aboutsummaryrefslogtreecommitdiff
path: root/gcc/ra-rewrite.c
blob: 5cb1bb95522ada5fc04aa58b0e5f41125d7d117f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
/* Graph coloring register allocator
   Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
   Contributed by Michael Matz <matz@suse.de>
   and Daniel Berlin <dan@cgsoftware.com>.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it under the
   terms of the GNU General Public License as published by the Free Software
   Foundation; either version 2, or (at your option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT ANY
   WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
   FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
   details.

   You should have received a copy of the GNU General Public License along
   with GCC; see the file COPYING.  If not, write to the Free Software
   Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tm_p.h"
#include "function.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "df.h"
#include "expr.h"
#include "output.h"
#include "except.h"
#include "ra.h"
#include "insn-config.h"
#include "reload.h"

/* This file is part of the graph coloring register allocator, and
   contains the functions to change the insn stream.  I.e. it adds
   spill code, rewrites insns to use the new registers after
   coloring and deletes coalesced moves.  */

struct rewrite_info;
struct rtx_list;

static void spill_coalescing PARAMS ((sbitmap, sbitmap));
static unsigned HOST_WIDE_INT spill_prop_savings PARAMS ((struct web *,
							  sbitmap));
static void spill_prop_insert PARAMS ((struct web *, sbitmap, sbitmap));
static int spill_propagation PARAMS ((sbitmap, sbitmap, sbitmap));
static void spill_coalprop PARAMS ((void));
static void allocate_spill_web PARAMS ((struct web *));
static void choose_spill_colors PARAMS ((void));
static void rewrite_program PARAMS ((bitmap));
static void remember_slot PARAMS ((struct rtx_list **, rtx));
static int slots_overlap_p PARAMS ((rtx, rtx));
static void delete_overlapping_slots PARAMS ((struct rtx_list **, rtx));
static int slot_member_p PARAMS ((struct rtx_list *, rtx));
static void insert_stores PARAMS ((bitmap));
static int spill_same_color_p PARAMS ((struct web *, struct web *));
static bool is_partly_live_1 PARAMS ((sbitmap, struct web *));
static void update_spill_colors PARAMS ((HARD_REG_SET *, struct web *, int));
static int spill_is_free PARAMS ((HARD_REG_SET *, struct web *));
static void emit_loads PARAMS ((struct rewrite_info *, int, rtx));
static void reloads_to_loads PARAMS ((struct rewrite_info *, struct ref **,
				      unsigned int, struct web **));
static void rewrite_program2 PARAMS ((bitmap));
static void mark_refs_for_checking PARAMS ((struct web *, bitmap));
static void detect_web_parts_to_rebuild PARAMS ((void));
static void delete_useless_defs PARAMS ((void));
static void detect_non_changed_webs PARAMS ((void));
static void reset_changed_flag PARAMS ((void));

/* For tracking some statistics, we count the number (and cost)
   of deleted move insns.  */
static unsigned int deleted_move_insns;
static unsigned HOST_WIDE_INT deleted_move_cost;

/* This is the spill coalescing phase.  In SPILLED the IDs of all
   already spilled webs are noted.  In COALESCED the IDs of webs still
   to check for coalescing.  This tries to coalesce two webs, which were
   spilled, are connected by a move, and don't conflict.  Greatly
   reduces memory shuffling.  */

static void
spill_coalescing (coalesce, spilled)
     sbitmap coalesce, spilled;
{
  struct move_list *ml;
  struct move *m;
  for (ml = wl_moves; ml; ml = ml->next)
    if ((m = ml->move) != NULL)
      {
	struct web *s = alias (m->source_web);
	struct web *t = alias (m->target_web);
	if ((TEST_BIT (spilled, s->id) && TEST_BIT (coalesce, t->id))
	    || (TEST_BIT (spilled, t->id) && TEST_BIT (coalesce, s->id)))
	  {
	    struct conflict_link *wl;
	    if (TEST_BIT (sup_igraph, s->id * num_webs + t->id)
		|| TEST_BIT (sup_igraph, t->id * num_webs + s->id)
		|| s->pattern || t->pattern)
	      continue;

	    deleted_move_insns++;
	    deleted_move_cost += BLOCK_FOR_INSN (m->insn)->frequency + 1;
	    PUT_CODE (m->insn, NOTE);
	    NOTE_LINE_NUMBER (m->insn) = NOTE_INSN_DELETED;
	    df_insn_modify (df, BLOCK_FOR_INSN (m->insn), m->insn);

	    m->target_web->target_of_spilled_move = 1;
	    if (s == t)
	      /* May be, already coalesced due to a former move.  */
	      continue;
	    /* Merge the nodes S and T in the I-graph.  Beware: the merging
	       of conflicts relies on the fact, that in the conflict list
	       of T all of it's conflicts are noted.  This is currently not
	       the case if T would be the target of a coalesced web, because
	       then (in combine () above) only those conflicts were noted in
	       T from the web which was coalesced into T, which at the time
	       of combine() were not already on the SELECT stack or were
	       itself coalesced to something other.  */
	    if (t->type != SPILLED || s->type != SPILLED)
	      abort ();
	    remove_list (t->dlink, &WEBS(SPILLED));
	    put_web (t, COALESCED);
	    t->alias = s;
	    s->is_coalesced = 1;
	    t->is_coalesced = 1;
	    merge_moves (s, t);
	    for (wl = t->conflict_list; wl; wl = wl->next)
	      {
		struct web *pweb = wl->t;
		if (wl->sub == NULL)
		  record_conflict (s, pweb);
		else
		  {
		    struct sub_conflict *sl;
		    for (sl = wl->sub; sl; sl = sl->next)
		      {
			struct web *sweb = NULL;
			if (SUBWEB_P (sl->s))
			  sweb = find_subweb (s, sl->s->orig_x);
			if (!sweb)
			  sweb = s;
			record_conflict (sweb, sl->t);
		      }
		  }
		/* No decrement_degree here, because we already have colored
		   the graph, and don't want to insert pweb into any other
		   list.  */
		pweb->num_conflicts -= 1 + t->add_hardregs;
	      }
	  }
      }
}

/* Returns the probable saving of coalescing WEB with webs from
   SPILLED, in terms of removed move insn cost.  */

static unsigned HOST_WIDE_INT
spill_prop_savings (web, spilled)
     struct web *web;
     sbitmap spilled;
{
  unsigned HOST_WIDE_INT savings = 0;
  struct move_list *ml;
  struct move *m;
  unsigned int cost;
  if (web->pattern)
    return 0;
  cost = 1 + MEMORY_MOVE_COST (GET_MODE (web->orig_x), web->regclass, 1);
  cost += 1 + MEMORY_MOVE_COST (GET_MODE (web->orig_x), web->regclass, 0);
  for (ml = wl_moves; ml; ml = ml->next)
    if ((m = ml->move) != NULL)
      {
	struct web *s = alias (m->source_web);
	struct web *t = alias (m->target_web);
	if (s != web)
	  {
	    struct web *h = s;
	    s = t;
	    t = h;
	  }
	if (s != web || !TEST_BIT (spilled, t->id) || t->pattern
	    || TEST_BIT (sup_igraph, s->id * num_webs + t->id)
	    || TEST_BIT (sup_igraph, t->id * num_webs + s->id))
	  continue;
	savings += BLOCK_FOR_INSN (m->insn)->frequency * cost;
      }
  return savings;
}

/* This add all IDs of colored webs, which are connected to WEB by a move
   to LIST and PROCESSED.  */

static void
spill_prop_insert (web, list, processed)
     struct web *web;
     sbitmap list, processed;
{
  struct move_list *ml;
  struct move *m;
  for (ml = wl_moves; ml; ml = ml->next)
    if ((m = ml->move) != NULL)
      {
	struct web *s = alias (m->source_web);
	struct web *t = alias (m->target_web);
	if (s != web)
	  {
	    struct web *h = s;
	    s = t;
	    t = h;
	  }
	if (s != web || t->type != COLORED || TEST_BIT (processed, t->id))
	  continue;
	SET_BIT (list, t->id);
	SET_BIT (processed, t->id);
      }
}

/* The spill propagation pass.  If we have to spilled webs, the first
   connected through a move to a colored one, and the second also connected
   to that colored one, and this colored web is only used to connect both
   spilled webs, it might be worthwhile to spill that colored one.
   This is the case, if the cost of the removed copy insns (all three webs
   could be placed into the same stack slot) is higher than the spill cost
   of the web.
   TO_PROP are the webs we try to propagate from (i.e. spilled ones),
   SPILLED the set of all spilled webs so far and PROCESSED the set
   of all webs processed so far, so we don't do work twice.  */

static int
spill_propagation (to_prop, spilled, processed)
     sbitmap to_prop, spilled, processed;
{
  int id;
  int again = 0;
  sbitmap list = sbitmap_alloc (num_webs);
  sbitmap_zero (list);

  /* First insert colored move neighbors into the candidate list.  */
  EXECUTE_IF_SET_IN_SBITMAP (to_prop, 0, id,
    {
      spill_prop_insert (ID2WEB (id), list, processed);
    });
  sbitmap_zero (to_prop);

  /* For all candidates, see, if the savings are higher than it's
     spill cost.  */
  while ((id = sbitmap_first_set_bit (list)) >= 0)
    {
      struct web *web = ID2WEB (id);
      RESET_BIT (list, id);
      if (spill_prop_savings (web, spilled) >= web->spill_cost)
	{
	  /* If so, we found a new spilled web.  Insert it's colored
	     move neighbors again, and mark, that we need to repeat the
	     whole mainloop of spillprog/coalescing again.  */
	  remove_web_from_list (web);
	  web->color = -1;
	  put_web (web, SPILLED);
	  SET_BIT (spilled, id);
	  SET_BIT (to_prop, id);
	  spill_prop_insert (web, list, processed);
	  again = 1;
	}
    }
  sbitmap_free (list);
  return again;
}

/* The main phase to improve spill costs.  This repeatedly runs
   spill coalescing and spill propagation, until nothing changes.  */

static void
spill_coalprop ()
{
  sbitmap spilled, processed, to_prop;
  struct dlist *d;
  int again;
  spilled = sbitmap_alloc (num_webs);
  processed = sbitmap_alloc (num_webs);
  to_prop = sbitmap_alloc (num_webs);
  sbitmap_zero (spilled);
  for (d = WEBS(SPILLED); d; d = d->next)
    SET_BIT (spilled, DLIST_WEB (d)->id);
  sbitmap_copy (to_prop, spilled);
  sbitmap_zero (processed);
  do
    {
      spill_coalescing (to_prop, spilled);
      /* XXX Currently (with optimistic coalescing) spill_propagation()
	 doesn't give better code, sometimes it gives worse (but not by much)
	 code.  I believe this is because of slightly wrong cost
	 measurements.  Anyway right now it isn't worth the time it takes,
	 so deactivate it for now.  */
      again = 0 && spill_propagation (to_prop, spilled, processed);
    }
  while (again);
  sbitmap_free (to_prop);
  sbitmap_free (processed);
  sbitmap_free (spilled);
}

/* Allocate a spill slot for a WEB.  Currently we spill to pseudo
   registers, to be able to track also webs for "stack slots", and also
   to possibly colorize them.  These pseudos are sometimes handled
   in a special way, where we know, that they also can represent
   MEM references.  */

static void
allocate_spill_web (web)
     struct web *web;
{
  int regno = web->regno;
  rtx slot;
  if (web->stack_slot)
    return;
  slot = gen_reg_rtx (PSEUDO_REGNO_MODE (regno));
  web->stack_slot = slot;
}

/* This chooses a color for all SPILLED webs for interference region
   spilling.  The heuristic isn't good in any way.  */

static void
choose_spill_colors ()
{
  struct dlist *d;
  unsigned HOST_WIDE_INT *costs = (unsigned HOST_WIDE_INT *)
    xmalloc (FIRST_PSEUDO_REGISTER * sizeof (costs[0]));
  for (d = WEBS(SPILLED); d; d = d->next)
    {
      struct web *web = DLIST_WEB (d);
      struct conflict_link *wl;
      int bestc, c;
      HARD_REG_SET avail;
      memset (costs, 0, FIRST_PSEUDO_REGISTER * sizeof (costs[0]));
      for (wl = web->conflict_list; wl; wl = wl->next)
	{
	  struct web *pweb = wl->t;
	  if (pweb->type == COLORED || pweb->type == PRECOLORED)
	    costs[pweb->color] += pweb->spill_cost;
	}

      COPY_HARD_REG_SET (avail, web->usable_regs);
      if (web->crosses_call)
	{
	  /* Add an arbitrary constant cost to colors not usable by
	     call-crossing webs without saves/loads.  */
	  for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
	    if (TEST_HARD_REG_BIT (call_used_reg_set, c))
	      costs[c] += 1000;
	}
      bestc = -1;
      for (c = 0; c < FIRST_PSEUDO_REGISTER; c++)
	if ((bestc < 0 || costs[bestc] > costs[c])
            && TEST_HARD_REG_BIT (avail, c)
	    && HARD_REGNO_MODE_OK (c, PSEUDO_REGNO_MODE (web->regno)))
	  {
	    int i, size;
	    size = HARD_REGNO_NREGS (c, PSEUDO_REGNO_MODE (web->regno));
	    for (i = 1; i < size
		 && TEST_HARD_REG_BIT (avail, c + i); i++);
	    if (i == size)
	      bestc = c;
	  }
      web->color = bestc;
      ra_debug_msg (DUMP_PROCESS, "choosing color %d for spilled web %d\n",
		 bestc, web->id);
    }

  free (costs);
}

/* For statistics sake we count the number and cost of all new loads,
   stores and emitted rematerializations.  */
static unsigned int emitted_spill_loads;
static unsigned int emitted_spill_stores;
static unsigned int emitted_remat;
static unsigned HOST_WIDE_INT spill_load_cost;
static unsigned HOST_WIDE_INT spill_store_cost;
static unsigned HOST_WIDE_INT spill_remat_cost;

/* In rewrite_program2() we detect if some def us useless, in the sense,
   that the pseudo set is not live anymore at that point.  The REF_IDs
   of such defs are noted here.  */
static bitmap useless_defs;

/* This is the simple and fast version of rewriting the program to
   include spill code.  It spills at every insn containing spilled
   defs or uses.  Loads are added only if flag_ra_spill_every_use is
   nonzero, otherwise only stores will be added.  This doesn't
   support rematerialization. 
   NEW_DEATHS is filled with uids for insns, which probably contain
   deaths.  */

static void
rewrite_program (new_deaths)
     bitmap new_deaths;
{
  unsigned int i;
  struct dlist *d;
  bitmap b = BITMAP_XMALLOC ();

  /* We walk over all webs, over all uses/defs.  For all webs, we need
     to look at spilled webs, and webs coalesced to spilled ones, in case
     their alias isn't broken up, or they got spill coalesced.  */
  for (i = 0; i < 2; i++)
    for (d = (i == 0) ? WEBS(SPILLED) : WEBS(COALESCED); d; d = d->next)
      {
	struct web *web = DLIST_WEB (d);
	struct web *aweb = alias (web);
	unsigned int j;
	rtx slot;

	/* Is trivially true for spilled webs, but not for coalesced ones.  */
	if (aweb->type != SPILLED)
	  continue;

	/* First add loads before every use, if we have to.  */
	if (flag_ra_spill_every_use)
	  {
	    bitmap_clear (b);
	    allocate_spill_web (aweb);
	    slot = aweb->stack_slot;
	    for (j = 0; j < web->num_uses; j++)
	      {
		rtx insns, target, source;
		rtx insn = DF_REF_INSN (web->uses[j]);
		rtx prev = PREV_INSN (insn);
		basic_block bb = BLOCK_FOR_INSN (insn);
		/* Happens when spill_coalescing() deletes move insns.  */
		if (!INSN_P (insn))
		  continue;

		/* Check that we didn't already added a load for this web
		   and insn.  Happens, when the an insn uses the same web
		   multiple times.  */
	        if (bitmap_bit_p (b, INSN_UID (insn)))
		  continue;
	        bitmap_set_bit (b, INSN_UID (insn));
	        target = DF_REF_REG (web->uses[j]);
	        source = slot;
		start_sequence ();
	        if (GET_CODE (target) == SUBREG)
		  source = simplify_gen_subreg (GET_MODE (target), source,
						GET_MODE (source),
						SUBREG_BYTE (target));
		ra_emit_move_insn (target, source);
		insns = get_insns ();
		end_sequence ();
		emit_insn_before (insns, insn);

	        if (bb->head == insn)
		  bb->head = NEXT_INSN (prev);
		for (insn = PREV_INSN (insn); insn != prev;
		     insn = PREV_INSN (insn))
		  {
		    set_block_for_insn (insn, bb);
		    df_insn_modify (df, bb, insn);
		  }

		emitted_spill_loads++;
		spill_load_cost += bb->frequency + 1;
	      }
	  }

	/* Now emit the stores after each def.
	   If any uses were loaded from stackslots (compared to
	   rematerialized or not reloaded due to IR spilling),
	   aweb->stack_slot will be set.  If not, we don't need to emit
	   any stack stores.  */
	slot = aweb->stack_slot;
	bitmap_clear (b);
	if (slot)
	  for (j = 0; j < web->num_defs; j++)
	    {
	      rtx insns, source, dest;
	      rtx insn = DF_REF_INSN (web->defs[j]);
	      rtx following = NEXT_INSN (insn);
	      basic_block bb = BLOCK_FOR_INSN (insn);
	      /* Happens when spill_coalescing() deletes move insns.  */
	      if (!INSN_P (insn))
		continue;
	      if (bitmap_bit_p (b, INSN_UID (insn)))
		continue;
	      bitmap_set_bit (b, INSN_UID (insn));
	      start_sequence ();
	      source = DF_REF_REG (web->defs[j]);
	      dest = slot;
	      if (GET_CODE (source) == SUBREG)
		dest = simplify_gen_subreg (GET_MODE (source), dest,
					    GET_MODE (dest),
					    SUBREG_BYTE (source));
	      ra_emit_move_insn (dest, source);

	      insns = get_insns ();
	      end_sequence ();
	      if (insns)
		{
		  emit_insn_after (insns, insn);
		  if (bb->end == insn)
		    bb->end = PREV_INSN (following);
		  for (insn = insns; insn != following; insn = NEXT_INSN (insn))
		    {
		      set_block_for_insn (insn, bb);
		      df_insn_modify (df, bb, insn);
		    }
		}
	      else
		df_insn_modify (df, bb, insn);
	      emitted_spill_stores++;
	      spill_store_cost += bb->frequency + 1;
	      /* XXX we should set new_deaths for all inserted stores
		 whose pseudo dies here.
		 Note, that this isn't the case for _all_ stores.  */
	      /* I.e. the next is wrong, and might cause some spilltemps
		 to be categorized as spilltemp2's (i.e. live over a death),
		 although they aren't.  This might make them spill again,
		 which causes endlessness in the case, this insn is in fact
		 _no_ death.  */
	      bitmap_set_bit (new_deaths, INSN_UID (PREV_INSN (following)));
	    }
      }

  BITMAP_XFREE (b);
}

/* A simple list of rtx's.  */
struct rtx_list
{
  struct rtx_list *next;
  rtx x;
};

/* Adds X to *LIST.  */

static void
remember_slot (list, x)
     struct rtx_list **list;
     rtx x;
{
  struct rtx_list *l;
  /* PRE: X is not already in LIST.  */
  l = (struct rtx_list *) ra_alloc (sizeof (*l));
  l->next = *list;
  l->x = x;
  *list = l;
}

/* Given two rtx' S1 and S2, either being REGs or MEMs (or SUBREGs
   thereof), return nonzero, if they overlap.  REGs and MEMs don't
   overlap, and if they are MEMs they must have an easy address
   (plus (basereg) (const_inst x)), otherwise they overlap.  */

static int
slots_overlap_p (s1, s2)
     rtx s1, s2;
{
  rtx base1, base2;
  HOST_WIDE_INT ofs1 = 0, ofs2 = 0;
  int size1 = GET_MODE_SIZE (GET_MODE (s1));
  int size2 = GET_MODE_SIZE (GET_MODE (s2));
  if (GET_CODE (s1) == SUBREG)
    ofs1 = SUBREG_BYTE (s1), s1 = SUBREG_REG (s1);
  if (GET_CODE (s2) == SUBREG)
    ofs2 = SUBREG_BYTE (s2), s2 = SUBREG_REG (s2);

  if (s1 == s2)
    return 1;

  if (GET_CODE (s1) != GET_CODE (s2))
    return 0;

  if (GET_CODE (s1) == REG && GET_CODE (s2) == REG)
    {
      if (REGNO (s1) != REGNO (s2))
	return 0;
      if (ofs1 >= ofs2 + size2 || ofs2 >= ofs1 + size1)
	return 0;
      return 1;
    }
  if (GET_CODE (s1) != MEM || GET_CODE (s2) != MEM)
    abort ();
  s1 = XEXP (s1, 0);
  s2 = XEXP (s2, 0);
  if (GET_CODE (s1) != PLUS || GET_CODE (XEXP (s1, 0)) != REG
      || GET_CODE (XEXP (s1, 1)) != CONST_INT)
    return 1;
  if (GET_CODE (s2) != PLUS || GET_CODE (XEXP (s2, 0)) != REG
      || GET_CODE (XEXP (s2, 1)) != CONST_INT)
    return 1;
  base1 = XEXP (s1, 0);
  base2 = XEXP (s2, 0);
  if (!rtx_equal_p (base1, base2))
    return 1;
  ofs1 += INTVAL (XEXP (s1, 1));
  ofs2 += INTVAL (XEXP (s2, 1));
  if (ofs1 >= ofs2 + size2 || ofs2 >= ofs1 + size1)
    return 0;
  return 1;
}

/* This deletes from *LIST all rtx's which overlap with X in the sense
   of slots_overlap_p().  */

static void
delete_overlapping_slots (list, x)
     struct rtx_list **list;
     rtx x;
{
  while (*list)
    {
      if (slots_overlap_p ((*list)->x, x))
	*list = (*list)->next;
      else
	list = &((*list)->next);
    }
}

/* Returns nonzero, of X is member of LIST.  */

static int
slot_member_p (list, x)
     struct rtx_list *list;
     rtx x;
{
  for (;list; list = list->next)
    if (rtx_equal_p (list->x, x))
      return 1;
  return 0;
}

/* A more sophisticated (and slower) method of adding the stores, than
   rewrite_program().  This goes backward the insn stream, adding
   stores as it goes, but only if it hasn't just added a store to the
   same location.  NEW_DEATHS is a bitmap filled with uids of insns
   containing deaths.  */

static void
insert_stores (new_deaths)
     bitmap new_deaths;
{
  rtx insn;
  rtx last_slot = NULL_RTX;
  struct rtx_list *slots = NULL;

  /* We go simply backwards over basic block borders.  */
  for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
    {
      int uid = INSN_UID (insn);

      /* If we reach a basic block border, which has more than one
	 outgoing edge, we simply forget all already emitted stores.  */
      if (GET_CODE (insn) == BARRIER
	  || JUMP_P (insn) || can_throw_internal (insn))
	{
	  last_slot = NULL_RTX;
	  slots = NULL;
	}
      if (!INSN_P (insn))
	continue;

      /* If this insn was not just added in this pass.  */
      if (uid < insn_df_max_uid)
	{
	  unsigned int n;
	  rtx following = NEXT_INSN (insn);
	  basic_block bb = BLOCK_FOR_INSN (insn);
	  struct ra_insn_info info;

	  info = insn_df[uid];
	  for (n = 0; n < info.num_defs; n++)
	    {
	      struct web *web = def2web[DF_REF_ID (info.defs[n])];
	      struct web *aweb = alias (find_web_for_subweb (web));
	      rtx slot, source;
	      if (aweb->type != SPILLED || !aweb->stack_slot)
		continue;
	      slot = aweb->stack_slot;
	      source = DF_REF_REG (info.defs[n]);
	      /* adjust_address() might generate code.  */
	      start_sequence ();
	      if (GET_CODE (source) == SUBREG)
		slot = simplify_gen_subreg (GET_MODE (source), slot,
					    GET_MODE (slot),
					    SUBREG_BYTE (source));
	      /* If we have no info about emitted stores, or it didn't
		 contain the location we intend to use soon, then
		 add the store.  */
	      if ((!last_slot || !rtx_equal_p (slot, last_slot))
		  && ! slot_member_p (slots, slot))
		{
		  rtx insns, ni;
		  last_slot = slot;
		  remember_slot (&slots, slot);
		  ra_emit_move_insn (slot, source);
		  insns = get_insns ();
		  end_sequence ();
		  if (insns)
		    {
		      emit_insn_after (insns, insn);
		      if (bb->end == insn)
			bb->end = PREV_INSN (following);
		      for (ni = insns; ni != following; ni = NEXT_INSN (ni))
			{
			  set_block_for_insn (ni, bb);
			  df_insn_modify (df, bb, ni);
			}
		    }
		  else
		    df_insn_modify (df, bb, insn);
		  emitted_spill_stores++;
		  spill_store_cost += bb->frequency + 1;
		  bitmap_set_bit (new_deaths, INSN_UID (PREV_INSN (following)));
		}
	      else
		{
		  /* Otherwise ignore insns from adjust_address() above.  */
		  end_sequence ();
		}
	    }
	}
      /* If we look at a load generated by the allocator, forget
	 the last emitted slot, and additionally clear all slots
	 overlapping it's source (after all, we need it again).  */
      /* XXX If we emit the stack-ref directly into the using insn the
         following needs a change, because that is no new insn.  Preferably
	 we would add some notes to the insn, what stackslots are needed
	 for it.  */
      if (uid >= last_max_uid)
	{
	  rtx set = single_set (insn);
	  last_slot = NULL_RTX;
	  /* If this was no simple set, give up, and forget everything.  */
	  if (!set)
	    slots = NULL;
	  else
	    {
	      if (1 || GET_CODE (SET_SRC (set)) == MEM)
	        delete_overlapping_slots (&slots, SET_SRC (set));
	    }
	}
    }
}

/* Returns 1 if both colored webs have some hardregs in common, even if
   they are not the same width.  */

static int
spill_same_color_p (web1, web2)
     struct web *web1, *web2;
{
  int c1, size1, c2, size2;
  if ((c1 = alias (web1)->color) < 0 || c1 == an_unusable_color)
    return 0;
  if ((c2 = alias (web2)->color) < 0 || c2 == an_unusable_color)
    return 0;

  size1 = web1->type == PRECOLORED
          ? 1 : HARD_REGNO_NREGS (c1, PSEUDO_REGNO_MODE (web1->regno));
  size2 = web2->type == PRECOLORED
          ? 1 : HARD_REGNO_NREGS (c2, PSEUDO_REGNO_MODE (web2->regno));
  if (c1 >= c2 + size2 || c2 >= c1 + size1)
    return 0;
  return 1;
}

/* Given the set of live web IDs LIVE, returns nonzero, if any of WEBs
   subwebs (or WEB itself) is live.  */

static bool
is_partly_live_1 (live, web)
     sbitmap live;
     struct web *web;
{
  do
    if (TEST_BIT (live, web->id))
      return 1;
  while ((web = web->subreg_next));
  return 0;
}

/* Fast version in case WEB has no subwebs.  */
#define is_partly_live(live, web) ((!web->subreg_next)	\
				   ? TEST_BIT (live, web->id)	\
				   : is_partly_live_1 (live, web))

/* Change the set of currently IN_USE colors according to
   WEB's color.  Either add those colors to the hardreg set (if ADD
   is nonzero), or remove them.  */

static void
update_spill_colors (in_use, web, add)
     HARD_REG_SET *in_use;
     struct web *web;
     int add;
{
  int c, size;
  if ((c = alias (find_web_for_subweb (web))->color) < 0
      || c == an_unusable_color)
    return;
  size = HARD_REGNO_NREGS (c, GET_MODE (web->orig_x));
  if (SUBWEB_P (web))
    {
      c += subreg_regno_offset (c, GET_MODE (SUBREG_REG (web->orig_x)),
				SUBREG_BYTE (web->orig_x),
				GET_MODE (web->orig_x));
    }
  else if (web->type == PRECOLORED)
    size = 1;
  if (add)
    for (; size--;)
      SET_HARD_REG_BIT (*in_use, c + size);
  else
    for (; size--;)
      CLEAR_HARD_REG_BIT (*in_use, c + size);
}

/* Given a set of hardregs currently IN_USE and the color C of WEB,
   return -1 if WEB has no color, 1 of it has the unusable color,
   0 if one of it's used hardregs are in use, and 1 otherwise.
   Generally, if WEB can't be left colorized return 1.  */

static int
spill_is_free (in_use, web)
     HARD_REG_SET *in_use;
     struct web *web;
{
  int c, size;
  if ((c = alias (web)->color) < 0)
    return -1;
  if (c == an_unusable_color)
    return 1;
  size = web->type == PRECOLORED
         ? 1 : HARD_REGNO_NREGS (c, PSEUDO_REGNO_MODE (web->regno));
  for (; size--;)
    if (TEST_HARD_REG_BIT (*in_use, c + size))
      return 0;
  return 1;
}


/* Structure for passing between rewrite_program2() and emit_loads().  */
struct rewrite_info
{
  /* The web IDs which currently would need a reload.  These are
     currently live spilled webs, whose color was still free.  */
  bitmap need_reload;
  /* We need a scratch bitmap, but don't want to allocate one a zillion
     times.  */
  bitmap scratch;
  /* Web IDs of currently live webs.  This are the precise IDs,
     not just those of the superwebs.  If only on part is live, only
     that ID is placed here.  */
  sbitmap live;
  /* An array of webs, which currently need a load added.
     They will be emitted when seeing the first death.  */ 
  struct web **needed_loads;
  /* The current number of entries in needed_loads.  */
  int nl_size;
  /* The number of bits set in need_reload.  */
  int num_reloads;
  /* The current set of hardregs not available.  */
  HARD_REG_SET colors_in_use;
  /* Nonzero, if we just added some spill temps to need_reload or
     needed_loads.  In this case we don't wait for the next death
     to emit their loads.  */
  int any_spilltemps_spilled;
  /* Nonzero, if we currently need to emit the loads.  E.g. when we
     saw an insn containing deaths.  */
  int need_load;
};

/* The needed_loads list of RI contains some webs for which
   we add the actual load insns here.  They are added just before
   their use last seen.  NL_FIRST_RELOAD is the index of the first
   load which is a converted reload, all other entries are normal
   loads.  LAST_BLOCK_INSN is the last insn of the current basic block.  */

static void
emit_loads (ri, nl_first_reload, last_block_insn)
     struct rewrite_info *ri;
     int nl_first_reload;
     rtx last_block_insn;
{
  int j;
  for (j = ri->nl_size; j;)
    {
      struct web *web = ri->needed_loads[--j];
      struct web *supweb;
      struct web *aweb;
      rtx ni, slot, reg;
      rtx before = NULL_RTX, after = NULL_RTX;
      basic_block bb;
      /* When spilltemps were spilled for the last insns, their
	 loads already are emitted, which is noted by setting
	 needed_loads[] for it to 0.  */
      if (!web)
	continue;
      supweb = find_web_for_subweb (web);
      if (supweb->regno >= max_normal_pseudo)
	abort ();
      /* Check for web being a spilltemp, if we only want to
	 load spilltemps.  Also remember, that we emitted that
	 load, which we don't need to do when we have a death,
	 because then all of needed_loads[] is emptied.  */
      if (!ri->need_load)
	{
	  if (!supweb->spill_temp)
	    continue;
	  else
	    ri->needed_loads[j] = 0;
	}
      web->in_load = 0;
      /* The adding of reloads doesn't depend on liveness.  */
      if (j < nl_first_reload && !TEST_BIT (ri->live, web->id))
	continue;
      aweb = alias (supweb);
      aweb->changed = 1;
      start_sequence ();
      if (supweb->pattern)
	{
	  /* XXX If we later allow non-constant sources for rematerialization
	     we must also disallow coalescing _to_ rematerialized webs
	     (at least then disallow spilling them, which we already ensure
	     when flag_ra_break_aliases), or not take the pattern but a
	     stackslot.  */
	  if (aweb != supweb)
	    abort ();
	  slot = copy_rtx (supweb->pattern);
	  reg = copy_rtx (supweb->orig_x);
	  /* Sanity check.  orig_x should be a REG rtx, which should be
	     shared over all RTL, so copy_rtx should have no effect.  */
	  if (reg != supweb->orig_x)
	    abort ();
	}
      else
	{
	  allocate_spill_web (aweb);
	  slot = aweb->stack_slot;

	  /* If we don't copy the RTL there might be some SUBREG
	     rtx shared in the next iteration although being in
	     different webs, which leads to wrong code.  */
	  reg = copy_rtx (web->orig_x);
	  if (GET_CODE (reg) == SUBREG)
	    /*slot = adjust_address (slot, GET_MODE (reg), SUBREG_BYTE
	       (reg));*/
	    slot = simplify_gen_subreg (GET_MODE (reg), slot, GET_MODE (slot),
					SUBREG_BYTE (reg));
	}
      ra_emit_move_insn (reg, slot);
      ni = get_insns ();
      end_sequence ();
      before = web->last_use_insn;
      web->last_use_insn = NULL_RTX;
      if (!before)
	{
	  if (JUMP_P (last_block_insn))
	    before = last_block_insn;
	  else
	    after = last_block_insn;
	}
      if (after)
	{
	  rtx foll = NEXT_INSN (after);
	  bb = BLOCK_FOR_INSN (after);
	  emit_insn_after (ni, after);
	  if (bb->end == after)
	    bb->end = PREV_INSN (foll);
	  for (ni = NEXT_INSN (after); ni != foll; ni = NEXT_INSN (ni))
	    {
	      set_block_for_insn (ni, bb);
	      df_insn_modify (df, bb, ni);
	    }
	}
      else
	{
	  rtx prev = PREV_INSN (before);
	  bb = BLOCK_FOR_INSN (before);
	  emit_insn_before (ni, before);
	  if (bb->head == before)
	    bb->head = NEXT_INSN (prev);
	  for (; ni != before; ni = NEXT_INSN (ni))
	    {
	      set_block_for_insn (ni, bb);
	      df_insn_modify (df, bb, ni);
	    }
	}
      if (supweb->pattern)
	{
	  emitted_remat++;
	  spill_remat_cost += bb->frequency + 1;
	}
      else
	{
	  emitted_spill_loads++;
	  spill_load_cost += bb->frequency + 1;
	}
      RESET_BIT (ri->live, web->id);
      /* In the special case documented above only emit the reloads and
	 one load.  */
      if (ri->need_load == 2 && j < nl_first_reload)
	break;
    }
  if (ri->need_load)
    ri->nl_size = j;
}

/* Given a set of reloads in RI, an array of NUM_REFS references (either
   uses or defs) in REFS, and REF2WEB to translate ref IDs to webs
   (either use2web or def2web) convert some reloads to loads.
   This looks at the webs referenced, and how they change the set of
   available colors.  Now put all still live webs, which needed reloads,
   and whose colors isn't free anymore, on the needed_loads list.  */

static void
reloads_to_loads (ri, refs, num_refs, ref2web)
     struct rewrite_info *ri;
     struct ref **refs;
     unsigned int num_refs;
     struct web **ref2web;
{
  unsigned int n;
  int num_reloads = ri->num_reloads;
  for (n = 0; n < num_refs && num_reloads; n++)
    {
      struct web *web = ref2web[DF_REF_ID (refs[n])];
      struct web *supweb = find_web_for_subweb (web);
      int is_death;
      int j;
      /* Only emit reloads when entering their interference
	 region.  A use of a spilled web never opens an
	 interference region, independent of it's color.  */
      if (alias (supweb)->type == SPILLED)
	continue;
      if (supweb->type == PRECOLORED
	  && TEST_HARD_REG_BIT (never_use_colors, supweb->color))
	continue;
      /* Note, that if web (and supweb) are DEFs, we already cleared
	 the corresponding bits in live.  I.e. is_death becomes true, which
	 is what we want.  */
      is_death = !TEST_BIT (ri->live, supweb->id);
      is_death &= !TEST_BIT (ri->live, web->id);
      if (is_death)
	{
	  int old_num_r = num_reloads;
	  bitmap_clear (ri->scratch);
	  EXECUTE_IF_SET_IN_BITMAP (ri->need_reload, 0, j,
	    {
	      struct web *web2 = ID2WEB (j);
	      struct web *aweb2 = alias (find_web_for_subweb (web2));
	      if (spill_is_free (&(ri->colors_in_use), aweb2) == 0)
		abort ();
	      if (spill_same_color_p (supweb, aweb2)
		  /* && interfere (web, web2) */)
		{
		  if (!web2->in_load)
		    {
		      ri->needed_loads[ri->nl_size++] = web2;
		      web2->in_load = 1;
		    }
		  bitmap_set_bit (ri->scratch, j);
		  num_reloads--;
		}
	    });
	  if (num_reloads != old_num_r)
	    bitmap_operation (ri->need_reload, ri->need_reload, ri->scratch,
			      BITMAP_AND_COMPL);
	}
    }
  ri->num_reloads = num_reloads;
}

/* This adds loads for spilled webs to the program.  It uses a kind of
   interference region spilling.  If flag_ra_ir_spilling is zero it
   only uses improved chaitin spilling (adding loads only at insns
   containing deaths).  */

static void
rewrite_program2 (new_deaths)
     bitmap new_deaths;
{
  basic_block bb = NULL;
  int nl_first_reload;
  struct rewrite_info ri;
  rtx insn;
  ri.needed_loads = (struct web **) xmalloc (num_webs * sizeof (struct web *));
  ri.need_reload = BITMAP_XMALLOC ();
  ri.scratch = BITMAP_XMALLOC ();
  ri.live = sbitmap_alloc (num_webs);
  ri.nl_size = 0;
  ri.num_reloads = 0;
  for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
    {
      basic_block last_bb = NULL;
      rtx last_block_insn;
      int i, j;
      if (!INSN_P (insn))
	insn = prev_real_insn (insn);
      while (insn && !(bb = BLOCK_FOR_INSN (insn)))
	insn = prev_real_insn (insn);
      if (!insn)
	break;
      i = bb->index + 2;
      last_block_insn = insn;

      sbitmap_zero (ri.live);
      CLEAR_HARD_REG_SET (ri.colors_in_use);
      EXECUTE_IF_SET_IN_BITMAP (live_at_end[i - 2], 0, j,
	{
	  struct web *web = use2web[j];
	  struct web *aweb = alias (find_web_for_subweb (web));
	  /* A web is only live at end, if it isn't spilled.  If we wouldn't
	     check this, the last uses of spilled web per basic block
	     wouldn't be detected as deaths, although they are in the final
	     code.  This would lead to cumulating many loads without need,
	     only increasing register pressure.  */
	  /* XXX do add also spilled webs which got a color for IR spilling.
	     Remember to not add to colors_in_use in that case.  */
	  if (aweb->type != SPILLED /*|| aweb->color >= 0*/)
	    {
	      SET_BIT (ri.live, web->id);
	      if (aweb->type != SPILLED)
	        update_spill_colors (&(ri.colors_in_use), web, 1);
	    }
	});

      bitmap_clear (ri.need_reload);
      ri.num_reloads = 0;
      ri.any_spilltemps_spilled = 0;
      if (flag_ra_ir_spilling)
	{
	  struct dlist *d;
	  int pass;
	  /* XXX If we don't add spilled nodes into live above, the following
	     becomes an empty loop.  */
	  for (pass = 0; pass < 2; pass++)
	    for (d = (pass) ? WEBS(SPILLED) : WEBS(COALESCED); d; d = d->next)
	      {
	        struct web *web = DLIST_WEB (d);
		struct web *aweb = alias (web);
		if (aweb->type != SPILLED)
		  continue;
	        if (is_partly_live (ri.live, web)
		    && spill_is_free (&(ri.colors_in_use), web) > 0)
		  {
		    ri.num_reloads++;
	            bitmap_set_bit (ri.need_reload, web->id);
		    /* Last using insn is somewhere in another block.  */
		    web->last_use_insn = NULL_RTX;
		  }
	      }
	}

      last_bb = bb;
      for (; insn; insn = PREV_INSN (insn))
	{
	  struct ra_insn_info info;
	  unsigned int n;

	  if (INSN_P (insn) && BLOCK_FOR_INSN (insn) != last_bb)
	    {
	      int index = BLOCK_FOR_INSN (insn)->index + 2;
	      EXECUTE_IF_SET_IN_BITMAP (live_at_end[index - 2], 0, j,
		{
		  struct web *web = use2web[j];
		  struct web *aweb = alias (find_web_for_subweb (web));
		  if (aweb->type != SPILLED)
		    {
		      SET_BIT (ri.live, web->id);
		      update_spill_colors (&(ri.colors_in_use), web, 1);
		    }
		});
	      bitmap_clear (ri.scratch);
	      EXECUTE_IF_SET_IN_BITMAP (ri.need_reload, 0, j,
		{
		  struct web *web2 = ID2WEB (j);
		  struct web *supweb2 = find_web_for_subweb (web2);
		  struct web *aweb2 = alias (supweb2);
		  if (spill_is_free (&(ri.colors_in_use), aweb2) <= 0)
		    {
		      if (!web2->in_load)
			{
			  ri.needed_loads[ri.nl_size++] = web2;
			  web2->in_load = 1;
			}
		      bitmap_set_bit (ri.scratch, j);
		      ri.num_reloads--;
		    }
		});
	      bitmap_operation (ri.need_reload, ri.need_reload, ri.scratch,
				BITMAP_AND_COMPL);
	      last_bb = BLOCK_FOR_INSN (insn);
	      last_block_insn = insn;
	      if (!INSN_P (last_block_insn))
	        last_block_insn = prev_real_insn (last_block_insn);
	    }

	  ri.need_load = 0;
	  if (INSN_P (insn))
	    info = insn_df[INSN_UID (insn)];

	  if (INSN_P (insn))
	    for (n = 0; n < info.num_defs; n++)
	      {
		struct ref *ref = info.defs[n];
		struct web *web = def2web[DF_REF_ID (ref)];
		struct web *supweb = find_web_for_subweb (web);
		int is_non_def = 0;
		unsigned int n2;

		supweb = find_web_for_subweb (web);
		/* Webs which are defined here, but also used in the same insn
		   are rmw webs, or this use isn't a death because of looping
		   constructs.  In neither case makes this def available it's
		   resources.  Reloads for it are still needed, it's still
		   live and it's colors don't become free.  */
		for (n2 = 0; n2 < info.num_uses; n2++)
		  {
		    struct web *web2 = use2web[DF_REF_ID (info.uses[n2])];
		    if (supweb == find_web_for_subweb (web2))
		      {
			is_non_def = 1;
			break;
		      }
		  }
		if (is_non_def)
		  continue;

		if (!is_partly_live (ri.live, supweb))
		  bitmap_set_bit (useless_defs, DF_REF_ID (ref));

		RESET_BIT (ri.live, web->id);
		if (bitmap_bit_p (ri.need_reload, web->id))
		  {
		    ri.num_reloads--;
		    bitmap_clear_bit (ri.need_reload, web->id);
		  }
		if (web != supweb)
		  {
		    /* XXX subwebs aren't precisely tracked here.  We have
		       everything we need (inverse webs), but the code isn't
		       yet written.  We need to make all completely
		       overlapping web parts non-live here.  */
		    /* If by luck now the whole web isn't live anymore, no
		       reloads for it are needed.  */
		    if (!is_partly_live (ri.live, supweb)
			&& bitmap_bit_p (ri.need_reload, supweb->id))
		      {
			ri.num_reloads--;
			bitmap_clear_bit (ri.need_reload, supweb->id);
		      }
		  }
		else
		  {
		    struct web *sweb;
		    /* If the whole web is defined here, no parts of it are
		       live anymore and no reloads are needed for them.  */
		    for (sweb = supweb->subreg_next; sweb;
			 sweb = sweb->subreg_next)
		      {
		        RESET_BIT (ri.live, sweb->id);
			if (bitmap_bit_p (ri.need_reload, sweb->id))
			  {
		            ri.num_reloads--;
		            bitmap_clear_bit (ri.need_reload, sweb->id);
			  }
		      }
		  }
		if (alias (supweb)->type != SPILLED)
		  update_spill_colors (&(ri.colors_in_use), web, 0);
	      }

	  nl_first_reload = ri.nl_size;

	  /* CALL_INSNs are not really deaths, but still more registers
	     are free after a call, than before.
	     XXX Note, that sometimes reload barfs when we emit insns between
	     a call and the insn which copies the return register into a
	     pseudo.  */
	  if (GET_CODE (insn) == CALL_INSN)
	    ri.need_load = 1;
	  else if (INSN_P (insn))
	    for (n = 0; n < info.num_uses; n++)
	      {
		struct web *web = use2web[DF_REF_ID (info.uses[n])];
		struct web *supweb = find_web_for_subweb (web);
		int is_death;
		if (supweb->type == PRECOLORED
		    && TEST_HARD_REG_BIT (never_use_colors, supweb->color))
		  continue;
		is_death = !TEST_BIT (ri.live, supweb->id);
		is_death &= !TEST_BIT (ri.live, web->id);
		if (is_death)
		  {
		    ri.need_load = 1;
		    bitmap_set_bit (new_deaths, INSN_UID (insn));
		    break;
		  }
	      }

	  if (INSN_P (insn) && ri.num_reloads)
	    {
              int old_num_reloads = ri.num_reloads;
	      reloads_to_loads (&ri, info.uses, info.num_uses, use2web);

	      /* If this insn sets a pseudo, which isn't used later
		 (i.e. wasn't live before) it is a dead store.  We need
		 to emit all reloads which have the same color as this def.
		 We don't need to check for non-liveness here to detect
		 the deadness (it anyway is too late, as we already cleared
		 the liveness in the first loop over the defs), because if it
		 _would_ be live here, no reload could have that color, as
		 they would already have been converted to a load.  */
	      if (ri.num_reloads)
		reloads_to_loads (&ri, info.defs, info.num_defs, def2web);
	      if (ri.num_reloads != old_num_reloads && !ri.need_load)
		ri.need_load = 1;
	    }

	  if (ri.nl_size && (ri.need_load || ri.any_spilltemps_spilled))
	    emit_loads (&ri, nl_first_reload, last_block_insn);

	  if (INSN_P (insn) && flag_ra_ir_spilling)
	    for (n = 0; n < info.num_uses; n++)
	      {
		struct web *web = use2web[DF_REF_ID (info.uses[n])];
		struct web *aweb = alias (find_web_for_subweb (web));
		if (aweb->type != SPILLED)
		  update_spill_colors (&(ri.colors_in_use), web, 1);
	      }

	  ri.any_spilltemps_spilled = 0;
	  if (INSN_P (insn))
	    for (n = 0; n < info.num_uses; n++)
	      {
		struct web *web = use2web[DF_REF_ID (info.uses[n])];
		struct web *supweb = find_web_for_subweb (web);
		struct web *aweb = alias (supweb);
		SET_BIT (ri.live, web->id);
		if (aweb->type != SPILLED)
		  continue;
		if (supweb->spill_temp)
		  ri.any_spilltemps_spilled = 1;
		web->last_use_insn = insn;
		if (!web->in_load)
		  {
		    if (spill_is_free (&(ri.colors_in_use), aweb) <= 0
			|| !flag_ra_ir_spilling)
		      {
			ri.needed_loads[ri.nl_size++] = web;
			web->in_load = 1;
			web->one_load = 1;
		      }
		    else if (!bitmap_bit_p (ri.need_reload, web->id))
		      {
		        bitmap_set_bit (ri.need_reload, web->id);
			ri.num_reloads++;
			web->one_load = 1;
		      }
		    else
		      web->one_load = 0;
		  }
		else
		  web->one_load = 0;
	      }

	  if (GET_CODE (insn) == CODE_LABEL)
	    break;
	}

      nl_first_reload = ri.nl_size;
      if (ri.num_reloads)
	{
	  int in_ir = 0;
	  edge e;
	  int num = 0;
	  HARD_REG_SET cum_colors, colors;
	  CLEAR_HARD_REG_SET (cum_colors);
	  for (e = bb->pred; e && num < 5; e = e->pred_next, num++)
	    {
	      int j;
	      CLEAR_HARD_REG_SET (colors);
	      EXECUTE_IF_SET_IN_BITMAP (live_at_end[e->src->index], 0, j,
		{
		  struct web *web = use2web[j];
		  struct web *aweb = alias (find_web_for_subweb (web));
		  if (aweb->type != SPILLED)
		    update_spill_colors (&colors, web, 1);
		});
	      IOR_HARD_REG_SET (cum_colors, colors);
	    }
	  if (num == 5)
	    in_ir = 1;

	  bitmap_clear (ri.scratch);
	  EXECUTE_IF_SET_IN_BITMAP (ri.need_reload, 0, j,
	    {
	      struct web *web2 = ID2WEB (j);
	      struct web *supweb2 = find_web_for_subweb (web2);
	      struct web *aweb2 = alias (supweb2);
	      /* block entry is IR boundary for aweb2?
		 Currently more some tries for good conditions.  */
	      if (((ra_pass > 0 || supweb2->target_of_spilled_move)
		  && (1 || in_ir || spill_is_free (&cum_colors, aweb2) <= 0))
		  || (ra_pass == 1
		      && (in_ir
			  || spill_is_free (&cum_colors, aweb2) <= 0)))
		{
		  if (!web2->in_load)
		    {
		      ri.needed_loads[ri.nl_size++] = web2;
		      web2->in_load = 1;
		    }
		  bitmap_set_bit (ri.scratch, j);
		  ri.num_reloads--;
		}
	    });
	  bitmap_operation (ri.need_reload, ri.need_reload, ri.scratch,
			    BITMAP_AND_COMPL);
	}

      ri.need_load = 1;
      emit_loads (&ri, nl_first_reload, last_block_insn);
      if (ri.nl_size != 0 /*|| ri.num_reloads != 0*/)
	abort ();
      if (!insn)
	break;
    }
  free (ri.needed_loads);
  sbitmap_free (ri.live);
  BITMAP_XFREE (ri.scratch);
  BITMAP_XFREE (ri.need_reload);
}

/* WEBS is a web conflicting with a spilled one.  Prepare it
   to be able to rescan it in the next pass.  Mark all it's uses
   for checking, and clear the some members of their web parts
   (of defs and uses).  Notably don't clear the uplink.  We don't
   change the layout of this web, just it's conflicts.
   Also remember all IDs of its uses in USES_AS_BITMAP.  */

static void
mark_refs_for_checking (web, uses_as_bitmap)
     struct web *web;
     bitmap uses_as_bitmap;
{
  unsigned int i;
  for (i = 0; i < web->num_uses; i++)
    {
      unsigned int id = DF_REF_ID (web->uses[i]);
      SET_BIT (last_check_uses, id);
      bitmap_set_bit (uses_as_bitmap, id);
      web_parts[df->def_id + id].spanned_deaths = 0;
      web_parts[df->def_id + id].crosses_call = 0;
    }
  for (i = 0; i < web->num_defs; i++)
    {
      unsigned int id = DF_REF_ID (web->defs[i]);
      web_parts[id].spanned_deaths = 0;
      web_parts[id].crosses_call = 0;
    }
}

/* The last step of the spill phase is to set up the structures for
   incrementally rebuilding the interference graph.  We break up
   the web part structure of all spilled webs, mark their uses for
   rechecking, look at their neighbors, and clean up some global
   information, we will rebuild.  */

static void
detect_web_parts_to_rebuild ()
{
  bitmap uses_as_bitmap;
  unsigned int i, pass;
  struct dlist *d;
  sbitmap already_webs = sbitmap_alloc (num_webs);

  uses_as_bitmap = BITMAP_XMALLOC ();
  if (last_check_uses)
    sbitmap_free (last_check_uses);
  last_check_uses = sbitmap_alloc (df->use_id);
  sbitmap_zero (last_check_uses);
  sbitmap_zero (already_webs);
  /* We need to recheck all uses of all webs involved in spilling (and the
     uses added by spill insns, but those are not analyzed yet).
     Those are the spilled webs themselves, webs coalesced to spilled ones,
     and webs conflicting with any of them.  */
  for (pass = 0; pass < 2; pass++)
    for (d = (pass == 0) ? WEBS(SPILLED) : WEBS(COALESCED); d; d = d->next)
      {
        struct web *web = DLIST_WEB (d);
	struct conflict_link *wl;
	unsigned int j;
	/* This check is only needed for coalesced nodes, but hey.  */
	if (alias (web)->type != SPILLED)
	  continue;

	/* For the spilled web itself we also need to clear it's
	   uplink, to be able to rebuild smaller webs.  After all
	   spilling has split the web.  */
        for (i = 0; i < web->num_uses; i++)
	  {
	    unsigned int id = DF_REF_ID (web->uses[i]);
	    SET_BIT (last_check_uses, id);
	    bitmap_set_bit (uses_as_bitmap, id);
	    web_parts[df->def_id + id].uplink = NULL;
	    web_parts[df->def_id + id].spanned_deaths = 0;
	    web_parts[df->def_id + id].crosses_call = 0;
	  }
	for (i = 0; i < web->num_defs; i++)
	  {
	    unsigned int id = DF_REF_ID (web->defs[i]);
	    web_parts[id].uplink = NULL;
	    web_parts[id].spanned_deaths = 0;
	    web_parts[id].crosses_call = 0;
	  }

	/* Now look at all neighbors of this spilled web.  */
	if (web->have_orig_conflicts)
	  wl = web->orig_conflict_list;
	else
	  wl = web->conflict_list;
	for (; wl; wl = wl->next)
	  {
	    if (TEST_BIT (already_webs, wl->t->id))
	      continue;
	    SET_BIT (already_webs, wl->t->id);
	    mark_refs_for_checking (wl->t, uses_as_bitmap);
	  }
	EXECUTE_IF_SET_IN_BITMAP (web->useless_conflicts, 0, j,
	  {
	    struct web *web2 = ID2WEB (j);
	    if (TEST_BIT (already_webs, web2->id))
	      continue;
	    SET_BIT (already_webs, web2->id);
	    mark_refs_for_checking (web2, uses_as_bitmap);
	  });
      }

  /* We also recheck unconditionally all uses of any hardregs.  This means
     we _can_ delete all these uses from the live_at_end[] bitmaps.
     And because we sometimes delete insn refering to hardregs (when
     they became useless because they setup a rematerializable pseudo, which
     then was rematerialized), some of those uses will go away with the next
     df_analyse().  This means we even _must_ delete those uses from
     the live_at_end[] bitmaps.  For simplicity we simply delete
     all of them.  */
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (!fixed_regs[i])
      {
	struct df_link *link;
	for (link = df->regs[i].uses; link; link = link->next)
	  if (link->ref)
	    bitmap_set_bit (uses_as_bitmap, DF_REF_ID (link->ref));
      }

  /* The information in live_at_end[] will be rebuild for all uses
     we recheck, so clear it here (the uses of spilled webs, might
     indeed not become member of it again).  */
  live_at_end -= 2;
  for (i = 0; i < (unsigned int) last_basic_block + 2; i++)
    bitmap_operation (live_at_end[i], live_at_end[i], uses_as_bitmap,
		      BITMAP_AND_COMPL);
  live_at_end += 2;

  if (rtl_dump_file && (debug_new_regalloc & DUMP_REBUILD) != 0)
    {
      ra_debug_msg (DUMP_REBUILD, "need to check these uses:\n");
      dump_sbitmap_file (rtl_dump_file, last_check_uses);
    }
  sbitmap_free (already_webs);
  BITMAP_XFREE (uses_as_bitmap);
}

/* Statistics about deleted insns, which are useless now.  */
static unsigned int deleted_def_insns;
static unsigned HOST_WIDE_INT deleted_def_cost;

/* In rewrite_program2() we noticed, when a certain insn set a pseudo
   which wasn't live.  Try to delete all those insns.  */

static void
delete_useless_defs ()
{
  unsigned int i;
  /* If the insn only sets the def without any sideeffect (besides
     clobbers or uses), we can delete it.  single_set() also tests
     for INSN_P(insn).  */
  EXECUTE_IF_SET_IN_BITMAP (useless_defs, 0, i,
    {
      rtx insn = DF_REF_INSN (df->defs[i]);
      rtx set = single_set (insn);
      struct web *web = find_web_for_subweb (def2web[i]);
      if (set && web->type == SPILLED && web->stack_slot == NULL)
        {
	  deleted_def_insns++;
	  deleted_def_cost += BLOCK_FOR_INSN (insn)->frequency + 1;
	  PUT_CODE (insn, NOTE);
	  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
	  df_insn_modify (df, BLOCK_FOR_INSN (insn), insn);
	}
    });
}

/* Look for spilled webs, on whose behalf no insns were emitted.
   We inversify (sp?) the changed flag of the webs, so after this function
   a nonzero changed flag means, that this web was not spillable (at least
   in this pass).  */

static void
detect_non_changed_webs ()
{
  struct dlist *d, *d_next;
  for (d = WEBS(SPILLED); d; d = d_next)
    {
      struct web *web = DLIST_WEB (d);
      d_next = d->next;
      if (!web->changed)
	{
	  ra_debug_msg (DUMP_PROCESS, "no insns emitted for spilled web %d\n",
		     web->id);
	  remove_web_from_list (web);
	  put_web (web, COLORED);
	  web->changed = 1;
	}
      else
	web->changed = 0;
      /* From now on web->changed is used as the opposite flag.
	 I.e. colored webs, which have changed set were formerly
	 spilled webs for which no insns were emitted.  */
    }
}

/* Before spilling we clear the changed flags for all spilled webs.  */

static void
reset_changed_flag ()
{
  struct dlist *d;
  for (d = WEBS(SPILLED); d; d = d->next)
    DLIST_WEB(d)->changed = 0;
}

/* The toplevel function for this file.  Given a colorized graph,
   and lists of spilled, coalesced and colored webs, we add some
   spill code.  This also sets up the structures for incrementally
   building the interference graph in the next pass.  */

void
actual_spill ()
{
  int i;
  bitmap new_deaths = BITMAP_XMALLOC ();
  reset_changed_flag ();
  spill_coalprop ();
  choose_spill_colors ();
  useless_defs = BITMAP_XMALLOC ();
  if (flag_ra_improved_spilling)
    rewrite_program2 (new_deaths);
  else
    rewrite_program (new_deaths);
  insert_stores (new_deaths);
  delete_useless_defs ();
  BITMAP_XFREE (useless_defs);
  sbitmap_free (insns_with_deaths);
  insns_with_deaths = sbitmap_alloc (get_max_uid ());
  death_insns_max_uid = get_max_uid ();
  sbitmap_zero (insns_with_deaths);
  EXECUTE_IF_SET_IN_BITMAP (new_deaths, 0, i,
    { SET_BIT (insns_with_deaths, i);});
  detect_non_changed_webs ();
  detect_web_parts_to_rebuild ();
  BITMAP_XFREE (new_deaths);
}

/* A bitmap of pseudo reg numbers which are coalesced directly
   to a hardreg.  Set in emit_colors(), used and freed in
   remove_suspicious_death_notes().  */
static bitmap regnos_coalesced_to_hardregs;

/* Create new pseudos for each web we colored, change insns to
   use those pseudos and set up ra_reg_renumber.  */

void
emit_colors (df)
     struct df *df;
{
  unsigned int i;
  int si;
  struct web *web;
  int old_max_regno = max_reg_num ();
  regset old_regs;
  basic_block bb;

  /* This bitmap is freed in remove_suspicious_death_notes(),
     which is also the user of it.  */
  regnos_coalesced_to_hardregs = BITMAP_XMALLOC ();
  /* First create the (REG xx) rtx's for all webs, as we need to know
     the number, to make sure, flow has enough memory for them in the
     various tables.  */
  for (i = 0; i < num_webs - num_subwebs; i++)
    {
      web = ID2WEB (i);
      if (web->type != COLORED && web->type != COALESCED)
	continue;
      if (web->type == COALESCED && alias (web)->type == COLORED)
	continue;
      if (web->reg_rtx || web->regno < FIRST_PSEUDO_REGISTER)
	abort ();

      if (web->regno >= max_normal_pseudo)
	{
	  rtx place;
	  if (web->color == an_unusable_color)
	    {
	      unsigned int inherent_size = PSEUDO_REGNO_BYTES (web->regno);
	      unsigned int total_size = MAX (inherent_size, 0);
	      place = assign_stack_local (PSEUDO_REGNO_MODE (web->regno),
					  total_size,
					  inherent_size == total_size ? 0 : -1);
	      RTX_UNCHANGING_P (place) =
		  RTX_UNCHANGING_P (regno_reg_rtx[web->regno]);
	      set_mem_alias_set (place, new_alias_set ());
	    }
	  else
	    {
	      place = gen_reg_rtx (PSEUDO_REGNO_MODE (web->regno));
	    }
	  web->reg_rtx = place;
	}
      else
	{
	  /* Special case for i386 'fix_truncdi_nomemory' insn.
	     We must choose mode from insns not from PSEUDO_REGNO_MODE.
	     Actual only for clobbered register.  */
	  if (web->num_uses == 0 && web->num_defs == 1)
	    web->reg_rtx = gen_reg_rtx (GET_MODE (DF_REF_REAL_REG (web->defs[0])));
	  else
	    web->reg_rtx = gen_reg_rtx (PSEUDO_REGNO_MODE (web->regno));
	  /* Remember the different parts directly coalesced to a hardreg.  */
	  if (web->type == COALESCED)
	    bitmap_set_bit (regnos_coalesced_to_hardregs, REGNO (web->reg_rtx));
	}
    }
  ra_max_regno = max_regno = max_reg_num ();
  allocate_reg_info (max_regno, FALSE, FALSE);
  ra_reg_renumber = (short *) xmalloc (max_regno * sizeof (short));
  for (si = 0; si < max_regno; si++)
    ra_reg_renumber[si] = -1;

  /* Then go through all references, and replace them by a new
     pseudoreg for each web.  All uses.  */
  /* XXX
     Beware: The order of replacements (first uses, then defs) matters only
     for read-mod-write insns, where the RTL expression for the REG is
     shared between def and use.  For normal rmw insns we connected all such
     webs, i.e. both the use and the def (which are the same memory)
     there get the same new pseudo-reg, so order would not matter.
     _However_ we did not connect webs, were the read cycle was an
     uninitialized read.  If we now would first replace the def reference
     and then the use ref, we would initialize it with a REG rtx, which
     gets never initialized, and yet more wrong, which would overwrite
     the definition of the other REG rtx.  So we must replace the defs last.
   */
  for (i = 0; i < df->use_id; i++)
    if (df->uses[i])
      {
	regset rs = DF_REF_BB (df->uses[i])->global_live_at_start;
	rtx regrtx;
	web = use2web[i];
	web = find_web_for_subweb (web);
	if (web->type != COLORED && web->type != COALESCED)
	  continue;
	regrtx = alias (web)->reg_rtx;
	if (!regrtx)
	  regrtx = web->reg_rtx;
	*DF_REF_REAL_LOC (df->uses[i]) = regrtx;
	if (REGNO_REG_SET_P (rs, web->regno) && REG_P (regrtx))
	  {
	    /*CLEAR_REGNO_REG_SET (rs, web->regno);*/
	    SET_REGNO_REG_SET (rs, REGNO (regrtx));
	  }
      }

  /* And all defs.  */
  for (i = 0; i < df->def_id; i++)
    {
      regset rs;
      rtx regrtx;
      if (!df->defs[i])
	continue;
      rs = DF_REF_BB (df->defs[i])->global_live_at_start;
      web = def2web[i];
      web = find_web_for_subweb (web);
      if (web->type != COLORED && web->type != COALESCED)
	continue;
      regrtx = alias (web)->reg_rtx;
      if (!regrtx)
	regrtx = web->reg_rtx;
      *DF_REF_REAL_LOC (df->defs[i]) = regrtx;
      if (REGNO_REG_SET_P (rs, web->regno) && REG_P (regrtx))
	{
	  /* Don't simply clear the current regno, as it might be
	     replaced by two webs.  */
          /*CLEAR_REGNO_REG_SET (rs, web->regno);*/
          SET_REGNO_REG_SET (rs, REGNO (regrtx));
	}
    }

  /* And now set up the ra_reg_renumber array for reload with all the new
     pseudo-regs.  */
  for (i = 0; i < num_webs - num_subwebs; i++)
    {
      web = ID2WEB (i);
      if (web->reg_rtx && REG_P (web->reg_rtx))
	{
	  int r = REGNO (web->reg_rtx);
          ra_reg_renumber[r] = web->color;
          ra_debug_msg (DUMP_COLORIZE, "Renumber pseudo %d (== web %d) to %d\n",
		     r, web->id, ra_reg_renumber[r]);
	}
    }

  old_regs = BITMAP_XMALLOC ();
  for (si = FIRST_PSEUDO_REGISTER; si < old_max_regno; si++)
    SET_REGNO_REG_SET (old_regs, si);
  FOR_EACH_BB (bb)
    {
      AND_COMPL_REG_SET (bb->global_live_at_start, old_regs);
      AND_COMPL_REG_SET (bb->global_live_at_end, old_regs);
    }
  BITMAP_XFREE (old_regs);
}

/* Delete some coalesced moves from the insn stream.  */

void
delete_moves ()
{
  struct move_list *ml;
  struct web *s, *t;
  /* XXX Beware: We normally would test here each copy insn, if
     source and target got the same color (either by coalescing or by pure
     luck), and then delete it.
     This will currently not work.  One problem is, that we don't color
     the regs ourself, but instead defer to reload.  So the colorization
     is only a kind of suggestion, which reload doesn't have to follow.
     For webs which are coalesced to a normal colored web, we only have one
     new pseudo, so in this case we indeed can delete copy insns involving
     those (because even if reload colors them different from our suggestion,
     it still has to color them the same, as only one pseudo exists).  But for
     webs coalesced to precolored ones, we have not a single pseudo, but
     instead one for each coalesced web.  This means, that we can't delete
     copy insns, where source and target are webs coalesced to precolored
     ones, because then the connection between both webs is destroyed.  Note
     that this not only means copy insns, where one side is the precolored one
     itself, but also those between webs which are coalesced to one color.
     Also because reload we can't delete copy insns which involve any
     precolored web at all.  These often have also special meaning (e.g.
     copying a return value of a call to a pseudo, or copying pseudo to the
     return register), and the deletion would confuse reload in thinking the
     pseudo isn't needed.  One of those days reload will get away and we can
     do everything we want.
     In effect because of the later reload, we can't base our deletion on the
     colors itself, but instead need to base them on the newly created
     pseudos.  */
  for (ml = wl_moves; ml; ml = ml->next)
    /* The real condition we would ideally use is: s->color == t->color.
       Additionally: s->type != PRECOLORED && t->type != PRECOLORED, in case
       we want to prevent deletion of "special" copies.  */
    if (ml->move
	&& (s = alias (ml->move->source_web))->reg_rtx
	    == (t = alias (ml->move->target_web))->reg_rtx
	&& s->type != PRECOLORED && t->type != PRECOLORED)
      {
	basic_block bb = BLOCK_FOR_INSN (ml->move->insn);
	df_insn_delete (df, bb, ml->move->insn);
	deleted_move_insns++;
	deleted_move_cost += bb->frequency + 1;
      }
}

/* Due to reasons documented elsewhere we create different pseudos
   for all webs coalesced to hardregs.  For these parts life_analysis()
   might have added REG_DEAD notes without considering, that only this part
   but not the whole coalesced web dies.  The RTL is correct, there is no
   coalescing yet.  But if later reload's alter_reg() substitutes the
   hardreg into the REG rtx it looks like that particular hardreg dies here,
   although (due to coalescing) it still is live.  This might make different
   places of reload think, it can use that hardreg for reload regs,
   accidentally overwriting it.  So we need to remove those REG_DEAD notes.
   (Or better teach life_analysis() and reload about our coalescing, but
   that comes later) Bah.  */

void
remove_suspicious_death_notes ()
{
  rtx insn;
  for (insn = get_insns(); insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
      {
	rtx *pnote = &REG_NOTES (insn);
	while (*pnote)
	  {
	    rtx note = *pnote;
	    if ((REG_NOTE_KIND (note) == REG_DEAD
		 || REG_NOTE_KIND (note) == REG_UNUSED)
		&& (GET_CODE (XEXP (note, 0)) == REG
		    && bitmap_bit_p (regnos_coalesced_to_hardregs,
				     REGNO (XEXP (note, 0)))))
	      *pnote = XEXP (note, 1);
	    else
	      pnote = &XEXP (*pnote, 1);
	  }
      }
  BITMAP_XFREE (regnos_coalesced_to_hardregs);
  regnos_coalesced_to_hardregs = NULL;
}

/* Allocate space for max_reg_num() pseudo registers, and
   fill reg_renumber[] from ra_reg_renumber[].  If FREE_IT
   is nonzero, also free ra_reg_renumber and reset ra_max_regno.  */

void
setup_renumber (free_it)
     int free_it;
{
  int i;
  max_regno = max_reg_num ();
  allocate_reg_info (max_regno, FALSE, TRUE);
  for (i = 0; i < max_regno; i++)
    {
      reg_renumber[i] = (i < ra_max_regno) ? ra_reg_renumber[i] : -1;
    }
  if (free_it)
    {
      free (ra_reg_renumber);
      ra_reg_renumber = NULL;
      ra_max_regno = 0;
    }
}

/* Dump the costs and savings due to spilling, i.e. of added spill insns
   and removed moves or useless defs.  */

void
dump_cost (level)
     unsigned int level;
{
  ra_debug_msg (level, "Instructions for spilling\n added:\n");
  ra_debug_msg (level, "  loads =%d cost=", emitted_spill_loads);
  ra_debug_msg (level, HOST_WIDE_INT_PRINT_UNSIGNED, spill_load_cost);
  ra_debug_msg (level, "\n  stores=%d cost=", emitted_spill_stores);
  ra_debug_msg (level, HOST_WIDE_INT_PRINT_UNSIGNED, spill_store_cost);
  ra_debug_msg (level, "\n  remat =%d cost=", emitted_remat);
  ra_debug_msg (level, HOST_WIDE_INT_PRINT_UNSIGNED, spill_remat_cost);
  ra_debug_msg (level, "\n removed:\n  moves =%d cost=", deleted_move_insns);
  ra_debug_msg (level, HOST_WIDE_INT_PRINT_UNSIGNED, deleted_move_cost);
  ra_debug_msg (level, "\n  others=%d cost=", deleted_def_insns);
  ra_debug_msg (level, HOST_WIDE_INT_PRINT_UNSIGNED, deleted_def_cost);
  ra_debug_msg (level, "\n");
}

/* Initialization of the rewrite phase.  */

void
ra_rewrite_init ()
{
  emitted_spill_loads = 0;
  emitted_spill_stores = 0;
  emitted_remat = 0;
  spill_load_cost = 0;
  spill_store_cost = 0;
  spill_remat_cost = 0;
  deleted_move_insns = 0;
  deleted_move_cost = 0;
  deleted_def_insns = 0;
  deleted_def_cost = 0;
}

/*
vim:cinoptions={.5s,g0,p5,t0,(0,^-0.5s,n-0.5s:tw=78:cindent:sw=4:
*/