aboutsummaryrefslogtreecommitdiff
path: root/gcc/java/mangle.c
blob: d38a23a173e0d2cf857e40295f56c972f6ea8eb7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/* Functions related to mangling class names for the GNU compiler
   for the Java(TM) language.
   Copyright (C) 1998, 1999 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. 

Java and all Java-based marks are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries.
The Free Software Foundation is independent of Sun Microsystems, Inc.  */

/* Written by Per Bothner <bothner@cygnus.com> */

#include "config.h"
#include "system.h"
#include "jcf.h"
#include "tree.h"
#include "java-tree.h"
#include "obstack.h"
#include "toplev.h"

/* Assuming (NAME, LEN) is a Utf8-encoding string, calculate
   the length of the string as mangled (a la g++) including Unicode escapes.
   If no escapes are needed, return 0. */

int
unicode_mangling_length (name, len)
     const char *name; 
     int len; 
{
  const unsigned char *ptr;
  const unsigned char *limit = (const unsigned char *)name + len;
  int need_escapes = 0;
  int num_chars = 0;
  int underscores = 0;
  for (ptr = (const unsigned char *) name;  ptr < limit;  )
    {
      int ch = UTF8_GET(ptr, limit);
      if (ch < 0)
	error ("internal error - invalid Utf8 name");
      if (ch >= '0' && ch <= '9')
	need_escapes += num_chars == 0;
      else if (ch == '_')
	underscores++;
      else if ((ch < 'a' || ch > 'z') && (ch < 'A' || ch > 'Z'))
	need_escapes++;
      num_chars++;
    }
  if (need_escapes)
    return num_chars + 4 * (need_escapes + underscores);
  else
    return 0;
}

/* Assuming (NAME, LEN) is a Utf8-encoding string, emit the string
   appropriately mangled (with Unicode escapes) to OBSTACK. */

void
emit_unicode_mangled_name (obstack, name, len)
     struct obstack *obstack;
     const char *name;
     int len;
{
  const unsigned char *ptr;
  const unsigned char *limit = (const unsigned char *)name + len;
  for (ptr = (const unsigned char *) name;  ptr < limit;  )
    {
      int ch = UTF8_GET(ptr, limit);
      int emit_escape;
      if (ch < 0)
	{
	  error ("internal error - bad Utf8 string");
	  break;
	}
      if (ch >= '0' && ch <= '9')
	emit_escape = (ptr == (const unsigned char *) name);
      else
	emit_escape = (ch < 'a' || ch > 'z') && (ch < 'A' || ch > 'Z');
      if (emit_escape)
	{
	  char buf[6];
	  sprintf (buf, "_%04x", ch);
	  obstack_grow (obstack, buf, 5);
	}
      else
	{
	  obstack_1grow (obstack, ch);
	}
    }
}

/* Assuming (NAME, LEN) is a Utf8-encoding string, emit the string
   appropriately mangled (with Unicode escapes if needed) to OBSTACK. */

void
append_gpp_mangled_name (obstack, name, len)
     struct obstack *obstack;
     const char *name;
     int len;
{
  int encoded_len = unicode_mangling_length (name, len);
  int needs_escapes = encoded_len > 0;
  char buf[6];
  if (needs_escapes)
    {
      sprintf (buf, "U%d", encoded_len);
      obstack_grow (obstack, buf, strlen(buf));
      emit_unicode_mangled_name (obstack, name, len);
    }
  else
    {
      sprintf (buf, "%d", len);
      obstack_grow (obstack, buf, strlen(buf));
      obstack_grow (obstack, name, len);
    }
}

/* Append the mangled name of a class named CLASSNAME onto OBSTACK. */

void
append_gpp_mangled_classtype (obstack, class_name)
     struct obstack *obstack;
     const char *class_name;
{
  const char *ptr;
  int qualifications = 0;

  for (ptr = class_name; *ptr != '\0'; ptr++)
    {
      if (*ptr == '.')
	qualifications++;
    }
  if (qualifications)
    {
      char buf[8];
      if (qualifications >= 9)
	sprintf (buf, "Q_%d_", qualifications + 1);
      else
	sprintf (buf, "Q%d", qualifications + 1);
      obstack_grow (obstack, buf, strlen (buf));
    }
  for (ptr = class_name; ; ptr++)
    {
      if (ptr[0] == '.' || ptr[0] == '\0')
	{
	  append_gpp_mangled_name (obstack, class_name, ptr - class_name);
	  if (ptr[0] == '\0')
	    break;
	  class_name = ptr + 1;
	}
    }
}
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419
/* Fold a constant sub-tree into a single node for C-compiler
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 2002,
   1999, 2000, 2001, 2002 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

/*@@ This file should be rewritten to use an arbitrary precision
  @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
  @@ Perhaps the routines could also be used for bc/dc, and made a lib.
  @@ The routines that translate from the ap rep should
  @@ warn if precision et. al. is lost.
  @@ This would also make life easier when this technology is used
  @@ for cross-compilers.  */

/* The entry points in this file are fold, size_int_wide, size_binop
   and force_fit_type.

   fold takes a tree as argument and returns a simplified tree.

   size_binop takes a tree code for an arithmetic operation
   and two operands that are trees, and produces a tree for the
   result, assuming the type comes from `sizetype'.

   size_int takes an integer value, and creates a tree constant
   with type from `sizetype'.

   force_fit_type takes a constant and prior overflow indicator, and
   forces the value to fit the type.  It returns an overflow indicator.  */

#include "config.h"
#include "system.h"
#include "flags.h"
#include "tree.h"
#include "real.h"
#include "rtl.h"
#include "expr.h"
#include "tm_p.h"
#include "toplev.h"
#include "ggc.h"
#include "hashtab.h"
#include "langhooks.h"

static void encode		PARAMS ((HOST_WIDE_INT *,
					 unsigned HOST_WIDE_INT,
					 HOST_WIDE_INT));
static void decode		PARAMS ((HOST_WIDE_INT *,
					 unsigned HOST_WIDE_INT *,
					 HOST_WIDE_INT *));
static tree negate_expr		PARAMS ((tree));
static tree split_tree		PARAMS ((tree, enum tree_code, tree *, tree *,
					 tree *, int));
static tree associate_trees	PARAMS ((tree, tree, enum tree_code, tree));
static tree int_const_binop	PARAMS ((enum tree_code, tree, tree, int));
static tree const_binop		PARAMS ((enum tree_code, tree, tree, int));
static hashval_t size_htab_hash	PARAMS ((const void *));
static int size_htab_eq		PARAMS ((const void *, const void *));
static tree fold_convert	PARAMS ((tree, tree));
static enum tree_code invert_tree_comparison PARAMS ((enum tree_code));
static enum tree_code swap_tree_comparison PARAMS ((enum tree_code));
static int comparison_to_compcode PARAMS ((enum tree_code));
static enum tree_code compcode_to_comparison PARAMS ((int));
static int truth_value_p	PARAMS ((enum tree_code));
static int operand_equal_for_comparison_p PARAMS ((tree, tree, tree));
static int twoval_comparison_p	PARAMS ((tree, tree *, tree *, int *));
static tree eval_subst		PARAMS ((tree, tree, tree, tree, tree));
static tree omit_one_operand	PARAMS ((tree, tree, tree));
static tree pedantic_omit_one_operand PARAMS ((tree, tree, tree));
static tree distribute_bit_expr PARAMS ((enum tree_code, tree, tree, tree));
static tree make_bit_field_ref	PARAMS ((tree, tree, int, int, int));
static tree optimize_bit_field_compare PARAMS ((enum tree_code, tree,
						tree, tree));
static tree decode_field_reference PARAMS ((tree, HOST_WIDE_INT *,
					    HOST_WIDE_INT *,
					    enum machine_mode *, int *,
					    int *, tree *, tree *));
static int all_ones_mask_p	PARAMS ((tree, int));
static tree sign_bit_p		PARAMS ((tree, tree));
static int simple_operand_p	PARAMS ((tree));
static tree range_binop		PARAMS ((enum tree_code, tree, tree, int,
					 tree, int));
static tree make_range		PARAMS ((tree, int *, tree *, tree *));
static tree build_range_check	PARAMS ((tree, tree, int, tree, tree));
static int merge_ranges		PARAMS ((int *, tree *, tree *, int, tree, tree,
				       int, tree, tree));
static tree fold_range_test	PARAMS ((tree));
static tree unextend		PARAMS ((tree, int, int, tree));
static tree fold_truthop	PARAMS ((enum tree_code, tree, tree, tree));
static tree optimize_minmax_comparison PARAMS ((tree));
static tree extract_muldiv	PARAMS ((tree, tree, enum tree_code, tree));
static tree strip_compound_expr PARAMS ((tree, tree));
static int multiple_of_p	PARAMS ((tree, tree, tree));
static tree constant_boolean_node PARAMS ((int, tree));
static int count_cond		PARAMS ((tree, int));
static tree fold_binary_op_with_conditional_arg
  PARAMS ((enum tree_code, tree, tree, tree, int));
static bool fold_real_zero_addition_p	PARAMS ((tree, tree, int));

/* The following constants represent a bit based encoding of GCC's
   comparison operators.  This encoding simplifies transformations
   on relational comparison operators, such as AND and OR.  */
#define COMPCODE_FALSE   0
#define COMPCODE_LT      1
#define COMPCODE_EQ      2
#define COMPCODE_LE      3
#define COMPCODE_GT      4
#define COMPCODE_NE      5
#define COMPCODE_GE      6
#define COMPCODE_TRUE    7

/* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
   overflow.  Suppose A, B and SUM have the same respective signs as A1, B1,
   and SUM1.  Then this yields nonzero if overflow occurred during the
   addition.

   Overflow occurs if A and B have the same sign, but A and SUM differ in
   sign.  Use `^' to test whether signs differ, and `< 0' to isolate the
   sign.  */
#define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)

/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
   We do that by representing the two-word integer in 4 words, with only
   HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
   number.  The value of the word is LOWPART + HIGHPART * BASE.  */

#define LOWPART(x) \
  ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
#define HIGHPART(x) \
  ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
#define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)

/* Unpack a two-word integer into 4 words.
   LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
   WORDS points to the array of HOST_WIDE_INTs.  */

static void
encode (words, low, hi)
     HOST_WIDE_INT *words;
     unsigned HOST_WIDE_INT low;
     HOST_WIDE_INT hi;
{
  words[0] = LOWPART (low);
  words[1] = HIGHPART (low);
  words[2] = LOWPART (hi);
  words[3] = HIGHPART (hi);
}

/* Pack an array of 4 words into a two-word integer.
   WORDS points to the array of words.
   The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces.  */

static void
decode (words, low, hi)
     HOST_WIDE_INT *words;
     unsigned HOST_WIDE_INT *low;
     HOST_WIDE_INT *hi;
{
  *low = words[0] + words[1] * BASE;
  *hi = words[2] + words[3] * BASE;
}

/* Make the integer constant T valid for its type by setting to 0 or 1 all
   the bits in the constant that don't belong in the type.

   Return 1 if a signed overflow occurs, 0 otherwise.  If OVERFLOW is
   nonzero, a signed overflow has already occurred in calculating T, so
   propagate it.  */

int
force_fit_type (t, overflow)
     tree t;
     int overflow;
{
  unsigned HOST_WIDE_INT low;
  HOST_WIDE_INT high;
  unsigned int prec;

  if (TREE_CODE (t) == REAL_CST)
    {
      /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
	 Consider doing it via real_convert now.  */
      return overflow;
    }

  else if (TREE_CODE (t) != INTEGER_CST)
    return overflow;

  low = TREE_INT_CST_LOW (t);
  high = TREE_INT_CST_HIGH (t);

  if (POINTER_TYPE_P (TREE_TYPE (t)))
    prec = POINTER_SIZE;
  else
    prec = TYPE_PRECISION (TREE_TYPE (t));

  /* First clear all bits that are beyond the type's precision.  */

  if (prec == 2 * HOST_BITS_PER_WIDE_INT)
    ;
  else if (prec > HOST_BITS_PER_WIDE_INT)
    TREE_INT_CST_HIGH (t)
      &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
  else
    {
      TREE_INT_CST_HIGH (t) = 0;
      if (prec < HOST_BITS_PER_WIDE_INT)
	TREE_INT_CST_LOW (t) &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
    }

  /* Unsigned types do not suffer sign extension or overflow unless they
     are a sizetype.  */
  if (TREE_UNSIGNED (TREE_TYPE (t))
      && ! (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
	    && TYPE_IS_SIZETYPE (TREE_TYPE (t))))
    return overflow;

  /* If the value's sign bit is set, extend the sign.  */
  if (prec != 2 * HOST_BITS_PER_WIDE_INT
      && (prec > HOST_BITS_PER_WIDE_INT
	  ? 0 != (TREE_INT_CST_HIGH (t)
		  & ((HOST_WIDE_INT) 1
		     << (prec - HOST_BITS_PER_WIDE_INT - 1)))
	  : 0 != (TREE_INT_CST_LOW (t)
		  & ((unsigned HOST_WIDE_INT) 1 << (prec - 1)))))
    {
      /* Value is negative:
	 set to 1 all the bits that are outside this type's precision.  */
      if (prec > HOST_BITS_PER_WIDE_INT)
	TREE_INT_CST_HIGH (t)
	  |= ((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
      else
	{
	  TREE_INT_CST_HIGH (t) = -1;
	  if (prec < HOST_BITS_PER_WIDE_INT)
	    TREE_INT_CST_LOW (t) |= ((unsigned HOST_WIDE_INT) (-1) << prec);
	}
    }

  /* Return nonzero if signed overflow occurred.  */
  return
    ((overflow | (low ^ TREE_INT_CST_LOW (t)) | (high ^ TREE_INT_CST_HIGH (t)))
     != 0);
}

/* Add two doubleword integers with doubleword result.
   Each argument is given as two `HOST_WIDE_INT' pieces.
   One argument is L1 and H1; the other, L2 and H2.
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */

int
add_double (l1, h1, l2, h2, lv, hv)
     unsigned HOST_WIDE_INT l1, l2;
     HOST_WIDE_INT h1, h2;
     unsigned HOST_WIDE_INT *lv;
     HOST_WIDE_INT *hv;
{
  unsigned HOST_WIDE_INT l;
  HOST_WIDE_INT h;

  l = l1 + l2;
  h = h1 + h2 + (l < l1);

  *lv = l;
  *hv = h;
  return OVERFLOW_SUM_SIGN (h1, h2, h);
}

/* Negate a doubleword integer with doubleword result.
   Return nonzero if the operation overflows, assuming it's signed.
   The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */

int
neg_double (l1, h1, lv, hv)
     unsigned HOST_WIDE_INT l1;
     HOST_WIDE_INT h1;
     unsigned HOST_WIDE_INT *lv;
     HOST_WIDE_INT *hv;
{
  if (l1 == 0)
    {
      *lv = 0;
      *hv = - h1;
      return (*hv & h1) < 0;
    }
  else
    {
      *lv = -l1;
      *hv = ~h1;
      return 0;
    }
}

/* Multiply two doubleword integers with doubleword result.
   Return nonzero if the operation overflows, assuming it's signed.
   Each argument is given as two `HOST_WIDE_INT' pieces.
   One argument is L1 and H1; the other, L2 and H2.
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */

int
mul_double (l1, h1, l2, h2, lv, hv)
     unsigned HOST_WIDE_INT l1, l2;
     HOST_WIDE_INT h1, h2;
     unsigned HOST_WIDE_INT *lv;
     HOST_WIDE_INT *hv;
{
  HOST_WIDE_INT arg1[4];
  HOST_WIDE_INT arg2[4];
  HOST_WIDE_INT prod[4 * 2];
  unsigned HOST_WIDE_INT carry;
  int i, j, k;
  unsigned HOST_WIDE_INT toplow, neglow;
  HOST_WIDE_INT tophigh, neghigh;

  encode (arg1, l1, h1);
  encode (arg2, l2, h2);

  memset ((char *) prod, 0, sizeof prod);

  for (i = 0; i < 4; i++)
    {
      carry = 0;
      for (j = 0; j < 4; j++)
	{
	  k = i + j;
	  /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000.  */
	  carry += arg1[i] * arg2[j];
	  /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF.  */
	  carry += prod[k];
	  prod[k] = LOWPART (carry);
	  carry = HIGHPART (carry);
	}
      prod[i + 4] = carry;
    }

  decode (prod, lv, hv);	/* This ignores prod[4] through prod[4*2-1] */

  /* Check for overflow by calculating the top half of the answer in full;
     it should agree with the low half's sign bit.  */
  decode (prod + 4, &toplow, &tophigh);
  if (h1 < 0)
    {
      neg_double (l2, h2, &neglow, &neghigh);
      add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
    }
  if (h2 < 0)
    {
      neg_double (l1, h1, &neglow, &neghigh);
      add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
    }
  return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
}

/* Shift the doubleword integer in L1, H1 left by COUNT places
   keeping only PREC bits of result.
   Shift right if COUNT is negative.
   ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */

void
lshift_double (l1, h1, count, prec, lv, hv, arith)
     unsigned HOST_WIDE_INT l1;
     HOST_WIDE_INT h1, count;
     unsigned int prec;
     unsigned HOST_WIDE_INT *lv;
     HOST_WIDE_INT *hv;
     int arith;
{
  unsigned HOST_WIDE_INT signmask;

  if (count < 0)
    {
      rshift_double (l1, h1, -count, prec, lv, hv, arith);
      return;
    }

#ifdef SHIFT_COUNT_TRUNCATED
  if (SHIFT_COUNT_TRUNCATED)
    count %= prec;
#endif

  if (count >= 2 * HOST_BITS_PER_WIDE_INT)
    {
      /* Shifting by the host word size is undefined according to the
	 ANSI standard, so we must handle this as a special case.  */
      *hv = 0;
      *lv = 0;
    }
  else if (count >= HOST_BITS_PER_WIDE_INT)
    {
      *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
      *lv = 0;
    }
  else
    {
      *hv = (((unsigned HOST_WIDE_INT) h1 << count)
	     | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
      *lv = l1 << count;
    }

  /* Sign extend all bits that are beyond the precision.  */

  signmask = -((prec > HOST_BITS_PER_WIDE_INT
		? ((unsigned HOST_WIDE_INT) *hv
		   >> (prec - HOST_BITS_PER_WIDE_INT - 1))
		: (*lv >> (prec - 1))) & 1);

  if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
    ;
  else if (prec >= HOST_BITS_PER_WIDE_INT)
    {
      *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
      *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
    }
  else
    {
      *hv = signmask;
      *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
      *lv |= signmask << prec;
    }
}

/* Shift the doubleword integer in L1, H1 right by COUNT places
   keeping only PREC bits of result.  COUNT must be positive.
   ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */

void
rshift_double (l1, h1, count, prec, lv, hv, arith)
     unsigned HOST_WIDE_INT l1;
     HOST_WIDE_INT h1, count;
     unsigned int prec;
     unsigned HOST_WIDE_INT *lv;
     HOST_WIDE_INT *hv;
     int arith;
{
  unsigned HOST_WIDE_INT signmask;

  signmask = (arith
	      ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
	      : 0);

#ifdef SHIFT_COUNT_TRUNCATED
  if (SHIFT_COUNT_TRUNCATED)
    count %= prec;
#endif

  if (count >= 2 * HOST_BITS_PER_WIDE_INT)
    {
      /* Shifting by the host word size is undefined according to the
	 ANSI standard, so we must handle this as a special case.  */
      *hv = 0;
      *lv = 0;
    }
  else if (count >= HOST_BITS_PER_WIDE_INT)
    {
      *hv = 0;
      *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
    }
  else
    {
      *hv = (unsigned HOST_WIDE_INT) h1 >> count;
      *lv = ((l1 >> count)
	     | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
    }

  /* Zero / sign extend all bits that are beyond the precision.  */

  if (count >= (HOST_WIDE_INT)prec)
    {
      *hv = signmask;
      *lv = signmask;
    }
  else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
    ;
  else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
    {
      *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
      *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
    }
  else
    {
      *hv = signmask;
      *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
      *lv |= signmask << (prec - count);
    }
}

/* Rotate the doubleword integer in L1, H1 left by COUNT places
   keeping only PREC bits of result.
   Rotate right if COUNT is negative.
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */

void
lrotate_double (l1, h1, count, prec, lv, hv)
     unsigned HOST_WIDE_INT l1;
     HOST_WIDE_INT h1, count;
     unsigned int prec;
     unsigned HOST_WIDE_INT *lv;
     HOST_WIDE_INT *hv;
{
  unsigned HOST_WIDE_INT s1l, s2l;
  HOST_WIDE_INT s1h, s2h;

  count %= prec;
  if (count < 0)
    count += prec;

  lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
  rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
  *lv = s1l | s2l;
  *hv = s1h | s2h;
}

/* Rotate the doubleword integer in L1, H1 left by COUNT places
   keeping only PREC bits of result.  COUNT must be positive.
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */

void
rrotate_double (l1, h1, count, prec, lv, hv)
     unsigned HOST_WIDE_INT l1;
     HOST_WIDE_INT h1, count;
     unsigned int prec;
     unsigned HOST_WIDE_INT *lv;
     HOST_WIDE_INT *hv;
{
  unsigned HOST_WIDE_INT s1l, s2l;
  HOST_WIDE_INT s1h, s2h;

  count %= prec;
  if (count < 0)
    count += prec;

  rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
  lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
  *lv = s1l | s2l;
  *hv = s1h | s2h;
}

/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
   for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
   CODE is a tree code for a kind of division, one of
   TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
   or EXACT_DIV_EXPR
   It controls how the quotient is rounded to an integer.
   Return nonzero if the operation overflows.
   UNS nonzero says do unsigned division.  */

int
div_and_round_double (code, uns,
		      lnum_orig, hnum_orig, lden_orig, hden_orig,
		      lquo, hquo, lrem, hrem)
     enum tree_code code;
     int uns;
     unsigned HOST_WIDE_INT lnum_orig; /* num == numerator == dividend */
     HOST_WIDE_INT hnum_orig;
     unsigned HOST_WIDE_INT lden_orig; /* den == denominator == divisor */
     HOST_WIDE_INT hden_orig;
     unsigned HOST_WIDE_INT *lquo, *lrem;
     HOST_WIDE_INT *hquo, *hrem;
{
  int quo_neg = 0;
  HOST_WIDE_INT num[4 + 1];	/* extra element for scaling.  */
  HOST_WIDE_INT den[4], quo[4];
  int i, j;
  unsigned HOST_WIDE_INT work;
  unsigned HOST_WIDE_INT carry = 0;
  unsigned HOST_WIDE_INT lnum = lnum_orig;
  HOST_WIDE_INT hnum = hnum_orig;
  unsigned HOST_WIDE_INT lden = lden_orig;
  HOST_WIDE_INT hden = hden_orig;
  int overflow = 0;

  if (hden == 0 && lden == 0)
    overflow = 1, lden = 1;

  /* calculate quotient sign and convert operands to unsigned.  */
  if (!uns)
    {
      if (hnum < 0)
	{
	  quo_neg = ~ quo_neg;
	  /* (minimum integer) / (-1) is the only overflow case.  */
	  if (neg_double (lnum, hnum, &lnum, &hnum)
	      && ((HOST_WIDE_INT) lden & hden) == -1)
	    overflow = 1;
	}
      if (hden < 0)
	{
	  quo_neg = ~ quo_neg;
	  neg_double (lden, hden, &lden, &hden);
	}
    }

  if (hnum == 0 && hden == 0)
    {				/* single precision */
      *hquo = *hrem = 0;
      /* This unsigned division rounds toward zero.  */
      *lquo = lnum / lden;
      goto finish_up;
    }

  if (hnum == 0)
    {				/* trivial case: dividend < divisor */
      /* hden != 0 already checked.  */
      *hquo = *lquo = 0;
      *hrem = hnum;
      *lrem = lnum;
      goto finish_up;
    }

  memset ((char *) quo, 0, sizeof quo);

  memset ((char *) num, 0, sizeof num);	/* to zero 9th element */
  memset ((char *) den, 0, sizeof den);

  encode (num, lnum, hnum);
  encode (den, lden, hden);

  /* Special code for when the divisor < BASE.  */
  if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
    {
      /* hnum != 0 already checked.  */
      for (i = 4 - 1; i >= 0; i--)
	{
	  work = num[i] + carry * BASE;
	  quo[i] = work / lden;
	  carry = work % lden;
	}
    }
  else
    {
      /* Full double precision division,
	 with thanks to Don Knuth's "Seminumerical Algorithms".  */
      int num_hi_sig, den_hi_sig;
      unsigned HOST_WIDE_INT quo_est, scale;

      /* Find the highest nonzero divisor digit.  */
      for (i = 4 - 1;; i--)
	if (den[i] != 0)
	  {
	    den_hi_sig = i;
	    break;
	  }

      /* Insure that the first digit of the divisor is at least BASE/2.
	 This is required by the quotient digit estimation algorithm.  */

      scale = BASE / (den[den_hi_sig] + 1);
      if (scale > 1)
	{		/* scale divisor and dividend */
	  carry = 0;
	  for (i = 0; i <= 4 - 1; i++)
	    {
	      work = (num[i] * scale) + carry;
	      num[i] = LOWPART (work);
	      carry = HIGHPART (work);
	    }

	  num[4] = carry;
	  carry = 0;
	  for (i = 0; i <= 4 - 1; i++)
	    {
	      work = (den[i] * scale) + carry;
	      den[i] = LOWPART (work);
	      carry = HIGHPART (work);
	      if (den[i] != 0) den_hi_sig = i;
	    }
	}

      num_hi_sig = 4;

      /* Main loop */
      for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
	{
	  /* Guess the next quotient digit, quo_est, by dividing the first
	     two remaining dividend digits by the high order quotient digit.
	     quo_est is never low and is at most 2 high.  */
	  unsigned HOST_WIDE_INT tmp;

	  num_hi_sig = i + den_hi_sig + 1;
	  work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
	  if (num[num_hi_sig] != den[den_hi_sig])
	    quo_est = work / den[den_hi_sig];
	  else
	    quo_est = BASE - 1;

	  /* Refine quo_est so it's usually correct, and at most one high.  */
	  tmp = work - quo_est * den[den_hi_sig];
	  if (tmp < BASE
	      && (den[den_hi_sig - 1] * quo_est
		  > (tmp * BASE + num[num_hi_sig - 2])))
	    quo_est--;

	  /* Try QUO_EST as the quotient digit, by multiplying the
	     divisor by QUO_EST and subtracting from the remaining dividend.
	     Keep in mind that QUO_EST is the I - 1st digit.  */

	  carry = 0;
	  for (j = 0; j <= den_hi_sig; j++)
	    {
	      work = quo_est * den[j] + carry;
	      carry = HIGHPART (work);
	      work = num[i + j] - LOWPART (work);
	      num[i + j] = LOWPART (work);
	      carry += HIGHPART (work) != 0;
	    }

	  /* If quo_est was high by one, then num[i] went negative and
	     we need to correct things.  */
	  if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
	    {
	      quo_est--;
	      carry = 0;		/* add divisor back in */
	      for (j = 0; j <= den_hi_sig; j++)
		{
		  work = num[i + j] + den[j] + carry;
		  carry = HIGHPART (work);
		  num[i + j] = LOWPART (work);
		}

	      num [num_hi_sig] += carry;
	    }

	  /* Store the quotient digit.  */
	  quo[i] = quo_est;
	}
    }

  decode (quo, lquo, hquo);

 finish_up:
  /* if result is negative, make it so.  */
  if (quo_neg)
    neg_double (*lquo, *hquo, lquo, hquo);

  /* compute trial remainder:  rem = num - (quo * den)  */
  mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
  neg_double (*lrem, *hrem, lrem, hrem);
  add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);

  switch (code)
    {
    case TRUNC_DIV_EXPR:
    case TRUNC_MOD_EXPR:	/* round toward zero */
    case EXACT_DIV_EXPR:	/* for this one, it shouldn't matter */
      return overflow;

    case FLOOR_DIV_EXPR:
    case FLOOR_MOD_EXPR:	/* round toward negative infinity */
      if (quo_neg && (*lrem != 0 || *hrem != 0))   /* ratio < 0 && rem != 0 */
	{
	  /* quo = quo - 1;  */
	  add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT)  -1,
		      lquo, hquo);
	}
      else
	return overflow;
      break;

    case CEIL_DIV_EXPR:
    case CEIL_MOD_EXPR:		/* round toward positive infinity */
      if (!quo_neg && (*lrem != 0 || *hrem != 0))  /* ratio > 0 && rem != 0 */
	{
	  add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
		      lquo, hquo);
	}
      else
	return overflow;
      break;

    case ROUND_DIV_EXPR:
    case ROUND_MOD_EXPR:	/* round to closest integer */
      {
	unsigned HOST_WIDE_INT labs_rem = *lrem;
	HOST_WIDE_INT habs_rem = *hrem;
	unsigned HOST_WIDE_INT labs_den = lden, ltwice;
	HOST_WIDE_INT habs_den = hden, htwice;

	/* Get absolute values */
	if (*hrem < 0)
	  neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
	if (hden < 0)
	  neg_double (lden, hden, &labs_den, &habs_den);

	/* If (2 * abs (lrem) >= abs (lden)) */
	mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
		    labs_rem, habs_rem, &ltwice, &htwice);

	if (((unsigned HOST_WIDE_INT) habs_den
	     < (unsigned HOST_WIDE_INT) htwice)
	    || (((unsigned HOST_WIDE_INT) habs_den
		 == (unsigned HOST_WIDE_INT) htwice)
		&& (labs_den < ltwice)))
	  {
	    if (*hquo < 0)
	      /* quo = quo - 1;  */
	      add_double (*lquo, *hquo,
			  (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
	    else
	      /* quo = quo + 1; */
	      add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
			  lquo, hquo);
	  }
	else
	  return overflow;
      }
      break;

    default:
      abort ();
    }

  /* compute true remainder:  rem = num - (quo * den)  */
  mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
  neg_double (*lrem, *hrem, lrem, hrem);
  add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
  return overflow;
}

/* Given T, an expression, return the negation of T.  Allow for T to be
   null, in which case return null.  */

static tree
negate_expr (t)
     tree t;
{
  tree type;
  tree tem;

  if (t == 0)
    return 0;

  type = TREE_TYPE (t);
  STRIP_SIGN_NOPS (t);

  switch (TREE_CODE (t))
    {
    case INTEGER_CST:
    case REAL_CST:
      if (! TREE_UNSIGNED (type)
	  && 0 != (tem = fold (build1 (NEGATE_EXPR, type, t)))
	  && ! TREE_OVERFLOW (tem))
	return tem;
      break;

    case NEGATE_EXPR:
      return convert (type, TREE_OPERAND (t, 0));

    case MINUS_EXPR:
      /* - (A - B) -> B - A  */
      if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
	return convert (type,
			fold (build (MINUS_EXPR, TREE_TYPE (t),
				     TREE_OPERAND (t, 1),
				     TREE_OPERAND (t, 0))));
      break;

    default:
      break;
    }

  return convert (type, fold (build1 (NEGATE_EXPR, TREE_TYPE (t), t)));
}

/* Split a tree IN into a constant, literal and variable parts that could be
   combined with CODE to make IN.  "constant" means an expression with
   TREE_CONSTANT but that isn't an actual constant.  CODE must be a
   commutative arithmetic operation.  Store the constant part into *CONP,
   the literal in *LITP and return the variable part.  If a part isn't
   present, set it to null.  If the tree does not decompose in this way,
   return the entire tree as the variable part and the other parts as null.

   If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR.  In that
   case, we negate an operand that was subtracted.  Except if it is a
   literal for which we use *MINUS_LITP instead.

   If NEGATE_P is true, we are negating all of IN, again except a literal
   for which we use *MINUS_LITP instead.

   If IN is itself a literal or constant, return it as appropriate.

   Note that we do not guarantee that any of the three values will be the
   same type as IN, but they will have the same signedness and mode.  */

static tree
split_tree (in, code, conp, litp, minus_litp, negate_p)
     tree in;
     enum tree_code code;
     tree *conp, *litp, *minus_litp;
     int negate_p;
{
  tree var = 0;

  *conp = 0;
  *litp = 0;
  *minus_litp = 0;

  /* Strip any conversions that don't change the machine mode or signedness.  */
  STRIP_SIGN_NOPS (in);

  if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
    *litp = in;
  else if (TREE_CODE (in) == code
	   || (! FLOAT_TYPE_P (TREE_TYPE (in))
	       /* We can associate addition and subtraction together (even
		  though the C standard doesn't say so) for integers because
		  the value is not affected.  For reals, the value might be
		  affected, so we can't.  */
	       && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
		   || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
    {
      tree op0 = TREE_OPERAND (in, 0);
      tree op1 = TREE_OPERAND (in, 1);
      int neg1_p = TREE_CODE (in) == MINUS_EXPR;
      int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;

      /* First see if either of the operands is a literal, then a constant.  */
      if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
	*litp = op0, op0 = 0;
      else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
	*litp = op1, neg_litp_p = neg1_p, op1 = 0;

      if (op0 != 0 && TREE_CONSTANT (op0))
	*conp = op0, op0 = 0;
      else if (op1 != 0 && TREE_CONSTANT (op1))
	*conp = op1, neg_conp_p = neg1_p, op1 = 0;

      /* If we haven't dealt with either operand, this is not a case we can
	 decompose.  Otherwise, VAR is either of the ones remaining, if any.  */
      if (op0 != 0 && op1 != 0)
	var = in;
      else if (op0 != 0)
	var = op0;
      else
	var = op1, neg_var_p = neg1_p;

      /* Now do any needed negations.  */
      if (neg_litp_p)
	*minus_litp = *litp, *litp = 0;
      if (neg_conp_p)
	*conp = negate_expr (*conp);
      if (neg_var_p)
	var = negate_expr (var);
    }
  else if (TREE_CONSTANT (in))
    *conp = in;
  else
    var = in;

  if (negate_p)
    {
      if (*litp)
	*minus_litp = *litp, *litp = 0;
      else if (*minus_litp)
	*litp = *minus_litp, *minus_litp = 0;
      *conp = negate_expr (*conp);
      var = negate_expr (var);
    }

  return var;
}

/* Re-associate trees split by the above function.  T1 and T2 are either
   expressions to associate or null.  Return the new expression, if any.  If
   we build an operation, do it in TYPE and with CODE.  */

static tree
associate_trees (t1, t2, code, type)
     tree t1, t2;
     enum tree_code code;
     tree type;
{
  if (t1 == 0)
    return t2;
  else if (t2 == 0)
    return t1;

  /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
     try to fold this since we will have infinite recursion.  But do
     deal with any NEGATE_EXPRs.  */
  if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
      || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
    {
      if (code == PLUS_EXPR)
	{
	  if (TREE_CODE (t1) == NEGATE_EXPR)
	    return build (MINUS_EXPR, type, convert (type, t2),
			  convert (type, TREE_OPERAND (t1, 0)));
	  else if (TREE_CODE (t2) == NEGATE_EXPR)
	    return build (MINUS_EXPR, type, convert (type, t1),
			  convert (type, TREE_OPERAND (t2, 0)));
	}
      return build (code, type, convert (type, t1), convert (type, t2));
    }

  return fold (build (code, type, convert (type, t1), convert (type, t2)));
}

/* Combine two integer constants ARG1 and ARG2 under operation CODE
   to produce a new constant.

   If NOTRUNC is nonzero, do not truncate the result to fit the data type.  */

static tree
int_const_binop (code, arg1, arg2, notrunc)
     enum tree_code code;
     tree arg1, arg2;
     int notrunc;
{
  unsigned HOST_WIDE_INT int1l, int2l;
  HOST_WIDE_INT int1h, int2h;
  unsigned HOST_WIDE_INT low;
  HOST_WIDE_INT hi;
  unsigned HOST_WIDE_INT garbagel;
  HOST_WIDE_INT garbageh;
  tree t;
  tree type = TREE_TYPE (arg1);
  int uns = TREE_UNSIGNED (type);
  int is_sizetype
    = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
  int overflow = 0;
  int no_overflow = 0;

  int1l = TREE_INT_CST_LOW (arg1);
  int1h = TREE_INT_CST_HIGH (arg1);
  int2l = TREE_INT_CST_LOW (arg2);
  int2h = TREE_INT_CST_HIGH (arg2);

  switch (code)
    {
    case BIT_IOR_EXPR:
      low = int1l | int2l, hi = int1h | int2h;
      break;

    case BIT_XOR_EXPR:
      low = int1l ^ int2l, hi = int1h ^ int2h;
      break;

    case BIT_AND_EXPR:
      low = int1l & int2l, hi = int1h & int2h;
      break;

    case BIT_ANDTC_EXPR:
      low = int1l & ~int2l, hi = int1h & ~int2h;
      break;

    case RSHIFT_EXPR:
      int2l = -int2l;
    case LSHIFT_EXPR:
      /* It's unclear from the C standard whether shifts can overflow.
	 The following code ignores overflow; perhaps a C standard
	 interpretation ruling is needed.  */
      lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
		     &low, &hi, !uns);
      no_overflow = 1;
      break;

    case RROTATE_EXPR:
      int2l = - int2l;
    case LROTATE_EXPR:
      lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
		      &low, &hi);
      break;

    case PLUS_EXPR:
      overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
      break;

    case MINUS_EXPR:
      neg_double (int2l, int2h, &low, &hi);
      add_double (int1l, int1h, low, hi, &low, &hi);
      overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
      break;

    case MULT_EXPR:
      overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
      break;

    case TRUNC_DIV_EXPR:
    case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
    case EXACT_DIV_EXPR:
      /* This is a shortcut for a common special case.  */
      if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
	  && ! TREE_CONSTANT_OVERFLOW (arg1)
	  && ! TREE_CONSTANT_OVERFLOW (arg2)
	  && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
	{
	  if (code == CEIL_DIV_EXPR)
	    int1l += int2l - 1;

	  low = int1l / int2l, hi = 0;
	  break;
	}

      /* ... fall through ...  */

    case ROUND_DIV_EXPR:
      if (int2h == 0 && int2l == 1)
	{
	  low = int1l, hi = int1h;
	  break;
	}
      if (int1l == int2l && int1h == int2h
	  && ! (int1l == 0 && int1h == 0))
	{
	  low = 1, hi = 0;
	  break;
	}
      overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
				       &low, &hi, &garbagel, &garbageh);
      break;

    case TRUNC_MOD_EXPR:
    case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
      /* This is a shortcut for a common special case.  */
      if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
	  && ! TREE_CONSTANT_OVERFLOW (arg1)
	  && ! TREE_CONSTANT_OVERFLOW (arg2)
	  && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
	{
	  if (code == CEIL_MOD_EXPR)
	    int1l += int2l - 1;
	  low = int1l % int2l, hi = 0;
	  break;
	}

      /* ... fall through ...  */

    case ROUND_MOD_EXPR:
      overflow = div_and_round_double (code, uns,
				       int1l, int1h, int2l, int2h,
				       &garbagel, &garbageh, &low, &hi);
      break;

    case MIN_EXPR:
    case MAX_EXPR:
      if (uns)
	low = (((unsigned HOST_WIDE_INT) int1h
		< (unsigned HOST_WIDE_INT) int2h)
	       || (((unsigned HOST_WIDE_INT) int1h
		    == (unsigned HOST_WIDE_INT) int2h)
		   && int1l < int2l));
      else
	low = (int1h < int2h
	       || (int1h == int2h && int1l < int2l));

      if (low == (code == MIN_EXPR))
	low = int1l, hi = int1h;
      else
	low = int2l, hi = int2h;
      break;

    default:
      abort ();
    }

  /* If this is for a sizetype, can be represented as one (signed)
     HOST_WIDE_INT word, and doesn't overflow, use size_int since it caches
     constants.  */
  if (is_sizetype
      && ((hi == 0 && (HOST_WIDE_INT) low >= 0)
	  || (hi == -1 && (HOST_WIDE_INT) low < 0))
      && overflow == 0 && ! TREE_OVERFLOW (arg1) && ! TREE_OVERFLOW (arg2))
    return size_int_type_wide (low, type);
  else
    {
      t = build_int_2 (low, hi);
      TREE_TYPE (t) = TREE_TYPE (arg1);
    }

  TREE_OVERFLOW (t)
    = ((notrunc
	? (!uns || is_sizetype) && overflow
	: (force_fit_type (t, (!uns || is_sizetype) && overflow)
	   && ! no_overflow))
       | TREE_OVERFLOW (arg1)
       | TREE_OVERFLOW (arg2));

  /* If we're doing a size calculation, unsigned arithmetic does overflow.
     So check if force_fit_type truncated the value.  */
  if (is_sizetype
      && ! TREE_OVERFLOW (t)
      && (TREE_INT_CST_HIGH (t) != hi
	  || TREE_INT_CST_LOW (t) != low))
    TREE_OVERFLOW (t) = 1;

  TREE_CONSTANT_OVERFLOW (t) = (TREE_OVERFLOW (t)
				| TREE_CONSTANT_OVERFLOW (arg1)
				| TREE_CONSTANT_OVERFLOW (arg2));
  return t;
}

/* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
   constant.  We assume ARG1 and ARG2 have the same data type, or at least
   are the same kind of constant and the same machine mode.

   If NOTRUNC is nonzero, do not truncate the result to fit the data type.  */

static tree
const_binop (code, arg1, arg2, notrunc)
     enum tree_code code;
     tree arg1, arg2;
     int notrunc;
{
  STRIP_NOPS (arg1);
  STRIP_NOPS (arg2);

  if (TREE_CODE (arg1) == INTEGER_CST)
    return int_const_binop (code, arg1, arg2, notrunc);

  if (TREE_CODE (arg1) == REAL_CST)
    {
      REAL_VALUE_TYPE d1;
      REAL_VALUE_TYPE d2;
      REAL_VALUE_TYPE value;
      tree t;

      d1 = TREE_REAL_CST (arg1);
      d2 = TREE_REAL_CST (arg2);

      /* If either operand is a NaN, just return it.  Otherwise, set up
	 for floating-point trap; we return an overflow.  */
      if (REAL_VALUE_ISNAN (d1))
	return arg1;
      else if (REAL_VALUE_ISNAN (d2))
	return arg2;

      REAL_ARITHMETIC (value, code, d1, d2);

      t = build_real (TREE_TYPE (arg1),
		      real_value_truncate (TYPE_MODE (TREE_TYPE (arg1)),
					   value));

      TREE_OVERFLOW (t)
	= (force_fit_type (t, 0)
	   | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
      TREE_CONSTANT_OVERFLOW (t)
	= TREE_OVERFLOW (t)
	  | TREE_CONSTANT_OVERFLOW (arg1)
	  | TREE_CONSTANT_OVERFLOW (arg2);
      return t;
    }
  if (TREE_CODE (arg1) == COMPLEX_CST)
    {
      tree type = TREE_TYPE (arg1);
      tree r1 = TREE_REALPART (arg1);
      tree i1 = TREE_IMAGPART (arg1);
      tree r2 = TREE_REALPART (arg2);
      tree i2 = TREE_IMAGPART (arg2);
      tree t;

      switch (code)
	{
	case PLUS_EXPR:
	  t = build_complex (type,
			     const_binop (PLUS_EXPR, r1, r2, notrunc),
			     const_binop (PLUS_EXPR, i1, i2, notrunc));
	  break;

	case MINUS_EXPR:
	  t = build_complex (type,
			     const_binop (MINUS_EXPR, r1, r2, notrunc),
			     const_binop (MINUS_EXPR, i1, i2, notrunc));
	  break;

	case MULT_EXPR:
	  t = build_complex (type,
			     const_binop (MINUS_EXPR,
					  const_binop (MULT_EXPR,
						       r1, r2, notrunc),
					  const_binop (MULT_EXPR,
						       i1, i2, notrunc),
					  notrunc),
			     const_binop (PLUS_EXPR,
					  const_binop (MULT_EXPR,
						       r1, i2, notrunc),
					  const_binop (MULT_EXPR,
						       i1, r2, notrunc),
					  notrunc));
	  break;

	case RDIV_EXPR:
	  {
	    tree magsquared
	      = const_binop (PLUS_EXPR,
			     const_binop (MULT_EXPR, r2, r2, notrunc),
			     const_binop (MULT_EXPR, i2, i2, notrunc),
			     notrunc);

	    t = build_complex (type,
			       const_binop
			       (INTEGRAL_TYPE_P (TREE_TYPE (r1))
				? TRUNC_DIV_EXPR : RDIV_EXPR,
				const_binop (PLUS_EXPR,
					     const_binop (MULT_EXPR, r1, r2,
							  notrunc),
					     const_binop (MULT_EXPR, i1, i2,
							  notrunc),
					     notrunc),
				magsquared, notrunc),
			       const_binop
			       (INTEGRAL_TYPE_P (TREE_TYPE (r1))
				? TRUNC_DIV_EXPR : RDIV_EXPR,
				const_binop (MINUS_EXPR,
					     const_binop (MULT_EXPR, i1, r2,
							  notrunc),
					     const_binop (MULT_EXPR, r1, i2,
							  notrunc),
					     notrunc),
				magsquared, notrunc));
	  }
	  break;

	default:
	  abort ();
	}
      return t;
    }
  return 0;
}

/* These are the hash table functions for the hash table of INTEGER_CST
   nodes of a sizetype.  */

/* Return the hash code code X, an INTEGER_CST.  */

static hashval_t
size_htab_hash (x)
     const void *x;
{
  tree t = (tree) x;

  return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
	  ^ htab_hash_pointer (TREE_TYPE (t))
	  ^ (TREE_OVERFLOW (t) << 20));
}

/* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
   is the same as that given by *Y, which is the same.  */

static int
size_htab_eq (x, y)
     const void *x;
     const void *y;
{
  tree xt = (tree) x;
  tree yt = (tree) y;

  return (TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
	  && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt)
	  && TREE_TYPE (xt) == TREE_TYPE (yt)
	  && TREE_OVERFLOW (xt) == TREE_OVERFLOW (yt));
}

/* Return an INTEGER_CST with value whose low-order HOST_BITS_PER_WIDE_INT
   bits are given by NUMBER and of the sizetype represented by KIND.  */

tree
size_int_wide (number, kind)
     HOST_WIDE_INT number;
     enum size_type_kind kind;
{
  return size_int_type_wide (number, sizetype_tab[(int) kind]);
}

/* Likewise, but the desired type is specified explicitly.  */

static GTY (()) tree new_const;
static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
     htab_t size_htab;

tree
size_int_type_wide (number, type)
     HOST_WIDE_INT number;
     tree type;
{
  PTR *slot;

  if (size_htab == 0)
    {
      size_htab = htab_create (1024, size_htab_hash, size_htab_eq, NULL);
      new_const = make_node (INTEGER_CST);
    }

  /* Adjust NEW_CONST to be the constant we want.  If it's already in the
     hash table, we return the value from the hash table.  Otherwise, we
     place that in the hash table and make a new node for the next time.  */
  TREE_INT_CST_LOW (new_const) = number;
  TREE_INT_CST_HIGH (new_const) = number < 0 ? -1 : 0;
  TREE_TYPE (new_const) = type;
  TREE_OVERFLOW (new_const) = TREE_CONSTANT_OVERFLOW (new_const)
    = force_fit_type (new_const, 0);

  slot = htab_find_slot (size_htab, new_const, INSERT);
  if (*slot == 0)
    {
      tree t = new_const;

      *slot = (PTR) new_const;
      new_const = make_node (INTEGER_CST);
      return t;
    }
  else
    return (tree) *slot;
}

/* Combine operands OP1 and OP2 with arithmetic operation CODE.  CODE
   is a tree code.  The type of the result is taken from the operands.
   Both must be the same type integer type and it must be a size type.
   If the operands are constant, so is the result.  */

tree
size_binop (code, arg0, arg1)
     enum tree_code code;
     tree arg0, arg1;
{
  tree type = TREE_TYPE (arg0);

  if (TREE_CODE (type) != INTEGER_TYPE || ! TYPE_IS_SIZETYPE (type)
      || type != TREE_TYPE (arg1))
    abort ();

  /* Handle the special case of two integer constants faster.  */
  if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
    {
      /* And some specific cases even faster than that.  */
      if (code == PLUS_EXPR && integer_zerop (arg0))
	return arg1;
      else if ((code == MINUS_EXPR || code == PLUS_EXPR)
	       && integer_zerop (arg1))
	return arg0;
      else if (code == MULT_EXPR && integer_onep (arg0))
	return arg1;

      /* Handle general case of two integer constants.  */
      return int_const_binop (code, arg0, arg1, 0);
    }

  if (arg0 == error_mark_node || arg1 == error_mark_node)
    return error_mark_node;

  return fold (build (code, type, arg0, arg1));
}

/* Given two values, either both of sizetype or both of bitsizetype,
   compute the difference between the two values.  Return the value
   in signed type corresponding to the type of the operands.  */

tree
size_diffop (arg0, arg1)
     tree arg0, arg1;
{
  tree type = TREE_TYPE (arg0);
  tree ctype;

  if (TREE_CODE (type) != INTEGER_TYPE || ! TYPE_IS_SIZETYPE (type)
      || type != TREE_TYPE (arg1))
    abort ();

  /* If the type is already signed, just do the simple thing.  */
  if (! TREE_UNSIGNED (type))
    return size_binop (MINUS_EXPR, arg0, arg1);

  ctype = (type == bitsizetype || type == ubitsizetype
	   ? sbitsizetype : ssizetype);

  /* If either operand is not a constant, do the conversions to the signed
     type and subtract.  The hardware will do the right thing with any
     overflow in the subtraction.  */
  if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
    return size_binop (MINUS_EXPR, convert (ctype, arg0),
		       convert (ctype, arg1));

  /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
     Otherwise, subtract the other way, convert to CTYPE (we know that can't
     overflow) and negate (which can't either).  Special-case a result
     of zero while we're here.  */
  if (tree_int_cst_equal (arg0, arg1))
    return convert (ctype, integer_zero_node);
  else if (tree_int_cst_lt (arg1, arg0))
    return convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
  else
    return size_binop (MINUS_EXPR, convert (ctype, integer_zero_node),
		       convert (ctype, size_binop (MINUS_EXPR, arg1, arg0)));
}


/* Given T, a tree representing type conversion of ARG1, a constant,
   return a constant tree representing the result of conversion.  */

static tree
fold_convert (t, arg1)
     tree t;
     tree arg1;
{
  tree type = TREE_TYPE (t);
  int overflow = 0;

  if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
    {
      if (TREE_CODE (arg1) == INTEGER_CST)
	{
	  /* If we would build a constant wider than GCC supports,
	     leave the conversion unfolded.  */
	  if (TYPE_PRECISION (type) > 2 * HOST_BITS_PER_WIDE_INT)
	    return t;

	  /* If we are trying to make a sizetype for a small integer, use
	     size_int to pick up cached types to reduce duplicate nodes.  */
	  if (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
	      && !TREE_CONSTANT_OVERFLOW (arg1)
	      && compare_tree_int (arg1, 10000) < 0)
	    return size_int_type_wide (TREE_INT_CST_LOW (arg1), type);

	  /* Given an integer constant, make new constant with new type,
	     appropriately sign-extended or truncated.  */
	  t = build_int_2 (TREE_INT_CST_LOW (arg1),
			   TREE_INT_CST_HIGH (arg1));
	  TREE_TYPE (t) = type;
	  /* Indicate an overflow if (1) ARG1 already overflowed,
	     or (2) force_fit_type indicates an overflow.
	     Tell force_fit_type that an overflow has already occurred
	     if ARG1 is a too-large unsigned value and T is signed.
	     But don't indicate an overflow if converting a pointer.  */
	  TREE_OVERFLOW (t)
	    = ((force_fit_type (t,
				(TREE_INT_CST_HIGH (arg1) < 0
				 && (TREE_UNSIGNED (type)
				    < TREE_UNSIGNED (TREE_TYPE (arg1)))))
		&& ! POINTER_TYPE_P (TREE_TYPE (arg1)))
	       || TREE_OVERFLOW (arg1));
	  TREE_CONSTANT_OVERFLOW (t)
	    = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
	}
      else if (TREE_CODE (arg1) == REAL_CST)
	{
	  /* Don't initialize these, use assignments.
	     Initialized local aggregates don't work on old compilers.  */
	  REAL_VALUE_TYPE x;
	  REAL_VALUE_TYPE l;
	  REAL_VALUE_TYPE u;
	  tree type1 = TREE_TYPE (arg1);
	  int no_upper_bound;

	  x = TREE_REAL_CST (arg1);
	  l = real_value_from_int_cst (type1, TYPE_MIN_VALUE (type));

	  no_upper_bound = (TYPE_MAX_VALUE (type) == NULL);
	  if (!no_upper_bound)
	    u = real_value_from_int_cst (type1, TYPE_MAX_VALUE (type));

	  /* See if X will be in range after truncation towards 0.
	     To compensate for truncation, move the bounds away from 0,
	     but reject if X exactly equals the adjusted bounds.  */
	  REAL_ARITHMETIC (l, MINUS_EXPR, l, dconst1);
	  if (!no_upper_bound)
	    REAL_ARITHMETIC (u, PLUS_EXPR, u, dconst1);
	  /* If X is a NaN, use zero instead and show we have an overflow.
	     Otherwise, range check.  */
	  if (REAL_VALUE_ISNAN (x))
	    overflow = 1, x = dconst0;
	  else if (! (REAL_VALUES_LESS (l, x)
		      && !no_upper_bound
		      && REAL_VALUES_LESS (x, u)))
	    overflow = 1;

	  {
	    HOST_WIDE_INT low, high;
	    REAL_VALUE_TO_INT (&low, &high, x);
	    t = build_int_2 (low, high);
	  }
	  TREE_TYPE (t) = type;
	  TREE_OVERFLOW (t)
	    = TREE_OVERFLOW (arg1) | force_fit_type (t, overflow);
	  TREE_CONSTANT_OVERFLOW (t)
	    = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
	}
      TREE_TYPE (t) = type;
    }
  else if (TREE_CODE (type) == REAL_TYPE)
    {
      if (TREE_CODE (arg1) == INTEGER_CST)
	return build_real_from_int_cst (type, arg1);
      if (TREE_CODE (arg1) == REAL_CST)
	{
	  if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
	    {
	      /* We make a copy of ARG1 so that we don't modify an
		 existing constant tree.  */
	      t = copy_node (arg1);
	      TREE_TYPE (t) = type;
	      return t;
	    }

	  t = build_real (type,
			  real_value_truncate (TYPE_MODE (type),
					       TREE_REAL_CST (arg1)));

	  TREE_OVERFLOW (t)
	    = TREE_OVERFLOW (arg1) | force_fit_type (t, 0);
	  TREE_CONSTANT_OVERFLOW (t)
	    = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
	  return t;
	}
    }
  TREE_CONSTANT (t) = 1;
  return t;
}

/* Return an expr equal to X but certainly not valid as an lvalue.  */

tree
non_lvalue (x)
     tree x;
{
  tree result;

  /* These things are certainly not lvalues.  */
  if (TREE_CODE (x) == NON_LVALUE_EXPR
      || TREE_CODE (x) == INTEGER_CST
      || TREE_CODE (x) == REAL_CST
      || TREE_CODE (x) == STRING_CST
      || TREE_CODE (x) == ADDR_EXPR)
    return x;

  result = build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
  TREE_CONSTANT (result) = TREE_CONSTANT (x);
  return result;
}

/* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
   Zero means allow extended lvalues.  */

int pedantic_lvalues;

/* When pedantic, return an expr equal to X but certainly not valid as a
   pedantic lvalue.  Otherwise, return X.  */

tree
pedantic_non_lvalue (x)
     tree x;
{
  if (pedantic_lvalues)
    return non_lvalue (x);
  else
    return x;
}

/* Given a tree comparison code, return the code that is the logical inverse
   of the given code.  It is not safe to do this for floating-point
   comparisons, except for NE_EXPR and EQ_EXPR.  */

static enum tree_code
invert_tree_comparison (code)
     enum tree_code code;
{
  switch (code)
    {
    case EQ_EXPR:
      return NE_EXPR;
    case NE_EXPR:
      return EQ_EXPR;
    case GT_EXPR:
      return LE_EXPR;
    case GE_EXPR:
      return LT_EXPR;
    case LT_EXPR:
      return GE_EXPR;
    case LE_EXPR:
      return GT_EXPR;
    default:
      abort ();
    }
}

/* Similar, but return the comparison that results if the operands are
   swapped.  This is safe for floating-point.  */

static enum tree_code
swap_tree_comparison (code)
     enum tree_code code;
{
  switch (code)
    {
    case EQ_EXPR:
    case NE_EXPR:
      return code;
    case GT_EXPR:
      return LT_EXPR;
    case GE_EXPR:
      return LE_EXPR;
    case LT_EXPR:
      return GT_EXPR;
    case LE_EXPR:
      return GE_EXPR;
    default:
      abort ();
    }
}


/* Convert a comparison tree code from an enum tree_code representation
   into a compcode bit-based encoding.  This function is the inverse of
   compcode_to_comparison.  */

static int
comparison_to_compcode (code)
     enum tree_code code;
{
  switch (code)
    {
    case LT_EXPR:
      return COMPCODE_LT;
    case EQ_EXPR:
      return COMPCODE_EQ;
    case LE_EXPR:
      return COMPCODE_LE;
    case GT_EXPR:
      return COMPCODE_GT;
    case NE_EXPR:
      return COMPCODE_NE;
    case GE_EXPR:
      return COMPCODE_GE;
    default:
      abort ();
    }
}

/* Convert a compcode bit-based encoding of a comparison operator back
   to GCC's enum tree_code representation.  This function is the
   inverse of comparison_to_compcode.  */

static enum tree_code
compcode_to_comparison (code)
     int code;
{
  switch (code)
    {
    case COMPCODE_LT:
      return LT_EXPR;
    case COMPCODE_EQ:
      return EQ_EXPR;
    case COMPCODE_LE:
      return LE_EXPR;
    case COMPCODE_GT:
      return GT_EXPR;
    case COMPCODE_NE:
      return NE_EXPR;
    case COMPCODE_GE:
      return GE_EXPR;
    default:
      abort ();
    }
}

/* Return nonzero if CODE is a tree code that represents a truth value.  */

static int
truth_value_p (code)
     enum tree_code code;
{
  return (TREE_CODE_CLASS (code) == '<'
	  || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
	  || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
	  || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
}

/* Return nonzero if two operands are necessarily equal.
   If ONLY_CONST is nonzero, only return nonzero for constants.
   This function tests whether the operands are indistinguishable;
   it does not test whether they are equal using C's == operation.
   The distinction is important for IEEE floating point, because
   (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
   (2) two NaNs may be indistinguishable, but NaN!=NaN.  */

int
operand_equal_p (arg0, arg1, only_const)
     tree arg0, arg1;
     int only_const;
{
  /* If both types don't have the same signedness, then we can't consider
     them equal.  We must check this before the STRIP_NOPS calls
     because they may change the signedness of the arguments.  */
  if (TREE_UNSIGNED (TREE_TYPE (arg0)) != TREE_UNSIGNED (TREE_TYPE (arg1)))
    return 0;

  STRIP_NOPS (arg0);
  STRIP_NOPS (arg1);

  if (TREE_CODE (arg0) != TREE_CODE (arg1)
      /* This is needed for conversions and for COMPONENT_REF.
	 Might as well play it safe and always test this.  */
      || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
      || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
      || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
    return 0;

  /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
     We don't care about side effects in that case because the SAVE_EXPR
     takes care of that for us. In all other cases, two expressions are
     equal if they have no side effects.  If we have two identical
     expressions with side effects that should be treated the same due
     to the only side effects being identical SAVE_EXPR's, that will
     be detected in the recursive calls below.  */
  if (arg0 == arg1 && ! only_const
      && (TREE_CODE (arg0) == SAVE_EXPR
	  || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
    return 1;

  /* Next handle constant cases, those for which we can return 1 even
     if ONLY_CONST is set.  */
  if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
    switch (TREE_CODE (arg0))
      {
      case INTEGER_CST:
	return (! TREE_CONSTANT_OVERFLOW (arg0)
		&& ! TREE_CONSTANT_OVERFLOW (arg1)
		&& tree_int_cst_equal (arg0, arg1));

      case REAL_CST:
	return (! TREE_CONSTANT_OVERFLOW (arg0)
		&& ! TREE_CONSTANT_OVERFLOW (arg1)
		&& REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
					  TREE_REAL_CST (arg1)));

      case VECTOR_CST:
	{
	  tree v1, v2;

	  if (TREE_CONSTANT_OVERFLOW (arg0)
	      || TREE_CONSTANT_OVERFLOW (arg1))
	    return 0;

	  v1 = TREE_VECTOR_CST_ELTS (arg0);
	  v2 = TREE_VECTOR_CST_ELTS (arg1);
	  while (v1 && v2)
	    {
	      if (!operand_equal_p (v1, v2, only_const))
		return 0;
	      v1 = TREE_CHAIN (v1);
	      v2 = TREE_CHAIN (v2);
	    }

	  return 1;
	}

      case COMPLEX_CST:
	return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
				 only_const)
		&& operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
				    only_const));

      case STRING_CST:
	return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
		&& ! memcmp (TREE_STRING_POINTER (arg0),
			      TREE_STRING_POINTER (arg1),
			      TREE_STRING_LENGTH (arg0)));

      case ADDR_EXPR:
	return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
				0);
      default:
	break;
      }

  if (only_const)
    return 0;

  switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
    {
    case '1':
      /* Two conversions are equal only if signedness and modes match.  */
      if ((TREE_CODE (arg0) == NOP_EXPR || TREE_CODE (arg0) == CONVERT_EXPR)
	  && (TREE_UNSIGNED (TREE_TYPE (arg0))
	      != TREE_UNSIGNED (TREE_TYPE (arg1))))
	return 0;

      return operand_equal_p (TREE_OPERAND (arg0, 0),
			      TREE_OPERAND (arg1, 0), 0);

    case '<':
    case '2':
      if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0)
	  && operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1),
			      0))
	return 1;

      /* For commutative ops, allow the other order.  */
      return ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MULT_EXPR
	       || TREE_CODE (arg0) == MIN_EXPR || TREE_CODE (arg0) == MAX_EXPR
	       || TREE_CODE (arg0) == BIT_IOR_EXPR
	       || TREE_CODE (arg0) == BIT_XOR_EXPR
	       || TREE_CODE (arg0) == BIT_AND_EXPR
	       || TREE_CODE (arg0) == NE_EXPR || TREE_CODE (arg0) == EQ_EXPR)
	      && operand_equal_p (TREE_OPERAND (arg0, 0),
				  TREE_OPERAND (arg1, 1), 0)
	      && operand_equal_p (TREE_OPERAND (arg0, 1),
				  TREE_OPERAND (arg1, 0), 0));

    case 'r':
      /* If either of the pointer (or reference) expressions we are dereferencing
	 contain a side effect, these cannot be equal.  */
      if (TREE_SIDE_EFFECTS (arg0)
	  || TREE_SIDE_EFFECTS (arg1))
	return 0;

      switch (TREE_CODE (arg0))
	{
	case INDIRECT_REF:
	  return operand_equal_p (TREE_OPERAND (arg0, 0),
				  TREE_OPERAND (arg1, 0), 0);

	case COMPONENT_REF:
	case ARRAY_REF:
	case ARRAY_RANGE_REF:
	  return (operand_equal_p (TREE_OPERAND (arg0, 0),
				   TREE_OPERAND (arg1, 0), 0)
		  && operand_equal_p (TREE_OPERAND (arg0, 1),
				      TREE_OPERAND (arg1, 1), 0));

	case BIT_FIELD_REF:
	  return (operand_equal_p (TREE_OPERAND (arg0, 0),
				   TREE_OPERAND (arg1, 0), 0)
		  && operand_equal_p (TREE_OPERAND (arg0, 1),
				      TREE_OPERAND (arg1, 1), 0)
		  && operand_equal_p (TREE_OPERAND (arg0, 2),
				      TREE_OPERAND (arg1, 2), 0));
	default:
	  return 0;
	}

    case 'e':
      if (TREE_CODE (arg0) == RTL_EXPR)
	return rtx_equal_p (RTL_EXPR_RTL (arg0), RTL_EXPR_RTL (arg1));
      return 0;

    default:
      return 0;
    }
}

/* Similar to operand_equal_p, but see if ARG0 might have been made by
   shorten_compare from ARG1 when ARG1 was being compared with OTHER.

   When in doubt, return 0.  */

static int
operand_equal_for_comparison_p (arg0, arg1, other)
     tree arg0, arg1;
     tree other;
{
  int unsignedp1, unsignedpo;
  tree primarg0, primarg1, primother;
  unsigned int correct_width;

  if (operand_equal_p (arg0, arg1, 0))
    return 1;

  if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
      || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
    return 0;

  /* Discard any conversions that don't change the modes of ARG0 and ARG1
     and see if the inner values are the same.  This removes any
     signedness comparison, which doesn't matter here.  */
  primarg0 = arg0, primarg1 = arg1;
  STRIP_NOPS (primarg0);
  STRIP_NOPS (primarg1);
  if (operand_equal_p (primarg0, primarg1, 0))
    return 1;

  /* Duplicate what shorten_compare does to ARG1 and see if that gives the
     actual comparison operand, ARG0.

     First throw away any conversions to wider types
     already present in the operands.  */

  primarg1 = get_narrower (arg1, &unsignedp1);
  primother = get_narrower (other, &unsignedpo);

  correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
  if (unsignedp1 == unsignedpo
      && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
      && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
    {
      tree type = TREE_TYPE (arg0);

      /* Make sure shorter operand is extended the right way
	 to match the longer operand.  */
      primarg1 = convert ((*lang_hooks.types.signed_or_unsigned_type)
			  (unsignedp1, TREE_TYPE (primarg1)), primarg1);

      if (operand_equal_p (arg0, convert (type, primarg1), 0))
	return 1;
    }

  return 0;
}

/* See if ARG is an expression that is either a comparison or is performing
   arithmetic on comparisons.  The comparisons must only be comparing
   two different values, which will be stored in *CVAL1 and *CVAL2; if
   they are nonzero it means that some operands have already been found.
   No variables may be used anywhere else in the expression except in the
   comparisons.  If SAVE_P is true it means we removed a SAVE_EXPR around
   the expression and save_expr needs to be called with CVAL1 and CVAL2.

   If this is true, return 1.  Otherwise, return zero.  */

static int
twoval_comparison_p (arg, cval1, cval2, save_p)
     tree arg;
     tree *cval1, *cval2;
     int *save_p;
{
  enum tree_code code = TREE_CODE (arg);
  char class = TREE_CODE_CLASS (code);

  /* We can handle some of the 'e' cases here.  */
  if (class == 'e' && code == TRUTH_NOT_EXPR)
    class = '1';
  else if (class == 'e'
	   && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
	       || code == COMPOUND_EXPR))
    class = '2';

  else if (class == 'e' && code == SAVE_EXPR && SAVE_EXPR_RTL (arg) == 0
	   && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
    {
      /* If we've already found a CVAL1 or CVAL2, this expression is
	 two complex to handle.  */
      if (*cval1 || *cval2)
	return 0;

      class = '1';
      *save_p = 1;
    }

  switch (class)
    {
    case '1':
      return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);

    case '2':
      return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
	      && twoval_comparison_p (TREE_OPERAND (arg, 1),
				      cval1, cval2, save_p));

    case 'c':
      return 1;

    case 'e':
      if (code == COND_EXPR)
	return (twoval_comparison_p (TREE_OPERAND (arg, 0),
				     cval1, cval2, save_p)
		&& twoval_comparison_p (TREE_OPERAND (arg, 1),
					cval1, cval2, save_p)
		&& twoval_comparison_p (TREE_OPERAND (arg, 2),
					cval1, cval2, save_p));
      return 0;

    case '<':
      /* First see if we can handle the first operand, then the second.  For
	 the second operand, we know *CVAL1 can't be zero.  It must be that
	 one side of the comparison is each of the values; test for the
	 case where this isn't true by failing if the two operands
	 are the same.  */

      if (operand_equal_p (TREE_OPERAND (arg, 0),
			   TREE_OPERAND (arg, 1), 0))
	return 0;

      if (*cval1 == 0)
	*cval1 = TREE_OPERAND (arg, 0);
      else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
	;
      else if (*cval2 == 0)
	*cval2 = TREE_OPERAND (arg, 0);
      else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
	;
      else
	return 0;

      if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
	;
      else if (*cval2 == 0)
	*cval2 = TREE_OPERAND (arg, 1);
      else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
	;
      else
	return 0;

      return 1;

    default:
      return 0;
    }
}

/* ARG is a tree that is known to contain just arithmetic operations and
   comparisons.  Evaluate the operations in the tree substituting NEW0 for
   any occurrence of OLD0 as an operand of a comparison and likewise for
   NEW1 and OLD1.  */

static tree
eval_subst (arg, old0, new0, old1, new1)
     tree arg;
     tree old0, new0, old1, new1;
{
  tree type = TREE_TYPE (arg);
  enum tree_code code = TREE_CODE (arg);
  char class = TREE_CODE_CLASS (code);

  /* We can handle some of the 'e' cases here.  */
  if (class == 'e' && code == TRUTH_NOT_EXPR)
    class = '1';
  else if (class == 'e'
	   && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
    class = '2';

  switch (class)
    {
    case '1':
      return fold (build1 (code, type,
			   eval_subst (TREE_OPERAND (arg, 0),
				       old0, new0, old1, new1)));

    case '2':
      return fold (build (code, type,
			  eval_subst (TREE_OPERAND (arg, 0),
				      old0, new0, old1, new1),
			  eval_subst (TREE_OPERAND (arg, 1),
				      old0, new0, old1, new1)));

    case 'e':
      switch (code)
	{
	case SAVE_EXPR:
	  return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);

	case COMPOUND_EXPR:
	  return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);

	case COND_EXPR:
	  return fold (build (code, type,
			      eval_subst (TREE_OPERAND (arg, 0),
					  old0, new0, old1, new1),
			      eval_subst (TREE_OPERAND (arg, 1),
					  old0, new0, old1, new1),
			      eval_subst (TREE_OPERAND (arg, 2),
					  old0, new0, old1, new1)));
	default:
	  break;
	}
      /* fall through - ??? */

    case '<':
      {
	tree arg0 = TREE_OPERAND (arg, 0);
	tree arg1 = TREE_OPERAND (arg, 1);

	/* We need to check both for exact equality and tree equality.  The
	   former will be true if the operand has a side-effect.  In that
	   case, we know the operand occurred exactly once.  */

	if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
	  arg0 = new0;
	else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
	  arg0 = new1;

	if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
	  arg1 = new0;
	else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
	  arg1 = new1;

	return fold (build (code, type, arg0, arg1));
      }

    default:
      return arg;
    }
}

/* Return a tree for the case when the result of an expression is RESULT
   converted to TYPE and OMITTED was previously an operand of the expression
   but is now not needed (e.g., we folded OMITTED * 0).

   If OMITTED has side effects, we must evaluate it.  Otherwise, just do
   the conversion of RESULT to TYPE.  */

static tree
omit_one_operand (type, result, omitted)
     tree type, result, omitted;
{
  tree t = convert (type, result);

  if (TREE_SIDE_EFFECTS (omitted))
    return build (COMPOUND_EXPR, type, omitted, t);

  return non_lvalue (t);
}

/* Similar, but call pedantic_non_lvalue instead of non_lvalue.  */

static tree
pedantic_omit_one_operand (type, result, omitted)
     tree type, result, omitted;
{
  tree t = convert (type, result);

  if (TREE_SIDE_EFFECTS (omitted))
    return build (COMPOUND_EXPR, type, omitted, t);

  return pedantic_non_lvalue (t);
}

/* Return a simplified tree node for the truth-negation of ARG.  This
   never alters ARG itself.  We assume that ARG is an operation that
   returns a truth value (0 or 1).  */

tree
invert_truthvalue (arg)
     tree arg;
{
  tree type = TREE_TYPE (arg);
  enum tree_code code = TREE_CODE (arg);

  if (code == ERROR_MARK)
    return arg;

  /* If this is a comparison, we can simply invert it, except for
     floating-point non-equality comparisons, in which case we just
     enclose a TRUTH_NOT_EXPR around what we have.  */

  if (TREE_CODE_CLASS (code) == '<')
    {
      if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
	  && !flag_unsafe_math_optimizations
	  && code != NE_EXPR
	  && code != EQ_EXPR)
	return build1 (TRUTH_NOT_EXPR, type, arg);
      else
	return build (invert_tree_comparison (code), type,
		      TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
    }

  switch (code)
    {
    case INTEGER_CST:
      return convert (type, build_int_2 (integer_zerop (arg), 0));

    case TRUTH_AND_EXPR:
      return build (TRUTH_OR_EXPR, type,
		    invert_truthvalue (TREE_OPERAND (arg, 0)),
		    invert_truthvalue (TREE_OPERAND (arg, 1)));

    case TRUTH_OR_EXPR:
      return build (TRUTH_AND_EXPR, type,
		    invert_truthvalue (TREE_OPERAND (arg, 0)),
		    invert_truthvalue (TREE_OPERAND (arg, 1)));

    case TRUTH_XOR_EXPR:
      /* Here we can invert either operand.  We invert the first operand
	 unless the second operand is a TRUTH_NOT_EXPR in which case our
	 result is the XOR of the first operand with the inside of the
	 negation of the second operand.  */

      if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
	return build (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
		      TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
      else
	return build (TRUTH_XOR_EXPR, type,
		      invert_truthvalue (TREE_OPERAND (arg, 0)),
		      TREE_OPERAND (arg, 1));

    case TRUTH_ANDIF_EXPR:
      return build (TRUTH_ORIF_EXPR, type,
		    invert_truthvalue (TREE_OPERAND (arg, 0)),
		    invert_truthvalue (TREE_OPERAND (arg, 1)));

    case TRUTH_ORIF_EXPR:
      return build (TRUTH_ANDIF_EXPR, type,
		    invert_truthvalue (TREE_OPERAND (arg, 0)),
		    invert_truthvalue (TREE_OPERAND (arg, 1)));

    case TRUTH_NOT_EXPR:
      return TREE_OPERAND (arg, 0);

    case COND_EXPR:
      return build (COND_EXPR, type, TREE_OPERAND (arg, 0),
		    invert_truthvalue (TREE_OPERAND (arg, 1)),
		    invert_truthvalue (TREE_OPERAND (arg, 2)));

    case COMPOUND_EXPR:
      return build (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
		    invert_truthvalue (TREE_OPERAND (arg, 1)));

    case WITH_RECORD_EXPR:
      return build (WITH_RECORD_EXPR, type,
		    invert_truthvalue (TREE_OPERAND (arg, 0)),
		    TREE_OPERAND (arg, 1));

    case NON_LVALUE_EXPR:
      return invert_truthvalue (TREE_OPERAND (arg, 0));

    case NOP_EXPR:
    case CONVERT_EXPR:
    case FLOAT_EXPR:
      return build1 (TREE_CODE (arg), type,
		     invert_truthvalue (TREE_OPERAND (arg, 0)));

    case BIT_AND_EXPR:
      if (!integer_onep (TREE_OPERAND (arg, 1)))
	break;
      return build (EQ_EXPR, type, arg, convert (type, integer_zero_node));

    case SAVE_EXPR:
      return build1 (TRUTH_NOT_EXPR, type, arg);

    case CLEANUP_POINT_EXPR:
      return build1 (CLEANUP_POINT_EXPR, type,
		     invert_truthvalue (TREE_OPERAND (arg, 0)));

    default:
      break;
    }
  if (TREE_CODE (TREE_TYPE (arg)) != BOOLEAN_TYPE)
    abort ();
  return build1 (TRUTH_NOT_EXPR, type, arg);
}

/* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
   operands are another bit-wise operation with a common input.  If so,
   distribute the bit operations to save an operation and possibly two if
   constants are involved.  For example, convert
   	(A | B) & (A | C) into A | (B & C)
   Further simplification will occur if B and C are constants.

   If this optimization cannot be done, 0 will be returned.  */

static tree
distribute_bit_expr (code, type, arg0, arg1)
     enum tree_code code;
     tree type;
     tree arg0, arg1;
{
  tree common;
  tree left, right;

  if (TREE_CODE (arg0) != TREE_CODE (arg1)
      || TREE_CODE (arg0) == code
      || (TREE_CODE (arg0) != BIT_AND_EXPR
	  && TREE_CODE (arg0) != BIT_IOR_EXPR))
    return 0;

  if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
    {
      common = TREE_OPERAND (arg0, 0);
      left = TREE_OPERAND (arg0, 1);
      right = TREE_OPERAND (arg1, 1);
    }
  else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
    {
      common = TREE_OPERAND (arg0, 0);
      left = TREE_OPERAND (arg0, 1);
      right = TREE_OPERAND (arg1, 0);
    }
  else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
    {
      common = TREE_OPERAND (arg0, 1);
      left = TREE_OPERAND (arg0, 0);
      right = TREE_OPERAND (arg1, 1);
    }
  else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
    {
      common = TREE_OPERAND (arg0, 1);
      left = TREE_OPERAND (arg0, 0);
      right = TREE_OPERAND (arg1, 0);
    }
  else
    return 0;

  return fold (build (TREE_CODE (arg0), type, common,
		      fold (build (code, type, left, right))));
}

/* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
   starting at BITPOS.  The field is unsigned if UNSIGNEDP is nonzero.  */

static tree
make_bit_field_ref (inner, type, bitsize, bitpos, unsignedp)
     tree inner;
     tree type;
     int bitsize, bitpos;
     int unsignedp;
{
  tree result = build (BIT_FIELD_REF, type, inner,
		       size_int (bitsize), bitsize_int (bitpos));

  TREE_UNSIGNED (result) = unsignedp;

  return result;
}

/* Optimize a bit-field compare.

   There are two cases:  First is a compare against a constant and the
   second is a comparison of two items where the fields are at the same
   bit position relative to the start of a chunk (byte, halfword, word)
   large enough to contain it.  In these cases we can avoid the shift
   implicit in bitfield extractions.

   For constants, we emit a compare of the shifted constant with the
   BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
   compared.  For two fields at the same position, we do the ANDs with the
   similar mask and compare the result of the ANDs.

   CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
   COMPARE_TYPE is the type of the comparison, and LHS and RHS
   are the left and right operands of the comparison, respectively.

   If the optimization described above can be done, we return the resulting
   tree.  Otherwise we return zero.  */

static tree
optimize_bit_field_compare (code, compare_type, lhs, rhs)
     enum tree_code code;
     tree compare_type;
     tree lhs, rhs;
{
  HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
  tree type = TREE_TYPE (lhs);
  tree signed_type, unsigned_type;
  int const_p = TREE_CODE (rhs) == INTEGER_CST;
  enum machine_mode lmode, rmode, nmode;
  int lunsignedp, runsignedp;
  int lvolatilep = 0, rvolatilep = 0;
  tree linner, rinner = NULL_TREE;
  tree mask;
  tree offset;

  /* Get all the information about the extractions being done.  If the bit size
     if the same as the size of the underlying object, we aren't doing an
     extraction at all and so can do nothing.  We also don't want to
     do anything if the inner expression is a PLACEHOLDER_EXPR since we
     then will no longer be able to replace it.  */
  linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
				&lunsignedp, &lvolatilep);
  if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
      || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
    return 0;

 if (!const_p)
   {
     /* If this is not a constant, we can only do something if bit positions,
	sizes, and signedness are the same.  */
     rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
				   &runsignedp, &rvolatilep);

     if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
	 || lunsignedp != runsignedp || offset != 0
	 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
       return 0;
   }

  /* See if we can find a mode to refer to this field.  We should be able to,
     but fail if we can't.  */
  nmode = get_best_mode (lbitsize, lbitpos,
			 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
			 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
				TYPE_ALIGN (TREE_TYPE (rinner))),
			 word_mode, lvolatilep || rvolatilep);
  if (nmode == VOIDmode)
    return 0;

  /* Set signed and unsigned types of the precision of this mode for the
     shifts below.  */
  signed_type = (*lang_hooks.types.type_for_mode) (nmode, 0);
  unsigned_type = (*lang_hooks.types.type_for_mode) (nmode, 1);

  /* Compute the bit position and size for the new reference and our offset
     within it. If the new reference is the same size as the original, we
     won't optimize anything, so return zero.  */
  nbitsize = GET_MODE_BITSIZE (nmode);
  nbitpos = lbitpos & ~ (nbitsize - 1);
  lbitpos -= nbitpos;
  if (nbitsize == lbitsize)
    return 0;

  if (BYTES_BIG_ENDIAN)
    lbitpos = nbitsize - lbitsize - lbitpos;

  /* Make the mask to be used against the extracted field.  */
  mask = build_int_2 (~0, ~0);
  TREE_TYPE (mask) = unsigned_type;
  force_fit_type (mask, 0);
  mask = convert (unsigned_type, mask);
  mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
  mask = const_binop (RSHIFT_EXPR, mask,
		      size_int (nbitsize - lbitsize - lbitpos), 0);

  if (! const_p)
    /* If not comparing with constant, just rework the comparison
       and return.  */
    return build (code, compare_type,
		  build (BIT_AND_EXPR, unsigned_type,
			 make_bit_field_ref (linner, unsigned_type,
					     nbitsize, nbitpos, 1),
			 mask),
		  build (BIT_AND_EXPR, unsigned_type,
			 make_bit_field_ref (rinner, unsigned_type,
					     nbitsize, nbitpos, 1),
			 mask));

  /* Otherwise, we are handling the constant case. See if the constant is too
     big for the field.  Warn and return a tree of for 0 (false) if so.  We do
     this not only for its own sake, but to avoid having to test for this
     error case below.  If we didn't, we might generate wrong code.

     For unsigned fields, the constant shifted right by the field length should
     be all zero.  For signed fields, the high-order bits should agree with
     the sign bit.  */

  if (lunsignedp)
    {
      if (! integer_zerop (const_binop (RSHIFT_EXPR,
					convert (unsigned_type, rhs),
					size_int (lbitsize), 0)))
	{
	  warning ("comparison is always %d due to width of bit-field",
		   code == NE_EXPR);
	  return convert (compare_type,
			  (code == NE_EXPR
			   ? integer_one_node : integer_zero_node));
	}
    }
  else
    {
      tree tem = const_binop (RSHIFT_EXPR, convert (signed_type, rhs),
			      size_int (lbitsize - 1), 0);
      if (! integer_zerop (tem) && ! integer_all_onesp (tem))
	{
	  warning ("comparison is always %d due to width of bit-field",
		   code == NE_EXPR);
	  return convert (compare_type,
			  (code == NE_EXPR
			   ? integer_one_node : integer_zero_node));
	}
    }

  /* Single-bit compares should always be against zero.  */
  if (lbitsize == 1 && ! integer_zerop (rhs))
    {
      code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
      rhs = convert (type, integer_zero_node);
    }

  /* Make a new bitfield reference, shift the constant over the
     appropriate number of bits and mask it with the computed mask
     (in case this was a signed field).  If we changed it, make a new one.  */
  lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
  if (lvolatilep)
    {
      TREE_SIDE_EFFECTS (lhs) = 1;
      TREE_THIS_VOLATILE (lhs) = 1;
    }

  rhs = fold (const_binop (BIT_AND_EXPR,
			   const_binop (LSHIFT_EXPR,
					convert (unsigned_type, rhs),
					size_int (lbitpos), 0),
			   mask, 0));

  return build (code, compare_type,
		build (BIT_AND_EXPR, unsigned_type, lhs, mask),
		rhs);
}

/* Subroutine for fold_truthop: decode a field reference.

   If EXP is a comparison reference, we return the innermost reference.

   *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
   set to the starting bit number.

   If the innermost field can be completely contained in a mode-sized
   unit, *PMODE is set to that mode.  Otherwise, it is set to VOIDmode.

   *PVOLATILEP is set to 1 if the any expression encountered is volatile;
   otherwise it is not changed.

   *PUNSIGNEDP is set to the signedness of the field.

   *PMASK is set to the mask used.  This is either contained in a
   BIT_AND_EXPR or derived from the width of the field.

   *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.

   Return 0 if this is not a component reference or is one that we can't
   do anything with.  */

static tree
decode_field_reference (exp, pbitsize, pbitpos, pmode, punsignedp,
			pvolatilep, pmask, pand_mask)
     tree exp;
     HOST_WIDE_INT *pbitsize, *pbitpos;
     enum machine_mode *pmode;
     int *punsignedp, *pvolatilep;
     tree *pmask;
     tree *pand_mask;
{
  tree and_mask = 0;
  tree mask, inner, offset;
  tree unsigned_type;
  unsigned int precision;

  /* All the optimizations using this function assume integer fields.
     There are problems with FP fields since the type_for_size call
     below can fail for, e.g., XFmode.  */
  if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
    return 0;

  STRIP_NOPS (exp);

  if (TREE_CODE (exp) == BIT_AND_EXPR)
    {
      and_mask = TREE_OPERAND (exp, 1);
      exp = TREE_OPERAND (exp, 0);
      STRIP_NOPS (exp); STRIP_NOPS (and_mask);
      if (TREE_CODE (and_mask) != INTEGER_CST)
	return 0;
    }

  inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
			       punsignedp, pvolatilep);
  if ((inner == exp && and_mask == 0)
      || *pbitsize < 0 || offset != 0
      || TREE_CODE (inner) == PLACEHOLDER_EXPR)
    return 0;

  /* Compute the mask to access the bitfield.  */
  unsigned_type = (*lang_hooks.types.type_for_size) (*pbitsize, 1);
  precision = TYPE_PRECISION (unsigned_type);

  mask = build_int_2 (~0, ~0);
  TREE_TYPE (mask) = unsigned_type;
  force_fit_type (mask, 0);
  mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
  mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);

  /* Merge it with the mask we found in the BIT_AND_EXPR, if any.  */
  if (and_mask != 0)
    mask = fold (build (BIT_AND_EXPR, unsigned_type,
			convert (unsigned_type, and_mask), mask));

  *pmask = mask;
  *pand_mask = and_mask;
  return inner;
}

/* Return nonzero if MASK represents a mask of SIZE ones in the low-order
   bit positions.  */

static int
all_ones_mask_p (mask, size)
     tree mask;
     int size;
{
  tree type = TREE_TYPE (mask);
  unsigned int precision = TYPE_PRECISION (type);
  tree tmask;

  tmask = build_int_2 (~0, ~0);
  TREE_TYPE (tmask) = (*lang_hooks.types.signed_type) (type);
  force_fit_type (tmask, 0);
  return
    tree_int_cst_equal (mask,
			const_binop (RSHIFT_EXPR,
				     const_binop (LSHIFT_EXPR, tmask,
						  size_int (precision - size),
						  0),
				     size_int (precision - size), 0));
}

/* Subroutine for fold: determine if VAL is the INTEGER_CONST that
   represents the sign bit of EXP's type.  If EXP represents a sign
   or zero extension, also test VAL against the unextended type.
   The return value is the (sub)expression whose sign bit is VAL,
   or NULL_TREE otherwise.  */

static tree
sign_bit_p (exp, val)
     tree exp;
     tree val;
{
  unsigned HOST_WIDE_INT lo;
  HOST_WIDE_INT hi;
  int width;
  tree t;

  /* Tree EXP must have an integral type.  */
  t = TREE_TYPE (exp);
  if (! INTEGRAL_TYPE_P (t))
    return NULL_TREE;

  /* Tree VAL must be an integer constant.  */
  if (TREE_CODE (val) != INTEGER_CST
      || TREE_CONSTANT_OVERFLOW (val))
    return NULL_TREE;

  width = TYPE_PRECISION (t);
  if (width > HOST_BITS_PER_WIDE_INT)
    {
      hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
      lo = 0;
    }
  else
    {
      hi = 0;
      lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
    }

  if (TREE_INT_CST_HIGH (val) == hi && TREE_INT_CST_LOW (val) == lo)
    return exp;

  /* Handle extension from a narrower type.  */
  if (TREE_CODE (exp) == NOP_EXPR
      && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
    return sign_bit_p (TREE_OPERAND (exp, 0), val);

  return NULL_TREE;
}

/* Subroutine for fold_truthop: determine if an operand is simple enough
   to be evaluated unconditionally.  */

static int
simple_operand_p (exp)
     tree exp;
{
  /* Strip any conversions that don't change the machine mode.  */
  while ((TREE_CODE (exp) == NOP_EXPR
	  || TREE_CODE (exp) == CONVERT_EXPR)
	 && (TYPE_MODE (TREE_TYPE (exp))
	     == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
    exp = TREE_OPERAND (exp, 0);

  return (TREE_CODE_CLASS (TREE_CODE (exp)) == 'c'
	  || (DECL_P (exp)
	      && ! TREE_ADDRESSABLE (exp)
	      && ! TREE_THIS_VOLATILE (exp)
	      && ! DECL_NONLOCAL (exp)
	      /* Don't regard global variables as simple.  They may be
		 allocated in ways unknown to the compiler (shared memory,
		 #pragma weak, etc).  */
	      && ! TREE_PUBLIC (exp)
	      && ! DECL_EXTERNAL (exp)
	      /* Loading a static variable is unduly expensive, but global
		 registers aren't expensive.  */
	      && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
}

/* The following functions are subroutines to fold_range_test and allow it to
   try to change a logical combination of comparisons into a range test.

   For example, both
   	X == 2 || X == 3 || X == 4 || X == 5
   and
   	X >= 2 && X <= 5
   are converted to
	(unsigned) (X - 2) <= 3

   We describe each set of comparisons as being either inside or outside
   a range, using a variable named like IN_P, and then describe the
   range with a lower and upper bound.  If one of the bounds is omitted,
   it represents either the highest or lowest value of the type.

   In the comments below, we represent a range by two numbers in brackets
   preceded by a "+" to designate being inside that range, or a "-" to
   designate being outside that range, so the condition can be inverted by
   flipping the prefix.  An omitted bound is represented by a "-".  For
   example, "- [-, 10]" means being outside the range starting at the lowest
   possible value and ending at 10, in other words, being greater than 10.
   The range "+ [-, -]" is always true and hence the range "- [-, -]" is
   always false.

   We set up things so that the missing bounds are handled in a consistent
   manner so neither a missing bound nor "true" and "false" need to be
   handled using a special case.  */

/* Return the result of applying CODE to ARG0 and ARG1, but handle the case
   of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
   and UPPER1_P are nonzero if the respective argument is an upper bound
   and zero for a lower.  TYPE, if nonzero, is the type of the result; it
   must be specified for a comparison.  ARG1 will be converted to ARG0's
   type if both are specified.  */

static tree
range_binop (code, type, arg0, upper0_p, arg1, upper1_p)
     enum tree_code code;
     tree type;
     tree arg0, arg1;
     int upper0_p, upper1_p;
{
  tree tem;
  int result;
  int sgn0, sgn1;

  /* If neither arg represents infinity, do the normal operation.
     Else, if not a comparison, return infinity.  Else handle the special
     comparison rules. Note that most of the cases below won't occur, but
     are handled for consistency.  */

  if (arg0 != 0 && arg1 != 0)
    {
      tem = fold (build (code, type != 0 ? type : TREE_TYPE (arg0),
			 arg0, convert (TREE_TYPE (arg0), arg1)));
      STRIP_NOPS (tem);
      return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
    }

  if (TREE_CODE_CLASS (code) != '<')
    return 0;

  /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
     for neither.  In real maths, we cannot assume open ended ranges are
     the same. But, this is computer arithmetic, where numbers are finite.
     We can therefore make the transformation of any unbounded range with
     the value Z, Z being greater than any representable number. This permits
     us to treat unbounded ranges as equal.  */
  sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
  sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
  switch (code)
    {
    case EQ_EXPR:
      result = sgn0 == sgn1;
      break;
    case NE_EXPR:
      result = sgn0 != sgn1;
      break;
    case LT_EXPR:
      result = sgn0 < sgn1;
      break;
    case LE_EXPR:
      result = sgn0 <= sgn1;
      break;
    case GT_EXPR:
      result = sgn0 > sgn1;
      break;
    case GE_EXPR:
      result = sgn0 >= sgn1;
      break;
    default:
      abort ();
    }

  return convert (type, result ? integer_one_node : integer_zero_node);
}

/* Given EXP, a logical expression, set the range it is testing into
   variables denoted by PIN_P, PLOW, and PHIGH.  Return the expression
   actually being tested.  *PLOW and *PHIGH will be made of the same type
   as the returned expression.  If EXP is not a comparison, we will most
   likely not be returning a useful value and range.  */

static tree
make_range (exp, pin_p, plow, phigh)
     tree exp;
     int *pin_p;
     tree *plow, *phigh;
{
  enum tree_code code;
  tree arg0 = NULL_TREE, arg1 = NULL_TREE, type = NULL_TREE;
  tree orig_type = NULL_TREE;
  int in_p, n_in_p;
  tree low, high, n_low, n_high;

  /* Start with simply saying "EXP != 0" and then look at the code of EXP
     and see if we can refine the range.  Some of the cases below may not
     happen, but it doesn't seem worth worrying about this.  We "continue"
     the outer loop when we've changed something; otherwise we "break"
     the switch, which will "break" the while.  */

  in_p = 0, low = high = convert (TREE_TYPE (exp), integer_zero_node);

  while (1)
    {
      code = TREE_CODE (exp);

      if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
	{
	  arg0 = TREE_OPERAND (exp, 0);
	  if (TREE_CODE_CLASS (code) == '<'
	      || TREE_CODE_CLASS (code) == '1'
	      || TREE_CODE_CLASS (code) == '2')
	    type = TREE_TYPE (arg0);
	  if (TREE_CODE_CLASS (code) == '2'
	      || TREE_CODE_CLASS (code) == '<'
	      || (TREE_CODE_CLASS (code) == 'e'
		  && TREE_CODE_LENGTH (code) > 1))
	    arg1 = TREE_OPERAND (exp, 1);
	}

      /* Set ORIG_TYPE as soon as TYPE is non-null so that we do not
	 lose a cast by accident.  */
      if (type != NULL_TREE && orig_type == NULL_TREE)
	orig_type = type;

      switch (code)
	{
	case TRUTH_NOT_EXPR:
	  in_p = ! in_p, exp = arg0;
	  continue;

	case EQ_EXPR: case NE_EXPR:
	case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
	  /* We can only do something if the range is testing for zero
	     and if the second operand is an integer constant.  Note that
	     saying something is "in" the range we make is done by
	     complementing IN_P since it will set in the initial case of
	     being not equal to zero; "out" is leaving it alone.  */
	  if (low == 0 || high == 0
	      || ! integer_zerop (low) || ! integer_zerop (high)
	      || TREE_CODE (arg1) != INTEGER_CST)
	    break;

	  switch (code)
	    {
	    case NE_EXPR:  /* - [c, c]  */
	      low = high = arg1;
	      break;
	    case EQ_EXPR:  /* + [c, c]  */
	      in_p = ! in_p, low = high = arg1;
	      break;
	    case GT_EXPR:  /* - [-, c] */
	      low = 0, high = arg1;
	      break;
	    case GE_EXPR:  /* + [c, -] */
	      in_p = ! in_p, low = arg1, high = 0;
	      break;
	    case LT_EXPR:  /* - [c, -] */
	      low = arg1, high = 0;
	      break;
	    case LE_EXPR:  /* + [-, c] */
	      in_p = ! in_p, low = 0, high = arg1;
	      break;
	    default:
	      abort ();
	    }

	  exp = arg0;

	  /* If this is an unsigned comparison, we also know that EXP is
	     greater than or equal to zero.  We base the range tests we make
	     on that fact, so we record it here so we can parse existing
	     range tests.  */
	  if (TREE_UNSIGNED (type) && (low == 0 || high == 0))
	    {
	      if (! merge_ranges (&n_in_p, &n_low, &n_high, in_p, low, high,
				  1, convert (type, integer_zero_node),
				  NULL_TREE))
		break;

	      in_p = n_in_p, low = n_low, high = n_high;

	      /* If the high bound is missing, but we
		 have a low bound, reverse the range so
		 it goes from zero to the low bound minus 1.  */
	      if (high == 0 && low)
		{
		  in_p = ! in_p;
		  high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
				      integer_one_node, 0);
		  low = convert (type, integer_zero_node);
		}
	    }
	  continue;

	case NEGATE_EXPR:
	  /* (-x) IN [a,b] -> x in [-b, -a]  */
	  n_low = range_binop (MINUS_EXPR, type,
			       convert (type, integer_zero_node), 0, high, 1);
	  n_high = range_binop (MINUS_EXPR, type,
				convert (type, integer_zero_node), 0, low, 0);
	  low = n_low, high = n_high;
	  exp = arg0;
	  continue;

	case BIT_NOT_EXPR:
	  /* ~ X -> -X - 1  */
	  exp = build (MINUS_EXPR, type, negate_expr (arg0),
		       convert (type, integer_one_node));
	  continue;

	case PLUS_EXPR:  case MINUS_EXPR:
	  if (TREE_CODE (arg1) != INTEGER_CST)
	    break;

	  /* If EXP is signed, any overflow in the computation is undefined,
	     so we don't worry about it so long as our computations on
	     the bounds don't overflow.  For unsigned, overflow is defined
	     and this is exactly the right thing.  */
	  n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
			       type, low, 0, arg1, 0);
	  n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
				type, high, 1, arg1, 0);
	  if ((n_low != 0 && TREE_OVERFLOW (n_low))
	      || (n_high != 0 && TREE_OVERFLOW (n_high)))
	    break;

	  /* Check for an unsigned range which has wrapped around the maximum
	     value thus making n_high < n_low, and normalize it.  */
	  if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
	    {
	      low = range_binop (PLUS_EXPR, type, n_high, 0,
				 integer_one_node, 0);
	      high = range_binop (MINUS_EXPR, type, n_low, 0,
				  integer_one_node, 0);

	      /* If the range is of the form +/- [ x+1, x ], we won't
		 be able to normalize it.  But then, it represents the
		 whole range or the empty set, so make it
		 +/- [ -, - ].  */
	      if (tree_int_cst_equal (n_low, low)
		  && tree_int_cst_equal (n_high, high))
		low = high = 0;
	      else
		in_p = ! in_p;
	    }
	  else
	    low = n_low, high = n_high;

	  exp = arg0;
	  continue;

	case NOP_EXPR:  case NON_LVALUE_EXPR:  case CONVERT_EXPR:
	  if (TYPE_PRECISION (type) > TYPE_PRECISION (orig_type))
	    break;

	  if (! INTEGRAL_TYPE_P (type)
	      || (low != 0 && ! int_fits_type_p (low, type))
	      || (high != 0 && ! int_fits_type_p (high, type)))
	    break;

	  n_low = low, n_high = high;

	  if (n_low != 0)
	    n_low = convert (type, n_low);

	  if (n_high != 0)
	    n_high = convert (type, n_high);

	  /* If we're converting from an unsigned to a signed type,
	     we will be doing the comparison as unsigned.  The tests above
	     have already verified that LOW and HIGH are both positive.

	     So we have to make sure that the original unsigned value will
	     be interpreted as positive.  */
	  if (TREE_UNSIGNED (type) && ! TREE_UNSIGNED (TREE_TYPE (exp)))
	    {
	      tree equiv_type = (*lang_hooks.types.type_for_mode)
		(TYPE_MODE (type), 1);
	      tree high_positive;

	      /* A range without an upper bound is, naturally, unbounded.
		 Since convert would have cropped a very large value, use
		 the max value for the destination type.  */
	      high_positive
		= TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
		  : TYPE_MAX_VALUE (type);

	      if (TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (exp)))
	        high_positive = fold (build (RSHIFT_EXPR, type,
					     convert (type, high_positive),
					     convert (type, integer_one_node)));

	      /* If the low bound is specified, "and" the range with the
		 range for which the original unsigned value will be
		 positive.  */
	      if (low != 0)
		{
		  if (! merge_ranges (&n_in_p, &n_low, &n_high,
				      1, n_low, n_high,
				      1, convert (type, integer_zero_node),
				      high_positive))
		    break;

		  in_p = (n_in_p == in_p);
		}
	      else
		{
		  /* Otherwise, "or" the range with the range of the input
		     that will be interpreted as negative.  */
		  if (! merge_ranges (&n_in_p, &n_low, &n_high,
				      0, n_low, n_high,
				      1, convert (type, integer_zero_node),
				      high_positive))
		    break;

		  in_p = (in_p != n_in_p);
		}
	    }

	  exp = arg0;
	  low = n_low, high = n_high;
	  continue;

	default:
	  break;
	}

      break;
    }

  /* If EXP is a constant, we can evaluate whether this is true or false.  */
  if (TREE_CODE (exp) == INTEGER_CST)
    {
      in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
						 exp, 0, low, 0))
		      && integer_onep (range_binop (LE_EXPR, integer_type_node,
						    exp, 1, high, 1)));
      low = high = 0;
      exp = 0;
    }

  *pin_p = in_p, *plow = low, *phigh = high;
  return exp;
}

/* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
   type, TYPE, return an expression to test if EXP is in (or out of, depending
   on IN_P) the range.  */

static tree
build_range_check (type, exp, in_p, low, high)
     tree type;
     tree exp;
     int in_p;
     tree low, high;
{
  tree etype = TREE_TYPE (exp);
  tree value;

  if (! in_p
      && (0 != (value = build_range_check (type, exp, 1, low, high))))
    return invert_truthvalue (value);

  if (low == 0 && high == 0)
    return convert (type, integer_one_node);

  if (low == 0)
    return fold (build (LE_EXPR, type, exp, high));

  if (high == 0)
    return fold (build (GE_EXPR, type, exp, low));

  if (operand_equal_p (low, high, 0))
    return fold (build (EQ_EXPR, type, exp, low));

  if (integer_zerop (low))
    {
      if (! TREE_UNSIGNED (etype))
	{
	  etype = (*lang_hooks.types.unsigned_type) (etype);
	  high = convert (etype, high);
	  exp = convert (etype, exp);
	}
      return build_range_check (type, exp, 1, 0, high);
    }

  /* Optimize (c>=1) && (c<=127) into (signed char)c > 0.  */
  if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
    {
      unsigned HOST_WIDE_INT lo;
      HOST_WIDE_INT hi;
      int prec;

      prec = TYPE_PRECISION (etype);
      if (prec <= HOST_BITS_PER_WIDE_INT)
	{
	  hi = 0;
	  lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
	}
      else
	{
	  hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
	  lo = (unsigned HOST_WIDE_INT) -1;
	}

      if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
	{
	  if (TREE_UNSIGNED (etype))
	    {
	      etype = (*lang_hooks.types.signed_type) (etype);
	      exp = convert (etype, exp);
	    }
	  return fold (build (GT_EXPR, type, exp,
			      convert (etype, integer_zero_node)));
	}
    }

  if (0 != (value = const_binop (MINUS_EXPR, high, low, 0))
      && ! TREE_OVERFLOW (value))
    return build_range_check (type,
			      fold (build (MINUS_EXPR, etype, exp, low)),
			      1, convert (etype, integer_zero_node), value);

  return 0;
}

/* Given two ranges, see if we can merge them into one.  Return 1 if we
   can, 0 if we can't.  Set the output range into the specified parameters.  */

static int
merge_ranges (pin_p, plow, phigh, in0_p, low0, high0, in1_p, low1, high1)
     int *pin_p;
     tree *plow, *phigh;
     int in0_p, in1_p;
     tree low0, high0, low1, high1;
{
  int no_overlap;
  int subset;
  int temp;
  tree tem;
  int in_p;
  tree low, high;
  int lowequal = ((low0 == 0 && low1 == 0)
		  || integer_onep (range_binop (EQ_EXPR, integer_type_node,
						low0, 0, low1, 0)));
  int highequal = ((high0 == 0 && high1 == 0)
		   || integer_onep (range_binop (EQ_EXPR, integer_type_node,
						 high0, 1, high1, 1)));

  /* Make range 0 be the range that starts first, or ends last if they
     start at the same value.  Swap them if it isn't.  */
  if (integer_onep (range_binop (GT_EXPR, integer_type_node,
				 low0, 0, low1, 0))
      || (lowequal
	  && integer_onep (range_binop (GT_EXPR, integer_type_node,
					high1, 1, high0, 1))))
    {
      temp = in0_p, in0_p = in1_p, in1_p = temp;
      tem = low0, low0 = low1, low1 = tem;
      tem = high0, high0 = high1, high1 = tem;
    }

  /* Now flag two cases, whether the ranges are disjoint or whether the
     second range is totally subsumed in the first.  Note that the tests
     below are simplified by the ones above.  */
  no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
					  high0, 1, low1, 0));
  subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
				      high1, 1, high0, 1));

  /* We now have four cases, depending on whether we are including or
     excluding the two ranges.  */
  if (in0_p && in1_p)
    {
      /* If they don't overlap, the result is false.  If the second range
	 is a subset it is the result.  Otherwise, the range is from the start
	 of the second to the end of the first.  */
      if (no_overlap)
	in_p = 0, low = high = 0;
      else if (subset)
	in_p = 1, low = low1, high = high1;
      else
	in_p = 1, low = low1, high = high0;
    }

  else if (in0_p && ! in1_p)
    {
      /* If they don't overlap, the result is the first range.  If they are
	 equal, the result is false.  If the second range is a subset of the
	 first, and the ranges begin at the same place, we go from just after
	 the end of the first range to the end of the second.  If the second
	 range is not a subset of the first, or if it is a subset and both
	 ranges end at the same place, the range starts at the start of the
	 first range and ends just before the second range.
	 Otherwise, we can't describe this as a single range.  */
      if (no_overlap)
	in_p = 1, low = low0, high = high0;
      else if (lowequal && highequal)
	in_p = 0, low = high = 0;
      else if (subset && lowequal)
	{
	  in_p = 1, high = high0;
	  low = range_binop (PLUS_EXPR, NULL_TREE, high1, 0,
			     integer_one_node, 0);
	}
      else if (! subset || highequal)
	{
	  in_p = 1, low = low0;
	  high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
			      integer_one_node, 0);
	}
      else
	return 0;
    }

  else if (! in0_p && in1_p)
    {
      /* If they don't overlap, the result is the second range.  If the second
	 is a subset of the first, the result is false.  Otherwise,
	 the range starts just after the first range and ends at the
	 end of the second.  */
      if (no_overlap)
	in_p = 1, low = low1, high = high1;
      else if (subset || highequal)
	in_p = 0, low = high = 0;
      else
	{
	  in_p = 1, high = high1;
	  low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
			     integer_one_node, 0);
	}
    }

  else
    {
      /* The case where we are excluding both ranges.  Here the complex case
	 is if they don't overlap.  In that case, the only time we have a
	 range is if they are adjacent.  If the second is a subset of the
	 first, the result is the first.  Otherwise, the range to exclude
	 starts at the beginning of the first range and ends at the end of the
	 second.  */
      if (no_overlap)
	{
	  if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
					 range_binop (PLUS_EXPR, NULL_TREE,
						      high0, 1,
						      integer_one_node, 1),
					 1, low1, 0)))
	    in_p = 0, low = low0, high = high1;
	  else
	    return 0;
	}
      else if (subset)
	in_p = 0, low = low0, high = high0;
      else
	in_p = 0, low = low0, high = high1;
    }

  *pin_p = in_p, *plow = low, *phigh = high;
  return 1;
}

/* EXP is some logical combination of boolean tests.  See if we can
   merge it into some range test.  Return the new tree if so.  */

static tree
fold_range_test (exp)
     tree exp;
{
  int or_op = (TREE_CODE (exp) == TRUTH_ORIF_EXPR
	       || TREE_CODE (exp) == TRUTH_OR_EXPR);
  int in0_p, in1_p, in_p;
  tree low0, low1, low, high0, high1, high;
  tree lhs = make_range (TREE_OPERAND (exp, 0), &in0_p, &low0, &high0);
  tree rhs = make_range (TREE_OPERAND (exp, 1), &in1_p, &low1, &high1);
  tree tem;

  /* If this is an OR operation, invert both sides; we will invert
     again at the end.  */
  if (or_op)
    in0_p = ! in0_p, in1_p = ! in1_p;

  /* If both expressions are the same, if we can merge the ranges, and we
     can build the range test, return it or it inverted.  If one of the
     ranges is always true or always false, consider it to be the same
     expression as the other.  */
  if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
      && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
		       in1_p, low1, high1)
      && 0 != (tem = (build_range_check (TREE_TYPE (exp),
					 lhs != 0 ? lhs
					 : rhs != 0 ? rhs : integer_zero_node,
					 in_p, low, high))))
    return or_op ? invert_truthvalue (tem) : tem;

  /* On machines where the branch cost is expensive, if this is a
     short-circuited branch and the underlying object on both sides
     is the same, make a non-short-circuit operation.  */
  else if (BRANCH_COST >= 2
	   && lhs != 0 && rhs != 0
	   && (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
	       || TREE_CODE (exp) == TRUTH_ORIF_EXPR)
	   && operand_equal_p (lhs, rhs, 0))
    {
      /* If simple enough, just rewrite.  Otherwise, make a SAVE_EXPR
	 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
	 which cases we can't do this.  */
      if (simple_operand_p (lhs))
	return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
		      ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
		      TREE_TYPE (exp), TREE_OPERAND (exp, 0),
		      TREE_OPERAND (exp, 1));

      else if ((*lang_hooks.decls.global_bindings_p) () == 0
	       && ! contains_placeholder_p (lhs))
	{
	  tree common = save_expr (lhs);

	  if (0 != (lhs = build_range_check (TREE_TYPE (exp), common,
					     or_op ? ! in0_p : in0_p,
					     low0, high0))
	      && (0 != (rhs = build_range_check (TREE_TYPE (exp), common,
						 or_op ? ! in1_p : in1_p,
						 low1, high1))))
	    return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
			  ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
			  TREE_TYPE (exp), lhs, rhs);
	}
    }

  return 0;
}

/* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
   bit value.  Arrange things so the extra bits will be set to zero if and
   only if C is signed-extended to its full width.  If MASK is nonzero,
   it is an INTEGER_CST that should be AND'ed with the extra bits.  */

static tree
unextend (c, p, unsignedp, mask)
     tree c;
     int p;
     int unsignedp;
     tree mask;
{
  tree type = TREE_TYPE (c);
  int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
  tree temp;

  if (p == modesize || unsignedp)
    return c;

  /* We work by getting just the sign bit into the low-order bit, then
     into the high-order bit, then sign-extend.  We then XOR that value
     with C.  */
  temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
  temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);

  /* We must use a signed type in order to get an arithmetic right shift.
     However, we must also avoid introducing accidental overflows, so that
     a subsequent call to integer_zerop will work.  Hence we must
     do the type conversion here.  At this point, the constant is either
     zero or one, and the conversion to a signed type can never overflow.
     We could get an overflow if this conversion is done anywhere else.  */
  if (TREE_UNSIGNED (type))
    temp = convert ((*lang_hooks.types.signed_type) (type), temp);

  temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
  temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
  if (mask != 0)
    temp = const_binop (BIT_AND_EXPR, temp, convert (TREE_TYPE (c), mask), 0);
  /* If necessary, convert the type back to match the type of C.  */
  if (TREE_UNSIGNED (type))
    temp = convert (type, temp);

  return convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
}

/* Find ways of folding logical expressions of LHS and RHS:
   Try to merge two comparisons to the same innermost item.
   Look for range tests like "ch >= '0' && ch <= '9'".
   Look for combinations of simple terms on machines with expensive branches
   and evaluate the RHS unconditionally.

   For example, if we have p->a == 2 && p->b == 4 and we can make an
   object large enough to span both A and B, we can do this with a comparison
   against the object ANDed with the a mask.

   If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
   operations to do this with one comparison.

   We check for both normal comparisons and the BIT_AND_EXPRs made this by
   function and the one above.

   CODE is the logical operation being done.  It can be TRUTH_ANDIF_EXPR,
   TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.

   TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
   two operands.

   We return the simplified tree or 0 if no optimization is possible.  */

static tree
fold_truthop (code, truth_type, lhs, rhs)
     enum tree_code code;
     tree truth_type, lhs, rhs;
{
  /* If this is the "or" of two comparisons, we can do something if
     the comparisons are NE_EXPR.  If this is the "and", we can do something
     if the comparisons are EQ_EXPR.  I.e.,
     	(a->b == 2 && a->c == 4) can become (a->new == NEW).

     WANTED_CODE is this operation code.  For single bit fields, we can
     convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
     comparison for one-bit fields.  */

  enum tree_code wanted_code;
  enum tree_code lcode, rcode;
  tree ll_arg, lr_arg, rl_arg, rr_arg;
  tree ll_inner, lr_inner, rl_inner, rr_inner;
  HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
  HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
  HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
  HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
  int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
  enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
  enum machine_mode lnmode, rnmode;
  tree ll_mask, lr_mask, rl_mask, rr_mask;
  tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
  tree l_const, r_const;
  tree lntype, rntype, result;
  int first_bit, end_bit;
  int volatilep;

  /* Start by getting the comparison codes.  Fail if anything is volatile.
     If one operand is a BIT_AND_EXPR with the constant one, treat it as if
     it were surrounded with a NE_EXPR.  */

  if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
    return 0;

  lcode = TREE_CODE (lhs);
  rcode = TREE_CODE (rhs);

  if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
    lcode = NE_EXPR, lhs = build (NE_EXPR, truth_type, lhs, integer_zero_node);

  if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
    rcode = NE_EXPR, rhs = build (NE_EXPR, truth_type, rhs, integer_zero_node);

  if (TREE_CODE_CLASS (lcode) != '<' || TREE_CODE_CLASS (rcode) != '<')
    return 0;

  code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
	  ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);

  ll_arg = TREE_OPERAND (lhs, 0);
  lr_arg = TREE_OPERAND (lhs, 1);
  rl_arg = TREE_OPERAND (rhs, 0);
  rr_arg = TREE_OPERAND (rhs, 1);

  /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations.  */
  if (simple_operand_p (ll_arg)
      && simple_operand_p (lr_arg)
      && !FLOAT_TYPE_P (TREE_TYPE (ll_arg)))
    {
      int compcode;

      if (operand_equal_p (ll_arg, rl_arg, 0)
          && operand_equal_p (lr_arg, rr_arg, 0))
        {
          int lcompcode, rcompcode;

          lcompcode = comparison_to_compcode (lcode);
          rcompcode = comparison_to_compcode (rcode);
          compcode = (code == TRUTH_AND_EXPR)
                     ? lcompcode & rcompcode
                     : lcompcode | rcompcode;
        }
      else if (operand_equal_p (ll_arg, rr_arg, 0)
               && operand_equal_p (lr_arg, rl_arg, 0))
        {
          int lcompcode, rcompcode;

          rcode = swap_tree_comparison (rcode);
          lcompcode = comparison_to_compcode (lcode);
          rcompcode = comparison_to_compcode (rcode);
          compcode = (code == TRUTH_AND_EXPR)
                     ? lcompcode & rcompcode
                     : lcompcode | rcompcode;
        }
      else
	compcode = -1;

      if (compcode == COMPCODE_TRUE)
	return convert (truth_type, integer_one_node);
      else if (compcode == COMPCODE_FALSE)
	return convert (truth_type, integer_zero_node);
      else if (compcode != -1)
	return build (compcode_to_comparison (compcode),
		      truth_type, ll_arg, lr_arg);
    }

  /* If the RHS can be evaluated unconditionally and its operands are
     simple, it wins to evaluate the RHS unconditionally on machines
     with expensive branches.  In this case, this isn't a comparison
     that can be merged.  Avoid doing this if the RHS is a floating-point
     comparison since those can trap.  */

  if (BRANCH_COST >= 2
      && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
      && simple_operand_p (rl_arg)
      && simple_operand_p (rr_arg))
    {
      /* Convert (a != 0) || (b != 0) into (a | b) != 0.  */
      if (code == TRUTH_OR_EXPR
	  && lcode == NE_EXPR && integer_zerop (lr_arg)
	  && rcode == NE_EXPR && integer_zerop (rr_arg)
	  && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
	return build (NE_EXPR, truth_type,
		      build (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
			     ll_arg, rl_arg),
		      integer_zero_node);

      /* Convert (a == 0) && (b == 0) into (a | b) == 0.  */
      if (code == TRUTH_AND_EXPR
	  && lcode == EQ_EXPR && integer_zerop (lr_arg)
	  && rcode == EQ_EXPR && integer_zerop (rr_arg)
	  && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
	return build (EQ_EXPR, truth_type,
		      build (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
			     ll_arg, rl_arg),
		      integer_zero_node);

      return build (code, truth_type, lhs, rhs);
    }

  /* See if the comparisons can be merged.  Then get all the parameters for
     each side.  */

  if ((lcode != EQ_EXPR && lcode != NE_EXPR)
      || (rcode != EQ_EXPR && rcode != NE_EXPR))
    return 0;

  volatilep = 0;
  ll_inner = decode_field_reference (ll_arg,
				     &ll_bitsize, &ll_bitpos, &ll_mode,
				     &ll_unsignedp, &volatilep, &ll_mask,
				     &ll_and_mask);
  lr_inner = decode_field_reference (lr_arg,
				     &lr_bitsize, &lr_bitpos, &lr_mode,
				     &lr_unsignedp, &volatilep, &lr_mask,
				     &lr_and_mask);
  rl_inner = decode_field_reference (rl_arg,
				     &rl_bitsize, &rl_bitpos, &rl_mode,
				     &rl_unsignedp, &volatilep, &rl_mask,
				     &rl_and_mask);
  rr_inner = decode_field_reference (rr_arg,
				     &rr_bitsize, &rr_bitpos, &rr_mode,
				     &rr_unsignedp, &volatilep, &rr_mask,
				     &rr_and_mask);

  /* It must be true that the inner operation on the lhs of each
     comparison must be the same if we are to be able to do anything.
     Then see if we have constants.  If not, the same must be true for
     the rhs's.  */
  if (volatilep || ll_inner == 0 || rl_inner == 0
      || ! operand_equal_p (ll_inner, rl_inner, 0))
    return 0;

  if (TREE_CODE (lr_arg) == INTEGER_CST
      && TREE_CODE (rr_arg) == INTEGER_CST)
    l_const = lr_arg, r_const = rr_arg;
  else if (lr_inner == 0 || rr_inner == 0
	   || ! operand_equal_p (lr_inner, rr_inner, 0))
    return 0;
  else
    l_const = r_const = 0;

  /* If either comparison code is not correct for our logical operation,
     fail.  However, we can convert a one-bit comparison against zero into
     the opposite comparison against that bit being set in the field.  */

  wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
  if (lcode != wanted_code)
    {
      if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
	{
	  /* Make the left operand unsigned, since we are only interested
	     in the value of one bit.  Otherwise we are doing the wrong
	     thing below.  */
	  ll_unsignedp = 1;
	  l_const = ll_mask;
	}
      else
	return 0;
    }

  /* This is analogous to the code for l_const above.  */
  if (rcode != wanted_code)
    {
      if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
	{
	  rl_unsignedp = 1;
	  r_const = rl_mask;
	}
      else
	return 0;
    }

  /* After this point all optimizations will generate bit-field
     references, which we might not want.  */
  if (! (*lang_hooks.can_use_bit_fields_p) ())
    return 0;

  /* See if we can find a mode that contains both fields being compared on
     the left.  If we can't, fail.  Otherwise, update all constants and masks
     to be relative to a field of that size.  */
  first_bit = MIN (ll_bitpos, rl_bitpos);
  end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
  lnmode = get_best_mode (end_bit - first_bit, first_bit,
			  TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
			  volatilep);
  if (lnmode == VOIDmode)
    return 0;

  lnbitsize = GET_MODE_BITSIZE (lnmode);
  lnbitpos = first_bit & ~ (lnbitsize - 1);
  lntype = (*lang_hooks.types.type_for_size) (lnbitsize, 1);
  xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;

  if (BYTES_BIG_ENDIAN)
    {
      xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
      xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
    }

  ll_mask = const_binop (LSHIFT_EXPR, convert (lntype, ll_mask),
			 size_int (xll_bitpos), 0);
  rl_mask = const_binop (LSHIFT_EXPR, convert (lntype, rl_mask),
			 size_int (xrl_bitpos), 0);

  if (l_const)
    {
      l_const = convert (lntype, l_const);
      l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
      l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
      if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
					fold (build1 (BIT_NOT_EXPR,
						      lntype, ll_mask)),
					0)))
	{
	  warning ("comparison is always %d", wanted_code == NE_EXPR);

	  return convert (truth_type,
			  wanted_code == NE_EXPR
			  ? integer_one_node : integer_zero_node);
	}
    }
  if (r_const)
    {
      r_const = convert (lntype, r_const);
      r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
      r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
      if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
					fold (build1 (BIT_NOT_EXPR,
						      lntype, rl_mask)),
					0)))
	{
	  warning ("comparison is always %d", wanted_code == NE_EXPR);

	  return convert (truth_type,
			  wanted_code == NE_EXPR
			  ? integer_one_node : integer_zero_node);
	}
    }

  /* If the right sides are not constant, do the same for it.  Also,
     disallow this optimization if a size or signedness mismatch occurs
     between the left and right sides.  */
  if (l_const == 0)
    {
      if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
	  || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
	  /* Make sure the two fields on the right
	     correspond to the left without being swapped.  */
	  || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
	return 0;

      first_bit = MIN (lr_bitpos, rr_bitpos);
      end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
      rnmode = get_best_mode (end_bit - first_bit, first_bit,
			      TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
			      volatilep);
      if (rnmode == VOIDmode)
	return 0;

      rnbitsize = GET_MODE_BITSIZE (rnmode);
      rnbitpos = first_bit & ~ (rnbitsize - 1);
      rntype = (*lang_hooks.types.type_for_size) (rnbitsize, 1);
      xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;

      if (BYTES_BIG_ENDIAN)
	{
	  xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
	  xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
	}

      lr_mask = const_binop (LSHIFT_EXPR, convert (rntype, lr_mask),
			     size_int (xlr_bitpos), 0);
      rr_mask = const_binop (LSHIFT_EXPR, convert (rntype, rr_mask),
			     size_int (xrr_bitpos), 0);

      /* Make a mask that corresponds to both fields being compared.
	 Do this for both items being compared.  If the operands are the
	 same size and the bits being compared are in the same position
	 then we can do this by masking both and comparing the masked
	 results.  */
      ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
      lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
      if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
	{
	  lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
				    ll_unsignedp || rl_unsignedp);
	  if (! all_ones_mask_p (ll_mask, lnbitsize))
	    lhs = build (BIT_AND_EXPR, lntype, lhs, ll_mask);

	  rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
				    lr_unsignedp || rr_unsignedp);
	  if (! all_ones_mask_p (lr_mask, rnbitsize))
	    rhs = build (BIT_AND_EXPR, rntype, rhs, lr_mask);

	  return build (wanted_code, truth_type, lhs, rhs);
	}

      /* There is still another way we can do something:  If both pairs of
	 fields being compared are adjacent, we may be able to make a wider
	 field containing them both.

	 Note that we still must mask the lhs/rhs expressions.  Furthermore,
	 the mask must be shifted to account for the shift done by
	 make_bit_field_ref.  */
      if ((ll_bitsize + ll_bitpos == rl_bitpos
	   && lr_bitsize + lr_bitpos == rr_bitpos)
	  || (ll_bitpos == rl_bitpos + rl_bitsize
	      && lr_bitpos == rr_bitpos + rr_bitsize))
	{
	  tree type;

	  lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
				    MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
	  rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
				    MIN (lr_bitpos, rr_bitpos), lr_unsignedp);

	  ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
				 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
	  lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
				 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);

	  /* Convert to the smaller type before masking out unwanted bits.  */
	  type = lntype;
	  if (lntype != rntype)
	    {
	      if (lnbitsize > rnbitsize)
		{
		  lhs = convert (rntype, lhs);
		  ll_mask = convert (rntype, ll_mask);
		  type = rntype;
		}
	      else if (lnbitsize < rnbitsize)
		{
		  rhs = convert (lntype, rhs);
		  lr_mask = convert (lntype, lr_mask);
		  type = lntype;
		}
	    }

	  if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
	    lhs = build (BIT_AND_EXPR, type, lhs, ll_mask);

	  if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
	    rhs = build (BIT_AND_EXPR, type, rhs, lr_mask);

	  return build (wanted_code, truth_type, lhs, rhs);
	}

      return 0;
    }

  /* Handle the case of comparisons with constants.  If there is something in
     common between the masks, those bits of the constants must be the same.
     If not, the condition is always false.  Test for this to avoid generating
     incorrect code below.  */
  result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
  if (! integer_zerop (result)
      && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
			   const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
    {
      if (wanted_code == NE_EXPR)
	{
	  warning ("`or' of unmatched not-equal tests is always 1");
	  return convert (truth_type, integer_one_node);
	}
      else
	{
	  warning ("`and' of mutually exclusive equal-tests is always 0");
	  return convert (truth_type, integer_zero_node);
	}
    }

  /* Construct the expression we will return.  First get the component
     reference we will make.  Unless the mask is all ones the width of
     that field, perform the mask operation.  Then compare with the
     merged constant.  */
  result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
			       ll_unsignedp || rl_unsignedp);

  ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
  if (! all_ones_mask_p (ll_mask, lnbitsize))
    result = build (BIT_AND_EXPR, lntype, result, ll_mask);

  return build (wanted_code, truth_type, result,
		const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
}

/* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
   constant.  */

static tree
optimize_minmax_comparison (t)
     tree t;
{
  tree type = TREE_TYPE (t);
  tree arg0 = TREE_OPERAND (t, 0);
  enum tree_code op_code;
  tree comp_const = TREE_OPERAND (t, 1);
  tree minmax_const;
  int consts_equal, consts_lt;
  tree inner;

  STRIP_SIGN_NOPS (arg0);

  op_code = TREE_CODE (arg0);
  minmax_const = TREE_OPERAND (arg0, 1);
  consts_equal = tree_int_cst_equal (minmax_const, comp_const);
  consts_lt = tree_int_cst_lt (minmax_const, comp_const);
  inner = TREE_OPERAND (arg0, 0);

  /* If something does not permit us to optimize, return the original tree.  */
  if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
      || TREE_CODE (comp_const) != INTEGER_CST
      || TREE_CONSTANT_OVERFLOW (comp_const)
      || TREE_CODE (minmax_const) != INTEGER_CST
      || TREE_CONSTANT_OVERFLOW (minmax_const))
    return t;

  /* Now handle all the various comparison codes.  We only handle EQ_EXPR
     and GT_EXPR, doing the rest with recursive calls using logical
     simplifications.  */
  switch (TREE_CODE (t))
    {
    case NE_EXPR:  case LT_EXPR:  case LE_EXPR:
      return
	invert_truthvalue (optimize_minmax_comparison (invert_truthvalue (t)));

    case GE_EXPR:
      return
	fold (build (TRUTH_ORIF_EXPR, type,
		     optimize_minmax_comparison
		     (build (EQ_EXPR, type, arg0, comp_const)),
		     optimize_minmax_comparison
		     (build (GT_EXPR, type, arg0, comp_const))));

    case EQ_EXPR:
      if (op_code == MAX_EXPR && consts_equal)
	/* MAX (X, 0) == 0  ->  X <= 0  */
	return fold (build (LE_EXPR, type, inner, comp_const));

      else if (op_code == MAX_EXPR && consts_lt)
	/* MAX (X, 0) == 5  ->  X == 5   */
	return fold (build (EQ_EXPR, type, inner, comp_const));

      else if (op_code == MAX_EXPR)
	/* MAX (X, 0) == -1  ->  false  */
	return omit_one_operand (type, integer_zero_node, inner);

      else if (consts_equal)
	/* MIN (X, 0) == 0  ->  X >= 0  */
	return fold (build (GE_EXPR, type, inner, comp_const));

      else if (consts_lt)
	/* MIN (X, 0) == 5  ->  false  */
	return omit_one_operand (type, integer_zero_node, inner);

      else
	/* MIN (X, 0) == -1  ->  X == -1  */
	return fold (build (EQ_EXPR, type, inner, comp_const));

    case GT_EXPR:
      if (op_code == MAX_EXPR && (consts_equal || consts_lt))
	/* MAX (X, 0) > 0  ->  X > 0
	   MAX (X, 0) > 5  ->  X > 5  */
	return fold (build (GT_EXPR, type, inner, comp_const));

      else if (op_code == MAX_EXPR)
	/* MAX (X, 0) > -1  ->  true  */
	return omit_one_operand (type, integer_one_node, inner);

      else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
	/* MIN (X, 0) > 0  ->  false
	   MIN (X, 0) > 5  ->  false  */
	return omit_one_operand (type, integer_zero_node, inner);

      else
	/* MIN (X, 0) > -1  ->  X > -1  */
	return fold (build (GT_EXPR, type, inner, comp_const));

    default:
      return t;
    }
}

/* T is an integer expression that is being multiplied, divided, or taken a
   modulus (CODE says which and what kind of divide or modulus) by a
   constant C.  See if we can eliminate that operation by folding it with
   other operations already in T.  WIDE_TYPE, if non-null, is a type that
   should be used for the computation if wider than our type.

   For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
   (X * 2) + (Y * 4).  We must, however, be assured that either the original
   expression would not overflow or that overflow is undefined for the type
   in the language in question.

   We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
   the machine has a multiply-accumulate insn or that this is part of an
   addressing calculation.

   If we return a non-null expression, it is an equivalent form of the
   original computation, but need not be in the original type.  */

static tree
extract_muldiv (t, c, code, wide_type)
     tree t;
     tree c;
     enum tree_code code;
     tree wide_type;
{
  tree type = TREE_TYPE (t);
  enum tree_code tcode = TREE_CODE (t);
  tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
				   > GET_MODE_SIZE (TYPE_MODE (type)))
		? wide_type : type);
  tree t1, t2;
  int same_p = tcode == code;
  tree op0 = NULL_TREE, op1 = NULL_TREE;

  /* Don't deal with constants of zero here; they confuse the code below.  */
  if (integer_zerop (c))
    return NULL_TREE;

  if (TREE_CODE_CLASS (tcode) == '1')
    op0 = TREE_OPERAND (t, 0);

  if (TREE_CODE_CLASS (tcode) == '2')
    op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);

  /* Note that we need not handle conditional operations here since fold
     already handles those cases.  So just do arithmetic here.  */
  switch (tcode)
    {
    case INTEGER_CST:
      /* For a constant, we can always simplify if we are a multiply
	 or (for divide and modulus) if it is a multiple of our constant.  */
      if (code == MULT_EXPR
	  || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
	return const_binop (code, convert (ctype, t), convert (ctype, c), 0);
      break;

    case CONVERT_EXPR:  case NON_LVALUE_EXPR:  case NOP_EXPR:
      /* If op0 is an expression ...  */
      if ((TREE_CODE_CLASS (TREE_CODE (op0)) == '<'
	   || TREE_CODE_CLASS (TREE_CODE (op0)) == '1'
	   || TREE_CODE_CLASS (TREE_CODE (op0)) == '2'
	   || TREE_CODE_CLASS (TREE_CODE (op0)) == 'e')
	  /* ... and is unsigned, and its type is smaller than ctype,
	     then we cannot pass through as widening.  */
	  && ((TREE_UNSIGNED (TREE_TYPE (op0))
	       && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
		     && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
	       && (GET_MODE_SIZE (TYPE_MODE (ctype))
	           > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
	      /* ... or its type is larger than ctype,
		 then we cannot pass through this truncation.  */
	      || (GET_MODE_SIZE (TYPE_MODE (ctype))
		  < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))))
	break;

      /* Pass the constant down and see if we can make a simplification.  If
	 we can, replace this expression with the inner simplification for
	 possible later conversion to our or some other type.  */
      if (0 != (t1 = extract_muldiv (op0, convert (TREE_TYPE (op0), c), code,
				     code == MULT_EXPR ? ctype : NULL_TREE)))
	return t1;
      break;

    case NEGATE_EXPR:  case ABS_EXPR:
      if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
	return fold (build1 (tcode, ctype, convert (ctype, t1)));
      break;

    case MIN_EXPR:  case MAX_EXPR:
      /* If widening the type changes the signedness, then we can't perform
	 this optimization as that changes the result.  */
      if (TREE_UNSIGNED (ctype) != TREE_UNSIGNED (type))
	break;

      /* MIN (a, b) / 5 -> MIN (a / 5, b / 5)  */
      if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0
	  && (t2 = extract_muldiv (op1, c, code, wide_type)) != 0)
	{
	  if (tree_int_cst_sgn (c) < 0)
	    tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);

	  return fold (build (tcode, ctype, convert (ctype, t1),
			      convert (ctype, t2)));
	}
      break;

    case WITH_RECORD_EXPR:
      if ((t1 = extract_muldiv (TREE_OPERAND (t, 0), c, code, wide_type)) != 0)
	return build (WITH_RECORD_EXPR, TREE_TYPE (t1), t1,
		      TREE_OPERAND (t, 1));
      break;

    case SAVE_EXPR:
      /* If this has not been evaluated and the operand has no side effects,
	 we can see if we can do something inside it and make a new one.
	 Note that this test is overly conservative since we can do this
	 if the only reason it had side effects is that it was another
	 similar SAVE_EXPR, but that isn't worth bothering with.  */
      if (SAVE_EXPR_RTL (t) == 0 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0))
	  && 0 != (t1 = extract_muldiv (TREE_OPERAND (t, 0), c, code,
					wide_type)))
	{
	  t1 = save_expr (t1);
	  if (SAVE_EXPR_PERSISTENT_P (t) && TREE_CODE (t1) == SAVE_EXPR)
	    SAVE_EXPR_PERSISTENT_P (t1) = 1;
	  if (is_pending_size (t))
	    put_pending_size (t1);
	  return t1;
	}
      break;

    case LSHIFT_EXPR:  case RSHIFT_EXPR:
      /* If the second operand is constant, this is a multiplication
	 or floor division, by a power of two, so we can treat it that
	 way unless the multiplier or divisor overflows.  */
      if (TREE_CODE (op1) == INTEGER_CST
	  /* const_binop may not detect overflow correctly,
	     so check for it explicitly here.  */
	  && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
	  && TREE_INT_CST_HIGH (op1) == 0
	  && 0 != (t1 = convert (ctype,
				 const_binop (LSHIFT_EXPR, size_one_node,
					      op1, 0)))
	  && ! TREE_OVERFLOW (t1))
	return extract_muldiv (build (tcode == LSHIFT_EXPR
				      ? MULT_EXPR : FLOOR_DIV_EXPR,
				      ctype, convert (ctype, op0), t1),
			       c, code, wide_type);
      break;

    case PLUS_EXPR:  case MINUS_EXPR:
      /* See if we can eliminate the operation on both sides.  If we can, we
	 can return a new PLUS or MINUS.  If we can't, the only remaining
	 cases where we can do anything are if the second operand is a
	 constant.  */
      t1 = extract_muldiv (op0, c, code, wide_type);
      t2 = extract_muldiv (op1, c, code, wide_type);
      if (t1 != 0 && t2 != 0
	  && (code == MULT_EXPR
	      /* If not multiplication, we can only do this if both operands
		 are divisible by c.  */
	      || (multiple_of_p (ctype, op0, c)
	          && multiple_of_p (ctype, op1, c))))
	return fold (build (tcode, ctype, convert (ctype, t1),
			    convert (ctype, t2)));

      /* If this was a subtraction, negate OP1 and set it to be an addition.
	 This simplifies the logic below.  */
      if (tcode == MINUS_EXPR)
	tcode = PLUS_EXPR, op1 = negate_expr (op1);

      if (TREE_CODE (op1) != INTEGER_CST)
	break;

      /* If either OP1 or C are negative, this optimization is not safe for
	 some of the division and remainder types while for others we need
	 to change the code.  */
      if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
	{
	  if (code == CEIL_DIV_EXPR)
	    code = FLOOR_DIV_EXPR;
	  else if (code == FLOOR_DIV_EXPR)
	    code = CEIL_DIV_EXPR;
	  else if (code != MULT_EXPR
		   && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
	    break;
	}

      /* If it's a multiply or a division/modulus operation of a multiple
         of our constant, do the operation and verify it doesn't overflow.  */
      if (code == MULT_EXPR
	  || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
	{
	  op1 = const_binop (code, convert (ctype, op1), convert (ctype, c), 0);
	  if (op1 == 0 || TREE_OVERFLOW (op1))
	    break;
	}
      else
	break;

      /* If we have an unsigned type is not a sizetype, we cannot widen
	 the operation since it will change the result if the original
	 computation overflowed.  */
      if (TREE_UNSIGNED (ctype)
	  && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
	  && ctype != type)
	break;

      /* If we were able to eliminate our operation from the first side,
	 apply our operation to the second side and reform the PLUS.  */
      if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
	return fold (build (tcode, ctype, convert (ctype, t1), op1));

      /* The last case is if we are a multiply.  In that case, we can
	 apply the distributive law to commute the multiply and addition
	 if the multiplication of the constants doesn't overflow.  */
      if (code == MULT_EXPR)
	return fold (build (tcode, ctype, fold (build (code, ctype,
						       convert (ctype, op0),
						       convert (ctype, c))),
			    op1));

      break;

    case MULT_EXPR:
      /* We have a special case here if we are doing something like
	 (C * 8) % 4 since we know that's zero.  */
      if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
	   || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
	  && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
	  && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
	return omit_one_operand (type, integer_zero_node, op0);

      /* ... fall through ...  */

    case TRUNC_DIV_EXPR:  case CEIL_DIV_EXPR:  case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:  case EXACT_DIV_EXPR:
      /* If we can extract our operation from the LHS, do so and return a
	 new operation.  Likewise for the RHS from a MULT_EXPR.  Otherwise,
	 do something only if the second operand is a constant.  */
      if (same_p
	  && (t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
	return fold (build (tcode, ctype, convert (ctype, t1),
			    convert (ctype, op1)));
      else if (tcode == MULT_EXPR && code == MULT_EXPR
	       && (t1 = extract_muldiv (op1, c, code, wide_type)) != 0)
	return fold (build (tcode, ctype, convert (ctype, op0),
			    convert (ctype, t1)));
      else if (TREE_CODE (op1) != INTEGER_CST)
	return 0;

      /* If these are the same operation types, we can associate them
	 assuming no overflow.  */
      if (tcode == code
	  && 0 != (t1 = const_binop (MULT_EXPR, convert (ctype, op1),
				     convert (ctype, c), 0))
	  && ! TREE_OVERFLOW (t1))
	return fold (build (tcode, ctype, convert (ctype, op0), t1));

      /* If these operations "cancel" each other, we have the main
	 optimizations of this pass, which occur when either constant is a
	 multiple of the other, in which case we replace this with either an
	 operation or CODE or TCODE.

	 If we have an unsigned type that is not a sizetype, we cannot do
	 this since it will change the result if the original computation
	 overflowed.  */
      if ((! TREE_UNSIGNED (ctype)
	   || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
	  && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
	      || (tcode == MULT_EXPR
		  && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
		  && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
	{
	  if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
	    return fold (build (tcode, ctype, convert (ctype, op0),
				convert (ctype,
					 const_binop (TRUNC_DIV_EXPR,
						      op1, c, 0))));
	  else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
	    return fold (build (code, ctype, convert (ctype, op0),
				convert (ctype,
					 const_binop (TRUNC_DIV_EXPR,
						      c, op1, 0))));
	}
      break;

    default:
      break;
    }

  return 0;
}

/* If T contains a COMPOUND_EXPR which was inserted merely to evaluate
   S, a SAVE_EXPR, return the expression actually being evaluated.   Note
   that we may sometimes modify the tree.  */

static tree
strip_compound_expr (t, s)
     tree t;
     tree s;
{
  enum tree_code code = TREE_CODE (t);

  /* See if this is the COMPOUND_EXPR we want to eliminate.  */
  if (code == COMPOUND_EXPR && TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR
      && TREE_OPERAND (TREE_OPERAND (t, 0), 0) == s)
    return TREE_OPERAND (t, 1);

  /* See if this is a COND_EXPR or a simple arithmetic operator.   We
     don't bother handling any other types.  */
  else if (code == COND_EXPR)
    {
      TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
      TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
      TREE_OPERAND (t, 2) = strip_compound_expr (TREE_OPERAND (t, 2), s);
    }
  else if (TREE_CODE_CLASS (code) == '1')
    TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
  else if (TREE_CODE_CLASS (code) == '<'
	   || TREE_CODE_CLASS (code) == '2')
    {
      TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
      TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
    }

  return t;
}

/* Return a node which has the indicated constant VALUE (either 0 or
   1), and is of the indicated TYPE.  */

static tree
constant_boolean_node (value, type)
     int value;
     tree type;
{
  if (type == integer_type_node)
    return value ? integer_one_node : integer_zero_node;
  else if (TREE_CODE (type) == BOOLEAN_TYPE)
    return (*lang_hooks.truthvalue_conversion) (value ? integer_one_node :
						integer_zero_node);
  else
    {
      tree t = build_int_2 (value, 0);

      TREE_TYPE (t) = type;
      return t;
    }
}

/* Utility function for the following routine, to see how complex a nesting of
   COND_EXPRs can be.  EXPR is the expression and LIMIT is a count beyond which
   we don't care (to avoid spending too much time on complex expressions.).  */

static int
count_cond (expr, lim)
     tree expr;
     int lim;
{
  int ctrue, cfalse;

  if (TREE_CODE (expr) != COND_EXPR)
    return 0;
  else if (lim <= 0)
    return 0;

  ctrue = count_cond (TREE_OPERAND (expr, 1), lim - 1);
  cfalse = count_cond (TREE_OPERAND (expr, 2), lim - 1 - ctrue);
  return MIN (lim, 1 + ctrue + cfalse);
}

/* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
   Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'.  Here
   CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
   expression, and ARG to `a'.  If COND_FIRST_P is nonzero, then the
   COND is the first argument to CODE; otherwise (as in the example
   given here), it is the second argument.  TYPE is the type of the
   original expression.  */

static tree
fold_binary_op_with_conditional_arg (code, type, cond, arg, cond_first_p)
     enum tree_code code;
     tree type;
     tree cond;
     tree arg;
     int cond_first_p;
{
  tree test, true_value, false_value;
  tree lhs = NULL_TREE;
  tree rhs = NULL_TREE;
  /* In the end, we'll produce a COND_EXPR.  Both arms of the
     conditional expression will be binary operations.  The left-hand
     side of the expression to be executed if the condition is true
     will be pointed to by TRUE_LHS.  Similarly, the right-hand side
     of the expression to be executed if the condition is true will be
     pointed to by TRUE_RHS.  FALSE_LHS and FALSE_RHS are analogous --
     but apply to the expression to be executed if the conditional is
     false.  */
  tree *true_lhs;
  tree *true_rhs;
  tree *false_lhs;
  tree *false_rhs;
  /* These are the codes to use for the left-hand side and right-hand
     side of the COND_EXPR.  Normally, they are the same as CODE.  */
  enum tree_code lhs_code = code;
  enum tree_code rhs_code = code;
  /* And these are the types of the expressions.  */
  tree lhs_type = type;
  tree rhs_type = type;
  int save = 0;

  if (cond_first_p)
    {
      true_rhs = false_rhs = &arg;
      true_lhs = &true_value;
      false_lhs = &false_value;
    }
  else
    {
      true_lhs = false_lhs = &arg;
      true_rhs = &true_value;
      false_rhs = &false_value;
    }

  if (TREE_CODE (cond) == COND_EXPR)
    {
      test = TREE_OPERAND (cond, 0);
      true_value = TREE_OPERAND (cond, 1);
      false_value = TREE_OPERAND (cond, 2);
      /* If this operand throws an expression, then it does not make
	 sense to try to perform a logical or arithmetic operation
	 involving it.  Instead of building `a + throw 3' for example,
	 we simply build `a, throw 3'.  */
      if (VOID_TYPE_P (TREE_TYPE (true_value)))
	{
	  if (! cond_first_p)
	    {
	      lhs_code = COMPOUND_EXPR;
	      lhs_type = void_type_node;
	    }
	  else
	    lhs = true_value;
	}
      if (VOID_TYPE_P (TREE_TYPE (false_value)))
	{
	  if (! cond_first_p)
	    {
	      rhs_code = COMPOUND_EXPR;
	      rhs_type = void_type_node;
	    }
	  else
	    rhs = false_value;
	}
    }
  else
    {
      tree testtype = TREE_TYPE (cond);
      test = cond;
      true_value = convert (testtype, integer_one_node);
      false_value = convert (testtype, integer_zero_node);
    }

  /* If ARG is complex we want to make sure we only evaluate
     it once.  Though this is only required if it is volatile, it
     might be more efficient even if it is not.  However, if we
     succeed in folding one part to a constant, we do not need
     to make this SAVE_EXPR.  Since we do this optimization
     primarily to see if we do end up with constant and this
     SAVE_EXPR interferes with later optimizations, suppressing
     it when we can is important.

     If we are not in a function, we can't make a SAVE_EXPR, so don't
     try to do so.  Don't try to see if the result is a constant
     if an arm is a COND_EXPR since we get exponential behavior
     in that case.  */

  if (TREE_CODE (arg) == SAVE_EXPR)
    save = 1;
  else if (lhs == 0 && rhs == 0
	   && !TREE_CONSTANT (arg)
	   && (*lang_hooks.decls.global_bindings_p) () == 0
	   && ((TREE_CODE (arg) != VAR_DECL && TREE_CODE (arg) != PARM_DECL)
	       || TREE_SIDE_EFFECTS (arg)))
    {
      if (TREE_CODE (true_value) != COND_EXPR)
	lhs = fold (build (lhs_code, lhs_type, *true_lhs, *true_rhs));

      if (TREE_CODE (false_value) != COND_EXPR)
	rhs = fold (build (rhs_code, rhs_type, *false_lhs, *false_rhs));

      if ((lhs == 0 || ! TREE_CONSTANT (lhs))
	  && (rhs == 0 || !TREE_CONSTANT (rhs)))
	{
	  arg = save_expr (arg);
	  lhs = rhs = 0;
	  save = 1;
	}
    }

  if (lhs == 0)
    lhs = fold (build (lhs_code, lhs_type, *true_lhs, *true_rhs));
  if (rhs == 0)
    rhs = fold (build (rhs_code, rhs_type, *false_lhs, *false_rhs));

  test = fold (build (COND_EXPR, type, test, lhs, rhs));

  if (save)
    return build (COMPOUND_EXPR, type,
		  convert (void_type_node, arg),
		  strip_compound_expr (test, arg));
  else
    return convert (type, test);
}


/* Subroutine of fold() that checks for the addition of +/- 0.0.

   If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
   TYPE, X + ADDEND is the same as X.  If NEGATE, return true if X -
   ADDEND is the same as X.

   X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
   and finite.  The problematic cases are when X is zero, and its mode
   has signed zeros.  In the case of rounding towards -infinity,
   X - 0 is not the same as X because 0 - 0 is -0.  In other rounding
   modes, X + 0 is not the same as X because -0 + 0 is 0.  */

static bool
fold_real_zero_addition_p (type, addend, negate)
     tree type, addend;
     int negate;
{
  if (!real_zerop (addend))
    return false;

  /* Allow the fold if zeros aren't signed, or their sign isn't important.  */
  if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
    return true;

  /* Treat x + -0 as x - 0 and x - -0 as x + 0.  */
  if (TREE_CODE (addend) == REAL_CST
      && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
    negate = !negate;

  /* The mode has signed zeros, and we have to honor their sign.
     In this situation, there is only one case we can return true for.
     X - 0 is the same as X unless rounding towards -infinity is
     supported.  */
  return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
}


/* Perform constant folding and related simplification of EXPR.
   The related simplifications include x*1 => x, x*0 => 0, etc.,
   and application of the associative law.
   NOP_EXPR conversions may be removed freely (as long as we
   are careful not to change the C type of the overall expression)
   We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
   but we can constant-fold them if they have constant operands.  */

tree
fold (expr)
     tree expr;
{
  tree t = expr;
  tree t1 = NULL_TREE;
  tree tem;
  tree type = TREE_TYPE (expr);
  tree arg0 = NULL_TREE, arg1 = NULL_TREE;
  enum tree_code code = TREE_CODE (t);
  int kind = TREE_CODE_CLASS (code);
  int invert;
  /* WINS will be nonzero when the switch is done
     if all operands are constant.  */
  int wins = 1;

  /* Don't try to process an RTL_EXPR since its operands aren't trees.
     Likewise for a SAVE_EXPR that's already been evaluated.  */
  if (code == RTL_EXPR || (code == SAVE_EXPR && SAVE_EXPR_RTL (t) != 0))
    return t;

  /* Return right away if a constant.  */
  if (kind == 'c')
    return t;

#ifdef MAX_INTEGER_COMPUTATION_MODE
  check_max_integer_computation_mode (expr);
#endif

  if (code == NOP_EXPR || code == FLOAT_EXPR || code == CONVERT_EXPR)
    {
      tree subop;

      /* Special case for conversion ops that can have fixed point args.  */
      arg0 = TREE_OPERAND (t, 0);

      /* Don't use STRIP_NOPS, because signedness of argument type matters.  */
      if (arg0 != 0)
	STRIP_SIGN_NOPS (arg0);

      if (arg0 != 0 && TREE_CODE (arg0) == COMPLEX_CST)
	subop = TREE_REALPART (arg0);
      else
	subop = arg0;

      if (subop != 0 && TREE_CODE (subop) != INTEGER_CST
	  && TREE_CODE (subop) != REAL_CST
	  )
	/* Note that TREE_CONSTANT isn't enough:
	   static var addresses are constant but we can't
	   do arithmetic on them.  */
	wins = 0;
    }
  else if (IS_EXPR_CODE_CLASS (kind) || kind == 'r')
    {
      int len = first_rtl_op (code);
      int i;
      for (i = 0; i < len; i++)
	{
	  tree op = TREE_OPERAND (t, i);
	  tree subop;

	  if (op == 0)
	    continue;		/* Valid for CALL_EXPR, at least.  */

	  if (kind == '<' || code == RSHIFT_EXPR)
	    {
	      /* Signedness matters here.  Perhaps we can refine this
		 later.  */
	      STRIP_SIGN_NOPS (op);
	    }
	  else
	    /* Strip any conversions that don't change the mode.  */
	    STRIP_NOPS (op);

	  if (TREE_CODE (op) == COMPLEX_CST)
	    subop = TREE_REALPART (op);
	  else
	    subop = op;

	  if (TREE_CODE (subop) != INTEGER_CST
	      && TREE_CODE (subop) != REAL_CST)
	    /* Note that TREE_CONSTANT isn't enough:
	       static var addresses are constant but we can't
	       do arithmetic on them.  */
	    wins = 0;

	  if (i == 0)
	    arg0 = op;
	  else if (i == 1)
	    arg1 = op;
	}
    }

  /* If this is a commutative operation, and ARG0 is a constant, move it
     to ARG1 to reduce the number of tests below.  */
  if ((code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
       || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
       || code == BIT_AND_EXPR)
      && (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST))
    {
      tem = arg0; arg0 = arg1; arg1 = tem;

      tem = TREE_OPERAND (t, 0); TREE_OPERAND (t, 0) = TREE_OPERAND (t, 1);
      TREE_OPERAND (t, 1) = tem;
    }

  /* Now WINS is set as described above,
     ARG0 is the first operand of EXPR,
     and ARG1 is the second operand (if it has more than one operand).

     First check for cases where an arithmetic operation is applied to a
     compound, conditional, or comparison operation.  Push the arithmetic
     operation inside the compound or conditional to see if any folding
     can then be done.  Convert comparison to conditional for this purpose.
     The also optimizes non-constant cases that used to be done in
     expand_expr.

     Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
     one of the operands is a comparison and the other is a comparison, a
     BIT_AND_EXPR with the constant 1, or a truth value.  In that case, the
     code below would make the expression more complex.  Change it to a
     TRUTH_{AND,OR}_EXPR.  Likewise, convert a similar NE_EXPR to
     TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR.  */

  if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
       || code == EQ_EXPR || code == NE_EXPR)
      && ((truth_value_p (TREE_CODE (arg0))
	   && (truth_value_p (TREE_CODE (arg1))
	       || (TREE_CODE (arg1) == BIT_AND_EXPR
		   && integer_onep (TREE_OPERAND (arg1, 1)))))
	  || (truth_value_p (TREE_CODE (arg1))
	      && (truth_value_p (TREE_CODE (arg0))
		  || (TREE_CODE (arg0) == BIT_AND_EXPR
		      && integer_onep (TREE_OPERAND (arg0, 1)))))))
    {
      t = fold (build (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
		       : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
		       : TRUTH_XOR_EXPR,
		       type, arg0, arg1));

      if (code == EQ_EXPR)
	t = invert_truthvalue (t);

      return t;
    }

  if (TREE_CODE_CLASS (code) == '1')
    {
      if (TREE_CODE (arg0) == COMPOUND_EXPR)
	return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
		      fold (build1 (code, type, TREE_OPERAND (arg0, 1))));
      else if (TREE_CODE (arg0) == COND_EXPR)
	{
	  tree arg01 = TREE_OPERAND (arg0, 1);
	  tree arg02 = TREE_OPERAND (arg0, 2);
	  if (! VOID_TYPE_P (TREE_TYPE (arg01)))
	    arg01 = fold (build1 (code, type, arg01));
	  if (! VOID_TYPE_P (TREE_TYPE (arg02)))
	    arg02 = fold (build1 (code, type, arg02));
	  t = fold (build (COND_EXPR, type, TREE_OPERAND (arg0, 0),
			   arg01, arg02));

	  /* If this was a conversion, and all we did was to move into
	     inside the COND_EXPR, bring it back out.  But leave it if
	     it is a conversion from integer to integer and the
	     result precision is no wider than a word since such a
	     conversion is cheap and may be optimized away by combine,
	     while it couldn't if it were outside the COND_EXPR.  Then return
	     so we don't get into an infinite recursion loop taking the
	     conversion out and then back in.  */

	  if ((code == NOP_EXPR || code == CONVERT_EXPR
	       || code == NON_LVALUE_EXPR)
	      && TREE_CODE (t) == COND_EXPR
	      && TREE_CODE (TREE_OPERAND (t, 1)) == code
	      && TREE_CODE (TREE_OPERAND (t, 2)) == code
	      && ! VOID_TYPE_P (TREE_OPERAND (t, 1))
	      && ! VOID_TYPE_P (TREE_OPERAND (t, 2))
	      && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))
		  == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 2), 0)))
	      && ! (INTEGRAL_TYPE_P (TREE_TYPE (t))
		    && (INTEGRAL_TYPE_P
			(TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))))
		    && TYPE_PRECISION (TREE_TYPE (t)) <= BITS_PER_WORD))
	    t = build1 (code, type,
			build (COND_EXPR,
			       TREE_TYPE (TREE_OPERAND
					  (TREE_OPERAND (t, 1), 0)),
			       TREE_OPERAND (t, 0),
			       TREE_OPERAND (TREE_OPERAND (t, 1), 0),
			       TREE_OPERAND (TREE_OPERAND (t, 2), 0)));
	  return t;
	}
      else if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<')
	return fold (build (COND_EXPR, type, arg0,
			    fold (build1 (code, type, integer_one_node)),
			    fold (build1 (code, type, integer_zero_node))));
   }
  else if (TREE_CODE_CLASS (code) == '2'
	   || TREE_CODE_CLASS (code) == '<')
    {
      if (TREE_CODE (arg1) == COMPOUND_EXPR
	  && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg1, 0))
	  && ! TREE_SIDE_EFFECTS (arg0))
	return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
		      fold (build (code, type,
				   arg0, TREE_OPERAND (arg1, 1))));
      else if ((TREE_CODE (arg1) == COND_EXPR
		|| (TREE_CODE_CLASS (TREE_CODE (arg1)) == '<'
		    && TREE_CODE_CLASS (code) != '<'))
	       && (TREE_CODE (arg0) != COND_EXPR
		   || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
	       && (! TREE_SIDE_EFFECTS (arg0)
		   || ((*lang_hooks.decls.global_bindings_p) () == 0
		       && ! contains_placeholder_p (arg0))))
	return
	  fold_binary_op_with_conditional_arg (code, type, arg1, arg0,
					       /*cond_first_p=*/0);
      else if (TREE_CODE (arg0) == COMPOUND_EXPR)
	return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
		      fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
      else if ((TREE_CODE (arg0) == COND_EXPR
		|| (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
		    && TREE_CODE_CLASS (code) != '<'))
	       && (TREE_CODE (arg1) != COND_EXPR
		   || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
	       && (! TREE_SIDE_EFFECTS (arg1)
		   || ((*lang_hooks.decls.global_bindings_p) () == 0
		       && ! contains_placeholder_p (arg1))))
	return
	  fold_binary_op_with_conditional_arg (code, type, arg0, arg1,
					       /*cond_first_p=*/1);
    }
  else if (TREE_CODE_CLASS (code) == '<'
	   && TREE_CODE (arg0) == COMPOUND_EXPR)
    return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
		  fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
  else if (TREE_CODE_CLASS (code) == '<'
	   && TREE_CODE (arg1) == COMPOUND_EXPR)
    return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
		  fold (build (code, type, arg0, TREE_OPERAND (arg1, 1))));

  switch (code)
    {
    case INTEGER_CST:
    case REAL_CST:
    case VECTOR_CST:
    case STRING_CST:
    case COMPLEX_CST:
    case CONSTRUCTOR:
      return t;

    case CONST_DECL:
      return fold (DECL_INITIAL (t));

    case NOP_EXPR:
    case FLOAT_EXPR:
    case CONVERT_EXPR:
    case FIX_TRUNC_EXPR:
      /* Other kinds of FIX are not handled properly by fold_convert.  */

      if (TREE_TYPE (TREE_OPERAND (t, 0)) == TREE_TYPE (t))
	return TREE_OPERAND (t, 0);

      /* Handle cases of two conversions in a row.  */
      if (TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
	  || TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR)
	{
	  tree inside_type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
	  tree inter_type = TREE_TYPE (TREE_OPERAND (t, 0));
	  tree final_type = TREE_TYPE (t);
	  int inside_int = INTEGRAL_TYPE_P (inside_type);
	  int inside_ptr = POINTER_TYPE_P (inside_type);
	  int inside_float = FLOAT_TYPE_P (inside_type);
	  unsigned int inside_prec = TYPE_PRECISION (inside_type);
	  int inside_unsignedp = TREE_UNSIGNED (inside_type);
	  int inter_int = INTEGRAL_TYPE_P (inter_type);
	  int inter_ptr = POINTER_TYPE_P (inter_type);
	  int inter_float = FLOAT_TYPE_P (inter_type);
	  unsigned int inter_prec = TYPE_PRECISION (inter_type);
	  int inter_unsignedp = TREE_UNSIGNED (inter_type);
	  int final_int = INTEGRAL_TYPE_P (final_type);
	  int final_ptr = POINTER_TYPE_P (final_type);
	  int final_float = FLOAT_TYPE_P (final_type);
	  unsigned int final_prec = TYPE_PRECISION (final_type);
	  int final_unsignedp = TREE_UNSIGNED (final_type);

	  /* In addition to the cases of two conversions in a row
	     handled below, if we are converting something to its own
	     type via an object of identical or wider precision, neither
	     conversion is needed.  */
	  if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (final_type)
	      && ((inter_int && final_int) || (inter_float && final_float))
	      && inter_prec >= final_prec)
	    return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));

	  /* Likewise, if the intermediate and final types are either both
	     float or both integer, we don't need the middle conversion if
	     it is wider than the final type and doesn't change the signedness
	     (for integers).  Avoid this if the final type is a pointer
	     since then we sometimes need the inner conversion.  Likewise if
	     the outer has a precision not equal to the size of its mode.  */
	  if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
	       || (inter_float && inside_float))
	      && inter_prec >= inside_prec
	      && (inter_float || inter_unsignedp == inside_unsignedp)
	      && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
		    && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
	      && ! final_ptr)
	    return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));

	  /* If we have a sign-extension of a zero-extended value, we can
	     replace that by a single zero-extension.  */
	  if (inside_int && inter_int && final_int
	      && inside_prec < inter_prec && inter_prec < final_prec
	      && inside_unsignedp && !inter_unsignedp)
	    return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));

	  /* Two conversions in a row are not needed unless:
	     - some conversion is floating-point (overstrict for now), or
	     - the intermediate type is narrower than both initial and
	       final, or
	     - the intermediate type and innermost type differ in signedness,
	       and the outermost type is wider than the intermediate, or
	     - the initial type is a pointer type and the precisions of the
	       intermediate and final types differ, or
	     - the final type is a pointer type and the precisions of the
	       initial and intermediate types differ.  */
	  if (! inside_float && ! inter_float && ! final_float
	      && (inter_prec > inside_prec || inter_prec > final_prec)
	      && ! (inside_int && inter_int
		    && inter_unsignedp != inside_unsignedp
		    && inter_prec < final_prec)
	      && ((inter_unsignedp && inter_prec > inside_prec)
		  == (final_unsignedp && final_prec > inter_prec))
	      && ! (inside_ptr && inter_prec != final_prec)
	      && ! (final_ptr && inside_prec != inter_prec)
	      && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
		    && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
	      && ! final_ptr)
	    return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
	}

      if (TREE_CODE (TREE_OPERAND (t, 0)) == MODIFY_EXPR
	  && TREE_CONSTANT (TREE_OPERAND (TREE_OPERAND (t, 0), 1))
	  /* Detect assigning a bitfield.  */
	  && !(TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 0)) == COMPONENT_REF
	       && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 0), 0), 1))))
	{
	  /* Don't leave an assignment inside a conversion
	     unless assigning a bitfield.  */
	  tree prev = TREE_OPERAND (t, 0);
	  TREE_OPERAND (t, 0) = TREE_OPERAND (prev, 1);
	  /* First do the assignment, then return converted constant.  */
	  t = build (COMPOUND_EXPR, TREE_TYPE (t), prev, fold (t));
	  TREE_USED (t) = 1;
	  return t;
	}

      /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
	 constants (if x has signed type, the sign bit cannot be set
	 in c).  This folds extension into the BIT_AND_EXPR.  */
      if (INTEGRAL_TYPE_P (TREE_TYPE (t))
	  && TREE_CODE (TREE_TYPE (t)) != BOOLEAN_TYPE
	  && TREE_CODE (TREE_OPERAND (t, 0)) == BIT_AND_EXPR
	  && TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 1)) == INTEGER_CST)
	{
	  tree and = TREE_OPERAND (t, 0);
	  tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
	  int change = 0;

	  if (TREE_UNSIGNED (TREE_TYPE (and))
	      || (TYPE_PRECISION (TREE_TYPE (t))
		  <= TYPE_PRECISION (TREE_TYPE (and))))
	    change = 1;
	  else if (TYPE_PRECISION (TREE_TYPE (and1))
		   <= HOST_BITS_PER_WIDE_INT
		   && host_integerp (and1, 1))
	    {
	      unsigned HOST_WIDE_INT cst;

	      cst = tree_low_cst (and1, 1);
	      cst &= (HOST_WIDE_INT) -1
		     << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
	      change = (cst == 0);
#ifdef LOAD_EXTEND_OP
	      if (change
		  && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
		      == ZERO_EXTEND))
		{
		  tree uns = (*lang_hooks.types.unsigned_type) (TREE_TYPE (and0));
		  and0 = convert (uns, and0);
	  	  and1 = convert (uns, and1);
		}
#endif
	    }
	  if (change)
	    return fold (build (BIT_AND_EXPR, TREE_TYPE (t),
				convert (TREE_TYPE (t), and0),
				convert (TREE_TYPE (t), and1)));
	}

      if (!wins)
	{
	  TREE_CONSTANT (t) = TREE_CONSTANT (arg0);
	  return t;
	}
      return fold_convert (t, arg0);

    case VIEW_CONVERT_EXPR:
      if (TREE_CODE (TREE_OPERAND (t, 0)) == VIEW_CONVERT_EXPR)
	return build1 (VIEW_CONVERT_EXPR, type,
		       TREE_OPERAND (TREE_OPERAND (t, 0), 0));
      return t;

    case COMPONENT_REF:
      if (TREE_CODE (arg0) == CONSTRUCTOR)
	{
	  tree m = purpose_member (arg1, CONSTRUCTOR_ELTS (arg0));
	  if (m)
	    t = TREE_VALUE (m);
	}
      return t;

    case RANGE_EXPR:
      TREE_CONSTANT (t) = wins;
      return t;

    case NEGATE_EXPR:
      if (wins)
	{
	  if (TREE_CODE (arg0) == INTEGER_CST)
	    {
	      unsigned HOST_WIDE_INT low;
	      HOST_WIDE_INT high;
	      int overflow = neg_double (TREE_INT_CST_LOW (arg0),
					 TREE_INT_CST_HIGH (arg0),
					 &low, &high);
	      t = build_int_2 (low, high);
	      TREE_TYPE (t) = type;
	      TREE_OVERFLOW (t)
		= (TREE_OVERFLOW (arg0)
		   | force_fit_type (t, overflow && !TREE_UNSIGNED (type)));
	      TREE_CONSTANT_OVERFLOW (t)
		= TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
	    }
	  else if (TREE_CODE (arg0) == REAL_CST)
	    t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
	}
      else if (TREE_CODE (arg0) == NEGATE_EXPR)
	return TREE_OPERAND (arg0, 0);

      /* Convert - (a - b) to (b - a) for non-floating-point.  */
      else if (TREE_CODE (arg0) == MINUS_EXPR
	       && (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
	return build (MINUS_EXPR, type, TREE_OPERAND (arg0, 1),
		      TREE_OPERAND (arg0, 0));

      return t;

    case ABS_EXPR:
      if (wins)
	{
	  if (TREE_CODE (arg0) == INTEGER_CST)
	    {
	      /* If the value is unsigned, then the absolute value is
		 the same as the ordinary value.  */
	      if (TREE_UNSIGNED (type))
		return arg0;
	      /* Similarly, if the value is non-negative.  */
	      else if (INT_CST_LT (integer_minus_one_node, arg0))
		return arg0;
	      /* If the value is negative, then the absolute value is
		 its negation.  */
	      else
		{
		  unsigned HOST_WIDE_INT low;
		  HOST_WIDE_INT high;
		  int overflow = neg_double (TREE_INT_CST_LOW (arg0),
					     TREE_INT_CST_HIGH (arg0),
					     &low, &high);
		  t = build_int_2 (low, high);
		  TREE_TYPE (t) = type;
		  TREE_OVERFLOW (t)
		    = (TREE_OVERFLOW (arg0)
		       | force_fit_type (t, overflow));
		  TREE_CONSTANT_OVERFLOW (t)
		    = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
		}
	    }
	  else if (TREE_CODE (arg0) == REAL_CST)
	    {
	      if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
		t = build_real (type,
				REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
	    }
	}
      else if (TREE_CODE (arg0) == ABS_EXPR || TREE_CODE (arg0) == NEGATE_EXPR)
	return build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
      return t;

    case CONJ_EXPR:
      if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
	return convert (type, arg0);
      else if (TREE_CODE (arg0) == COMPLEX_EXPR)
	return build (COMPLEX_EXPR, type,
		      TREE_OPERAND (arg0, 0),
		      negate_expr (TREE_OPERAND (arg0, 1)));
      else if (TREE_CODE (arg0) == COMPLEX_CST)
	return build_complex (type, TREE_REALPART (arg0),
			      negate_expr (TREE_IMAGPART (arg0)));
      else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
	return fold (build (TREE_CODE (arg0), type,
			    fold (build1 (CONJ_EXPR, type,
					  TREE_OPERAND (arg0, 0))),
			    fold (build1 (CONJ_EXPR,
					  type, TREE_OPERAND (arg0, 1)))));
      else if (TREE_CODE (arg0) == CONJ_EXPR)
	return TREE_OPERAND (arg0, 0);
      return t;

    case BIT_NOT_EXPR:
      if (wins)
	{
	  t = build_int_2 (~ TREE_INT_CST_LOW (arg0),
			   ~ TREE_INT_CST_HIGH (arg0));
	  TREE_TYPE (t) = type;
	  force_fit_type (t, 0);
	  TREE_OVERFLOW (t) = TREE_OVERFLOW (arg0);
	  TREE_CONSTANT_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (arg0);
	}
      else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
	return TREE_OPERAND (arg0, 0);
      return t;

    case PLUS_EXPR:
      /* A + (-B) -> A - B */
      if (TREE_CODE (arg1) == NEGATE_EXPR)
	return fold (build (MINUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
      /* (-A) + B -> B - A */
      if (TREE_CODE (arg0) == NEGATE_EXPR)
	return fold (build (MINUS_EXPR, type, arg1, TREE_OPERAND (arg0, 0)));
      else if (! FLOAT_TYPE_P (type))
	{
	  if (integer_zerop (arg1))
	    return non_lvalue (convert (type, arg0));

	  /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
	     with a constant, and the two constants have no bits in common,
	     we should treat this as a BIT_IOR_EXPR since this may produce more
	     simplifications.  */
	  if (TREE_CODE (arg0) == BIT_AND_EXPR
	      && TREE_CODE (arg1) == BIT_AND_EXPR
	      && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
	      && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
	      && integer_zerop (const_binop (BIT_AND_EXPR,
					     TREE_OPERAND (arg0, 1),
					     TREE_OPERAND (arg1, 1), 0)))
	    {
	      code = BIT_IOR_EXPR;
	      goto bit_ior;
	    }

	  /* Reassociate (plus (plus (mult) (foo)) (mult)) as
	     (plus (plus (mult) (mult)) (foo)) so that we can
	     take advantage of the factoring cases below.  */
	  if ((TREE_CODE (arg0) == PLUS_EXPR
	       && TREE_CODE (arg1) == MULT_EXPR)
	      || (TREE_CODE (arg1) == PLUS_EXPR
		  && TREE_CODE (arg0) == MULT_EXPR))
	    {
	      tree parg0, parg1, parg, marg;

	      if (TREE_CODE (arg0) == PLUS_EXPR)
		parg = arg0, marg = arg1;
	      else
		parg = arg1, marg = arg0;
	      parg0 = TREE_OPERAND (parg, 0);
	      parg1 = TREE_OPERAND (parg, 1);
	      STRIP_NOPS (parg0);
	      STRIP_NOPS (parg1);

	      if (TREE_CODE (parg0) == MULT_EXPR
		  && TREE_CODE (parg1) != MULT_EXPR)
		return fold (build (PLUS_EXPR, type,
				    fold (build (PLUS_EXPR, type, parg0, marg)),
				    parg1));
	      if (TREE_CODE (parg0) != MULT_EXPR
		  && TREE_CODE (parg1) == MULT_EXPR)
		return fold (build (PLUS_EXPR, type,
				    fold (build (PLUS_EXPR, type, parg1, marg)),
				    parg0));
	    }

	  if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR)
	    {
	      tree arg00, arg01, arg10, arg11;
	      tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;

	      /* (A * C) + (B * C) -> (A+B) * C.
		 We are most concerned about the case where C is a constant,
		 but other combinations show up during loop reduction.  Since
		 it is not difficult, try all four possibilities.  */

	      arg00 = TREE_OPERAND (arg0, 0);
	      arg01 = TREE_OPERAND (arg0, 1);
	      arg10 = TREE_OPERAND (arg1, 0);
	      arg11 = TREE_OPERAND (arg1, 1);
	      same = NULL_TREE;

	      if (operand_equal_p (arg01, arg11, 0))
		same = arg01, alt0 = arg00, alt1 = arg10;
	      else if (operand_equal_p (arg00, arg10, 0))
		same = arg00, alt0 = arg01, alt1 = arg11;
	      else if (operand_equal_p (arg00, arg11, 0))
		same = arg00, alt0 = arg01, alt1 = arg10;
	      else if (operand_equal_p (arg01, arg10, 0))
		same = arg01, alt0 = arg00, alt1 = arg11;

	      /* No identical multiplicands; see if we can find a common
		 power-of-two factor in non-power-of-two multiplies.  This
		 can help in multi-dimensional array access.  */
	      else if (TREE_CODE (arg01) == INTEGER_CST
		       && TREE_CODE (arg11) == INTEGER_CST
		       && TREE_INT_CST_HIGH (arg01) == 0
		       && TREE_INT_CST_HIGH (arg11) == 0)
		{
		  HOST_WIDE_INT int01, int11, tmp;
		  int01 = TREE_INT_CST_LOW (arg01);
		  int11 = TREE_INT_CST_LOW (arg11);

		  /* Move min of absolute values to int11.  */
		  if ((int01 >= 0 ? int01 : -int01)
		      < (int11 >= 0 ? int11 : -int11))
		    {
		      tmp = int01, int01 = int11, int11 = tmp;
		      alt0 = arg00, arg00 = arg10, arg10 = alt0;
		      alt0 = arg01, arg01 = arg11, arg11 = alt0;
		    }

		  if (exact_log2 (int11) > 0 && int01 % int11 == 0)
		    {
		      alt0 = fold (build (MULT_EXPR, type, arg00,
					  build_int_2 (int01 / int11, 0)));
		      alt1 = arg10;
		      same = arg11;
		    }
		}

	      if (same)
		return fold (build (MULT_EXPR, type,
				    fold (build (PLUS_EXPR, type, alt0, alt1)),
				    same));
	    }
	}

      /* See if ARG1 is zero and X + ARG1 reduces to X.  */
      else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
	return non_lvalue (convert (type, arg0));

      /* Likewise if the operands are reversed.  */
      else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
	return non_lvalue (convert (type, arg1));

     bit_rotate:
      /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
	 is a rotate of A by C1 bits.  */
      /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
	 is a rotate of A by B bits.  */
      {
	enum tree_code code0, code1;
	code0 = TREE_CODE (arg0);
	code1 = TREE_CODE (arg1);
	if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
	     || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
	    && operand_equal_p (TREE_OPERAND (arg0, 0),
			        TREE_OPERAND (arg1, 0), 0)
	    && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
	  {
	    tree tree01, tree11;
	    enum tree_code code01, code11;

	    tree01 = TREE_OPERAND (arg0, 1);
	    tree11 = TREE_OPERAND (arg1, 1);
	    STRIP_NOPS (tree01);
	    STRIP_NOPS (tree11);
	    code01 = TREE_CODE (tree01);
	    code11 = TREE_CODE (tree11);
	    if (code01 == INTEGER_CST
		&& code11 == INTEGER_CST
		&& TREE_INT_CST_HIGH (tree01) == 0
		&& TREE_INT_CST_HIGH (tree11) == 0
		&& ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
		    == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
	      return build (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
			    code0 == LSHIFT_EXPR ? tree01 : tree11);
	    else if (code11 == MINUS_EXPR)
	      {
		tree tree110, tree111;
		tree110 = TREE_OPERAND (tree11, 0);
		tree111 = TREE_OPERAND (tree11, 1);
		STRIP_NOPS (tree110);
		STRIP_NOPS (tree111);
		if (TREE_CODE (tree110) == INTEGER_CST
		    && 0 == compare_tree_int (tree110,
					      TYPE_PRECISION
					      (TREE_TYPE (TREE_OPERAND
							  (arg0, 0))))
		    && operand_equal_p (tree01, tree111, 0))
		  return build ((code0 == LSHIFT_EXPR
				 ? LROTATE_EXPR
				 : RROTATE_EXPR),
				type, TREE_OPERAND (arg0, 0), tree01);
	      }
	    else if (code01 == MINUS_EXPR)
	      {
		tree tree010, tree011;
		tree010 = TREE_OPERAND (tree01, 0);
		tree011 = TREE_OPERAND (tree01, 1);
		STRIP_NOPS (tree010);
		STRIP_NOPS (tree011);
		if (TREE_CODE (tree010) == INTEGER_CST
		    && 0 == compare_tree_int (tree010,
					      TYPE_PRECISION
					      (TREE_TYPE (TREE_OPERAND
							  (arg0, 0))))
		    && operand_equal_p (tree11, tree011, 0))
		  return build ((code0 != LSHIFT_EXPR
				 ? LROTATE_EXPR
				 : RROTATE_EXPR),
				type, TREE_OPERAND (arg0, 0), tree11);
	      }
	  }
      }

    associate:
      /* In most languages, can't associate operations on floats through
	 parentheses.  Rather than remember where the parentheses were, we
	 don't associate floats at all.  It shouldn't matter much.  However,
	 associating multiplications is only very slightly inaccurate, so do
	 that if -funsafe-math-optimizations is specified.  */

      if (! wins
	  && (! FLOAT_TYPE_P (type)
	      || (flag_unsafe_math_optimizations && code == MULT_EXPR)))
	{
	  tree var0, con0, lit0, minus_lit0;
	  tree var1, con1, lit1, minus_lit1;

	  /* Split both trees into variables, constants, and literals.  Then
	     associate each group together, the constants with literals,
	     then the result with variables.  This increases the chances of
	     literals being recombined later and of generating relocatable
	     expressions for the sum of a constant and literal.  */
	  var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
	  var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
			     code == MINUS_EXPR);

	  /* Only do something if we found more than two objects.  Otherwise,
	     nothing has changed and we risk infinite recursion.  */
	  if (2 < ((var0 != 0) + (var1 != 0)
		   + (con0 != 0) + (con1 != 0)
		   + (lit0 != 0) + (lit1 != 0)
		   + (minus_lit0 != 0) + (minus_lit1 != 0)))
	    {
	      /* Recombine MINUS_EXPR operands by using PLUS_EXPR.  */
	      if (code == MINUS_EXPR)
		code = PLUS_EXPR;

	      var0 = associate_trees (var0, var1, code, type);
	      con0 = associate_trees (con0, con1, code, type);
	      lit0 = associate_trees (lit0, lit1, code, type);
	      minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);

	      /* Preserve the MINUS_EXPR if the negative part of the literal is
		 greater than the positive part.  Otherwise, the multiplicative
		 folding code (i.e extract_muldiv) may be fooled in case
		 unsigned constants are substracted, like in the following
		 example: ((X*2 + 4) - 8U)/2.  */
	      if (minus_lit0 && lit0)
		{
		  if (tree_int_cst_lt (lit0, minus_lit0))
		    {
		      minus_lit0 = associate_trees (minus_lit0, lit0,
						    MINUS_EXPR, type);
		      lit0 = 0;
		    }
		  else
		    {
		      lit0 = associate_trees (lit0, minus_lit0,
					      MINUS_EXPR, type);
		      minus_lit0 = 0;
		    }
		}
	      if (minus_lit0)
		{
		  if (con0 == 0)
		    return convert (type, associate_trees (var0, minus_lit0,
							   MINUS_EXPR, type));
		  else
		    {
		      con0 = associate_trees (con0, minus_lit0,
					      MINUS_EXPR, type);
		      return convert (type, associate_trees (var0, con0,
							     PLUS_EXPR, type));
		    }
		}

	      con0 = associate_trees (con0, lit0, code, type);
	      return convert (type, associate_trees (var0, con0, code, type));
	    }
	}

    binary:
      if (wins)
	t1 = const_binop (code, arg0, arg1, 0);
      if (t1 != NULL_TREE)
	{
	  /* The return value should always have
	     the same type as the original expression.  */
	  if (TREE_TYPE (t1) != TREE_TYPE (t))
	    t1 = convert (TREE_TYPE (t), t1);

	  return t1;
	}
      return t;

    case MINUS_EXPR:
      /* A - (-B) -> A + B */
      if (TREE_CODE (arg1) == NEGATE_EXPR)
	return fold (build (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
      /* (-A) - CST -> (-CST) - A   for floating point (what about ints ?)  */
      if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == REAL_CST)
	return
	  fold (build (MINUS_EXPR, type,
		       build_real (TREE_TYPE (arg1),
				   REAL_VALUE_NEGATE (TREE_REAL_CST (arg1))),
		       TREE_OPERAND (arg0, 0)));

      if (! FLOAT_TYPE_P (type))
	{
	  if (! wins && integer_zerop (arg0))
	    return negate_expr (convert (type, arg1));
	  if (integer_zerop (arg1))
	    return non_lvalue (convert (type, arg0));

	  /* (A * C) - (B * C) -> (A-B) * C.  Since we are most concerned
	     about the case where C is a constant, just try one of the
	     four possibilities.  */

	  if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR
	      && operand_equal_p (TREE_OPERAND (arg0, 1),
				  TREE_OPERAND (arg1, 1), 0))
	    return fold (build (MULT_EXPR, type,
				fold (build (MINUS_EXPR, type,
					     TREE_OPERAND (arg0, 0),
					     TREE_OPERAND (arg1, 0))),
				TREE_OPERAND (arg0, 1)));
	}

      /* See if ARG1 is zero and X - ARG1 reduces to X.  */
      else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
	return non_lvalue (convert (type, arg0));

      /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0).  So check whether
	 ARG0 is zero and X + ARG0 reduces to X, since that would mean
	 (-ARG1 + ARG0) reduces to -ARG1.  */
      else if (!wins && fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
	return negate_expr (convert (type, arg1));

      /* Fold &x - &x.  This can happen from &x.foo - &x.
	 This is unsafe for certain floats even in non-IEEE formats.
	 In IEEE, it is unsafe because it does wrong for NaNs.
	 Also note that operand_equal_p is always false if an operand
	 is volatile.  */

      if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
	  && operand_equal_p (arg0, arg1, 0))
	return convert (type, integer_zero_node);

      goto associate;

    case MULT_EXPR:
      /* (-A) * (-B) -> A * B  */
      if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == NEGATE_EXPR)
	return fold (build (MULT_EXPR, type, TREE_OPERAND (arg0, 0),
			    TREE_OPERAND (arg1, 0)));

      if (! FLOAT_TYPE_P (type))
	{
	  if (integer_zerop (arg1))
	    return omit_one_operand (type, arg1, arg0);
	  if (integer_onep (arg1))
	    return non_lvalue (convert (type, arg0));

	  /* (a * (1 << b)) is (a << b)  */
	  if (TREE_CODE (arg1) == LSHIFT_EXPR
	      && integer_onep (TREE_OPERAND (arg1, 0)))
	    return fold (build (LSHIFT_EXPR, type, arg0,
				TREE_OPERAND (arg1, 1)));
	  if (TREE_CODE (arg0) == LSHIFT_EXPR
	      && integer_onep (TREE_OPERAND (arg0, 0)))
	    return fold (build (LSHIFT_EXPR, type, arg1,
				TREE_OPERAND (arg0, 1)));

	  if (TREE_CODE (arg1) == INTEGER_CST
	      && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
					     code, NULL_TREE)))
	    return convert (type, tem);

	}
      else
	{
	  /* Maybe fold x * 0 to 0.  The expressions aren't the same
	     when x is NaN, since x * 0 is also NaN.  Nor are they the
	     same in modes with signed zeros, since multiplying a
	     negative value by 0 gives -0, not +0.  */
	  if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
	      && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
	      && real_zerop (arg1))
	    return omit_one_operand (type, arg1, arg0);
	  /* In IEEE floating point, x*1 is not equivalent to x for snans.  */
	  if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
	      && real_onep (arg1))
	    return non_lvalue (convert (type, arg0));

	  /* Transform x * -1.0 into -x.  */
	  if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
	      && real_minus_onep (arg1))
	    return fold (build1 (NEGATE_EXPR, type, arg0));

	  /* x*2 is x+x */
	  if (! wins && real_twop (arg1)
	      && (*lang_hooks.decls.global_bindings_p) () == 0
	      && ! contains_placeholder_p (arg0))
	    {
	      tree arg = save_expr (arg0);
	      return build (PLUS_EXPR, type, arg, arg);
	    }
	}
      goto associate;

    case BIT_IOR_EXPR:
    bit_ior:
      if (integer_all_onesp (arg1))
	return omit_one_operand (type, arg1, arg0);
      if (integer_zerop (arg1))
	return non_lvalue (convert (type, arg0));
      t1 = distribute_bit_expr (code, type, arg0, arg1);
      if (t1 != NULL_TREE)
	return t1;

      /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).

	 This results in more efficient code for machines without a NAND
	 instruction.  Combine will canonicalize to the first form
	 which will allow use of NAND instructions provided by the
	 backend if they exist.  */
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
	  && TREE_CODE (arg1) == BIT_NOT_EXPR)
	{
	  return fold (build1 (BIT_NOT_EXPR, type,
			       build (BIT_AND_EXPR, type,
				      TREE_OPERAND (arg0, 0),
				      TREE_OPERAND (arg1, 0))));
	}

      /* See if this can be simplified into a rotate first.  If that
	 is unsuccessful continue in the association code.  */
      goto bit_rotate;

    case BIT_XOR_EXPR:
      if (integer_zerop (arg1))
	return non_lvalue (convert (type, arg0));
      if (integer_all_onesp (arg1))
	return fold (build1 (BIT_NOT_EXPR, type, arg0));

      /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
         with a constant, and the two constants have no bits in common,
	 we should treat this as a BIT_IOR_EXPR since this may produce more
	 simplifications.  */
      if (TREE_CODE (arg0) == BIT_AND_EXPR
	  && TREE_CODE (arg1) == BIT_AND_EXPR
	  && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
	  && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
	  && integer_zerop (const_binop (BIT_AND_EXPR,
					 TREE_OPERAND (arg0, 1),
					 TREE_OPERAND (arg1, 1), 0)))
	{
	  code = BIT_IOR_EXPR;
	  goto bit_ior;
	}

      /* See if this can be simplified into a rotate first.  If that
	 is unsuccessful continue in the association code.  */
      goto bit_rotate;

    case BIT_AND_EXPR:
    bit_and:
      if (integer_all_onesp (arg1))
	return non_lvalue (convert (type, arg0));
      if (integer_zerop (arg1))
	return omit_one_operand (type, arg1, arg0);
      t1 = distribute_bit_expr (code, type, arg0, arg1);
      if (t1 != NULL_TREE)
	return t1;
      /* Simplify ((int)c & 0x377) into (int)c, if c is unsigned char.  */
      if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
	  && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
	{
	  unsigned int prec
	    = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));

	  if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
	      && (~TREE_INT_CST_LOW (arg1)
		  & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
	    return build1 (NOP_EXPR, type, TREE_OPERAND (arg0, 0));
	}

      /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).

	 This results in more efficient code for machines without a NOR
	 instruction.  Combine will canonicalize to the first form
	 which will allow use of NOR instructions provided by the
	 backend if they exist.  */
      if (TREE_CODE (arg0) == BIT_NOT_EXPR
	  && TREE_CODE (arg1) == BIT_NOT_EXPR)
	{
	  return fold (build1 (BIT_NOT_EXPR, type,
			       build (BIT_IOR_EXPR, type,
				      TREE_OPERAND (arg0, 0),
				      TREE_OPERAND (arg1, 0))));
	}

      goto associate;

    case BIT_ANDTC_EXPR:
      if (integer_all_onesp (arg0))
	return non_lvalue (convert (type, arg1));
      if (integer_zerop (arg0))
	return omit_one_operand (type, arg0, arg1);
      if (TREE_CODE (arg1) == INTEGER_CST)
	{
	  arg1 = fold (build1 (BIT_NOT_EXPR, type, arg1));
	  code = BIT_AND_EXPR;
	  goto bit_and;
	}
      goto binary;

    case RDIV_EXPR:
      /* Don't touch a floating-point divide by zero unless the mode
	 of the constant can represent infinity.  */
      if (TREE_CODE (arg1) == REAL_CST
	  && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
	  && real_zerop (arg1))
	return t;

      /* (-A) / (-B) -> A / B  */
      if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == NEGATE_EXPR)
	return fold (build (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
			    TREE_OPERAND (arg1, 0)));

      /* In IEEE floating point, x/1 is not equivalent to x for snans.  */
      if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
	  && real_onep (arg1))
	return non_lvalue (convert (type, arg0));

      /* If ARG1 is a constant, we can convert this to a multiply by the
	 reciprocal.  This does not have the same rounding properties,
	 so only do this if -funsafe-math-optimizations.  We can actually
	 always safely do it if ARG1 is a power of two, but it's hard to
	 tell if it is or not in a portable manner.  */
      if (TREE_CODE (arg1) == REAL_CST)
	{
	  if (flag_unsafe_math_optimizations
	      && 0 != (tem = const_binop (code, build_real (type, dconst1),
					  arg1, 0)))
	    return fold (build (MULT_EXPR, type, arg0, tem));
	  /* Find the reciprocal if optimizing and the result is exact.  */
	  else if (optimize)
	    {
	      REAL_VALUE_TYPE r;
	      r = TREE_REAL_CST (arg1);
	      if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
		{
		  tem = build_real (type, r);
		  return fold (build (MULT_EXPR, type, arg0, tem));
		}
	    }
	}
      /* Convert A/B/C to A/(B*C).  */
      if (flag_unsafe_math_optimizations
	  && TREE_CODE (arg0) == RDIV_EXPR)
	{
	  return fold (build (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
			      build (MULT_EXPR, type, TREE_OPERAND (arg0, 1),
				     arg1)));
	}
      /* Convert A/(B/C) to (A/B)*C.  */
      if (flag_unsafe_math_optimizations
	  && TREE_CODE (arg1) == RDIV_EXPR)
	{
	  return fold (build (MULT_EXPR, type,
			      build (RDIV_EXPR, type, arg0,
			     	     TREE_OPERAND (arg1, 0)),
	 		      TREE_OPERAND (arg1, 1)));
	}
      goto binary;

    case TRUNC_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case EXACT_DIV_EXPR:
      if (integer_onep (arg1))
	return non_lvalue (convert (type, arg0));
      if (integer_zerop (arg1))
	return t;

      /* If arg0 is a multiple of arg1, then rewrite to the fastest div
	 operation, EXACT_DIV_EXPR.

	 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
	 At one time others generated faster code, it's not clear if they do
	 after the last round to changes to the DIV code in expmed.c.  */
      if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
	  && multiple_of_p (type, arg0, arg1))
	return fold (build (EXACT_DIV_EXPR, type, arg0, arg1));

      if (TREE_CODE (arg1) == INTEGER_CST
	  && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
					 code, NULL_TREE)))
	return convert (type, tem);

      goto binary;

    case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case TRUNC_MOD_EXPR:
      if (integer_onep (arg1))
	return omit_one_operand (type, integer_zero_node, arg0);
      if (integer_zerop (arg1))
	return t;

      if (TREE_CODE (arg1) == INTEGER_CST
	  && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
					 code, NULL_TREE)))
	return convert (type, tem);

      goto binary;

    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
      if (integer_zerop (arg1))
	return non_lvalue (convert (type, arg0));
      /* Since negative shift count is not well-defined,
	 don't try to compute it in the compiler.  */
      if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
	return t;
      /* Rewrite an LROTATE_EXPR by a constant into an
	 RROTATE_EXPR by a new constant.  */
      if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
	{
	  TREE_SET_CODE (t, RROTATE_EXPR);
	  code = RROTATE_EXPR;
	  TREE_OPERAND (t, 1) = arg1
	    = const_binop
	      (MINUS_EXPR,
	       convert (TREE_TYPE (arg1),
			build_int_2 (GET_MODE_BITSIZE (TYPE_MODE (type)), 0)),
	       arg1, 0);
	  if (tree_int_cst_sgn (arg1) < 0)
	    return t;
	}

      /* If we have a rotate of a bit operation with the rotate count and
	 the second operand of the bit operation both constant,
	 permute the two operations.  */
      if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
	  && (TREE_CODE (arg0) == BIT_AND_EXPR
	      || TREE_CODE (arg0) == BIT_ANDTC_EXPR
	      || TREE_CODE (arg0) == BIT_IOR_EXPR
	      || TREE_CODE (arg0) == BIT_XOR_EXPR)
	  && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
	return fold (build (TREE_CODE (arg0), type,
			    fold (build (code, type,
					 TREE_OPERAND (arg0, 0), arg1)),
			    fold (build (code, type,
					 TREE_OPERAND (arg0, 1), arg1))));

      /* Two consecutive rotates adding up to the width of the mode can
	 be ignored.  */
      if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
	  && TREE_CODE (arg0) == RROTATE_EXPR
	  && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
	  && TREE_INT_CST_HIGH (arg1) == 0
	  && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
	  && ((TREE_INT_CST_LOW (arg1)
	       + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
	      == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
	return TREE_OPERAND (arg0, 0);

      goto binary;

    case MIN_EXPR:
      if (operand_equal_p (arg0, arg1, 0))
	return omit_one_operand (type, arg0, arg1);
      if (INTEGRAL_TYPE_P (type)
	  && operand_equal_p (arg1, TYPE_MIN_VALUE (type), 1))
	return omit_one_operand (type, arg1, arg0);
      goto associate;

    case MAX_EXPR:
      if (operand_equal_p (arg0, arg1, 0))
	return omit_one_operand (type, arg0, arg1);
      if (INTEGRAL_TYPE_P (type)
	  && TYPE_MAX_VALUE (type)
	  && operand_equal_p (arg1, TYPE_MAX_VALUE (type), 1))
	return omit_one_operand (type, arg1, arg0);
      goto associate;

    case TRUTH_NOT_EXPR:
      /* Note that the operand of this must be an int
	 and its values must be 0 or 1.
	 ("true" is a fixed value perhaps depending on the language,
	 but we don't handle values other than 1 correctly yet.)  */
      tem = invert_truthvalue (arg0);
      /* Avoid infinite recursion.  */
      if (TREE_CODE (tem) == TRUTH_NOT_EXPR)
	return t;
      return convert (type, tem);

    case TRUTH_ANDIF_EXPR:
      /* Note that the operands of this must be ints
	 and their values must be 0 or 1.
	 ("true" is a fixed value perhaps depending on the language.)  */
      /* If first arg is constant zero, return it.  */
      if (integer_zerop (arg0))
	return convert (type, arg0);
    case TRUTH_AND_EXPR:
      /* If either arg is constant true, drop it.  */
      if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
	return non_lvalue (convert (type, arg1));
      if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
	  /* Preserve sequence points.  */
	  && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
	return non_lvalue (convert (type, arg0));
      /* If second arg is constant zero, result is zero, but first arg
	 must be evaluated.  */
      if (integer_zerop (arg1))
	return omit_one_operand (type, arg1, arg0);
      /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
	 case will be handled here.  */
      if (integer_zerop (arg0))
	return omit_one_operand (type, arg0, arg1);

    truth_andor:
      /* We only do these simplifications if we are optimizing.  */
      if (!optimize)
	return t;

      /* Check for things like (A || B) && (A || C).  We can convert this
	 to A || (B && C).  Note that either operator can be any of the four
	 truth and/or operations and the transformation will still be
	 valid.   Also note that we only care about order for the
	 ANDIF and ORIF operators.  If B contains side effects, this
	 might change the truth-value of A.  */
      if (TREE_CODE (arg0) == TREE_CODE (arg1)
	  && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
	      || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
	      || TREE_CODE (arg0) == TRUTH_AND_EXPR
	      || TREE_CODE (arg0) == TRUTH_OR_EXPR)
	  && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
	{
	  tree a00 = TREE_OPERAND (arg0, 0);
	  tree a01 = TREE_OPERAND (arg0, 1);
	  tree a10 = TREE_OPERAND (arg1, 0);
	  tree a11 = TREE_OPERAND (arg1, 1);
	  int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
			      || TREE_CODE (arg0) == TRUTH_AND_EXPR)
			     && (code == TRUTH_AND_EXPR
				 || code == TRUTH_OR_EXPR));

	  if (operand_equal_p (a00, a10, 0))
	    return fold (build (TREE_CODE (arg0), type, a00,
				fold (build (code, type, a01, a11))));
	  else if (commutative && operand_equal_p (a00, a11, 0))
	    return fold (build (TREE_CODE (arg0), type, a00,
				fold (build (code, type, a01, a10))));
	  else if (commutative && operand_equal_p (a01, a10, 0))
	    return fold (build (TREE_CODE (arg0), type, a01,
				fold (build (code, type, a00, a11))));

	  /* This case if tricky because we must either have commutative
	     operators or else A10 must not have side-effects.  */

	  else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
		   && operand_equal_p (a01, a11, 0))
	    return fold (build (TREE_CODE (arg0), type,
				fold (build (code, type, a00, a10)),
				a01));
	}

      /* See if we can build a range comparison.  */
      if (0 != (tem = fold_range_test (t)))
	return tem;

      /* Check for the possibility of merging component references.  If our
	 lhs is another similar operation, try to merge its rhs with our
	 rhs.  Then try to merge our lhs and rhs.  */
      if (TREE_CODE (arg0) == code
	  && 0 != (tem = fold_truthop (code, type,
				       TREE_OPERAND (arg0, 1), arg1)))
	return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));

      if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
	return tem;

      return t;

    case TRUTH_ORIF_EXPR:
      /* Note that the operands of this must be ints
	 and their values must be 0 or true.
	 ("true" is a fixed value perhaps depending on the language.)  */
      /* If first arg is constant true, return it.  */
      if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
	return convert (type, arg0);
    case TRUTH_OR_EXPR:
      /* If either arg is constant zero, drop it.  */
      if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
	return non_lvalue (convert (type, arg1));
      if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
	  /* Preserve sequence points.  */
	  && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
	return non_lvalue (convert (type, arg0));
      /* If second arg is constant true, result is true, but we must
	 evaluate first arg.  */
      if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
	return omit_one_operand (type, arg1, arg0);
      /* Likewise for first arg, but note this only occurs here for
	 TRUTH_OR_EXPR.  */
      if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
	return omit_one_operand (type, arg0, arg1);
      goto truth_andor;

    case TRUTH_XOR_EXPR:
      /* If either arg is constant zero, drop it.  */
      if (integer_zerop (arg0))
	return non_lvalue (convert (type, arg1));
      if (integer_zerop (arg1))
	return non_lvalue (convert (type, arg0));
      /* If either arg is constant true, this is a logical inversion.  */
      if (integer_onep (arg0))
	return non_lvalue (convert (type, invert_truthvalue (arg1)));
      if (integer_onep (arg1))
	return non_lvalue (convert (type, invert_truthvalue (arg0)));
      return t;

    case EQ_EXPR:
    case NE_EXPR:
    case LT_EXPR:
    case GT_EXPR:
    case LE_EXPR:
    case GE_EXPR:
      /* If one arg is a real or integer constant, put it last.  */
      if ((TREE_CODE (arg0) == INTEGER_CST
	   && TREE_CODE (arg1) != INTEGER_CST)
	  || (TREE_CODE (arg0) == REAL_CST
	      && TREE_CODE (arg0) != REAL_CST))
	{
	  TREE_OPERAND (t, 0) = arg1;
	  TREE_OPERAND (t, 1) = arg0;
	  arg0 = TREE_OPERAND (t, 0);
	  arg1 = TREE_OPERAND (t, 1);
	  code = swap_tree_comparison (code);
	  TREE_SET_CODE (t, code);
	}

      if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
	{
	  /* (-a) CMP (-b) -> b CMP a  */
	  if (TREE_CODE (arg0) == NEGATE_EXPR
	      && TREE_CODE (arg1) == NEGATE_EXPR)
	    return fold (build (code, type, TREE_OPERAND (arg1, 0),
				TREE_OPERAND (arg0, 0)));
	  /* (-a) CMP CST -> a swap(CMP) (-CST)  */
	  if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == REAL_CST)
	    return
	      fold (build
		    (swap_tree_comparison (code), type,
		     TREE_OPERAND (arg0, 0),
		     build_real (TREE_TYPE (arg1),
				 REAL_VALUE_NEGATE (TREE_REAL_CST (arg1)))));
	  /* IEEE doesn't distinguish +0 and -0 in comparisons.  */
	  /* a CMP (-0) -> a CMP 0  */
	  if (TREE_CODE (arg1) == REAL_CST
	      && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (arg1)))
	    return fold (build (code, type, arg0,
				build_real (TREE_TYPE (arg1), dconst0)));

	  /* If this is a comparison of a real constant with a PLUS_EXPR
	     or a MINUS_EXPR of a real constant, we can convert it into a
	     comparison with a revised real constant as long as no overflow
	     occurs when unsafe_math_optimizations are enabled.  */
	  if (flag_unsafe_math_optimizations
	      && TREE_CODE (arg1) == REAL_CST
	      && (TREE_CODE (arg0) == PLUS_EXPR
		  || TREE_CODE (arg0) == MINUS_EXPR)
	      && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
	      && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
					  ? MINUS_EXPR : PLUS_EXPR,
					  arg1, TREE_OPERAND (arg0, 1), 0))
	      && ! TREE_CONSTANT_OVERFLOW (tem))
	    return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
	}

      /* Convert foo++ == CONST into ++foo == CONST + INCR.
	 First, see if one arg is constant; find the constant arg
	 and the other one.  */
      {
	tree constop = 0, varop = NULL_TREE;
	int constopnum = -1;

	if (TREE_CONSTANT (arg1))
	  constopnum = 1, constop = arg1, varop = arg0;
	if (TREE_CONSTANT (arg0))
	  constopnum = 0, constop = arg0, varop = arg1;

	if (constop && TREE_CODE (varop) == POSTINCREMENT_EXPR)
	  {
	    /* This optimization is invalid for ordered comparisons
	       if CONST+INCR overflows or if foo+incr might overflow.
	       This optimization is invalid for floating point due to rounding.
	       For pointer types we assume overflow doesn't happen.  */
	    if (POINTER_TYPE_P (TREE_TYPE (varop))
		|| (! FLOAT_TYPE_P (TREE_TYPE (varop))
		    && (code == EQ_EXPR || code == NE_EXPR)))
	      {
		tree newconst
		  = fold (build (PLUS_EXPR, TREE_TYPE (varop),
				 constop, TREE_OPERAND (varop, 1)));

		/* Do not overwrite the current varop to be a preincrement,
		   create a new node so that we won't confuse our caller who
		   might create trees and throw them away, reusing the
		   arguments that they passed to build.  This shows up in
		   the THEN or ELSE parts of ?: being postincrements.  */
		varop = build (PREINCREMENT_EXPR, TREE_TYPE (varop),
			       TREE_OPERAND (varop, 0),
			       TREE_OPERAND (varop, 1));

		/* If VAROP is a reference to a bitfield, we must mask
		   the constant by the width of the field.  */
		if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
		    && DECL_BIT_FIELD(TREE_OPERAND
				      (TREE_OPERAND (varop, 0), 1)))
		  {
		    int size
		      = TREE_INT_CST_LOW (DECL_SIZE
					  (TREE_OPERAND
					   (TREE_OPERAND (varop, 0), 1)));
		    tree mask, unsigned_type;
		    unsigned int precision;
		    tree folded_compare;

		    /* First check whether the comparison would come out
		       always the same.  If we don't do that we would
		       change the meaning with the masking.  */
		    if (constopnum == 0)
		      folded_compare = fold (build (code, type, constop,
						    TREE_OPERAND (varop, 0)));
		    else
		      folded_compare = fold (build (code, type,
						    TREE_OPERAND (varop, 0),
						    constop));
		    if (integer_zerop (folded_compare)
			|| integer_onep (folded_compare))
		      return omit_one_operand (type, folded_compare, varop);

		    unsigned_type = (*lang_hooks.types.type_for_size)(size, 1);
		    precision = TYPE_PRECISION (unsigned_type);
		    mask = build_int_2 (~0, ~0);
		    TREE_TYPE (mask) = unsigned_type;
		    force_fit_type (mask, 0);
		    mask = const_binop (RSHIFT_EXPR, mask,
					size_int (precision - size), 0);
		    newconst = fold (build (BIT_AND_EXPR,
					    TREE_TYPE (varop), newconst,
					    convert (TREE_TYPE (varop),
						     mask)));
		  }

		t = build (code, type,
			   (constopnum == 0) ? newconst : varop,
			   (constopnum == 1) ? newconst : varop);
		return t;
	      }
	  }
	else if (constop && TREE_CODE (varop) == POSTDECREMENT_EXPR)
	  {
	    if (POINTER_TYPE_P (TREE_TYPE (varop))
		|| (! FLOAT_TYPE_P (TREE_TYPE (varop))
		    && (code == EQ_EXPR || code == NE_EXPR)))
	      {
		tree newconst
		  = fold (build (MINUS_EXPR, TREE_TYPE (varop),
				 constop, TREE_OPERAND (varop, 1)));

		/* Do not overwrite the current varop to be a predecrement,
		   create a new node so that we won't confuse our caller who
		   might create trees and throw them away, reusing the
		   arguments that they passed to build.  This shows up in
		   the THEN or ELSE parts of ?: being postdecrements.  */
		varop = build (PREDECREMENT_EXPR, TREE_TYPE (varop),
			       TREE_OPERAND (varop, 0),
			       TREE_OPERAND (varop, 1));

		if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
		    && DECL_BIT_FIELD(TREE_OPERAND
				      (TREE_OPERAND (varop, 0), 1)))
		  {
		    int size
		      = TREE_INT_CST_LOW (DECL_SIZE
					  (TREE_OPERAND
					   (TREE_OPERAND (varop, 0), 1)));
		    tree mask, unsigned_type;
		    unsigned int precision;
		    tree folded_compare;

		    if (constopnum == 0)
		      folded_compare = fold (build (code, type, constop,
						    TREE_OPERAND (varop, 0)));
		    else
		      folded_compare = fold (build (code, type,
						    TREE_OPERAND (varop, 0),
						    constop));
		    if (integer_zerop (folded_compare)
			|| integer_onep (folded_compare))
		      return omit_one_operand (type, folded_compare, varop);

		    unsigned_type = (*lang_hooks.types.type_for_size)(size, 1);
		    precision = TYPE_PRECISION (unsigned_type);
		    mask = build_int_2 (~0, ~0);
		    TREE_TYPE (mask) = TREE_TYPE (varop);
		    force_fit_type (mask, 0);
		    mask = const_binop (RSHIFT_EXPR, mask,
					size_int (precision - size), 0);
		    newconst = fold (build (BIT_AND_EXPR,
					    TREE_TYPE (varop), newconst,
					    convert (TREE_TYPE (varop),
						     mask)));
		  }

		t = build (code, type,
			   (constopnum == 0) ? newconst : varop,
			   (constopnum == 1) ? newconst : varop);
		return t;
	      }
	  }
      }

      /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
	 This transformation affects the cases which are handled in later
	 optimizations involving comparisons with non-negative constants.  */
      if (TREE_CODE (arg1) == INTEGER_CST
	  && TREE_CODE (arg0) != INTEGER_CST
	  && tree_int_cst_sgn (arg1) > 0)
	{
	  switch (code)
	    {
	    case GE_EXPR:
	      code = GT_EXPR;
	      arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
	      t = build (code, type, TREE_OPERAND (t, 0), arg1);
	      break;

	    case LT_EXPR:
	      code = LE_EXPR;
	      arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
	      t = build (code, type, TREE_OPERAND (t, 0), arg1);
	      break;

	    default:
	      break;
	    }
	}

      /* Comparisons with the highest or lowest possible integer of
	 the specified size will have known values.  */
      {
	int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));

	if (TREE_CODE (arg1) == INTEGER_CST
	    && ! TREE_CONSTANT_OVERFLOW (arg1)
	    && width <= HOST_BITS_PER_WIDE_INT
	    && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
		|| POINTER_TYPE_P (TREE_TYPE (arg1))))
	  {
	    unsigned HOST_WIDE_INT signed_max;
	    unsigned HOST_WIDE_INT max, min;

	    signed_max = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;

	    if (TREE_UNSIGNED (TREE_TYPE (arg1)))
	      {
	        max = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
		min = 0;
	      }
	    else
	      {
	        max = signed_max;
		min = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
	      }

	    if (TREE_INT_CST_HIGH (arg1) == 0
		&& TREE_INT_CST_LOW (arg1) == max)
	      switch (code)
		{
		case GT_EXPR:
		  return omit_one_operand (type,
					   convert (type, integer_zero_node),
					   arg0);
		case GE_EXPR:
		  code = EQ_EXPR;
		  TREE_SET_CODE (t, EQ_EXPR);
		  break;
		case LE_EXPR:
		  return omit_one_operand (type,
					   convert (type, integer_one_node),
					   arg0);
		case LT_EXPR:
		  code = NE_EXPR;
		  TREE_SET_CODE (t, NE_EXPR);
		  break;

		/* The GE_EXPR and LT_EXPR cases above are not normally
		   reached because of  previous transformations.  */

		default:
		  break;
		}
	    else if (TREE_INT_CST_HIGH (arg1) == 0
		     && TREE_INT_CST_LOW (arg1) == max - 1)
	      switch (code)
		{
		case GT_EXPR:
		  code = EQ_EXPR;
		  arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
		  t = build (code, type, TREE_OPERAND (t, 0), arg1);
		  break;
		case LE_EXPR:
		  code = NE_EXPR;
		  arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
		  t = build (code, type, TREE_OPERAND (t, 0), arg1);
		  break;
		default:
		  break;
		}
	    else if (TREE_INT_CST_HIGH (arg1) == (min ? -1 : 0)
		     && TREE_INT_CST_LOW (arg1) == min)
	      switch (code)
		{
		case LT_EXPR:
		  return omit_one_operand (type,
					   convert (type, integer_zero_node),
					   arg0);
		case LE_EXPR:
		  code = EQ_EXPR;
		  TREE_SET_CODE (t, EQ_EXPR);
		  break;

		case GE_EXPR:
		  return omit_one_operand (type,
					   convert (type, integer_one_node),
					   arg0);
		case GT_EXPR:
		  code = NE_EXPR;
		  TREE_SET_CODE (t, NE_EXPR);
		  break;

		default:
		  break;
		}
	    else if (TREE_INT_CST_HIGH (arg1) == (min ? -1 : 0)
		     && TREE_INT_CST_LOW (arg1) == min + 1)
	      switch (code)
		{
		case GE_EXPR:
		  code = NE_EXPR;
		  arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
		  t = build (code, type, TREE_OPERAND (t, 0), arg1);
		  break;
		case LT_EXPR:
		  code = EQ_EXPR;
		  arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
		  t = build (code, type, TREE_OPERAND (t, 0), arg1);
		  break;
		default:
		  break;
		}

	    else if (TREE_INT_CST_HIGH (arg1) == 0
		     && TREE_INT_CST_LOW (arg1) == signed_max
		     && TREE_UNSIGNED (TREE_TYPE (arg1))
		     /* signed_type does not work on pointer types.  */
		     && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
	      {
		/* The following case also applies to X < signed_max+1
		   and X >= signed_max+1 because previous transformations.  */
		if (code == LE_EXPR || code == GT_EXPR)
		  {
		    tree st0, st1;
		    st0 = (*lang_hooks.types.signed_type) (TREE_TYPE (arg0));
		    st1 = (*lang_hooks.types.signed_type) (TREE_TYPE (arg1));
		    return fold
		      (build (code == LE_EXPR ? GE_EXPR: LT_EXPR,
			      type, convert (st0, arg0),
			      convert (st1, integer_zero_node)));
		  }
	      }
	  }
      }

      /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
	 a MINUS_EXPR of a constant, we can convert it into a comparison with
	 a revised constant as long as no overflow occurs.  */
      if ((code == EQ_EXPR || code == NE_EXPR)
	  && TREE_CODE (arg1) == INTEGER_CST
	  && (TREE_CODE (arg0) == PLUS_EXPR
	      || TREE_CODE (arg0) == MINUS_EXPR)
	  && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
	  && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
				      ? MINUS_EXPR : PLUS_EXPR,
				      arg1, TREE_OPERAND (arg0, 1), 0))
	  && ! TREE_CONSTANT_OVERFLOW (tem))
	return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));

      /* Similarly for a NEGATE_EXPR.  */
      else if ((code == EQ_EXPR || code == NE_EXPR)
	       && TREE_CODE (arg0) == NEGATE_EXPR
	       && TREE_CODE (arg1) == INTEGER_CST
	       && 0 != (tem = negate_expr (arg1))
	       && TREE_CODE (tem) == INTEGER_CST
	       && ! TREE_CONSTANT_OVERFLOW (tem))
	return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));

      /* If we have X - Y == 0, we can convert that to X == Y and similarly
	 for !=.  Don't do this for ordered comparisons due to overflow.  */
      else if ((code == NE_EXPR || code == EQ_EXPR)
	       && integer_zerop (arg1) && TREE_CODE (arg0) == MINUS_EXPR)
	return fold (build (code, type,
			    TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1)));

      /* If we are widening one operand of an integer comparison,
	 see if the other operand is similarly being widened.  Perhaps we
	 can do the comparison in the narrower type.  */
      else if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
	       && TREE_CODE (arg0) == NOP_EXPR
	       && (tem = get_unwidened (arg0, NULL_TREE)) != arg0
	       && (t1 = get_unwidened (arg1, TREE_TYPE (tem))) != 0
	       && (TREE_TYPE (t1) == TREE_TYPE (tem)
		   || (TREE_CODE (t1) == INTEGER_CST
		       && int_fits_type_p (t1, TREE_TYPE (tem)))))
	return fold (build (code, type, tem, convert (TREE_TYPE (tem), t1)));

      /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
	 constant, we can simplify it.  */
      else if (TREE_CODE (arg1) == INTEGER_CST
	       && (TREE_CODE (arg0) == MIN_EXPR
		   || TREE_CODE (arg0) == MAX_EXPR)
	       && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
	return optimize_minmax_comparison (t);

      /* If we are comparing an ABS_EXPR with a constant, we can
	 convert all the cases into explicit comparisons, but they may
	 well not be faster than doing the ABS and one comparison.
	 But ABS (X) <= C is a range comparison, which becomes a subtraction
	 and a comparison, and is probably faster.  */
      else if (code == LE_EXPR && TREE_CODE (arg1) == INTEGER_CST
	       && TREE_CODE (arg0) == ABS_EXPR
	       && ! TREE_SIDE_EFFECTS (arg0)
	       && (0 != (tem = negate_expr (arg1)))
	       && TREE_CODE (tem) == INTEGER_CST
	       && ! TREE_CONSTANT_OVERFLOW (tem))
	return fold (build (TRUTH_ANDIF_EXPR, type,
			    build (GE_EXPR, type, TREE_OPERAND (arg0, 0), tem),
			    build (LE_EXPR, type,
				   TREE_OPERAND (arg0, 0), arg1)));

      /* If this is an EQ or NE comparison with zero and ARG0 is
	 (1 << foo) & bar, convert it to (bar >> foo) & 1.  Both require
	 two operations, but the latter can be done in one less insn
	 on machines that have only two-operand insns or on which a
	 constant cannot be the first operand.  */
      if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
	  && TREE_CODE (arg0) == BIT_AND_EXPR)
	{
	  if (TREE_CODE (TREE_OPERAND (arg0, 0)) == LSHIFT_EXPR
	      && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 0), 0)))
	    return
	      fold (build (code, type,
			   build (BIT_AND_EXPR, TREE_TYPE (arg0),
				  build (RSHIFT_EXPR,
					 TREE_TYPE (TREE_OPERAND (arg0, 0)),
					 TREE_OPERAND (arg0, 1),
					 TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)),
				  convert (TREE_TYPE (arg0),
					   integer_one_node)),
			   arg1));
	  else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
		   && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
	    return
	      fold (build (code, type,
			   build (BIT_AND_EXPR, TREE_TYPE (arg0),
				  build (RSHIFT_EXPR,
					 TREE_TYPE (TREE_OPERAND (arg0, 1)),
					 TREE_OPERAND (arg0, 0),
					 TREE_OPERAND (TREE_OPERAND (arg0, 1), 1)),
				  convert (TREE_TYPE (arg0),
					   integer_one_node)),
			   arg1));
	}

      /* If this is an NE or EQ comparison of zero against the result of a
	 signed MOD operation whose second operand is a power of 2, make
	 the MOD operation unsigned since it is simpler and equivalent.  */
      if ((code == NE_EXPR || code == EQ_EXPR)
	  && integer_zerop (arg1)
	  && ! TREE_UNSIGNED (TREE_TYPE (arg0))
	  && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
	      || TREE_CODE (arg0) == CEIL_MOD_EXPR
	      || TREE_CODE (arg0) == FLOOR_MOD_EXPR
	      || TREE_CODE (arg0) == ROUND_MOD_EXPR)
	  && integer_pow2p (TREE_OPERAND (arg0, 1)))
	{
	  tree newtype = (*lang_hooks.types.unsigned_type) (TREE_TYPE (arg0));
	  tree newmod = build (TREE_CODE (arg0), newtype,
			       convert (newtype, TREE_OPERAND (arg0, 0)),
			       convert (newtype, TREE_OPERAND (arg0, 1)));

	  return build (code, type, newmod, convert (newtype, arg1));
	}

      /* If this is an NE comparison of zero with an AND of one, remove the
	 comparison since the AND will give the correct value.  */
      if (code == NE_EXPR && integer_zerop (arg1)
	  && TREE_CODE (arg0) == BIT_AND_EXPR
	  && integer_onep (TREE_OPERAND (arg0, 1)))
	return convert (type, arg0);

      /* If we have (A & C) == C where C is a power of 2, convert this into
	 (A & C) != 0.  Similarly for NE_EXPR.  */
      if ((code == EQ_EXPR || code == NE_EXPR)
	  && TREE_CODE (arg0) == BIT_AND_EXPR
	  && integer_pow2p (TREE_OPERAND (arg0, 1))
	  && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
	return fold (build (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
			    arg0, integer_zero_node));

      /* If we have (A & C) != 0 where C is the sign bit of A, convert
	 this into A < 0.  Similarly for (A & C) == 0 into A >= 0.  */
      if ((code == EQ_EXPR || code == NE_EXPR)
	  && TREE_CODE (arg0) == BIT_AND_EXPR
	  && integer_zerop (arg1))
	{
	  tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0),
				   TREE_OPERAND (arg0, 1));
	  if (arg00 != NULL_TREE)
	  {
	    tree stype = (*lang_hooks.types.signed_type) (TREE_TYPE (arg00));
	    return fold (build (code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
			        convert (stype, arg00),
				convert (stype, integer_zero_node)));
	  }
	}

      /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
	 and similarly for >= into !=.  */
      if ((code == LT_EXPR || code == GE_EXPR)
	  && TREE_UNSIGNED (TREE_TYPE (arg0))
	  && TREE_CODE (arg1) == LSHIFT_EXPR
	  && integer_onep (TREE_OPERAND (arg1, 0)))
	return build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
		      build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
			     TREE_OPERAND (arg1, 1)),
		      convert (TREE_TYPE (arg0), integer_zero_node));

      else if ((code == LT_EXPR || code == GE_EXPR)
	       && TREE_UNSIGNED (TREE_TYPE (arg0))
	       && (TREE_CODE (arg1) == NOP_EXPR
		   || TREE_CODE (arg1) == CONVERT_EXPR)
	       && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
	       && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
	return
	  build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
		 convert (TREE_TYPE (arg0),
			  build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
				 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1))),
		 convert (TREE_TYPE (arg0), integer_zero_node));

      /* Simplify comparison of something with itself.  (For IEEE
	 floating-point, we can only do some of these simplifications.)  */
      if (operand_equal_p (arg0, arg1, 0))
	{
	  switch (code)
	    {
	    case EQ_EXPR:
	    case GE_EXPR:
	    case LE_EXPR:
	      if (! FLOAT_TYPE_P (TREE_TYPE (arg0)))
		return constant_boolean_node (1, type);
	      code = EQ_EXPR;
	      TREE_SET_CODE (t, code);
	      break;

	    case NE_EXPR:
	      /* For NE, we can only do this simplification if integer.  */
	      if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
		break;
	      /* ... fall through ...  */
	    case GT_EXPR:
	    case LT_EXPR:
	      return constant_boolean_node (0, type);
	    default:
	      abort ();
	    }
	}