1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
|
// Copyright (C) 2020-2021 Free Software Foundation, Inc.
// This file is part of GCC.
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
#include "rust-compile.h"
#include "rust-compile-item.h"
#include "rust-compile-expr.h"
#include "rust-compile-struct-field-expr.h"
#include "rust-hir-trait-resolve.h"
#include "rust-hir-path-probe.h"
#include "rust-hir-type-bounds.h"
#include "rust-hir-dot-operator.h"
namespace Rust {
namespace Compile {
void
CompileExpr::visit (HIR::ArithmeticOrLogicalExpr &expr)
{
auto op = expr.get_expr_type ();
auto lhs = CompileExpr::Compile (expr.get_lhs (), ctx);
auto rhs = CompileExpr::Compile (expr.get_rhs (), ctx);
// this might be an operator overload situation lets check
TyTy::FnType *fntype;
bool is_op_overload = ctx->get_tyctx ()->lookup_operator_overload (
expr.get_mappings ().get_hirid (), &fntype);
if (is_op_overload)
{
auto lang_item_type
= Analysis::RustLangItem::OperatorToLangItem (expr.get_expr_type ());
translated = resolve_operator_overload (lang_item_type, expr, lhs, rhs,
expr.get_lhs (), expr.get_rhs ());
return;
}
translated
= ctx->get_backend ()->arithmetic_or_logical_expression (op, lhs, rhs,
expr.get_locus ());
}
void
CompileExpr::visit (HIR::CompoundAssignmentExpr &expr)
{
fncontext fn = ctx->peek_fn ();
auto op = expr.get_expr_type ();
auto lhs = CompileExpr::Compile (expr.get_left_expr ().get (), ctx);
auto rhs = CompileExpr::Compile (expr.get_right_expr ().get (), ctx);
// this might be an operator overload situation lets check
TyTy::FnType *fntype;
bool is_op_overload = ctx->get_tyctx ()->lookup_operator_overload (
expr.get_mappings ().get_hirid (), &fntype);
if (is_op_overload)
{
auto lang_item_type
= Analysis::RustLangItem::CompoundAssignmentOperatorToLangItem (
expr.get_expr_type ());
auto compound_assignment
= resolve_operator_overload (lang_item_type, expr, lhs, rhs,
expr.get_left_expr ().get (),
expr.get_right_expr ().get ());
auto assignment
= ctx->get_backend ()->expression_statement (fn.fndecl,
compound_assignment);
ctx->add_statement (assignment);
return;
}
auto operator_expr
= ctx->get_backend ()->arithmetic_or_logical_expression (op, lhs, rhs,
expr.get_locus ());
tree assignment
= ctx->get_backend ()->assignment_statement (fn.fndecl, lhs, operator_expr,
expr.get_locus ());
ctx->add_statement (assignment);
}
void
CompileExpr::visit (HIR::NegationExpr &expr)
{
auto op = expr.get_expr_type ();
auto negated_expr = CompileExpr::Compile (expr.get_expr ().get (), ctx);
auto location = expr.get_locus ();
// this might be an operator overload situation lets check
TyTy::FnType *fntype;
bool is_op_overload = ctx->get_tyctx ()->lookup_operator_overload (
expr.get_mappings ().get_hirid (), &fntype);
if (is_op_overload)
{
auto lang_item_type
= Analysis::RustLangItem::NegationOperatorToLangItem (op);
translated
= resolve_operator_overload (lang_item_type, expr, negated_expr,
nullptr, expr.get_expr ().get (), nullptr);
return;
}
translated
= ctx->get_backend ()->negation_expression (op, negated_expr, location);
}
void
CompileExpr::visit (HIR::DereferenceExpr &expr)
{
TyTy::BaseType *tyty = nullptr;
if (!ctx->get_tyctx ()->lookup_type (expr.get_mappings ().get_hirid (),
&tyty))
{
rust_fatal_error (expr.get_locus (),
"did not resolve type for this TupleExpr");
return;
}
tree main_expr = CompileExpr::Compile (expr.get_expr ().get (), ctx);
// this might be an operator overload situation lets check
TyTy::FnType *fntype;
bool is_op_overload = ctx->get_tyctx ()->lookup_operator_overload (
expr.get_mappings ().get_hirid (), &fntype);
if (is_op_overload)
{
auto lang_item_type = Analysis::RustLangItem::ItemType::DEREF;
tree operator_overload_call
= resolve_operator_overload (lang_item_type, expr, main_expr, nullptr,
expr.get_expr ().get (), nullptr);
// rust deref always returns a reference from this overload then we can
// actually do the indirection
main_expr = operator_overload_call;
}
tree expected_type = TyTyResolveCompile::compile (ctx, tyty);
bool known_valid = true;
translated
= ctx->get_backend ()->indirect_expression (expected_type, main_expr,
known_valid, expr.get_locus ());
}
void
CompileExpr::visit (HIR::CallExpr &expr)
{
TyTy::BaseType *tyty = nullptr;
if (!ctx->get_tyctx ()->lookup_type (
expr.get_fnexpr ()->get_mappings ().get_hirid (), &tyty))
{
rust_error_at (expr.get_locus (), "unknown type");
return;
}
// must be a tuple constructor
bool is_fn = tyty->get_kind () == TyTy::TypeKind::FNDEF
|| tyty->get_kind () == TyTy::TypeKind::FNPTR;
bool is_adt_ctor = !is_fn;
if (is_adt_ctor)
{
rust_assert (tyty->get_kind () == TyTy::TypeKind::ADT);
TyTy::ADTType *adt = static_cast<TyTy::ADTType *> (tyty);
tree compiled_adt_type = TyTyResolveCompile::compile (ctx, tyty);
// what variant is it?
int union_disriminator = -1;
TyTy::VariantDef *variant = nullptr;
if (!adt->is_enum ())
{
rust_assert (adt->number_of_variants () == 1);
variant = adt->get_variants ().at (0);
}
else
{
HirId variant_id;
bool ok = ctx->get_tyctx ()->lookup_variant_definition (
expr.get_fnexpr ()->get_mappings ().get_hirid (), &variant_id);
rust_assert (ok);
ok = adt->lookup_variant_by_id (variant_id, &variant,
&union_disriminator);
rust_assert (ok);
}
// this assumes all fields are in order from type resolution and if a
// base struct was specified those fields are filed via accesors
std::vector<tree> arguments;
for (size_t i = 0; i < expr.get_arguments ().size (); i++)
{
auto &argument = expr.get_arguments ().at (i);
auto rvalue = CompileExpr::Compile (argument.get (), ctx);
// assignments are coercion sites so lets convert the rvalue if
// necessary
auto respective_field = variant->get_field_at_index (i);
auto expected = respective_field->get_field_type ();
TyTy::BaseType *actual = nullptr;
bool ok = ctx->get_tyctx ()->lookup_type (
argument->get_mappings ().get_hirid (), &actual);
rust_assert (ok);
// coerce it if required
rvalue = coercion_site (rvalue, actual, expected, expr.get_locus ());
// add it to the list
arguments.push_back (rvalue);
}
// the constructor depends on whether this is actually an enum or not if
// its an enum we need to setup the discriminator
std::vector<tree> ctor_arguments;
if (adt->is_enum ())
{
HirId variant_id = variant->get_id ();
mpz_t val;
mpz_init_set_ui (val, variant_id);
tree t = TyTyResolveCompile::get_implicit_enumeral_node_type (ctx);
tree qualifier
= double_int_to_tree (t, mpz_get_double_int (t, val, true));
ctor_arguments.push_back (qualifier);
}
for (auto &arg : arguments)
ctor_arguments.push_back (arg);
translated = ctx->get_backend ()->constructor_expression (
compiled_adt_type, adt->is_enum (), ctor_arguments, union_disriminator,
expr.get_locus ());
return;
}
auto get_parameter_tyty_at_index
= [] (const TyTy::BaseType *base, size_t index,
TyTy::BaseType **result) -> bool {
bool is_fn = base->get_kind () == TyTy::TypeKind::FNDEF
|| base->get_kind () == TyTy::TypeKind::FNPTR;
rust_assert (is_fn);
if (base->get_kind () == TyTy::TypeKind::FNPTR)
{
const TyTy::FnPtr *fn = static_cast<const TyTy::FnPtr *> (base);
*result = fn->param_at (index);
return true;
}
const TyTy::FnType *fn = static_cast<const TyTy::FnType *> (base);
auto param = fn->param_at (index);
*result = param.second;
return true;
};
bool is_varadic = false;
if (tyty->get_kind () == TyTy::TypeKind::FNDEF)
{
const TyTy::FnType *fn = static_cast<const TyTy::FnType *> (tyty);
is_varadic = fn->is_varadic ();
}
size_t required_num_args;
if (tyty->get_kind () == TyTy::TypeKind::FNDEF)
{
const TyTy::FnType *fn = static_cast<const TyTy::FnType *> (tyty);
required_num_args = fn->num_params ();
}
else
{
const TyTy::FnPtr *fn = static_cast<const TyTy::FnPtr *> (tyty);
required_num_args = fn->num_params ();
}
std::vector<tree> args;
for (size_t i = 0; i < expr.get_arguments ().size (); i++)
{
auto &argument = expr.get_arguments ().at (i);
auto rvalue = CompileExpr::Compile (argument.get (), ctx);
if (is_varadic && i >= required_num_args)
{
args.push_back (rvalue);
continue;
}
// assignments are coercion sites so lets convert the rvalue if
// necessary
bool ok;
TyTy::BaseType *expected = nullptr;
ok = get_parameter_tyty_at_index (tyty, i, &expected);
rust_assert (ok);
TyTy::BaseType *actual = nullptr;
ok = ctx->get_tyctx ()->lookup_type (
argument->get_mappings ().get_hirid (), &actual);
rust_assert (ok);
// coerce it if required
rvalue = coercion_site (rvalue, actual, expected, expr.get_locus ());
// add it to the list
args.push_back (rvalue);
}
// must be a call to a function
auto fn_address = CompileExpr::Compile (expr.get_fnexpr (), ctx);
auto fncontext = ctx->peek_fn ();
translated
= ctx->get_backend ()->call_expression (fncontext.fndecl, fn_address, args,
nullptr, expr.get_locus ());
}
void
CompileExpr::visit (HIR::MethodCallExpr &expr)
{
// method receiver
tree self = CompileExpr::Compile (expr.get_receiver ().get (), ctx);
// lookup the resolved name
NodeId resolved_node_id = UNKNOWN_NODEID;
if (!ctx->get_resolver ()->lookup_resolved_name (
expr.get_mappings ().get_nodeid (), &resolved_node_id))
{
rust_error_at (expr.get_locus (), "failed to lookup resolved MethodCall");
return;
}
// reverse lookup
HirId ref;
if (!ctx->get_mappings ()->lookup_node_to_hir (
expr.get_mappings ().get_crate_num (), resolved_node_id, &ref))
{
rust_fatal_error (expr.get_locus (), "reverse lookup failure");
return;
}
// lookup the expected function type
TyTy::BaseType *lookup_fntype = nullptr;
bool ok = ctx->get_tyctx ()->lookup_type (
expr.get_method_name ().get_mappings ().get_hirid (), &lookup_fntype);
rust_assert (ok);
rust_assert (lookup_fntype->get_kind () == TyTy::TypeKind::FNDEF);
TyTy::FnType *fntype = static_cast<TyTy::FnType *> (lookup_fntype);
TyTy::BaseType *receiver = nullptr;
ok = ctx->get_tyctx ()->lookup_receiver (expr.get_mappings ().get_hirid (),
&receiver);
rust_assert (ok);
bool is_dyn_dispatch
= receiver->get_root ()->get_kind () == TyTy::TypeKind::DYNAMIC;
bool is_generic_receiver = receiver->get_kind () == TyTy::TypeKind::PARAM;
if (is_generic_receiver)
{
TyTy::ParamType *p = static_cast<TyTy::ParamType *> (receiver);
receiver = p->resolve ();
}
if (is_dyn_dispatch)
{
const TyTy::DynamicObjectType *dyn
= static_cast<const TyTy::DynamicObjectType *> (receiver->get_root ());
std::vector<HIR::Expr *> arguments;
for (auto &arg : expr.get_arguments ())
arguments.push_back (arg.get ());
translated = compile_dyn_dispatch_call (dyn, receiver, fntype, self,
arguments, expr.get_locus ());
return;
}
// lookup compiled functions since it may have already been compiled
HIR::PathExprSegment method_name = expr.get_method_name ();
HIR::PathIdentSegment segment_name = method_name.get_segment ();
tree fn_expr
= resolve_method_address (fntype, ref, receiver, segment_name,
expr.get_mappings (), expr.get_locus ());
// lookup the autoderef mappings
std::vector<Resolver::Adjustment> *adjustments = nullptr;
ok = ctx->get_tyctx ()->lookup_autoderef_mappings (
expr.get_mappings ().get_hirid (), &adjustments);
rust_assert (ok);
for (auto &adjustment : *adjustments)
{
switch (adjustment.get_type ())
{
case Resolver::Adjustment::AdjustmentType::IMM_REF:
case Resolver::Adjustment::AdjustmentType::MUT_REF:
self = ctx->get_backend ()->address_expression (
self, expr.get_receiver ()->get_locus ());
break;
case Resolver::Adjustment::AdjustmentType::DEREF_REF:
tree expected_type
= TyTyResolveCompile::compile (ctx, adjustment.get_expected ());
self = ctx->get_backend ()->indirect_expression (
expected_type, self, true, /* known_valid*/
expr.get_receiver ()->get_locus ());
break;
}
}
std::vector<tree> args;
args.push_back (self); // adjusted self
// normal args
for (size_t i = 0; i < expr.get_arguments ().size (); i++)
{
auto &argument = expr.get_arguments ().at (i);
auto rvalue = CompileExpr::Compile (argument.get (), ctx);
// assignments are coercion sites so lets convert the rvalue if
// necessary, offset from the already adjusted implicit self
bool ok;
TyTy::BaseType *expected = fntype->param_at (i + 1).second;
TyTy::BaseType *actual = nullptr;
ok = ctx->get_tyctx ()->lookup_type (
argument->get_mappings ().get_hirid (), &actual);
rust_assert (ok);
// coerce it if required
rvalue = coercion_site (rvalue, actual, expected, expr.get_locus ());
// add it to the list
args.push_back (rvalue);
}
auto fncontext = ctx->peek_fn ();
translated
= ctx->get_backend ()->call_expression (fncontext.fndecl, fn_expr, args,
nullptr, expr.get_locus ());
}
tree
CompileExpr::compile_dyn_dispatch_call (const TyTy::DynamicObjectType *dyn,
TyTy::BaseType *receiver,
TyTy::FnType *fntype, tree receiver_ref,
std::vector<HIR::Expr *> &arguments,
Location expr_locus)
{
size_t offs = 0;
const Resolver::TraitItemReference *ref = nullptr;
for (auto &bound : dyn->get_object_items ())
{
const Resolver::TraitItemReference *item = bound.first;
auto t = item->get_tyty ();
rust_assert (t->get_kind () == TyTy::TypeKind::FNDEF);
auto ft = static_cast<TyTy::FnType *> (t);
if (ft->get_id () == fntype->get_id ())
{
ref = item;
break;
}
offs++;
}
if (ref == nullptr)
return ctx->get_backend ()->error_expression ();
// get any indirection sorted out
if (receiver->get_kind () == TyTy::TypeKind::REF)
{
TyTy::ReferenceType *r = static_cast<TyTy::ReferenceType *> (receiver);
auto indirect_ty = r->get_base ();
tree indrect_compiled_tyty
= TyTyResolveCompile::compile (ctx, indirect_ty);
tree indirect
= ctx->get_backend ()->indirect_expression (indrect_compiled_tyty,
receiver_ref, true,
expr_locus);
receiver_ref = indirect;
}
// access the offs + 1 for the fnptr and offs=0 for the reciever obj
tree self_argument
= ctx->get_backend ()->struct_field_expression (receiver_ref, 0,
expr_locus);
// access the vtable for the fn
tree fn_vtable_access
= ctx->get_backend ()->struct_field_expression (receiver_ref, offs + 1,
expr_locus);
// cast it to the correct fntype
tree expected_fntype = TyTyResolveCompile::compile (ctx, fntype, true);
tree fn_convert_expr
= ctx->get_backend ()->convert_expression (expected_fntype,
fn_vtable_access, expr_locus);
fncontext fnctx = ctx->peek_fn ();
tree enclosing_scope = ctx->peek_enclosing_scope ();
bool is_address_taken = false;
tree ret_var_stmt = NULL_TREE;
Bvariable *fn_convert_expr_tmp
= ctx->get_backend ()->temporary_variable (fnctx.fndecl, enclosing_scope,
expected_fntype, fn_convert_expr,
is_address_taken, expr_locus,
&ret_var_stmt);
ctx->add_statement (ret_var_stmt);
std::vector<tree> args;
args.push_back (self_argument);
for (auto &argument : arguments)
{
tree compiled_expr = CompileExpr::Compile (argument, ctx);
args.push_back (compiled_expr);
}
tree fn_expr
= ctx->get_backend ()->var_expression (fn_convert_expr_tmp, expr_locus);
return ctx->get_backend ()->call_expression (fnctx.fndecl, fn_expr, args,
nullptr, expr_locus);
}
tree
CompileExpr::resolve_method_address (TyTy::FnType *fntype, HirId ref,
TyTy::BaseType *receiver,
HIR::PathIdentSegment &segment,
Analysis::NodeMapping expr_mappings,
Location expr_locus)
{
// lookup compiled functions since it may have already been compiled
tree fn = NULL_TREE;
if (ctx->lookup_function_decl (fntype->get_ty_ref (), &fn))
{
return ctx->get_backend ()->function_code_expression (fn, expr_locus);
}
// Now we can try and resolve the address since this might be a forward
// declared function, generic function which has not be compiled yet or
// its an not yet trait bound function
HIR::ImplItem *resolved_item
= ctx->get_mappings ()->lookup_hir_implitem (expr_mappings.get_crate_num (),
ref, nullptr);
if (resolved_item != nullptr)
{
if (!fntype->has_subsititions_defined ())
return CompileInherentImplItem::Compile (receiver, resolved_item, ctx,
true);
return CompileInherentImplItem::Compile (receiver, resolved_item, ctx,
true, fntype);
}
// it might be resolved to a trait item
HIR::TraitItem *trait_item = ctx->get_mappings ()->lookup_hir_trait_item (
expr_mappings.get_crate_num (), ref);
HIR::Trait *trait = ctx->get_mappings ()->lookup_trait_item_mapping (
trait_item->get_mappings ().get_hirid ());
Resolver::TraitReference *trait_ref
= &Resolver::TraitReference::error_node ();
bool ok = ctx->get_tyctx ()->lookup_trait_reference (
trait->get_mappings ().get_defid (), &trait_ref);
rust_assert (ok);
// the type resolver can only resolve type bounds to their trait
// item so its up to us to figure out if this path should resolve
// to an trait-impl-block-item or if it can be defaulted to the
// trait-impl-item's definition
auto root = receiver->get_root ();
std::vector<Resolver::PathProbeCandidate> candidates
= Resolver::PathProbeType::Probe (root, segment, true, false, true);
if (candidates.size () == 0)
{
// this means we are defaulting back to the trait_item if
// possible
Resolver::TraitItemReference *trait_item_ref = nullptr;
bool ok = trait_ref->lookup_hir_trait_item (*trait_item, &trait_item_ref);
rust_assert (ok); // found
rust_assert (trait_item_ref->is_optional ()); // has definition
// FIXME Optional means it has a definition and an associated
// block which can be a default implementation, if it does not
// contain an implementation we should actually return
// error_mark_node
return CompileTraitItem::Compile (receiver,
trait_item_ref->get_hir_trait_item (),
ctx, fntype, true, expr_locus);
}
else
{
std::vector<Resolver::Adjustment> adjustments;
Resolver::PathProbeCandidate *candidate
= Resolver::MethodResolution::Select (candidates, root, adjustments);
// FIXME this will be a case to return error_mark_node, there is
// an error scenario where a Trait Foo has a method Bar, but this
// receiver does not implement this trait or has an incompatible
// implementation and we should just return error_mark_node
rust_assert (candidate != nullptr);
rust_assert (candidate->is_impl_candidate ());
HIR::ImplItem *impl_item = candidate->item.impl.impl_item;
if (!fntype->has_subsititions_defined ())
return CompileInherentImplItem::Compile (receiver, impl_item, ctx,
true);
return CompileInherentImplItem::Compile (receiver, impl_item, ctx, true,
fntype);
}
}
tree
CompileExpr::resolve_operator_overload (
Analysis::RustLangItem::ItemType lang_item_type, HIR::OperatorExpr &expr,
tree lhs, tree rhs, HIR::Expr *lhs_expr, HIR::Expr *rhs_expr)
{
TyTy::FnType *fntype;
bool is_op_overload = ctx->get_tyctx ()->lookup_operator_overload (
expr.get_mappings ().get_hirid (), &fntype);
rust_assert (is_op_overload);
// lookup the resolved name
NodeId resolved_node_id = UNKNOWN_NODEID;
bool ok = ctx->get_resolver ()->lookup_resolved_name (
expr.get_mappings ().get_nodeid (), &resolved_node_id);
rust_assert (ok);
// reverse lookup
HirId ref;
ok = ctx->get_mappings ()->lookup_node_to_hir (
expr.get_mappings ().get_crate_num (), resolved_node_id, &ref);
rust_assert (ok);
TyTy::BaseType *receiver = nullptr;
ok = ctx->get_tyctx ()->lookup_receiver (expr.get_mappings ().get_hirid (),
&receiver);
rust_assert (ok);
bool is_dyn_dispatch
= receiver->get_root ()->get_kind () == TyTy::TypeKind::DYNAMIC;
bool is_generic_receiver = receiver->get_kind () == TyTy::TypeKind::PARAM;
if (is_generic_receiver)
{
TyTy::ParamType *p = static_cast<TyTy::ParamType *> (receiver);
receiver = p->resolve ();
}
if (is_dyn_dispatch)
{
const TyTy::DynamicObjectType *dyn
= static_cast<const TyTy::DynamicObjectType *> (receiver->get_root ());
std::vector<HIR::Expr *> arguments;
if (rhs_expr != nullptr) // can be null for negation_expr (unary ones)
arguments.push_back (rhs_expr);
return compile_dyn_dispatch_call (dyn, receiver, fntype, lhs, arguments,
expr.get_locus ());
}
// lookup compiled functions since it may have already been compiled
HIR::PathIdentSegment segment_name (
Analysis::RustLangItem::ToString (lang_item_type));
tree fn_expr
= resolve_method_address (fntype, ref, receiver, segment_name,
expr.get_mappings (), expr.get_locus ());
// lookup the autoderef mappings
std::vector<Resolver::Adjustment> *adjustments = nullptr;
ok = ctx->get_tyctx ()->lookup_autoderef_mappings (
expr.get_mappings ().get_hirid (), &adjustments);
rust_assert (ok);
// FIXME refactor this out
tree self = lhs;
for (auto &adjustment : *adjustments)
{
switch (adjustment.get_type ())
{
case Resolver::Adjustment::AdjustmentType::IMM_REF:
case Resolver::Adjustment::AdjustmentType::MUT_REF:
self
= ctx->get_backend ()->address_expression (self,
lhs_expr->get_locus ());
break;
case Resolver::Adjustment::AdjustmentType::DEREF_REF:
tree expected_type
= TyTyResolveCompile::compile (ctx, adjustment.get_expected ());
self
= ctx->get_backend ()->indirect_expression (expected_type, self,
true, /* known_valid*/
lhs_expr->get_locus ());
break;
}
}
std::vector<tree> args;
args.push_back (self); // adjusted self
if (rhs != nullptr) // can be null for negation_expr (unary ones)
args.push_back (rhs);
auto fncontext = ctx->peek_fn ();
return ctx->get_backend ()->call_expression (fncontext.fndecl, fn_expr, args,
nullptr, expr.get_locus ());
}
} // namespace Compile
} // namespace Rust
|