aboutsummaryrefslogtreecommitdiff
path: root/gcc/loop-unswitch.c
blob: 54c39a5698ac142ad6619acf89b35eb260d4ef4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
/* Loop unswitching for GNU compiler.
   Copyright (C) 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "obstack.h"
#include "basic-block.h"
#include "cfgloop.h"
#include "cfglayout.h"
#include "params.h"
#include "output.h"
#include "expr.h"

/* This pass moves constant conditions out of loops, duplicating the loop
   in progress, i.e. this code:

   while (loop_cond)
     {
       A;
       if (cond)
         branch1;
       else
	 branch2;
       B;
       if (cond)
         branch3;
       C;
     }
   where nothing inside the loop alters cond is transformed
   into

   if (cond)
     {
       while (loop_cond)
	 {
	   A;
	   branch1;
	   B;
	   branch3;
	   C;
	 }
     }
   else
     {
       while (loop_cond)
	 {
	   A;
	   branch2;
	   B;
	   C;
	 }
     }

  Duplicating the loop might lead to code growth exponential in number of
  branches inside loop, so we limit the number of unswitchings performed
  in a single loop to PARAM_MAX_UNSWITCH_LEVEL.  We only perform the
  transformation on innermost loops, as the benefit of doing it on loops
  containing subloops would not be very large compared to complications
  with handling this case.  */

static struct loop *unswitch_loop (struct loop *, basic_block, rtx, rtx);
static void unswitch_single_loop (struct loop *, rtx, int);
static rtx may_unswitch_on (basic_block, struct loop *, rtx *);

/* Prepare a sequence comparing OP0 with OP1 using COMP and jumping to LABEL if
   true, with probability PROB.  If CINSN is not NULL, it is the insn to copy
   in order to create a jump.  */

rtx
compare_and_jump_seq (rtx op0, rtx op1, enum rtx_code comp, rtx label, int prob,
		      rtx cinsn)
{
  rtx seq, jump, cond;
  enum machine_mode mode;

  mode = GET_MODE (op0);
  if (mode == VOIDmode)
    mode = GET_MODE (op1);

  start_sequence ();
  if (GET_MODE_CLASS (mode) == MODE_CC)
    {
      /* A hack -- there seems to be no easy generic way how to make a
	 conditional jump from a ccmode comparison.  */
      gcc_assert (cinsn);
      cond = XEXP (SET_SRC (pc_set (cinsn)), 0);
      gcc_assert (GET_CODE (cond) == comp);
      gcc_assert (rtx_equal_p (op0, XEXP (cond, 0)));
      gcc_assert (rtx_equal_p (op1, XEXP (cond, 1)));
      emit_jump_insn (copy_insn (PATTERN (cinsn)));
      jump = get_last_insn ();
      JUMP_LABEL (jump) = JUMP_LABEL (cinsn);
      LABEL_NUSES (JUMP_LABEL (jump))++;
      redirect_jump (jump, label, 0);
    }
  else
    {
      gcc_assert (!cinsn);

      op0 = force_operand (op0, NULL_RTX);
      op1 = force_operand (op1, NULL_RTX);
      do_compare_rtx_and_jump (op0, op1, comp, 0,
			       mode, NULL_RTX, NULL_RTX, label);
      jump = get_last_insn ();
      JUMP_LABEL (jump) = label;
      LABEL_NUSES (label)++;
    }
  REG_NOTES (jump) = gen_rtx_EXPR_LIST (REG_BR_PROB, GEN_INT (prob),
					REG_NOTES (jump));
  seq = get_insns ();
  end_sequence ();

  return seq;
}

/* Main entry point.  Perform loop unswitching on all suitable loops.  */
void
unswitch_loops (void)
{
  loop_iterator li;
  struct loop *loop;

  /* Go through inner loops (only original ones).  */

  FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
    {
      unswitch_single_loop (loop, NULL_RTX, 0);
#ifdef ENABLE_CHECKING
      verify_dominators (CDI_DOMINATORS);
      verify_loop_structure ();
#endif
    }

  iv_analysis_done ();
}

/* Checks whether we can unswitch LOOP on condition at end of BB -- one of its
   basic blocks (for what it means see comments below).  In case condition
   compares loop invariant cc mode register, return the jump in CINSN.  */

static rtx
may_unswitch_on (basic_block bb, struct loop *loop, rtx *cinsn)
{
  rtx test, at, op[2], stest;
  struct rtx_iv iv;
  unsigned i;
  enum machine_mode mode;

  /* BB must end in a simple conditional jump.  */
  if (EDGE_COUNT (bb->succs) != 2)
    return NULL_RTX;
  if (!any_condjump_p (BB_END (bb)))
    return NULL_RTX;

  /* With branches inside loop.  */
  if (!flow_bb_inside_loop_p (loop, EDGE_SUCC (bb, 0)->dest)
      || !flow_bb_inside_loop_p (loop, EDGE_SUCC (bb, 1)->dest))
    return NULL_RTX;

  /* It must be executed just once each iteration (because otherwise we
     are unable to update dominator/irreducible loop information correctly).  */
  if (!just_once_each_iteration_p (loop, bb))
    return NULL_RTX;

  /* Condition must be invariant.  */
  test = get_condition (BB_END (bb), &at, true, false);
  if (!test)
    return NULL_RTX;

  for (i = 0; i < 2; i++)
    {
      op[i] = XEXP (test, i);

      if (CONSTANT_P (op[i]))
	continue;

      if (!iv_analyze (at, op[i], &iv))
	return NULL_RTX;
      if (iv.step != const0_rtx
	  || iv.first_special)
	return NULL_RTX;

      op[i] = get_iv_value (&iv, const0_rtx);
    }

  mode = GET_MODE (op[0]);
  if (mode == VOIDmode)
    mode = GET_MODE (op[1]);
  if (GET_MODE_CLASS (mode) == MODE_CC)
    {
      if (at != BB_END (bb))
	return NULL_RTX;

      if (!rtx_equal_p (op[0], XEXP (test, 0))
	  || !rtx_equal_p (op[1], XEXP (test, 1)))
	return NULL_RTX;

      *cinsn = BB_END (bb);
      return test;
    }

  stest = simplify_gen_relational (GET_CODE (test), SImode,
				   mode, op[0], op[1]);
  if (stest == const0_rtx
      || stest == const_true_rtx)
    return stest;

  return canon_condition (gen_rtx_fmt_ee (GET_CODE (test), SImode,
					  op[0], op[1]));
}

/* Reverses CONDition; returns NULL if we cannot.  */
rtx
reversed_condition (rtx cond)
{
  enum rtx_code reversed;
  reversed = reversed_comparison_code (cond, NULL);
  if (reversed == UNKNOWN)
    return NULL_RTX;
  else
    return gen_rtx_fmt_ee (reversed,
			   GET_MODE (cond), XEXP (cond, 0),
			   XEXP (cond, 1));
}

/* Unswitch single LOOP.  COND_CHECKED holds list of conditions we already
   unswitched on and are therefore known to be true in this LOOP.  NUM is
   number of unswitchings done; do not allow it to grow too much, it is too
   easy to create example on that the code would grow exponentially.  */
static void
unswitch_single_loop (struct loop *loop, rtx cond_checked, int num)
{
  basic_block *bbs;
  struct loop *nloop;
  unsigned i;
  rtx cond, rcond = NULL_RTX, conds, rconds, acond, cinsn;
  int repeat;
  edge e;

  /* Do not unswitch too much.  */
  if (num > PARAM_VALUE (PARAM_MAX_UNSWITCH_LEVEL))
    {
      if (dump_file)
	fprintf (dump_file, ";; Not unswitching anymore, hit max level\n");
      return;
    }

  /* Only unswitch innermost loops.  */
  if (loop->inner)
    {
      if (dump_file)
	fprintf (dump_file, ";; Not unswitching, not innermost loop\n");
      return;
    }

  /* We must be able to duplicate loop body.  */
  if (!can_duplicate_loop_p (loop))
    {
      if (dump_file)
	fprintf (dump_file, ";; Not unswitching, can't duplicate loop\n");
      return;
    }

  /* The loop should not be too large, to limit code growth.  */
  if (num_loop_insns (loop) > PARAM_VALUE (PARAM_MAX_UNSWITCH_INSNS))
    {
      if (dump_file)
	fprintf (dump_file, ";; Not unswitching, loop too big\n");
      return;
    }

  /* Do not unswitch in cold areas.  */
  if (!maybe_hot_bb_p (loop->header))
    {
      if (dump_file)
	fprintf (dump_file, ";; Not unswitching, not hot area\n");
      return;
    }

  /* Nor if the loop usually does not roll.  */
  if (expected_loop_iterations (loop) < 1)
    {
      if (dump_file)
	fprintf (dump_file, ";; Not unswitching, loop iterations < 1\n");
      return;
    }

  do
    {
      repeat = 0;
      cinsn = NULL_RTX;

      /* Find a bb to unswitch on.  */
      bbs = get_loop_body (loop);
      iv_analysis_loop_init (loop);
      for (i = 0; i < loop->num_nodes; i++)
	if ((cond = may_unswitch_on (bbs[i], loop, &cinsn)))
	  break;

      if (i == loop->num_nodes)
	{
	  free (bbs);
	  return;
	}

      if (cond != const0_rtx
	  && cond != const_true_rtx)
	{
	  rcond = reversed_condition (cond);
	  if (rcond)
	    rcond = canon_condition (rcond);

	  /* Check whether the result can be predicted.  */
	  for (acond = cond_checked; acond; acond = XEXP (acond, 1))
	    simplify_using_condition (XEXP (acond, 0), &cond, NULL);
	}

      if (cond == const_true_rtx)
	{
	  /* Remove false path.  */
	  e = FALLTHRU_EDGE (bbs[i]);
	  remove_path (e);
	  free (bbs);
	  repeat = 1;
	}
      else if (cond == const0_rtx)
	{
	  /* Remove true path.  */
	  e = BRANCH_EDGE (bbs[i]);
	  remove_path (e);
	  free (bbs);
	  repeat = 1;
	}
    } while (repeat);

  /* We found the condition we can unswitch on.  */
  conds = alloc_EXPR_LIST (0, cond, cond_checked);
  if (rcond)
    rconds = alloc_EXPR_LIST (0, rcond, cond_checked);
  else
    rconds = cond_checked;

  if (dump_file)
    fprintf (dump_file, ";; Unswitching loop\n");

  /* Unswitch the loop on this condition.  */
  nloop = unswitch_loop (loop, bbs[i], cond, cinsn);
  gcc_assert (nloop);

  /* Invoke itself on modified loops.  */
  unswitch_single_loop (nloop, rconds, num + 1);
  unswitch_single_loop (loop, conds, num + 1);

  free_EXPR_LIST_node (conds);
  if (rcond)
    free_EXPR_LIST_node (rconds);

  free (bbs);
}

/* Unswitch a LOOP w.r. to given basic block UNSWITCH_ON.  We only support
   unswitching of innermost loops.  UNSWITCH_ON must be executed in every
   iteration, i.e. it must dominate LOOP latch.  COND is the condition
   determining which loop is entered.  Returns NULL if impossible, new loop
   otherwise.  The new loop is entered if COND is true.  If CINSN is not
   NULL, it is the insn in that COND is compared.  */

static struct loop *
unswitch_loop (struct loop *loop, basic_block unswitch_on, rtx cond, rtx cinsn)
{
  edge entry, latch_edge, true_edge, false_edge, e;
  basic_block switch_bb, unswitch_on_alt;
  struct loop *nloop;
  sbitmap zero_bitmap;
  int irred_flag, prob;
  rtx seq;

  /* Some sanity checking.  */
  gcc_assert (flow_bb_inside_loop_p (loop, unswitch_on));
  gcc_assert (EDGE_COUNT (unswitch_on->succs) == 2);
  gcc_assert (just_once_each_iteration_p (loop, unswitch_on));
  gcc_assert (!loop->inner);
  gcc_assert (flow_bb_inside_loop_p (loop, EDGE_SUCC (unswitch_on, 0)->dest));
  gcc_assert (flow_bb_inside_loop_p (loop, EDGE_SUCC (unswitch_on, 1)->dest));

  entry = loop_preheader_edge (loop);

  /* Make a copy.  */
  irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
  entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
  zero_bitmap = sbitmap_alloc (2);
  if (!duplicate_loop_to_header_edge (loop, entry, 1,
			      	      NULL, NULL, NULL, 0))
    return NULL;
  entry->flags |= irred_flag;

  /* Record the block with condition we unswitch on.  */
  unswitch_on_alt = get_bb_copy (unswitch_on);
  true_edge = BRANCH_EDGE (unswitch_on_alt);
  false_edge = FALLTHRU_EDGE (unswitch_on);
  latch_edge = single_succ_edge (get_bb_copy (loop->latch));

  /* Create a block with the condition.  */
  prob = true_edge->probability;
  switch_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
  seq = compare_and_jump_seq (XEXP (cond, 0), XEXP (cond, 1), GET_CODE (cond),
			      block_label (true_edge->dest),
			      prob, cinsn);
  emit_insn_after (seq, BB_END (switch_bb));
  e = make_edge (switch_bb, true_edge->dest, 0);
  e->probability = prob;
  e->count = latch_edge->count * prob / REG_BR_PROB_BASE;
  e = make_edge (switch_bb, FALLTHRU_EDGE (unswitch_on)->dest, EDGE_FALLTHRU);
  e->probability = false_edge->probability;
  e->count = latch_edge->count * (false_edge->probability) / REG_BR_PROB_BASE;

  if (irred_flag)
    {
      switch_bb->flags |= BB_IRREDUCIBLE_LOOP;
      EDGE_SUCC (switch_bb, 0)->flags |= EDGE_IRREDUCIBLE_LOOP;
      EDGE_SUCC (switch_bb, 1)->flags |= EDGE_IRREDUCIBLE_LOOP;
    }
  else
    {
      switch_bb->flags &= ~BB_IRREDUCIBLE_LOOP;
      EDGE_SUCC (switch_bb, 0)->flags &= ~EDGE_IRREDUCIBLE_LOOP;
      EDGE_SUCC (switch_bb, 1)->flags &= ~EDGE_IRREDUCIBLE_LOOP;
    }

  /* Loopify from the copy of LOOP body, constructing the new loop.  */
  nloop = loopify (latch_edge,
		   single_pred_edge (get_bb_copy (loop->header)), switch_bb,
		   BRANCH_EDGE (switch_bb), FALLTHRU_EDGE (switch_bb), true,
		   prob, REG_BR_PROB_BASE - prob);

  /* Remove branches that are now unreachable in new loops.  */
  remove_path (true_edge);
  remove_path (false_edge);

  /* Preserve the simple loop preheaders.  */
  split_edge (loop_preheader_edge (loop));
  split_edge (loop_preheader_edge (nloop));

  return nloop;
}
> 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
/* Tree based points-to analysis
   Copyright (C) 2005 Free Software Foundation, Inc.
   Contributed by Daniel Berlin <dberlin@dberlin.org>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "obstack.h"
#include "bitmap.h"
#include "flags.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "output.h"
#include "errors.h"
#include "diagnostic.h"
#include "tree.h"
#include "c-common.h"
#include "tree-flow.h"
#include "tree-inline.h"
#include "varray.h"
#include "c-tree.h"
#include "tree-gimple.h"
#include "hashtab.h"
#include "function.h"
#include "cgraph.h"
#include "tree-pass.h"
#include "timevar.h"
#include "alloc-pool.h"
#include "splay-tree.h"
#include "tree-ssa-structalias.h"

/* The idea behind this analyzer is to generate set constraints from the
   program, then solve the resulting constraints in order to generate the
   points-to sets. 

   Set constraints are a way of modeling program analysis problems that
   involve sets.  They consist of an inclusion constraint language,
   describing the variables (each variable is a set) and operations that
   are involved on the variables, and a set of rules that derive facts
   from these operations.  To solve a system of set constraints, you derive
   all possible facts under the rules, which gives you the correct sets
   as a consequence.

   See  "Efficient Field-sensitive pointer analysis for C" by "David
   J. Pearce and Paul H. J. Kelly and Chris Hankin, at
   http://citeseer.ist.psu.edu/pearce04efficient.html

   Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
   of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
   http://citeseer.ist.psu.edu/heintze01ultrafast.html 

   There are three types of constraint expressions, DEREF, ADDRESSOF, and
   SCALAR.  Each constraint expression consists of a constraint type,
   a variable, and an offset.  
   
   SCALAR is a constraint expression type used to represent x, whether
   it appears on the LHS or the RHS of a statement.
   DEREF is a constraint expression type used to represent *x, whether
   it appears on the LHS or the RHS of a statement. 
   ADDRESSOF is a constraint expression used to represent &x, whether
   it appears on the LHS or the RHS of a statement.
   
   Each pointer variable in the program is assigned an integer id, and
   each field of a structure variable is assigned an integer id as well.
   
   Structure variables are linked to their list of fields through a "next
   field" in each variable that points to the next field in offset
   order.  
   Each variable for a structure field has 

   1. "size", that tells the size in bits of that field.
   2. "fullsize, that tells the size in bits of the entire structure.
   3. "offset", that tells the offset in bits from the beginning of the
   structure to this field.

   Thus, 
   struct f
   {
     int a;
     int b;
   } foo;
   int *bar;

   looks like

   foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
   foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
   bar -> id 3, size 32, offset 0, fullsize 32, next NULL

   
  In order to solve the system of set constraints, the following is
  done:

  1. Each constraint variable x has a solution set associated with it,
  Sol(x).
  
  2. Constraints are separated into direct, copy, and complex.
  Direct constraints are ADDRESSOF constraints that require no extra
  processing, such as P = &Q
  Copy constraints are those of the form P = Q.
  Complex constraints are all the constraints involving dereferences.
  
  3. All direct constraints of the form P = &Q are processed, such
  that Q is added to Sol(P) 

  4. All complex constraints for a given constraint variable are stored in a
  linked list attached to that variable's node.  

  5. A directed graph is built out of the copy constraints. Each
  constraint variable is a node in the graph, and an edge from 
  Q to P is added for each copy constraint of the form P = Q
  
  6. The graph is then walked, and solution sets are
  propagated along the copy edges, such that an edge from Q to P
  causes Sol(P) <- Sol(P) union Sol(Q).
  
  7.  As we visit each node, all complex constraints associated with
  that node are processed by adding appropriate copy edges to the graph, or the
  appropriate variables to the solution set.  

  8. The process of walking the graph is iterated until no solution
  sets change.

  Prior to walking the graph in steps 6 and 7, We perform static
  cycle elimination on the constraint graph, as well 
  as off-line variable substitution.
  
  TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
  on and turned into anything), but isn't.  You can just see what offset
  inside the pointed-to struct it's going to access.
  
  TODO: Constant bounded arrays can be handled as if they were structs of the
  same number of elements. 

  TODO: Modeling heap and incoming pointers becomes much better if we
  add fields to them as we discover them, which we could do.

  TODO: We could handle unions, but to be honest, it's probably not
  worth the pain or slowdown.  */

static bool use_field_sensitive = true;
static unsigned int create_variable_info_for (tree, const char *);
static struct constraint_expr get_constraint_for (tree, bool *);
static void build_constraint_graph (void);

static bitmap_obstack ptabitmap_obstack;
static bitmap_obstack iteration_obstack;
DEF_VEC_P(constraint_t);
DEF_VEC_ALLOC_P(constraint_t,heap);

static struct constraint_stats
{
  unsigned int total_vars;
  unsigned int collapsed_vars;
  unsigned int unified_vars_static;
  unsigned int unified_vars_dynamic;
  unsigned int iterations;
} stats;

struct variable_info
{
  /* ID of this variable  */
  unsigned int id;

  /* Name of this variable */
  const char *name;

  /* Tree that this variable is associated with.  */
  tree decl;

  /* Offset of this variable, in bits, from the base variable  */
  unsigned HOST_WIDE_INT offset;  

  /* Size of the variable, in bits.  */
  unsigned HOST_WIDE_INT size;

  /* Full size of the base variable, in bits.  */
  unsigned HOST_WIDE_INT fullsize;

  /* A link to the variable for the next field in this structure.  */
  struct variable_info *next;

  /* Node in the graph that represents the constraints and points-to
     solution for the variable.  */
  unsigned int node;

  /* True if the address of this variable is taken.  Needed for
     variable substitution.  */
  unsigned int address_taken:1;

  /* True if this variable is the target of a dereference.  Needed for
     variable substitution.  */
  unsigned int indirect_target:1;

  /* True if this is a variable created by the constraint analysis, such as
     heap variables and constraints we had to break up.  */
  unsigned int is_artificial_var:1;
  
  /* True if this is a special variable whose solution set should not be
     changed.  */
  unsigned int is_special_var:1;

  /* True for variables whose size is not known or variable.  */
  unsigned int is_unknown_size_var:1;  

  /* True for variables that have unions somewhere in them.  */
  unsigned int has_union:1;

  /* True if this is a heap variable.  */
  unsigned int is_heap_var:1;

  /* Points-to set for this variable.  */
  bitmap solution;

  /* Variable ids represented by this node.  */
  bitmap variables;

  /* Vector of complex constraints for this node.  Complex
     constraints are those involving dereferences.  */
  VEC(constraint_t,heap) *complex;
};
typedef struct variable_info *varinfo_t;

static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);

/* Pool of variable info structures.  */
static alloc_pool variable_info_pool;

DEF_VEC_P(varinfo_t);

DEF_VEC_ALLOC_P(varinfo_t, heap);

/* Table of variable info structures for constraint variables.  Indexed directly
   by variable info id.  */
static VEC(varinfo_t,heap) *varmap;

/* Return the varmap element N */

static inline varinfo_t
get_varinfo(unsigned int n)
{
  return VEC_index(varinfo_t, varmap, n);
}

/* Variable that represents the unknown pointer.  */
static varinfo_t var_anything;
static tree anything_tree;
static unsigned int anything_id;

/* Variable that represents the NULL pointer.  */
static varinfo_t var_nothing;
static tree nothing_tree;
static unsigned int nothing_id;

/* Variable that represents read only memory.  */
static varinfo_t var_readonly;
static tree readonly_tree;
static unsigned int readonly_id;

/* Variable that represents integers.  This is used for when people do things
   like &0->a.b.  */
static varinfo_t var_integer;
static tree integer_tree;
static unsigned int integer_id;

/* Variable that represents arbitrary offsets into an object.  Used to
   represent pointer arithmetic, which may not legally escape the
   bounds of an object.  */
static varinfo_t var_anyoffset;
static tree anyoffset_tree;
static unsigned int anyoffset_id;

/* Return a new variable info structure consisting for a variable
   named NAME, and using constraint graph node NODE.  */

static varinfo_t
new_var_info (tree t, unsigned int id, const char *name, unsigned int node)
{
  varinfo_t ret = pool_alloc (variable_info_pool);

  ret->id = id;
  ret->name = name;
  ret->decl = t;
  ret->node = node;
  ret->address_taken = false;
  ret->indirect_target = false;
  ret->is_artificial_var = false;
  ret->is_heap_var = false;
  ret->is_special_var = false;
  ret->is_unknown_size_var = false;
  ret->has_union = false;
  ret->solution = BITMAP_ALLOC (&ptabitmap_obstack);
  bitmap_clear (ret->solution);
  ret->variables = BITMAP_ALLOC (&ptabitmap_obstack);
  bitmap_clear (ret->variables);
  ret->complex = NULL;
  ret->next = NULL;
  return ret;
}

typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;

/* An expression that appears in a constraint.  */

struct constraint_expr 
{
  /* Constraint type.  */
  constraint_expr_type type;

  /* Variable we are referring to in the constraint.  */
  unsigned int var;

  /* Offset, in bits, of this constraint from the beginning of
     variables it ends up referring to.

     IOW, in a deref constraint, we would deref, get the result set,
     then add OFFSET to each member.   */
  unsigned HOST_WIDE_INT offset;
};

static struct constraint_expr do_deref (struct constraint_expr);

/* Our set constraints are made up of two constraint expressions, one
   LHS, and one RHS.  

   As described in the introduction, our set constraints each represent an
   operation between set valued variables.
*/
struct constraint
{
  struct constraint_expr lhs;
  struct constraint_expr rhs;
};

/* List of constraints that we use to build the constraint graph from.  */

static VEC(constraint_t,heap) *constraints;
static alloc_pool constraint_pool;

/* An edge in the constraint graph.  We technically have no use for
   the src, since it will always be the same node that we are indexing
   into the pred/succ arrays with, but it's nice for checking
   purposes.  The edges are weighted, with a bit set in weights for
   each edge from src to dest with that weight.  */

struct constraint_edge
{
  unsigned int src;
  unsigned int dest;
  bitmap weights;
};

typedef struct constraint_edge *constraint_edge_t;
static alloc_pool constraint_edge_pool;

/* Return a new constraint edge from SRC to DEST.  */

static constraint_edge_t
new_constraint_edge (unsigned int src, unsigned int dest)
{
  constraint_edge_t ret = pool_alloc (constraint_edge_pool);
  ret->src = src;
  ret->dest = dest;
  ret->weights = NULL;
  return ret;
}

DEF_VEC_P(constraint_edge_t);
DEF_VEC_ALLOC_P(constraint_edge_t,heap);


/* The constraint graph is simply a set of adjacency vectors, one per
   variable. succs[x] is the vector of successors for variable x, and preds[x]
   is the vector of predecessors for variable x. 
   IOW, all edges are "forward" edges, which is not like our CFG.  
   So remember that
   preds[x]->src == x, and
   succs[x]->src == x.  */

struct constraint_graph
{
  VEC(constraint_edge_t,heap) **succs;
  VEC(constraint_edge_t,heap) **preds;
};

typedef struct constraint_graph *constraint_graph_t;

static constraint_graph_t graph;

/* Create a new constraint consisting of LHS and RHS expressions.  */

static constraint_t 
new_constraint (const struct constraint_expr lhs,
		const struct constraint_expr rhs)
{
  constraint_t ret = pool_alloc (constraint_pool);
  ret->lhs = lhs;
  ret->rhs = rhs;
  return ret;
}

/* Print out constraint C to FILE.  */

void
dump_constraint (FILE *file, constraint_t c)
{
  if (c->lhs.type == ADDRESSOF)
    fprintf (file, "&");
  else if (c->lhs.type == DEREF)
    fprintf (file, "*");  
  fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
  if (c->lhs.offset != 0)
    fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
  fprintf (file, " = ");
  if (c->rhs.type == ADDRESSOF)
    fprintf (file, "&");
  else if (c->rhs.type == DEREF)
    fprintf (file, "*");
  fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
  if (c->rhs.offset != 0)
    fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
  fprintf (file, "\n");
}

/* Print out constraint C to stderr.  */

void
debug_constraint (constraint_t c)
{
  dump_constraint (stderr, c);
}

/* Print out all constraints to FILE */

void
dump_constraints (FILE *file)
{
  int i;
  constraint_t c;
  for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
    dump_constraint (file, c);
}

/* Print out all constraints to stderr.  */

void
debug_constraints (void)
{
  dump_constraints (stderr);
}

/* SOLVER FUNCTIONS 

   The solver is a simple worklist solver, that works on the following
   algorithm:
   
   sbitmap changed_nodes = all ones;
   changed_count = number of nodes;
   For each node that was already collapsed:
       changed_count--;


   while (changed_count > 0)
   {
     compute topological ordering for constraint graph
  
     find and collapse cycles in the constraint graph (updating
     changed if necessary)
     
     for each node (n) in the graph in topological order:
       changed_count--;

       Process each complex constraint associated with the node,
       updating changed if necessary.

       For each outgoing edge from n, propagate the solution from n to
       the destination of the edge, updating changed as necessary.

   }  */

/* Return true if two constraint expressions A and B are equal.  */

static bool
constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
{
  return a.type == b.type
    && a.var == b.var
    && a.offset == b.offset;
}

/* Return true if constraint expression A is less than constraint expression
   B.  This is just arbitrary, but consistent, in order to give them an
   ordering.  */

static bool
constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
{
  if (a.type == b.type)
    {
      if (a.var == b.var)
	return a.offset < b.offset;
      else
	return a.var < b.var;
    }
  else
    return a.type < b.type;
}

/* Return true if constraint A is less than constraint B.  This is just
   arbitrary, but consistent, in order to give them an ordering.  */

static bool
constraint_less (const constraint_t a, const constraint_t b)
{
  if (constraint_expr_less (a->lhs, b->lhs))
    return true;
  else if (constraint_expr_less (b->lhs, a->lhs))
    return false;
  else
    return constraint_expr_less (a->rhs, b->rhs);
}

/* Return true if two constraints A and B are equal.  */
  
static bool
constraint_equal (struct constraint a, struct constraint b)
{
  return constraint_expr_equal (a.lhs, b.lhs) 
    && constraint_expr_equal (a.rhs, b.rhs);
}


/* Find a constraint LOOKFOR in the sorted constraint vector VEC */

static constraint_t
constraint_vec_find (VEC(constraint_t,heap) *vec,
		     struct constraint lookfor)
{
  unsigned int place;  
  constraint_t found;

  if (vec == NULL)
    return NULL;

  place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
  if (place >= VEC_length (constraint_t, vec))
    return NULL;
  found = VEC_index (constraint_t, vec, place);
  if (!constraint_equal (*found, lookfor))
    return NULL;
  return found;
}

/* Union two constraint vectors, TO and FROM.  Put the result in TO.  */

static void
constraint_set_union (VEC(constraint_t,heap) **to,
		      VEC(constraint_t,heap) **from)
{
  int i;
  constraint_t c;

  for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
    {
      if (constraint_vec_find (*to, *c) == NULL)
	{
	  unsigned int place = VEC_lower_bound (constraint_t, *to, c,
						constraint_less);
	  VEC_safe_insert (constraint_t, heap, *to, place, c);
	}
    }
}

/* Take a solution set SET, add OFFSET to each member of the set, and
   overwrite SET with the result when done.  */

static void
solution_set_add (bitmap set, unsigned HOST_WIDE_INT offset)
{
  bitmap result = BITMAP_ALLOC (&iteration_obstack);
  unsigned int i;
  bitmap_iterator bi;

  EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
    {
      /* If this is a properly sized variable, only add offset if it's
	 less than end.  Otherwise, it is globbed to a single
	 variable.  */
      
      if ((get_varinfo (i)->offset + offset) < get_varinfo (i)->fullsize)
	{
	  unsigned HOST_WIDE_INT fieldoffset = get_varinfo (i)->offset + offset;
	  varinfo_t v = first_vi_for_offset (get_varinfo (i), fieldoffset);
	  if (!v)
	    continue;
	  bitmap_set_bit (result, v->id);
	}
      else if (get_varinfo (i)->is_artificial_var 
	       || get_varinfo (i)->has_union
	       || get_varinfo (i)->is_unknown_size_var)
	{
	  bitmap_set_bit (result, i);
	}
    }
  
  bitmap_copy (set, result);  
  BITMAP_FREE (result);
}

/* Union solution sets TO and FROM, and add INC to each member of FROM in the
   process.  */

static bool
set_union_with_increment  (bitmap to, bitmap from, unsigned HOST_WIDE_INT inc)
{
  if (inc == 0)
    return bitmap_ior_into (to, from);
  else
    {
      bitmap tmp;
      bool res;

      tmp = BITMAP_ALLOC (&iteration_obstack);
      bitmap_copy (tmp, from);
      solution_set_add (tmp, inc);
      res = bitmap_ior_into (to, tmp);
      BITMAP_FREE (tmp);
      return res;
    }
}

/* Insert constraint C into the list of complex constraints for VAR.  */

static void
insert_into_complex (unsigned int var, constraint_t c)
{
  varinfo_t vi = get_varinfo (var);
  unsigned int place = VEC_lower_bound (constraint_t, vi->complex, c,
					constraint_less);
  VEC_safe_insert (constraint_t, heap, vi->complex, place, c);
}


/* Compare two constraint edges A and B, return true if they are equal.  */

static bool
constraint_edge_equal (struct constraint_edge a, struct constraint_edge b)
{
  return a.src == b.src && a.dest == b.dest;
}

/* Compare two constraint edges, return true if A is less than B */

static bool
constraint_edge_less (const constraint_edge_t a, const constraint_edge_t b)
{
  if (a->dest < b->dest)
    return true;
  else if (a->dest == b->dest)
    return a->src < b->src;
  else
    return false;
}

/* Find the constraint edge that matches LOOKFOR, in VEC.
   Return the edge, if found, NULL otherwise.  */

static constraint_edge_t 
constraint_edge_vec_find (VEC(constraint_edge_t,heap) *vec, 
			  struct constraint_edge lookfor)
{
  unsigned int place;  
  constraint_edge_t edge;

  place = VEC_lower_bound (constraint_edge_t, vec, &lookfor, 
			   constraint_edge_less);
  edge = VEC_index (constraint_edge_t, vec, place);
  if (!constraint_edge_equal (*edge, lookfor))
    return NULL;
  return edge;
}

/* Condense two variable nodes into a single variable node, by moving
   all associated info from SRC to TO.  */

static void 
condense_varmap_nodes (unsigned int to, unsigned int src)
{
  varinfo_t tovi = get_varinfo (to);
  varinfo_t srcvi = get_varinfo (src);
  unsigned int i;
  constraint_t c;
  bitmap_iterator bi;
  
  /* the src node, and all its variables, are now the to node.  */
  srcvi->node = to;
  EXECUTE_IF_SET_IN_BITMAP (srcvi->variables, 0, i, bi)
    get_varinfo (i)->node = to;
  
  /* Merge the src node variables and the to node variables.  */
  bitmap_set_bit (tovi->variables, src);
  bitmap_ior_into (tovi->variables, srcvi->variables);
  bitmap_clear (srcvi->variables);
  
  /* Move all complex constraints from src node into to node  */
  for (i = 0; VEC_iterate (constraint_t, srcvi->complex, i, c); i++)
    {
      /* In complex constraints for node src, we may have either
	 a = *src, and *src = a.  */
      
      if (c->rhs.type == DEREF)
	c->rhs.var = to;
      else
	c->lhs.var = to;
    }
  constraint_set_union (&tovi->complex, &srcvi->complex);
  VEC_free (constraint_t, heap, srcvi->complex);
  srcvi->complex = NULL;
}

/* Erase EDGE from GRAPH.  This routine only handles self-edges
   (e.g. an edge from a to a).  */

static void
erase_graph_self_edge (constraint_graph_t graph, struct constraint_edge edge)
{
  VEC(constraint_edge_t,heap) *predvec = graph->preds[edge.src];
  VEC(constraint_edge_t,heap) *succvec = graph->succs[edge.dest];
  unsigned int place;
  gcc_assert (edge.src == edge.dest);

  /* Remove from the successors.  */
  place = VEC_lower_bound (constraint_edge_t, succvec, &edge, 
			   constraint_edge_less);
  
  /* Make sure we found the edge.  */
#ifdef ENABLE_CHECKING
  {
    constraint_edge_t tmp = VEC_index (constraint_edge_t, succvec, place);
    gcc_assert (constraint_edge_equal (*tmp, edge));
  }
#endif
  VEC_ordered_remove (constraint_edge_t, succvec, place);

  /* Remove from the predecessors.  */
  place = VEC_lower_bound (constraint_edge_t, predvec, &edge,
			   constraint_edge_less);

  /* Make sure we found the edge.  */
#ifdef ENABLE_CHECKING
  {
    constraint_edge_t tmp = VEC_index (constraint_edge_t, predvec, place);
    gcc_assert (constraint_edge_equal (*tmp, edge));
  }
#endif
  VEC_ordered_remove (constraint_edge_t, predvec, place);
}

/* Remove edges involving NODE from GRAPH.  */

static void
clear_edges_for_node (constraint_graph_t graph, unsigned int node)
{
  VEC(constraint_edge_t,heap) *succvec = graph->succs[node];
  VEC(constraint_edge_t,heap) *predvec = graph->preds[node];
  constraint_edge_t c;
  int i;
  
  /* Walk the successors, erase the associated preds.  */
  for (i = 0; VEC_iterate (constraint_edge_t, succvec, i, c); i++)
    if (c->dest != node)
      {
	unsigned int place;
	struct constraint_edge lookfor;
	lookfor.src = c->dest;
	lookfor.dest = node;
	place = VEC_lower_bound (constraint_edge_t, graph->preds[c->dest], 
				 &lookfor, constraint_edge_less);
	VEC_ordered_remove (constraint_edge_t, graph->preds[c->dest], place);
      }
  /* Walk the preds, erase the associated succs.  */
  for (i =0; VEC_iterate (constraint_edge_t, predvec, i, c); i++)
    if (c->dest != node)
      {
	unsigned int place;
	struct constraint_edge lookfor;
	lookfor.src = c->dest;
	lookfor.dest = node;
	place = VEC_lower_bound (constraint_edge_t, graph->succs[c->dest],
				 &lookfor, constraint_edge_less);
	VEC_ordered_remove (constraint_edge_t, graph->succs[c->dest], place);
      }    
  
  VEC_free (constraint_edge_t, heap, graph->preds[node]);
  VEC_free (constraint_edge_t, heap, graph->succs[node]);
  graph->preds[node] = NULL;
  graph->succs[node] = NULL;
}

static bool edge_added = false;
  
/* Add edge NEWE to the graph.  */

static bool
add_graph_edge (constraint_graph_t graph, struct constraint_edge newe)
{
  unsigned int place;
  unsigned int src = newe.src;
  unsigned int dest = newe.dest;
  VEC(constraint_edge_t,heap) *vec;

  vec = graph->preds[src];
  place = VEC_lower_bound (constraint_edge_t, vec, &newe, 
			   constraint_edge_less);
  if (place == VEC_length (constraint_edge_t, vec)
      || VEC_index (constraint_edge_t, vec, place)->dest != dest)
    {
      constraint_edge_t edge = new_constraint_edge (src, dest);
      bitmap weightbitmap;

      weightbitmap = BITMAP_ALLOC (&ptabitmap_obstack);
      edge->weights = weightbitmap;
      VEC_safe_insert (constraint_edge_t, heap, graph->preds[edge->src], 
		       place, edge);
      edge = new_constraint_edge (dest, src);
      edge->weights = weightbitmap;
      place = VEC_lower_bound (constraint_edge_t, graph->succs[edge->src],
			       edge, constraint_edge_less);
      VEC_safe_insert (constraint_edge_t, heap, graph->succs[edge->src], 
		       place, edge);
      edge_added = true;
      return true;
    }
  else
    return false;
}


/* Return the bitmap representing the weights of edge LOOKFOR */

static bitmap
get_graph_weights (constraint_graph_t graph, struct constraint_edge lookfor)
{
  constraint_edge_t edge;
  unsigned int src = lookfor.src;
  VEC(constraint_edge_t,heap) *vec;
  vec = graph->preds[src];
  edge = constraint_edge_vec_find (vec, lookfor);
  gcc_assert (edge != NULL);
  return edge->weights;
}


/* Merge GRAPH nodes FROM and TO into node TO.  */

static void
merge_graph_nodes (constraint_graph_t graph, unsigned int to, 
		   unsigned int from)
{
  VEC(constraint_edge_t,heap) *succvec = graph->succs[from];
  VEC(constraint_edge_t,heap) *predvec = graph->preds[from];
  int i;
  constraint_edge_t c;
  
  /* Merge all the predecessor edges.  */

  for (i = 0; VEC_iterate (constraint_edge_t, predvec, i, c); i++)
    {
      unsigned int d = c->dest;
      struct constraint_edge olde;
      struct constraint_edge newe;
      bitmap temp;
      bitmap weights;
      if (c->dest == from)
	d = to;
      newe.src = to;
      newe.dest = d;
      add_graph_edge (graph, newe);
      olde.src = from;
      olde.dest = c->dest;
      olde.weights = NULL;
      temp = get_graph_weights (graph, olde);
      weights = get_graph_weights (graph, newe);
      bitmap_ior_into (weights, temp);
    }
  
  /* Merge all the successor edges.  */
  for (i = 0; VEC_iterate (constraint_edge_t, succvec, i, c); i++)
    {
      unsigned int d = c->dest;
      struct constraint_edge olde;
      struct constraint_edge newe;
      bitmap temp;
      bitmap weights;
      if (c->dest == from)
	d = to;
      newe.src = d;
      newe.dest = to;
      add_graph_edge (graph, newe);
      olde.src = c->dest;
      olde.dest = from;
      olde.weights = NULL;
      temp = get_graph_weights (graph, olde);
      weights = get_graph_weights (graph, newe);
      bitmap_ior_into (weights, temp);
    }
  clear_edges_for_node (graph, from);
}

/* Add a graph edge to GRAPH, going from TO to FROM, with WEIGHT, if
   it doesn't exist in the graph already.
   Return false if the edge already existed, true otherwise.  */

static bool
int_add_graph_edge (constraint_graph_t graph, unsigned int to, 
		    unsigned int from, unsigned HOST_WIDE_INT weight)
{
  if (to == from && weight == 0)
    {
      return false;
    }
  else
    {
      bool r;
      struct constraint_edge edge;
      edge.src = to;
      edge.dest = from;
      edge.weights = NULL;
      r = add_graph_edge (graph, edge);
      r |= !bitmap_bit_p (get_graph_weights (graph, edge), weight);
      bitmap_set_bit (get_graph_weights (graph, edge), weight);
      return r;
    }
}


/* Return true if LOOKFOR is an existing graph edge.  */

static bool
valid_graph_edge (constraint_graph_t graph, struct constraint_edge lookfor)
{
  return constraint_edge_vec_find (graph->preds[lookfor.src], lookfor) != NULL;
}


/* Build the constraint graph.  */

static void
build_constraint_graph (void)
{
  int i = 0;
  constraint_t c;

  graph = xmalloc (sizeof (struct constraint_graph));
  graph->succs = xcalloc (VEC_length (varinfo_t, varmap),
			  sizeof (*graph->succs));
  graph->preds = xcalloc (VEC_length (varinfo_t, varmap),
			  sizeof (*graph->preds));

  for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
    {
      struct constraint_expr lhs = c->lhs;
      struct constraint_expr rhs = c->rhs;
      if (lhs.type == DEREF)
	{
	  /* *x = y or *x = &y (complex) */
	  if (rhs.type == ADDRESSOF || rhs.var > anything_id)
	    insert_into_complex (lhs.var, c);
	}
      else if (rhs.type == DEREF)
	{
	  /* !special var= *y */
	  if (!(get_varinfo (lhs.var)->is_special_var))
	    insert_into_complex (rhs.var, c);
	}
      else if (rhs.type == ADDRESSOF)
	{
	  /* x = &y */
	  bitmap_set_bit (get_varinfo (lhs.var)->solution, rhs.var);
	}
      else if (lhs.var > anything_id)
	{
	  /* Ignore 0 weighted self edges, as they can't possibly contribute
	     anything */
	  if (lhs.var != rhs.var || rhs.offset != 0 || lhs.offset != 0)
	    {
	      
	      struct constraint_edge edge;
	      edge.src = lhs.var;
	      edge.dest = rhs.var;
	      /* x = y (simple) */
	      add_graph_edge (graph, edge);
	      bitmap_set_bit (get_graph_weights (graph, edge),
			      rhs.offset);
	    }
	  
	}
    }
}


/* Changed variables on the last iteration.  */
static unsigned int changed_count;
static sbitmap changed;

DEF_VEC_I(unsigned);
DEF_VEC_ALLOC_I(unsigned,heap);


/* Strongly Connected Component visitation info.  */

struct scc_info
{
  sbitmap visited;
  sbitmap in_component;
  int current_index;
  unsigned int *visited_index;
  VEC(unsigned,heap) *scc_stack;
  VEC(unsigned,heap) *unification_queue;
};


/* Recursive routine to find strongly connected components in GRAPH.
   SI is the SCC info to store the information in, and N is the id of current
   graph node we are processing.
   
   This is Tarjan's strongly connected component finding algorithm, as
   modified by Nuutila to keep only non-root nodes on the stack.  
   The algorithm can be found in "On finding the strongly connected
   connected components in a directed graph" by Esko Nuutila and Eljas
   Soisalon-Soininen, in Information Processing Letters volume 49,
   number 1, pages 9-14.  */

static void
scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
{
  constraint_edge_t c;
  int i;

  gcc_assert (get_varinfo (n)->node == n);
  SET_BIT (si->visited, n);
  RESET_BIT (si->in_component, n);
  si->visited_index[n] = si->current_index ++;
  
  /* Visit all the successors.  */
  for (i = 0; VEC_iterate (constraint_edge_t, graph->succs[n], i, c); i++)
    {
      /* We only want to find and collapse the zero weight edges. */
      if (bitmap_bit_p (c->weights, 0))
	{
	  unsigned int w = c->dest;
	  if (!TEST_BIT (si->visited, w))
	    scc_visit (graph, si, w);
	  if (!TEST_BIT (si->in_component, w))
	    {
	      unsigned int t = get_varinfo (w)->node;
	      unsigned int nnode = get_varinfo (n)->node;
	      if (si->visited_index[t] < si->visited_index[nnode])
		get_varinfo (n)->node = t;
	    }
	}
    }
  
  /* See if any components have been identified.  */
  if (get_varinfo (n)->node == n)
    {
      unsigned int t = si->visited_index[n];
      SET_BIT (si->in_component, n);
      while (VEC_length (unsigned, si->scc_stack) != 0 
	     && t < si->visited_index[VEC_last (unsigned, si->scc_stack)])
	{
	  unsigned int w = VEC_pop (unsigned, si->scc_stack);
	  get_varinfo (w)->node = n;
	  SET_BIT (si->in_component, w);
	  /* Mark this node for collapsing.  */
	  VEC_safe_push (unsigned, heap, si->unification_queue, w);
	} 
    }
  else
    VEC_safe_push (unsigned, heap, si->scc_stack, n);
}


/* Collapse two variables into one variable.  */

static void
collapse_nodes (constraint_graph_t graph, unsigned int to, unsigned int from)
{
  bitmap tosol, fromsol;
  struct constraint_edge edge;


  condense_varmap_nodes (to, from);
  tosol = get_varinfo (to)->solution;
  fromsol = get_varinfo (from)->solution;
  bitmap_ior_into (tosol, fromsol);
  merge_graph_nodes (graph, to, from);
  edge.src = to;
  edge.dest = to;
  edge.weights = NULL;
  if (valid_graph_edge (graph, edge))
    {
      bitmap weights = get_graph_weights (graph, edge);
      bitmap_clear_bit (weights, 0);
      if (bitmap_empty_p (weights))
	erase_graph_self_edge (graph, edge);
    }
  bitmap_clear (fromsol);
  get_varinfo (to)->address_taken |= get_varinfo (from)->address_taken;
  get_varinfo (to)->indirect_target |= get_varinfo (from)->indirect_target;
}


/* Unify nodes in GRAPH that we have found to be part of a cycle.
   SI is the Strongly Connected Components information structure that tells us
   what components to unify.
   UPDATE_CHANGED should be set to true if the changed sbitmap and changed
   count should be updated to reflect the unification.  */

static void
process_unification_queue (constraint_graph_t graph, struct scc_info *si,
			   bool update_changed)
{
  size_t i = 0;
  bitmap tmp = BITMAP_ALLOC (update_changed ? &iteration_obstack : NULL);
  bitmap_clear (tmp);

  /* We proceed as follows:

     For each component in the queue (components are delineated by
     when current_queue_element->node != next_queue_element->node):

        rep = representative node for component

        For each node (tounify) to be unified in the component,
           merge the solution for tounify into tmp bitmap

           clear solution for tounify

           merge edges from tounify into rep

	   merge complex constraints from tounify into rep

	   update changed count to note that tounify will never change
	   again

	Merge tmp into solution for rep, marking rep changed if this
	changed rep's solution.
	
	Delete any 0 weighted self-edges we now have for rep.  */
  while (i != VEC_length (unsigned, si->unification_queue))
    {
      unsigned int tounify = VEC_index (unsigned, si->unification_queue, i);
      unsigned int n = get_varinfo (tounify)->node;

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Unifying %s to %s\n", 
		 get_varinfo (tounify)->name,
		 get_varinfo (n)->name);
      if (update_changed)
	stats.unified_vars_dynamic++;
      else
	stats.unified_vars_static++;
      bitmap_ior_into (tmp, get_varinfo (tounify)->solution);
      merge_graph_nodes (graph, n, tounify);
      condense_varmap_nodes (n, tounify);
      
      if (update_changed && TEST_BIT (changed, tounify))
	{
	  RESET_BIT (changed, tounify);
	  if (!TEST_BIT (changed, n))
	    SET_BIT (changed, n);
	  else
	    {
	      gcc_assert (changed_count > 0);
	      changed_count--;
	    }
	}

      bitmap_clear (get_varinfo (tounify)->solution);
      ++i;

      /* If we've either finished processing the entire queue, or
	 finished processing all nodes for component n, update the solution for
	 n.  */
      if (i == VEC_length (unsigned, si->unification_queue)
	  || get_varinfo (VEC_index (unsigned, si->unification_queue, i))->node != n)
	{
	  struct constraint_edge edge;

	  /* If the solution changes because of the merging, we need to mark
	     the variable as changed.  */
	  if (bitmap_ior_into (get_varinfo (n)->solution, tmp))
	    {
	      if (update_changed && !TEST_BIT (changed, n))
		{
		  SET_BIT (changed, n);
		  changed_count++;
		}
	    }
	  bitmap_clear (tmp);
	  edge.src = n;
	  edge.dest = n;
	  edge.weights = NULL;
	  if (valid_graph_edge (graph, edge))
	    {
	      bitmap weights = get_graph_weights (graph, edge);
	      bitmap_clear_bit (weights, 0);
	      if (bitmap_empty_p (weights))
		erase_graph_self_edge (graph, edge);
	    }
	}
    }
  BITMAP_FREE (tmp);
}


/* Information needed to compute the topological ordering of a graph.  */

struct topo_info
{
  /* sbitmap of visited nodes.  */
  sbitmap visited;
  /* Array that stores the topological order of the graph, *in
     reverse*.  */
  VEC(unsigned,heap) *topo_order;
};


/* Initialize and return a topological info structure.  */

static struct topo_info *
init_topo_info (void)
{
  size_t size = VEC_length (varinfo_t, varmap);
  struct topo_info *ti = xmalloc (sizeof (struct topo_info));
  ti->visited = sbitmap_alloc (size);
  sbitmap_zero (ti->visited);
  ti->topo_order = VEC_alloc (unsigned, heap, 1);
  return ti;
}


/* Free the topological sort info pointed to by TI.  */

static void
free_topo_info (struct topo_info *ti)
{
  sbitmap_free (ti->visited);
  VEC_free (unsigned, heap, ti->topo_order);
  free (ti);
}

/* Visit the graph in topological order, and store the order in the
   topo_info structure.  */

static void
topo_visit (constraint_graph_t graph, struct topo_info *ti,
	    unsigned int n)
{
  VEC(constraint_edge_t,heap) *succs = graph->succs[n];
  constraint_edge_t c;
  int i;
  SET_BIT (ti->visited, n);
  for (i = 0; VEC_iterate (constraint_edge_t, succs, i, c); i++)
    {
      if (!TEST_BIT (ti->visited, c->dest))
	topo_visit (graph, ti, c->dest);
    }
  VEC_safe_push (unsigned, heap, ti->topo_order, n);
}

/* Return true if variable N + OFFSET is a legal field of N.  */

static bool 
type_safe (unsigned int n, unsigned HOST_WIDE_INT *offset)
{
  varinfo_t ninfo = get_varinfo (n);

  /* For things we've globbed to single variables, any offset into the
     variable acts like the entire variable, so that it becomes offset
     0.  */
  if (ninfo->is_special_var
      || ninfo->is_artificial_var
      || ninfo->is_unknown_size_var)
    {
      *offset = 0;
      return true;
    }
  return (get_varinfo (n)->offset + *offset) < get_varinfo (n)->fullsize;
}

/* Process a constraint C that represents *x = &y.  */

static void
do_da_constraint (constraint_graph_t graph ATTRIBUTE_UNUSED,
		  constraint_t c, bitmap delta)
{
  unsigned int rhs = c->rhs.var;
  unsigned int j;
  bitmap_iterator bi;

  /* For each member j of Delta (Sol(x)), add x to Sol(j)  */
  EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
    {
      unsigned HOST_WIDE_INT offset = c->lhs.offset;
      if (type_safe (j, &offset) && !(get_varinfo (j)->is_special_var))
	{
	/* *x != NULL && *x != ANYTHING*/
	  varinfo_t v;
	  unsigned int t;
	  bitmap sol;
	  unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + offset;

	  v = first_vi_for_offset (get_varinfo (j), fieldoffset);
	  if (!v)
	    continue;
	  t = v->node;
	  sol = get_varinfo (t)->solution;
	  if (!bitmap_bit_p (sol, rhs))
	    {		  
	      bitmap_set_bit (sol, rhs);
	      if (!TEST_BIT (changed, t))
		{
		  SET_BIT (changed, t);
		  changed_count++;
		}
	    }
	}
      else if (dump_file && !(get_varinfo (j)->is_special_var))
	fprintf (dump_file, "Untypesafe usage in do_da_constraint.\n");
      
    }
}

/* Process a constraint C that represents x = *y, using DELTA as the
   starting solution.  */

static void
do_sd_constraint (constraint_graph_t graph, constraint_t c,
		  bitmap delta)
{
  unsigned int lhs = get_varinfo (c->lhs.var)->node;
  bool flag = false;
  bitmap sol = get_varinfo (lhs)->solution;
  unsigned int j;
  bitmap_iterator bi;
  
  /* For each variable j in delta (Sol(y)), add    
     an edge in the graph from j to x, and union Sol(j) into Sol(x).  */
  EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
    {
      unsigned HOST_WIDE_INT roffset = c->rhs.offset;
      if (type_safe (j, &roffset))
	{
	  varinfo_t v;
	  unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + roffset;
	  unsigned int t;

	  v = first_vi_for_offset (get_varinfo (j), fieldoffset);	  
	  if (!v)
	    continue;
	  t = v->node;
	  if (int_add_graph_edge (graph, lhs, t, 0))
	    flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);	  
	}
      else if (dump_file && !(get_varinfo (j)->is_special_var))
	fprintf (dump_file, "Untypesafe usage in do_sd_constraint\n");
      
    }

  /* If the LHS solution changed, mark the var as changed.  */
  if (flag)
    {
      get_varinfo (lhs)->solution = sol;
      if (!TEST_BIT (changed, lhs))
	{
	  SET_BIT (changed, lhs);
	  changed_count++;
	}
    }    
}

/* Process a constraint C that represents *x = y.  */

static void
do_ds_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
{
  unsigned int rhs = get_varinfo (c->rhs.var)->node;
  unsigned HOST_WIDE_INT roff = c->rhs.offset;
  bitmap sol = get_varinfo (rhs)->solution;
  unsigned int j;
  bitmap_iterator bi;

  /* For each member j of delta (Sol(x)), add an edge from y to j and
     union Sol(y) into Sol(j) */
  EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
    {
      unsigned HOST_WIDE_INT loff = c->lhs.offset;
      if (type_safe (j, &loff) && !(get_varinfo(j)->is_special_var))
	{
	  varinfo_t v;
	  unsigned int t;
	  unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + loff;

	  v = first_vi_for_offset (get_varinfo (j), fieldoffset);
	  if (!v)
	    continue;
	  t = v->node;
	  if (int_add_graph_edge (graph, t, rhs, roff))
	    {
	      bitmap tmp = get_varinfo (t)->solution;
	      if (set_union_with_increment (tmp, sol, roff))
		{
		  get_varinfo (t)->solution = tmp;
		  if (t == rhs)
		    {
		      sol = get_varinfo (rhs)->solution;
		    }
		  if (!TEST_BIT (changed, t))
		    {
		      SET_BIT (changed, t);
		      changed_count++;
		    }
		}
	    }
	}    
      else if (dump_file && !(get_varinfo (j)->is_special_var))
	fprintf (dump_file, "Untypesafe usage in do_ds_constraint\n");
    }
}

/* Handle a non-simple (simple meaning requires no iteration), non-copy
   constraint (IE *x = &y, x = *y, and *x = y).  */
   
static void
do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
{
  if (c->lhs.type == DEREF)
    {
      if (c->rhs.type == ADDRESSOF)
	{
	  /* *x = &y */
	  do_da_constraint (graph, c, delta);
	}
      else
	{
	  /* *x = y */
	  do_ds_constraint (graph, c, delta);
	}
    }
  else
    {
      /* x = *y */
      if (!(get_varinfo (c->lhs.var)->is_special_var))
	do_sd_constraint (graph, c, delta);
    }
}

/* Initialize and return a new SCC info structure.  */

static struct scc_info *
init_scc_info (void)
{
  struct scc_info *si = xmalloc (sizeof (struct scc_info));
  size_t size = VEC_length (varinfo_t, varmap);

  si->current_index = 0;
  si->visited = sbitmap_alloc (size);
  sbitmap_zero (si->visited);
  si->in_component = sbitmap_alloc (size);
  sbitmap_ones (si->in_component);
  si->visited_index = xcalloc (sizeof (unsigned int), size + 1);
  si->scc_stack = VEC_alloc (unsigned, heap, 1);
  si->unification_queue = VEC_alloc (unsigned, heap, 1);
  return si;
}

/* Free an SCC info structure pointed to by SI */

static void
free_scc_info (struct scc_info *si)
{  
  sbitmap_free (si->visited);
  sbitmap_free (si->in_component);
  free (si->visited_index);
  VEC_free (unsigned, heap, si->scc_stack);
  VEC_free (unsigned, heap, si->unification_queue);
  free(si); 
}


/* Find cycles in GRAPH that occur, using strongly connected components, and
   collapse the cycles into a single representative node.  if UPDATE_CHANGED
   is true, then update the changed sbitmap to note those nodes whose
   solutions have changed as a result of collapsing.  */

static void
find_and_collapse_graph_cycles (constraint_graph_t graph, bool update_changed)
{
  unsigned int i;
  unsigned int size = VEC_length (varinfo_t, varmap);
  struct scc_info *si = init_scc_info ();

  for (i = 0; i != size; ++i)
    if (!TEST_BIT (si->visited, i) && get_varinfo (i)->node == i)
      scc_visit (graph, si, i);
  process_unification_queue (graph, si, update_changed);
  free_scc_info (si);
}

/* Compute a topological ordering for GRAPH, and store the result in the
   topo_info structure TI.  */

static void 
compute_topo_order (constraint_graph_t graph,
		    struct topo_info *ti)
{
  unsigned int i;
  unsigned int size = VEC_length (varinfo_t, varmap);
  
  for (i = 0; i != size; ++i)
    if (!TEST_BIT (ti->visited, i) && get_varinfo (i)->node == i)
      topo_visit (graph, ti, i);
}

/* Return true if bitmap B is empty, or a bitmap other than bit 0 is set. */

static bool
bitmap_other_than_zero_bit_set (bitmap b)
{
  unsigned int i;
  bitmap_iterator bi;

  if (bitmap_empty_p (b))
    return false;
  EXECUTE_IF_SET_IN_BITMAP (b, 1, i, bi)
    return true;
  return false;
}

/* Perform offline variable substitution.
   
   This is a linear time way of identifying variables that must have
   equivalent points-to sets, including those caused by static cycles,
   and single entry subgraphs, in the constraint graph.

   The technique is described in "Off-line variable substitution for
   scaling points-to analysis" by Atanas Rountev and Satish Chandra,
   in "ACM SIGPLAN Notices" volume 35, number 5, pages 47-56.  */

static void
perform_var_substitution (constraint_graph_t graph)
{
  struct topo_info *ti = init_topo_info ();
 
  /* Compute the topological ordering of the graph, then visit each
     node in topological order.  */
  compute_topo_order (graph, ti);
 
  while (VEC_length (unsigned, ti->topo_order) != 0)
    {
      unsigned int i = VEC_pop (unsigned, ti->topo_order);
      unsigned int pred;
      varinfo_t vi = get_varinfo (i);
      bool okay_to_elim = false;
      unsigned int root = VEC_length (varinfo_t, varmap);
      VEC(constraint_edge_t,heap) *predvec = graph->preds[i];
      constraint_edge_t ce;
      bitmap tmp;

      /* We can't eliminate things whose address is taken, or which is
	 the target of a dereference.  */
      if (vi->address_taken || vi->indirect_target)
	continue;

      /* See if all predecessors of I are ripe for elimination */
      for (pred = 0; VEC_iterate (constraint_edge_t, predvec, pred, ce); pred++)
	{
	  bitmap weight;
	  unsigned int w;
	  weight = get_graph_weights (graph, *ce);
	
	  /* We can't eliminate variables that have nonzero weighted
	     edges between them.  */
	  if (bitmap_other_than_zero_bit_set (weight))
	    {
	      okay_to_elim = false;
	      break;
	    }
	  w = get_varinfo (ce->dest)->node;

	  /* We can't eliminate the node if one of the predecessors is
	     part of a different strongly connected component.  */
	  if (!okay_to_elim)
	    {
	      root = w;
	      okay_to_elim = true;
	    }
	  else if (w != root)
	    {
	      okay_to_elim = false;
	      break;
	    }

	  /* Theorem 4 in Rountev and Chandra: If i is a direct node,
	     then Solution(i) is a subset of Solution (w), where w is a
	     predecessor in the graph.  
	     Corollary: If all predecessors of i have the same
	     points-to set, then i has that same points-to set as
	     those predecessors.  */
	  tmp = BITMAP_ALLOC (NULL);
	  bitmap_and_compl (tmp, get_varinfo (i)->solution,
			    get_varinfo (w)->solution);
	  if (!bitmap_empty_p (tmp))
	    {
	      okay_to_elim = false;
	      BITMAP_FREE (tmp);
	      break;
	    }
	  BITMAP_FREE (tmp);
	}

      /* See if the root is different than the original node. 
	 If so, we've found an equivalence.  */
      if (root != get_varinfo (i)->node && okay_to_elim)
	{
	  /* Found an equivalence */
	  get_varinfo (i)->node = root;
	  collapse_nodes (graph, root, i);
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Collapsing %s into %s\n",
		     get_varinfo (i)->name,
		     get_varinfo (root)->name);
	  stats.collapsed_vars++;
	}
    }

  free_topo_info (ti);
}


/* Solve the constraint graph GRAPH using our worklist solver.
   This is based on the PW* family of solvers from the "Efficient Field
   Sensitive Pointer Analysis for C" paper.
   It works by iterating over all the graph nodes, processing the complex
   constraints and propagating the copy constraints, until everything stops
   changed.  This corresponds to steps 6-8 in the solving list given above.  */

static void
solve_graph (constraint_graph_t graph)
{
  unsigned int size = VEC_length (varinfo_t, varmap);
  unsigned int i;

  changed_count = size;
  changed = sbitmap_alloc (size);
  sbitmap_ones (changed);
  
  /* The already collapsed/unreachable nodes will never change, so we
     need to  account for them in changed_count.  */
  for (i = 0; i < size; i++)
    if (get_varinfo (i)->node != i)
      changed_count--;
  
  while (changed_count > 0)
    {
      unsigned int i;
      struct topo_info *ti = init_topo_info ();
      stats.iterations++;
      
      bitmap_obstack_initialize (&iteration_obstack);
      
      if (edge_added)
	{
	  /* We already did cycle elimination once, when we did
	     variable substitution, so we don't need it again for the
	     first iteration.  */
	  if (stats.iterations > 1)
	    find_and_collapse_graph_cycles (graph, true);
	  
	  edge_added = false;
	}

      compute_topo_order (graph, ti);

      while (VEC_length (unsigned, ti->topo_order) != 0)
	{
	  i = VEC_pop (unsigned, ti->topo_order);
	  gcc_assert (get_varinfo (i)->node == i);

	  /* If the node has changed, we need to process the
	     complex constraints and outgoing edges again.  */
	  if (TEST_BIT (changed, i))
	    {
	      unsigned int j;
	      constraint_t c;
	      constraint_edge_t e;
	      bitmap solution;
	      VEC(constraint_t,heap) *complex = get_varinfo (i)->complex;
	      VEC(constraint_edge_t,heap) *succs;

	      RESET_BIT (changed, i);
	      changed_count--;

	      /* Process the complex constraints */
	      solution = get_varinfo (i)->solution;
	      for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
		do_complex_constraint (graph, c, solution);

	      /* Propagate solution to all successors.  */
	      succs = graph->succs[i];
	      for (j = 0; VEC_iterate (constraint_edge_t, succs, j, e); j++)
		{
		  bitmap tmp = get_varinfo (e->dest)->solution;
		  bool flag = false;
		  unsigned int k;
		  bitmap weights = e->weights;
		  bitmap_iterator bi;

		  gcc_assert (!bitmap_empty_p (weights));
		  EXECUTE_IF_SET_IN_BITMAP (weights, 0, k, bi)
		    flag |= set_union_with_increment (tmp, solution, k);

		  if (flag)
		    {
		      get_varinfo (e->dest)->solution = tmp;		    
		      if (!TEST_BIT (changed, e->dest))
			{
			  SET_BIT (changed, e->dest);
			  changed_count++;
			}
		    }
		}
	    }
	}
      free_topo_info (ti);
      bitmap_obstack_release (&iteration_obstack);
    }

  sbitmap_free (changed);
}


/* CONSTRAINT AND VARIABLE GENERATION FUNCTIONS */

/* Map from trees to variable ids.  */    
static htab_t id_for_tree;

typedef struct tree_id
{
  tree t;
  unsigned int id;
} *tree_id_t;

/* Hash a tree id structure.  */

static hashval_t 
tree_id_hash (const void *p)
{
  const tree_id_t ta = (tree_id_t) p;
  return htab_hash_pointer (ta->t);
}

/* Return true if the tree in P1 and the tree in P2 are the same.  */

static int
tree_id_eq (const void *p1, const void *p2)
{
  const tree_id_t ta1 = (tree_id_t) p1;
  const tree_id_t ta2 = (tree_id_t) p2;
  return ta1->t == ta2->t;
}

/* Insert ID as the variable id for tree T in the hashtable.  */

static void 
insert_id_for_tree (tree t, int id)
{
  void **slot;
  struct tree_id finder;
  tree_id_t new_pair;
  
  finder.t = t;
  slot = htab_find_slot (id_for_tree, &finder, INSERT);
  gcc_assert (*slot == NULL);
  new_pair = xmalloc (sizeof (struct tree_id));
  new_pair->t = t;
  new_pair->id = id;
  *slot = (void *)new_pair;
}

/* Find the variable id for tree T in ID_FOR_TREE.  If T does not
   exist in the hash table, return false, otherwise, return true and
   set *ID to the id we found.  */

static bool
lookup_id_for_tree (tree t, unsigned int *id)
{
  tree_id_t pair;
  struct tree_id finder;

  finder.t = t;
  pair = htab_find (id_for_tree,  &finder);
  if (pair == NULL)
    return false;
  *id = pair->id;
  return true;
}

/* Return a printable name for DECL  */

static const char *
alias_get_name (tree decl)
{
  const char *res = get_name (decl);
  char *temp;
  int num_printed = 0;

  if (res != NULL)
    return res;

  res = "NULL";
  if (TREE_CODE (decl) == SSA_NAME)
    {
      num_printed = asprintf (&temp, "%s_%u", 
			      alias_get_name (SSA_NAME_VAR (decl)),
			      SSA_NAME_VERSION (decl));
    }
  else if (DECL_P (decl))
    {
      num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
    }
  if (num_printed > 0)
    {
      res = ggc_strdup (temp);
      free (temp);
    }
  return res;
}

/* Find the variable id for tree T in the hashtable.
   If T doesn't exist in the hash table, create an entry for it.  */

static unsigned int
get_id_for_tree (tree t)
{
  tree_id_t pair;
  struct tree_id finder;

  finder.t = t;
  pair = htab_find (id_for_tree,  &finder);
  if (pair == NULL)
    return create_variable_info_for (t, alias_get_name (t));
  
  return pair->id;
}

/* Get a constraint expression from an SSA_VAR_P node.  */

static struct constraint_expr
get_constraint_exp_from_ssa_var (tree t)
{
  struct constraint_expr cexpr;

  gcc_assert (SSA_VAR_P (t) || DECL_P (t));

  /* For parameters, get at the points-to set for the actual parm
     decl.  */
  if (TREE_CODE (t) == SSA_NAME 
      && TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL 
      && default_def (SSA_NAME_VAR (t)) == t)
    return get_constraint_exp_from_ssa_var (SSA_NAME_VAR (t));

  cexpr.type = SCALAR;
  
  cexpr.var = get_id_for_tree (t);
  /* If we determine the result is "anything", and we know this is readonly,
     say it points to readonly memory instead.  */
  if (cexpr.var == anything_id && TREE_READONLY (t))
    {
      cexpr.type = ADDRESSOF;
      cexpr.var = readonly_id;
    }
    
  cexpr.offset = 0;
  return cexpr;
}

/* Process a completed constraint T, and add it to the constraint
   list.  */

static void
process_constraint (constraint_t t)
{
  struct constraint_expr rhs = t->rhs;
  struct constraint_expr lhs = t->lhs;
  
  gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
  gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));

  /* ANYTHING == ANYTHING is pointless.  */
  if (lhs.var == anything_id && rhs.var == anything_id)
    return;

  /* If we have &ANYTHING = something, convert to SOMETHING = &ANYTHING) */
  else if (lhs.var == anything_id && lhs.type == ADDRESSOF)
    {
      rhs = t->lhs;
      t->lhs = t->rhs;
      t->rhs = rhs;
      process_constraint (t);
    }   
  /* This can happen in our IR with things like n->a = *p */
  else if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
    {
      /* Split into tmp = *rhs, *lhs = tmp */
      tree rhsdecl = get_varinfo (rhs.var)->decl;
      tree pointertype = TREE_TYPE (rhsdecl);
      tree pointedtotype = TREE_TYPE (pointertype);
      tree tmpvar = create_tmp_var_raw (pointedtotype, "doubledereftmp");
      struct constraint_expr tmplhs = get_constraint_exp_from_ssa_var (tmpvar);
      
      /* If this is an aggregate of known size, we should have passed
	 this off to do_structure_copy, and it should have broken it
	 up.  */
      gcc_assert (!AGGREGATE_TYPE_P (pointedtotype) 
		  || get_varinfo (rhs.var)->is_unknown_size_var);
      
      process_constraint (new_constraint (tmplhs, rhs));
      process_constraint (new_constraint (lhs, tmplhs));
    }
  else if (rhs.type == ADDRESSOF)
    {
      varinfo_t vi;
      gcc_assert (rhs.offset == 0);
      
      for (vi = get_varinfo (rhs.var); vi != NULL; vi = vi->next)
	vi->address_taken = true;

      VEC_safe_push (constraint_t, heap, constraints, t);
    }
  else
    {
      if (lhs.type != DEREF && rhs.type == DEREF)
	get_varinfo (lhs.var)->indirect_target = true;
      VEC_safe_push (constraint_t, heap, constraints, t);
    }
}


/* Return the position, in bits, of FIELD_DECL from the beginning of its
   structure.  */

static unsigned HOST_WIDE_INT
bitpos_of_field (const tree fdecl)
{

  if (TREE_CODE (DECL_FIELD_OFFSET (fdecl)) != INTEGER_CST
      || TREE_CODE (DECL_FIELD_BIT_OFFSET (fdecl)) != INTEGER_CST)
    return -1;
  
  return (tree_low_cst (DECL_FIELD_OFFSET (fdecl), 1) * 8) 
         + tree_low_cst (DECL_FIELD_BIT_OFFSET (fdecl), 1);
}


/* Return true if an access to [ACCESSPOS, ACCESSSIZE]
   overlaps with a field at [FIELDPOS, FIELDSIZE] */

static bool
offset_overlaps_with_access (const unsigned HOST_WIDE_INT fieldpos,
			     const unsigned HOST_WIDE_INT fieldsize,
			     const unsigned HOST_WIDE_INT accesspos,
			     const unsigned HOST_WIDE_INT accesssize)
{
  if (fieldpos == accesspos && fieldsize == accesssize)
    return true;
  if (accesspos >= fieldpos && accesspos < (fieldpos + fieldsize))
    return true;
  if (accesspos < fieldpos && (accesspos + accesssize > fieldpos))
    return true;
  
  return false;
}

/* Given a COMPONENT_REF T, return the constraint_expr for it.  */

static struct constraint_expr
get_constraint_for_component_ref (tree t, bool *need_anyoffset)
{
  struct constraint_expr result;
  HOST_WIDE_INT bitsize = -1;
  HOST_WIDE_INT bitpos;
  tree offset = NULL_TREE;
  enum machine_mode mode;
  int unsignedp;
  int volatilep;
  tree forzero;
  
  result.offset = 0;
  result.type = SCALAR;
  result.var = 0;

  /* Some people like to do cute things like take the address of
     &0->a.b */
  forzero = t;
  while (!SSA_VAR_P (forzero) && !CONSTANT_CLASS_P (forzero))
      forzero = TREE_OPERAND (forzero, 0);

  if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero)) 
    {
      result.offset = 0;
      result.var = integer_id;
      result.type = SCALAR;
      return result;
    }
 
  t = get_inner_reference (t, &bitsize, &bitpos, &offset, &mode,
			   &unsignedp, &volatilep, false);
  result = get_constraint_for (t, need_anyoffset);

  /* This can also happen due to weird offsetof type macros.  */
  if (TREE_CODE (t) != ADDR_EXPR && result.type == ADDRESSOF)
    result.type = SCALAR;
  
  /* If we know where this goes, then yay. Otherwise, booo. */

  if (offset == NULL && bitsize != -1)
    {
      result.offset = bitpos;
    }	
  else if (need_anyoffset)
    {
      result.offset = 0;
      *need_anyoffset = true; 
    }
  else
    {
      result.var = anything_id;
      result.offset = 0;      
    }

  if (result.type == SCALAR)
    {
      /* In languages like C, you can access one past the end of an
	 array.  You aren't allowed to dereference it, so we can
	 ignore this constraint. When we handle pointer subtraction,
	 we may have to do something cute here.  */
      
      if (result.offset < get_varinfo (result.var)->fullsize)	
	{
	  /* It's also not true that the constraint will actually start at the
	     right offset, it may start in some padding.  We only care about
	     setting the constraint to the first actual field it touches, so
	     walk to find it.  */ 
	  varinfo_t curr;
	  for (curr = get_varinfo (result.var); curr; curr = curr->next)
	    {
	      if (offset_overlaps_with_access (curr->offset, curr->size,
					       result.offset, bitsize))
		{
		  result.var = curr->id;
		  break;

		}
	    }
	  /* assert that we found *some* field there. The user couldn't be
	     accessing *only* padding.  */
	     
	  gcc_assert (curr);
	}
      else
	if (dump_file && (dump_flags & TDF_DETAILS))
	  fprintf (dump_file, "Access to past the end of variable, ignoring\n");

      result.offset = 0;
    }
  
  return result;
}


/* Dereference the constraint expression CONS, and return the result.
   DEREF (ADDRESSOF) = SCALAR
   DEREF (SCALAR) = DEREF
   DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
   This is needed so that we can handle dereferencing DEREF constraints.  */

static struct constraint_expr
do_deref (struct constraint_expr cons)
{
  if (cons.type == SCALAR)
    {
      cons.type = DEREF;
      return cons;
    }
  else if (cons.type == ADDRESSOF)
    {
      cons.type = SCALAR;
      return cons;
    }
  else if (cons.type == DEREF)
    {
      tree tmpvar = create_tmp_var_raw (ptr_type_node, "derefmp");
      struct constraint_expr tmplhs = get_constraint_exp_from_ssa_var (tmpvar);
      process_constraint (new_constraint (tmplhs, cons));
      cons.var = tmplhs.var;
      return cons;
    }
  gcc_unreachable ();
}


/* Given a tree T, return the constraint expression for it.  */

static struct constraint_expr
get_constraint_for (tree t, bool *need_anyoffset)
{
  struct constraint_expr temp;

  /* x = integer is all glommed to a single variable, which doesn't
     point to anything by itself.  That is, of course, unless it is an
     integer constant being treated as a pointer, in which case, we
     will return that this is really the addressof anything.  This
     happens below, since it will fall into the default case. The only
     case we know something about an integer treated like a pointer is
     when it is the NULL pointer, and then we just say it points to
     NULL.  */
  if (TREE_CODE (t) == INTEGER_CST
      && !POINTER_TYPE_P (TREE_TYPE (t)))
    {
      temp.var = integer_id;
      temp.type = SCALAR;
      temp.offset = 0;
      return temp;
    }
  else if (TREE_CODE (t) == INTEGER_CST
	   && integer_zerop (t))
    {
      temp.var = nothing_id;
      temp.type = ADDRESSOF;
      temp.offset = 0;
      return temp;
    }

  switch (TREE_CODE_CLASS (TREE_CODE (t)))
    {
    case tcc_expression:
      {
	switch (TREE_CODE (t))
	  {
	  case ADDR_EXPR:
	    {
	      temp = get_constraint_for (TREE_OPERAND (t, 0), need_anyoffset);
	       if (temp.type == DEREF)
		 temp.type = SCALAR;
	       else
		 temp.type = ADDRESSOF;
	      return temp;
	    }
	    break;
	  case CALL_EXPR:
	    
	    /* XXX: In interprocedural mode, if we didn't have the
	       body, we would need to do *each pointer argument =
	       &ANYTHING added.  */
	    if (call_expr_flags (t) & (ECF_MALLOC | ECF_MAY_BE_ALLOCA))
	      {
		varinfo_t vi;
		tree heapvar;
		
		heapvar = create_tmp_var_raw (ptr_type_node, "HEAP");
		DECL_EXTERNAL (heapvar) = 1;
		add_referenced_tmp_var (heapvar);
		temp.var = create_variable_info_for (heapvar,
						     alias_get_name (heapvar));
		
		vi = get_varinfo (temp.var);
		vi->is_artificial_var = 1;
		vi->is_heap_var = 1;
		temp.type = ADDRESSOF;
		temp.offset = 0;
		return temp;
	      }
	    /* FALLTHRU */
	  default:
	    {
	      temp.type = ADDRESSOF;
	      temp.var = anything_id;
	      temp.offset = 0;
	      return temp;
	    }
	  }
      }
    case tcc_reference:
      {
	switch (TREE_CODE (t))
	  {
	  case INDIRECT_REF:
	    {
	      temp = get_constraint_for (TREE_OPERAND (t, 0), need_anyoffset);
	      temp = do_deref (temp);
	      return temp;
	    }
	  case ARRAY_REF:
	  case COMPONENT_REF:
	    temp = get_constraint_for_component_ref (t, need_anyoffset);
	    return temp;
	  default:
	    {
	      temp.type = ADDRESSOF;
	      temp.var = anything_id;
	      temp.offset = 0;
	      return temp;
	    }
	  }
      }
    case tcc_unary:
      {
	switch (TREE_CODE (t))
	  {
	  case NOP_EXPR:
	  case CONVERT_EXPR:
	  case NON_LVALUE_EXPR:
	    {
	      tree op = TREE_OPERAND (t, 0);
	      
	      /* Cast from non-pointer to pointers are bad news for us.
		 Anything else, we see through */
	      if (!(POINTER_TYPE_P (TREE_TYPE (t))
		    && ! POINTER_TYPE_P (TREE_TYPE (op))))
		return get_constraint_for (op, need_anyoffset);

	      /* FALLTHRU  */
	    }
	  default:
	    {
	      temp.type = ADDRESSOF;
	      temp.var = anything_id;
	      temp.offset = 0;
	      return temp;
	    }
	  }
      }
    case tcc_exceptional:
      {
	switch (TREE_CODE (t))
	  {
	  case PHI_NODE:	   
	    return get_constraint_for (PHI_RESULT (t), need_anyoffset);
	  case SSA_NAME:
	    return get_constraint_exp_from_ssa_var (t);
	  default:
	    {
	      temp.type = ADDRESSOF;
	      temp.var = anything_id;
	      temp.offset = 0;
	      return temp;
	    }
	  }
      }
    case tcc_declaration:
      return get_constraint_exp_from_ssa_var (t);
    default:
      {
	temp.type = ADDRESSOF;
	temp.var = anything_id;
	temp.offset = 0;
	return temp;
      }
    }
}


/* Handle the structure copy case where we have a simple structure copy
   between LHS and RHS that is of SIZE (in bits) 
  
   For each field of the lhs variable (lhsfield)
     For each field of the rhs variable at lhsfield.offset (rhsfield)
       add the constraint lhsfield = rhsfield
*/

static void
do_simple_structure_copy (const struct constraint_expr lhs,
			  const struct constraint_expr rhs,
			  const unsigned HOST_WIDE_INT size)
{
  varinfo_t p = get_varinfo (lhs.var);
  unsigned HOST_WIDE_INT pstart, last;
  pstart = p->offset;
  last = p->offset + size;
  for (; p && p->offset < last; p = p->next)
    {
      varinfo_t q;
      struct constraint_expr templhs = lhs;
      struct constraint_expr temprhs = rhs;
      unsigned HOST_WIDE_INT fieldoffset;

      templhs.var = p->id;            
      q = get_varinfo (temprhs.var);
      fieldoffset = p->offset - pstart;