the header of
		 a non-reducible loop and we should quit processing it
		 now.  */
	      if (jbb != EXIT_BLOCK_PTR)
		continue;

	      /* I is a header of an inner loop, or block 0 in a subroutine
		 with no loops at all.  */
	      head = tail = -1;
	      too_large_failure = 0;
	      loop_head = max_hdr[bb->index];

	      /* Decrease degree of all I's successors for topological
		 ordering.  */
	      for (e = bb->succ; e; e = e->succ_next)
		if (e->dest != EXIT_BLOCK_PTR)
		  --degree[e->dest->index];

	      /* Estimate # insns, and count # blocks in the region.  */
	      num_bbs = 1;
	      num_insns = (INSN_LUID (bb->end)
			   - INSN_LUID (bb->head));

	      /* Find all loop latches (blocks with back edges to the loop
		 header) or all the leaf blocks in the cfg has no loops.

		 Place those blocks into the queue.  */
	      if (no_loops)
		{
		  FOR_EACH_BB (jbb)
		    /* Leaf nodes have only a single successor which must
		       be EXIT_BLOCK.  */
		    if (jbb->succ
			&& jbb->succ->dest == EXIT_BLOCK_PTR
			&& jbb->succ->succ_next == NULL)
		      {
			queue[++tail] = jbb->index;
			SET_BIT (in_queue, jbb->index);

			if (too_large (jbb->index, &num_bbs, &num_insns))
			  {
			    too_large_failure = 1;
			    break;
			  }
		      }
		}
	      else
		{
		  edge e;

		  for (e = bb->pred; e; e = e->pred_next)
		    {
		      if (e->src == ENTRY_BLOCK_PTR)
			continue;

		      node = e->src->index;

		      if (max_hdr[node] == loop_head && node != bb->index)
			{
			  /* This is a loop latch.  */
			  queue[++tail] = node;
			  SET_BIT (in_queue, node);

			  if (too_large (node, &num_bbs, &num_insns))
			    {
			      too_large_failure = 1;
			      break;
			    }
			}
		    }
		}

	      /* Now add all the blocks in the loop to the queue.

	     We know the loop is a natural loop; however the algorithm
	     above will not always mark certain blocks as being in the
	     loop.  Consider:
		node   children
		 a	  b,c
		 b	  c
		 c	  a,d
		 d	  b

	     The algorithm in the DFS traversal may not mark B & D as part
	     of the loop (ie they will not have max_hdr set to A).

	     We know they can not be loop latches (else they would have
	     had max_hdr set since they'd have a backedge to a dominator
	     block).  So we don't need them on the initial queue.

	     We know they are part of the loop because they are dominated
	     by the loop header and can be reached by a backwards walk of
	     the edges starting with nodes on the initial queue.

	     It is safe and desirable to include those nodes in the
	     loop/scheduling region.  To do so we would need to decrease
	     the degree of a node if it is the target of a backedge
	     within the loop itself as the node is placed in the queue.

	     We do not do this because I'm not sure that the actual
	     scheduling code will properly handle this case. ?!? */

	      while (head < tail && !too_large_failure)
		{
		  edge e;
		  child = queue[++head];

		  for (e = BASIC_BLOCK (child)->pred; e; e = e->pred_next)
		    {
		      node = e->src->index;

		      /* See discussion above about nodes not marked as in
			 this loop during the initial DFS traversal.  */
		      if (e->src == ENTRY_BLOCK_PTR
			  || max_hdr[node] != loop_head)
			{
			  tail = -1;
			  break;
			}
		      else if (!TEST_BIT (in_queue, node) && node != bb->index)
			{
			  queue[++tail] = node;
			  SET_BIT (in_queue, node);

			  if (too_large (node, &num_bbs, &num_insns))
			    {
			      too_large_failure = 1;
			      break;
			    }
			}
		    }
		}

	      if (tail >= 0 && !too_large_failure)
		{
		  /* Place the loop header into list of region blocks.  */
		  degree[bb->index] = -1;
		  rgn_bb_table[idx] = bb->index;
		  RGN_NR_BLOCKS (nr_regions) = num_bbs;
		  RGN_BLOCKS (nr_regions) = idx++;
		  CONTAINING_RGN (bb->index) = nr_regions;
		  BLOCK_TO_BB (bb->index) = count = 0;

		  /* Remove blocks from queue[] when their in degree
		     becomes zero.  Repeat until no blocks are left on the
		     list.  This produces a topological list of blocks in
		     the region.  */
		  while (tail >= 0)
		    {
		      if (head < 0)
			head = tail;
		      child = queue[head];
		      if (degree[child] == 0)
			{
			  edge e;

			  degree[child] = -1;
			  rgn_bb_table[idx++] = child;
			  BLOCK_TO_BB (child) = ++count;
			  CONTAINING_RGN (child) = nr_regions;
			  queue[head] = queue[tail--];

			  for (e = BASIC_BLOCK (child)->succ;
			       e;
			       e = e->succ_next)
			    if (e->dest != EXIT_BLOCK_PTR)
			      --degree[e->dest->index];
			}
		      else
			--head;
		    }
		  ++nr_regions;
		}
	    }
	}
      free (queue);
    }

  /* Any block that did not end up in a region is placed into a region
     by itself.  */
  FOR_EACH_BB (bb)
    if (degree[bb->index] >= 0)
      {
	rgn_bb_table[idx] = bb->index;
	RGN_NR_BLOCKS (nr_regions) = 1;
	RGN_BLOCKS (nr_regions) = idx++;
	CONTAINING_RGN (bb->index) = nr_regions++;
	BLOCK_TO_BB (bb->index) = 0;
      }

  free (max_hdr);
  free (dfs_nr);
  free (stack);
  sbitmap_free (passed);
  sbitmap_free (header);
  sbitmap_free (inner);
  sbitmap_free (in_queue);
  sbitmap_free (in_stack);
}

/* Functions for regions scheduling information.  */

/* Compute dominators, probability, and potential-split-edges of bb.
   Assume that these values were already computed for bb's predecessors.  */

static void
compute_dom_prob_ps (bb)
     int bb;
{
  int nxt_in_edge, fst_in_edge, pred;
  int fst_out_edge, nxt_out_edge, nr_out_edges, nr_rgn_out_edges;

  prob[bb] = 0.0;
  if (IS_RGN_ENTRY (bb))
    {
      SET_BIT (dom[bb], 0);
      prob[bb] = 1.0;
      return;
    }

  fst_in_edge = nxt_in_edge = IN_EDGES (BB_TO_BLOCK (bb));

  /* Initialize dom[bb] to '111..1'.  */
  sbitmap_ones (dom[bb]);

  do
    {
      pred = FROM_BLOCK (nxt_in_edge);
      sbitmap_a_and_b (dom[bb], dom[bb], dom[BLOCK_TO_BB (pred)]);
      sbitmap_a_or_b (ancestor_edges[bb], ancestor_edges[bb], ancestor_edges[BLOCK_TO_BB (pred)]);

      SET_BIT (ancestor_edges[bb], EDGE_TO_BIT (nxt_in_edge));

      nr_out_edges = 1;
      nr_rgn_out_edges = 0;
      fst_out_edge = OUT_EDGES (pred);
      nxt_out_edge = NEXT_OUT (fst_out_edge);

      sbitmap_a_or_b (pot_split[bb], pot_split[bb], pot_split[BLOCK_TO_BB (pred)]);

      SET_BIT (pot_split[bb], EDGE_TO_BIT (fst_out_edge));

      /* The successor doesn't belong in the region?  */
      if (CONTAINING_RGN (TO_BLOCK (fst_out_edge)) !=
	  CONTAINING_RGN (BB_TO_BLOCK (bb)))
	++nr_rgn_out_edges;

      while (fst_out_edge != nxt_out_edge)
	{
	  ++nr_out_edges;
	  /* The successor doesn't belong in the region?  */
	  if (CONTAINING_RGN (TO_BLOCK (nxt_out_edge)) !=
	      CONTAINING_RGN (BB_TO_BLOCK (bb)))
	    ++nr_rgn_out_edges;
	  SET_BIT (pot_split[bb], EDGE_TO_BIT (nxt_out_edge));
	  nxt_out_edge = NEXT_OUT (nxt_out_edge);

	}

      /* Now nr_rgn_out_edges is the number of region-exit edges from
         pred, and nr_out_edges will be the number of pred out edges
         not leaving the region.  */
      nr_out_edges -= nr_rgn_out_edges;
      if (nr_rgn_out_edges > 0)
	prob[bb] += 0.9 * prob[BLOCK_TO_BB (pred)] / nr_out_edges;
      else
	prob[bb] += prob[BLOCK_TO_BB (pred)] / nr_out_edges;
      nxt_in_edge = NEXT_IN (nxt_in_edge);
    }
  while (fst_in_edge != nxt_in_edge);

  SET_BIT (dom[bb], bb);
  sbitmap_difference (pot_split[bb], pot_split[bb], ancestor_edges[bb]);

  if (sched_verbose >= 2)
    fprintf (sched_dump, ";;  bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
	     (int) (100.0 * prob[bb]));
}

/* Functions for target info.  */

/* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
   Note that bb_trg dominates bb_src.  */

static void
split_edges (bb_src, bb_trg, bl)
     int bb_src;
     int bb_trg;
     edgelst *bl;
{
  sbitmap src = (edgeset) sbitmap_alloc (pot_split[bb_src]->n_bits);
  sbitmap_copy (src, pot_split[bb_src]);

  sbitmap_difference (src, src, pot_split[bb_trg]);
  extract_bitlst (src, bl);
  sbitmap_free (src);
}

/* Find the valid candidate-source-blocks for the target block TRG, compute
   their probability, and check if they are speculative or not.
   For speculative sources, compute their update-blocks and split-blocks.  */

static void
compute_trg_info (trg)
     int trg;
{
  candidate *sp;
  edgelst el;
  int check_block, update_idx;
  int i, j, k, fst_edge, nxt_edge;

  /* Define some of the fields for the target bb as well.  */
  sp = candidate_table + trg;
  sp->is_valid = 1;
  sp->is_speculative = 0;
  sp->src_prob = 100;

  for (i = trg + 1; i < current_nr_blocks; i++)
    {
      sp = candidate_table + i;

      sp->is_valid = IS_DOMINATED (i, trg);
      if (sp->is_valid)
	{
	  sp->src_prob = GET_SRC_PROB (i, trg);
	  sp->is_valid = (sp->src_prob >= MIN_PROBABILITY);
	}

      if (sp->is_valid)
	{
	  split_edges (i, trg, &el);
	  sp->is_speculative = (el.nr_members) ? 1 : 0;
	  if (sp->is_speculative && !flag_schedule_speculative)
	    sp->is_valid = 0;
	}

      if (sp->is_valid)
	{
	  char *update_blocks;

	  /* Compute split blocks and store them in bblst_table.
	     The TO block of every split edge is a split block.  */
	  sp->split_bbs.first_member = &bblst_table[bblst_last];
	  sp->split_bbs.nr_members = el.nr_members;
	  for (j = 0; j < el.nr_members; bblst_last++, j++)
	    bblst_table[bblst_last] =
	      TO_BLOCK (rgn_edges[el.first_member[j]]);
	  sp->update_bbs.first_member = &bblst_table[bblst_last];

	  /* Compute update blocks and store them in bblst_table.
	     For every split edge, look at the FROM block, and check
	     all out edges.  For each out edge that is not a split edge,
	     add the TO block to the update block list.  This list can end
	     up with a lot of duplicates.  We need to weed them out to avoid
	     overrunning the end of the bblst_table.  */
	  update_blocks = (char *) alloca (last_basic_block);
	  memset (update_blocks, 0, last_basic_block);

	  update_idx = 0;
	  for (j = 0; j < el.nr_members; j++)
	    {
	      check_block = FROM_BLOCK (rgn_edges[el.first_member[j]]);
	      fst_edge = nxt_edge = OUT_EDGES (check_block);
	      do
		{
		  if (! update_blocks[TO_BLOCK (nxt_edge)])
		    {
		      for (k = 0; k < el.nr_members; k++)
			if (EDGE_TO_BIT (nxt_edge) == el.first_member[k])
			  break;

		      if (k >= el.nr_members)
			{
			  bblst_table[bblst_last++] = TO_BLOCK (nxt_edge);
			  update_blocks[TO_BLOCK (nxt_edge)] = 1;
			  update_idx++;
			}
		    }

		  nxt_edge = NEXT_OUT (nxt_edge);
		}
	      while (fst_edge != nxt_edge);
	    }
	  sp->update_bbs.nr_members = update_idx;

	  /* Make sure we didn't overrun the end of bblst_table.  */
	  if (bblst_last > bblst_size)
	    abort ();
	}
      else
	{
	  sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;

	  sp->is_speculative = 0;
	  sp->src_prob = 0;
	}
    }
}

/* Print candidates info, for debugging purposes.  Callable from debugger.  */

void
debug_candidate (i)
     int i;
{
  if (!candidate_table[i].is_valid)
    return;

  if (candidate_table[i].is_speculative)
    {
      int j;
      fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);

      fprintf (sched_dump, "split path: ");
      for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
	{
	  int b = candidate_table[i].split_bbs.first_member[j];

	  fprintf (sched_dump, " %d ", b);
	}
      fprintf (sched_dump, "\n");

      fprintf (sched_dump, "update path: ");
      for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
	{
	  int b = candidate_table[i].update_bbs.first_member[j];

	  fprintf (sched_dump, " %d ", b);
	}
      fprintf (sched_dump, "\n");
    }
  else
    {
      fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
    }
}

/* Print candidates info, for debugging purposes.  Callable from debugger.  */

void
debug_candidates (trg)
     int trg;
{
  int i;

  fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
	   BB_TO_BLOCK (trg), trg);
  for (i = trg + 1; i < current_nr_blocks; i++)
    debug_candidate (i);
}

/* Functions for speculative scheduing.  */

/* Return 0 if x is a set of a register alive in the beginning of one
   of the split-blocks of src, otherwise return 1.  */

static int
check_live_1 (src, x)
     int src;
     rtx x;
{
  int i;
  int regno;
  rtx reg = SET_DEST (x);

  if (reg == 0)
    return 1;

  while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
	 || GET_CODE (reg) == SIGN_EXTRACT
	 || GET_CODE (reg) == STRICT_LOW_PART)
    reg = XEXP (reg, 0);

  if (GET_CODE (reg) == PARALLEL)
    {
      int i;

      for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
	if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
	  if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
	    return 1;

      return 0;
    }

  if (GET_CODE (reg) != REG)
    return 1;

  regno = REGNO (reg);

  if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
    {
      /* Global registers are assumed live.  */
      return 0;
    }
  else
    {
      if (regno < FIRST_PSEUDO_REGISTER)
	{
	  /* Check for hard registers.  */
	  int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
	  while (--j >= 0)
	    {
	      for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
		{
		  int b = candidate_table[src].split_bbs.first_member[i];

		  if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start,
				       regno + j))
		    {
		      return 0;
		    }
		}
	    }
	}
      else
	{
	  /* Check for psuedo registers.  */
	  for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
	    {
	      int b = candidate_table[src].split_bbs.first_member[i];

	      if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, regno))
		{
		  return 0;
		}
	    }
	}
    }

  return 1;
}

/* If x is a set of a register R, mark that R is alive in the beginning
   of every update-block of src.  */

static void
update_live_1 (src, x)
     int src;
     rtx x;
{
  int i;
  int regno;
  rtx reg = SET_DEST (x);

  if (reg == 0)
    return;

  while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
	 || GET_CODE (reg) == SIGN_EXTRACT
	 || GET_CODE (reg) == STRICT_LOW_PART)
    reg = XEXP (reg, 0);

  if (GET_CODE (reg) == PARALLEL)
    {
      int i;

      for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
	if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
	  update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));

      return;
    }

  if (GET_CODE (reg) != REG)
    return;

  /* Global registers are always live, so the code below does not apply
     to them.  */

  regno = REGNO (reg);

  if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
    {
      if (regno < FIRST_PSEUDO_REGISTER)
	{
	  int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
	  while (--j >= 0)
	    {
	      for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
		{
		  int b = candidate_table[src].update_bbs.first_member[i];

		  SET_REGNO_REG_SET (BASIC_BLOCK (b)->global_live_at_start,
				     regno + j);
		}
	    }
	}
      else
	{
	  for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
	    {
	      int b = candidate_table[src].update_bbs.first_member[i];

	      SET_REGNO_REG_SET (BASIC_BLOCK (b)->global_live_at_start, regno);
	    }
	}
    }
}

/* Return 1 if insn can be speculatively moved from block src to trg,
   otherwise return 0.  Called before first insertion of insn to
   ready-list or before the scheduling.  */

static int
check_live (insn, src)
     rtx insn;
     int src;
{
  /* Find the registers set by instruction.  */
  if (GET_CODE (PATTERN (insn)) == SET
      || GET_CODE (PATTERN (insn)) == CLOBBER)
    return check_live_1 (src, PATTERN (insn));
  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
    {
      int j;
      for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
	if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
	     || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
	    && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
	  return 0;

      return 1;
    }

  return 1;
}

/* Update the live registers info after insn was moved speculatively from
   block src to trg.  */

static void
update_live (insn, src)
     rtx insn;
     int src;
{
  /* Find the registers set by instruction.  */
  if (GET_CODE (PATTERN (insn)) == SET
      || GET_CODE (PATTERN (insn)) == CLOBBER)
    update_live_1 (src, PATTERN (insn));
  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
    {
      int j;
      for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
	if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
	    || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
	  update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
    }
}

/* Exception Free Loads:

   We define five classes of speculative loads: IFREE, IRISKY,
   PFREE, PRISKY, and MFREE.

   IFREE loads are loads that are proved to be exception-free, just
   by examining the load insn.  Examples for such loads are loads
   from TOC and loads of global data.

   IRISKY loads are loads that are proved to be exception-risky,
   just by examining the load insn.  Examples for such loads are
   volatile loads and loads from shared memory.

   PFREE loads are loads for which we can prove, by examining other
   insns, that they are exception-free.  Currently, this class consists
   of loads for which we are able to find a "similar load", either in
   the target block, or, if only one split-block exists, in that split
   block.  Load2 is similar to load1 if both have same single base
   register.  We identify only part of the similar loads, by finding
   an insn upon which both load1 and load2 have a DEF-USE dependence.

   PRISKY loads are loads for which we can prove, by examining other
   insns, that they are exception-risky.  Currently we have two proofs for
   such loads.  The first proof detects loads that are probably guarded by a
   test on the memory address.  This proof is based on the
   backward and forward data dependence information for the region.
   Let load-insn be the examined load.
   Load-insn is PRISKY iff ALL the following hold:

   - insn1 is not in the same block as load-insn
   - there is a DEF-USE dependence chain (insn1, ..., load-insn)
   - test-insn is either a compare or a branch, not in the same block
     as load-insn
   - load-insn is reachable from test-insn
   - there is a DEF-USE dependence chain (insn1, ..., test-insn)

   This proof might fail when the compare and the load are fed
   by an insn not in the region.  To solve this, we will add to this
   group all loads that have no input DEF-USE dependence.

   The second proof detects loads that are directly or indirectly
   fed by a speculative load.  This proof is affected by the
   scheduling process.  We will use the flag  fed_by_spec_load.
   Initially, all insns have this flag reset.  After a speculative
   motion of an insn, if insn is either a load, or marked as
   fed_by_spec_load, we will also mark as fed_by_spec_load every
   insn1 for which a DEF-USE dependence (insn, insn1) exists.  A
   load which is fed_by_spec_load is also PRISKY.

   MFREE (maybe-free) loads are all the remaining loads. They may be
   exception-free, but we cannot prove it.

   Now, all loads in IFREE and PFREE classes are considered
   exception-free, while all loads in IRISKY and PRISKY classes are
   considered exception-risky.  As for loads in the MFREE class,
   these are considered either exception-free or exception-risky,
   depending on whether we are pessimistic or optimistic.  We have
   to take the pessimistic approach to assure the safety of
   speculative scheduling, but we can take the optimistic approach
   by invoking the -fsched_spec_load_dangerous option.  */

enum INSN_TRAP_CLASS
{
  TRAP_FREE = 0, IFREE = 1, PFREE_CANDIDATE = 2,
  PRISKY_CANDIDATE = 3, IRISKY = 4, TRAP_RISKY = 5
};

#define WORST_CLASS(class1, class2) \
((class1 > class2) ? class1 : class2)

/* Non-zero if block bb_to is equal to, or reachable from block bb_from.  */
#define IS_REACHABLE(bb_from, bb_to)					\
  (bb_from == bb_to							\
   || IS_RGN_ENTRY (bb_from)						\
   || (TEST_BIT (ancestor_edges[bb_to],					\
		 EDGE_TO_BIT (IN_EDGES (BB_TO_BLOCK (bb_from))))))

/* Non-zero iff the address is comprised from at most 1 register.  */
#define CONST_BASED_ADDRESS_P(x)			\
  (GET_CODE (x) == REG					\
   || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS	\
	|| (GET_CODE (x) == LO_SUM))			\
       && (CONSTANT_P (XEXP (x, 0))			\
	   || CONSTANT_P (XEXP (x, 1)))))

/* Turns on the fed_by_spec_load flag for insns fed by load_insn.  */

static void
set_spec_fed (load_insn)
     rtx load_insn;
{
  rtx link;

  for (link = INSN_DEPEND (load_insn); link; link = XEXP (link, 1))
    if (GET_MODE (link) == VOIDmode)
      FED_BY_SPEC_LOAD (XEXP (link, 0)) = 1;
}				/* set_spec_fed */

/* On the path from the insn to load_insn_bb, find a conditional
branch depending on insn, that guards the speculative load.  */

static int
find_conditional_protection (insn, load_insn_bb)
     rtx insn;
     int load_insn_bb;
{
  rtx link;

  /* Iterate through DEF-USE forward dependences.  */
  for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
    {
      rtx next = XEXP (link, 0);
      if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
	   CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
	  && IS_REACHABLE (INSN_BB (next), load_insn_bb)
	  && load_insn_bb != INSN_BB (next)
	  && GET_MODE (link) == VOIDmode
	  && (GET_CODE (next) == JUMP_INSN
	      || find_conditional_protection (next, load_insn_bb)))
	return 1;
    }
  return 0;
}				/* find_conditional_protection */

/* Returns 1 if the same insn1 that participates in the computation
   of load_insn's address is feeding a conditional branch that is
   guarding on load_insn. This is true if we find a the two DEF-USE
   chains:
   insn1 -> ... -> conditional-branch
   insn1 -> ... -> load_insn,
   and if a flow path exist:
   insn1 -> ... -> conditional-branch -> ... -> load_insn,
   and if insn1 is on the path
   region-entry -> ... -> bb_trg -> ... load_insn.

   Locate insn1 by climbing on LOG_LINKS from load_insn.
   Locate the branch by following INSN_DEPEND from insn1.  */

static int
is_conditionally_protected (load_insn, bb_src, bb_trg)
     rtx load_insn;
     int bb_src, bb_trg;
{
  rtx link;

  for (link = LOG_LINKS (load_insn); link; link = XEXP (link, 1))
    {
      rtx insn1 = XEXP (link, 0);

      /* Must be a DEF-USE dependence upon non-branch.  */
      if (GET_MODE (link) != VOIDmode
	  || GET_CODE (insn1) == JUMP_INSN)
	continue;

      /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn.  */
      if (INSN_BB (insn1) == bb_src
	  || (CONTAINING_RGN (BLOCK_NUM (insn1))
	      != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
	  || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
	      && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
	continue;

      /* Now search for the conditional-branch.  */
      if (find_conditional_protection (insn1, bb_src))
	return 1;

      /* Recursive step: search another insn1, "above" current insn1.  */
      return is_conditionally_protected (insn1, bb_src, bb_trg);
    }

  /* The chain does not exist.  */
  return 0;
}				/* is_conditionally_protected */

/* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
   load_insn can move speculatively from bb_src to bb_trg.  All the
   following must hold:

   (1) both loads have 1 base register (PFREE_CANDIDATEs).
   (2) load_insn and load1 have a def-use dependence upon
   the same insn 'insn1'.
   (3) either load2 is in bb_trg, or:
   - there's only one split-block, and
   - load1 is on the escape path, and

   From all these we can conclude that the two loads access memory
   addresses that differ at most by a constant, and hence if moving
   load_insn would cause an exception, it would have been caused by
   load2 anyhow.  */

static int
is_pfree (load_insn, bb_src, bb_trg)
     rtx load_insn;
     int bb_src, bb_trg;
{
  rtx back_link;
  candidate *candp = candidate_table + bb_src;

  if (candp->split_bbs.nr_members != 1)
    /* Must have exactly one escape block.  */
    return 0;

  for (back_link = LOG_LINKS (load_insn);
       back_link; back_link = XEXP (back_link, 1))
    {
      rtx insn1 = XEXP (back_link, 0);

      if (GET_MODE (back_link) == VOIDmode)
	{
	  /* Found a DEF-USE dependence (insn1, load_insn).  */
	  rtx fore_link;

	  for (fore_link = INSN_DEPEND (insn1);
	       fore_link; fore_link = XEXP (fore_link, 1))
	    {
	      rtx insn2 = XEXP (fore_link, 0);
	      if (GET_MODE (fore_link) == VOIDmode)
		{
		  /* Found a DEF-USE dependence (insn1, insn2).  */
		  if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
		    /* insn2 not guaranteed to be a 1 base reg load.  */
		    continue;

		  if (INSN_BB (insn2) == bb_trg)
		    /* insn2 is the similar load, in the target block.  */
		    return 1;

		  if (*(candp->split_bbs.first_member) == BLOCK_NUM (insn2))
		    /* insn2 is a similar load, in a split-block.  */
		    return 1;
		}
	    }
	}
    }

  /* Couldn't find a similar load.  */
  return 0;
}				/* is_pfree */

/* Returns a class that insn with GET_DEST(insn)=x may belong to,
   as found by analyzing insn's expression.  */

static int
may_trap_exp (x, is_store)
     rtx x;
     int is_store;
{
  enum rtx_code code;

  if (x == 0)
    return TRAP_FREE;
  code = GET_CODE (x);
  if (is_store)
    {
      if (code == MEM && may_trap_p (x))
	return TRAP_RISKY;
      else
	return TRAP_FREE;
    }
  if (code == MEM)
    {
      /* The insn uses memory:  a volatile load.  */
      if (MEM_VOLATILE_P (x))
	return IRISKY;
      /* An exception-free load.  */
      if (!may_trap_p (x))
	return IFREE;
      /* A load with 1 base register, to be further checked.  */
      if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
	return PFREE_CANDIDATE;
      /* No info on the load, to be further checked.  */
      return PRISKY_CANDIDATE;
    }
  else
    {
      const char *fmt;
      int i, insn_class = TRAP_FREE;

      /* Neither store nor load, check if it may cause a trap.  */
      if (may_trap_p (x))
	return TRAP_RISKY;
      /* Recursive step: walk the insn...  */
      fmt = GET_RTX_FORMAT (code);
      for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
	{
	  if (fmt[i] == 'e')
	    {
	      int tmp_class = may_trap_exp (XEXP (x, i), is_store);
	      insn_class = WORST_CLASS (insn_class, tmp_class);
	    }
	  else if (fmt[i] == 'E')
	    {
	      int j;
	      for (j = 0; j < XVECLEN (x, i); j++)
		{
		  int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
		  insn_class = WORST_CLASS (insn_class, tmp_class);
		  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
		    break;
		}
	    }
	  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
	    break;
	}
      return insn_class;
    }
}

/* Classifies insn for the purpose of verifying that it can be
   moved speculatively, by examining it's patterns, returning:
   TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
   TRAP_FREE: non-load insn.
   IFREE: load from a globaly safe location.
   IRISKY: volatile load.
   PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
   being either PFREE or PRISKY.  */

static int
haifa_classify_insn (insn)
     rtx insn;
{
  rtx pat = PATTERN (insn);
  int tmp_class = TRAP_FREE;
  int insn_class = TRAP_FREE;
  enum rtx_code code;

  if (GET_CODE (pat) == PARALLEL)
    {
      int i, len = XVECLEN (pat, 0);

      for (i = len - 1; i >= 0; i--)
	{
	  code = GET_CODE (XVECEXP (pat, 0, i));
	  switch (code)
	    {
	    case CLOBBER:
	      /* Test if it is a 'store'.  */
	      tmp_class = may_trap_exp (XEXP (XVECEXP (pat, 0, i), 0), 1);
	      break;
	    case SET:
	      /* Test if it is a store.  */
	      tmp_class = may_trap_exp (SET_DEST (XVECEXP (pat, 0, i)), 1);
	      if (tmp_class == TRAP_RISKY)
		break;
	      /* Test if it is a load.  */
	      tmp_class
		= WORST_CLASS (tmp_class,
			       may_trap_exp (SET_SRC (XVECEXP (pat, 0, i)),
					     0));
	      break;
	    case COND_EXEC:
	    case TRAP_IF:
	      tmp_class = TRAP_RISKY;
	      break;
	    default:
	      ;
	    }
	  insn_class = WORST_CLASS (insn_class, tmp_class);
	  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
	    break;
	}
    }
  else
    {
      code = GET_CODE (pat);
      switch (code)
	{
	case CLOBBER:
	  /* Test if it is a 'store'.  */
	  tmp_class = may_trap_exp (XEXP (pat, 0), 1);
	  break;
	case SET:
	  /* Test if it is a store.  */
	  tmp_class = may_trap_exp (SET_DEST (pat), 1);
	  if (tmp_class == TRAP_RISKY)
	    break;
	  /* Test if it is a load.  */
	  tmp_class =
	    WORST_CLASS (tmp_class,
			 may_trap_exp (SET_SRC (pat), 0));
	  break;
	case COND_EXEC:
	case TRAP_IF:
	  tmp_class = TRAP_RISKY;
	  break;
	default:;
	}
      insn_class = tmp_class;
    }

  return insn_class;
}

/* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
   a load moved speculatively, or if load_insn is protected by
   a compare on load_insn's address).  */

static int
is_prisky (load_insn, bb_src, bb_trg)
     rtx load_insn;
     int bb_src, bb_trg;
{
  if (FED_BY_SPEC_LOAD (load_insn))
    return 1;

  if (LOG_LINKS (load_insn) == NULL)
    /* Dependence may 'hide' out of the region.  */
    return 1;

  if (is_conditionally_protected (load_insn, bb_src, bb_trg))
    return 1;

  return 0;
}

/* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
   Return 1 if insn is exception-free (and the motion is valid)
   and 0 otherwise.  */

static int
is_exception_free (insn, bb_src, bb_trg)
     rtx insn;
     int bb_src, bb_trg;
{
  int insn_class = haifa_classify_insn (insn);

  /* Handle non-load insns.  */
  switch (insn_class)
    {
    case TRAP_FREE:
      return 1;
    case TRAP_RISKY:
      return 0;
    default:;
    }

  /* Handle loads.  */
  if (!flag_schedule_speculative_load)
    return 0;
  IS_LOAD_INSN (insn) = 1;
  switch (insn_class)
    {
    case IFREE:
      return (1);
    case IRISKY:
      return 0;
    case PFREE_CANDIDATE:
      if (is_pfree (insn, bb_src, bb_trg))
	return 1;
      /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate.  */
    case PRISKY_CANDIDATE:
      if (!flag_schedule_speculative_load_dangerous
	  || is_prisky (insn, bb_src, bb_trg))
	return 0;
      break;
    default:;
    }

  return flag_schedule_speculative_load_dangerous;
}

/* The number of insns from the current block scheduled so far.  */
static int sched_target_n_insns;
/* The number of insns from the current block to be scheduled in total.  */
static int target_n_insns;
/* The number of insns from the entire region scheduled so far.  */
static int sched_n_insns;
/* Nonzero if the last scheduled insn was a jump.  */
static int last_was_jump;

/* Implementations of the sched_info functions for region scheduling.  */
static void init_ready_list PARAMS ((struct ready_list *));
static int can_schedule_ready_p PARAMS ((rtx));
static int new_ready PARAMS ((rtx));
static int schedule_more_p PARAMS ((void));
static const char *rgn_print_insn PARAMS ((rtx, int));
static int rgn_rank PARAMS ((rtx, rtx));
static int contributes_to_priority PARAMS ((rtx, rtx));
static void compute_jump_reg_dependencies PARAMS ((rtx, regset));

/* Return nonzero if there are more insns that should be scheduled.  */

static int
schedule_more_p ()
{
  return ! last_was_jump && sched_target_n_insns < target_n_insns;
}

/* Add all insns that are initially ready to the ready list READY.  Called
   once before scheduling a set of insns.  */

static void
init_ready_list (ready)
     struct ready_list *ready;
{
  rtx prev_head = current_sched_info->prev_head;
  rtx next_tail = current_sched_info->next_tail;
  int bb_src;
  rtx insn;

  target_n_insns = 0;
  sched_target_n_insns = 0;
  sched_n_insns = 0;
  last_was_jump = 0;

  /* Print debugging information.  */
  if (sched_verbose >= 5)
    debug_dependencies ();

  /* Prepare current target block info.  */
  if (current_nr_blocks > 1)
    {
      candidate_table = (candidate *) xmalloc (current_nr_blocks
					       * sizeof (candidate));

      bblst_last = 0;
      /* bblst_table holds split blocks and update blocks for each block after
	 the current one in the region.  split blocks and update blocks are
	 the TO blocks of region edges, so there can be at most rgn_nr_edges
	 of them.  */
      bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
      bblst_table = (int *) xmalloc (bblst_size * sizeof (int));

      bitlst_table_last = 0;
      bitlst_table_size = rgn_nr_edges;
      bitlst_table = (int *) xmalloc (rgn_nr_edges * sizeof (int));

      compute_trg_info (target_bb);
    }

  /* Initialize ready list with all 'ready' insns in target block.
     Count number of insns in the target block being scheduled.  */
  for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
    {
      rtx next;

      if (! INSN_P (insn))
	continue;
      next = NEXT_INSN (insn);

      if (INSN_DEP_COUNT (insn) == 0
	  && (! INSN_P (next) || SCHED_GROUP_P (next) == 0))
	ready_add (ready, insn);
      if (!(SCHED_GROUP_P (insn)))
	target_n_insns++;
    }

  /* Add to ready list all 'ready' insns in valid source blocks.
     For speculative insns, check-live, exception-free, and
     issue-delay.  */
  for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
    if (IS_VALID (bb_src))
      {
	rtx src_head;
	rtx src_next_tail;
	rtx tail, head;

	get_block_head_tail (BB_TO_BLOCK (bb_src), &head, &tail);
	src_next_tail = NEXT_INSN (tail);
	src_head = head;

	for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
	  {
	    if (! INSN_P (insn))
	      continue;

	    if (!CANT_MOVE (insn)
		&& (!IS_SPECULATIVE_INSN (insn)
		    || ((((!targetm.sched.use_dfa_pipeline_interface
			   || !(*targetm.sched.use_dfa_pipeline_interface) ())
			  && insn_issue_delay (insn) <= 3)
			 || (targetm.sched.use_dfa_pipeline_interface
			     && (*targetm.sched.use_dfa_pipeline_interface) ()
			     && (recog_memoized (insn) < 0
			         || min_insn_conflict_delay (curr_state,
							     insn, insn) <= 3)))
			&& check_live (insn, bb_src)
			&& is_exception_free (insn, bb_src, target_bb))))
	      {
		rtx next;

		/* Note that we haven't squirreled away the notes for
		   blocks other than the current.  So if this is a
		   speculative insn, NEXT might otherwise be a note.  */
		next = next_nonnote_insn (insn);
		if (INSN_DEP_COUNT (insn) == 0
		    && (! next
			|| ! INSN_P (next)
			|| SCHED_GROUP_P (next) == 0))
		  ready_add (ready, insn);
	      }
	  }
      }
}

/* Called after taking INSN from the ready list.  Returns nonzero if this
   insn can be scheduled, nonzero if we should silently discard it.  */

static int
can_schedule_ready_p (insn)
     rtx insn;
{
  if (GET_CODE (insn) == JUMP_INSN)
    last_was_jump = 1;

  /* An interblock motion?  */
  if (INSN_BB (insn) != target_bb)
    {
      rtx temp;
      basic_block b1;

      if (IS_SPECULATIVE_INSN (insn))
	{
	  if (!check_live (insn, INSN_BB (insn)))
	    return 0;
	  update_live (insn, INSN_BB (insn));

	  /* For speculative load, mark insns fed by it.  */
	  if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
	    set_spec_fed (insn);

	  nr_spec++;
	}
      nr_inter++;

      /* Find the beginning of the scheduling group.  */
      /* ??? Ought to update basic block here, but later bits of
	 schedule_block assumes the original insn block is
	 still intact.  */

      temp = insn;
      while (SCHED_GROUP_P (temp))
	temp = PREV_INSN (temp);

      /* Update source block boundaries.  */
      b1 = BLOCK_FOR_INSN (temp);
      if (temp == b1->head && insn == b1->end)
	{
	  /* We moved all the insns in the basic block.
	     Emit a note after the last insn and update the
	     begin/end boundaries to point to the note.  */
	  rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
	  b1->head = note;
	  b1->end = note;
	}
      else if (insn == b1->end)
	{
	  /* We took insns from the end of the basic block,
	     so update the end of block boundary so that it
	     points to the first insn we did not move.  */
	  b1->end = PREV_INSN (temp);
	}
      else if (temp == b1->head)
	{
	  /* We took insns from the start of the basic block,
	     so update the start of block boundary so that
	     it points to the first insn we did not move.  */
	  b1->head = NEXT_INSN (insn);
	}
    }
  else
    {
      /* In block motion.  */
      sched_target_n_insns++;
    }
  sched_n_insns++;

  return 1;
}

/* Called after INSN has all its dependencies resolved.  Return nonzero
   if it should be moved to the ready list or the queue, or zero if we
   should silently discard it.  */
static int
new_ready (next)
     rtx next;
{
  /* For speculative insns, before inserting to ready/queue,
     check live, exception-free, and issue-delay.  */
  if (INSN_BB (next) != target_bb
      && (!IS_VALID (INSN_BB (next))
	  || CANT_MOVE (next)
	  || (IS_SPECULATIVE_INSN (next)
	      && (0
		  || (targetm.sched.use_dfa_pipeline_interface
		      && (*targetm.sched.use_dfa_pipeline_interface) ()
		      && recog_memoized (next) >= 0
		      && min_insn_conflict_delay (curr_state, next,
						  next) > 3)
		  || ((!targetm.sched.use_dfa_pipeline_interface
		       || !(*targetm.sched.use_dfa_pipeline_interface) ())
		      && insn_issue_delay (next) > 3)
		  || !check_live (next, INSN_BB (next))
		  || !is_exception_free (next, INSN_BB (next), target_bb)))))
    return 0;
  return 1;
}

/* Return a string that contains the insn uid and optionally anything else
   necessary to identify this insn in an output.  It's valid to use a
   static buffer for this.  The ALIGNED parameter should cause the string
   to be formatted so that multiple output lines will line up nicely.  */

static const char *
rgn_print_insn (insn, aligned)
     rtx insn;
     int aligned;
{
  static char tmp[80];

  if (aligned)
    sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
  else
    {
      if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
	sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
      else
	sprintf (tmp, "%d", INSN_UID (insn));
    }
  return tmp;
}

/* Compare priority of two insns.  Return a positive number if the second
   insn is to be preferred for scheduling, and a negative one if the first
   is to be preferred.  Zero if they are equally good.  */

static int
rgn_rank (insn1, insn2)
     rtx insn1, insn2;
{
  /* Some comparison make sense in interblock scheduling only.  */
  if (INSN_BB (insn1) != INSN_BB (insn2))
    {
      int spec_val, prob_val;

      /* Prefer an inblock motion on an interblock motion.  */
      if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
	return 1;
      if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
	return -1;

      /* Prefer a useful motion on a speculative one.  */
      spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
      if (spec_val)
	return spec_val;

      /* Prefer a more probable (speculative) insn.  */
      prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
      if (prob_val)
	return prob_val;
    }
  return 0;
}

/* NEXT is an instruction that depends on INSN (a backward dependence);
   return nonzero if we should include this dependence in priority
   calculations.  */

static int
contributes_to_priority (next, insn)
     rtx next, insn;
{
  return BLOCK_NUM (next) == BLOCK_NUM (insn);
}

/* INSN is a JUMP_INSN.  Store the set of registers that must be considered
   to be set by this jump in SET.  */

static void
compute_jump_reg_dependencies (insn, set)
     rtx insn ATTRIBUTE_UNUSED;
     regset set ATTRIBUTE_UNUSED;
{
  /* Nothing to do here, since we postprocess jumps in
     add_branch_dependences.  */
}

/* Used in schedule_insns to initialize current_sched_info for scheduling
   regions (or single basic blocks).  */

static struct sched_info region_sched_info =
{
  init_ready_list,
  can_schedule_ready_p,
  schedule_more_p,
  new_ready,
  rgn_rank,
  rgn_print_insn,
  contributes_to_priority,
  compute_jump_reg_dependencies,

  NULL, NULL,
  NULL, NULL,
  0, 0
};

/* Determine if PAT sets a CLASS_LIKELY_SPILLED_P register.  */

static bool
sets_likely_spilled (pat)
     rtx pat;
{
  bool ret = false;
  note_stores (pat, sets_likely_spilled_1, &ret);
  return ret;
}

static void
sets_likely_spilled_1 (x, pat, data)
     rtx x, pat;
     void *data;
{
  bool *ret = (bool *) data;

  if (GET_CODE (pat) == SET
      && REG_P (x)
      && REGNO (x) < FIRST_PSEUDO_REGISTER
      && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (x))))
    *ret = true;
}

/* Add dependences so that branches are scheduled to run last in their
   block.  */

static void
add_branch_dependences (head, tail)
     rtx head, tail;
{
  rtx insn, last;

  /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
     that can throw exceptions, force them to remain in order at the end of
     the block by adding dependencies and giving the last a high priority.
     There may be notes present, and prev_head may also be a note.

     Branches must obviously remain at the end.  Calls should remain at the
     end since moving them results in worse register allocation.  Uses remain
     at the end to ensure proper register allocation.

     cc0 setters remaim at the end because they can't be moved away from
     their cc0 user.

     Insns setting CLASS_LIKELY_SPILLED_P registers (usually return values)
     are not moved before reload because we can wind up with register
     allocation failures.  */

  insn = tail;
  last = 0;
  while (GET_CODE (insn) == CALL_INSN
	 || GET_CODE (insn) == JUMP_INSN
	 || (GET_CODE (insn) == INSN
	     && (GET_CODE (PATTERN (insn)) == USE
		 || GET_CODE (PATTERN (insn)) == CLOBBER
		 || can_throw_internal (insn)
#ifdef HAVE_cc0
		 || sets_cc0_p (PATTERN (insn))
#endif
		 || (!reload_completed
		     && sets_likely_spilled (PATTERN (insn)))))
	 || GET_CODE (insn) == NOTE)
    {
      if (GET_CODE (insn) != NOTE)
	{
	  if (last != 0 && !find_insn_list (insn, LOG_LINKS (last)))
	    {
	      add_dependence (last, insn, REG_DEP_ANTI);
	      INSN_REF_COUNT (insn)++;
	    }

	  CANT_MOVE (insn) = 1;

	  last = insn;
	  /* Skip over insns that are part of a group.
	     Make each insn explicitly depend on the previous insn.
	     This ensures that only the group header will ever enter
	     the ready queue (and, when scheduled, will automatically
	     schedule the SCHED_GROUP_P block).  */
	  while (SCHED_GROUP_P (insn))
	    {
	      rtx temp = prev_nonnote_insn (insn);
	      add_dependence (insn, temp, REG_DEP_ANTI);
	      insn = temp;
	    }
	}

      /* Don't overrun the bounds of the basic block.  */
      if (insn == head)
	break;

      insn = PREV_INSN (insn);
    }

  /* Make sure these insns are scheduled last in their block.  */
  insn = last;
  if (insn != 0)
    while (insn != head)
      {
	insn = prev_nonnote_insn (insn);

	if (INSN_REF_COUNT (insn) != 0)
	  continue;

	add_dependence (last, insn, REG_DEP_ANTI);
	INSN_REF_COUNT (insn) = 1;

	/* Skip over insns that are part of a group.  */
	while (SCHED_GROUP_P (insn))
	  insn = prev_nonnote_insn (insn);
      }
}

/* Data structures for the computation of data dependences in a regions.  We
   keep one `deps' structure for every basic block.  Before analyzing the
   data dependences for a bb, its variables are initialized as a function of
   the variables of its predecessors.  When the analysis for a bb completes,
   we save the contents to the corresponding bb_deps[bb] variable.  */

static struct deps *bb_deps;

/* Duplicate the INSN_LIST elements of COPY and prepend them to OLD.  */

static rtx
concat_INSN_LIST (copy, old)
     rtx copy, old;
{
  rtx new = old;
  for (; copy ; copy = XEXP (copy, 1))
    new = alloc_INSN_LIST (XEXP (copy, 0), new);
  return new;
}

static void
concat_insn_mem_list (copy_insns, copy_mems, old_insns_p, old_mems_p)
     rtx copy_insns, copy_mems;
     rtx *old_insns_p, *old_mems_p;
{
  rtx new_insns = *old_insns_p;
  rtx new_mems = *old_mems_p;

  while (copy_insns)
    {
      new_insns = alloc_INSN_LIST (XEXP (copy_insns, 0), new_insns);
      new_mems = alloc_EXPR_LIST (VOIDmode, XEXP (copy_mems, 0), new_mems);
      copy_insns = XEXP (copy_insns, 1);
      copy_mems = XEXP (copy_mems, 1);
    }

  *old_insns_p = new_insns;
  *old_mems_p = new_mems;
}

/* After computing the dependencies for block BB, propagate the dependencies
   found in TMP_DEPS to the successors of the block.  */
static void
propagate_deps (bb, pred_deps)
     int bb;
     struct deps *pred_deps;
{
  int b = BB_TO_BLOCK (bb);
  int e, first_edge;

  /* bb's structures are inherited by its successors.  */
  first_edge = e = OUT_EDGES (b);
  if (e > 0)
    do
      {
	int b_succ = TO_BLOCK (e);
	int bb_succ = BLOCK_TO_BB (b_succ);
	struct deps *succ_deps = bb_deps + bb_succ;
	int reg;

	/* Only bbs "below" bb, in the same region, are interesting.  */
	if (CONTAINING_RGN (b) != CONTAINING_RGN (b_succ)
	    || bb_succ <= bb)
	  {
	    e = NEXT_OUT (e);
	    continue;
	  }

	/* The reg_last lists are inherited by bb_succ.  */
	EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg,
	  {
	    struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
	    struct deps_reg *succ_rl = &succ_deps->reg_last[reg];

	    succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
	    succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
	    succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
						  succ_rl->clobbers);
	    succ_rl->uses_length += pred_rl->uses_length;
	    succ_rl->clobbers_length += pred_rl->clobbers_length;
	  });
	IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);

	/* Mem read/write lists are inherited by bb_succ.  */
	concat_insn_mem_list (pred_deps->pending_read_insns,
			      pred_deps->pending_read_mems,
			      &succ_deps->pending_read_insns,
			      &succ_deps->pending_read_mems);
	concat_insn_mem_list (pred_deps->pending_write_insns,
			      pred_deps->pending_write_mems,
			      &succ_deps->pending_write_insns,
			      &succ_deps->pending_write_mems);

	succ_deps->last_pending_memory_flush
	  = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
			      succ_deps->last_pending_memory_flush);

	succ_deps->pending_lists_length += pred_deps->pending_lists_length;
	succ_deps->pending_flush_length += pred_deps->pending_flush_length;

	/* last_function_call is inherited by bb_succ.  */
	succ_deps->last_function_call
	  = concat_INSN_LIST (pred_deps->last_function_call,
			      succ_deps->last_function_call);

	/* sched_before_next_call is inherited by bb_succ.  */
	succ_deps->sched_before_next_call
	  = concat_INSN_LIST (pred_deps->sched_before_next_call,
			      succ_deps->sched_before_next_call);

	e = NEXT_OUT (e);
      }
    while (e != first_edge);

  /* These lists should point to the right place, for correct
     freeing later.  */
  bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
  bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
  bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
  bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;

  /* Can't allow these to be freed twice.  */
  pred_deps->pending_read_insns = 0;
  pred_deps->pending_read_mems = 0;
  pred_deps->pending_write_insns = 0;
  pred_deps->pending_write_mems = 0;
}

/* Compute backward dependences inside bb.  In a multiple blocks region:
   (1) a bb is analyzed after its predecessors, and (2) the lists in
   effect at the end of bb (after analyzing for bb) are inherited by
   bb's successrs.

   Specifically for reg-reg data dependences, the block insns are
   scanned by sched_analyze () top-to-bottom.  Two lists are
   maintained by sched_analyze (): reg_last[].sets for register DEFs,
   and reg_last[].uses for register USEs.

   When analysis is completed for bb, we update for its successors:
   ;  - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
   ;  - USES[succ] = Union (USES [succ], DEFS [bb])

   The mechanism for computing mem-mem data dependence is very
   similar, and the result is interblock dependences in the region.  */

static void
compute_block_backward_dependences (bb)
     int bb;
{
  rtx head, tail;
  struct deps tmp_deps;

  tmp_deps = bb_deps[bb];

  /* Do the analysis for this block.  */
  get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
  sched_analyze (&tmp_deps, head, tail);
  add_branch_dependences (head, tail);

  if (current_nr_blocks > 1)
    propagate_deps (bb, &tmp_deps);

  /* Free up the INSN_LISTs.  */
  free_deps (&tmp_deps);
}

/* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
   them to the unused_*_list variables, so that they can be reused.  */

static void
free_pending_lists ()
{
  int bb;

  for (bb = 0; bb < current_nr_blocks; bb++)
    {
      free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
      free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
      free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
      free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
    }
}

/* Print dependences for debugging, callable from debugger.  */

void
debug_dependencies ()
{
  int bb;

  fprintf (sched_dump, ";;   --------------- forward dependences: ------------ \n");
  for (bb = 0; bb < current_nr_blocks; bb++)
    {
      if (1)
	{
	  rtx head, tail;
	  rtx next_tail;
	  rtx insn;

	  get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
	  next_tail = NEXT_INSN (tail);
	  fprintf (sched_dump, "\n;;   --- Region Dependences --- b %d bb %d \n",
		   BB_TO_BLOCK (bb), bb);

	  if (targetm.sched.use_dfa_pipeline_interface
	      && (*targetm.sched.use_dfa_pipeline_interface) ())
	    {
	      fprintf (sched_dump, ";;   %7s%6s%6s%6s%6s%6s%14s\n",
		       "insn", "code", "bb", "dep", "prio", "cost",
		       "reservation");
	      fprintf (sched_dump, ";;   %7s%6s%6s%6s%6s%6s%14s\n",
		       "----", "----", "--", "---", "----", "----",
		       "-----------");
	    }
	  else
	    {
	      fprintf (sched_dump, ";;   %7s%6s%6s%6s%6s%6s%11s%6s\n",
	      "insn", "code", "bb", "dep", "prio", "cost", "blockage", "units");
	      fprintf (sched_dump, ";;   %7s%6s%6s%6s%6s%6s%11s%6s\n",
	      "----", "----", "--", "---", "----", "----", "--------", "-----");
	    }

	  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
	    {
	      rtx link;

	      if (! INSN_P (insn))
		{
		  int n;
		  fprintf (sched_dump, ";;   %6d ", INSN_UID (insn));
		  if (GET_CODE (insn) == NOTE)
		    {
		      n = NOTE_LINE_NUMBER (insn);
		      if (n < 0)
			fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
		      else
			fprintf (sched_dump, "line %d, file %s\n", n,
				 NOTE_SOURCE_FILE (insn));
		    }
		  else
		    fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
		  continue;
		}

	      if (targetm.sched.use_dfa_pipeline_interface
		  && (*targetm.sched.use_dfa_pipeline_interface) ())
		{
		  fprintf (sched_dump,
			   ";;   %s%5d%6d%6d%6d%6d%6d   ",
			   (SCHED_GROUP_P (insn) ? "+" : " "),
			   INSN_UID (insn),
			   INSN_CODE (insn),
			   INSN_BB (insn),
			   INSN_DEP_COUNT (insn),
			   INSN_PRIORITY (insn),
			   insn_cost (insn, 0, 0));

		  if (recog_memoized (insn) < 0)
		    fprintf (sched_dump, "nothing");
		  else
		    print_reservation (sched_dump, insn);
		}
	      else
		{
		  int unit = insn_unit (insn);
		  int range
		    = (unit < 0
		       || function_units[unit].blockage_range_function == 0
		       ? 0
		       : function_units[unit].blockage_range_function (insn));
		  fprintf (sched_dump,
			   ";;   %s%5d%6d%6d%6d%6d%6d  %3d -%3d   ",
			   (SCHED_GROUP_P (insn) ? "+" : " "),
			   INSN_UID (insn),
			   INSN_CODE (insn),
			   INSN_BB (insn),
			   INSN_DEP_COUNT (insn),
			   INSN_PRIORITY (insn),
			   insn_cost (insn, 0, 0),
			   (int) MIN_BLOCKAGE_COST (range),
			   (int) MAX_BLOCKAGE_COST (range));
		  insn_print_units (insn);
		}

	      fprintf (sched_dump, "\t: ");
	      for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
		fprintf (sched_dump, "%d ", INSN_UID (XEXP (link, 0)));
	      fprintf (sched_dump, "\n");
	    }
	}
    }
  fprintf (sched_dump, "\n");
}

/* Schedule a region.  A region is either an inner loop, a loop-free
   subroutine, or a single basic block.  Each bb in the region is
   scheduled after its flow predecessors.  */

static void
schedule_region (rgn)
     int rgn;
{
  int bb;
  int rgn_n_insns = 0;
  int sched_rgn_n_insns = 0;

  /* Set variables for the current region.  */
  current_nr_blocks = RGN_NR_BLOCKS (rgn);
  current_blocks = RGN_BLOCKS (rgn);

  init_deps_global ();

  /* Initializations for region data dependence analyisis.  */
  bb_deps = (struct deps *) xmalloc (sizeof (struct deps) * current_nr_blocks);
  for (bb = 0; bb < current_nr_blocks; bb++)
    init_deps (bb_deps + bb);

  /* Compute LOG_LINKS.  */
  for (bb = 0; bb < current_nr_blocks; bb++)
    compute_block_backward_dependences (bb);

  /* Compute INSN_DEPEND.  */
  for (bb = current_nr_blocks - 1; bb >= 0; bb--)
    {
      rtx head, tail;
      get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);

      compute_forward_dependences (head, tail);
    }

  /* Set priorities.  */
  for (bb = 0; bb < current_nr_blocks; bb++)
    {
      rtx head, tail;
      get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);

      rgn_n_insns += set_priorities (head, tail);
    }

  /* Compute interblock info: probabilities, split-edges, dominators, etc.  */
  if (current_nr_blocks > 1)
    {
      int i;

      prob = (float *) xmalloc ((current_nr_blocks) * sizeof (float));

      dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
      sbitmap_vector_zero (dom, current_nr_blocks);
      /* Edge to bit.  */
      rgn_nr_edges = 0;
      edge_to_bit = (int *) xmalloc (nr_edges * sizeof (int));
      for (i = 1; i < nr_edges; i++)
	if (CONTAINING_RGN (FROM_BLOCK (i)) == rgn)
	  EDGE_TO_BIT (i) = rgn_nr_edges++;
      rgn_edges = (int *) xmalloc (rgn_nr_edges * sizeof (int));

      rgn_nr_edges = 0;
      for (i = 1; i < nr_edges; i++)
	if (CONTAINING_RGN (FROM_BLOCK (i)) == (rgn))
	  rgn_edges[rgn_nr_edges++] = i;

      /* Split edges.  */
      pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
      sbitmap_vector_zero (pot_split, current_nr_blocks);
      ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
      sbitmap_vector_zero (ancestor_edges, current_nr_blocks);

      /* Compute probabilities, dominators, split_edges.  */
      for (bb = 0; bb < current_nr_blocks; bb++)
	compute_dom_prob_ps (bb);
    }

  /* Now we can schedule all blocks.  */
  for (bb = 0; bb < current_nr_blocks; bb++)
    {
      rtx head, tail;
      int b = BB_TO_BLOCK (bb);

      get_block_head_tail (b, &head, &tail);

      if (no_real_insns_p (head, tail))
	continue;

      current_sched_info->prev_head = PREV_INSN (head);
      current_sched_info->next_tail = NEXT_INSN (tail);

      if (write_symbols != NO_DEBUG)
	{
	  save_line_notes (b, head, tail);
	  rm_line_notes (head, tail);
	}

      /* rm_other_notes only removes notes which are _inside_ the
	 block---that is, it won't remove notes before the first real insn
 	 or after the last real insn of the block.  So if the first insn
	 has a REG_SAVE_NOTE which would otherwise be emitted before the
	 insn, it is redundant with the note before the start of the
	 block, and so we have to take it out.  */
      if (INSN_P (head))
	{
	  rtx note;

	  for (note = REG_NOTES (head); note; note = XEXP (note, 1))
	    if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
	      {
		remove_note (head, note);
		note = XEXP (note, 1);
		remove_note (head, note);
	      }
	}

      /* Remove remaining note insns from the block, save them in
	 note_list.  These notes are restored at the end of
	 schedule_block ().  */
      rm_other_notes (head, tail);

      target_bb = bb;

      current_sched_info->queue_must_finish_empty
	= current_nr_blocks > 1 && !flag_schedule_interblock;

      schedule_block (b, rgn_n_insns);
      sched_rgn_n_insns += sched_n_insns;

      /* Update target block boundaries.  */
      if (head == BLOCK_HEAD (b))
	BLOCK_HEAD (b) = current_sched_info->head;
      if (tail == BLOCK_END (b))
	BLOCK_END (b) = current_sched_info->tail;

      /* Clean up.  */
      if (current_nr_blocks > 1)
	{
	  free (candidate_table);
	  free (bblst_table);
	  free (bitlst_table);
	}
    }

  /* Sanity check: verify that all region insns were scheduled.  */
  if (sched_rgn_n_insns != rgn_n_insns)
    abort ();

  /* Restore line notes.  */
  if (write_symbols != NO_DEBUG)
    {
      for (bb = 0; bb < current_nr_blocks; bb++)
	{
	  rtx head, tail;
	  get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
	  restore_line_notes (head, tail);
	}
    }

  /* Done with this region.  */
  free_pending_lists ();

  finish_deps_global ();

  free (bb_deps);

  if (current_nr_blocks > 1)
    {
      free (prob);
      sbitmap_vector_free (dom);
      sbitmap_vector_free (pot_split);
      sbitmap_vector_free (ancestor_edges);
      free (edge_to_bit);
      free (rgn_edges);
    }
}

/* Indexed by region, holds the number of death notes found in that region.
   Used for consistency checks.  */
static int *deaths_in_region;

/* Initialize data structures for region scheduling.  */

static void
init_regions ()
{
  sbitmap blocks;
  int rgn;

  nr_regions = 0;
  rgn_table = (region *) xmalloc ((n_basic_blocks) * sizeof (region));
  rgn_bb_table = (int *) xmalloc ((n_basic_blocks) * sizeof (int));
  block_to_bb = (int *) xmalloc ((last_basic_block) * sizeof (int));
  containing_rgn = (int *) xmalloc ((last_basic_block) * sizeof (int));

  /* Compute regions for scheduling.  */
  if (reload_completed
      || n_basic_blocks == 1
      || !flag_schedule_interblock)
    {
      find_single_block_region ();
    }
  else
    {
      /* Verify that a 'good' control flow graph can be built.  */
      if (is_cfg_nonregular ())
	{
	  find_single_block_region ();
	}
      else
	{
	  dominance_info dom;
	  struct edge_list *edge_list;

	  /* The scheduler runs after flow; therefore, we can't blindly call
	     back into find_basic_blocks since doing so could invalidate the
	     info in global_live_at_start.

	     Consider a block consisting entirely of dead stores; after life
	     analysis it would be a block of NOTE_INSN_DELETED notes.  If
	     we call find_basic_blocks again, then the block would be removed
	     entirely and invalidate our the register live information.

	     We could (should?) recompute register live information.  Doing
	     so may even be beneficial.  */
	  edge_list = create_edge_list ();

	  /* Compute the dominators and post dominators.  */
	  dom = calculate_dominance_info (CDI_DOMINATORS);

	  /* build_control_flow will return nonzero if it detects unreachable
	     blocks or any other irregularity with the cfg which prevents
	     cross block scheduling.  */
	  if (build_control_flow (edge_list) != 0)
	    find_single_block_region ();
	  else
	    find_rgns (edge_list, dom);

	  if (sched_verbose >= 3)
	    debug_regions ();

	  /* We are done with flow's edge list.  */
	  free_edge_list (edge_list);

	  /* For now.  This will move as more and more of haifa is converted
	     to using the cfg code in flow.c.  */
	  free_dominance_info (dom);
	}
    }


  if (CHECK_DEAD_NOTES)
    {
      blocks = sbitmap_alloc (last_basic_block);
      deaths_in_region = (int *) xmalloc (sizeof (int) * nr_regions);
      /* Remove all death notes from the subroutine.  */
      for (rgn = 0; rgn < nr_regions; rgn++)
	{
	  int b;

	  sbitmap_zero (blocks);
	  for (b = RGN_NR_BLOCKS (rgn) - 1; b >= 0; --b)
	    SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn) + b]);

	  deaths_in_region[rgn] = count_or_remove_death_notes (blocks, 1);
	}
      sbitmap_free (blocks);
    }
  else
    count_or_remove_death_notes (NULL, 1);
}

/* The one entry point in this file.  DUMP_FILE is the dump file for
   this pass.  */

void
schedule_insns (dump_file)
     FILE *dump_file;
{
  sbitmap large_region_blocks, blocks;
  int rgn;
  int any_large_regions;
  basic_block bb;

  /* Taking care of this degenerate case makes the rest of
     this code simpler.  */
  if (n_basic_blocks == 0)
    return;

  nr_inter = 0;
  nr_spec = 0;

  sched_init (dump_file);

  init_regions ();

  current_sched_info = &region_sched_info;

  /* Schedule every region in the subroutine.  */
  for (rgn = 0; rgn < nr_regions; rgn++)
    schedule_region (rgn);

  /* Update life analysis for the subroutine.  Do single block regions
     first so that we can verify that live_at_start didn't change.  Then
     do all other blocks.  */
  /* ??? There is an outside possibility that update_life_info, or more
     to the point propagate_block, could get called with nonzero flags
     more than once for one basic block.  This would be kinda bad if it
     were to happen, since REG_INFO would be accumulated twice for the
     block, and we'd have twice the REG_DEAD notes.

     I'm fairly certain that this _shouldn't_ happen, since I don't think
     that live_at_start should change at region heads.  Not sure what the
     best way to test for this kind of thing...  */

  allocate_reg_life_data ();
  compute_bb_for_insn ();

  any_large_regions = 0;
  large_region_blocks = sbitmap_alloc (last_basic_block);
  sbitmap_zero (large_region_blocks);
  FOR_EACH_BB (bb)
    SET_BIT (large_region_blocks, bb->index);

  blocks = sbitmap_alloc (last_basic_block);
  sbitmap_zero (blocks);

  /* Update life information.  For regions consisting of multiple blocks
     we've possibly done interblock scheduling that affects global liveness.
     For regions consisting of single blocks we need to do only local
     liveness.  */
  for (rgn = 0; rgn < nr_regions; rgn++)
    if (RGN_NR_BLOCKS (rgn) > 1)
      any_large_regions = 1;
    else
      {
	SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
	RESET_BIT (large_region_blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
      }

  /* Don't update reg info after reload, since that affects
     regs_ever_live, which should not change after reload.  */
  update_life_info (blocks, UPDATE_LIFE_LOCAL,
		    (reload_completed ? PROP_DEATH_NOTES
		     : PROP_DEATH_NOTES | PROP_REG_INFO));
  if (any_large_regions)
    {
      update_life_info (large_region_blocks, UPDATE_LIFE_GLOBAL,
			PROP_DEATH_NOTES | PROP_REG_INFO);
    }

  if (CHECK_DEAD_NOTES)
    {
      /* Verify the counts of basic block notes in single the basic block
         regions.  */
      for (rgn = 0; rgn < nr_regions; rgn++)
	if (RGN_NR_BLOCKS (rgn) == 1)
	  {
	    sbitmap_zero (blocks);
	    SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);

	    if (deaths_in_region[rgn]
		!= count_or_remove_death_notes (blocks, 0))
	      abort ();
	  }
      free (deaths_in_region);
    }

  /* Reposition the prologue and epilogue notes in case we moved the
     prologue/epilogue insns.  */
  if (reload_completed)
    reposition_prologue_and_epilogue_notes (get_insns ());

  /* Delete redundant line notes.  */
  if (write_symbols != NO_DEBUG)
    rm_redundant_line_notes ();

  if (sched_verbose)
    {
      if (reload_completed == 0 && flag_schedule_interblock)
	{
	  fprintf (sched_dump,
		   "\n;; Procedure interblock/speculative motions == %d/%d \n",
		   nr_inter, nr_spec);
	}
      else
	{
	  if (nr_inter > 0)
	    abort ();
	}
      fprintf (sched_dump, "\n\n");
    }

  /* Clean up.  */
  free (rgn_table);
  free (rgn_bb_table);
  free (block_to_bb);
  free (containing_rgn);

  sched_finish ();

  if (edge_table)
    {
      free (edge_table);
      edge_table = NULL;
    }

  if (in_edges)
    {
      free (in_edges);
      in_edges = NULL;
    }
  if (out_edges)
    {
      free (out_edges);
      out_edges = NULL;
    }

  sbitmap_free (blocks);
  sbitmap_free (large_region_blocks);
}
#endif