1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
|
/* Compute different info about registers.
Copyright (C) 1987-2019 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file contains regscan pass of the compiler and passes for
dealing with info about modes of pseudo-registers inside
subregisters. It also defines some tables of information about the
hardware registers, function init_reg_sets to initialize the
tables, and other auxiliary functions to deal with info about
registers and their classes. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "ira.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "reload.h"
#include "output.h"
#include "tree-pass.h"
/* Maximum register number used in this function, plus one. */
int max_regno;
/* Used to cache the results of simplifiable_subregs. SHAPE is the input
parameter and SIMPLIFIABLE_REGS is the result. */
class simplifiable_subreg
{
public:
simplifiable_subreg (const subreg_shape &);
subreg_shape shape;
HARD_REG_SET simplifiable_regs;
};
struct target_hard_regs default_target_hard_regs;
struct target_regs default_target_regs;
#if SWITCHABLE_TARGET
struct target_hard_regs *this_target_hard_regs = &default_target_hard_regs;
struct target_regs *this_target_regs = &default_target_regs;
#endif
#define call_used_regs \
(this_target_hard_regs->x_call_used_regs)
/* Data for initializing fixed_regs. */
static const char initial_fixed_regs[] = FIXED_REGISTERS;
/* Data for initializing call_used_regs. */
static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
#ifdef CALL_REALLY_USED_REGISTERS
/* Data for initializing call_really_used_regs. */
static const char initial_call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
#endif
#ifdef CALL_REALLY_USED_REGISTERS
#define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
#else
#define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
#endif
/* Indexed by hard register number, contains 1 for registers
that are being used for global register decls.
These must be exempt from ordinary flow analysis
and are also considered fixed. */
char global_regs[FIRST_PSEUDO_REGISTER];
/* Declaration for the global register. */
tree global_regs_decl[FIRST_PSEUDO_REGISTER];
/* Used to initialize reg_alloc_order. */
#ifdef REG_ALLOC_ORDER
static int initial_reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
#endif
/* The same information, but as an array of unsigned ints. We copy from
these unsigned ints to the table above. We do this so the tm.h files
do not have to be aware of the wordsize for machines with <= 64 regs.
Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
#define N_REG_INTS \
((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
= REG_CLASS_CONTENTS;
/* Array containing all of the register names. */
static const char *const initial_reg_names[] = REGISTER_NAMES;
/* Array containing all of the register class names. */
const char * reg_class_names[] = REG_CLASS_NAMES;
/* No more global register variables may be declared; true once
reginfo has been initialized. */
static int no_global_reg_vars = 0;
/* Given a register bitmap, turn on the bits in a HARD_REG_SET that
correspond to the hard registers, if any, set in that map. This
could be done far more efficiently by having all sorts of special-cases
with moving single words, but probably isn't worth the trouble. */
void
reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
{
unsigned i;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
{
if (i >= FIRST_PSEUDO_REGISTER)
return;
SET_HARD_REG_BIT (*to, i);
}
}
/* Function called only once per target_globals to initialize the
target_hard_regs structure. Once this is done, various switches
may override. */
void
init_reg_sets (void)
{
int i, j;
/* First copy the register information from the initial int form into
the regsets. */
for (i = 0; i < N_REG_CLASSES; i++)
{
CLEAR_HARD_REG_SET (reg_class_contents[i]);
/* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
if (int_reg_class_contents[i][j / 32]
& ((unsigned) 1 << (j % 32)))
SET_HARD_REG_BIT (reg_class_contents[i], j);
}
/* Sanity check: make sure the target macros FIXED_REGISTERS and
CALL_USED_REGISTERS had the right number of initializers. */
gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
#ifdef CALL_REALLY_USED_REGISTERS
gcc_assert (sizeof call_really_used_regs
== sizeof initial_call_really_used_regs);
#endif
#ifdef REG_ALLOC_ORDER
gcc_assert (sizeof reg_alloc_order == sizeof initial_reg_alloc_order);
#endif
gcc_assert (sizeof reg_names == sizeof initial_reg_names);
memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
#ifdef CALL_REALLY_USED_REGISTERS
memcpy (call_really_used_regs, initial_call_really_used_regs,
sizeof call_really_used_regs);
#endif
#ifdef REG_ALLOC_ORDER
memcpy (reg_alloc_order, initial_reg_alloc_order, sizeof reg_alloc_order);
#endif
memcpy (reg_names, initial_reg_names, sizeof reg_names);
SET_HARD_REG_SET (accessible_reg_set);
SET_HARD_REG_SET (operand_reg_set);
}
/* We need to save copies of some of the register information which
can be munged by command-line switches so we can restore it during
subsequent back-end reinitialization. */
static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
#ifdef CALL_REALLY_USED_REGISTERS
static char saved_call_really_used_regs[FIRST_PSEUDO_REGISTER];
#endif
static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
static HARD_REG_SET saved_accessible_reg_set;
static HARD_REG_SET saved_operand_reg_set;
/* Save the register information. */
void
save_register_info (void)
{
/* Sanity check: make sure the target macros FIXED_REGISTERS and
CALL_USED_REGISTERS had the right number of initializers. */
gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
/* Likewise for call_really_used_regs. */
#ifdef CALL_REALLY_USED_REGISTERS
gcc_assert (sizeof call_really_used_regs
== sizeof saved_call_really_used_regs);
memcpy (saved_call_really_used_regs, call_really_used_regs,
sizeof call_really_used_regs);
#endif
/* And similarly for reg_names. */
gcc_assert (sizeof reg_names == sizeof saved_reg_names);
memcpy (saved_reg_names, reg_names, sizeof reg_names);
saved_accessible_reg_set = accessible_reg_set;
saved_operand_reg_set = operand_reg_set;
}
/* Restore the register information. */
static void
restore_register_info (void)
{
memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
#ifdef CALL_REALLY_USED_REGISTERS
memcpy (call_really_used_regs, saved_call_really_used_regs,
sizeof call_really_used_regs);
#endif
memcpy (reg_names, saved_reg_names, sizeof reg_names);
accessible_reg_set = saved_accessible_reg_set;
operand_reg_set = saved_operand_reg_set;
}
/* After switches have been processed, which perhaps alter
`fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
static void
init_reg_sets_1 (void)
{
unsigned int i, j;
unsigned int /* machine_mode */ m;
restore_register_info ();
#ifdef REG_ALLOC_ORDER
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
inv_reg_alloc_order[reg_alloc_order[i]] = i;
#endif
/* Let the target tweak things if necessary. */
targetm.conditional_register_usage ();
/* Compute number of hard regs in each class. */
memset (reg_class_size, 0, sizeof reg_class_size);
for (i = 0; i < N_REG_CLASSES; i++)
{
bool any_nonfixed = false;
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
{
reg_class_size[i]++;
if (!fixed_regs[j])
any_nonfixed = true;
}
class_only_fixed_regs[i] = !any_nonfixed;
}
/* Initialize the table of subunions.
reg_class_subunion[I][J] gets the largest-numbered reg-class
that is contained in the union of classes I and J. */
memset (reg_class_subunion, 0, sizeof reg_class_subunion);
for (i = 0; i < N_REG_CLASSES; i++)
{
for (j = 0; j < N_REG_CLASSES; j++)
{
HARD_REG_SET c;
int k;
c = reg_class_contents[i] | reg_class_contents[j];
for (k = 0; k < N_REG_CLASSES; k++)
if (hard_reg_set_subset_p (reg_class_contents[k], c)
&& !hard_reg_set_subset_p (reg_class_contents[k],
reg_class_contents
[(int) reg_class_subunion[i][j]]))
reg_class_subunion[i][j] = (enum reg_class) k;
}
}
/* Initialize the table of superunions.
reg_class_superunion[I][J] gets the smallest-numbered reg-class
containing the union of classes I and J. */
memset (reg_class_superunion, 0, sizeof reg_class_superunion);
for (i = 0; i < N_REG_CLASSES; i++)
{
for (j = 0; j < N_REG_CLASSES; j++)
{
HARD_REG_SET c;
int k;
c = reg_class_contents[i] | reg_class_contents[j];
for (k = 0; k < N_REG_CLASSES; k++)
if (hard_reg_set_subset_p (c, reg_class_contents[k]))
break;
reg_class_superunion[i][j] = (enum reg_class) k;
}
}
/* Initialize the tables of subclasses and superclasses of each reg class.
First clear the whole table, then add the elements as they are found. */
for (i = 0; i < N_REG_CLASSES; i++)
{
for (j = 0; j < N_REG_CLASSES; j++)
reg_class_subclasses[i][j] = LIM_REG_CLASSES;
}
for (i = 0; i < N_REG_CLASSES; i++)
{
if (i == (int) NO_REGS)
continue;
for (j = i + 1; j < N_REG_CLASSES; j++)
if (hard_reg_set_subset_p (reg_class_contents[i],
reg_class_contents[j]))
{
/* Reg class I is a subclass of J.
Add J to the table of superclasses of I. */
enum reg_class *p;
/* Add I to the table of superclasses of J. */
p = ®_class_subclasses[j][0];
while (*p != LIM_REG_CLASSES) p++;
*p = (enum reg_class) i;
}
}
/* Initialize "constant" tables. */
CLEAR_HARD_REG_SET (fixed_reg_set);
CLEAR_HARD_REG_SET (regs_invalidated_by_call);
operand_reg_set &= accessible_reg_set;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
/* As a special exception, registers whose class is NO_REGS are
not accepted by `register_operand'. The reason for this change
is to allow the representation of special architecture artifacts
(such as a condition code register) without extending the rtl
definitions. Since registers of class NO_REGS cannot be used
as registers in any case where register classes are examined,
it is better to apply this exception in a target-independent way. */
if (REGNO_REG_CLASS (i) == NO_REGS)
CLEAR_HARD_REG_BIT (operand_reg_set, i);
/* If a register is too limited to be treated as a register operand,
then it should never be allocated to a pseudo. */
if (!TEST_HARD_REG_BIT (operand_reg_set, i))
{
fixed_regs[i] = 1;
call_used_regs[i] = 1;
}
/* call_used_regs must include fixed_regs. */
gcc_assert (!fixed_regs[i] || call_used_regs[i]);
#ifdef CALL_REALLY_USED_REGISTERS
/* call_used_regs must include call_really_used_regs. */
gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
#endif
if (fixed_regs[i])
SET_HARD_REG_BIT (fixed_reg_set, i);
/* There are a couple of fixed registers that we know are safe to
exclude from being clobbered by calls:
The frame pointer is always preserved across calls. The arg
pointer is if it is fixed. The stack pointer usually is,
unless TARGET_RETURN_POPS_ARGS, in which case an explicit
CLOBBER will be present. If we are generating PIC code, the
PIC offset table register is preserved across calls, though the
target can override that. */
if (i == STACK_POINTER_REGNUM)
;
else if (global_regs[i])
SET_HARD_REG_BIT (regs_invalidated_by_call, i);
else if (i == FRAME_POINTER_REGNUM)
;
else if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
&& i == HARD_FRAME_POINTER_REGNUM)
;
else if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
&& i == ARG_POINTER_REGNUM && fixed_regs[i])
;
else if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
&& i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
;
else if (CALL_REALLY_USED_REGNO_P (i))
SET_HARD_REG_BIT (regs_invalidated_by_call, i);
}
SET_HARD_REG_SET (savable_regs);
fixed_nonglobal_reg_set = fixed_reg_set;
/* Preserve global registers if called more than once. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (global_regs[i])
{
fixed_regs[i] = call_used_regs[i] = 1;
SET_HARD_REG_BIT (fixed_reg_set, i);
}
}
memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
{
HARD_REG_SET ok_regs, ok_regs2;
CLEAR_HARD_REG_SET (ok_regs);
CLEAR_HARD_REG_SET (ok_regs2);
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
if (!TEST_HARD_REG_BIT (fixed_nonglobal_reg_set, j)
&& targetm.hard_regno_mode_ok (j, (machine_mode) m))
{
SET_HARD_REG_BIT (ok_regs, j);
if (!fixed_regs[j])
SET_HARD_REG_BIT (ok_regs2, j);
}
for (i = 0; i < N_REG_CLASSES; i++)
if ((targetm.class_max_nregs ((reg_class_t) i, (machine_mode) m)
<= reg_class_size[i])
&& hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
{
contains_reg_of_mode[i][m] = 1;
if (hard_reg_set_intersect_p (ok_regs2, reg_class_contents[i]))
{
have_regs_of_mode[m] = 1;
contains_allocatable_reg_of_mode[i][m] = 1;
}
}
}
}
/* Compute the table of register modes.
These values are used to record death information for individual registers
(as opposed to a multi-register mode).
This function might be invoked more than once, if the target has support
for changing register usage conventions on a per-function basis.
*/
void
init_reg_modes_target (void)
{
int i, j;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
for (j = 0; j < MAX_MACHINE_MODE; j++)
this_target_regs->x_hard_regno_nregs[i][j]
= targetm.hard_regno_nregs (i, (machine_mode) j);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
/* If we couldn't find a valid mode, just use the previous mode
if it is suitable, otherwise fall back on word_mode. */
if (reg_raw_mode[i] == VOIDmode)
{
if (i > 0 && hard_regno_nregs (i, reg_raw_mode[i - 1]) == 1)
reg_raw_mode[i] = reg_raw_mode[i - 1];
else
reg_raw_mode[i] = word_mode;
}
}
}
/* Finish initializing the register sets and initialize the register modes.
This function might be invoked more than once, if the target has support
for changing register usage conventions on a per-function basis.
*/
void
init_regs (void)
{
/* This finishes what was started by init_reg_sets, but couldn't be done
until after register usage was specified. */
init_reg_sets_1 ();
}
/* The same as previous function plus initializing IRA. */
void
reinit_regs (void)
{
init_regs ();
/* caller_save needs to be re-initialized. */
caller_save_initialized_p = false;
if (this_target_rtl->target_specific_initialized)
{
ira_init ();
recog_init ();
}
}
/* Initialize some fake stack-frame MEM references for use in
memory_move_secondary_cost. */
void
init_fake_stack_mems (void)
{
int i;
for (i = 0; i < MAX_MACHINE_MODE; i++)
top_of_stack[i] = gen_rtx_MEM ((machine_mode) i, stack_pointer_rtx);
}
/* Compute cost of moving data from a register of class FROM to one of
TO, using MODE. */
int
register_move_cost (machine_mode mode, reg_class_t from, reg_class_t to)
{
return targetm.register_move_cost (mode, from, to);
}
/* Compute cost of moving registers to/from memory. */
int
memory_move_cost (machine_mode mode, reg_class_t rclass, bool in)
{
return targetm.memory_move_cost (mode, rclass, in);
}
/* Compute extra cost of moving registers to/from memory due to reloads.
Only needed if secondary reloads are required for memory moves. */
int
memory_move_secondary_cost (machine_mode mode, reg_class_t rclass,
bool in)
{
reg_class_t altclass;
int partial_cost = 0;
/* We need a memory reference to feed to SECONDARY... macros. */
/* mem may be unused even if the SECONDARY_ macros are defined. */
rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
if (altclass == NO_REGS)
return 0;
if (in)
partial_cost = register_move_cost (mode, altclass, rclass);
else
partial_cost = register_move_cost (mode, rclass, altclass);
if (rclass == altclass)
/* This isn't simply a copy-to-temporary situation. Can't guess
what it is, so TARGET_MEMORY_MOVE_COST really ought not to be
calling here in that case.
I'm tempted to put in an assert here, but returning this will
probably only give poor estimates, which is what we would've
had before this code anyways. */
return partial_cost;
/* Check if the secondary reload register will also need a
secondary reload. */
return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
}
/* Return a machine mode that is legitimate for hard reg REGNO and large
enough to save nregs. If we can't find one, return VOIDmode.
If CALL_SAVED is true, only consider modes that are call saved. */
machine_mode
choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
unsigned int nregs, bool call_saved)
{
unsigned int /* machine_mode */ m;
machine_mode found_mode = VOIDmode, mode;
/* We first look for the largest integer mode that can be validly
held in REGNO. If none, we look for the largest floating-point mode.
If we still didn't find a valid mode, try CCmode.
The tests use maybe_gt rather than known_gt because we want (for example)
N V4SFs to win over plain V4SF even though N might be 1. */
FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
if (hard_regno_nregs (regno, mode) == nregs
&& targetm.hard_regno_mode_ok (regno, mode)
&& (!call_saved
|| !targetm.hard_regno_call_part_clobbered (NULL, regno, mode))
&& maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
found_mode = mode;
FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
if (hard_regno_nregs (regno, mode) == nregs
&& targetm.hard_regno_mode_ok (regno, mode)
&& (!call_saved
|| !targetm.hard_regno_call_part_clobbered (NULL, regno, mode))
&& maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
found_mode = mode;
FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
if (hard_regno_nregs (regno, mode) == nregs
&& targetm.hard_regno_mode_ok (regno, mode)
&& (!call_saved
|| !targetm.hard_regno_call_part_clobbered (NULL, regno, mode))
&& maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
found_mode = mode;
FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
if (hard_regno_nregs (regno, mode) == nregs
&& targetm.hard_regno_mode_ok (regno, mode)
&& (!call_saved
|| !targetm.hard_regno_call_part_clobbered (NULL, regno, mode))
&& maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
found_mode = mode;
if (found_mode != VOIDmode)
return found_mode;
/* Iterate over all of the CCmodes. */
for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
{
mode = (machine_mode) m;
if (hard_regno_nregs (regno, mode) == nregs
&& targetm.hard_regno_mode_ok (regno, mode)
&& (!call_saved
|| !targetm.hard_regno_call_part_clobbered (NULL, regno, mode)))
return mode;
}
/* We can't find a mode valid for this register. */
return VOIDmode;
}
/* Specify the usage characteristics of the register named NAME.
It should be a fixed register if FIXED and a
call-used register if CALL_USED. */
void
fix_register (const char *name, int fixed, int call_used)
{
int i;
int reg, nregs;
/* Decode the name and update the primary form of
the register info. */
if ((reg = decode_reg_name_and_count (name, &nregs)) >= 0)
{
gcc_assert (nregs >= 1);
for (i = reg; i < reg + nregs; i++)
{
if ((i == STACK_POINTER_REGNUM
#ifdef HARD_FRAME_POINTER_REGNUM
|| i == HARD_FRAME_POINTER_REGNUM
#else
|| i == FRAME_POINTER_REGNUM
#endif
)
&& (fixed == 0 || call_used == 0))
{
switch (fixed)
{
case 0:
switch (call_used)
{
case 0:
error ("cannot use %qs as a call-saved register", name);
break;
case 1:
error ("cannot use %qs as a call-used register", name);
break;
default:
gcc_unreachable ();
}
break;
case 1:
switch (call_used)
{
case 1:
error ("cannot use %qs as a fixed register", name);
break;
case 0:
default:
gcc_unreachable ();
}
break;
default:
gcc_unreachable ();
}
}
else
{
fixed_regs[i] = fixed;
call_used_regs[i] = call_used;
#ifdef CALL_REALLY_USED_REGISTERS
if (fixed == 0)
call_really_used_regs[i] = call_used;
#endif
}
}
}
else
{
warning (0, "unknown register name: %s", name);
}
}
/* Mark register number I as global. */
void
globalize_reg (tree decl, int i)
{
location_t loc = DECL_SOURCE_LOCATION (decl);
#ifdef STACK_REGS
if (IN_RANGE (i, FIRST_STACK_REG, LAST_STACK_REG))
{
error ("stack register used for global register variable");
return;
}
#endif
if (fixed_regs[i] == 0 && no_global_reg_vars)
error_at (loc, "global register variable follows a function definition");
if (global_regs[i])
{
auto_diagnostic_group d;
warning_at (loc, 0,
"register of %qD used for multiple global register variables",
decl);
inform (DECL_SOURCE_LOCATION (global_regs_decl[i]),
"conflicts with %qD", global_regs_decl[i]);
return;
}
if (call_used_regs[i] && ! fixed_regs[i])
warning_at (loc, 0, "call-clobbered register used for global register variable");
global_regs[i] = 1;
global_regs_decl[i] = decl;
/* If we're globalizing the frame pointer, we need to set the
appropriate regs_invalidated_by_call bit, even if it's already
set in fixed_regs. */
if (i != STACK_POINTER_REGNUM)
SET_HARD_REG_BIT (regs_invalidated_by_call, i);
/* If already fixed, nothing else to do. */
if (fixed_regs[i])
return;
fixed_regs[i] = call_used_regs[i] = 1;
#ifdef CALL_REALLY_USED_REGISTERS
call_really_used_regs[i] = 1;
#endif
SET_HARD_REG_BIT (fixed_reg_set, i);
reinit_regs ();
}
/* Structure used to record preferences of given pseudo. */
struct reg_pref
{
/* (enum reg_class) prefclass is the preferred class. May be
NO_REGS if no class is better than memory. */
char prefclass;
/* altclass is a register class that we should use for allocating
pseudo if no register in the preferred class is available.
If no register in this class is available, memory is preferred.
It might appear to be more general to have a bitmask of classes here,
but since it is recommended that there be a class corresponding to the
union of most major pair of classes, that generality is not required. */
char altclass;
/* allocnoclass is a register class that IRA uses for allocating
the pseudo. */
char allocnoclass;
};
/* Record preferences of each pseudo. This is available after RA is
run. */
static struct reg_pref *reg_pref;
/* Current size of reg_info. */
static int reg_info_size;
/* Max_reg_num still last resize_reg_info call. */
static int max_regno_since_last_resize;
/* Return the reg_class in which pseudo reg number REGNO is best allocated.
This function is sometimes called before the info has been computed.
When that happens, just return GENERAL_REGS, which is innocuous. */
enum reg_class
reg_preferred_class (int regno)
{
if (reg_pref == 0)
return GENERAL_REGS;
gcc_assert (regno < reg_info_size);
return (enum reg_class) reg_pref[regno].prefclass;
}
enum reg_class
reg_alternate_class (int regno)
{
if (reg_pref == 0)
return ALL_REGS;
gcc_assert (regno < reg_info_size);
return (enum reg_class) reg_pref[regno].altclass;
}
/* Return the reg_class which is used by IRA for its allocation. */
enum reg_class
reg_allocno_class (int regno)
{
if (reg_pref == 0)
return NO_REGS;
gcc_assert (regno < reg_info_size);
return (enum reg_class) reg_pref[regno].allocnoclass;
}
/* Allocate space for reg info and initilize it. */
static void
allocate_reg_info (void)
{
int i;
max_regno_since_last_resize = max_reg_num ();
reg_info_size = max_regno_since_last_resize * 3 / 2 + 1;
gcc_assert (! reg_pref && ! reg_renumber);
reg_renumber = XNEWVEC (short, reg_info_size);
reg_pref = XCNEWVEC (struct reg_pref, reg_info_size);
memset (reg_renumber, -1, reg_info_size * sizeof (short));
for (i = 0; i < reg_info_size; i++)
{
reg_pref[i].prefclass = GENERAL_REGS;
reg_pref[i].altclass = ALL_REGS;
reg_pref[i].allocnoclass = GENERAL_REGS;
}
}
/* Resize reg info. The new elements will be initialized. Return TRUE
if new pseudos were added since the last call. */
bool
resize_reg_info (void)
{
int old, i;
bool change_p;
if (reg_pref == NULL)
{
allocate_reg_info ();
return true;
}
change_p = max_regno_since_last_resize != max_reg_num ();
max_regno_since_last_resize = max_reg_num ();
if (reg_info_size >= max_reg_num ())
return change_p;
old = reg_info_size;
reg_info_size = max_reg_num () * 3 / 2 + 1;
gcc_assert (reg_pref && reg_renumber);
reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size);
reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size);
memset (reg_pref + old, -1,
(reg_info_size - old) * sizeof (struct reg_pref));
memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short));
for (i = old; i < reg_info_size; i++)
{
reg_pref[i].prefclass = GENERAL_REGS;
reg_pref[i].altclass = ALL_REGS;
reg_pref[i].allocnoclass = GENERAL_REGS;
}
return true;
}
/* Free up the space allocated by allocate_reg_info. */
void
free_reg_info (void)
{
if (reg_pref)
{
free (reg_pref);
reg_pref = NULL;
}
if (reg_renumber)
{
free (reg_renumber);
reg_renumber = NULL;
}
}
/* Initialize some global data for this pass. */
static unsigned int
reginfo_init (void)
{
if (df)
df_compute_regs_ever_live (true);
/* This prevents dump_reg_info from losing if called
before reginfo is run. */
reg_pref = NULL;
reg_info_size = max_regno_since_last_resize = 0;
/* No more global register variables may be declared. */
no_global_reg_vars = 1;
return 1;
}
namespace {
const pass_data pass_data_reginfo_init =
{
RTL_PASS, /* type */
"reginfo", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_reginfo_init : public rtl_opt_pass
{
public:
pass_reginfo_init (gcc::context *ctxt)
: rtl_opt_pass (pass_data_reginfo_init, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *) { return reginfo_init (); }
}; // class pass_reginfo_init
} // anon namespace
rtl_opt_pass *
make_pass_reginfo_init (gcc::context *ctxt)
{
return new pass_reginfo_init (ctxt);
}
/* Set up preferred, alternate, and allocno classes for REGNO as
PREFCLASS, ALTCLASS, and ALLOCNOCLASS. */
void
setup_reg_classes (int regno,
enum reg_class prefclass, enum reg_class altclass,
enum reg_class allocnoclass)
{
if (reg_pref == NULL)
return;
gcc_assert (reg_info_size >= max_reg_num ());
reg_pref[regno].prefclass = prefclass;
reg_pref[regno].altclass = altclass;
reg_pref[regno].allocnoclass = allocnoclass;
}
/* This is the `regscan' pass of the compiler, run just before cse and
again just before loop. It finds the first and last use of each
pseudo-register. */
static void reg_scan_mark_refs (rtx, rtx_insn *);
void
reg_scan (rtx_insn *f, unsigned int nregs ATTRIBUTE_UNUSED)
{
rtx_insn *insn;
timevar_push (TV_REG_SCAN);
for (insn = f; insn; insn = NEXT_INSN (insn))
if (INSN_P (insn))
{
reg_scan_mark_refs (PATTERN (insn), insn);
if (REG_NOTES (insn))
reg_scan_mark_refs (REG_NOTES (insn), insn);
}
timevar_pop (TV_REG_SCAN);
}
/* X is the expression to scan. INSN is the insn it appears in.
NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
We should only record information for REGs with numbers
greater than or equal to MIN_REGNO. */
static void
reg_scan_mark_refs (rtx x, rtx_insn *insn)
{
enum rtx_code code;
rtx dest;
rtx note;
if (!x)
return;
code = GET_CODE (x);
switch (code)
{
case CONST:
CASE_CONST_ANY:
case CC0:
case PC:
case SYMBOL_REF:
case LABEL_REF:
case ADDR_VEC:
case ADDR_DIFF_VEC:
case REG:
return;
case EXPR_LIST:
if (XEXP (x, 0))
reg_scan_mark_refs (XEXP (x, 0), insn);
if (XEXP (x, 1))
reg_scan_mark_refs (XEXP (x, 1), insn);
break;
case INSN_LIST:
case INT_LIST:
if (XEXP (x, 1))
reg_scan_mark_refs (XEXP (x, 1), insn);
break;
case CLOBBER:
if (MEM_P (XEXP (x, 0)))
reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
break;
case CLOBBER_HIGH:
gcc_assert (!(MEM_P (XEXP (x, 0))));
break;
case SET:
/* Count a set of the destination if it is a register. */
for (dest = SET_DEST (x);
GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
|| GET_CODE (dest) == ZERO_EXTRACT;
dest = XEXP (dest, 0))
;
/* If this is setting a pseudo from another pseudo or the sum of a
pseudo and a constant integer and the other pseudo is known to be
a pointer, set the destination to be a pointer as well.
Likewise if it is setting the destination from an address or from a
value equivalent to an address or to the sum of an address and
something else.
But don't do any of this if the pseudo corresponds to a user
variable since it should have already been set as a pointer based
on the type. */
if (REG_P (SET_DEST (x))
&& REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
/* If the destination pseudo is set more than once, then other
sets might not be to a pointer value (consider access to a
union in two threads of control in the presence of global
optimizations). So only set REG_POINTER on the destination
pseudo if this is the only set of that pseudo. */
&& DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
&& ! REG_USERVAR_P (SET_DEST (x))
&& ! REG_POINTER (SET_DEST (x))
&& ((REG_P (SET_SRC (x))
&& REG_POINTER (SET_SRC (x)))
|| ((GET_CODE (SET_SRC (x)) == PLUS
|| GET_CODE (SET_SRC (x)) == LO_SUM)
&& CONST_INT_P (XEXP (SET_SRC (x), 1))
&& REG_P (XEXP (SET_SRC (x), 0))
&& REG_POINTER (XEXP (SET_SRC (x), 0)))
|| GET_CODE (SET_SRC (x)) == CONST
|| GET_CODE (SET_SRC (x)) == SYMBOL_REF
|| GET_CODE (SET_SRC (x)) == LABEL_REF
|| (GET_CODE (SET_SRC (x)) == HIGH
&& (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
|| GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
|| GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
|| ((GET_CODE (SET_SRC (x)) == PLUS
|| GET_CODE (SET_SRC (x)) == LO_SUM)
&& (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
|| GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
|| GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
|| ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
&& (GET_CODE (XEXP (note, 0)) == CONST
|| GET_CODE (XEXP (note, 0)) == SYMBOL_REF
|| GET_CODE (XEXP (note, 0)) == LABEL_REF))))
REG_POINTER (SET_DEST (x)) = 1;
/* If this is setting a register from a register or from a simple
conversion of a register, propagate REG_EXPR. */
if (REG_P (dest) && !REG_ATTRS (dest))
set_reg_attrs_from_value (dest, SET_SRC (x));
/* fall through */
default:
{
const char *fmt = GET_RTX_FORMAT (code);
int i;
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
reg_scan_mark_refs (XEXP (x, i), insn);
else if (fmt[i] == 'E' && XVEC (x, i) != 0)
{
int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
reg_scan_mark_refs (XVECEXP (x, i, j), insn);
}
}
}
}
}
/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
is also in C2. */
int
reg_class_subset_p (reg_class_t c1, reg_class_t c2)
{
return (c1 == c2
|| c2 == ALL_REGS
|| hard_reg_set_subset_p (reg_class_contents[(int) c1],
reg_class_contents[(int) c2]));
}
/* Return nonzero if there is a register that is in both C1 and C2. */
int
reg_classes_intersect_p (reg_class_t c1, reg_class_t c2)
{
return (c1 == c2
|| c1 == ALL_REGS
|| c2 == ALL_REGS
|| hard_reg_set_intersect_p (reg_class_contents[(int) c1],
reg_class_contents[(int) c2]));
}
inline hashval_t
simplifiable_subregs_hasher::hash (const simplifiable_subreg *value)
{
inchash::hash h;
h.add_hwi (value->shape.unique_id ());
return h.end ();
}
inline bool
simplifiable_subregs_hasher::equal (const simplifiable_subreg *value,
const subreg_shape *compare)
{
return value->shape == *compare;
}
inline simplifiable_subreg::simplifiable_subreg (const subreg_shape &shape_in)
: shape (shape_in)
{
CLEAR_HARD_REG_SET (simplifiable_regs);
}
/* Return the set of hard registers that are able to form the subreg
described by SHAPE. */
const HARD_REG_SET &
simplifiable_subregs (const subreg_shape &shape)
{
if (!this_target_hard_regs->x_simplifiable_subregs)
this_target_hard_regs->x_simplifiable_subregs
= new hash_table <simplifiable_subregs_hasher> (30);
inchash::hash h;
h.add_hwi (shape.unique_id ());
simplifiable_subreg **slot
= (this_target_hard_regs->x_simplifiable_subregs
->find_slot_with_hash (&shape, h.end (), INSERT));
if (!*slot)
{
simplifiable_subreg *info = new simplifiable_subreg (shape);
for (unsigned int i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
if (targetm.hard_regno_mode_ok (i, shape.inner_mode)
&& simplify_subreg_regno (i, shape.inner_mode, shape.offset,
shape.outer_mode) >= 0)
SET_HARD_REG_BIT (info->simplifiable_regs, i);
*slot = info;
}
return (*slot)->simplifiable_regs;
}
/* Passes for keeping and updating info about modes of registers
inside subregisters. */
static HARD_REG_SET **valid_mode_changes;
static obstack valid_mode_changes_obstack;
/* Restrict the choice of register for SUBREG_REG (SUBREG) based
on information about SUBREG.
If PARTIAL_DEF, SUBREG is a partial definition of a multipart inner
register and we want to ensure that the other parts of the inner
register are correctly preserved. If !PARTIAL_DEF we need to
ensure that SUBREG itself can be formed. */
static void
record_subregs_of_mode (rtx subreg, bool partial_def)
{
unsigned int regno;
if (!REG_P (SUBREG_REG (subreg)))
return;
regno = REGNO (SUBREG_REG (subreg));
if (regno < FIRST_PSEUDO_REGISTER)
return;
subreg_shape shape (shape_of_subreg (subreg));
if (partial_def)
{
/* The number of independently-accessible SHAPE.outer_mode values
in SHAPE.inner_mode is GET_MODE_SIZE (SHAPE.inner_mode) / SIZE.
We need to check that the assignment will preserve all the other
SIZE-byte chunks in the inner register besides the one that
includes SUBREG.
In practice it is enough to check whether an equivalent
SHAPE.inner_mode value in an adjacent SIZE-byte chunk can be formed.
If the underlying registers are small enough, both subregs will
be valid. If the underlying registers are too large, one of the
subregs will be invalid.
This relies on the fact that we've already been passed
SUBREG with PARTIAL_DEF set to false.
The size of the outer mode must ordered wrt the size of the
inner mode's registers, since otherwise we wouldn't know at
compile time how many registers the outer mode occupies. */
poly_uint64 size = ordered_max (REGMODE_NATURAL_SIZE (shape.inner_mode),
GET_MODE_SIZE (shape.outer_mode));
gcc_checking_assert (known_lt (size, GET_MODE_SIZE (shape.inner_mode)));
if (known_ge (shape.offset, size))
shape.offset -= size;
else
shape.offset += size;
}
if (valid_mode_changes[regno])
*valid_mode_changes[regno] &= simplifiable_subregs (shape);
else
{
valid_mode_changes[regno]
= XOBNEW (&valid_mode_changes_obstack, HARD_REG_SET);
*valid_mode_changes[regno] = simplifiable_subregs (shape);
}
}
/* Call record_subregs_of_mode for all the subregs in X. */
static void
find_subregs_of_mode (rtx x)
{
enum rtx_code code = GET_CODE (x);
const char * const fmt = GET_RTX_FORMAT (code);
int i;
if (code == SUBREG)
record_subregs_of_mode (x, false);
/* Time for some deep diving. */
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
find_subregs_of_mode (XEXP (x, i));
else if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
find_subregs_of_mode (XVECEXP (x, i, j));
}
}
}
void
init_subregs_of_mode (void)
{
basic_block bb;
rtx_insn *insn;
gcc_obstack_init (&valid_mode_changes_obstack);
valid_mode_changes = XCNEWVEC (HARD_REG_SET *, max_reg_num ());
FOR_EACH_BB_FN (bb, cfun)
FOR_BB_INSNS (bb, insn)
if (NONDEBUG_INSN_P (insn))
{
find_subregs_of_mode (PATTERN (insn));
df_ref def;
FOR_EACH_INSN_DEF (def, insn)
if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
&& read_modify_subreg_p (DF_REF_REG (def)))
record_subregs_of_mode (DF_REF_REG (def), true);
}
}
const HARD_REG_SET *
valid_mode_changes_for_regno (unsigned int regno)
{
return valid_mode_changes[regno];
}
void
finish_subregs_of_mode (void)
{
XDELETEVEC (valid_mode_changes);
obstack_free (&valid_mode_changes_obstack, NULL);
}
/* Free all data attached to the structure. This isn't a destructor because
we don't want to run on exit. */
void
target_hard_regs::finalize ()
{
delete x_simplifiable_subregs;
}
|