aboutsummaryrefslogtreecommitdiff
path: root/gcc/java/lang.c
blob: e5d2543450a4935de684b4765f8284a610c39270 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
/* Java(TM) language-specific utility routines.
   Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
   2005, 2006, 2007 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.

Java and all Java-based marks are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries.
The Free Software Foundation is independent of Sun Microsystems, Inc.  */

/* Hacked by Per Bothner <bothner@cygnus.com> February 1996. */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "input.h"
#include "rtl.h"
#include "expr.h"
#include "java-tree.h"
#include "jcf.h"
#include "toplev.h"
#include "langhooks.h"
#include "langhooks-def.h"
#include "flags.h"
#include "ggc.h"
#include "diagnostic.h"
#include "tree-inline.h"
#include "splay-tree.h"
#include "tree-dump.h"
#include "opts.h"
#include "options.h"

static bool java_init (void);
static void java_finish (void);
static unsigned int java_init_options (unsigned int, const char **);
static bool java_post_options (const char **);

static int java_handle_option (size_t scode, const char *arg, int value);
static void put_decl_string (const char *, int);
static void put_decl_node (tree);
static void java_print_error_function (diagnostic_context *, const char *);
static tree java_tree_inlining_walk_subtrees (tree *, int *, walk_tree_fn,
					      void *, struct pointer_set_t *);
static int merge_init_test_initialization (void * *, void *);
static int inline_init_test_initialization (void * *, void *);
static bool java_dump_tree (void *, tree);
static void dump_compound_expr (dump_info_p, tree);
static bool java_decl_ok_for_sibcall (tree);
static tree java_get_callee_fndecl (tree);
static void java_clear_binding_stack (void);

#ifndef TARGET_OBJECT_SUFFIX
# define TARGET_OBJECT_SUFFIX ".o"
#endif

/* Table indexed by tree code giving a string containing a character
   classifying the tree code.  Possibilities are
   t, d, s, c, r, <, 1 and 2.  See java/java-tree.def for details.  */

#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,

const enum tree_code_class tree_code_type[] = {
#include "tree.def"
  tcc_exceptional,
#include "java-tree.def"
};
#undef DEFTREECODE

/* Table indexed by tree code giving number of expression
   operands beyond the fixed part of the node structure.
   Not used for types or decls.  */

#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,

const unsigned char tree_code_length[] = {
#include "tree.def"
  0,
#include "java-tree.def"
};
#undef DEFTREECODE

/* Names of tree components.
   Used for printing out the tree and error messages.  */
#define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,

const char *const tree_code_name[] = {
#include "tree.def"
  "@@dummy",
#include "java-tree.def"
};
#undef DEFTREECODE

/* Table of machine-independent attributes.  */
const struct attribute_spec java_attribute_table[] =
{
 { "nonnull",                0, -1, false, true, true,
			      NULL },
  { NULL,                     0, 0, false, false, false, NULL }
};

/* Used to avoid printing error messages with bogus function
   prototypes.  Starts out false.  */
static bool inhibit_error_function_printing;

const char *resource_name;

/* When nonzero, -Wall was turned on.  */
int flag_wall = 0;

/* When nonzero, report use of deprecated classes, methods, or fields.  */
int flag_deprecated = 1;

/* When zero, don't optimize static class initialization. This flag shouldn't
   be tested alone, use STATIC_CLASS_INITIALIZATION_OPTIMIZATION_P instead.  */
/* FIXME: Make this work with gimplify.  */
/* int flag_optimize_sci = 0;  */

/* Don't attempt to verify invocations.  */
int flag_verify_invocations = 0; 

/* When nonzero, print extra version information.  */
static int v_flag = 0;

JCF *current_jcf;

/* Variable controlling how dependency tracking is enabled in
   java_init.  */
static int dependency_tracking = 0;

/* Flag values for DEPENDENCY_TRACKING.  */
#define DEPEND_SET_FILE 1
#define DEPEND_ENABLE   2
#define DEPEND_TARGET_SET 4
#define DEPEND_FILE_ALREADY_SET 8

struct language_function GTY(())
{
  int unused;
};

#undef LANG_HOOKS_NAME
#define LANG_HOOKS_NAME "GNU Java"
#undef LANG_HOOKS_INIT
#define LANG_HOOKS_INIT java_init
#undef LANG_HOOKS_FINISH
#define LANG_HOOKS_FINISH java_finish
#undef LANG_HOOKS_INIT_OPTIONS
#define LANG_HOOKS_INIT_OPTIONS java_init_options
#undef LANG_HOOKS_HANDLE_OPTION
#define LANG_HOOKS_HANDLE_OPTION java_handle_option
#undef LANG_HOOKS_POST_OPTIONS
#define LANG_HOOKS_POST_OPTIONS java_post_options
#undef LANG_HOOKS_PARSE_FILE
#define LANG_HOOKS_PARSE_FILE java_parse_file
#undef LANG_HOOKS_MARK_ADDRESSABLE
#define LANG_HOOKS_MARK_ADDRESSABLE java_mark_addressable
#undef LANG_HOOKS_DUP_LANG_SPECIFIC_DECL
#define LANG_HOOKS_DUP_LANG_SPECIFIC_DECL java_dup_lang_specific_decl
#undef LANG_HOOKS_DECL_PRINTABLE_NAME
#define LANG_HOOKS_DECL_PRINTABLE_NAME lang_printable_name
#undef LANG_HOOKS_PRINT_ERROR_FUNCTION
#define LANG_HOOKS_PRINT_ERROR_FUNCTION	java_print_error_function

#undef LANG_HOOKS_TYPE_FOR_MODE
#define LANG_HOOKS_TYPE_FOR_MODE java_type_for_mode
#undef LANG_HOOKS_TYPE_FOR_SIZE
#define LANG_HOOKS_TYPE_FOR_SIZE java_type_for_size
#undef LANG_HOOKS_SIGNED_TYPE
#define LANG_HOOKS_SIGNED_TYPE java_signed_type
#undef LANG_HOOKS_UNSIGNED_TYPE
#define LANG_HOOKS_UNSIGNED_TYPE java_unsigned_type
#undef LANG_HOOKS_SIGNED_OR_UNSIGNED_TYPE
#define LANG_HOOKS_SIGNED_OR_UNSIGNED_TYPE java_signed_or_unsigned_type

#undef LANG_HOOKS_TREE_DUMP_DUMP_TREE_FN
#define LANG_HOOKS_TREE_DUMP_DUMP_TREE_FN java_dump_tree

#undef LANG_HOOKS_GIMPLIFY_EXPR
#define LANG_HOOKS_GIMPLIFY_EXPR java_gimplify_expr

#undef LANG_HOOKS_TREE_INLINING_WALK_SUBTREES
#define LANG_HOOKS_TREE_INLINING_WALK_SUBTREES java_tree_inlining_walk_subtrees

#undef LANG_HOOKS_DECL_OK_FOR_SIBCALL
#define LANG_HOOKS_DECL_OK_FOR_SIBCALL java_decl_ok_for_sibcall

#undef LANG_HOOKS_GET_CALLEE_FNDECL
#define LANG_HOOKS_GET_CALLEE_FNDECL java_get_callee_fndecl

#undef LANG_HOOKS_CALLGRAPH_EXPAND_FUNCTION
#define LANG_HOOKS_CALLGRAPH_EXPAND_FUNCTION java_expand_body

#undef LANG_HOOKS_CLEAR_BINDING_STACK
#define LANG_HOOKS_CLEAR_BINDING_STACK java_clear_binding_stack

#undef LANG_HOOKS_SET_DECL_ASSEMBLER_NAME
#define LANG_HOOKS_SET_DECL_ASSEMBLER_NAME java_mangle_decl

#undef LANG_HOOKS_ATTRIBUTE_TABLE
#define LANG_HOOKS_ATTRIBUTE_TABLE java_attribute_table

/* Each front end provides its own.  */
const struct lang_hooks lang_hooks = LANG_HOOKS_INITIALIZER;

/*
 * process java-specific compiler command-line options
 * return 0, but do not complain if the option is not recognized.
 */
static int
java_handle_option (size_t scode, const char *arg, int value)
{
  enum opt_code code = (enum opt_code) scode;

  switch (code)
    {
    case OPT_I:
      jcf_path_include_arg (arg);
      break;

    case OPT_M:
      jcf_dependency_init (1);
      dependency_tracking |= DEPEND_ENABLE;
      break;

    case OPT_MD_:
      jcf_dependency_init (1);
      dependency_tracking |= DEPEND_SET_FILE | DEPEND_ENABLE;
      break;

    case OPT_MF:
      jcf_dependency_set_dep_file (arg);
      dependency_tracking |= DEPEND_FILE_ALREADY_SET;
      break;

    case OPT_MM:
      jcf_dependency_init (0);
      dependency_tracking |= DEPEND_ENABLE;
      break;

    case OPT_MMD_:
      jcf_dependency_init (0);
      dependency_tracking |= DEPEND_SET_FILE | DEPEND_ENABLE;
      break;

    case OPT_MP:
      jcf_dependency_print_dummies ();
      break;

    case OPT_MT:
      jcf_dependency_set_target (arg);
      dependency_tracking |= DEPEND_TARGET_SET;
      break;

    case OPT_Wall:
      flag_wall = value;
      /* When -Wall given, enable -Wunused.  We do this because the C
	 compiler does it, and people expect it.  */
      set_Wunused (value);
      break;

    case OPT_fenable_assertions_:
      add_enable_assert (arg, value);
      break;

    case OPT_fenable_assertions:
      add_enable_assert ("", value);
      break;

    case OPT_fdisable_assertions_:
      add_enable_assert (arg, !value);
      break;

    case OPT_fdisable_assertions:
      add_enable_assert ("", !value);
      break;

    case OPT_fassume_compiled_:
      add_assume_compiled (arg, !value);
      break;

    case OPT_fassume_compiled:
      add_assume_compiled ("", !value);
      break;

    case OPT_fbootclasspath_:
      jcf_path_bootclasspath_arg (arg);
      break;

    case OPT_faux_classpath:
    case OPT_fclasspath_:
    case OPT_fCLASSPATH_:
      jcf_path_classpath_arg (arg);
      break;

    case OPT_fcompile_resource_:
      resource_name = arg;
      break;

    case OPT_fdump_:
      if (!dump_switch_p (arg))
	return 0;
      break;

    case OPT_fencoding_:
      /* Nothing.  */
      break;

    case OPT_fextdirs_:
      jcf_path_extdirs_arg (arg);
      break;

    case OPT_foutput_class_dir_:
      /* FIXME: remove; this is handled by ecj1 now.  */
      break;

    case OPT_version:
      v_flag = 1;
      break;
      
    case OPT_fsource_filename_:
      java_read_sourcefilenames (arg);
      break;
      
    default:
      if (cl_options[code].flags & CL_Java)
	break;
      gcc_unreachable ();
    }

  return 1;
}

/* Global open file.  */
FILE *finput;

static bool
java_init (void)
{
  /* FIXME: Indirect dispatch isn't yet compatible with static class
     init optimization.  */
  if (flag_indirect_dispatch)
    always_initialize_class_p = true;

  if (!flag_indirect_dispatch)
    flag_indirect_classes = false;

  /* Force minimum function alignment if g++ uses the least significant
     bit of function pointers to store the virtual bit. This is required
     to keep vtables compatible.  */
  if (TARGET_PTRMEMFUNC_VBIT_LOCATION == ptrmemfunc_vbit_in_pfn
      && force_align_functions_log < 1)
    force_align_functions_log = 1;

  jcf_path_seal (v_flag);

  java_init_decl_processing ();

  using_eh_for_cleanups ();

  return true;
}

static void
java_finish (void)
{
  jcf_dependency_write ();
}

/* Buffer used by lang_printable_name. */
static char *decl_buf = NULL;

/* Allocated size of decl_buf. */
static int decl_buflen = 0;

/* Length of used part of decl_buf;  position for next character. */
static int decl_bufpos = 0;

/* Append the string STR to decl_buf.
   It length is given by LEN;  -1 means the string is nul-terminated. */

static void
put_decl_string (const char *str, int len)
{
  if (len < 0)
    len = strlen (str);
  if (decl_bufpos + len >= decl_buflen)
    {
      if (decl_buf == NULL)
	{
	  decl_buflen = len + 100;
	  decl_buf = XNEWVEC (char, decl_buflen);
	}
      else
	{
	  decl_buflen *= 2;
	  decl_buf = xrealloc (decl_buf, decl_buflen);
	}
    }
  strcpy (decl_buf + decl_bufpos, str);
  decl_bufpos += len;
}

/* Append to decl_buf a printable name for NODE. */

static void
put_decl_node (tree node)
{
  int was_pointer = 0;
  if (TREE_CODE (node) == POINTER_TYPE)
    {
      node = TREE_TYPE (node);
      was_pointer = 1;
    }
  if (DECL_P (node) && DECL_NAME (node) != NULL_TREE)
    {
      if (TREE_CODE (node) == FUNCTION_DECL)
	{
	  /* We want to print the type the DECL belongs to. We don't do
	     that when we handle constructors. */
	  if (! DECL_CONSTRUCTOR_P (node)
	      && ! DECL_ARTIFICIAL (node) && DECL_CONTEXT (node))
	    {
	      put_decl_node (TYPE_NAME (DECL_CONTEXT (node)));
	      put_decl_string (".", 1);
	    }
	  if (! DECL_CONSTRUCTOR_P (node))
	    put_decl_node (DECL_NAME (node));
	  if (TREE_TYPE (node) != NULL_TREE)
	    {
	      int i = 0;
	      tree args = TYPE_ARG_TYPES (TREE_TYPE (node));
	      if (TREE_CODE (TREE_TYPE (node)) == METHOD_TYPE)
		args = TREE_CHAIN (args);
	      put_decl_string ("(", 1);
	      for ( ; args != end_params_node;  args = TREE_CHAIN (args), i++)
		{
		  if (i > 0)
		    put_decl_string (",", 1);
		  put_decl_node (TREE_VALUE (args));
		}
	      put_decl_string (")", 1);
	    }
	}
      else
	put_decl_node (DECL_NAME (node));
    }
  else if (TYPE_P (node) && TYPE_NAME (node) != NULL_TREE)
    {
      if (TREE_CODE (node) == RECORD_TYPE && TYPE_ARRAY_P (node))
	{
	  put_decl_node (TYPE_ARRAY_ELEMENT (node));
	  put_decl_string("[]", 2);
	}
      else if (node == promoted_byte_type_node)
	put_decl_string ("byte", 4);
      else if (node == promoted_short_type_node)
	put_decl_string ("short", 5);
      else if (node == promoted_char_type_node)
	put_decl_string ("char", 4);
      else if (node == promoted_boolean_type_node)
	put_decl_string ("boolean", 7);
      else if (node == void_type_node && was_pointer)
	put_decl_string ("null", 4);
      else
	put_decl_node (TYPE_NAME (node));
    }
  else if (TREE_CODE (node) == IDENTIFIER_NODE)
    put_decl_string (IDENTIFIER_POINTER (node), IDENTIFIER_LENGTH (node));
  else
    put_decl_string ("<unknown>", -1);
}

/* Return a user-friendly name for DECL.
   The resulting string is only valid until the next call.
   The value of the hook decl_printable_name is this function,
   which is also called directly by java_print_error_function. */

const char *
lang_printable_name (tree decl, int v)
{
  decl_bufpos = 0;
  if (v == 0 && TREE_CODE (decl) == FUNCTION_DECL)
    put_decl_node (DECL_NAME (decl));
  else
    put_decl_node (decl);
  put_decl_string ("", 1);
  return decl_buf;
}

/* Print on stderr the current class and method context.  This function
   is the value of the hook print_error_function. */

static GTY(()) tree last_error_function_context;
static GTY(()) tree last_error_function;
static void
java_print_error_function (diagnostic_context *context ATTRIBUTE_UNUSED,
			   const char *file)
{
  /* Don't print error messages with bogus function prototypes.  */
  if (inhibit_error_function_printing)
    return;

  if (current_function_decl != NULL
      && DECL_CONTEXT (current_function_decl) != last_error_function_context)
    {
      if (file)
	fprintf (stderr, "%s: ", file);

      last_error_function_context = DECL_CONTEXT (current_function_decl);
      fprintf (stderr, "In class '%s':\n",
	       lang_printable_name (last_error_function_context, 0));
    }
  if (last_error_function != current_function_decl)
    {
      if (file)
	fprintf (stderr, "%s: ", file);

      if (current_function_decl == NULL)
	fprintf (stderr, "At top level:\n");
      else
	{
	  const char *name = lang_printable_name (current_function_decl, 2);
	  fprintf (stderr, "In %s '%s':\n",
		   (DECL_CONSTRUCTOR_P (current_function_decl) ? "constructor"
		    : "method"),
		   name);
	}

      last_error_function = current_function_decl;
    }

}

/* Called to install the PRINT_ERROR_FUNCTION hook differently
   according to LEVEL. LEVEL is 1 during early parsing, when function
   prototypes aren't fully resolved. java_print_error_function is set
   so it doesn't print incomplete function prototypes. When LEVEL is
   2, function prototypes are fully resolved and can be printed when
   reporting errors.  */

void
lang_init_source (int level)
{
  inhibit_error_function_printing = (level == 1);
}

static unsigned int
java_init_options (unsigned int argc ATTRIBUTE_UNUSED,
		   const char **argv ATTRIBUTE_UNUSED)
{
  flag_bounds_check = 1;
  flag_exceptions = 1;
  flag_non_call_exceptions = 1;

  /* In Java floating point operations never trap.  */
  flag_trapping_math = 0;

  /* In Java arithmetic overflow always wraps around.  */
  flag_wrapv = 1;

  /* Java requires left-to-right evaluation of subexpressions.  */
  flag_evaluation_order = 1;

  /* Unit at a time is disabled for Java because it is considered
     too expensive.  */
  no_unit_at_a_time_default = 1;

  jcf_path_init ();

  return CL_Java;
}

/* Post-switch processing.  */
static bool
java_post_options (const char **pfilename)
{
  const char *filename = *pfilename;

  /* Use tree inlining.  */
  if (!flag_no_inline)
    flag_no_inline = 1;
  if (flag_inline_functions)
    flag_inline_trees = 2;

  /* An absolute requirement: if we're not using indirect dispatch, we
     must always verify everything.  */
  if (! flag_indirect_dispatch)
    flag_verify_invocations = true;

  if (flag_reduced_reflection)
    {
      if (flag_indirect_dispatch)
        error ("-findirect-dispatch is incompatible "
               "with -freduced-reflection");
      if (flag_jni)
        error ("-fjni is incompatible with -freduced-reflection");
    }

  /* Open input file.  */

  if (filename == 0 || !strcmp (filename, "-"))
    {
      finput = stdin;
      filename = "stdin";

      if (dependency_tracking)
	error ("can't do dependency tracking with input from stdin");
    }
  else
    {
      if (dependency_tracking)
	{
	  char *dot;

	  /* If the target is set and the output filename is set, then
	     there's no processing to do here.  Otherwise we must
	     compute one or the other.  */
	  if (! ((dependency_tracking & DEPEND_TARGET_SET)
		 && (dependency_tracking & DEPEND_FILE_ALREADY_SET)))
	    {
	      dot = strrchr (filename, '.');
	      if (dot == NULL)
		error ("couldn't determine target name for dependency tracking");
	      else
		{
		  char *buf = XNEWVEC (char, dot - filename +
				       3 + sizeof (TARGET_OBJECT_SUFFIX));
		  strncpy (buf, filename, dot - filename);

		  /* If emitting class files, we might have multiple
		     targets.  The class generation code takes care of
		     registering them.  Otherwise we compute the
		     target name here.  */
		  if ((dependency_tracking & DEPEND_TARGET_SET))
		    ; /* Nothing.  */
		  else
		    {
		      strcpy (buf + (dot - filename), TARGET_OBJECT_SUFFIX);
		      jcf_dependency_set_target (buf);
		    }

		  if ((dependency_tracking & DEPEND_FILE_ALREADY_SET))
		    ; /* Nothing.  */
		  else if ((dependency_tracking & DEPEND_SET_FILE))
		    {
		      strcpy (buf + (dot - filename), ".d");
		      jcf_dependency_set_dep_file (buf);
		    }
		  else
		    jcf_dependency_set_dep_file ("-");

		  free (buf);
		}
	    }
	}
    }
#ifdef USE_MAPPED_LOCATION
  linemap_add (&line_table, LC_ENTER, false, filename, 0);
  linemap_add (&line_table, LC_RENAME, false, "<built-in>", 0);
#endif

  /* Initialize the compiler back end.  */
  return false;
}

/* Return either DECL or its known constant value (if it has one).  */

tree
decl_constant_value (tree decl)
{
  if (/* Don't change a variable array bound or initial value to a constant
	 in a place where a variable is invalid.  */
      current_function_decl != 0
      && ! TREE_THIS_VOLATILE (decl)
      && TREE_READONLY (decl)
      && DECL_INITIAL (decl) != 0
      && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
      /* This is invalid if initial value is not constant.
	 If it has either a function call, a memory reference,
	 or a variable, then re-evaluating it could give different results.  */
      && TREE_CONSTANT (DECL_INITIAL (decl))
      /* Check for cases where this is sub-optimal, even though valid.  */
      && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
    return DECL_INITIAL (decl);
  return decl;
}

/* Walk the language specific tree nodes during inlining.  */

static tree
java_tree_inlining_walk_subtrees (tree *tp ATTRIBUTE_UNUSED,
				  int *subtrees ATTRIBUTE_UNUSED,
				  walk_tree_fn func ATTRIBUTE_UNUSED,
				  void *data ATTRIBUTE_UNUSED,
				  struct pointer_set_t *pset ATTRIBUTE_UNUSED)
{
  enum tree_code code;
  tree result;

#define WALK_SUBTREE(NODE)				\
  do							\
    {							\
      result = walk_tree (&(NODE), func, data, pset);	\
      if (result)					\
	return result;					\
    }							\
  while (0)

  tree t = *tp;
  if (!t)
    return NULL_TREE;

  code = TREE_CODE (t);
  switch (code)
    {
    case BLOCK:
      WALK_SUBTREE (BLOCK_EXPR_BODY (t));
      return NULL_TREE;

    case EXIT_BLOCK_EXPR:
      *subtrees = 0;
      return NULL_TREE;

    default:
      return NULL_TREE;
    }

  #undef WALK_SUBTREE
}

/* Every call to a static constructor has an associated boolean
   variable which is in the outermost scope of the calling method.
   This variable is used to avoid multiple calls to the static
   constructor for each class.

   It looks something like this:

   foo ()
   {
      boolean dummy = OtherClass.is_initialized;

     ...

     if (! dummy)
       OtherClass.initialize();

     ... use OtherClass.data ...
   }

   Each of these boolean variables has an entry in the
   DECL_FUNCTION_INIT_TEST_TABLE of a method.  When inlining a method
   we must merge the DECL_FUNCTION_INIT_TEST_TABLE from the function
   being inlined and create the boolean variables in the outermost
   scope of the method being inlined into.  */

/* Create a mapping from a boolean variable in a method being inlined
   to one in the scope of the method being inlined into.  */

static int
merge_init_test_initialization (void **entry, void *x)
{
  struct treetreehash_entry *ite = (struct treetreehash_entry *) *entry;
  splay_tree decl_map = (splay_tree)x;
  splay_tree_node n;
  tree *init_test_decl;

  /* See if we have remapped this declaration.  If we haven't there's
     a bug in the inliner.  */
  n = splay_tree_lookup (decl_map, (splay_tree_key) ite->value);
  gcc_assert (n);

  /* Create a new entry for the class and its remapped boolean
     variable.  If we already have a mapping for this class we've
     already initialized it, so don't overwrite the value.  */
  init_test_decl = java_treetreehash_new
    (DECL_FUNCTION_INIT_TEST_TABLE (current_function_decl), ite->key);
  if (!*init_test_decl)
    *init_test_decl = (tree)n->value;

  /* This fixes a weird case.

  The front end assumes that once we have called a method that
  initializes some class, we can assume the class is initialized.  It
  does this by setting the DECL_INITIAL of the init_test_decl for that
  class, and no initializations are emitted for that class.

  However, what if the method that is supposed to do the initialization
  is itself inlined in the caller?  When expanding the called method
  we'll assume that the class initialization has already been done,
  because the DECL_INITIAL of the init_test_decl is set.

  To fix this we remove the DECL_INITIAL (in the caller scope) of all
  the init_test_decls corresponding to classes initialized by the
  inlined method.  This makes the caller no longer assume that the
  method being inlined does any class initializations.  */
  DECL_INITIAL (*init_test_decl) = NULL;

  return true;
}

/* Merge the DECL_FUNCTION_INIT_TEST_TABLE from the function we're
   inlining.  */

void
java_inlining_merge_static_initializers (tree fn, void *decl_map)
{
  htab_traverse
    (DECL_FUNCTION_INIT_TEST_TABLE (fn),
     merge_init_test_initialization, decl_map);
}

/* Lookup a DECL_FUNCTION_INIT_TEST_TABLE entry in the method we're
   inlining into.  If we already have a corresponding entry in that
   class we don't need to create another one, so we create a mapping
   from the variable in the inlined class to the corresponding
   pre-existing one.  */

static int
inline_init_test_initialization (void **entry, void *x)
{
  struct treetreehash_entry *ite = (struct treetreehash_entry *) *entry;
  splay_tree decl_map = (splay_tree)x;

  tree h = java_treetreehash_find
    (DECL_FUNCTION_INIT_TEST_TABLE (current_function_decl), ite->key);
  if (! h)
    return true;
  splay_tree_insert (decl_map,
		     (splay_tree_key) ite->value,
		     (splay_tree_value) h);
  return true;
}

/* Look up the boolean variables in the DECL_FUNCTION_INIT_TEST_TABLE
   of a method being inlined.  For each hone, if we already have a
   variable associated with the same class in the method being inlined
   into, create a new mapping for it.  */

void
java_inlining_map_static_initializers (tree fn, void *decl_map)
{
  htab_traverse
    (DECL_FUNCTION_INIT_TEST_TABLE (fn),
     inline_init_test_initialization, decl_map);
}

/* Avoid voluminous output for deep recursion of compound exprs.  */

static void
dump_compound_expr (dump_info_p di, tree t)
{
  int i;

  for (i=0; i<2; i++)
    {
      switch (TREE_CODE (TREE_OPERAND (t, i)))
	{
	case COMPOUND_EXPR:
	  dump_compound_expr (di, TREE_OPERAND (t, i));
	  break;

	case EXPR_WITH_FILE_LOCATION:
	    {
	      tree wfl_node = EXPR_WFL_NODE (TREE_OPERAND (t, i));
	      dump_child ("expr", wfl_node);
	      break;
	    }

	default:
	  dump_child ("expr", TREE_OPERAND (t, i));
	}
    }
}

static bool
java_dump_tree (void *dump_info, tree t)
{
  enum tree_code code;
  dump_info_p di = (dump_info_p) dump_info;

  /* Figure out what kind of node this is.  */
  code = TREE_CODE (t);

  switch (code)
    {
    case FUNCTION_DECL:
      dump_child ("args", DECL_ARGUMENTS (t));
      if (DECL_EXTERNAL (t))
	dump_string (di, "undefined");
      if (TREE_PUBLIC (t))
	dump_string (di, "extern");
      else
	dump_string (di, "static");
      if (DECL_LANG_SPECIFIC (t))
	dump_child ("body", DECL_FUNCTION_BODY (t));
      if (DECL_LANG_SPECIFIC (t) && !dump_flag (di, TDF_SLIM, t))
	dump_child ("inline body", DECL_SAVED_TREE (t));
      return true;

    case RETURN_EXPR:
      dump_child ("expr", TREE_OPERAND (t, 0));
      return true;

    case GOTO_EXPR:
      dump_child ("goto", TREE_OPERAND (t, 0));
      return true;

    case LABEL_EXPR:
      dump_child ("label", TREE_OPERAND (t, 0));
      return true;

    case LABELED_BLOCK_EXPR:
      dump_child ("label", LABELED_BLOCK_LABEL (t));
      dump_child ("block", LABELED_BLOCK_BODY (t));
      return true;

    case EXIT_BLOCK_EXPR:
      dump_child ("block", EXIT_BLOCK_LABELED_BLOCK (t));
      return true;

    case BLOCK:
      if (BLOCK_EXPR_BODY (t))
	{
	  tree local = BLOCK_VARS (t);
	  while (local)
	    {
	      tree next = TREE_CHAIN (local);
	      dump_child ("var", local);
	      local = next;
	    }

	  {
	    tree block = BLOCK_EXPR_BODY (t);
	    dump_child ("body", block);
	    block = TREE_CHAIN (block);
	  }
	}
      return true;

    case COMPOUND_EXPR:
      if (!dump_flag (di, TDF_SLIM, t))
	return false;
      dump_compound_expr (di, t);
      return true;

    default:
      break;
    }
  return false;
}

/* Java calls can't, in general, be sibcalls because we need an
   accurate stack trace in order to guarantee correct operation of
   methods such as Class.forName(String) and
   SecurityManager.getClassContext().  */

static bool
java_decl_ok_for_sibcall (tree decl)
{
  return (decl != NULL && DECL_CONTEXT (decl) == output_class
	  && DECL_INLINE (decl));
}

/* Given a call_expr, try to figure out what its target might be.  In
   the case of an indirection via the atable, search for the decl.  If
   the decl is external, we return NULL.  If we don't, the optimizer
   will replace the indirection with a direct call, which undoes the
   purpose of the atable indirection.  */
static tree
java_get_callee_fndecl (tree call_expr)
{
  tree method, table, element, atable_methods;

  HOST_WIDE_INT index;

  /* FIXME: This is disabled because we end up passing calls through
     the PLT, and we do NOT want to do that.  */
  return NULL;

  if (TREE_CODE (call_expr) != CALL_EXPR)
    return NULL;
  method = TREE_OPERAND (call_expr, 0);
  STRIP_NOPS (method);
  if (TREE_CODE (method) != ARRAY_REF)
    return NULL;
  table = TREE_OPERAND (method, 0);
  if (! DECL_LANG_SPECIFIC(table)
      || !DECL_OWNER (table)
      || TYPE_ATABLE_DECL (DECL_OWNER (table)) != table)
    return NULL;

  atable_methods = TYPE_ATABLE_METHODS (DECL_OWNER (table));
  index = TREE_INT_CST_LOW (TREE_OPERAND (method, 1));

  /* FIXME: Replace this for loop with a hash table lookup.  */
  for (element = atable_methods; element; element = TREE_CHAIN (element))
    {
      if (index == 1)
	{
	  tree purpose = TREE_PURPOSE (element);
	  if (TREE_CODE (purpose) == FUNCTION_DECL
	      && ! DECL_EXTERNAL (purpose))
	    return purpose;
	  else
	    return NULL;
	}
      --index;
    }

  return NULL;
}


/* Clear the binding stack.  */
static void
java_clear_binding_stack (void)
{
  while (!global_bindings_p ())
    poplevel (0, 0, 0);
}

#include "gt-java-lang.h"
href='#n3545'>3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876
/* Convert tree expression to rtl instructions, for GNU compiler.
   Copyright (C) 1988-2017 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "memmodel.h"
#include "tm_p.h"
#include "ssa.h"
#include "expmed.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "attribs.h"
#include "varasm.h"
#include "except.h"
#include "insn-attr.h"
#include "dojump.h"
#include "explow.h"
#include "calls.h"
#include "stmt.h"
/* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
#include "expr.h"
#include "optabs-tree.h"
#include "libfuncs.h"
#include "reload.h"
#include "langhooks.h"
#include "common/common-target.h"
#include "tree-ssa-live.h"
#include "tree-outof-ssa.h"
#include "tree-ssa-address.h"
#include "builtins.h"
#include "tree-chkp.h"
#include "rtl-chkp.h"
#include "ccmp.h"


/* If this is nonzero, we do not bother generating VOLATILE
   around volatile memory references, and we are willing to
   output indirect addresses.  If cse is to follow, we reject
   indirect addresses so a useful potential cse is generated;
   if it is used only once, instruction combination will produce
   the same indirect address eventually.  */
int cse_not_expected;

static bool block_move_libcall_safe_for_call_parm (void);
static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
					unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
					unsigned HOST_WIDE_INT);
static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
static rtx_insn *compress_float_constant (rtx, rtx);
static rtx get_subtarget (rtx);
static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
				     HOST_WIDE_INT, unsigned HOST_WIDE_INT,
				     unsigned HOST_WIDE_INT, machine_mode,
				     tree, int, alias_set_type, bool);
static void store_constructor (tree, rtx, int, HOST_WIDE_INT, bool);
static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
			unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
			machine_mode, tree, alias_set_type, bool, bool);

static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);

static int is_aligning_offset (const_tree, const_tree);
static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
static rtx do_store_flag (sepops, rtx, machine_mode);
#ifdef PUSH_ROUNDING
static void emit_single_push_insn (machine_mode, rtx, tree);
#endif
static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx, int);
static rtx const_vector_from_tree (tree);
static rtx const_scalar_mask_from_tree (tree);
static tree tree_expr_size (const_tree);
static HOST_WIDE_INT int_expr_size (tree);


/* This is run to set up which modes can be used
   directly in memory and to initialize the block move optab.  It is run
   at the beginning of compilation and when the target is reinitialized.  */

void
init_expr_target (void)
{
  rtx pat;
  machine_mode mode;
  int num_clobbers;
  rtx mem, mem1;
  rtx reg;

  /* Try indexing by frame ptr and try by stack ptr.
     It is known that on the Convex the stack ptr isn't a valid index.
     With luck, one or the other is valid on any machine.  */
  mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
  mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);

  /* A scratch register we can modify in-place below to avoid
     useless RTL allocations.  */
  reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);

  rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
  pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
  PATTERN (insn) = pat;

  for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
       mode = (machine_mode) ((int) mode + 1))
    {
      int regno;

      direct_load[(int) mode] = direct_store[(int) mode] = 0;
      PUT_MODE (mem, mode);
      PUT_MODE (mem1, mode);

      /* See if there is some register that can be used in this mode and
	 directly loaded or stored from memory.  */

      if (mode != VOIDmode && mode != BLKmode)
	for (regno = 0; regno < FIRST_PSEUDO_REGISTER
	     && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
	     regno++)
	  {
	    if (! HARD_REGNO_MODE_OK (regno, mode))
	      continue;

	    set_mode_and_regno (reg, mode, regno);

	    SET_SRC (pat) = mem;
	    SET_DEST (pat) = reg;
	    if (recog (pat, insn, &num_clobbers) >= 0)
	      direct_load[(int) mode] = 1;

	    SET_SRC (pat) = mem1;
	    SET_DEST (pat) = reg;
	    if (recog (pat, insn, &num_clobbers) >= 0)
	      direct_load[(int) mode] = 1;

	    SET_SRC (pat) = reg;
	    SET_DEST (pat) = mem;
	    if (recog (pat, insn, &num_clobbers) >= 0)
	      direct_store[(int) mode] = 1;

	    SET_SRC (pat) = reg;
	    SET_DEST (pat) = mem1;
	    if (recog (pat, insn, &num_clobbers) >= 0)
	      direct_store[(int) mode] = 1;
	  }
    }

  mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      machine_mode srcmode;
      for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
	   srcmode = GET_MODE_WIDER_MODE (srcmode))
	{
	  enum insn_code ic;

	  ic = can_extend_p (mode, srcmode, 0);
	  if (ic == CODE_FOR_nothing)
	    continue;

	  PUT_MODE (mem, srcmode);

	  if (insn_operand_matches (ic, 1, mem))
	    float_extend_from_mem[mode][srcmode] = true;
	}
    }
}

/* This is run at the start of compiling a function.  */

void
init_expr (void)
{
  memset (&crtl->expr, 0, sizeof (crtl->expr));
}

/* Copy data from FROM to TO, where the machine modes are not the same.
   Both modes may be integer, or both may be floating, or both may be
   fixed-point.
   UNSIGNEDP should be nonzero if FROM is an unsigned type.
   This causes zero-extension instead of sign-extension.  */

void
convert_move (rtx to, rtx from, int unsignedp)
{
  machine_mode to_mode = GET_MODE (to);
  machine_mode from_mode = GET_MODE (from);
  int to_real = SCALAR_FLOAT_MODE_P (to_mode);
  int from_real = SCALAR_FLOAT_MODE_P (from_mode);
  enum insn_code code;
  rtx libcall;

  /* rtx code for making an equivalent value.  */
  enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
			      : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));


  gcc_assert (to_real == from_real);
  gcc_assert (to_mode != BLKmode);
  gcc_assert (from_mode != BLKmode);

  /* If the source and destination are already the same, then there's
     nothing to do.  */
  if (to == from)
    return;

  /* If FROM is a SUBREG that indicates that we have already done at least
     the required extension, strip it.  We don't handle such SUBREGs as
     TO here.  */

  if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
      && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
	  >= GET_MODE_PRECISION (to_mode))
      && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
    from = gen_lowpart (to_mode, from), from_mode = to_mode;

  gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));

  if (to_mode == from_mode
      || (from_mode == VOIDmode && CONSTANT_P (from)))
    {
      emit_move_insn (to, from);
      return;
    }

  if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
    {
      gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));

      if (VECTOR_MODE_P (to_mode))
	from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
      else
	to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);

      emit_move_insn (to, from);
      return;
    }

  if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
    {
      convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
      convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
      return;
    }

  if (to_real)
    {
      rtx value;
      rtx_insn *insns;
      convert_optab tab;

      gcc_assert ((GET_MODE_PRECISION (from_mode)
		   != GET_MODE_PRECISION (to_mode))
		  || (DECIMAL_FLOAT_MODE_P (from_mode)
		      != DECIMAL_FLOAT_MODE_P (to_mode)));

      if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
	/* Conversion between decimal float and binary float, same size.  */
	tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
      else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
	tab = sext_optab;
      else
	tab = trunc_optab;

      /* Try converting directly if the insn is supported.  */

      code = convert_optab_handler (tab, to_mode, from_mode);
      if (code != CODE_FOR_nothing)
	{
	  emit_unop_insn (code, to, from,
			  tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
	  return;
	}

      /* Otherwise use a libcall.  */
      libcall = convert_optab_libfunc (tab, to_mode, from_mode);

      /* Is this conversion implemented yet?  */
      gcc_assert (libcall);

      start_sequence ();
      value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
				       1, from, from_mode);
      insns = get_insns ();
      end_sequence ();
      emit_libcall_block (insns, to, value,
			  tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
								       from)
			  : gen_rtx_FLOAT_EXTEND (to_mode, from));
      return;
    }

  /* Handle pointer conversion.  */			/* SPEE 900220.  */
  /* If the target has a converter from FROM_MODE to TO_MODE, use it.  */
  {
    convert_optab ctab;

    if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
      ctab = trunc_optab;
    else if (unsignedp)
      ctab = zext_optab;
    else
      ctab = sext_optab;

    if (convert_optab_handler (ctab, to_mode, from_mode)
	!= CODE_FOR_nothing)
      {
	emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
			to, from, UNKNOWN);
	return;
      }
  }

  /* Targets are expected to provide conversion insns between PxImode and
     xImode for all MODE_PARTIAL_INT modes they use, but no others.  */
  if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
    {
      machine_mode full_mode
	= smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);

      gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
		  != CODE_FOR_nothing);

      if (full_mode != from_mode)
	from = convert_to_mode (full_mode, from, unsignedp);
      emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
		      to, from, UNKNOWN);
      return;
    }
  if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
    {
      rtx new_from;
      machine_mode full_mode
	= smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
      convert_optab ctab = unsignedp ? zext_optab : sext_optab;
      enum insn_code icode;

      icode = convert_optab_handler (ctab, full_mode, from_mode);
      gcc_assert (icode != CODE_FOR_nothing);

      if (to_mode == full_mode)
	{
	  emit_unop_insn (icode, to, from, UNKNOWN);
	  return;
	}

      new_from = gen_reg_rtx (full_mode);
      emit_unop_insn (icode, new_from, from, UNKNOWN);

      /* else proceed to integer conversions below.  */
      from_mode = full_mode;
      from = new_from;
    }

   /* Make sure both are fixed-point modes or both are not.  */
   gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
	       ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
   if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
    {
      /* If we widen from_mode to to_mode and they are in the same class,
	 we won't saturate the result.
	 Otherwise, always saturate the result to play safe.  */
      if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
	  && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
	expand_fixed_convert (to, from, 0, 0);
      else
	expand_fixed_convert (to, from, 0, 1);
      return;
    }

  /* Now both modes are integers.  */

  /* Handle expanding beyond a word.  */
  if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
      && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
    {
      rtx_insn *insns;
      rtx lowpart;
      rtx fill_value;
      rtx lowfrom;
      int i;
      machine_mode lowpart_mode;
      int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);

      /* Try converting directly if the insn is supported.  */
      if ((code = can_extend_p (to_mode, from_mode, unsignedp))
	  != CODE_FOR_nothing)
	{
	  /* If FROM is a SUBREG, put it into a register.  Do this
	     so that we always generate the same set of insns for
	     better cse'ing; if an intermediate assignment occurred,
	     we won't be doing the operation directly on the SUBREG.  */
	  if (optimize > 0 && GET_CODE (from) == SUBREG)
	    from = force_reg (from_mode, from);
	  emit_unop_insn (code, to, from, equiv_code);
	  return;
	}
      /* Next, try converting via full word.  */
      else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
	       && ((code = can_extend_p (to_mode, word_mode, unsignedp))
		   != CODE_FOR_nothing))
	{
	  rtx word_to = gen_reg_rtx (word_mode);
	  if (REG_P (to))
	    {
	      if (reg_overlap_mentioned_p (to, from))
		from = force_reg (from_mode, from);
	      emit_clobber (to);
	    }
	  convert_move (word_to, from, unsignedp);
	  emit_unop_insn (code, to, word_to, equiv_code);
	  return;
	}

      /* No special multiword conversion insn; do it by hand.  */
      start_sequence ();

      /* Since we will turn this into a no conflict block, we must ensure
         the source does not overlap the target so force it into an isolated
         register when maybe so.  Likewise for any MEM input, since the
         conversion sequence might require several references to it and we
         must ensure we're getting the same value every time.  */

      if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
	from = force_reg (from_mode, from);

      /* Get a copy of FROM widened to a word, if necessary.  */
      if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
	lowpart_mode = word_mode;
      else
	lowpart_mode = from_mode;

      lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);

      lowpart = gen_lowpart (lowpart_mode, to);
      emit_move_insn (lowpart, lowfrom);

      /* Compute the value to put in each remaining word.  */
      if (unsignedp)
	fill_value = const0_rtx;
      else
	fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
					    LT, lowfrom, const0_rtx,
					    lowpart_mode, 0, -1);

      /* Fill the remaining words.  */
      for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
	{
	  int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
	  rtx subword = operand_subword (to, index, 1, to_mode);

	  gcc_assert (subword);

	  if (fill_value != subword)
	    emit_move_insn (subword, fill_value);
	}

      insns = get_insns ();
      end_sequence ();

      emit_insn (insns);
      return;
    }

  /* Truncating multi-word to a word or less.  */
  if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
      && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
    {
      if (!((MEM_P (from)
	     && ! MEM_VOLATILE_P (from)
	     && direct_load[(int) to_mode]
	     && ! mode_dependent_address_p (XEXP (from, 0),
					    MEM_ADDR_SPACE (from)))
	    || REG_P (from)
	    || GET_CODE (from) == SUBREG))
	from = force_reg (from_mode, from);
      convert_move (to, gen_lowpart (word_mode, from), 0);
      return;
    }

  /* Now follow all the conversions between integers
     no more than a word long.  */

  /* For truncation, usually we can just refer to FROM in a narrower mode.  */
  if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
      && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
    {
      if (!((MEM_P (from)
	     && ! MEM_VOLATILE_P (from)
	     && direct_load[(int) to_mode]
	     && ! mode_dependent_address_p (XEXP (from, 0),
					    MEM_ADDR_SPACE (from)))
	    || REG_P (from)
	    || GET_CODE (from) == SUBREG))
	from = force_reg (from_mode, from);
      if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
	  && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
	from = copy_to_reg (from);
      emit_move_insn (to, gen_lowpart (to_mode, from));
      return;
    }

  /* Handle extension.  */
  if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
    {
      /* Convert directly if that works.  */
      if ((code = can_extend_p (to_mode, from_mode, unsignedp))
	  != CODE_FOR_nothing)
	{
	  emit_unop_insn (code, to, from, equiv_code);
	  return;
	}
      else
	{
	  machine_mode intermediate;
	  rtx tmp;
	  int shift_amount;

	  /* Search for a mode to convert via.  */
	  for (intermediate = from_mode; intermediate != VOIDmode;
	       intermediate = GET_MODE_WIDER_MODE (intermediate))
	    if (((can_extend_p (to_mode, intermediate, unsignedp)
		  != CODE_FOR_nothing)
		 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
		     && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
		&& (can_extend_p (intermediate, from_mode, unsignedp)
		    != CODE_FOR_nothing))
	      {
		convert_move (to, convert_to_mode (intermediate, from,
						   unsignedp), unsignedp);
		return;
	      }

	  /* No suitable intermediate mode.
	     Generate what we need with	shifts.  */
	  shift_amount = (GET_MODE_PRECISION (to_mode)
			  - GET_MODE_PRECISION (from_mode));
	  from = gen_lowpart (to_mode, force_reg (from_mode, from));
	  tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
			      to, unsignedp);
	  tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
			      to, unsignedp);
	  if (tmp != to)
	    emit_move_insn (to, tmp);
	  return;
	}
    }

  /* Support special truncate insns for certain modes.  */
  if (convert_optab_handler (trunc_optab, to_mode,
			     from_mode) != CODE_FOR_nothing)
    {
      emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
		      to, from, UNKNOWN);
      return;
    }

  /* Handle truncation of volatile memrefs, and so on;
     the things that couldn't be truncated directly,
     and for which there was no special instruction.

     ??? Code above formerly short-circuited this, for most integer
     mode pairs, with a force_reg in from_mode followed by a recursive
     call to this routine.  Appears always to have been wrong.  */
  if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
    {
      rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
      emit_move_insn (to, temp);
      return;
    }

  /* Mode combination is not recognized.  */
  gcc_unreachable ();
}

/* Return an rtx for a value that would result
   from converting X to mode MODE.
   Both X and MODE may be floating, or both integer.
   UNSIGNEDP is nonzero if X is an unsigned value.
   This can be done by referring to a part of X in place
   or by copying to a new temporary with conversion.  */

rtx
convert_to_mode (machine_mode mode, rtx x, int unsignedp)
{
  return convert_modes (mode, VOIDmode, x, unsignedp);
}

/* Return an rtx for a value that would result
   from converting X from mode OLDMODE to mode MODE.
   Both modes may be floating, or both integer.
   UNSIGNEDP is nonzero if X is an unsigned value.

   This can be done by referring to a part of X in place
   or by copying to a new temporary with conversion.

   You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode.  */

rtx
convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
{
  rtx temp;

  /* If FROM is a SUBREG that indicates that we have already done at least
     the required extension, strip it.  */

  if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
      && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
      && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
    x = gen_lowpart (mode, SUBREG_REG (x));

  if (GET_MODE (x) != VOIDmode)
    oldmode = GET_MODE (x);

  if (mode == oldmode)
    return x;

  if (CONST_SCALAR_INT_P (x) && GET_MODE_CLASS (mode) == MODE_INT)
    {
      /* If the caller did not tell us the old mode, then there is not
	 much to do with respect to canonicalization.  We have to
	 assume that all the bits are significant.  */
      if (GET_MODE_CLASS (oldmode) != MODE_INT)
	oldmode = MAX_MODE_INT;
      wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
				   GET_MODE_PRECISION (mode),
				   unsignedp ? UNSIGNED : SIGNED);
      return immed_wide_int_const (w, mode);
    }

  /* We can do this with a gen_lowpart if both desired and current modes
     are integer, and this is either a constant integer, a register, or a
     non-volatile MEM. */
  if (GET_MODE_CLASS (mode) == MODE_INT
      && GET_MODE_CLASS (oldmode) == MODE_INT
      && GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
      && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) mode])
          || (REG_P (x)
              && (!HARD_REGISTER_P (x)
                  || HARD_REGNO_MODE_OK (REGNO (x), mode))
              && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x)))))

   return gen_lowpart (mode, x);

  /* Converting from integer constant into mode is always equivalent to an
     subreg operation.  */
  if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
    {
      gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
      return simplify_gen_subreg (mode, x, oldmode, 0);
    }

  temp = gen_reg_rtx (mode);
  convert_move (temp, x, unsignedp);
  return temp;
}

/* Return the largest alignment we can use for doing a move (or store)
   of MAX_PIECES.  ALIGN is the largest alignment we could use.  */

static unsigned int
alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
{
  machine_mode tmode;

  tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
  if (align >= GET_MODE_ALIGNMENT (tmode))
    align = GET_MODE_ALIGNMENT (tmode);
  else
    {
      machine_mode tmode, xmode;

      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
	   tmode != VOIDmode;
	   xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
	if (GET_MODE_SIZE (tmode) > max_pieces
	    || SLOW_UNALIGNED_ACCESS (tmode, align))
	  break;

      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
    }

  return align;
}

/* Return the widest integer mode no wider than SIZE.  If no such mode
   can be found, return VOIDmode.  */

static machine_mode
widest_int_mode_for_size (unsigned int size)
{
  machine_mode tmode, mode = VOIDmode;

  for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
       tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
    if (GET_MODE_SIZE (tmode) < size)
      mode = tmode;

  return mode;
}

/* Determine whether an operation OP on LEN bytes with alignment ALIGN can
   and should be performed piecewise.  */

static bool
can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
		  enum by_pieces_operation op)
{
  return targetm.use_by_pieces_infrastructure_p (len, align, op,
						 optimize_insn_for_speed_p ());
}

/* Determine whether the LEN bytes can be moved by using several move
   instructions.  Return nonzero if a call to move_by_pieces should
   succeed.  */

bool
can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
{
  return can_do_by_pieces (len, align, MOVE_BY_PIECES);
}

/* Return number of insns required to perform operation OP by pieces
   for L bytes.  ALIGN (in bits) is maximum alignment we can assume.  */

unsigned HOST_WIDE_INT
by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
		  unsigned int max_size, by_pieces_operation op)
{
  unsigned HOST_WIDE_INT n_insns = 0;

  align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);

  while (max_size > 1 && l > 0)
    {
      machine_mode mode;
      enum insn_code icode;

      mode = widest_int_mode_for_size (max_size);

      if (mode == VOIDmode)
	break;
      unsigned int modesize = GET_MODE_SIZE (mode);

      icode = optab_handler (mov_optab, mode);
      if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
	{
	  unsigned HOST_WIDE_INT n_pieces = l / modesize;
	  l %= modesize;
	  switch (op)
	    {
	    default:
	      n_insns += n_pieces;
	      break;

	    case COMPARE_BY_PIECES:
	      int batch = targetm.compare_by_pieces_branch_ratio (mode);
	      int batch_ops = 4 * batch - 1;
	      unsigned HOST_WIDE_INT full = n_pieces / batch;
	      n_insns += full * batch_ops;
	      if (n_pieces % batch != 0)
		n_insns++;
	      break;

	    }
	}
      max_size = modesize;
    }

  gcc_assert (!l);
  return n_insns;
}

/* Used when performing piecewise block operations, holds information
   about one of the memory objects involved.  The member functions
   can be used to generate code for loading from the object and
   updating the address when iterating.  */

class pieces_addr
{
  /* The object being referenced, a MEM.  Can be NULL_RTX to indicate
     stack pushes.  */
  rtx m_obj;
  /* The address of the object.  Can differ from that seen in the
     MEM rtx if we copied the address to a register.  */
  rtx m_addr;
  /* Nonzero if the address on the object has an autoincrement already,
     signifies whether that was an increment or decrement.  */
  signed char m_addr_inc;
  /* Nonzero if we intend to use autoinc without the address already
     having autoinc form.  We will insert add insns around each memory
     reference, expecting later passes to form autoinc addressing modes.
     The only supported options are predecrement and postincrement.  */
  signed char m_explicit_inc;
  /* True if we have either of the two possible cases of using
     autoincrement.  */
  bool m_auto;
  /* True if this is an address to be used for load operations rather
     than stores.  */
  bool m_is_load;

  /* Optionally, a function to obtain constants for any given offset into
     the objects, and data associated with it.  */
  by_pieces_constfn m_constfn;
  void *m_cfndata;
public:
  pieces_addr (rtx, bool, by_pieces_constfn, void *);
  rtx adjust (machine_mode, HOST_WIDE_INT);
  void increment_address (HOST_WIDE_INT);
  void maybe_predec (HOST_WIDE_INT);
  void maybe_postinc (HOST_WIDE_INT);
  void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
  int get_addr_inc ()
  {
    return m_addr_inc;
  }
};

/* Initialize a pieces_addr structure from an object OBJ.  IS_LOAD is
   true if the operation to be performed on this object is a load
   rather than a store.  For stores, OBJ can be NULL, in which case we
   assume the operation is a stack push.  For loads, the optional
   CONSTFN and its associated CFNDATA can be used in place of the
   memory load.  */

pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
			  void *cfndata)
  : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
{
  m_addr_inc = 0;
  m_auto = false;
  if (obj)
    {
      rtx addr = XEXP (obj, 0);
      rtx_code code = GET_CODE (addr);
      m_addr = addr;
      bool dec = code == PRE_DEC || code == POST_DEC;
      bool inc = code == PRE_INC || code == POST_INC;
      m_auto = inc || dec;
      if (m_auto)
	m_addr_inc = dec ? -1 : 1;

      /* While we have always looked for these codes here, the code
	 implementing the memory operation has never handled them.
	 Support could be added later if necessary or beneficial.  */
      gcc_assert (code != PRE_INC && code != POST_DEC);
    }
  else
    {
      m_addr = NULL_RTX;
      if (!is_load)
	{
	  m_auto = true;
	  if (STACK_GROWS_DOWNWARD)
	    m_addr_inc = -1;
	  else
	    m_addr_inc = 1;
	}
      else
	gcc_assert (constfn != NULL);
    }
  m_explicit_inc = 0;
  if (constfn)
    gcc_assert (is_load);
}

/* Decide whether to use autoinc for an address involved in a memory op.
   MODE is the mode of the accesses, REVERSE is true if we've decided to
   perform the operation starting from the end, and LEN is the length of
   the operation.  Don't override an earlier decision to set m_auto.  */

void
pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
			     HOST_WIDE_INT len)
{
  if (m_auto || m_obj == NULL_RTX)
    return;

  bool use_predec = (m_is_load
		     ? USE_LOAD_PRE_DECREMENT (mode)
		     : USE_STORE_PRE_DECREMENT (mode));
  bool use_postinc = (m_is_load
		      ? USE_LOAD_POST_INCREMENT (mode)
		      : USE_STORE_POST_INCREMENT (mode));
  machine_mode addr_mode = get_address_mode (m_obj);

  if (use_predec && reverse)
    {
      m_addr = copy_to_mode_reg (addr_mode,
				 plus_constant (addr_mode,
						m_addr, len));
      m_auto = true;
      m_explicit_inc = -1;
    }
  else if (use_postinc && !reverse)
    {
      m_addr = copy_to_mode_reg (addr_mode, m_addr);
      m_auto = true;
      m_explicit_inc = 1;
    }
  else if (CONSTANT_P (m_addr))
    m_addr = copy_to_mode_reg (addr_mode, m_addr);
}

/* Adjust the address to refer to the data at OFFSET in MODE.  If we
   are using autoincrement for this address, we don't add the offset,
   but we still modify the MEM's properties.  */

rtx
pieces_addr::adjust (machine_mode mode, HOST_WIDE_INT offset)
{
  if (m_constfn)
    return m_constfn (m_cfndata, offset, mode);
  if (m_obj == NULL_RTX)
    return NULL_RTX;
  if (m_auto)
    return adjust_automodify_address (m_obj, mode, m_addr, offset);
  else
    return adjust_address (m_obj, mode, offset);
}

/* Emit an add instruction to increment the address by SIZE.  */

void
pieces_addr::increment_address (HOST_WIDE_INT size)
{
  rtx amount = gen_int_mode (size, GET_MODE (m_addr));
  emit_insn (gen_add2_insn (m_addr, amount));
}

/* If we are supposed to decrement the address after each access, emit code
   to do so now.  Increment by SIZE (which has should have the correct sign
   already).  */

void
pieces_addr::maybe_predec (HOST_WIDE_INT size)
{
  if (m_explicit_inc >= 0)
    return;
  gcc_assert (HAVE_PRE_DECREMENT);
  increment_address (size);
}

/* If we are supposed to decrement the address after each access, emit code
   to do so now.  Increment by SIZE.  */

void
pieces_addr::maybe_postinc (HOST_WIDE_INT size)
{
  if (m_explicit_inc <= 0)
    return;
  gcc_assert (HAVE_POST_INCREMENT);
  increment_address (size);
}

/* This structure is used by do_op_by_pieces to describe the operation
   to be performed.  */

class op_by_pieces_d
{
 protected:
  pieces_addr m_to, m_from;
  unsigned HOST_WIDE_INT m_len;
  HOST_WIDE_INT m_offset;
  unsigned int m_align;
  unsigned int m_max_size;
  bool m_reverse;

  /* Virtual functions, overriden by derived classes for the specific
     operation.  */
  virtual void generate (rtx, rtx, machine_mode) = 0;
  virtual bool prepare_mode (machine_mode, unsigned int) = 0;
  virtual void finish_mode (machine_mode)
  {
  }

 public:
  op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
		  unsigned HOST_WIDE_INT, unsigned int);
  void run ();
};

/* The constructor for an op_by_pieces_d structure.  We require two
   objects named TO and FROM, which are identified as loads or stores
   by TO_LOAD and FROM_LOAD.  If FROM is a load, the optional FROM_CFN
   and its associated FROM_CFN_DATA can be used to replace loads with
   constant values.  LEN describes the length of the operation.  */

op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
				rtx from, bool from_load,
				by_pieces_constfn from_cfn,
				void *from_cfn_data,
				unsigned HOST_WIDE_INT len,
				unsigned int align)
  : m_to (to, to_load, NULL, NULL),
    m_from (from, from_load, from_cfn, from_cfn_data),
    m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
{
  int toi = m_to.get_addr_inc ();
  int fromi = m_from.get_addr_inc ();
  if (toi >= 0 && fromi >= 0)
    m_reverse = false;
  else if (toi <= 0 && fromi <= 0)
    m_reverse = true;
  else
    gcc_unreachable ();

  m_offset = m_reverse ? len : 0;
  align = MIN (to ? MEM_ALIGN (to) : align,
	       from ? MEM_ALIGN (from) : align);

  /* If copying requires more than two move insns,
     copy addresses to registers (to make displacements shorter)
     and use post-increment if available.  */
  if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
    {
      /* Find the mode of the largest comparison.  */
      machine_mode mode = widest_int_mode_for_size (m_max_size);

      m_from.decide_autoinc (mode, m_reverse, len);
      m_to.decide_autoinc (mode, m_reverse, len);
    }

  align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
  m_align = align;
}

/* This function contains the main loop used for expanding a block
   operation.  First move what we can in the largest integer mode,
   then go to successively smaller modes.  For every access, call
   GENFUN with the two operands and the EXTRA_DATA.  */

void
op_by_pieces_d::run ()
{
  while (m_max_size > 1 && m_len > 0)
    {
      machine_mode mode = widest_int_mode_for_size (m_max_size);

      if (mode == VOIDmode)
	break;

      if (prepare_mode (mode, m_align))
	{
	  unsigned int size = GET_MODE_SIZE (mode);
	  rtx to1 = NULL_RTX, from1;

	  while (m_len >= size)
	    {
	      if (m_reverse)
		m_offset -= size;

	      to1 = m_to.adjust (mode, m_offset);
	      from1 = m_from.adjust (mode, m_offset);

	      m_to.maybe_predec (-(HOST_WIDE_INT)size);
	      m_from.maybe_predec (-(HOST_WIDE_INT)size);

	      generate (to1, from1, mode);

	      m_to.maybe_postinc (size);
	      m_from.maybe_postinc (size);

	      if (!m_reverse)
		m_offset += size;

	      m_len -= size;
	    }

	  finish_mode (mode);
	}

      m_max_size = GET_MODE_SIZE (mode);
    }

  /* The code above should have handled everything.  */
  gcc_assert (!m_len);
}

/* Derived class from op_by_pieces_d, providing support for block move
   operations.  */

class move_by_pieces_d : public op_by_pieces_d
{
  insn_gen_fn m_gen_fun;
  void generate (rtx, rtx, machine_mode);
  bool prepare_mode (machine_mode, unsigned int);

 public:
  move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
		    unsigned int align)
    : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
  {
  }
  rtx finish_endp (int);
};

/* Return true if MODE can be used for a set of copies, given an
   alignment ALIGN.  Prepare whatever data is necessary for later
   calls to generate.  */

bool
move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
{
  insn_code icode = optab_handler (mov_optab, mode);
  m_gen_fun = GEN_FCN (icode);
  return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
}

/* A callback used when iterating for a compare_by_pieces_operation.
   OP0 and OP1 are the values that have been loaded and should be
   compared in MODE.  If OP0 is NULL, this means we should generate a
   push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
   gen function that should be used to generate the mode.  */

void
move_by_pieces_d::generate (rtx op0, rtx op1,
			    machine_mode mode ATTRIBUTE_UNUSED)
{
#ifdef PUSH_ROUNDING
  if (op0 == NULL_RTX)
    {
      emit_single_push_insn (mode, op1, NULL);
      return;
    }
#endif
  emit_insn (m_gen_fun (op0, op1));
}

/* Perform the final adjustment at the end of a string to obtain the
   correct return value for the block operation.  If ENDP is 1 return
   memory at the end ala mempcpy, and if ENDP is 2 return memory the
   end minus one byte ala stpcpy.  */

rtx
move_by_pieces_d::finish_endp (int endp)
{
  gcc_assert (!m_reverse);
  if (endp == 2)
    {
      m_to.maybe_postinc (-1);
      --m_offset;
    }
  return m_to.adjust (QImode, m_offset);
}

/* Generate several move instructions to copy LEN bytes from block FROM to
   block TO.  (These are MEM rtx's with BLKmode).

   If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
   used to push FROM to the stack.

   ALIGN is maximum stack alignment we can assume.

   If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
   mempcpy, and if ENDP is 2 return memory the end minus one byte ala
   stpcpy.  */

rtx
move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
		unsigned int align, int endp)
{
#ifndef PUSH_ROUNDING
  if (to == NULL)
    gcc_unreachable ();
#endif

  move_by_pieces_d data (to, from, len, align);

  data.run ();

  if (endp)
    return data.finish_endp (endp);
  else
    return to;
}

/* Derived class from op_by_pieces_d, providing support for block move
   operations.  */

class store_by_pieces_d : public op_by_pieces_d
{
  insn_gen_fn m_gen_fun;
  void generate (rtx, rtx, machine_mode);
  bool prepare_mode (machine_mode, unsigned int);

 public:
  store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
		     unsigned HOST_WIDE_INT len, unsigned int align)
    : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
  {
  }
  rtx finish_endp (int);
};

/* Return true if MODE can be used for a set of stores, given an
   alignment ALIGN.  Prepare whatever data is necessary for later
   calls to generate.  */

bool
store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
{
  insn_code icode = optab_handler (mov_optab, mode);
  m_gen_fun = GEN_FCN (icode);
  return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
}

/* A callback used when iterating for a store_by_pieces_operation.
   OP0 and OP1 are the values that have been loaded and should be
   compared in MODE.  If OP0 is NULL, this means we should generate a
   push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
   gen function that should be used to generate the mode.  */

void
store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
{
  emit_insn (m_gen_fun (op0, op1));
}

/* Perform the final adjustment at the end of a string to obtain the
   correct return value for the block operation.  If ENDP is 1 return
   memory at the end ala mempcpy, and if ENDP is 2 return memory the
   end minus one byte ala stpcpy.  */

rtx
store_by_pieces_d::finish_endp (int endp)
{
  gcc_assert (!m_reverse);
  if (endp == 2)
    {
      m_to.maybe_postinc (-1);
      --m_offset;
    }
  return m_to.adjust (QImode, m_offset);
}

/* Determine whether the LEN bytes generated by CONSTFUN can be
   stored to memory using several move instructions.  CONSTFUNDATA is
   a pointer which will be passed as argument in every CONSTFUN call.
   ALIGN is maximum alignment we can assume.  MEMSETP is true if this is
   a memset operation and false if it's a copy of a constant string.
   Return nonzero if a call to store_by_pieces should succeed.  */

int
can_store_by_pieces (unsigned HOST_WIDE_INT len,
		     rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode),
		     void *constfundata, unsigned int align, bool memsetp)
{
  unsigned HOST_WIDE_INT l;
  unsigned int max_size;
  HOST_WIDE_INT offset = 0;
  machine_mode mode;
  enum insn_code icode;
  int reverse;
  /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it.  */
  rtx cst ATTRIBUTE_UNUSED;

  if (len == 0)
    return 1;

  if (!targetm.use_by_pieces_infrastructure_p (len, align,
					       memsetp
						 ? SET_BY_PIECES
						 : STORE_BY_PIECES,
					       optimize_insn_for_speed_p ()))
    return 0;

  align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);

  /* We would first store what we can in the largest integer mode, then go to
     successively smaller modes.  */

  for (reverse = 0;
       reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
       reverse++)
    {
      l = len;
      max_size = STORE_MAX_PIECES + 1;
      while (max_size > 1 && l > 0)
	{
	  mode = widest_int_mode_for_size (max_size);

	  if (mode == VOIDmode)
	    break;

	  icode = optab_handler (mov_optab, mode);
	  if (icode != CODE_FOR_nothing
	      && align >= GET_MODE_ALIGNMENT (mode))
	    {
	      unsigned int size = GET_MODE_SIZE (mode);

	      while (l >= size)
		{
		  if (reverse)
		    offset -= size;

		  cst = (*constfun) (constfundata, offset, mode);
		  if (!targetm.legitimate_constant_p (mode, cst))
		    return 0;

		  if (!reverse)
		    offset += size;

		  l -= size;
		}
	    }

	  max_size = GET_MODE_SIZE (mode);
	}

      /* The code above should have handled everything.  */
      gcc_assert (!l);
    }

  return 1;
}

/* Generate several move instructions to store LEN bytes generated by
   CONSTFUN to block TO.  (A MEM rtx with BLKmode).  CONSTFUNDATA is a
   pointer which will be passed as argument in every CONSTFUN call.
   ALIGN is maximum alignment we can assume.  MEMSETP is true if this is
   a memset operation and false if it's a copy of a constant string.
   If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
   mempcpy, and if ENDP is 2 return memory the end minus one byte ala
   stpcpy.  */

rtx
store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
		 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode),
		 void *constfundata, unsigned int align, bool memsetp, int endp)
{
  if (len == 0)
    {
      gcc_assert (endp != 2);
      return to;
    }

  gcc_assert (targetm.use_by_pieces_infrastructure_p
		(len, align,
		 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
		 optimize_insn_for_speed_p ()));

  store_by_pieces_d data (to, constfun, constfundata, len, align);
  data.run ();

  if (endp)
    return data.finish_endp (endp);
  else
    return to;
}

/* Callback routine for clear_by_pieces.
   Return const0_rtx unconditionally.  */

static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT, machine_mode)
{
  return const0_rtx;
}

/* Generate several move instructions to clear LEN bytes of block TO.  (A MEM
   rtx with BLKmode).  ALIGN is maximum alignment we can assume.  */

static void
clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
{
  if (len == 0)
    return;

  store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
  data.run ();
}

/* Context used by compare_by_pieces_genfn.  It stores the fail label
   to jump to in case of miscomparison, and for branch ratios greater than 1,
   it stores an accumulator and the current and maximum counts before
   emitting another branch.  */

class compare_by_pieces_d : public op_by_pieces_d
{
  rtx_code_label *m_fail_label;
  rtx m_accumulator;
  int m_count, m_batch;

  void generate (rtx, rtx, machine_mode);
  bool prepare_mode (machine_mode, unsigned int);
  void finish_mode (machine_mode);
 public:
  compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
		       void *op1_cfn_data, HOST_WIDE_INT len, int align,
		       rtx_code_label *fail_label)
    : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
  {
    m_fail_label = fail_label;
  }
};

/* A callback used when iterating for a compare_by_pieces_operation.
   OP0 and OP1 are the values that have been loaded and should be
   compared in MODE.  DATA holds a pointer to the compare_by_pieces_data
   context structure.  */

void
compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
{
  if (m_batch > 1)
    {
      rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
			       true, OPTAB_LIB_WIDEN);
      if (m_count != 0)
	temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
			     true, OPTAB_LIB_WIDEN);
      m_accumulator = temp;

      if (++m_count < m_batch)
	return;

      m_count = 0;
      op0 = m_accumulator;
      op1 = const0_rtx;
      m_accumulator = NULL_RTX;
    }
  do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
			   m_fail_label, -1);
}

/* Return true if MODE can be used for a set of moves and comparisons,
   given an alignment ALIGN.  Prepare whatever data is necessary for
   later calls to generate.  */

bool
compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
{
  insn_code icode = optab_handler (mov_optab, mode);
  if (icode == CODE_FOR_nothing
      || align < GET_MODE_ALIGNMENT (mode)
      || !can_compare_p (EQ, mode, ccp_jump))
    return false;
  m_batch = targetm.compare_by_pieces_branch_ratio (mode);
  if (m_batch < 0)
    return false;
  m_accumulator = NULL_RTX;
  m_count = 0;
  return true;
}

/* Called after expanding a series of comparisons in MODE.  If we have
   accumulated results for which we haven't emitted a branch yet, do
   so now.  */

void
compare_by_pieces_d::finish_mode (machine_mode mode)
{
  if (m_accumulator != NULL_RTX)
    do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
			     NULL_RTX, NULL, m_fail_label, -1);
}

/* Generate several move instructions to compare LEN bytes from blocks
   ARG0 and ARG1.  (These are MEM rtx's with BLKmode).

   If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
   used to push FROM to the stack.

   ALIGN is maximum stack alignment we can assume.

   Optionally, the caller can pass a constfn and associated data in A1_CFN
   and A1_CFN_DATA. describing that the second operand being compared is a
   known constant and how to obtain its data.  */

static rtx
compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
		   rtx target, unsigned int align,
		   by_pieces_constfn a1_cfn, void *a1_cfn_data)
{
  rtx_code_label *fail_label = gen_label_rtx ();
  rtx_code_label *end_label = gen_label_rtx ();

  if (target == NULL_RTX
      || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
    target = gen_reg_rtx (TYPE_MODE (integer_type_node));

  compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
			    fail_label);

  data.run ();

  emit_move_insn (target, const0_rtx);
  emit_jump (end_label);
  emit_barrier ();
  emit_label (fail_label);
  emit_move_insn (target, const1_rtx);
  emit_label (end_label);

  return target;
}

/* Emit code to move a block Y to a block X.  This may be done with
   string-move instructions, with multiple scalar move instructions,
   or with a library call.

   Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
   SIZE is an rtx that says how long they are.
   ALIGN is the maximum alignment we can assume they have.
   METHOD describes what kind of copy this is, and what mechanisms may be used.
   MIN_SIZE is the minimal size of block to move
   MAX_SIZE is the maximal size of block to move, if it can not be represented
   in unsigned HOST_WIDE_INT, than it is mask of all ones.

   Return the address of the new block, if memcpy is called and returns it,
   0 otherwise.  */

rtx
emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
		       unsigned int expected_align, HOST_WIDE_INT expected_size,
		       unsigned HOST_WIDE_INT min_size,
		       unsigned HOST_WIDE_INT max_size,
		       unsigned HOST_WIDE_INT probable_max_size)
{
  bool may_use_call;
  rtx retval = 0;
  unsigned int align;

  gcc_assert (size);
  if (CONST_INT_P (size) && INTVAL (size) == 0)
    return 0;

  switch (method)
    {
    case BLOCK_OP_NORMAL:
    case BLOCK_OP_TAILCALL:
      may_use_call = true;
      break;

    case BLOCK_OP_CALL_PARM:
      may_use_call = block_move_libcall_safe_for_call_parm ();

      /* Make inhibit_defer_pop nonzero around the library call
	 to force it to pop the arguments right away.  */
      NO_DEFER_POP;
      break;

    case BLOCK_OP_NO_LIBCALL:
      may_use_call = false;
      break;

    default:
      gcc_unreachable ();
    }

  gcc_assert (MEM_P (x) && MEM_P (y));
  align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
  gcc_assert (align >= BITS_PER_UNIT);

  /* Make sure we've got BLKmode addresses; store_one_arg can decide that
     block copy is more efficient for other large modes, e.g. DCmode.  */
  x = adjust_address (x, BLKmode, 0);
  y = adjust_address (y, BLKmode, 0);

  /* Set MEM_SIZE as appropriate for this block copy.  The main place this
     can be incorrect is coming from __builtin_memcpy.  */
  if (CONST_INT_P (size))
    {
      x = shallow_copy_rtx (x);
      y = shallow_copy_rtx (y);
      set_mem_size (x, INTVAL (size));
      set_mem_size (y, INTVAL (size));
    }

  if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align))
    move_by_pieces (x, y, INTVAL (size), align, 0);
  else if (emit_block_move_via_movmem (x, y, size, align,
				       expected_align, expected_size,
				       min_size, max_size, probable_max_size))
    ;
  else if (may_use_call
	   && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
	   && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
    {
      /* Since x and y are passed to a libcall, mark the corresponding
	 tree EXPR as addressable.  */
      tree y_expr = MEM_EXPR (y);
      tree x_expr = MEM_EXPR (x);
      if (y_expr)
	mark_addressable (y_expr);
      if (x_expr)
	mark_addressable (x_expr);
      retval = emit_block_copy_via_libcall (x, y, size,
					    method == BLOCK_OP_TAILCALL);
    }

  else
    emit_block_move_via_loop (x, y, size, align);

  if (method == BLOCK_OP_CALL_PARM)
    OK_DEFER_POP;

  return retval;
}

rtx
emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
{
  unsigned HOST_WIDE_INT max, min = 0;
  if (GET_CODE (size) == CONST_INT)
    min = max = UINTVAL (size);
  else
    max = GET_MODE_MASK (GET_MODE (size));
  return emit_block_move_hints (x, y, size, method, 0, -1,
				min, max, max);
}

/* A subroutine of emit_block_move.  Returns true if calling the
   block move libcall will not clobber any parameters which may have
   already been placed on the stack.  */

static bool
block_move_libcall_safe_for_call_parm (void)
{
#if defined (REG_PARM_STACK_SPACE)
  tree fn;
#endif

  /* If arguments are pushed on the stack, then they're safe.  */
  if (PUSH_ARGS)
    return true;

  /* If registers go on the stack anyway, any argument is sure to clobber
     an outgoing argument.  */
#if defined (REG_PARM_STACK_SPACE)
  fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
  /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
     depend on its argument.  */
  (void) fn;
  if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
      && REG_PARM_STACK_SPACE (fn) != 0)
    return false;
#endif

  /* If any argument goes in memory, then it might clobber an outgoing
     argument.  */
  {
    CUMULATIVE_ARGS args_so_far_v;
    cumulative_args_t args_so_far;
    tree fn, arg;

    fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
    INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
    args_so_far = pack_cumulative_args (&args_so_far_v);

    arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
    for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
      {
	machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
	rtx tmp = targetm.calls.function_arg (args_so_far, mode,
					      NULL_TREE, true);
	if (!tmp || !REG_P (tmp))
	  return false;
	if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
	  return false;
	targetm.calls.function_arg_advance (args_so_far, mode,
					    NULL_TREE, true);
      }
  }
  return true;
}

/* A subroutine of emit_block_move.  Expand a movmem pattern;
   return true if successful.  */

static bool
emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
			    unsigned int expected_align, HOST_WIDE_INT expected_size,
			    unsigned HOST_WIDE_INT min_size,
			    unsigned HOST_WIDE_INT max_size,
			    unsigned HOST_WIDE_INT probable_max_size)
{
  int save_volatile_ok = volatile_ok;
  machine_mode mode;

  if (expected_align < align)
    expected_align = align;
  if (expected_size != -1)
    {
      if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
	expected_size = probable_max_size;
      if ((unsigned HOST_WIDE_INT)expected_size < min_size)
	expected_size = min_size;
    }

  /* Since this is a move insn, we don't care about volatility.  */
  volatile_ok = 1;

  /* Try the most limited insn first, because there's no point
     including more than one in the machine description unless
     the more limited one has some advantage.  */

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      enum insn_code code = direct_optab_handler (movmem_optab, mode);

      if (code != CODE_FOR_nothing
	  /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
	     here because if SIZE is less than the mode mask, as it is
	     returned by the macro, it will definitely be less than the
	     actual mode mask.  Since SIZE is within the Pmode address
	     space, we limit MODE to Pmode.  */
	  && ((CONST_INT_P (size)
	       && ((unsigned HOST_WIDE_INT) INTVAL (size)
		   <= (GET_MODE_MASK (mode) >> 1)))
	      || max_size <= (GET_MODE_MASK (mode) >> 1)
	      || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
	{
	  struct expand_operand ops[9];
	  unsigned int nops;

	  /* ??? When called via emit_block_move_for_call, it'd be
	     nice if there were some way to inform the backend, so
	     that it doesn't fail the expansion because it thinks
	     emitting the libcall would be more efficient.  */
	  nops = insn_data[(int) code].n_generator_args;
	  gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);

	  create_fixed_operand (&ops[0], x);
	  create_fixed_operand (&ops[1], y);
	  /* The check above guarantees that this size conversion is valid.  */
	  create_convert_operand_to (&ops[2], size, mode, true);
	  create_integer_operand (&ops[3], align / BITS_PER_UNIT);
	  if (nops >= 6)
	    {
	      create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
	      create_integer_operand (&ops[5], expected_size);
	    }
	  if (nops >= 8)
	    {
	      create_integer_operand (&ops[6], min_size);
	      /* If we can not represent the maximal size,
		 make parameter NULL.  */
	      if ((HOST_WIDE_INT) max_size != -1)
	        create_integer_operand (&ops[7], max_size);
	      else
		create_fixed_operand (&ops[7], NULL);
	    }
	  if (nops == 9)
	    {
	      /* If we can not represent the maximal size,
		 make parameter NULL.  */
	      if ((HOST_WIDE_INT) probable_max_size != -1)
	        create_integer_operand (&ops[8], probable_max_size);
	      else
		create_fixed_operand (&ops[8], NULL);
	    }
	  if (maybe_expand_insn (code, nops, ops))
	    {
	      volatile_ok = save_volatile_ok;
	      return true;
	    }
	}
    }

  volatile_ok = save_volatile_ok;
  return false;
}

/* A subroutine of emit_block_move.  Copy the data via an explicit
   loop.  This is used only when libcalls are forbidden.  */
/* ??? It'd be nice to copy in hunks larger than QImode.  */

static void
emit_block_move_via_loop (rtx x, rtx y, rtx size,
			  unsigned int align ATTRIBUTE_UNUSED)
{
  rtx_code_label *cmp_label, *top_label;
  rtx iter, x_addr, y_addr, tmp;
  machine_mode x_addr_mode = get_address_mode (x);
  machine_mode y_addr_mode = get_address_mode (y);
  machine_mode iter_mode;

  iter_mode = GET_MODE (size);
  if (iter_mode == VOIDmode)
    iter_mode = word_mode;

  top_label = gen_label_rtx ();
  cmp_label = gen_label_rtx ();
  iter = gen_reg_rtx (iter_mode);

  emit_move_insn (iter, const0_rtx);

  x_addr = force_operand (XEXP (x, 0), NULL_RTX);
  y_addr = force_operand (XEXP (y, 0), NULL_RTX);
  do_pending_stack_adjust ();

  emit_jump (cmp_label);
  emit_label (top_label);

  tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
  x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);

  if (x_addr_mode != y_addr_mode)
    tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
  y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);

  x = change_address (x, QImode, x_addr);
  y = change_address (y, QImode, y_addr);

  emit_move_insn (x, y);

  tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
			     true, OPTAB_LIB_WIDEN);
  if (tmp != iter)
    emit_move_insn (iter, tmp);

  emit_label (cmp_label);

  emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
			   true, top_label, REG_BR_PROB_BASE * 90 / 100);
}

/* Expand a call to memcpy or memmove or memcmp, and return the result.
   TAILCALL is true if this is a tail call.  */

rtx
emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
			   rtx size, bool tailcall)
{
  rtx dst_addr, src_addr;
  tree call_expr, dst_tree, src_tree, size_tree;
  machine_mode size_mode;

  dst_addr = copy_addr_to_reg (XEXP (dst, 0));
  dst_addr = convert_memory_address (ptr_mode, dst_addr);
  dst_tree = make_tree (ptr_type_node, dst_addr);

  src_addr = copy_addr_to_reg (XEXP (src, 0));
  src_addr = convert_memory_address (ptr_mode, src_addr);
  src_tree = make_tree (ptr_type_node, src_addr);

  size_mode = TYPE_MODE (sizetype);
  size = convert_to_mode (size_mode, size, 1);
  size = copy_to_mode_reg (size_mode, size);
  size_tree = make_tree (sizetype, size);

  /* It is incorrect to use the libcall calling conventions for calls to
     memcpy/memmove/memcmp because they can be provided by the user.  */
  tree fn = builtin_decl_implicit (fncode);
  call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
  CALL_EXPR_TAILCALL (call_expr) = tailcall;

  return expand_call (call_expr, NULL_RTX, false);
}

/* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
   ARG3_TYPE is the type of ARG3_RTX.  Return the result rtx on success,
   otherwise return null.  */

rtx
expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
			  rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
			  HOST_WIDE_INT align)
{
  machine_mode insn_mode = insn_data[icode].operand[0].mode;

  if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
    target = NULL_RTX;

  struct expand_operand ops[5];
  create_output_operand (&ops[0], target, insn_mode);
  create_fixed_operand (&ops[1], arg1_rtx);
  create_fixed_operand (&ops[2], arg2_rtx);
  create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
			       TYPE_UNSIGNED (arg3_type));
  create_integer_operand (&ops[4], align);
  if (maybe_expand_insn (icode, 5, ops))
    return ops[0].value;
  return NULL_RTX;
}

/* Expand a block compare between X and Y with length LEN using the
   cmpmem optab, placing the result in TARGET.  LEN_TYPE is the type
   of the expression that was used to calculate the length.  ALIGN
   gives the known minimum common alignment.  */

static rtx
emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
			   unsigned align)
{
  /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
     implementing memcmp because it will stop if it encounters two
     zero bytes.  */
  insn_code icode = direct_optab_handler (cmpmem_optab, SImode);

  if (icode == CODE_FOR_nothing)
    return NULL_RTX;

  return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
}

/* Emit code to compare a block Y to a block X.  This may be done with
   string-compare instructions, with multiple scalar instructions,
   or with a library call.

   Both X and Y must be MEM rtx's.  LEN is an rtx that says how long
   they are.  LEN_TYPE is the type of the expression that was used to
   calculate it.

   If EQUALITY_ONLY is true, it means we don't have to return the tri-state
   value of a normal memcmp call, instead we can just compare for equality.
   If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
   returning NULL_RTX.

   Optionally, the caller can pass a constfn and associated data in Y_CFN
   and Y_CFN_DATA. describing that the second operand being compared is a
   known constant and how to obtain its data.
   Return the result of the comparison, or NULL_RTX if we failed to
   perform the operation.  */

rtx
emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
		      bool equality_only, by_pieces_constfn y_cfn,
		      void *y_cfndata)
{
  rtx result = 0;

  if (CONST_INT_P (len) && INTVAL (len) == 0)
    return const0_rtx;

  gcc_assert (MEM_P (x) && MEM_P (y));
  unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
  gcc_assert (align >= BITS_PER_UNIT);

  x = adjust_address (x, BLKmode, 0);
  y = adjust_address (y, BLKmode, 0);

  if (equality_only
      && CONST_INT_P (len)
      && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
    result = compare_by_pieces (x, y, INTVAL (len), target, align,
				y_cfn, y_cfndata);
  else
    result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);

  return result;
}

/* Copy all or part of a value X into registers starting at REGNO.
   The number of registers to be filled is NREGS.  */

void
move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
{
  if (nregs == 0)
    return;

  if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
    x = validize_mem (force_const_mem (mode, x));

  /* See if the machine can do this with a load multiple insn.  */
  if (targetm.have_load_multiple ())
    {
      rtx_insn *last = get_last_insn ();
      rtx first = gen_rtx_REG (word_mode, regno);
      if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
						     GEN_INT (nregs)))
	{
	  emit_insn (pat);
	  return;
	}
      else
	delete_insns_since (last);
    }

  for (int i = 0; i < nregs; i++)
    emit_move_insn (gen_rtx_REG (word_mode, regno + i),
		    operand_subword_force (x, i, mode));
}

/* Copy all or part of a BLKmode value X out of registers starting at REGNO.
   The number of registers to be filled is NREGS.  */

void
move_block_from_reg (int regno, rtx x, int nregs)
{
  if (nregs == 0)
    return;

  /* See if the machine can do this with a store multiple insn.  */
  if (targetm.have_store_multiple ())
    {
      rtx_insn *last = get_last_insn ();
      rtx first = gen_rtx_REG (word_mode, regno);
      if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
						      GEN_INT (nregs)))
	{
	  emit_insn (pat);
	  return;
	}
      else
	delete_insns_since (last);
    }

  for (int i = 0; i < nregs; i++)
    {
      rtx tem = operand_subword (x, i, 1, BLKmode);

      gcc_assert (tem);

      emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
    }
}

/* Generate a PARALLEL rtx for a new non-consecutive group of registers from
   ORIG, where ORIG is a non-consecutive group of registers represented by
   a PARALLEL.  The clone is identical to the original except in that the
   original set of registers is replaced by a new set of pseudo registers.
   The new set has the same modes as the original set.  */

rtx
gen_group_rtx (rtx orig)
{
  int i, length;
  rtx *tmps;

  gcc_assert (GET_CODE (orig) == PARALLEL);

  length = XVECLEN (orig, 0);
  tmps = XALLOCAVEC (rtx, length);

  /* Skip a NULL entry in first slot.  */
  i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;

  if (i)
    tmps[0] = 0;

  for (; i < length; i++)
    {
      machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
      rtx offset = XEXP (XVECEXP (orig, 0, i), 1);

      tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
    }

  return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
}

/* A subroutine of emit_group_load.  Arguments as for emit_group_load,
   except that values are placed in TMPS[i], and must later be moved
   into corresponding XEXP (XVECEXP (DST, 0, i), 0) element.  */

static void
emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
{
  rtx src;
  int start, i;
  machine_mode m = GET_MODE (orig_src);

  gcc_assert (GET_CODE (dst) == PARALLEL);

  if (m != VOIDmode
      && !SCALAR_INT_MODE_P (m)
      && !MEM_P (orig_src)
      && GET_CODE (orig_src) != CONCAT)
    {
      machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
      if (imode == BLKmode)
	src = assign_stack_temp (GET_MODE (orig_src), ssize);
      else
	src = gen_reg_rtx (imode);
      if (imode != BLKmode)
	src = gen_lowpart (GET_MODE (orig_src), src);
      emit_move_insn (src, orig_src);
      /* ...and back again.  */
      if (imode != BLKmode)
	src = gen_lowpart (imode, src);
      emit_group_load_1 (tmps, dst, src, type, ssize);
      return;
    }

  /* Check for a NULL entry, used to indicate that the parameter goes
     both on the stack and in registers.  */
  if (XEXP (XVECEXP (dst, 0, 0), 0))
    start = 0;
  else
    start = 1;

  /* Process the pieces.  */
  for (i = start; i < XVECLEN (dst, 0); i++)
    {
      machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
      HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
      unsigned int bytelen = GET_MODE_SIZE (mode);
      int shift = 0;

      /* Handle trailing fragments that run over the size of the struct.  */
      if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
	{
	  /* Arrange to shift the fragment to where it belongs.
	     extract_bit_field loads to the lsb of the reg.  */
	  if (
#ifdef BLOCK_REG_PADDING
	      BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
	      == (BYTES_BIG_ENDIAN ? upward : downward)
#else
	      BYTES_BIG_ENDIAN
#endif
	      )
	    shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
	  bytelen = ssize - bytepos;
	  gcc_assert (bytelen > 0);
	}

      /* If we won't be loading directly from memory, protect the real source
	 from strange tricks we might play; but make sure that the source can
	 be loaded directly into the destination.  */
      src = orig_src;
      if (!MEM_P (orig_src)
	  && (!CONSTANT_P (orig_src)
	      || (GET_MODE (orig_src) != mode
		  && GET_MODE (orig_src) != VOIDmode)))
	{
	  if (GET_MODE (orig_src) == VOIDmode)
	    src = gen_reg_rtx (mode);
	  else
	    src = gen_reg_rtx (GET_MODE (orig_src));

	  emit_move_insn (src, orig_src);
	}

      /* Optimize the access just a bit.  */
      if (MEM_P (src)
	  && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
	      || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
	  && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
	  && bytelen == GET_MODE_SIZE (mode))
	{
	  tmps[i] = gen_reg_rtx (mode);
	  emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
	}
      else if (COMPLEX_MODE_P (mode)
	       && GET_MODE (src) == mode
	       && bytelen == GET_MODE_SIZE (mode))
	/* Let emit_move_complex do the bulk of the work.  */
	tmps[i] = src;
      else if (GET_CODE (src) == CONCAT)
	{
	  unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
	  unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
	  unsigned int elt = bytepos / slen0;
	  unsigned int subpos = bytepos % slen0;

	  if (subpos + bytelen <= slen0)
	    {
	      /* The following assumes that the concatenated objects all
		 have the same size.  In this case, a simple calculation
		 can be used to determine the object and the bit field
		 to be extracted.  */
	      tmps[i] = XEXP (src, elt);
	      if (subpos != 0
		  || subpos + bytelen != slen0
		  || (!CONSTANT_P (tmps[i])
		      && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
		tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
					     subpos * BITS_PER_UNIT,
					     1, NULL_RTX, mode, mode, false);
	    }
	  else
	    {
	      rtx mem;

	      gcc_assert (!bytepos);
	      mem = assign_stack_temp (GET_MODE (src), slen);
	      emit_move_insn (mem, src);
	      tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
					   0, 1, NULL_RTX, mode, mode, false);
	    }
	}
      /* FIXME: A SIMD parallel will eventually lead to a subreg of a
	 SIMD register, which is currently broken.  While we get GCC
	 to emit proper RTL for these cases, let's dump to memory.  */
      else if (VECTOR_MODE_P (GET_MODE (dst))
	       && REG_P (src))
	{
	  int slen = GET_MODE_SIZE (GET_MODE (src));
	  rtx mem;

	  mem = assign_stack_temp (GET_MODE (src), slen);
	  emit_move_insn (mem, src);
	  tmps[i] = adjust_address (mem, mode, (int) bytepos);
	}
      else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
               && XVECLEN (dst, 0) > 1)
        tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
      else if (CONSTANT_P (src))
	{
	  HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;

	  if (len == ssize)
	    tmps[i] = src;
	  else
	    {
	      rtx first, second;

	      /* TODO: const_wide_int can have sizes other than this...  */
	      gcc_assert (2 * len == ssize);
	      split_double (src, &first, &second);
	      if (i)
		tmps[i] = second;
	      else
		tmps[i] = first;
	    }
	}
      else if (REG_P (src) && GET_MODE (src) == mode)
	tmps[i] = src;
      else
	tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
				     bytepos * BITS_PER_UNIT, 1, NULL_RTX,
				     mode, mode, false);

      if (shift)
	tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
				shift, tmps[i], 0);
    }
}

/* Emit code to move a block SRC of type TYPE to a block DST,
   where DST is non-consecutive registers represented by a PARALLEL.
   SSIZE represents the total size of block ORIG_SRC in bytes, or -1
   if not known.  */

void
emit_group_load (rtx dst, rtx src, tree type, int ssize)
{
  rtx *tmps;
  int i;

  tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
  emit_group_load_1 (tmps, dst, src, type, ssize);

  /* Copy the extracted pieces into the proper (probable) hard regs.  */
  for (i = 0; i < XVECLEN (dst, 0); i++)
    {
      rtx d = XEXP (XVECEXP (dst, 0, i), 0);
      if (d == NULL)
	continue;
      emit_move_insn (d, tmps[i]);
    }
}

/* Similar, but load SRC into new pseudos in a format that looks like
   PARALLEL.  This can later be fed to emit_group_move to get things
   in the right place.  */

rtx
emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
{
  rtvec vec;
  int i;

  vec = rtvec_alloc (XVECLEN (parallel, 0));
  emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);

  /* Convert the vector to look just like the original PARALLEL, except
     with the computed values.  */
  for (i = 0; i < XVECLEN (parallel, 0); i++)
    {
      rtx e = XVECEXP (parallel, 0, i);
      rtx d = XEXP (e, 0);

      if (d)
	{
	  d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
	  e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
	}
      RTVEC_ELT (vec, i) = e;
    }

  return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
}

/* Emit code to move a block SRC to block DST, where SRC and DST are
   non-consecutive groups of registers, each represented by a PARALLEL.  */

void
emit_group_move (rtx dst, rtx src)
{
  int i;

  gcc_assert (GET_CODE (src) == PARALLEL
	      && GET_CODE (dst) == PARALLEL
	      && XVECLEN (src, 0) == XVECLEN (dst, 0));

  /* Skip first entry if NULL.  */
  for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
    emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
		    XEXP (XVECEXP (src, 0, i), 0));
}

/* Move a group of registers represented by a PARALLEL into pseudos.  */

rtx
emit_group_move_into_temps (rtx src)
{
  rtvec vec = rtvec_alloc (XVECLEN (src, 0));
  int i;

  for (i = 0; i < XVECLEN (src, 0); i++)
    {
      rtx e = XVECEXP (src, 0, i);
      rtx d = XEXP (e, 0);

      if (d)
	e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
      RTVEC_ELT (vec, i) = e;
    }

  return gen_rtx_PARALLEL (GET_MODE (src), vec);
}

/* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
   where SRC is non-consecutive registers represented by a PARALLEL.
   SSIZE represents the total size of block ORIG_DST, or -1 if not
   known.  */

void
emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
{
  rtx *tmps, dst;
  int start, finish, i;
  machine_mode m = GET_MODE (orig_dst);

  gcc_assert (GET_CODE (src) == PARALLEL);

  if (!SCALAR_INT_MODE_P (m)
      && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
    {
      machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
      if (imode == BLKmode)
        dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
      else
        dst = gen_reg_rtx (imode);
      emit_group_store (dst, src, type, ssize);
      if (imode != BLKmode)
        dst = gen_lowpart (GET_MODE (orig_dst), dst);
      emit_move_insn (orig_dst, dst);
      return;
    }

  /* Check for a NULL entry, used to indicate that the parameter goes
     both on the stack and in registers.  */
  if (XEXP (XVECEXP (src, 0, 0), 0))
    start = 0;
  else
    start = 1;
  finish = XVECLEN (src, 0);

  tmps = XALLOCAVEC (rtx, finish);

  /* Copy the (probable) hard regs into pseudos.  */
  for (i = start; i < finish; i++)
    {
      rtx reg = XEXP (XVECEXP (src, 0, i), 0);
      if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
	{
	  tmps[i] = gen_reg_rtx (GET_MODE (reg));
	  emit_move_insn (tmps[i], reg);
	}
      else
	tmps[i] = reg;
    }

  /* If we won't be storing directly into memory, protect the real destination
     from strange tricks we might play.  */
  dst = orig_dst;
  if (GET_CODE (dst) == PARALLEL)
    {
      rtx temp;

      /* We can get a PARALLEL dst if there is a conditional expression in
	 a return statement.  In that case, the dst and src are the same,
	 so no action is necessary.  */
      if (rtx_equal_p (dst, src))
	return;

      /* It is unclear if we can ever reach here, but we may as well handle
	 it.  Allocate a temporary, and split this into a store/load to/from
	 the temporary.  */
      temp = assign_stack_temp (GET_MODE (dst), ssize);
      emit_group_store (temp, src, type, ssize);
      emit_group_load (dst, temp, type, ssize);
      return;
    }
  else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
    {
      machine_mode outer = GET_MODE (dst);
      machine_mode inner;
      HOST_WIDE_INT bytepos;
      bool done = false;
      rtx temp;

      if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
	dst = gen_reg_rtx (outer);

      /* Make life a bit easier for combine.  */
      /* If the first element of the vector is the low part
	 of the destination mode, use a paradoxical subreg to
	 initialize the destination.  */
      if (start < finish)
	{
	  inner = GET_MODE (tmps[start]);
	  bytepos = subreg_lowpart_offset (inner, outer);
	  if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
	    {
	      temp = simplify_gen_subreg (outer, tmps[start],
					  inner, 0);
	      if (temp)
		{
		  emit_move_insn (dst, temp);
		  done = true;
		  start++;
		}
	    }
	}

      /* If the first element wasn't the low part, try the last.  */
      if (!done
	  && start < finish - 1)
	{
	  inner = GET_MODE (tmps[finish - 1]);
	  bytepos = subreg_lowpart_offset (inner, outer);
	  if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
	    {
	      temp = simplify_gen_subreg (outer, tmps[finish - 1],
					  inner, 0);
	      if (temp)
		{
		  emit_move_insn (dst, temp);
		  done = true;
		  finish--;
		}
	    }
	}

      /* Otherwise, simply initialize the result to zero.  */
      if (!done)
        emit_move_insn (dst, CONST0_RTX (outer));
    }

  /* Process the pieces.  */
  for (i = start; i < finish; i++)
    {
      HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
      machine_mode mode = GET_MODE (tmps[i]);
      unsigned int bytelen = GET_MODE_SIZE (mode);
      unsigned int adj_bytelen;
      rtx dest = dst;

      /* Handle trailing fragments that run over the size of the struct.  */
      if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
	adj_bytelen = ssize - bytepos;
      else
	adj_bytelen = bytelen;

      if (GET_CODE (dst) == CONCAT)
	{
	  if (bytepos + adj_bytelen
	      <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
	    dest = XEXP (dst, 0);
	  else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
	    {
	      bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
	      dest = XEXP (dst, 1);
	    }
	  else
	    {
	      machine_mode dest_mode = GET_MODE (dest);
	      machine_mode tmp_mode = GET_MODE (tmps[i]);

	      gcc_assert (bytepos == 0 && XVECLEN (src, 0));

	      if (GET_MODE_ALIGNMENT (dest_mode)
		  >= GET_MODE_ALIGNMENT (tmp_mode))
		{
		  dest = assign_stack_temp (dest_mode,
					    GET_MODE_SIZE (dest_mode));
		  emit_move_insn (adjust_address (dest,
						  tmp_mode,
						  bytepos),
				  tmps[i]);
		  dst = dest;
		}
	      else
		{
		  dest = assign_stack_temp (tmp_mode,
					    GET_MODE_SIZE (tmp_mode));
		  emit_move_insn (dest, tmps[i]);
		  dst = adjust_address (dest, dest_mode, bytepos);
		}
	      break;
	    }
	}

      /* Handle trailing fragments that run over the size of the struct.  */
      if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
	{
	  /* store_bit_field always takes its value from the lsb.
	     Move the fragment to the lsb if it's not already there.  */
	  if (
#ifdef BLOCK_REG_PADDING
	      BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
	      == (BYTES_BIG_ENDIAN ? upward : downward)
#else
	      BYTES_BIG_ENDIAN
#endif
	      )
	    {
	      int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
	      tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
				      shift, tmps[i], 0);
	    }

	  /* Make sure not to write past the end of the struct.  */
	  store_bit_field (dest,
			   adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
			   bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
			   VOIDmode, tmps[i], false);
	}

      /* Optimize the access just a bit.  */
      else if (MEM_P (dest)
	       && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
		   || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
	       && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
	       && bytelen == GET_MODE_SIZE (mode))
	emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);

      else
	store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
			 0, 0, mode, tmps[i], false);
    }

  /* Copy from the pseudo into the (probable) hard reg.  */
  if (orig_dst != dst)
    emit_move_insn (orig_dst, dst);
}

/* Return a form of X that does not use a PARALLEL.  TYPE is the type
   of the value stored in X.  */

rtx
maybe_emit_group_store (rtx x, tree type)
{
  machine_mode mode = TYPE_MODE (type);
  gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
  if (GET_CODE (x) == PARALLEL)
    {
      rtx result = gen_reg_rtx (mode);
      emit_group_store (result, x, type, int_size_in_bytes (type));
      return result;
    }
  return x;
}

/* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.

   This is used on targets that return BLKmode values in registers.  */

static void
copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
{
  unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
  rtx src = NULL, dst = NULL;
  unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
  unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
  machine_mode mode = GET_MODE (srcreg);
  machine_mode tmode = GET_MODE (target);
  machine_mode copy_mode;

  /* BLKmode registers created in the back-end shouldn't have survived.  */
  gcc_assert (mode != BLKmode);

  /* If the structure doesn't take up a whole number of words, see whether
     SRCREG is padded on the left or on the right.  If it's on the left,
     set PADDING_CORRECTION to the number of bits to skip.

     In most ABIs, the structure will be returned at the least end of
     the register, which translates to right padding on little-endian
     targets and left padding on big-endian targets.  The opposite
     holds if the structure is returned at the most significant
     end of the register.  */
  if (bytes % UNITS_PER_WORD != 0
      && (targetm.calls.return_in_msb (type)
	  ? !BYTES_BIG_ENDIAN
	  : BYTES_BIG_ENDIAN))
    padding_correction
      = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));

  /* We can use a single move if we have an exact mode for the size.  */
  else if (MEM_P (target)
	   && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target))
	       || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
	   && bytes == GET_MODE_SIZE (mode))
  {
    emit_move_insn (adjust_address (target, mode, 0), srcreg);
    return;
  }

  /* And if we additionally have the same mode for a register.  */
  else if (REG_P (target)
	   && GET_MODE (target) == mode
	   && bytes == GET_MODE_SIZE (mode))
  {
    emit_move_insn (target, srcreg);
    return;
  }

  /* This code assumes srcreg is at least a full word.  If it isn't, copy it
     into a new pseudo which is a full word.  */
  if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
    {
      srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
      mode = word_mode;
    }

  /* Copy the structure BITSIZE bits at a time.  If the target lives in
     memory, take care of not reading/writing past its end by selecting
     a copy mode suited to BITSIZE.  This should always be possible given
     how it is computed.

     If the target lives in register, make sure not to select a copy mode
     larger than the mode of the register.

     We could probably emit more efficient code for machines which do not use
     strict alignment, but it doesn't seem worth the effort at the current
     time.  */

  copy_mode = word_mode;
  if (MEM_P (target))
    {
      machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
      if (mem_mode != BLKmode)
	copy_mode = mem_mode;
    }
  else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
    copy_mode = tmode;

  for (bitpos = 0, xbitpos = padding_correction;
       bitpos < bytes * BITS_PER_UNIT;
       bitpos += bitsize, xbitpos += bitsize)
    {
      /* We need a new source operand each time xbitpos is on a
	 word boundary and when xbitpos == padding_correction
	 (the first time through).  */
      if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
	src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);

      /* We need a new destination operand each time bitpos is on
	 a word boundary.  */
      if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
	dst = target;
      else if (bitpos % BITS_PER_WORD == 0)
	dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);

      /* Use xbitpos for the source extraction (right justified) and
	 bitpos for the destination store (left justified).  */
      store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
		       extract_bit_field (src, bitsize,
					  xbitpos % BITS_PER_WORD, 1,
					  NULL_RTX, copy_mode, copy_mode,
					  false),
		       false);
    }
}

/* Copy BLKmode value SRC into a register of mode MODE.  Return the
   register if it contains any data, otherwise return null.

   This is used on targets that return BLKmode values in registers.  */

rtx
copy_blkmode_to_reg (machine_mode mode, tree src)
{
  int i, n_regs;
  unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
  unsigned int bitsize;
  rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
  machine_mode dst_mode;

  gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);

  x = expand_normal (src);

  bytes = int_size_in_bytes (TREE_TYPE (src));
  if (bytes == 0)
    return NULL_RTX;

  /* If the structure doesn't take up a whole number of words, see
     whether the register value should be padded on the left or on
     the right.  Set PADDING_CORRECTION to the number of padding
     bits needed on the left side.

     In most ABIs, the structure will be returned at the least end of
     the register, which translates to right padding on little-endian
     targets and left padding on big-endian targets.  The opposite
     holds if the structure is returned at the most significant
     end of the register.  */
  if (bytes % UNITS_PER_WORD != 0
      && (targetm.calls.return_in_msb (TREE_TYPE (src))
	  ? !BYTES_BIG_ENDIAN
	  : BYTES_BIG_ENDIAN))
    padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
					   * BITS_PER_UNIT));

  n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
  dst_words = XALLOCAVEC (rtx, n_regs);
  bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);

  /* Copy the structure BITSIZE bits at a time.  */
  for (bitpos = 0, xbitpos = padding_correction;
       bitpos < bytes * BITS_PER_UNIT;
       bitpos += bitsize, xbitpos += bitsize)
    {
      /* We need a new destination pseudo each time xbitpos is
	 on a word boundary and when xbitpos == padding_correction
	 (the first time through).  */
      if (xbitpos % BITS_PER_WORD == 0
	  || xbitpos == padding_correction)
	{
	  /* Generate an appropriate register.  */
	  dst_word = gen_reg_rtx (word_mode);
	  dst_words[xbitpos / BITS_PER_WORD] = dst_word;

	  /* Clear the destination before we move anything into it.  */
	  emit_move_insn (dst_word, CONST0_RTX (word_mode));
	}

      /* We need a new source operand each time bitpos is on a word
	 boundary.  */
      if (bitpos % BITS_PER_WORD == 0)
	src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);

      /* Use bitpos for the source extraction (left justified) and
	 xbitpos for the destination store (right justified).  */
      store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
		       0, 0, word_mode,
		       extract_bit_field (src_word, bitsize,
					  bitpos % BITS_PER_WORD, 1,
					  NULL_RTX, word_mode, word_mode,
					  false),
		       false);
    }

  if (mode == BLKmode)
    {
      /* Find the smallest integer mode large enough to hold the
	 entire structure.  */
      for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
	   mode != VOIDmode;
	   mode = GET_MODE_WIDER_MODE (mode))
	/* Have we found a large enough mode?  */
	if (GET_MODE_SIZE (mode) >= bytes)
	  break;

      /* A suitable mode should have been found.  */
      gcc_assert (mode != VOIDmode);
    }

  if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
    dst_mode = word_mode;
  else
    dst_mode = mode;
  dst = gen_reg_rtx (dst_mode);

  for (i = 0; i < n_regs; i++)
    emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);

  if (mode != dst_mode)
    dst = gen_lowpart (mode, dst);

  return dst;
}

/* Add a USE expression for REG to the (possibly empty) list pointed
   to by CALL_FUSAGE.  REG must denote a hard register.  */

void
use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
{
  gcc_assert (REG_P (reg));

  if (!HARD_REGISTER_P (reg))
    return;

  *call_fusage
    = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
}

/* Add a CLOBBER expression for REG to the (possibly empty) list pointed
   to by CALL_FUSAGE.  REG must denote a hard register.  */

void
clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
{
  gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);

  *call_fusage
    = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
}

/* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
   starting at REGNO.  All of these registers must be hard registers.  */

void
use_regs (rtx *call_fusage, int regno, int nregs)
{
  int i;

  gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);

  for (i = 0; i < nregs; i++)
    use_reg (call_fusage, regno_reg_rtx[regno + i]);
}

/* Add USE expressions to *CALL_FUSAGE for each REG contained in the
   PARALLEL REGS.  This is for calls that pass values in multiple
   non-contiguous locations.  The Irix 6 ABI has examples of this.  */

void
use_group_regs (rtx *call_fusage, rtx regs)
{
  int i;

  for (i = 0; i < XVECLEN (regs, 0); i++)
    {
      rtx reg = XEXP (XVECEXP (regs, 0, i), 0);

      /* A NULL entry means the parameter goes both on the stack and in
	 registers.  This can also be a MEM for targets that pass values
	 partially on the stack and partially in registers.  */
      if (reg != 0 && REG_P (reg))
	use_reg (call_fusage, reg);
    }
}

/* Return the defining gimple statement for SSA_NAME NAME if it is an
   assigment and the code of the expresion on the RHS is CODE.  Return
   NULL otherwise.  */

static gimple *
get_def_for_expr (tree name, enum tree_code code)
{
  gimple *def_stmt;

  if (TREE_CODE (name) != SSA_NAME)
    return NULL;

  def_stmt = get_gimple_for_ssa_name (name);
  if (!def_stmt
      || gimple_assign_rhs_code (def_stmt) != code)
    return NULL;

  return def_stmt;
}

/* Return the defining gimple statement for SSA_NAME NAME if it is an
   assigment and the class of the expresion on the RHS is CLASS.  Return
   NULL otherwise.  */

static gimple *
get_def_for_expr_class (tree name, enum tree_code_class tclass)
{
  gimple *def_stmt;

  if (TREE_CODE (name) != SSA_NAME)
    return NULL;

  def_stmt = get_gimple_for_ssa_name (name);
  if (!def_stmt
      || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
    return NULL;

  return def_stmt;
}

/* Write zeros through the storage of OBJECT.  If OBJECT has BLKmode, SIZE is
   its length in bytes.  */

rtx
clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
		     unsigned int expected_align, HOST_WIDE_INT expected_size,
		     unsigned HOST_WIDE_INT min_size,
		     unsigned HOST_WIDE_INT max_size,
		     unsigned HOST_WIDE_INT probable_max_size)
{
  machine_mode mode = GET_MODE (object);
  unsigned int align;

  gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);

  /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
     just move a zero.  Otherwise, do this a piece at a time.  */
  if (mode != BLKmode
      && CONST_INT_P (size)
      && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
    {
      rtx zero = CONST0_RTX (mode);
      if (zero != NULL)
	{
	  emit_move_insn (object, zero);
	  return NULL;
	}

      if (COMPLEX_MODE_P (mode))
	{
	  zero = CONST0_RTX (GET_MODE_INNER (mode));
	  if (zero != NULL)
	    {
	      write_complex_part (object, zero, 0);
	      write_complex_part (object, zero, 1);
	      return NULL;
	    }
	}
    }

  if (size == const0_rtx)
    return NULL;

  align = MEM_ALIGN (object);

  if (CONST_INT_P (size)
      && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
						 CLEAR_BY_PIECES,
						 optimize_insn_for_speed_p ()))
    clear_by_pieces (object, INTVAL (size), align);
  else if (set_storage_via_setmem (object, size, const0_rtx, align,
				   expected_align, expected_size,
				   min_size, max_size, probable_max_size))
    ;
  else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
    return set_storage_via_libcall (object, size, const0_rtx,
				    method == BLOCK_OP_TAILCALL);
  else
    gcc_unreachable ();

  return NULL;
}

rtx
clear_storage (rtx object, rtx size, enum block_op_methods method)
{
  unsigned HOST_WIDE_INT max, min = 0;
  if (GET_CODE (size) == CONST_INT)
    min = max = UINTVAL (size);
  else
    max = GET_MODE_MASK (GET_MODE (size));
  return clear_storage_hints (object, size, method, 0, -1, min, max, max);
}


/* A subroutine of clear_storage.  Expand a call to memset.
   Return the return value of memset, 0 otherwise.  */

rtx
set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
{
  tree call_expr, fn, object_tree, size_tree, val_tree;
  machine_mode size_mode;

  object = copy_addr_to_reg (XEXP (object, 0));
  object_tree = make_tree (ptr_type_node, object);

  if (!CONST_INT_P (val))
    val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
  val_tree = make_tree (integer_type_node, val);

  size_mode = TYPE_MODE (sizetype);
  size = convert_to_mode (size_mode, size, 1);
  size = copy_to_mode_reg (size_mode, size);
  size_tree = make_tree (sizetype, size);

  /* It is incorrect to use the libcall calling conventions for calls to
     memset because it can be provided by the user.  */
  fn = builtin_decl_implicit (BUILT_IN_MEMSET);
  call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
  CALL_EXPR_TAILCALL (call_expr) = tailcall;

  return expand_call (call_expr, NULL_RTX, false);
}

/* Expand a setmem pattern; return true if successful.  */

bool
set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
			unsigned int expected_align, HOST_WIDE_INT expected_size,
			unsigned HOST_WIDE_INT min_size,
			unsigned HOST_WIDE_INT max_size,
			unsigned HOST_WIDE_INT probable_max_size)
{
  /* Try the most limited insn first, because there's no point
     including more than one in the machine description unless
     the more limited one has some advantage.  */

  machine_mode mode;

  if (expected_align < align)
    expected_align = align;
  if (expected_size != -1)
    {
      if ((unsigned HOST_WIDE_INT)expected_size > max_size)
	expected_size = max_size;
      if ((unsigned HOST_WIDE_INT)expected_size < min_size)
	expected_size = min_size;
    }

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      enum insn_code code = direct_optab_handler (setmem_optab, mode);

      if (code != CODE_FOR_nothing
	  /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
	     here because if SIZE is less than the mode mask, as it is
	     returned by the macro, it will definitely be less than the
	     actual mode mask.  Since SIZE is within the Pmode address
	     space, we limit MODE to Pmode.  */
	  && ((CONST_INT_P (size)
	       && ((unsigned HOST_WIDE_INT) INTVAL (size)
		   <= (GET_MODE_MASK (mode) >> 1)))
	      || max_size <= (GET_MODE_MASK (mode) >> 1)
	      || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
	{
	  struct expand_operand ops[9];
	  unsigned int nops;

	  nops = insn_data[(int) code].n_generator_args;
	  gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);

	  create_fixed_operand (&ops[0], object);
	  /* The check above guarantees that this size conversion is valid.  */
	  create_convert_operand_to (&ops[1], size, mode, true);
	  create_convert_operand_from (&ops[2], val, byte_mode, true);
	  create_integer_operand (&ops[3], align / BITS_PER_UNIT);
	  if (nops >= 6)
	    {
	      create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
	      create_integer_operand (&ops[5], expected_size);
	    }
	  if (nops >= 8)
	    {
	      create_integer_operand (&ops[6], min_size);
	      /* If we can not represent the maximal size,
		 make parameter NULL.  */
	      if ((HOST_WIDE_INT) max_size != -1)
	        create_integer_operand (&ops[7], max_size);
	      else
		create_fixed_operand (&ops[7], NULL);
	    }
	  if (nops == 9)
	    {
	      /* If we can not represent the maximal size,
		 make parameter NULL.  */
	      if ((HOST_WIDE_INT) probable_max_size != -1)
	        create_integer_operand (&ops[8], probable_max_size);
	      else
		create_fixed_operand (&ops[8], NULL);
	    }
	  if (maybe_expand_insn (code, nops, ops))
	    return true;
	}
    }

  return false;
}


/* Write to one of the components of the complex value CPLX.  Write VAL to
   the real part if IMAG_P is false, and the imaginary part if its true.  */

void
write_complex_part (rtx cplx, rtx val, bool imag_p)
{
  machine_mode cmode;
  machine_mode imode;
  unsigned ibitsize;

  if (GET_CODE (cplx) == CONCAT)
    {
      emit_move_insn (XEXP (cplx, imag_p), val);
      return;
    }

  cmode = GET_MODE (cplx);
  imode = GET_MODE_INNER (cmode);
  ibitsize = GET_MODE_BITSIZE (imode);

  /* For MEMs simplify_gen_subreg may generate an invalid new address
     because, e.g., the original address is considered mode-dependent
     by the target, which restricts simplify_subreg from invoking
     adjust_address_nv.  Instead of preparing fallback support for an
     invalid address, we call adjust_address_nv directly.  */
  if (MEM_P (cplx))
    {
      emit_move_insn (adjust_address_nv (cplx, imode,
					 imag_p ? GET_MODE_SIZE (imode) : 0),
		      val);
      return;
    }

  /* If the sub-object is at least word sized, then we know that subregging
     will work.  This special case is important, since store_bit_field
     wants to operate on integer modes, and there's rarely an OImode to
     correspond to TCmode.  */
  if (ibitsize >= BITS_PER_WORD
      /* For hard regs we have exact predicates.  Assume we can split
	 the original object if it spans an even number of hard regs.
	 This special case is important for SCmode on 64-bit platforms
	 where the natural size of floating-point regs is 32-bit.  */
      || (REG_P (cplx)
	  && REGNO (cplx) < FIRST_PSEUDO_REGISTER
	  && REG_NREGS (cplx) % 2 == 0))
    {
      rtx part = simplify_gen_subreg (imode, cplx, cmode,
				      imag_p ? GET_MODE_SIZE (imode) : 0);
      if (part)
        {
	  emit_move_insn (part, val);
	  return;
	}
      else
	/* simplify_gen_subreg may fail for sub-word MEMs.  */
	gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
    }

  store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
		   false);
}

/* Extract one of the components of the complex value CPLX.  Extract the
   real part if IMAG_P is false, and the imaginary part if it's true.  */

rtx
read_complex_part (rtx cplx, bool imag_p)
{
  machine_mode cmode, imode;
  unsigned ibitsize;

  if (GET_CODE (cplx) == CONCAT)
    return XEXP (cplx, imag_p);

  cmode = GET_MODE (cplx);
  imode = GET_MODE_INNER (cmode);
  ibitsize = GET_MODE_BITSIZE (imode);

  /* Special case reads from complex constants that got spilled to memory.  */
  if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
    {
      tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
      if (decl && TREE_CODE (decl) == COMPLEX_CST)
	{
	  tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
	  if (CONSTANT_CLASS_P (part))
	    return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
	}
    }

  /* For MEMs simplify_gen_subreg may generate an invalid new address
     because, e.g., the original address is considered mode-dependent
     by the target, which restricts simplify_subreg from invoking
     adjust_address_nv.  Instead of preparing fallback support for an
     invalid address, we call adjust_address_nv directly.  */
  if (MEM_P (cplx))
    return adjust_address_nv (cplx, imode,
			      imag_p ? GET_MODE_SIZE (imode) : 0);

  /* If the sub-object is at least word sized, then we know that subregging
     will work.  This special case is important, since extract_bit_field
     wants to operate on integer modes, and there's rarely an OImode to
     correspond to TCmode.  */
  if (ibitsize >= BITS_PER_WORD
      /* For hard regs we have exact predicates.  Assume we can split
	 the original object if it spans an even number of hard regs.
	 This special case is important for SCmode on 64-bit platforms
	 where the natural size of floating-point regs is 32-bit.  */
      || (REG_P (cplx)
	  && REGNO (cplx) < FIRST_PSEUDO_REGISTER
	  && REG_NREGS (cplx) % 2 == 0))
    {
      rtx ret = simplify_gen_subreg (imode, cplx, cmode,
				     imag_p ? GET_MODE_SIZE (imode) : 0);
      if (ret)
        return ret;
      else
	/* simplify_gen_subreg may fail for sub-word MEMs.  */
	gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
    }

  return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
			    true, NULL_RTX, imode, imode, false);
}

/* A subroutine of emit_move_insn_1.  Yet another lowpart generator.
   NEW_MODE and OLD_MODE are the same size.  Return NULL if X cannot be
   represented in NEW_MODE.  If FORCE is true, this will never happen, as
   we'll force-create a SUBREG if needed.  */

static rtx
emit_move_change_mode (machine_mode new_mode,
		       machine_mode old_mode, rtx x, bool force)
{
  rtx ret;

  if (push_operand (x, GET_MODE (x)))
    {
      ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
      MEM_COPY_ATTRIBUTES (ret, x);
    }
  else if (MEM_P (x))
    {
      /* We don't have to worry about changing the address since the
	 size in bytes is supposed to be the same.  */
      if (reload_in_progress)
	{
	  /* Copy the MEM to change the mode and move any
	     substitutions from the old MEM to the new one.  */
	  ret = adjust_address_nv (x, new_mode, 0);
	  copy_replacements (x, ret);
	}
      else
	ret = adjust_address (x, new_mode, 0);
    }
  else
    {
      /* Note that we do want simplify_subreg's behavior of validating
	 that the new mode is ok for a hard register.  If we were to use
	 simplify_gen_subreg, we would create the subreg, but would
	 probably run into the target not being able to implement it.  */
      /* Except, of course, when FORCE is true, when this is exactly what
	 we want.  Which is needed for CCmodes on some targets.  */
      if (force)
	ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
      else
	ret = simplify_subreg (new_mode, x, old_mode, 0);
    }

  return ret;
}

/* A subroutine of emit_move_insn_1.  Generate a move from Y into X using
   an integer mode of the same size as MODE.  Returns the instruction
   emitted, or NULL if such a move could not be generated.  */

static rtx_insn *
emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
{
  machine_mode imode;
  enum insn_code code;

  /* There must exist a mode of the exact size we require.  */
  imode = int_mode_for_mode (mode);
  if (imode == BLKmode)
    return NULL;

  /* The target must support moves in this mode.  */
  code = optab_handler (mov_optab, imode);
  if (code == CODE_FOR_nothing)
    return NULL;

  x = emit_move_change_mode (imode, mode, x, force);
  if (x == NULL_RTX)
    return NULL;
  y = emit_move_change_mode (imode, mode, y, force);
  if (y == NULL_RTX)
    return NULL;
  return emit_insn (GEN_FCN (code) (x, y));
}

/* A subroutine of emit_move_insn_1.  X is a push_operand in MODE.
   Return an equivalent MEM that does not use an auto-increment.  */

rtx
emit_move_resolve_push (machine_mode mode, rtx x)
{
  enum rtx_code code = GET_CODE (XEXP (x, 0));
  HOST_WIDE_INT adjust;
  rtx temp;

  adjust = GET_MODE_SIZE (mode);
#ifdef PUSH_ROUNDING
  adjust = PUSH_ROUNDING (adjust);
#endif
  if (code == PRE_DEC || code == POST_DEC)
    adjust = -adjust;
  else if (code == PRE_MODIFY || code == POST_MODIFY)
    {
      rtx expr = XEXP (XEXP (x, 0), 1);
      HOST_WIDE_INT val;

      gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
      gcc_assert (CONST_INT_P (XEXP (expr, 1)));
      val = INTVAL (XEXP (expr, 1));
      if (GET_CODE (expr) == MINUS)
	val = -val;
      gcc_assert (adjust == val || adjust == -val);
      adjust = val;
    }

  /* Do not use anti_adjust_stack, since we don't want to update
     stack_pointer_delta.  */
  temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
			      gen_int_mode (adjust, Pmode), stack_pointer_rtx,
			      0, OPTAB_LIB_WIDEN);
  if (temp != stack_pointer_rtx)
    emit_move_insn (stack_pointer_rtx, temp);

  switch (code)
    {
    case PRE_INC:
    case PRE_DEC:
    case PRE_MODIFY:
      temp = stack_pointer_rtx;
      break;
    case POST_INC:
    case POST_DEC:
    case POST_MODIFY:
      temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
      break;
    default:
      gcc_unreachable ();
    }

  return replace_equiv_address (x, temp);
}

/* A subroutine of emit_move_complex.  Generate a move from Y into X.
   X is known to satisfy push_operand, and MODE is known to be complex.
   Returns the last instruction emitted.  */

rtx_insn *
emit_move_complex_push (machine_mode mode, rtx x, rtx y)
{
  machine_mode submode = GET_MODE_INNER (mode);
  bool imag_first;

#ifdef PUSH_ROUNDING
  unsigned int submodesize = GET_MODE_SIZE (submode);

  /* In case we output to the stack, but the size is smaller than the
     machine can push exactly, we need to use move instructions.  */
  if (PUSH_ROUNDING (submodesize) != submodesize)
    {
      x = emit_move_resolve_push (mode, x);
      return emit_move_insn (x, y);
    }
#endif

  /* Note that the real part always precedes the imag part in memory
     regardless of machine's endianness.  */
  switch (GET_CODE (XEXP (x, 0)))
    {
    case PRE_DEC:
    case POST_DEC:
      imag_first = true;
      break;
    case PRE_INC:
    case POST_INC:
      imag_first = false;
      break;
    default:
      gcc_unreachable ();
    }

  emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
		  read_complex_part (y, imag_first));
  return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
			 read_complex_part (y, !imag_first));
}

/* A subroutine of emit_move_complex.  Perform the move from Y to X
   via two moves of the parts.  Returns the last instruction emitted.  */

rtx_insn *
emit_move_complex_parts (rtx x, rtx y)
{
  /* Show the output dies here.  This is necessary for SUBREGs
     of pseudos since we cannot track their lifetimes correctly;
     hard regs shouldn't appear here except as return values.  */
  if (!reload_completed && !reload_in_progress
      && REG_P (x) && !reg_overlap_mentioned_p (x, y))
    emit_clobber (x);

  write_complex_part (x, read_complex_part (y, false), false);
  write_complex_part (x, read_complex_part (y, true), true);

  return get_last_insn ();
}

/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
   MODE is known to be complex.  Returns the last instruction emitted.  */

static rtx_insn *
emit_move_complex (machine_mode mode, rtx x, rtx y)
{
  bool try_int;

  /* Need to take special care for pushes, to maintain proper ordering
     of the data, and possibly extra padding.  */
  if (push_operand (x, mode))
    return emit_move_complex_push (mode, x, y);

  /* See if we can coerce the target into moving both values at once, except
     for floating point where we favor moving as parts if this is easy.  */
  if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
      && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
      && !(REG_P (x)
	   && HARD_REGISTER_P (x)
	   && REG_NREGS (x) == 1)
      && !(REG_P (y)
	   && HARD_REGISTER_P (y)
	   && REG_NREGS (y) == 1))
    try_int = false;
  /* Not possible if the values are inherently not adjacent.  */
  else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
    try_int = false;
  /* Is possible if both are registers (or subregs of registers).  */
  else if (register_operand (x, mode) && register_operand (y, mode))
    try_int = true;
  /* If one of the operands is a memory, and alignment constraints
     are friendly enough, we may be able to do combined memory operations.
     We do not attempt this if Y is a constant because that combination is
     usually better with the by-parts thing below.  */
  else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
	   && (!STRICT_ALIGNMENT
	       || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
    try_int = true;
  else
    try_int = false;

  if (try_int)
    {
      rtx_insn *ret;

      /* For memory to memory moves, optimal behavior can be had with the
	 existing block move logic.  */
      if (MEM_P (x) && MEM_P (y))
	{
	  emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
			   BLOCK_OP_NO_LIBCALL);
	  return get_last_insn ();
	}

      ret = emit_move_via_integer (mode, x, y, true);
      if (ret)
	return ret;
    }

  return emit_move_complex_parts (x, y);
}

/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
   MODE is known to be MODE_CC.  Returns the last instruction emitted.  */

static rtx_insn *
emit_move_ccmode (machine_mode mode, rtx x, rtx y)
{
  rtx_insn *ret;

  /* Assume all MODE_CC modes are equivalent; if we have movcc, use it.  */
  if (mode != CCmode)
    {
      enum insn_code code = optab_handler (mov_optab, CCmode);
      if (code != CODE_FOR_nothing)
	{
	  x = emit_move_change_mode (CCmode, mode, x, true);
	  y = emit_move_change_mode (CCmode, mode, y, true);
	  return emit_insn (GEN_FCN (code) (x, y));
	}
    }

  /* Otherwise, find the MODE_INT mode of the same width.  */
  ret = emit_move_via_integer (mode, x, y, false);
  gcc_assert (ret != NULL);
  return ret;
}

/* Return true if word I of OP lies entirely in the
   undefined bits of a paradoxical subreg.  */

static bool
undefined_operand_subword_p (const_rtx op, int i)
{
  machine_mode innermode, innermostmode;
  int offset;
  if (GET_CODE (op) != SUBREG)
    return false;
  innermode = GET_MODE (op);
  innermostmode = GET_MODE (SUBREG_REG (op));
  offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
  /* The SUBREG_BYTE represents offset, as if the value were stored in
     memory, except for a paradoxical subreg where we define
     SUBREG_BYTE to be 0; undo this exception as in
     simplify_subreg.  */
  if (SUBREG_BYTE (op) == 0
      && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
    {
      int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
      if (WORDS_BIG_ENDIAN)
	offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
      if (BYTES_BIG_ENDIAN)
	offset += difference % UNITS_PER_WORD;
    }
  if (offset >= GET_MODE_SIZE (innermostmode)
      || offset <= -GET_MODE_SIZE (word_mode))
    return true;
  return false;
}

/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
   MODE is any multi-word or full-word mode that lacks a move_insn
   pattern.  Note that you will get better code if you define such
   patterns, even if they must turn into multiple assembler instructions.  */

static rtx_insn *
emit_move_multi_word (machine_mode mode, rtx x, rtx y)
{
  rtx_insn *last_insn = 0;
  rtx_insn *seq;
  rtx inner;
  bool need_clobber;
  int i;

  gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);

  /* If X is a push on the stack, do the push now and replace
     X with a reference to the stack pointer.  */
  if (push_operand (x, mode))
    x = emit_move_resolve_push (mode, x);

  /* If we are in reload, see if either operand is a MEM whose address
     is scheduled for replacement.  */
  if (reload_in_progress && MEM_P (x)
      && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
    x = replace_equiv_address_nv (x, inner);
  if (reload_in_progress && MEM_P (y)
      && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
    y = replace_equiv_address_nv (y, inner);

  start_sequence ();

  need_clobber = false;
  for (i = 0;
       i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
       i++)
    {
      rtx xpart = operand_subword (x, i, 1, mode);
      rtx ypart;

      /* Do not generate code for a move if it would come entirely
	 from the undefined bits of a paradoxical subreg.  */
      if (undefined_operand_subword_p (y, i))
	continue;

      ypart = operand_subword (y, i, 1, mode);

      /* If we can't get a part of Y, put Y into memory if it is a
	 constant.  Otherwise, force it into a register.  Then we must
	 be able to get a part of Y.  */
      if (ypart == 0 && CONSTANT_P (y))
	{
	  y = use_anchored_address (force_const_mem (mode, y));
	  ypart = operand_subword (y, i, 1, mode);
	}
      else if (ypart == 0)
	ypart = operand_subword_force (y, i, mode);

      gcc_assert (xpart && ypart);

      need_clobber |= (GET_CODE (xpart) == SUBREG);

      last_insn = emit_move_insn (xpart, ypart);
    }

  seq = get_insns ();
  end_sequence ();

  /* Show the output dies here.  This is necessary for SUBREGs
     of pseudos since we cannot track their lifetimes correctly;
     hard regs shouldn't appear here except as return values.
     We never want to emit such a clobber after reload.  */
  if (x != y
      && ! (reload_in_progress || reload_completed)
      && need_clobber != 0)
    emit_clobber (x);

  emit_insn (seq);

  return last_insn;
}

/* Low level part of emit_move_insn.
   Called just like emit_move_insn, but assumes X and Y
   are basically valid.  */

rtx_insn *
emit_move_insn_1 (rtx x, rtx y)
{
  machine_mode mode = GET_MODE (x);
  enum insn_code code;

  gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);

  code = optab_handler (mov_optab, mode);
  if (code != CODE_FOR_nothing)
    return emit_insn (GEN_FCN (code) (x, y));

  /* Expand complex moves by moving real part and imag part.  */
  if (COMPLEX_MODE_P (mode))
    return emit_move_complex (mode, x, y);

  if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
      || ALL_FIXED_POINT_MODE_P (mode))
    {
      rtx_insn *result = emit_move_via_integer (mode, x, y, true);

      /* If we can't find an integer mode, use multi words.  */
      if (result)
	return result;
      else
	return emit_move_multi_word (mode, x, y);
    }

  if (GET_MODE_CLASS (mode) == MODE_CC)
    return emit_move_ccmode (mode, x, y);

  /* Try using a move pattern for the corresponding integer mode.  This is
     only safe when simplify_subreg can convert MODE constants into integer
     constants.  At present, it can only do this reliably if the value
     fits within a HOST_WIDE_INT.  */
  if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
    {
      rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);

      if (ret)
	{
	  if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
	    return ret;
	}
    }

  return emit_move_multi_word (mode, x, y);
}

/* Generate code to copy Y into X.
   Both Y and X must have the same mode, except that
   Y can be a constant with VOIDmode.
   This mode cannot be BLKmode; use emit_block_move for that.

   Return the last instruction emitted.  */

rtx_insn *
emit_move_insn (rtx x, rtx y)
{
  machine_mode mode = GET_MODE (x);
  rtx y_cst = NULL_RTX;
  rtx_insn *last_insn;
  rtx set;

  gcc_assert (mode != BLKmode
	      && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));

  if (CONSTANT_P (y))
    {
      if (optimize
	  && SCALAR_FLOAT_MODE_P (GET_MODE (x))
	  && (last_insn = compress_float_constant (x, y)))
	return last_insn;

      y_cst = y;

      if (!targetm.legitimate_constant_p (mode, y))
	{
	  y = force_const_mem (mode, y);

	  /* If the target's cannot_force_const_mem prevented the spill,
	     assume that the target's move expanders will also take care
	     of the non-legitimate constant.  */
	  if (!y)
	    y = y_cst;
	  else
	    y = use_anchored_address (y);
	}
    }

  /* If X or Y are memory references, verify that their addresses are valid
     for the machine.  */
  if (MEM_P (x)
      && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
					 MEM_ADDR_SPACE (x))
	  && ! push_operand (x, GET_MODE (x))))
    x = validize_mem (x);

  if (MEM_P (y)
      && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
					MEM_ADDR_SPACE (y)))
    y = validize_mem (y);

  gcc_assert (mode != BLKmode);

  last_insn = emit_move_insn_1 (x, y);

  if (y_cst && REG_P (x)
      && (set = single_set (last_insn)) != NULL_RTX
      && SET_DEST (set) == x
      && ! rtx_equal_p (y_cst, SET_SRC (set)))
    set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));

  return last_insn;
}

/* Generate the body of an instruction to copy Y into X.
   It may be a list of insns, if one insn isn't enough.  */

rtx_insn *
gen_move_insn (rtx x, rtx y)
{
  rtx_insn *seq;

  start_sequence ();
  emit_move_insn_1 (x, y);
  seq = get_insns ();
  end_sequence ();
  return seq;
}

/* If Y is representable exactly in a narrower mode, and the target can
   perform the extension directly from constant or memory, then emit the
   move as an extension.  */

static rtx_insn *
compress_float_constant (rtx x, rtx y)
{
  machine_mode dstmode = GET_MODE (x);
  machine_mode orig_srcmode = GET_MODE (y);
  machine_mode srcmode;
  const REAL_VALUE_TYPE *r;
  int oldcost, newcost;
  bool speed = optimize_insn_for_speed_p ();

  r = CONST_DOUBLE_REAL_VALUE (y);

  if (targetm.legitimate_constant_p (dstmode, y))
    oldcost = set_src_cost (y, orig_srcmode, speed);
  else
    oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);

  for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
       srcmode != orig_srcmode;
       srcmode = GET_MODE_WIDER_MODE (srcmode))
    {
      enum insn_code ic;
      rtx trunc_y;
      rtx_insn *last_insn;

      /* Skip if the target can't extend this way.  */
      ic = can_extend_p (dstmode, srcmode, 0);
      if (ic == CODE_FOR_nothing)
	continue;

      /* Skip if the narrowed value isn't exact.  */
      if (! exact_real_truncate (srcmode, r))
	continue;

      trunc_y = const_double_from_real_value (*r, srcmode);

      if (targetm.legitimate_constant_p (srcmode, trunc_y))
	{
	  /* Skip if the target needs extra instructions to perform
	     the extension.  */
	  if (!insn_operand_matches (ic, 1, trunc_y))
	    continue;
	  /* This is valid, but may not be cheaper than the original. */
	  newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
				  dstmode, speed);
	  if (oldcost < newcost)
	    continue;
	}
      else if (float_extend_from_mem[dstmode][srcmode])
	{
	  trunc_y = force_const_mem (srcmode, trunc_y);
	  /* This is valid, but may not be cheaper than the original. */
	  newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
				  dstmode, speed);
	  if (oldcost < newcost)
	    continue;
	  trunc_y = validize_mem (trunc_y);
	}
      else
	continue;

      /* For CSE's benefit, force the compressed constant pool entry
	 into a new pseudo.  This constant may be used in different modes,
	 and if not, combine will put things back together for us.  */
      trunc_y = force_reg (srcmode, trunc_y);

      /* If x is a hard register, perform the extension into a pseudo,
	 so that e.g. stack realignment code is aware of it.  */
      rtx target = x;
      if (REG_P (x) && HARD_REGISTER_P (x))
	target = gen_reg_rtx (dstmode);

      emit_unop_insn (ic, target, trunc_y, UNKNOWN);
      last_insn = get_last_insn ();

      if (REG_P (target))
	set_unique_reg_note (last_insn, REG_EQUAL, y);

      if (target != x)
	return emit_move_insn (x, target);
      return last_insn;
    }

  return NULL;
}

/* Pushing data onto the stack.  */

/* Push a block of length SIZE (perhaps variable)
   and return an rtx to address the beginning of the block.
   The value may be virtual_outgoing_args_rtx.

   EXTRA is the number of bytes of padding to push in addition to SIZE.
   BELOW nonzero means this padding comes at low addresses;
   otherwise, the padding comes at high addresses.  */

rtx
push_block (rtx size, int extra, int below)
{
  rtx temp;

  size = convert_modes (Pmode, ptr_mode, size, 1);
  if (CONSTANT_P (size))
    anti_adjust_stack (plus_constant (Pmode, size, extra));
  else if (REG_P (size) && extra == 0)
    anti_adjust_stack (size);
  else
    {
      temp = copy_to_mode_reg (Pmode, size);
      if (extra != 0)
	temp = expand_binop (Pmode, add_optab, temp,
			     gen_int_mode (extra, Pmode),
			     temp, 0, OPTAB_LIB_WIDEN);
      anti_adjust_stack (temp);
    }

  if (STACK_GROWS_DOWNWARD)
    {
      temp = virtual_outgoing_args_rtx;
      if (extra != 0 && below)
	temp = plus_constant (Pmode, temp, extra);
    }
  else
    {
      if (CONST_INT_P (size))
	temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
			      -INTVAL (size) - (below ? 0 : extra));
      else if (extra != 0 && !below)
	temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
			     negate_rtx (Pmode, plus_constant (Pmode, size,
							       extra)));
      else
	temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
			     negate_rtx (Pmode, size));
    }

  return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
}

/* A utility routine that returns the base of an auto-inc memory, or NULL.  */

static rtx
mem_autoinc_base (rtx mem)
{
  if (MEM_P (mem))
    {
      rtx addr = XEXP (mem, 0);
      if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
	return XEXP (addr, 0);
    }
  return NULL;
}

/* A utility routine used here, in reload, and in try_split.  The insns
   after PREV up to and including LAST are known to adjust the stack,
   with a final value of END_ARGS_SIZE.  Iterate backward from LAST
   placing notes as appropriate.  PREV may be NULL, indicating the
   entire insn sequence prior to LAST should be scanned.

   The set of allowed stack pointer modifications is small:
     (1) One or more auto-inc style memory references (aka pushes),
     (2) One or more addition/subtraction with the SP as destination,
     (3) A single move insn with the SP as destination,
     (4) A call_pop insn,
     (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.

   Insns in the sequence that do not modify the SP are ignored,
   except for noreturn calls.

   The return value is the amount of adjustment that can be trivially
   verified, via immediate operand or auto-inc.  If the adjustment
   cannot be trivially extracted, the return value is INT_MIN.  */

HOST_WIDE_INT
find_args_size_adjust (rtx_insn *insn)
{
  rtx dest, set, pat;
  int i;

  pat = PATTERN (insn);
  set = NULL;

  /* Look for a call_pop pattern.  */
  if (CALL_P (insn))
    {
      /* We have to allow non-call_pop patterns for the case
	 of emit_single_push_insn of a TLS address.  */
      if (GET_CODE (pat) != PARALLEL)
	return 0;

      /* All call_pop have a stack pointer adjust in the parallel.
	 The call itself is always first, and the stack adjust is
	 usually last, so search from the end.  */
      for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
	{
	  set = XVECEXP (pat, 0, i);
	  if (GET_CODE (set) != SET)
	    continue;
	  dest = SET_DEST (set);
	  if (dest == stack_pointer_rtx)
	    break;
	}
      /* We'd better have found the stack pointer adjust.  */
      if (i == 0)
	return 0;
      /* Fall through to process the extracted SET and DEST
	 as if it was a standalone insn.  */
    }
  else if (GET_CODE (pat) == SET)
    set = pat;
  else if ((set = single_set (insn)) != NULL)
    ;
  else if (GET_CODE (pat) == PARALLEL)
    {
      /* ??? Some older ports use a parallel with a stack adjust
	 and a store for a PUSH_ROUNDING pattern, rather than a
	 PRE/POST_MODIFY rtx.  Don't force them to update yet...  */
      /* ??? See h8300 and m68k, pushqi1.  */
      for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
	{
	  set = XVECEXP (pat, 0, i);
	  if (GET_CODE (set) != SET)
	    continue;
	  dest = SET_DEST (set);
	  if (dest == stack_pointer_rtx)
	    break;

	  /* We do not expect an auto-inc of the sp in the parallel.  */
	  gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
	  gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
			       != stack_pointer_rtx);
	}
      if (i < 0)
	return 0;
    }
  else
    return 0;

  dest = SET_DEST (set);

  /* Look for direct modifications of the stack pointer.  */
  if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
    {
      /* Look for a trivial adjustment, otherwise assume nothing.  */
      /* Note that the SPU restore_stack_block pattern refers to
	 the stack pointer in V4SImode.  Consider that non-trivial.  */
      if (SCALAR_INT_MODE_P (GET_MODE (dest))
	  && GET_CODE (SET_SRC (set)) == PLUS
	  && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
	  && CONST_INT_P (XEXP (SET_SRC (set), 1)))
	return INTVAL (XEXP (SET_SRC (set), 1));
      /* ??? Reload can generate no-op moves, which will be cleaned
	 up later.  Recognize it and continue searching.  */
      else if (rtx_equal_p (dest, SET_SRC (set)))
	return 0;
      else
	return HOST_WIDE_INT_MIN;
    }
  else
    {
      rtx mem, addr;

      /* Otherwise only think about autoinc patterns.  */
      if (mem_autoinc_base (dest) == stack_pointer_rtx)
	{
	  mem = dest;
	  gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
			       != stack_pointer_rtx);
	}
      else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
	mem = SET_SRC (set);
      else
	return 0;

      addr = XEXP (mem, 0);
      switch (GET_CODE (addr))
	{
	case PRE_INC:
	case POST_INC:
	  return GET_MODE_SIZE (GET_MODE (mem));
	case PRE_DEC:
	case POST_DEC:
	  return -GET_MODE_SIZE (GET_MODE (mem));
	case PRE_MODIFY:
	case POST_MODIFY:
	  addr = XEXP (addr, 1);
	  gcc_assert (GET_CODE (addr) == PLUS);
	  gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
	  gcc_assert (CONST_INT_P (XEXP (addr, 1)));
	  return INTVAL (XEXP (addr, 1));
	default:
	  gcc_unreachable ();
	}
    }
}

int
fixup_args_size_notes (rtx_insn *prev, rtx_insn *last, int end_args_size)
{
  int args_size = end_args_size;
  bool saw_unknown = false;
  rtx_insn *insn;

  for (insn = last; insn != prev; insn = PREV_INSN (insn))
    {
      HOST_WIDE_INT this_delta;

      if (!NONDEBUG_INSN_P (insn))
	continue;

      this_delta = find_args_size_adjust (insn);
      if (this_delta == 0)
	{
	  if (!CALL_P (insn)
	      || ACCUMULATE_OUTGOING_ARGS
	      || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
	    continue;
	}

      gcc_assert (!saw_unknown);
      if (this_delta == HOST_WIDE_INT_MIN)
	saw_unknown = true;

      add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
      if (STACK_GROWS_DOWNWARD)
	this_delta = -(unsigned HOST_WIDE_INT) this_delta;

      args_size -= this_delta;
    }

  return saw_unknown ? INT_MIN : args_size;
}

#ifdef PUSH_ROUNDING
/* Emit single push insn.  */

static void
emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
{
  rtx dest_addr;
  unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
  rtx dest;
  enum insn_code icode;

  stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
  /* If there is push pattern, use it.  Otherwise try old way of throwing
     MEM representing push operation to move expander.  */
  icode = optab_handler (push_optab, mode);
  if (icode != CODE_FOR_nothing)
    {
      struct expand_operand ops[1];

      create_input_operand (&ops[0], x, mode);
      if (maybe_expand_insn (icode, 1, ops))
	return;
    }
  if (GET_MODE_SIZE (mode) == rounded_size)
    dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
  /* If we are to pad downward, adjust the stack pointer first and
     then store X into the stack location using an offset.  This is
     because emit_move_insn does not know how to pad; it does not have
     access to type.  */
  else if (FUNCTION_ARG_PADDING (mode, type) == downward)
    {
      unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
      HOST_WIDE_INT offset;

      emit_move_insn (stack_pointer_rtx,
		      expand_binop (Pmode,
				    STACK_GROWS_DOWNWARD ? sub_optab
				    : add_optab,
				    stack_pointer_rtx,
				    gen_int_mode (rounded_size, Pmode),
				    NULL_RTX, 0, OPTAB_LIB_WIDEN));

      offset = (HOST_WIDE_INT) padding_size;
      if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
	/* We have already decremented the stack pointer, so get the
	   previous value.  */
	offset += (HOST_WIDE_INT) rounded_size;

      if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
	/* We have already incremented the stack pointer, so get the
	   previous value.  */
	offset -= (HOST_WIDE_INT) rounded_size;

      dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
				gen_int_mode (offset, Pmode));
    }
  else
    {
      if (STACK_GROWS_DOWNWARD)
	/* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC.  */
	dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
				  gen_int_mode (-(HOST_WIDE_INT) rounded_size,
						Pmode));
      else
	/* ??? This seems wrong if STACK_PUSH_CODE == POST_INC.  */
	dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
				  gen_int_mode (rounded_size, Pmode));

      dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
    }

  dest = gen_rtx_MEM (mode, dest_addr);

  if (type != 0)
    {
      set_mem_attributes (dest, type, 1);

      if (cfun->tail_call_marked)
	/* Function incoming arguments may overlap with sibling call
	   outgoing arguments and we cannot allow reordering of reads
	   from function arguments with stores to outgoing arguments
	   of sibling calls.  */
	set_mem_alias_set (dest, 0);
    }
  emit_move_insn (dest, x);
}

/* Emit and annotate a single push insn.  */

static void
emit_single_push_insn (machine_mode mode, rtx x, tree type)
{
  int delta, old_delta = stack_pointer_delta;
  rtx_insn *prev = get_last_insn ();
  rtx_insn *last;

  emit_single_push_insn_1 (mode, x, type);

  last = get_last_insn ();

  /* Notice the common case where we emitted exactly one insn.  */
  if (PREV_INSN (last) == prev)
    {
      add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
      return;
    }

  delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
  gcc_assert (delta == INT_MIN || delta == old_delta);
}
#endif

/* If reading SIZE bytes from X will end up reading from
   Y return the number of bytes that overlap.  Return -1
   if there is no overlap or -2 if we can't determine
   (for example when X and Y have different base registers).  */

static int
memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
{
  rtx tmp = plus_constant (Pmode, x, size);
  rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);

  if (!CONST_INT_P (sub))
    return -2;

  HOST_WIDE_INT val = INTVAL (sub);

  return IN_RANGE (val, 1, size) ? val : -1;
}

/* Generate code to push X onto the stack, assuming it has mode MODE and
   type TYPE.
   MODE is redundant except when X is a CONST_INT (since they don't
   carry mode info).
   SIZE is an rtx for the size of data to be copied (in bytes),
   needed only if X is BLKmode.
   Return true if successful.  May return false if asked to push a
   partial argument during a sibcall optimization (as specified by
   SIBCALL_P) and the incoming and outgoing pointers cannot be shown
   to not overlap.

   ALIGN (in bits) is maximum alignment we can assume.

   If PARTIAL and REG are both nonzero, then copy that many of the first
   bytes of X into registers starting with REG, and push the rest of X.
   The amount of space pushed is decreased by PARTIAL bytes.
   REG must be a hard register in this case.
   If REG is zero but PARTIAL is not, take any all others actions for an
   argument partially in registers, but do not actually load any
   registers.

   EXTRA is the amount in bytes of extra space to leave next to this arg.
   This is ignored if an argument block has already been allocated.

   On a machine that lacks real push insns, ARGS_ADDR is the address of
   the bottom of the argument block for this call.  We use indexing off there
   to store the arg.  On machines with push insns, ARGS_ADDR is 0 when a
   argument block has not been preallocated.

   ARGS_SO_FAR is the size of args previously pushed for this call.

   REG_PARM_STACK_SPACE is nonzero if functions require stack space
   for arguments passed in registers.  If nonzero, it will be the number
   of bytes required.  */

bool
emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
		unsigned int align, int partial, rtx reg, int extra,
		rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
		rtx alignment_pad, bool sibcall_p)
{
  rtx xinner;
  enum direction stack_direction = STACK_GROWS_DOWNWARD ? downward : upward;

  /* Decide where to pad the argument: `downward' for below,
     `upward' for above, or `none' for don't pad it.
     Default is below for small data on big-endian machines; else above.  */
  enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);

  /* Invert direction if stack is post-decrement.
     FIXME: why?  */
  if (STACK_PUSH_CODE == POST_DEC)
    if (where_pad != none)
      where_pad = (where_pad == downward ? upward : downward);

  xinner = x;

  int nregs = partial / UNITS_PER_WORD;
  rtx *tmp_regs = NULL;
  int overlapping = 0;

  if (mode == BLKmode
      || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
    {
      /* Copy a block into the stack, entirely or partially.  */

      rtx temp;
      int used;
      int offset;
      int skip;

      offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
      used = partial - offset;

      if (mode != BLKmode)
	{
	  /* A value is to be stored in an insufficiently aligned
	     stack slot; copy via a suitably aligned slot if
	     necessary.  */
	  size = GEN_INT (GET_MODE_SIZE (mode));
	  if (!MEM_P (xinner))
	    {
	      temp = assign_temp (type, 1, 1);
	      emit_move_insn (temp, xinner);
	      xinner = temp;
	    }
	}

      gcc_assert (size);

      /* USED is now the # of bytes we need not copy to the stack
	 because registers will take care of them.  */

      if (partial != 0)
	xinner = adjust_address (xinner, BLKmode, used);

      /* If the partial register-part of the arg counts in its stack size,
	 skip the part of stack space corresponding to the registers.
	 Otherwise, start copying to the beginning of the stack space,
	 by setting SKIP to 0.  */
      skip = (reg_parm_stack_space == 0) ? 0 : used;

#ifdef PUSH_ROUNDING
      /* Do it with several push insns if that doesn't take lots of insns
	 and if there is no difficulty with push insns that skip bytes
	 on the stack for alignment purposes.  */
      if (args_addr == 0
	  && PUSH_ARGS
	  && CONST_INT_P (size)
	  && skip == 0
	  && MEM_ALIGN (xinner) >= align
	  && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
	  /* Here we avoid the case of a structure whose weak alignment
	     forces many pushes of a small amount of data,
	     and such small pushes do rounding that causes trouble.  */
	  && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
	      || align >= BIGGEST_ALIGNMENT
	      || (PUSH_ROUNDING (align / BITS_PER_UNIT)
		  == (align / BITS_PER_UNIT)))
	  && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
	{
	  /* Push padding now if padding above and stack grows down,
	     or if padding below and stack grows up.
	     But if space already allocated, this has already been done.  */
	  if (extra && args_addr == 0
	      && where_pad != none && where_pad != stack_direction)
	    anti_adjust_stack (GEN_INT (extra));

	  move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
	}
      else
#endif /* PUSH_ROUNDING  */
	{
	  rtx target;

	  /* Otherwise make space on the stack and copy the data
	     to the address of that space.  */

	  /* Deduct words put into registers from the size we must copy.  */
	  if (partial != 0)
	    {
	      if (CONST_INT_P (size))
		size = GEN_INT (INTVAL (size) - used);
	      else
		size = expand_binop (GET_MODE (size), sub_optab, size,
				     gen_int_mode (used, GET_MODE (size)),
				     NULL_RTX, 0, OPTAB_LIB_WIDEN);
	    }

	  /* Get the address of the stack space.
	     In this case, we do not deal with EXTRA separately.
	     A single stack adjust will do.  */
	  if (! args_addr)
	    {
	      temp = push_block (size, extra, where_pad == downward);
	      extra = 0;
	    }
	  else if (CONST_INT_P (args_so_far))
	    temp = memory_address (BLKmode,
				   plus_constant (Pmode, args_addr,
						  skip + INTVAL (args_so_far)));
	  else
	    temp = memory_address (BLKmode,
				   plus_constant (Pmode,
						  gen_rtx_PLUS (Pmode,
								args_addr,
								args_so_far),
						  skip));

	  if (!ACCUMULATE_OUTGOING_ARGS)
	    {
	      /* If the source is referenced relative to the stack pointer,
		 copy it to another register to stabilize it.  We do not need
		 to do this if we know that we won't be changing sp.  */

	      if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
		  || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
		temp = copy_to_reg (temp);
	    }

	  target = gen_rtx_MEM (BLKmode, temp);

	  /* We do *not* set_mem_attributes here, because incoming arguments
	     may overlap with sibling call outgoing arguments and we cannot
	     allow reordering of reads from function arguments with stores
	     to outgoing arguments of sibling calls.  We do, however, want
	     to record the alignment of the stack slot.  */
	  /* ALIGN may well be better aligned than TYPE, e.g. due to
	     PARM_BOUNDARY.  Assume the caller isn't lying.  */
	  set_mem_align (target, align);

	  /* If part should go in registers and pushing to that part would
	     overwrite some of the values that need to go into regs, load the
	     overlapping values into temporary pseudos to be moved into the hard
	     regs at the end after the stack pushing has completed.
	     We cannot load them directly into the hard regs here because
	     they can be clobbered by the block move expansions.
	     See PR 65358.  */

	  if (partial > 0 && reg != 0 && mode == BLKmode
	      && GET_CODE (reg) != PARALLEL)
	    {
	      overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
	      if (overlapping > 0)
	        {
		  gcc_assert (overlapping % UNITS_PER_WORD == 0);
		  overlapping /= UNITS_PER_WORD;

		  tmp_regs = XALLOCAVEC (rtx, overlapping);

		  for (int i = 0; i < overlapping; i++)
		    tmp_regs[i] = gen_reg_rtx (word_mode);

		  for (int i = 0; i < overlapping; i++)
		    emit_move_insn (tmp_regs[i],
				    operand_subword_force (target, i, mode));
	        }
	      else if (overlapping == -1)
		overlapping = 0;
	      /* Could not determine whether there is overlap.
	         Fail the sibcall.  */
	      else
		{
		  overlapping = 0;
		  if (sibcall_p)
		    return false;
		}
	    }
	  emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
	}
    }
  else if (partial > 0)
    {
      /* Scalar partly in registers.  */

      int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
      int i;
      int not_stack;
      /* # bytes of start of argument
	 that we must make space for but need not store.  */
      int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
      int args_offset = INTVAL (args_so_far);
      int skip;

      /* Push padding now if padding above and stack grows down,
	 or if padding below and stack grows up.
	 But if space already allocated, this has already been done.  */
      if (extra && args_addr == 0
	  && where_pad != none && where_pad != stack_direction)
	anti_adjust_stack (GEN_INT (extra));

      /* If we make space by pushing it, we might as well push
	 the real data.  Otherwise, we can leave OFFSET nonzero
	 and leave the space uninitialized.  */
      if (args_addr == 0)
	offset = 0;

      /* Now NOT_STACK gets the number of words that we don't need to
	 allocate on the stack.  Convert OFFSET to words too.  */
      not_stack = (partial - offset) / UNITS_PER_WORD;
      offset /= UNITS_PER_WORD;

      /* If the partial register-part of the arg counts in its stack size,
	 skip the part of stack space corresponding to the registers.
	 Otherwise, start copying to the beginning of the stack space,
	 by setting SKIP to 0.  */
      skip = (reg_parm_stack_space == 0) ? 0 : not_stack;

      if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
	x = validize_mem (force_const_mem (mode, x));

      /* If X is a hard register in a non-integer mode, copy it into a pseudo;
	 SUBREGs of such registers are not allowed.  */
      if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
	   && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
	x = copy_to_reg (x);

      /* Loop over all the words allocated on the stack for this arg.  */
      /* We can do it by words, because any scalar bigger than a word
	 has a size a multiple of a word.  */
      for (i = size - 1; i >= not_stack; i--)
	if (i >= not_stack + offset)
	  if (!emit_push_insn (operand_subword_force (x, i, mode),
			  word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
			  0, args_addr,
			  GEN_INT (args_offset + ((i - not_stack + skip)
						  * UNITS_PER_WORD)),
			  reg_parm_stack_space, alignment_pad, sibcall_p))
	    return false;
    }
  else
    {
      rtx addr;
      rtx dest;

      /* Push padding now if padding above and stack grows down,
	 or if padding below and stack grows up.
	 But if space already allocated, this has already been done.  */
      if (extra && args_addr == 0
	  && where_pad != none && where_pad != stack_direction)
	anti_adjust_stack (GEN_INT (extra));

#ifdef PUSH_ROUNDING
      if (args_addr == 0 && PUSH_ARGS)
	emit_single_push_insn (mode, x, type);
      else
#endif
	{
	  if (CONST_INT_P (args_so_far))
	    addr
	      = memory_address (mode,
				plus_constant (Pmode, args_addr,
					       INTVAL (args_so_far)));
	  else
	    addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
						       args_so_far));
	  dest = gen_rtx_MEM (mode, addr);

	  /* We do *not* set_mem_attributes here, because incoming arguments
	     may overlap with sibling call outgoing arguments and we cannot
	     allow reordering of reads from function arguments with stores
	     to outgoing arguments of sibling calls.  We do, however, want
	     to record the alignment of the stack slot.  */
	  /* ALIGN may well be better aligned than TYPE, e.g. due to
	     PARM_BOUNDARY.  Assume the caller isn't lying.  */
	  set_mem_align (dest, align);

	  emit_move_insn (dest, x);
	}
    }

  /* Move the partial arguments into the registers and any overlapping
     values that we moved into the pseudos in tmp_regs.  */
  if (partial > 0 && reg != 0)
    {
      /* Handle calls that pass values in multiple non-contiguous locations.
	 The Irix 6 ABI has examples of this.  */
      if (GET_CODE (reg) == PARALLEL)
	emit_group_load (reg, x, type, -1);
      else
        {
	  gcc_assert (partial % UNITS_PER_WORD == 0);
	  move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);

	  for (int i = 0; i < overlapping; i++)
	    emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
						    + nregs - overlapping + i),
			    tmp_regs[i]);

	}
    }

  if (extra && args_addr == 0 && where_pad == stack_direction)
    anti_adjust_stack (GEN_INT (extra));

  if (alignment_pad && args_addr == 0)
    anti_adjust_stack (alignment_pad);

  return true;
}

/* Return X if X can be used as a subtarget in a sequence of arithmetic
   operations.  */

static rtx
get_subtarget (rtx x)
{
  return (optimize
          || x == 0
	   /* Only registers can be subtargets.  */
	   || !REG_P (x)
	   /* Don't use hard regs to avoid extending their life.  */
	   || REGNO (x) < FIRST_PSEUDO_REGISTER
	  ? 0 : x);
}

/* A subroutine of expand_assignment.  Optimize FIELD op= VAL, where
   FIELD is a bitfield.  Returns true if the optimization was successful,
   and there's nothing else to do.  */

static bool
optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
				 unsigned HOST_WIDE_INT bitpos,
				 unsigned HOST_WIDE_INT bitregion_start,
				 unsigned HOST_WIDE_INT bitregion_end,
				 machine_mode mode1, rtx str_rtx,
				 tree to, tree src, bool reverse)
{
  machine_mode str_mode = GET_MODE (str_rtx);
  unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
  tree op0, op1;
  rtx value, result;
  optab binop;
  gimple *srcstmt;
  enum tree_code code;

  if (mode1 != VOIDmode
      || bitsize >= BITS_PER_WORD
      || str_bitsize > BITS_PER_WORD
      || TREE_SIDE_EFFECTS (to)
      || TREE_THIS_VOLATILE (to))
    return false;

  STRIP_NOPS (src);
  if (TREE_CODE (src) != SSA_NAME)
    return false;
  if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
    return false;

  srcstmt = get_gimple_for_ssa_name (src);
  if (!srcstmt
      || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
    return false;

  code = gimple_assign_rhs_code (srcstmt);

  op0 = gimple_assign_rhs1 (srcstmt);

  /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
     to find its initialization.  Hopefully the initialization will
     be from a bitfield load.  */
  if (TREE_CODE (op0) == SSA_NAME)
    {
      gimple *op0stmt = get_gimple_for_ssa_name (op0);

      /* We want to eventually have OP0 be the same as TO, which
	 should be a bitfield.  */
      if (!op0stmt
	  || !is_gimple_assign (op0stmt)
	  || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
	return false;
      op0 = gimple_assign_rhs1 (op0stmt);
    }

  op1 = gimple_assign_rhs2 (srcstmt);

  if (!operand_equal_p (to, op0, 0))
    return false;

  if (MEM_P (str_rtx))
    {
      unsigned HOST_WIDE_INT offset1;

      if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
	str_mode = word_mode;
      str_mode = get_best_mode (bitsize, bitpos,
				bitregion_start, bitregion_end,
				MEM_ALIGN (str_rtx), str_mode, 0);
      if (str_mode == VOIDmode)
	return false;
      str_bitsize = GET_MODE_BITSIZE (str_mode);

      offset1 = bitpos;
      bitpos %= str_bitsize;
      offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
      str_rtx = adjust_address (str_rtx, str_mode, offset1);
    }
  else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
    return false;
  else
    gcc_assert (!reverse);

  /* If the bit field covers the whole REG/MEM, store_field
     will likely generate better code.  */
  if (bitsize >= str_bitsize)
    return false;

  /* We can't handle fields split across multiple entities.  */
  if (bitpos + bitsize > str_bitsize)
    return false;

  if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
    bitpos = str_bitsize - bitpos - bitsize;

  switch (code)
    {
    case PLUS_EXPR:
    case MINUS_EXPR:
      /* For now, just optimize the case of the topmost bitfield
	 where we don't need to do any masking and also
	 1 bit bitfields where xor can be used.
	 We might win by one instruction for the other bitfields
	 too if insv/extv instructions aren't used, so that
	 can be added later.  */
      if ((reverse || bitpos + bitsize != str_bitsize)
	  && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
	break;

      value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
      value = convert_modes (str_mode,
			     TYPE_MODE (TREE_TYPE (op1)), value,
			     TYPE_UNSIGNED (TREE_TYPE (op1)));

      /* We may be accessing data outside the field, which means
	 we can alias adjacent data.  */
      if (MEM_P (str_rtx))
	{
	  str_rtx = shallow_copy_rtx (str_rtx);
	  set_mem_alias_set (str_rtx, 0);
	  set_mem_expr (str_rtx, 0);
	}

      if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
	{
	  value = expand_and (str_mode, value, const1_rtx, NULL);
	  binop = xor_optab;
	}
      else
	binop = code == PLUS_EXPR ? add_optab : sub_optab;

      value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
      if (reverse)
	value = flip_storage_order (str_mode, value);
      result = expand_binop (str_mode, binop, str_rtx,
			     value, str_rtx, 1, OPTAB_WIDEN);
      if (result != str_rtx)
	emit_move_insn (str_rtx, result);
      return true;

    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
      if (TREE_CODE (op1) != INTEGER_CST)
	break;
      value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
      value = convert_modes (str_mode,
			     TYPE_MODE (TREE_TYPE (op1)), value,
			     TYPE_UNSIGNED (TREE_TYPE (op1)));

      /* We may be accessing data outside the field, which means
	 we can alias adjacent data.  */
      if (MEM_P (str_rtx))
	{
	  str_rtx = shallow_copy_rtx (str_rtx);
	  set_mem_alias_set (str_rtx, 0);
	  set_mem_expr (str_rtx, 0);
	}

      binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
      if (bitpos + bitsize != str_bitsize)
	{
	  rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
				   str_mode);
	  value = expand_and (str_mode, value, mask, NULL_RTX);
	}
      value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
      if (reverse)
	value = flip_storage_order (str_mode, value);
      result = expand_binop (str_mode, binop, str_rtx,
			     value, str_rtx, 1, OPTAB_WIDEN);
      if (result != str_rtx)
	emit_move_insn (str_rtx, result);
      return true;

    default:
      break;
    }

  return false;
}

/* In the C++ memory model, consecutive bit fields in a structure are
   considered one memory location.

   Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
   returns the bit range of consecutive bits in which this COMPONENT_REF
   belongs.  The values are returned in *BITSTART and *BITEND.  *BITPOS
   and *OFFSET may be adjusted in the process.

   If the access does not need to be restricted, 0 is returned in both
   *BITSTART and *BITEND.  */

void
get_bit_range (unsigned HOST_WIDE_INT *bitstart,
	       unsigned HOST_WIDE_INT *bitend,
	       tree exp,
	       HOST_WIDE_INT *bitpos,
	       tree *offset)
{
  HOST_WIDE_INT bitoffset;
  tree field, repr;

  gcc_assert (TREE_CODE (exp) == COMPONENT_REF);

  field = TREE_OPERAND (exp, 1);
  repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
  /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
     need to limit the range we can access.  */
  if (!repr)
    {
      *bitstart = *bitend = 0;
      return;
    }

  /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
     part of a larger bit field, then the representative does not serve any
     useful purpose.  This can occur in Ada.  */
  if (handled_component_p (TREE_OPERAND (exp, 0)))
    {
      machine_mode rmode;
      HOST_WIDE_INT rbitsize, rbitpos;
      tree roffset;
      int unsignedp, reversep, volatilep = 0;
      get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
			   &roffset, &rmode, &unsignedp, &reversep,
			   &volatilep);
      if ((rbitpos % BITS_PER_UNIT) != 0)
	{
	  *bitstart = *bitend = 0;
	  return;
	}
    }

  /* Compute the adjustment to bitpos from the offset of the field
     relative to the representative.  DECL_FIELD_OFFSET of field and
     repr are the same by construction if they are not constants,
     see finish_bitfield_layout.  */
  if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))
      && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr)))
    bitoffset = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
		 - tree_to_uhwi (DECL_FIELD_OFFSET (repr))) * BITS_PER_UNIT;
  else
    bitoffset = 0;
  bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
		- tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));

  /* If the adjustment is larger than bitpos, we would have a negative bit
     position for the lower bound and this may wreak havoc later.  Adjust
     offset and bitpos to make the lower bound non-negative in that case.  */
  if (bitoffset > *bitpos)
    {
      HOST_WIDE_INT adjust = bitoffset - *bitpos;
      gcc_assert ((adjust % BITS_PER_UNIT) == 0);

      *bitpos += adjust;
      if (*offset == NULL_TREE)
	*offset = size_int (-adjust / BITS_PER_UNIT);
      else
	*offset
	  = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
      *bitstart = 0;
    }
  else
    *bitstart = *bitpos - bitoffset;

  *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1;
}

/* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
   in memory and has non-BLKmode.  DECL_RTL must not be a MEM; if
   DECL_RTL was not set yet, return NORTL.  */

static inline bool
addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
{
  if (TREE_CODE (addr) != ADDR_EXPR)
    return false;

  tree base = TREE_OPERAND (addr, 0);

  if (!DECL_P (base)
      || TREE_ADDRESSABLE (base)
      || DECL_MODE (base) == BLKmode)
    return false;

  if (!DECL_RTL_SET_P (base))
    return nortl;

  return (!MEM_P (DECL_RTL (base)));
}

/* Returns true if the MEM_REF REF refers to an object that does not
   reside in memory and has non-BLKmode.  */

static inline bool
mem_ref_refers_to_non_mem_p (tree ref)
{
  tree base = TREE_OPERAND (ref, 0);
  return addr_expr_of_non_mem_decl_p_1 (base, false);
}

/* Expand an assignment that stores the value of FROM into TO.  If NONTEMPORAL
   is true, try generating a nontemporal store.  */

void
expand_assignment (tree to, tree from, bool nontemporal)
{
  rtx to_rtx = 0;
  rtx result;
  machine_mode mode;
  unsigned int align;
  enum insn_code icode;

  /* Don't crash if the lhs of the assignment was erroneous.  */
  if (TREE_CODE (to) == ERROR_MARK)
    {
      expand_normal (from);
      return;
    }

  /* Optimize away no-op moves without side-effects.  */
  if (operand_equal_p (to, from, 0))
    return;

  /* Handle misaligned stores.  */
  mode = TYPE_MODE (TREE_TYPE (to));
  if ((TREE_CODE (to) == MEM_REF
       || TREE_CODE (to) == TARGET_MEM_REF)
      && mode != BLKmode
      && !mem_ref_refers_to_non_mem_p (to)
      && ((align = get_object_alignment (to))
	  < GET_MODE_ALIGNMENT (mode))
      && (((icode = optab_handler (movmisalign_optab, mode))
	   != CODE_FOR_nothing)
	  || SLOW_UNALIGNED_ACCESS (mode, align)))
    {
      rtx reg, mem;

      reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
      reg = force_not_mem (reg);
      mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
      if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
	reg = flip_storage_order (mode, reg);

      if (icode != CODE_FOR_nothing)
	{
	  struct expand_operand ops[2];

	  create_fixed_operand (&ops[0], mem);
	  create_input_operand (&ops[1], reg, mode);
	  /* The movmisalign<mode> pattern cannot fail, else the assignment
	     would silently be omitted.  */
	  expand_insn (icode, 2, ops);
	}
      else
	store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
			 false);
      return;
    }

  /* Assignment of a structure component needs special treatment
     if the structure component's rtx is not simply a MEM.
     Assignment of an array element at a constant index, and assignment of
     an array element in an unaligned packed structure field, has the same
     problem.  Same for (partially) storing into a non-memory object.  */
  if (handled_component_p (to)
      || (TREE_CODE (to) == MEM_REF
	  && (REF_REVERSE_STORAGE_ORDER (to)
	      || mem_ref_refers_to_non_mem_p (to)))
      || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
    {
      machine_mode mode1;
      HOST_WIDE_INT bitsize, bitpos;
      unsigned HOST_WIDE_INT bitregion_start = 0;
      unsigned HOST_WIDE_INT bitregion_end = 0;
      tree offset;
      int unsignedp, reversep, volatilep = 0;
      tree tem;

      push_temp_slots ();
      tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
				 &unsignedp, &reversep, &volatilep);

      /* Make sure bitpos is not negative, it can wreak havoc later.  */
      if (bitpos < 0)
	{
	  gcc_assert (offset == NULL_TREE);
	  offset = size_int (bitpos >> LOG2_BITS_PER_UNIT);
	  bitpos &= BITS_PER_UNIT - 1;
	}

      if (TREE_CODE (to) == COMPONENT_REF
	  && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
	get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
      /* The C++ memory model naturally applies to byte-aligned fields.
	 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
	 BITSIZE are not byte-aligned, there is no need to limit the range
	 we can access.  This can occur with packed structures in Ada.  */
      else if (bitsize > 0
	       && bitsize % BITS_PER_UNIT == 0
	       && bitpos % BITS_PER_UNIT == 0)
	{
	  bitregion_start = bitpos;
	  bitregion_end = bitpos + bitsize - 1;
	}

      to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);

      /* If the field has a mode, we want to access it in the
	 field's mode, not the computed mode.
	 If a MEM has VOIDmode (external with incomplete type),
	 use BLKmode for it instead.  */
      if (MEM_P (to_rtx))
	{
	  if (mode1 != VOIDmode)
	    to_rtx = adjust_address (to_rtx, mode1, 0);
	  else if (GET_MODE (to_rtx) == VOIDmode)
	    to_rtx = adjust_address (to_rtx, BLKmode, 0);
	}
 
      if (offset != 0)
	{
	  machine_mode address_mode;
	  rtx offset_rtx;

	  if (!MEM_P (to_rtx))
	    {
	      /* We can get constant negative offsets into arrays with broken
		 user code.  Translate this to a trap instead of ICEing.  */
	      gcc_assert (TREE_CODE (offset) == INTEGER_CST);
	      expand_builtin_trap ();
	      to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
	    }

	  offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
	  address_mode = get_address_mode (to_rtx);
	  if (GET_MODE (offset_rtx) != address_mode)
	    {
		/* We cannot be sure that the RTL in offset_rtx is valid outside
		   of a memory address context, so force it into a register
		   before attempting to convert it to the desired mode.  */
	      offset_rtx = force_operand (offset_rtx, NULL_RTX);
	      offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
	    }

	  /* If we have an expression in OFFSET_RTX and a non-zero
	     byte offset in BITPOS, adding the byte offset before the
	     OFFSET_RTX results in better intermediate code, which makes
	     later rtl optimization passes perform better.

	     We prefer intermediate code like this:

	     r124:DI=r123:DI+0x18
	     [r124:DI]=r121:DI

	     ... instead of ...

	     r124:DI=r123:DI+0x10
	     [r124:DI+0x8]=r121:DI

	     This is only done for aligned data values, as these can
	     be expected to result in single move instructions.  */
	  if (mode1 != VOIDmode
	      && bitpos != 0
	      && bitsize > 0
	      && (bitpos % bitsize) == 0
	      && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
	      && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
	    {
	      to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
	      bitregion_start = 0;
	      if (bitregion_end >= (unsigned HOST_WIDE_INT) bitpos)
		bitregion_end -= bitpos;
	      bitpos = 0;
	    }

	  to_rtx = offset_address (to_rtx, offset_rtx,
				   highest_pow2_factor_for_target (to,
				   				   offset));
	}

      /* No action is needed if the target is not a memory and the field
	 lies completely outside that target.  This can occur if the source
	 code contains an out-of-bounds access to a small array.  */
      if (!MEM_P (to_rtx)
	  && GET_MODE (to_rtx) != BLKmode
	  && (unsigned HOST_WIDE_INT) bitpos
	     >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
	{
	  expand_normal (from);
	  result = NULL;
	}
      /* Handle expand_expr of a complex value returning a CONCAT.  */
      else if (GET_CODE (to_rtx) == CONCAT)
	{
	  unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
	  if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
	      && bitpos == 0
	      && bitsize == mode_bitsize)
	    result = store_expr (from, to_rtx, false, nontemporal, reversep);
	  else if (bitsize == mode_bitsize / 2
		   && (bitpos == 0 || bitpos == mode_bitsize / 2))
	    result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
				 nontemporal, reversep);
	  else if (bitpos + bitsize <= mode_bitsize / 2)
	    result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
				  bitregion_start, bitregion_end,
				  mode1, from, get_alias_set (to),
				  nontemporal, reversep);
	  else if (bitpos >= mode_bitsize / 2)
	    result = store_field (XEXP (to_rtx, 1), bitsize,
				  bitpos - mode_bitsize / 2,
				  bitregion_start, bitregion_end,
				  mode1, from, get_alias_set (to),
				  nontemporal, reversep);
	  else if (bitpos == 0 && bitsize == mode_bitsize)
	    {
	      rtx from_rtx;
	      result = expand_normal (from);
	      from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
					      TYPE_MODE (TREE_TYPE (from)), 0);
	      emit_move_insn (XEXP (to_rtx, 0),
			      read_complex_part (from_rtx, false));
	      emit_move_insn (XEXP (to_rtx, 1),
			      read_complex_part (from_rtx, true));
	    }
	  else
	    {
	      rtx temp = assign_stack_temp (GET_MODE (to_rtx),
					    GET_MODE_SIZE (GET_MODE (to_rtx)));
	      write_complex_part (temp, XEXP (to_rtx, 0), false);
	      write_complex_part (temp, XEXP (to_rtx, 1), true);
	      result = store_field (temp, bitsize, bitpos,
				    bitregion_start, bitregion_end,
				    mode1, from, get_alias_set (to),
				    nontemporal, reversep);
	      emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
	      emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
	    }
	}
      else
	{
	  if (MEM_P (to_rtx))
	    {
	      /* If the field is at offset zero, we could have been given the
		 DECL_RTX of the parent struct.  Don't munge it.  */
	      to_rtx = shallow_copy_rtx (to_rtx);
	      set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
	      if (volatilep)
		MEM_VOLATILE_P (to_rtx) = 1;
	    }

	  if (optimize_bitfield_assignment_op (bitsize, bitpos,
					       bitregion_start, bitregion_end,
					       mode1, to_rtx, to, from,
					       reversep))
	    result = NULL;
	  else
	    result = store_field (to_rtx, bitsize, bitpos,
				  bitregion_start, bitregion_end,
				  mode1, from, get_alias_set (to),
				  nontemporal, reversep);
	}

      if (result)
	preserve_temp_slots (result);
      pop_temp_slots ();
      return;
    }

  /* If the rhs is a function call and its value is not an aggregate,
     call the function before we start to compute the lhs.
     This is needed for correct code for cases such as
     val = setjmp (buf) on machines where reference to val
     requires loading up part of an address in a separate insn.

     Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
     since it might be a promoted variable where the zero- or sign- extension
     needs to be done.  Handling this in the normal way is safe because no
     computation is done before the call.  The same is true for SSA names.  */
  if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
      && COMPLETE_TYPE_P (TREE_TYPE (from))
      && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
      && ! (((VAR_P (to)
	      || TREE_CODE (to) == PARM_DECL
	      || TREE_CODE (to) == RESULT_DECL)
	     && REG_P (DECL_RTL (to)))
	    || TREE_CODE (to) == SSA_NAME))
    {
      rtx value;
      rtx bounds;

      push_temp_slots ();
      value = expand_normal (from);

      /* Split value and bounds to store them separately.  */
      chkp_split_slot (value, &value, &bounds);

      if (to_rtx == 0)
	to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);

      /* Handle calls that return values in multiple non-contiguous locations.
	 The Irix 6 ABI has examples of this.  */
      if (GET_CODE (to_rtx) == PARALLEL)
	{
	  if (GET_CODE (value) == PARALLEL)
	    emit_group_move (to_rtx, value);
	  else
	    emit_group_load (to_rtx, value, TREE_TYPE (from),
			     int_size_in_bytes (TREE_TYPE (from)));
	}
      else if (GET_CODE (value) == PARALLEL)
	emit_group_store (to_rtx, value, TREE_TYPE (from),
			  int_size_in_bytes (TREE_TYPE (from)));
      else if (GET_MODE (to_rtx) == BLKmode)
	{
	  /* Handle calls that return BLKmode values in registers.  */
	  if (REG_P (value))
	    copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
	  else
	    emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
	}
      else
	{
	  if (POINTER_TYPE_P (TREE_TYPE (to)))
	    value = convert_memory_address_addr_space
		      (GET_MODE (to_rtx), value,
		       TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));

	  emit_move_insn (to_rtx, value);
	}

      /* Store bounds if required.  */
      if (bounds
	  && (BOUNDED_P (to) || chkp_type_has_pointer (TREE_TYPE (to))))
	{
	  gcc_assert (MEM_P (to_rtx));
	  chkp_emit_bounds_store (bounds, value, to_rtx);
	}

      preserve_temp_slots (to_rtx);
      pop_temp_slots ();
      return;
    }

  /* Ordinary treatment.  Expand TO to get a REG or MEM rtx.  */
  to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);

  /* Don't move directly into a return register.  */
  if (TREE_CODE (to) == RESULT_DECL
      && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
    {
      rtx temp;

      push_temp_slots ();

      /* If the source is itself a return value, it still is in a pseudo at
	 this point so we can move it back to the return register directly.  */
      if (REG_P (to_rtx)
	  && TYPE_MODE (TREE_TYPE (from)) == BLKmode
	  && TREE_CODE (from) != CALL_EXPR)
	temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
      else
	temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);

      /* Handle calls that return values in multiple non-contiguous locations.
	 The Irix 6 ABI has examples of this.  */
      if (GET_CODE (to_rtx) == PARALLEL)
	{
	  if (GET_CODE (temp) == PARALLEL)
	    emit_group_move (to_rtx, temp);
	  else
	    emit_group_load (to_rtx, temp, TREE_TYPE (from),
			     int_size_in_bytes (TREE_TYPE (from)));
	}
      else if (temp)
	emit_move_insn (to_rtx, temp);

      preserve_temp_slots (to_rtx);
      pop_temp_slots ();
      return;
    }

  /* In case we are returning the contents of an object which overlaps
     the place the value is being stored, use a safe function when copying
     a value through a pointer into a structure value return block.  */
  if (TREE_CODE (to) == RESULT_DECL
      && TREE_CODE (from) == INDIRECT_REF
      && ADDR_SPACE_GENERIC_P
	   (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
      && refs_may_alias_p (to, from)
      && cfun->returns_struct
      && !cfun->returns_pcc_struct)
    {
      rtx from_rtx, size;

      push_temp_slots ();
      size = expr_size (from);
      from_rtx = expand_normal (from);

      emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);

      preserve_temp_slots (to_rtx);
      pop_temp_slots ();
      return;
    }

  /* Compute FROM and store the value in the rtx we got.  */

  push_temp_slots ();
  result = store_expr_with_bounds (from, to_rtx, 0, nontemporal, false, to);
  preserve_temp_slots (result);
  pop_temp_slots ();
  return;
}

/* Emits nontemporal store insn that moves FROM to TO.  Returns true if this
   succeeded, false otherwise.  */

bool
emit_storent_insn (rtx to, rtx from)
{
  struct expand_operand ops[2];
  machine_mode mode = GET_MODE (to);
  enum insn_code code = optab_handler (storent_optab, mode);

  if (code == CODE_FOR_nothing)
    return false;

  create_fixed_operand (&ops[0], to);
  create_input_operand (&ops[1], from, mode);
  return maybe_expand_insn (code, 2, ops);
}

/* Generate code for computing expression EXP,
   and storing the value into TARGET.

   If the mode is BLKmode then we may return TARGET itself.
   It turns out that in BLKmode it doesn't cause a problem.
   because C has no operators that could combine two different
   assignments into the same BLKmode object with different values
   with no sequence point.  Will other languages need this to
   be more thorough?

   If CALL_PARAM_P is nonzero, this is a store into a call param on the
   stack, and block moves may need to be treated specially.

   If NONTEMPORAL is true, try using a nontemporal store instruction.

   If REVERSE is true, the store is to be done in reverse order.

   If BTARGET is not NULL then computed bounds of EXP are
   associated with BTARGET.  */

rtx
store_expr_with_bounds (tree exp, rtx target, int call_param_p,
			bool nontemporal, bool reverse, tree btarget)
{
  rtx temp;
  rtx alt_rtl = NULL_RTX;
  location_t loc = curr_insn_location ();

  if (VOID_TYPE_P (TREE_TYPE (exp)))
    {
      /* C++ can generate ?: expressions with a throw expression in one
	 branch and an rvalue in the other. Here, we resolve attempts to
	 store the throw expression's nonexistent result.  */
      gcc_assert (!call_param_p);
      expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
      return NULL_RTX;
    }
  if (TREE_CODE (exp) == COMPOUND_EXPR)
    {
      /* Perform first part of compound expression, then assign from second
	 part.  */
      expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
		   call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
      return store_expr_with_bounds (TREE_OPERAND (exp, 1), target,
				     call_param_p, nontemporal, reverse,
				     btarget);
    }
  else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
    {
      /* For conditional expression, get safe form of the target.  Then
	 test the condition, doing the appropriate assignment on either
	 side.  This avoids the creation of unnecessary temporaries.
	 For non-BLKmode, it is more efficient not to do this.  */

      rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();

      do_pending_stack_adjust ();
      NO_DEFER_POP;
      jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
      store_expr_with_bounds (TREE_OPERAND (exp, 1), target, call_param_p,
			      nontemporal, reverse, btarget);
      emit_jump_insn (targetm.gen_jump (lab2));
      emit_barrier ();
      emit_label (lab1);
      store_expr_with_bounds (TREE_OPERAND (exp, 2), target, call_param_p,
			      nontemporal, reverse, btarget);
      emit_label (lab2);
      OK_DEFER_POP;

      return NULL_RTX;
    }
  else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
    /* If this is a scalar in a register that is stored in a wider mode
       than the declared mode, compute the result into its declared mode
       and then convert to the wider mode.  Our value is the computed
       expression.  */
    {
      rtx inner_target = 0;

      /* We can do the conversion inside EXP, which will often result
	 in some optimizations.  Do the conversion in two steps: first
	 change the signedness, if needed, then the extend.  But don't
	 do this if the type of EXP is a subtype of something else
	 since then the conversion might involve more than just
	 converting modes.  */
      if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
	  && TREE_TYPE (TREE_TYPE (exp)) == 0
	  && GET_MODE_PRECISION (GET_MODE (target))
	     == TYPE_PRECISION (TREE_TYPE (exp)))
	{
	  if (!SUBREG_CHECK_PROMOTED_SIGN (target,
					  TYPE_UNSIGNED (TREE_TYPE (exp))))
	    {
	      /* Some types, e.g. Fortran's logical*4, won't have a signed
		 version, so use the mode instead.  */
	      tree ntype
		= (signed_or_unsigned_type_for
		   (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
	      if (ntype == NULL)
		ntype = lang_hooks.types.type_for_mode
		  (TYPE_MODE (TREE_TYPE (exp)),
		   SUBREG_PROMOTED_SIGN (target));

	      exp = fold_convert_loc (loc, ntype, exp);
	    }

	  exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
				  (GET_MODE (SUBREG_REG (target)),
				   SUBREG_PROMOTED_SIGN (target)),
				  exp);

	  inner_target = SUBREG_REG (target);
	}

      temp = expand_expr (exp, inner_target, VOIDmode,
			  call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);

      /* Handle bounds returned by call.  */
      if (TREE_CODE (exp) == CALL_EXPR)
	{
	  rtx bounds;
	  chkp_split_slot (temp, &temp, &bounds);
	  if (bounds && btarget)
	    {
	      gcc_assert (TREE_CODE (btarget) == SSA_NAME);
	      rtx tmp = targetm.calls.load_returned_bounds (bounds);
	      chkp_set_rtl_bounds (btarget, tmp);
	    }
	}

      /* If TEMP is a VOIDmode constant, use convert_modes to make
	 sure that we properly convert it.  */
      if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
	{
	  temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
				temp, SUBREG_PROMOTED_SIGN (target));
	  temp = convert_modes (GET_MODE (SUBREG_REG (target)),
			        GET_MODE (target), temp,
				SUBREG_PROMOTED_SIGN (target));
	}

      convert_move (SUBREG_REG (target), temp,
		    SUBREG_PROMOTED_SIGN (target));

      return NULL_RTX;
    }
  else if ((TREE_CODE (exp) == STRING_CST
	    || (TREE_CODE (exp) == MEM_REF
		&& TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
		&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
		   == STRING_CST
		&& integer_zerop (TREE_OPERAND (exp, 1))))
	   && !nontemporal && !call_param_p
	   && MEM_P (target))
    {
      /* Optimize initialization of an array with a STRING_CST.  */
      HOST_WIDE_INT exp_len, str_copy_len;
      rtx dest_mem;
      tree str = TREE_CODE (exp) == STRING_CST
		 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);

      exp_len = int_expr_size (exp);
      if (exp_len <= 0)
	goto normal_expr;

      if (TREE_STRING_LENGTH (str) <= 0)
	goto normal_expr;

      str_copy_len = strlen (TREE_STRING_POINTER (str));
      if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
	goto normal_expr;

      str_copy_len = TREE_STRING_LENGTH (str);
      if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
	  && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
	{
	  str_copy_len += STORE_MAX_PIECES - 1;
	  str_copy_len &= ~(STORE_MAX_PIECES - 1);
	}
      str_copy_len = MIN (str_copy_len, exp_len);
      if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
				CONST_CAST (char *, TREE_STRING_POINTER (str)),
				MEM_ALIGN (target), false))
	goto normal_expr;

      dest_mem = target;

      dest_mem = store_by_pieces (dest_mem,
				  str_copy_len, builtin_strncpy_read_str,
				  CONST_CAST (char *,
					      TREE_STRING_POINTER (str)),
				  MEM_ALIGN (target), false,
				  exp_len > str_copy_len ? 1 : 0);
      if (exp_len > str_copy_len)
	clear_storage (adjust_address (dest_mem, BLKmode, 0),
		       GEN_INT (exp_len - str_copy_len),
		       BLOCK_OP_NORMAL);
      return NULL_RTX;
    }
  else
    {
      rtx tmp_target;

  normal_expr:
      /* If we want to use a nontemporal or a reverse order store, force the
	 value into a register first.  */
      tmp_target = nontemporal || reverse ? NULL_RTX : target;
      temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
			       (call_param_p
				? EXPAND_STACK_PARM : EXPAND_NORMAL),
			       &alt_rtl, false);

      /* Handle bounds returned by call.  */
      if (TREE_CODE (exp) == CALL_EXPR)
	{
	  rtx bounds;
	  chkp_split_slot (temp, &temp, &bounds);
	  if (bounds && btarget)
	    {
	      gcc_assert (TREE_CODE (btarget) == SSA_NAME);
	      rtx tmp = targetm.calls.load_returned_bounds (bounds);
	      chkp_set_rtl_bounds (btarget, tmp);
	    }
	}
    }

  /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
     the same as that of TARGET, adjust the constant.  This is needed, for
     example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want 
     only a word-sized value.  */
  if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
      && TREE_CODE (exp) != ERROR_MARK
      && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
    temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
			  temp, TYPE_UNSIGNED (TREE_TYPE (exp)));

  /* If value was not generated in the target, store it there.
     Convert the value to TARGET's type first if necessary and emit the
     pending incrementations that have been queued when expanding EXP.
     Note that we cannot emit the whole queue blindly because this will
     effectively disable the POST_INC optimization later.

     If TEMP and TARGET compare equal according to rtx_equal_p, but
     one or both of them are volatile memory refs, we have to distinguish
     two cases:
     - expand_expr has used TARGET.  In this case, we must not generate
       another copy.  This can be detected by TARGET being equal according
       to == .
     - expand_expr has not used TARGET - that means that the source just
       happens to have the same RTX form.  Since temp will have been created
       by expand_expr, it will compare unequal according to == .
       We must generate a copy in this case, to reach the correct number
       of volatile memory references.  */

  if ((! rtx_equal_p (temp, target)
       || (temp != target && (side_effects_p (temp)
			      || side_effects_p (target))))
      && TREE_CODE (exp) != ERROR_MARK
      /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
	 but TARGET is not valid memory reference, TEMP will differ
	 from TARGET although it is really the same location.  */
      && !(alt_rtl
	   && rtx_equal_p (alt_rtl, target)
	   && !side_effects_p (alt_rtl)
	   && !side_effects_p (target))
      /* If there's nothing to copy, don't bother.  Don't call
	 expr_size unless necessary, because some front-ends (C++)
	 expr_size-hook must not be given objects that are not
	 supposed to be bit-copied or bit-initialized.  */
      && expr_size (exp) != const0_rtx)
    {
      if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
	{
	  if (GET_MODE (target) == BLKmode)
	    {
	      /* Handle calls that return BLKmode values in registers.  */
	      if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
		copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
	      else
		store_bit_field (target,
				 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
				 0, 0, 0, GET_MODE (temp), temp, reverse);
	    }
	  else
	    convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
	}

      else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
	{
	  /* Handle copying a string constant into an array.  The string
	     constant may be shorter than the array.  So copy just the string's
	     actual length, and clear the rest.  First get the size of the data
	     type of the string, which is actually the size of the target.  */
	  rtx size = expr_size (exp);

	  if (CONST_INT_P (size)
	      && INTVAL (size) < TREE_STRING_LENGTH (exp))
	    emit_block_move (target, temp, size,
			     (call_param_p
			      ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
	  else
	    {
	      machine_mode pointer_mode
		= targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
	      machine_mode address_mode = get_address_mode (target);

	      /* Compute the size of the data to copy from the string.  */
	      tree copy_size
		= size_binop_loc (loc, MIN_EXPR,
				  make_tree (sizetype, size),
				  size_int (TREE_STRING_LENGTH (exp)));
	      rtx copy_size_rtx
		= expand_expr (copy_size, NULL_RTX, VOIDmode,
			       (call_param_p
				? EXPAND_STACK_PARM : EXPAND_NORMAL));
	      rtx_code_label *label = 0;

	      /* Copy that much.  */
	      copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
					       TYPE_UNSIGNED (sizetype));
	      emit_block_move (target, temp, copy_size_rtx,
			       (call_param_p
				? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));

	      /* Figure out how much is left in TARGET that we have to clear.
		 Do all calculations in pointer_mode.  */
	      if (CONST_INT_P (copy_size_rtx))
		{
		  size = plus_constant (address_mode, size,
					-INTVAL (copy_size_rtx));
		  target = adjust_address (target, BLKmode,
					   INTVAL (copy_size_rtx));
		}
	      else
		{
		  size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
				       copy_size_rtx, NULL_RTX, 0,
				       OPTAB_LIB_WIDEN);

		  if (GET_MODE (copy_size_rtx) != address_mode)
		    copy_size_rtx = convert_to_mode (address_mode,
						     copy_size_rtx,
						     TYPE_UNSIGNED (sizetype));

		  target = offset_address (target, copy_size_rtx,
					   highest_pow2_factor (copy_size));
		  label = gen_label_rtx ();
		  emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
					   GET_MODE (size), 0, label);
		}

	      if (size != const0_rtx)
		clear_storage (target, size, BLOCK_OP_NORMAL);

	      if (label)
		emit_label (label);
	    }
	}
      /* Handle calls that return values in multiple non-contiguous locations.
	 The Irix 6 ABI has examples of this.  */
      else if (GET_CODE (target) == PARALLEL)
	{
	  if (GET_CODE (temp) == PARALLEL)
	    emit_group_move (target, temp);
	  else
	    emit_group_load (target, temp, TREE_TYPE (exp),
			     int_size_in_bytes (TREE_TYPE (exp)));
	}
      else if (GET_CODE (temp) == PARALLEL)
	emit_group_store (target, temp, TREE_TYPE (exp),
			  int_size_in_bytes (TREE_TYPE (exp)));
      else if (GET_MODE (temp) == BLKmode)
	emit_block_move (target, temp, expr_size (exp),
			 (call_param_p
			  ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
      /* If we emit a nontemporal store, there is nothing else to do.  */
      else if (nontemporal && emit_storent_insn (target, temp))
	;
      else
	{
	  if (reverse)
	    temp = flip_storage_order (GET_MODE (target), temp);
	  temp = force_operand (temp, target);
	  if (temp != target)
	    emit_move_insn (target, temp);
	}
    }

  return NULL_RTX;
}

/* Same as store_expr_with_bounds but ignoring bounds of EXP.  */
rtx
store_expr (tree exp, rtx target, int call_param_p, bool nontemporal,
	    bool reverse)
{
  return store_expr_with_bounds (exp, target, call_param_p, nontemporal,
				 reverse, NULL);
}

/* Return true if field F of structure TYPE is a flexible array.  */

static bool
flexible_array_member_p (const_tree f, const_tree type)
{
  const_tree tf;

  tf = TREE_TYPE (f);
  return (DECL_CHAIN (f) == NULL
	  && TREE_CODE (tf) == ARRAY_TYPE
	  && TYPE_DOMAIN (tf)
	  && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
	  && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
	  && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
	  && int_size_in_bytes (type) >= 0);
}

/* If FOR_CTOR_P, return the number of top-level elements that a constructor
   must have in order for it to completely initialize a value of type TYPE.
   Return -1 if the number isn't known.

   If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE.  */

static HOST_WIDE_INT
count_type_elements (const_tree type, bool for_ctor_p)
{
  switch (TREE_CODE (type))
    {
    case ARRAY_TYPE:
      {
	tree nelts;

	nelts = array_type_nelts (type);
	if (nelts && tree_fits_uhwi_p (nelts))
	  {
	    unsigned HOST_WIDE_INT n;

	    n = tree_to_uhwi (nelts) + 1;
	    if (n == 0 || for_ctor_p)
	      return n;
	    else
	      return n * count_type_elements (TREE_TYPE (type), false);
	  }
	return for_ctor_p ? -1 : 1;
      }

    case RECORD_TYPE:
      {
	unsigned HOST_WIDE_INT n;
	tree f;

	n = 0;
	for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
	  if (TREE_CODE (f) == FIELD_DECL)
	    {
	      if (!for_ctor_p)
		n += count_type_elements (TREE_TYPE (f), false);
	      else if (!flexible_array_member_p (f, type))
		/* Don't count flexible arrays, which are not supposed
		   to be initialized.  */
		n += 1;
	    }

	return n;
      }

    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
	tree f;
	HOST_WIDE_INT n, m;

	gcc_assert (!for_ctor_p);
	/* Estimate the number of scalars in each field and pick the
	   maximum.  Other estimates would do instead; the idea is simply
	   to make sure that the estimate is not sensitive to the ordering
	   of the fields.  */
	n = 1;
	for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
	  if (TREE_CODE (f) == FIELD_DECL)
	    {
	      m = count_type_elements (TREE_TYPE (f), false);
	      /* If the field doesn't span the whole union, add an extra
		 scalar for the rest.  */
	      if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
				    TYPE_SIZE (type)) != 1)
		m++;
	      if (n < m)
		n = m;
	    }
	return n;
      }

    case COMPLEX_TYPE:
      return 2;

    case VECTOR_TYPE:
      return TYPE_VECTOR_SUBPARTS (type);

    case INTEGER_TYPE:
    case REAL_TYPE:
    case FIXED_POINT_TYPE:
    case ENUMERAL_TYPE:
    case BOOLEAN_TYPE:
    case POINTER_TYPE:
    case OFFSET_TYPE:
    case REFERENCE_TYPE:
    case NULLPTR_TYPE:
      return 1;

    case ERROR_MARK:
      return 0;

    case VOID_TYPE:
    case METHOD_TYPE:
    case FUNCTION_TYPE:
    case LANG_TYPE:
    default:
      gcc_unreachable ();
    }
}

/* Helper for categorize_ctor_elements.  Identical interface.  */

static bool
categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
			    HOST_WIDE_INT *p_init_elts, bool *p_complete)
{
  unsigned HOST_WIDE_INT idx;
  HOST_WIDE_INT nz_elts, init_elts, num_fields;
  tree value, purpose, elt_type;

  /* Whether CTOR is a valid constant initializer, in accordance with what
     initializer_constant_valid_p does.  If inferred from the constructor
     elements, true until proven otherwise.  */
  bool const_from_elts_p = constructor_static_from_elts_p (ctor);
  bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);

  nz_elts = 0;
  init_elts = 0;
  num_fields = 0;
  elt_type = NULL_TREE;

  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
    {
      HOST_WIDE_INT mult = 1;

      if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
	{
	  tree lo_index = TREE_OPERAND (purpose, 0);
	  tree hi_index = TREE_OPERAND (purpose, 1);

	  if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
	    mult = (tree_to_uhwi (hi_index)
		    - tree_to_uhwi (lo_index) + 1);
	}
      num_fields += mult;
      elt_type = TREE_TYPE (value);

      switch (TREE_CODE (value))
	{
	case CONSTRUCTOR:
	  {
	    HOST_WIDE_INT nz = 0, ic = 0;

	    bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
							   p_complete);

	    nz_elts += mult * nz;
 	    init_elts += mult * ic;

	    if (const_from_elts_p && const_p)
	      const_p = const_elt_p;
	  }
	  break;

	case INTEGER_CST:
	case REAL_CST:
	case FIXED_CST:
	  if (!initializer_zerop (value))
	    nz_elts += mult;
	  init_elts += mult;
	  break;

	case STRING_CST:
	  nz_elts += mult * TREE_STRING_LENGTH (value);
	  init_elts += mult * TREE_STRING_LENGTH (value);
	  break;

	case COMPLEX_CST:
	  if (!initializer_zerop (TREE_REALPART (value)))
	    nz_elts += mult;
	  if (!initializer_zerop (TREE_IMAGPART (value)))
	    nz_elts += mult;
	  init_elts += mult;
	  break;

	case VECTOR_CST:
	  {
	    unsigned i;
	    for (i = 0; i < VECTOR_CST_NELTS (value); ++i)
	      {
		tree v = VECTOR_CST_ELT (value, i);
		if (!initializer_zerop (v))
		  nz_elts += mult;
		init_elts += mult;
	      }
	  }
	  break;

	default:
	  {
	    HOST_WIDE_INT tc = count_type_elements (elt_type, false);
	    nz_elts += mult * tc;
	    init_elts += mult * tc;

	    if (const_from_elts_p && const_p)
	      const_p
		= initializer_constant_valid_p (value,
						elt_type,
						TYPE_REVERSE_STORAGE_ORDER
						(TREE_TYPE (ctor)))
		  != NULL_TREE;
	  }
	  break;
	}
    }

  if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
						num_fields, elt_type))
    *p_complete = false;

  *p_nz_elts += nz_elts;
  *p_init_elts += init_elts;

  return const_p;
}

/* Examine CTOR to discover:
   * how many scalar fields are set to nonzero values,
     and place it in *P_NZ_ELTS;
   * how many scalar fields in total are in CTOR,
     and place it in *P_ELT_COUNT.
   * whether the constructor is complete -- in the sense that every
     meaningful byte is explicitly given a value --
     and place it in *P_COMPLETE.

   Return whether or not CTOR is a valid static constant initializer, the same
   as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0".  */

bool
categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
			  HOST_WIDE_INT *p_init_elts, bool *p_complete)
{
  *p_nz_elts = 0;
  *p_init_elts = 0;
  *p_complete = true;

  return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
}

/* TYPE is initialized by a constructor with NUM_ELTS elements, the last
   of which had type LAST_TYPE.  Each element was itself a complete
   initializer, in the sense that every meaningful byte was explicitly
   given a value.  Return true if the same is true for the constructor
   as a whole.  */

bool
complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
			  const_tree last_type)
{
  if (TREE_CODE (type) == UNION_TYPE
      || TREE_CODE (type) == QUAL_UNION_TYPE)
    {
      if (num_elts == 0)
	return false;

      gcc_assert (num_elts == 1 && last_type);

      /* ??? We could look at each element of the union, and find the
	 largest element.  Which would avoid comparing the size of the
	 initialized element against any tail padding in the union.
	 Doesn't seem worth the effort...  */
      return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
    }

  return count_type_elements (type, true) == num_elts;
}

/* Return 1 if EXP contains mostly (3/4)  zeros.  */

static int
mostly_zeros_p (const_tree exp)
{
  if (TREE_CODE (exp) == CONSTRUCTOR)
    {
      HOST_WIDE_INT nz_elts, init_elts;
      bool complete_p;

      categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
      return !complete_p || nz_elts < init_elts / 4;
    }

  return initializer_zerop (exp);
}

/* Return 1 if EXP contains all zeros.  */

static int
all_zeros_p (const_tree exp)
{
  if (TREE_CODE (exp) == CONSTRUCTOR)
    {
      HOST_WIDE_INT nz_elts, init_elts;
      bool complete_p;

      categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
      return nz_elts == 0;
    }

  return initializer_zerop (exp);
}

/* Helper function for store_constructor.
   TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
   CLEARED is as for store_constructor.
   ALIAS_SET is the alias set to use for any stores.
   If REVERSE is true, the store is to be done in reverse order.

   This provides a recursive shortcut back to store_constructor when it isn't
   necessary to go through store_field.  This is so that we can pass through
   the cleared field to let store_constructor know that we may not have to
   clear a substructure if the outer structure has already been cleared.  */

static void
store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
			 HOST_WIDE_INT bitpos,
			 unsigned HOST_WIDE_INT bitregion_start,
			 unsigned HOST_WIDE_INT bitregion_end,
			 machine_mode mode,
			 tree exp, int cleared,
			 alias_set_type alias_set, bool reverse)
{
  if (TREE_CODE (exp) == CONSTRUCTOR
      /* We can only call store_constructor recursively if the size and
	 bit position are on a byte boundary.  */
      && bitpos % BITS_PER_UNIT == 0
      && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
      /* If we have a nonzero bitpos for a register target, then we just
	 let store_field do the bitfield handling.  This is unlikely to
	 generate unnecessary clear instructions anyways.  */
      && (bitpos == 0 || MEM_P (target)))
    {
      if (MEM_P (target))
	target
	  = adjust_address (target,
			    GET_MODE (target) == BLKmode
			    || 0 != (bitpos
				     % GET_MODE_ALIGNMENT (GET_MODE (target)))
			    ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);


      /* Update the alias set, if required.  */
      if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
	  && MEM_ALIAS_SET (target) != 0)
	{
	  target = copy_rtx (target);
	  set_mem_alias_set (target, alias_set);
	}

      store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT,
			 reverse);
    }
  else
    store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
		 exp, alias_set, false, reverse);
}


/* Returns the number of FIELD_DECLs in TYPE.  */

static int
fields_length (const_tree type)
{
  tree t = TYPE_FIELDS (type);
  int count = 0;

  for (; t; t = DECL_CHAIN (t))
    if (TREE_CODE (t) == FIELD_DECL)
      ++count;

  return count;
}


/* Store the value of constructor EXP into the rtx TARGET.
   TARGET is either a REG or a MEM; we know it cannot conflict, since
   safe_from_p has been called.
   CLEARED is true if TARGET is known to have been zero'd.
   SIZE is the number of bytes of TARGET we are allowed to modify: this
   may not be the same as the size of EXP if we are assigning to a field
   which has been packed to exclude padding bits.
   If REVERSE is true, the store is to be done in reverse order.  */

static void
store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size,
		   bool reverse)
{
  tree type = TREE_TYPE (exp);
  HOST_WIDE_INT exp_size = int_size_in_bytes (type);
  HOST_WIDE_INT bitregion_end = size > 0 ? size * BITS_PER_UNIT - 1 : 0;

  switch (TREE_CODE (type))
    {
    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
	unsigned HOST_WIDE_INT idx;
	tree field, value;

	/* The storage order is specified for every aggregate type.  */
	reverse = TYPE_REVERSE_STORAGE_ORDER (type);

	/* If size is zero or the target is already cleared, do nothing.  */
	if (size == 0 || cleared)
	  cleared = 1;
	/* We either clear the aggregate or indicate the value is dead.  */
	else if ((TREE_CODE (type) == UNION_TYPE
		  || TREE_CODE (type) == QUAL_UNION_TYPE)
		 && ! CONSTRUCTOR_ELTS (exp))
	  /* If the constructor is empty, clear the union.  */
	  {
	    clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
	    cleared = 1;
	  }

	/* If we are building a static constructor into a register,
	   set the initial value as zero so we can fold the value into
	   a constant.  But if more than one register is involved,
	   this probably loses.  */
	else if (REG_P (target) && TREE_STATIC (exp)
		 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
	  {
	    emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
	    cleared = 1;
	  }

        /* If the constructor has fewer fields than the structure or
	   if we are initializing the structure to mostly zeros, clear
	   the whole structure first.  Don't do this if TARGET is a
	   register whose mode size isn't equal to SIZE since
	   clear_storage can't handle this case.  */
	else if (size > 0
		 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
		     || mostly_zeros_p (exp))
		 && (!REG_P (target)
		     || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
			 == size)))
	  {
	    clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
	    cleared = 1;
	  }

	if (REG_P (target) && !cleared)
	  emit_clobber (target);

	/* Store each element of the constructor into the
	   corresponding field of TARGET.  */
	FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
	  {
	    machine_mode mode;
	    HOST_WIDE_INT bitsize;
	    HOST_WIDE_INT bitpos = 0;
	    tree offset;
	    rtx to_rtx = target;

	    /* Just ignore missing fields.  We cleared the whole
	       structure, above, if any fields are missing.  */
	    if (field == 0)
	      continue;

	    if (cleared && initializer_zerop (value))
	      continue;

	    if (tree_fits_uhwi_p (DECL_SIZE (field)))
	      bitsize = tree_to_uhwi (DECL_SIZE (field));
	    else
	      gcc_unreachable ();

	    mode = DECL_MODE (field);
	    if (DECL_BIT_FIELD (field))
	      mode = VOIDmode;

	    offset = DECL_FIELD_OFFSET (field);
	    if (tree_fits_shwi_p (offset)
		&& tree_fits_shwi_p (bit_position (field)))
	      {
		bitpos = int_bit_position (field);
		offset = NULL_TREE;
	      }
	    else
	      gcc_unreachable ();

	    /* If this initializes a field that is smaller than a
	       word, at the start of a word, try to widen it to a full
	       word.  This special case allows us to output C++ member
	       function initializations in a form that the optimizers
	       can understand.  */
	    if (WORD_REGISTER_OPERATIONS
		&& REG_P (target)
		&& bitsize < BITS_PER_WORD
		&& bitpos % BITS_PER_WORD == 0
		&& GET_MODE_CLASS (mode) == MODE_INT
		&& TREE_CODE (value) == INTEGER_CST
		&& exp_size >= 0
		&& bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
	      {
		tree type = TREE_TYPE (value);

		if (TYPE_PRECISION (type) < BITS_PER_WORD)
		  {
		    type = lang_hooks.types.type_for_mode
		      (word_mode, TYPE_UNSIGNED (type));
		    value = fold_convert (type, value);
		    /* Make sure the bits beyond the original bitsize are zero
		       so that we can correctly avoid extra zeroing stores in
		       later constructor elements.  */
		    tree bitsize_mask
		      = wide_int_to_tree (type, wi::mask (bitsize, false,
							   BITS_PER_WORD));
		    value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
		  }

		if (BYTES_BIG_ENDIAN)
		  value
		   = fold_build2 (LSHIFT_EXPR, type, value,
				   build_int_cst (type,
						  BITS_PER_WORD - bitsize));
		bitsize = BITS_PER_WORD;
		mode = word_mode;
	      }

	    if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
		&& DECL_NONADDRESSABLE_P (field))
	      {
		to_rtx = copy_rtx (to_rtx);
		MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
	      }

	    store_constructor_field (to_rtx, bitsize, bitpos,
				     0, bitregion_end, mode,
				     value, cleared,
				     get_alias_set (TREE_TYPE (field)),
				     reverse);
	  }
	break;
      }
    case ARRAY_TYPE:
      {
	tree value, index;
	unsigned HOST_WIDE_INT i;
	int need_to_clear;
	tree domain;
	tree elttype = TREE_TYPE (type);
	int const_bounds_p;
	HOST_WIDE_INT minelt = 0;
	HOST_WIDE_INT maxelt = 0;

	/* The storage order is specified for every aggregate type.  */
	reverse = TYPE_REVERSE_STORAGE_ORDER (type);

	domain = TYPE_DOMAIN (type);
	const_bounds_p = (TYPE_MIN_VALUE (domain)
			  && TYPE_MAX_VALUE (domain)
			  && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
			  && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));

	/* If we have constant bounds for the range of the type, get them.  */
	if (const_bounds_p)
	  {
	    minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
	    maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
	  }

	/* If the constructor has fewer elements than the array, clear
           the whole array first.  Similarly if this is static
           constructor of a non-BLKmode object.  */
	if (cleared)
	  need_to_clear = 0;
	else if (REG_P (target) && TREE_STATIC (exp))
	  need_to_clear = 1;
	else
	  {
	    unsigned HOST_WIDE_INT idx;
	    tree index, value;
	    HOST_WIDE_INT count = 0, zero_count = 0;
	    need_to_clear = ! const_bounds_p;

	    /* This loop is a more accurate version of the loop in
	       mostly_zeros_p (it handles RANGE_EXPR in an index).  It
	       is also needed to check for missing elements.  */
	    FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
	      {
		HOST_WIDE_INT this_node_count;

		if (need_to_clear)
		  break;

		if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
		  {
		    tree lo_index = TREE_OPERAND (index, 0);
		    tree hi_index = TREE_OPERAND (index, 1);

		    if (! tree_fits_uhwi_p (lo_index)
			|| ! tree_fits_uhwi_p (hi_index))
		      {
			need_to_clear = 1;
			break;
		      }

		    this_node_count = (tree_to_uhwi (hi_index)
				       - tree_to_uhwi (lo_index) + 1);
		  }
		else
		  this_node_count = 1;

		count += this_node_count;
		if (mostly_zeros_p (value))
		  zero_count += this_node_count;
	      }

	    /* Clear the entire array first if there are any missing
	       elements, or if the incidence of zero elements is >=
	       75%.  */
	    if (! need_to_clear
		&& (count < maxelt - minelt + 1
		    || 4 * zero_count >= 3 * count))
	      need_to_clear = 1;
	  }

	if (need_to_clear && size > 0)
	  {
	    if (REG_P (target))
	      emit_move_insn (target,  CONST0_RTX (GET_MODE (target)));
	    else
	      clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
	    cleared = 1;
	  }

	if (!cleared && REG_P (target))
	  /* Inform later passes that the old value is dead.  */
	  emit_clobber (target);

	/* Store each element of the constructor into the
	   corresponding element of TARGET, determined by counting the
	   elements.  */
	FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
	  {
	    machine_mode mode;
	    HOST_WIDE_INT bitsize;
	    HOST_WIDE_INT bitpos;
	    rtx xtarget = target;

	    if (cleared && initializer_zerop (value))
	      continue;

	    mode = TYPE_MODE (elttype);
	    if (mode == BLKmode)
	      bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype))
			 ? tree_to_uhwi (TYPE_SIZE (elttype))
			 : -1);
	    else
	      bitsize = GET_MODE_BITSIZE (mode);

	    if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
	      {
		tree lo_index = TREE_OPERAND (index, 0);
		tree hi_index = TREE_OPERAND (index, 1);
		rtx index_r, pos_rtx;
		HOST_WIDE_INT lo, hi, count;
		tree position;

		/* If the range is constant and "small", unroll the loop.  */
		if (const_bounds_p
		    && tree_fits_shwi_p (lo_index)
		    && tree_fits_shwi_p (hi_index)
		    && (lo = tree_to_shwi (lo_index),
			hi = tree_to_shwi (hi_index),
			count = hi - lo + 1,
			(!MEM_P (target)
			 || count <= 2
			 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
			     && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
				 <= 40 * 8)))))
		  {
		    lo -= minelt;  hi -= minelt;
		    for (; lo <= hi; lo++)
		      {
			bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));

			if (MEM_P (target)
			    && !MEM_KEEP_ALIAS_SET_P (target)
			    && TREE_CODE (type) == ARRAY_TYPE
			    && TYPE_NONALIASED_COMPONENT (type))
			  {
			    target = copy_rtx (target);
			    MEM_KEEP_ALIAS_SET_P (target) = 1;
			  }

			store_constructor_field
			  (target, bitsize, bitpos, 0, bitregion_end,
			   mode, value, cleared,
			   get_alias_set (elttype), reverse);
		      }
		  }
		else
		  {
		    rtx_code_label *loop_start = gen_label_rtx ();
		    rtx_code_label *loop_end = gen_label_rtx ();
		    tree exit_cond;

		    expand_normal (hi_index);

		    index = build_decl (EXPR_LOCATION (exp),
					VAR_DECL, NULL_TREE, domain);
		    index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
		    SET_DECL_RTL (index, index_r);
		    store_expr (lo_index, index_r, 0, false, reverse);

		    /* Build the head of the loop.  */
		    do_pending_stack_adjust ();
		    emit_label (loop_start);

		    /* Assign value to element index.  */
		    position =
		      fold_convert (ssizetype,
				    fold_build2 (MINUS_EXPR,
						 TREE_TYPE (index),
						 index,
						 TYPE_MIN_VALUE (domain)));

		    position =
			size_binop (MULT_EXPR, position,
				    fold_convert (ssizetype,
						  TYPE_SIZE_UNIT (elttype)));

		    pos_rtx = expand_normal (position);
		    xtarget = offset_address (target, pos_rtx,
					      highest_pow2_factor (position));
		    xtarget = adjust_address (xtarget, mode, 0);
		    if (TREE_CODE (value) == CONSTRUCTOR)
		      store_constructor (value, xtarget, cleared,
					 bitsize / BITS_PER_UNIT, reverse);
		    else
		      store_expr (value, xtarget, 0, false, reverse);

		    /* Generate a conditional jump to exit the loop.  */
		    exit_cond = build2 (LT_EXPR, integer_type_node,
					index, hi_index);
		    jumpif (exit_cond, loop_end, -1);

		    /* Update the loop counter, and jump to the head of
		       the loop.  */
		    expand_assignment (index,
				       build2 (PLUS_EXPR, TREE_TYPE (index),
					       index, integer_one_node),
				       false);

		    emit_jump (loop_start);

		    /* Build the end of the loop.  */
		    emit_label (loop_end);
		  }
	      }
	    else if ((index != 0 && ! tree_fits_shwi_p (index))
		     || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
	      {
		tree position;

		if (index == 0)
		  index = ssize_int (1);

		if (minelt)
		  index = fold_convert (ssizetype,
					fold_build2 (MINUS_EXPR,
						     TREE_TYPE (index),
						     index,
						     TYPE_MIN_VALUE (domain)));

		position =
		  size_binop (MULT_EXPR, index,
			      fold_convert (ssizetype,
					    TYPE_SIZE_UNIT (elttype)));
		xtarget = offset_address (target,
					  expand_normal (position),
					  highest_pow2_factor (position));
		xtarget = adjust_address (xtarget, mode, 0);
		store_expr (value, xtarget, 0, false, reverse);
	      }
	    else
	      {
		if (index != 0)
		  bitpos = ((tree_to_shwi (index) - minelt)
			    * tree_to_uhwi (TYPE_SIZE (elttype)));
		else
		  bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));

		if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
		    && TREE_CODE (type) == ARRAY_TYPE
		    && TYPE_NONALIASED_COMPONENT (type))
		  {
		    target = copy_rtx (target);
		    MEM_KEEP_ALIAS_SET_P (target) = 1;
		  }
		store_constructor_field (target, bitsize, bitpos, 0,
					 bitregion_end, mode, value,
					 cleared, get_alias_set (elttype),
					 reverse);
	      }
	  }
	break;
      }

    case VECTOR_TYPE:
      {
	unsigned HOST_WIDE_INT idx;
	constructor_elt *ce;
	int i;
	int need_to_clear;
	int icode = CODE_FOR_nothing;
	tree elttype = TREE_TYPE (type);
	int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
	machine_mode eltmode = TYPE_MODE (elttype);
	HOST_WIDE_INT bitsize;
	HOST_WIDE_INT bitpos;
	rtvec vector = NULL;
	unsigned n_elts;
	alias_set_type alias;

	gcc_assert (eltmode != BLKmode);

	n_elts = TYPE_VECTOR_SUBPARTS (type);
	if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
	  {
	    machine_mode mode = GET_MODE (target);

	    icode = (int) optab_handler (vec_init_optab, mode);
	    /* Don't use vec_init<mode> if some elements have VECTOR_TYPE.  */
	    if (icode != CODE_FOR_nothing)
	      {
		tree value;

		FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
		  if (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE)
		    {
		      icode = CODE_FOR_nothing;
		      break;
		    }
	      }
	    if (icode != CODE_FOR_nothing)
	      {
		unsigned int i;

		vector = rtvec_alloc (n_elts);
		for (i = 0; i < n_elts; i++)
		  RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
	      }
	  }

	/* If the constructor has fewer elements than the vector,
	   clear the whole array first.  Similarly if this is static
	   constructor of a non-BLKmode object.  */
	if (cleared)
	  need_to_clear = 0;
	else if (REG_P (target) && TREE_STATIC (exp))
	  need_to_clear = 1;
	else
	  {
	    unsigned HOST_WIDE_INT count = 0, zero_count = 0;
	    tree value;

	    FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
	      {
		int n_elts_here = tree_to_uhwi
		  (int_const_binop (TRUNC_DIV_EXPR,
				    TYPE_SIZE (TREE_TYPE (value)),
				    TYPE_SIZE (elttype)));

		count += n_elts_here;
		if (mostly_zeros_p (value))
		  zero_count += n_elts_here;
	      }

	    /* Clear the entire vector first if there are any missing elements,
	       or if the incidence of zero elements is >= 75%.  */
	    need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
	  }

	if (need_to_clear && size > 0 && !vector)
	  {
	    if (REG_P (target))
	      emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
	    else
	      clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
	    cleared = 1;
	  }

	/* Inform later passes that the old value is dead.  */
	if (!cleared && !vector && REG_P (target))
	  emit_move_insn (target, CONST0_RTX (GET_MODE (target)));

        if (MEM_P (target))
	  alias = MEM_ALIAS_SET (target);
	else
	  alias = get_alias_set (elttype);

        /* Store each element of the constructor into the corresponding
	   element of TARGET, determined by counting the elements.  */
	for (idx = 0, i = 0;
	     vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
	     idx++, i += bitsize / elt_size)
	  {
	    HOST_WIDE_INT eltpos;
	    tree value = ce->value;

	    bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
	    if (cleared && initializer_zerop (value))
	      continue;

	    if (ce->index)
	      eltpos = tree_to_uhwi (ce->index);
	    else
	      eltpos = i;

	    if (vector)
	      {
		/* vec_init<mode> should not be used if there are VECTOR_TYPE
		   elements.  */
		gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
		RTVEC_ELT (vector, eltpos)
		  = expand_normal (value);
	      }
	    else
	      {
		machine_mode value_mode =
		  TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
		  ? TYPE_MODE (TREE_TYPE (value))
		  : eltmode;
		bitpos = eltpos * elt_size;
		store_constructor_field (target, bitsize, bitpos, 0,
					 bitregion_end, value_mode,
					 value, cleared, alias, reverse);
	      }
	  }

	if (vector)
	  emit_insn (GEN_FCN (icode)
		     (target,
		      gen_rtx_PARALLEL (GET_MODE (target), vector)));
	break;
      }

    default:
      gcc_unreachable ();
    }
}

/* Store the value of EXP (an expression tree)
   into a subfield of TARGET which has mode MODE and occupies
   BITSIZE bits, starting BITPOS bits from the start of TARGET.
   If MODE is VOIDmode, it means that we are storing into a bit-field.

   BITREGION_START is bitpos of the first bitfield in this region.
   BITREGION_END is the bitpos of the ending bitfield in this region.
   These two fields are 0, if the C++ memory model does not apply,
   or we are not interested in keeping track of bitfield regions.

   Always return const0_rtx unless we have something particular to
   return.

   ALIAS_SET is the alias set for the destination.  This value will
   (in general) be different from that for TARGET, since TARGET is a
   reference to the containing structure.

   If NONTEMPORAL is true, try generating a nontemporal store.

   If REVERSE is true, the store is to be done in reverse order.  */

static rtx
store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
	     unsigned HOST_WIDE_INT bitregion_start,
	     unsigned HOST_WIDE_INT bitregion_end,
	     machine_mode mode, tree exp,
	     alias_set_type alias_set, bool nontemporal,  bool reverse)
{
  if (TREE_CODE (exp) == ERROR_MARK)
    return const0_rtx;

  /* If we have nothing to store, do nothing unless the expression has
     side-effects.  */
  if (bitsize == 0)
    return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);

  if (GET_CODE (target) == CONCAT)
    {
      /* We're storing into a struct containing a single __complex.  */

      gcc_assert (!bitpos);
      return store_expr (exp, target, 0, nontemporal, reverse);
    }

  /* If the structure is in a register or if the component
     is a bit field, we cannot use addressing to access it.
     Use bit-field techniques or SUBREG to store in it.  */

  if (mode == VOIDmode
      || (mode != BLKmode && ! direct_store[(int) mode]
	  && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
	  && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
      || REG_P (target)
      || GET_CODE (target) == SUBREG
      /* If the field isn't aligned enough to store as an ordinary memref,
	 store it as a bit field.  */
      || (mode != BLKmode
	  && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
		|| bitpos % GET_MODE_ALIGNMENT (mode))
	       && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
	      || (bitpos % BITS_PER_UNIT != 0)))
      || (bitsize >= 0 && mode != BLKmode
	  && GET_MODE_BITSIZE (mode) > bitsize)
      /* If the RHS and field are a constant size and the size of the
	 RHS isn't the same size as the bitfield, we must use bitfield
	 operations.  */
      || (bitsize >= 0
	  && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
	  && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0
	  /* Except for initialization of full bytes from a CONSTRUCTOR, which
	     we will handle specially below.  */
	  && !(TREE_CODE (exp) == CONSTRUCTOR
	       && bitsize % BITS_PER_UNIT == 0)
	  /* And except for bitwise copying of TREE_ADDRESSABLE types,
	     where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
	     includes some extra padding.  store_expr / expand_expr will in
	     that case call get_inner_reference that will have the bitsize
	     we check here and thus the block move will not clobber the
	     padding that shouldn't be clobbered.  In the future we could
	     replace the TREE_ADDRESSABLE check with a check that
	     get_base_address needs to live in memory.  */
	  && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
	      || TREE_CODE (exp) != COMPONENT_REF
	      || TREE_CODE (DECL_SIZE (TREE_OPERAND (exp, 1))) != INTEGER_CST
	      || (bitsize % BITS_PER_UNIT != 0)
	      || (bitpos % BITS_PER_UNIT != 0)
	      || (compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)), bitsize)
		  != 0)))
      /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
         decl we must use bitfield operations.  */
      || (bitsize >= 0
	  && TREE_CODE (exp) == MEM_REF
	  && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
	  && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
	  && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
	  && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
    {
      rtx temp;
      gimple *nop_def;

      /* If EXP is a NOP_EXPR of precision less than its mode, then that
	 implies a mask operation.  If the precision is the same size as
	 the field we're storing into, that mask is redundant.  This is
	 particularly common with bit field assignments generated by the
	 C front end.  */
      nop_def = get_def_for_expr (exp, NOP_EXPR);
      if (nop_def)
	{
	  tree type = TREE_TYPE (exp);
	  if (INTEGRAL_TYPE_P (type)
	      && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
	      && bitsize == TYPE_PRECISION (type))
	    {
	      tree op = gimple_assign_rhs1 (nop_def);
	      type = TREE_TYPE (op);
	      if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
		exp = op;
	    }
	}

      temp = expand_normal (exp);

      /* Handle calls that return values in multiple non-contiguous locations.
	 The Irix 6 ABI has examples of this.  */
      if (GET_CODE (temp) == PARALLEL)
	{
	  HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
	  machine_mode temp_mode
	    = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
	  rtx temp_target = gen_reg_rtx (temp_mode);
	  emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
	  temp = temp_target;
	}

      /* Handle calls that return BLKmode values in registers.  */
      else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
	{
	  rtx temp_target = gen_reg_rtx (GET_MODE (temp));
	  copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
	  temp = temp_target;
	}

      /* If the value has aggregate type and an integral mode then, if BITSIZE
	 is narrower than this mode and this is for big-endian data, we first
	 need to put the value into the low-order bits for store_bit_field,
	 except when MODE is BLKmode and BITSIZE larger than the word size
	 (see the handling of fields larger than a word in store_bit_field).
	 Moreover, the field may be not aligned on a byte boundary; in this
	 case, if it has reverse storage order, it needs to be accessed as a
	 scalar field with reverse storage order and we must first put the
	 value into target order.  */
      if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
	  && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT)
	{
	  HOST_WIDE_INT size = GET_MODE_BITSIZE (GET_MODE (temp));

	  reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));

	  if (reverse)
	    temp = flip_storage_order (GET_MODE (temp), temp);

	  if (bitsize < size
	      && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
	      && !(mode == BLKmode && bitsize > BITS_PER_WORD))
	    temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
				 size - bitsize, NULL_RTX, 1);
	}

      /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE.  */
      if (mode != VOIDmode && mode != BLKmode
	  && mode != TYPE_MODE (TREE_TYPE (exp)))
	temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);

      /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
	 and BITPOS must be aligned on a byte boundary.  If so, we simply do
	 a block copy.  Likewise for a BLKmode-like TARGET.  */
      if (GET_MODE (temp) == BLKmode
	  && (GET_MODE (target) == BLKmode
	      || (MEM_P (target)
		  && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
		  && (bitpos % BITS_PER_UNIT) == 0
		  && (bitsize % BITS_PER_UNIT) == 0)))
	{
	  gcc_assert (MEM_P (target) && MEM_P (temp)
		      && (bitpos % BITS_PER_UNIT) == 0);

	  target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
	  emit_block_move (target, temp,
			   GEN_INT ((bitsize + BITS_PER_UNIT - 1)
				    / BITS_PER_UNIT),
			   BLOCK_OP_NORMAL);

	  return const0_rtx;
	}

      /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
	 word size, we need to load the value (see again store_bit_field).  */
      if (GET_MODE (temp) == BLKmode && bitsize <= BITS_PER_WORD)
	{
	  machine_mode temp_mode = smallest_mode_for_size (bitsize, MODE_INT);
	  temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
				    temp_mode, false);
	}

      /* Store the value in the bitfield.  */
      store_bit_field (target, bitsize, bitpos,
		       bitregion_start, bitregion_end,
		       mode, temp, reverse);

      return const0_rtx;
    }
  else
    {
      /* Now build a reference to just the desired component.  */
      rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);

      if (to_rtx == target)
	to_rtx = copy_rtx (to_rtx);

      if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
	set_mem_alias_set (to_rtx, alias_set);

      /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
	 into a target smaller than its type; handle that case now.  */
      if (TREE_CODE (exp) == CONSTRUCTOR && bitsize >= 0)
	{
	  gcc_assert (bitsize % BITS_PER_UNIT == 0);
	  store_constructor (exp, to_rtx, 0, bitsize / BITS_PER_UNIT, reverse);
	  return to_rtx;
	}

      return store_expr (exp, to_rtx, 0, nontemporal, reverse);
    }
}

/* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
   an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
   codes and find the ultimate containing object, which we return.

   We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
   bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
   storage order of the field.
   If the position of the field is variable, we store a tree
   giving the variable offset (in units) in *POFFSET.
   This offset is in addition to the bit position.
   If the position is not variable, we store 0 in *POFFSET.

   If any of the extraction expressions is volatile,
   we store 1 in *PVOLATILEP.  Otherwise we don't change that.

   If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
   Otherwise, it is a mode that can be used to access the field.

   If the field describes a variable-sized object, *PMODE is set to
   BLKmode and *PBITSIZE is set to -1.  An access cannot be made in
   this case, but the address of the object can be found.  */

tree
get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
		     HOST_WIDE_INT *pbitpos, tree *poffset,
		     machine_mode *pmode, int *punsignedp,
		     int *preversep, int *pvolatilep)
{
  tree size_tree = 0;
  machine_mode mode = VOIDmode;
  bool blkmode_bitfield = false;
  tree offset = size_zero_node;
  offset_int bit_offset = 0;

  /* First get the mode, signedness, storage order and size.  We do this from
     just the outermost expression.  */
  *pbitsize = -1;
  if (TREE_CODE (exp) == COMPONENT_REF)
    {
      tree field = TREE_OPERAND (exp, 1);
      size_tree = DECL_SIZE (field);
      if (flag_strict_volatile_bitfields > 0
	  && TREE_THIS_VOLATILE (exp)
	  && DECL_BIT_FIELD_TYPE (field)
	  && DECL_MODE (field) != BLKmode)
	/* Volatile bitfields should be accessed in the mode of the
	     field's type, not the mode computed based on the bit
	     size.  */
	mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
      else if (!DECL_BIT_FIELD (field))
	mode = DECL_MODE (field);
      else if (DECL_MODE (field) == BLKmode)
	blkmode_bitfield = true;

      *punsignedp = DECL_UNSIGNED (field);
    }
  else if (TREE_CODE (exp) == BIT_FIELD_REF)
    {
      size_tree = TREE_OPERAND (exp, 1);
      *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
		     || TYPE_UNSIGNED (TREE_TYPE (exp)));

      /* For vector types, with the correct size of access, use the mode of
	 inner type.  */
      if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
	  && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
	  && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
        mode = TYPE_MODE (TREE_TYPE (exp));
    }
  else
    {
      mode = TYPE_MODE (TREE_TYPE (exp));
      *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));

      if (mode == BLKmode)
	size_tree = TYPE_SIZE (TREE_TYPE (exp));
      else
	*pbitsize = GET_MODE_BITSIZE (mode);
    }

  if (size_tree != 0)
    {
      if (! tree_fits_uhwi_p (size_tree))
	mode = BLKmode, *pbitsize = -1;
      else
	*pbitsize = tree_to_uhwi (size_tree);
    }

  *preversep = reverse_storage_order_for_component_p (exp);

  /* Compute cumulative bit-offset for nested component-refs and array-refs,
     and find the ultimate containing object.  */
  while (1)
    {
      switch (TREE_CODE (exp))
	{
	case BIT_FIELD_REF:
	  bit_offset += wi::to_offset (TREE_OPERAND (exp, 2));
	  break;

	case COMPONENT_REF:
	  {
	    tree field = TREE_OPERAND (exp, 1);
	    tree this_offset = component_ref_field_offset (exp);

	    /* If this field hasn't been filled in yet, don't go past it.
	       This should only happen when folding expressions made during
	       type construction.  */
	    if (this_offset == 0)
	      break;

	    offset = size_binop (PLUS_EXPR, offset, this_offset);
	    bit_offset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));

	    /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN.  */
	  }
	  break;

	case ARRAY_REF:
	case ARRAY_RANGE_REF:
	  {
	    tree index = TREE_OPERAND (exp, 1);
	    tree low_bound = array_ref_low_bound (exp);
	    tree unit_size = array_ref_element_size (exp);

	    /* We assume all arrays have sizes that are a multiple of a byte.
	       First subtract the lower bound, if any, in the type of the
	       index, then convert to sizetype and multiply by the size of
	       the array element.  */
	    if (! integer_zerop (low_bound))
	      index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
				   index, low_bound);

	    offset = size_binop (PLUS_EXPR, offset,
			         size_binop (MULT_EXPR,
					     fold_convert (sizetype, index),
					     unit_size));
	  }
	  break;

	case REALPART_EXPR:
	  break;

	case IMAGPART_EXPR:
	  bit_offset += *pbitsize;
	  break;

	case VIEW_CONVERT_EXPR:
	  break;

	case MEM_REF:
	  /* Hand back the decl for MEM[&decl, off].  */
	  if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
	    {
	      tree off = TREE_OPERAND (exp, 1);
	      if (!integer_zerop (off))
		{
		  offset_int boff, coff = mem_ref_offset (exp);
		  boff = coff << LOG2_BITS_PER_UNIT;
		  bit_offset += boff;
		}
	      exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
	    }
	  goto done;

	default:
	  goto done;
	}

      /* If any reference in the chain is volatile, the effect is volatile.  */
      if (TREE_THIS_VOLATILE (exp))
	*pvolatilep = 1;

      exp = TREE_OPERAND (exp, 0);
    }
 done:

  /* If OFFSET is constant, see if we can return the whole thing as a
     constant bit position.  Make sure to handle overflow during
     this conversion.  */
  if (TREE_CODE (offset) == INTEGER_CST)
    {
      offset_int tem = wi::sext (wi::to_offset (offset),
				 TYPE_PRECISION (sizetype));
      tem <<= LOG2_BITS_PER_UNIT;
      tem += bit_offset;
      if (wi::fits_shwi_p (tem))
	{
	  *pbitpos = tem.to_shwi ();
	  *poffset = offset = NULL_TREE;
	}
    }

  /* Otherwise, split it up.  */
  if (offset)
    {
      /* Avoid returning a negative bitpos as this may wreak havoc later.  */
      if (wi::neg_p (bit_offset) || !wi::fits_shwi_p (bit_offset))
        {
	  offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
	  offset_int tem = bit_offset.and_not (mask);
	  /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
	     Subtract it to BIT_OFFSET and add it (scaled) to OFFSET.  */
	  bit_offset -= tem;
	  tem >>= LOG2_BITS_PER_UNIT;
	  offset = size_binop (PLUS_EXPR, offset,
			       wide_int_to_tree (sizetype, tem));
	}

      *pbitpos = bit_offset.to_shwi ();
      *poffset = offset;
    }

  /* We can use BLKmode for a byte-aligned BLKmode bitfield.  */
  if (mode == VOIDmode
      && blkmode_bitfield
      && (*pbitpos % BITS_PER_UNIT) == 0
      && (*pbitsize % BITS_PER_UNIT) == 0)
    *pmode = BLKmode;
  else
    *pmode = mode;

  return exp;
}

/* Alignment in bits the TARGET of an assignment may be assumed to have.  */

static unsigned HOST_WIDE_INT
target_align (const_tree target)
{
  /* We might have a chain of nested references with intermediate misaligning
     bitfields components, so need to recurse to find out.  */

  unsigned HOST_WIDE_INT this_align, outer_align;

  switch (TREE_CODE (target))
    {
    case BIT_FIELD_REF:
      return 1;

    case COMPONENT_REF:
      this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
      outer_align = target_align (TREE_OPERAND (target, 0));
      return MIN (this_align, outer_align);

    case ARRAY_REF:
    case ARRAY_RANGE_REF:
      this_align = TYPE_ALIGN (TREE_TYPE (target));
      outer_align = target_align (TREE_OPERAND (target, 0));
      return MIN (this_align, outer_align);

    CASE_CONVERT:
    case NON_LVALUE_EXPR:
    case VIEW_CONVERT_EXPR:
      this_align = TYPE_ALIGN (TREE_TYPE (target));
      outer_align = target_align (TREE_OPERAND (target, 0));
      return MAX (this_align, outer_align);

    default:
      return TYPE_ALIGN (TREE_TYPE (target));
    }
}


/* Given an rtx VALUE that may contain additions and multiplications, return
   an equivalent value that just refers to a register, memory, or constant.
   This is done by generating instructions to perform the arithmetic and
   returning a pseudo-register containing the value.

   The returned value may be a REG, SUBREG, MEM or constant.  */

rtx
force_operand (rtx value, rtx target)
{
  rtx op1, op2;
  /* Use subtarget as the target for operand 0 of a binary operation.  */
  rtx subtarget = get_subtarget (target);
  enum rtx_code code = GET_CODE (value);

  /* Check for subreg applied to an expression produced by loop optimizer.  */
  if (code == SUBREG
      && !REG_P (SUBREG_REG (value))
      && !MEM_P (SUBREG_REG (value)))
    {
      value
	= simplify_gen_subreg (GET_MODE (value),
			       force_reg (GET_MODE (SUBREG_REG (value)),
					  force_operand (SUBREG_REG (value),
							 NULL_RTX)),
			       GET_MODE (SUBREG_REG (value)),
			       SUBREG_BYTE (value));
      code = GET_CODE (value);
    }

  /* Check for a PIC address load.  */
  if ((code == PLUS || code == MINUS)
      && XEXP (value, 0) == pic_offset_table_rtx
      && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
	  || GET_CODE (XEXP (value, 1)) == LABEL_REF
	  || GET_CODE (XEXP (value, 1)) == CONST))
    {
      if (!subtarget)
	subtarget = gen_reg_rtx (GET_MODE (value));
      emit_move_insn (subtarget, value);
      return subtarget;
    }

  if (ARITHMETIC_P (value))
    {
      op2 = XEXP (value, 1);
      if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
	subtarget = 0;
      if (code == MINUS && CONST_INT_P (op2))
	{
	  code = PLUS;
	  op2 = negate_rtx (GET_MODE (value), op2);
	}

      /* Check for an addition with OP2 a constant integer and our first
         operand a PLUS of a virtual register and something else.  In that
         case, we want to emit the sum of the virtual register and the
         constant first and then add the other value.  This allows virtual
         register instantiation to simply modify the constant rather than
         creating another one around this addition.  */
      if (code == PLUS && CONST_INT_P (op2)
	  && GET_CODE (XEXP (value, 0)) == PLUS
	  && REG_P (XEXP (XEXP (value, 0), 0))
	  && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
	  && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
	{
	  rtx temp = expand_simple_binop (GET_MODE (value), code,
					  XEXP (XEXP (value, 0), 0), op2,
					  subtarget, 0, OPTAB_LIB_WIDEN);
	  return expand_simple_binop (GET_MODE (value), code, temp,
				      force_operand (XEXP (XEXP (value,
								 0), 1), 0),
				      target, 0, OPTAB_LIB_WIDEN);
	}

      op1 = force_operand (XEXP (value, 0), subtarget);
      op2 = force_operand (op2, NULL_RTX);
      switch (code)
	{
	case MULT:
	  return expand_mult (GET_MODE (value), op1, op2, target, 1);
	case DIV:
	  if (!INTEGRAL_MODE_P (GET_MODE (value)))
	    return expand_simple_binop (GET_MODE (value), code, op1, op2,
					target, 1, OPTAB_LIB_WIDEN);
	  else
	    return expand_divmod (0,
				  FLOAT_MODE_P (GET_MODE (value))
				  ? RDIV_EXPR : TRUNC_DIV_EXPR,
				  GET_MODE (value), op1, op2, target, 0);
	case MOD:
	  return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
				target, 0);
	case UDIV:
	  return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
				target, 1);
	case UMOD:
	  return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
				target, 1);
	case ASHIFTRT:
	  return expand_simple_binop (GET_MODE (value), code, op1, op2,
				      target, 0, OPTAB_LIB_WIDEN);
	default:
	  return expand_simple_binop (GET_MODE (value), code, op1, op2,
				      target, 1, OPTAB_LIB_WIDEN);
	}
    }
  if (UNARY_P (value))
    {
      if (!target)
	target = gen_reg_rtx (GET_MODE (value));
      op1 = force_operand (XEXP (value, 0), NULL_RTX);
      switch (code)
	{
	case ZERO_EXTEND:
	case SIGN_EXTEND:
	case TRUNCATE:
	case FLOAT_EXTEND:
	case FLOAT_TRUNCATE:
	  convert_move (target, op1, code == ZERO_EXTEND);
	  return target;

	case FIX:
	case UNSIGNED_FIX:
	  expand_fix (target, op1, code == UNSIGNED_FIX);
	  return target;

	case FLOAT:
	case UNSIGNED_FLOAT:
	  expand_float (target, op1, code == UNSIGNED_FLOAT);
	  return target;

	default:
	  return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
	}
    }

#ifdef INSN_SCHEDULING
  /* On machines that have insn scheduling, we want all memory reference to be
     explicit, so we need to deal with such paradoxical SUBREGs.  */
  if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
    value
      = simplify_gen_subreg (GET_MODE (value),
			     force_reg (GET_MODE (SUBREG_REG (value)),
					force_operand (SUBREG_REG (value),
						       NULL_RTX)),
			     GET_MODE (SUBREG_REG (value)),
			     SUBREG_BYTE (value));
#endif

  return value;
}

/* Subroutine of expand_expr: return nonzero iff there is no way that
   EXP can reference X, which is being modified.  TOP_P is nonzero if this
   call is going to be used to determine whether we need a temporary
   for EXP, as opposed to a recursive call to this function.

   It is always safe for this routine to return zero since it merely
   searches for optimization opportunities.  */

int
safe_from_p (const_rtx x, tree exp, int top_p)
{
  rtx exp_rtl = 0;
  int i, nops;

  if (x == 0
      /* If EXP has varying size, we MUST use a target since we currently
	 have no way of allocating temporaries of variable size
	 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
	 So we assume here that something at a higher level has prevented a
	 clash.  This is somewhat bogus, but the best we can do.  Only
	 do this when X is BLKmode and when we are at the top level.  */
      || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
	  && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
	  && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
	      || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
	      || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
	      != INTEGER_CST)
	  && GET_MODE (x) == BLKmode)
      /* If X is in the outgoing argument area, it is always safe.  */
      || (MEM_P (x)
	  && (XEXP (x, 0) == virtual_outgoing_args_rtx
	      || (GET_CODE (XEXP (x, 0)) == PLUS
		  && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
    return 1;

  /* If this is a subreg of a hard register, declare it unsafe, otherwise,
     find the underlying pseudo.  */
  if (GET_CODE (x) == SUBREG)
    {
      x = SUBREG_REG (x);
      if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
	return 0;
    }

  /* Now look at our tree code and possibly recurse.  */
  switch (TREE_CODE_CLASS (TREE_CODE (exp)))
    {
    case tcc_declaration:
      exp_rtl = DECL_RTL_IF_SET (exp);
      break;

    case tcc_constant:
      return 1;

    case tcc_exceptional:
      if (TREE_CODE (exp) == TREE_LIST)
	{
	  while (1)
	    {
	      if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
		return 0;
	      exp = TREE_CHAIN (exp);
	      if (!exp)
		return 1;
	      if (TREE_CODE (exp) != TREE_LIST)
		return safe_from_p (x, exp, 0);
	    }
	}
      else if (TREE_CODE (exp) == CONSTRUCTOR)
	{
	  constructor_elt *ce;
	  unsigned HOST_WIDE_INT idx;

	  FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
	    if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
		|| !safe_from_p (x, ce->value, 0))
	      return 0;
	  return 1;
	}
      else if (TREE_CODE (exp) == ERROR_MARK)
	return 1;	/* An already-visited SAVE_EXPR? */
      else
	return 0;

    case tcc_statement:
      /* The only case we look at here is the DECL_INITIAL inside a
	 DECL_EXPR.  */
      return (TREE_CODE (exp) != DECL_EXPR
	      || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
	      || !DECL_INITIAL (DECL_EXPR_DECL (exp))
	      || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));

    case tcc_binary:
    case tcc_comparison:
      if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
	return 0;
      /* Fall through.  */

    case tcc_unary:
      return safe_from_p (x, TREE_OPERAND (exp, 0), 0);

    case tcc_expression:
    case tcc_reference:
    case tcc_vl_exp:
      /* Now do code-specific tests.  EXP_RTL is set to any rtx we find in
	 the expression.  If it is set, we conflict iff we are that rtx or
	 both are in memory.  Otherwise, we check all operands of the
	 expression recursively.  */

      switch (TREE_CODE (exp))
	{
	case ADDR_EXPR:
	  /* If the operand is static or we are static, we can't conflict.
	     Likewise if we don't conflict with the operand at all.  */
	  if (staticp (TREE_OPERAND (exp, 0))
	      || TREE_STATIC (exp)
	      || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
	    return 1;

	  /* Otherwise, the only way this can conflict is if we are taking
	     the address of a DECL a that address if part of X, which is
	     very rare.  */
	  exp = TREE_OPERAND (exp, 0);
	  if (DECL_P (exp))
	    {
	      if (!DECL_RTL_SET_P (exp)
		  || !MEM_P (DECL_RTL (exp)))
		return 0;
	      else
		exp_rtl = XEXP (DECL_RTL (exp), 0);
	    }
	  break;

	case MEM_REF:
	  if (MEM_P (x)
	      && alias_sets_conflict_p (MEM_ALIAS_SET (x),
					get_alias_set (exp)))
	    return 0;
	  break;

	case CALL_EXPR:
	  /* Assume that the call will clobber all hard registers and
	     all of memory.  */
	  if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
	      || MEM_P (x))
	    return 0;
	  break;

	case WITH_CLEANUP_EXPR:
	case CLEANUP_POINT_EXPR:
	  /* Lowered by gimplify.c.  */
	  gcc_unreachable ();

	case SAVE_EXPR:
	  return safe_from_p (x, TREE_OPERAND (exp, 0), 0);

	default:
	  break;
	}

      /* If we have an rtx, we do not need to scan our operands.  */
      if (exp_rtl)
	break;

      nops = TREE_OPERAND_LENGTH (exp);
      for (i = 0; i < nops; i++)
	if (TREE_OPERAND (exp, i) != 0
	    && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
	  return 0;

      break;

    case tcc_type:
      /* Should never get a type here.  */
      gcc_unreachable ();
    }

  /* If we have an rtl, find any enclosed object.  Then see if we conflict
     with it.  */
  if (exp_rtl)
    {
      if (GET_CODE (exp_rtl) == SUBREG)
	{
	  exp_rtl = SUBREG_REG (exp_rtl);
	  if (REG_P (exp_rtl)
	      && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
	    return 0;
	}

      /* If the rtl is X, then it is not safe.  Otherwise, it is unless both
	 are memory and they conflict.  */
      return ! (rtx_equal_p (x, exp_rtl)
		|| (MEM_P (x) && MEM_P (exp_rtl)
		    && true_dependence (exp_rtl, VOIDmode, x)));
    }

  /* If we reach here, it is safe.  */
  return 1;
}


/* Return the highest power of two that EXP is known to be a multiple of.
   This is used in updating alignment of MEMs in array references.  */

unsigned HOST_WIDE_INT
highest_pow2_factor (const_tree exp)
{
  unsigned HOST_WIDE_INT ret;
  int trailing_zeros = tree_ctz (exp);
  if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
    return BIGGEST_ALIGNMENT;
  ret = HOST_WIDE_INT_1U << trailing_zeros;
  if (ret > BIGGEST_ALIGNMENT)
    return BIGGEST_ALIGNMENT;
  return ret;
}

/* Similar, except that the alignment requirements of TARGET are
   taken into account.  Assume it is at least as aligned as its
   type, unless it is a COMPONENT_REF in which case the layout of
   the structure gives the alignment.  */

static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree target, const_tree exp)
{
  unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
  unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);

  return MAX (factor, talign);
}

/* Convert the tree comparison code TCODE to the rtl one where the
   signedness is UNSIGNEDP.  */

static enum rtx_code
convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
{
  enum rtx_code code;
  switch (tcode)
    {
    case EQ_EXPR:
      code = EQ;
      break;
    case NE_EXPR:
      code = NE;
      break;
    case LT_EXPR:
      code = unsignedp ? LTU : LT;
      break;
    case LE_EXPR:
      code = unsignedp ? LEU : LE;
      break;
    case GT_EXPR:
      code = unsignedp ? GTU : GT;
      break;
    case GE_EXPR:
      code = unsignedp ? GEU : GE;
      break;
    case UNORDERED_EXPR:
      code = UNORDERED;
      break;
    case ORDERED_EXPR:
      code = ORDERED;
      break;
    case UNLT_EXPR:
      code = UNLT;
      break;
    case UNLE_EXPR:
      code = UNLE;
      break;
    case UNGT_EXPR:
      code = UNGT;
      break;
    case UNGE_EXPR:
      code = UNGE;
      break;
    case UNEQ_EXPR:
      code = UNEQ;
      break;
    case LTGT_EXPR:
      code = LTGT;
      break;

    default:
      gcc_unreachable ();
    }
  return code;
}

/* Subroutine of expand_expr.  Expand the two operands of a binary
   expression EXP0 and EXP1 placing the results in OP0 and OP1.
   The value may be stored in TARGET if TARGET is nonzero.  The
   MODIFIER argument is as documented by expand_expr.  */

void
expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
		 enum expand_modifier modifier)
{
  if (! safe_from_p (target, exp1, 1))
    target = 0;
  if (operand_equal_p (exp0, exp1, 0))
    {
      *op0 = expand_expr (exp0, target, VOIDmode, modifier);
      *op1 = copy_rtx (*op0);
    }
  else
    {
      *op0 = expand_expr (exp0, target, VOIDmode, modifier);
      *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
    }
}


/* Return a MEM that contains constant EXP.  DEFER is as for
   output_constant_def and MODIFIER is as for expand_expr.  */

static rtx
expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
{
  rtx mem;

  mem = output_constant_def (exp, defer);
  if (modifier != EXPAND_INITIALIZER)
    mem = use_anchored_address (mem);
  return mem;
}

/* A subroutine of expand_expr_addr_expr.  Evaluate the address of EXP.
   The TARGET, TMODE and MODIFIER arguments are as for expand_expr.  */

static rtx
expand_expr_addr_expr_1 (tree exp, rtx target, machine_mode tmode,
		         enum expand_modifier modifier, addr_space_t as)
{
  rtx result, subtarget;
  tree inner, offset;
  HOST_WIDE_INT bitsize, bitpos;
  int unsignedp, reversep, volatilep = 0;
  machine_mode mode1;

  /* If we are taking the address of a constant and are at the top level,
     we have to use output_constant_def since we can't call force_const_mem
     at top level.  */
  /* ??? This should be considered a front-end bug.  We should not be
     generating ADDR_EXPR of something that isn't an LVALUE.  The only
     exception here is STRING_CST.  */
  if (CONSTANT_CLASS_P (exp))
    {
      result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
      if (modifier < EXPAND_SUM)
	result = force_operand (result, target);
      return result;
    }

  /* Everything must be something allowed by is_gimple_addressable.  */
  switch (TREE_CODE (exp))
    {
    case INDIRECT_REF:
      /* This case will happen via recursion for &a->b.  */
      return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);

    case MEM_REF:
      {
	tree tem = TREE_OPERAND (exp, 0);
	if (!integer_zerop (TREE_OPERAND (exp, 1)))
	  tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
	return expand_expr (tem, target, tmode, modifier);
      }

    case CONST_DECL:
      /* Expand the initializer like constants above.  */
      result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
					   0, modifier), 0);
      if (modifier < EXPAND_SUM)
	result = force_operand (result, target);
      return result;

    case REALPART_EXPR:
      /* The real part of the complex number is always first, therefore
	 the address is the same as the address of the parent object.  */
      offset = 0;
      bitpos = 0;
      inner = TREE_OPERAND (exp, 0);
      break;

    case IMAGPART_EXPR:
      /* The imaginary part of the complex number is always second.
	 The expression is therefore always offset by the size of the
	 scalar type.  */
      offset = 0;
      bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
      inner = TREE_OPERAND (exp, 0);
      break;

    case COMPOUND_LITERAL_EXPR:
      /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
	 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
	 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
	 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
	 the initializers aren't gimplified.  */
      if (COMPOUND_LITERAL_EXPR_DECL (exp)
	  && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
	return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
					target, tmode, modifier, as);
      /* FALLTHRU */
    default:
      /* If the object is a DECL, then expand it for its rtl.  Don't bypass
	 expand_expr, as that can have various side effects; LABEL_DECLs for
	 example, may not have their DECL_RTL set yet.  Expand the rtl of
	 CONSTRUCTORs too, which should yield a memory reference for the
	 constructor's contents.  Assume language specific tree nodes can
	 be expanded in some interesting way.  */
      gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
      if (DECL_P (exp)
	  || TREE_CODE (exp) == CONSTRUCTOR
	  || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
	{
	  result = expand_expr (exp, target, tmode,
				modifier == EXPAND_INITIALIZER
				? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);

	  /* If the DECL isn't in memory, then the DECL wasn't properly
	     marked TREE_ADDRESSABLE, which will be either a front-end
	     or a tree optimizer bug.  */

	  gcc_assert (MEM_P (result));
	  result = XEXP (result, 0);

	  /* ??? Is this needed anymore?  */
	  if (DECL_P (exp))
	    TREE_USED (exp) = 1;

	  if (modifier != EXPAND_INITIALIZER
	      && modifier != EXPAND_CONST_ADDRESS
	      && modifier != EXPAND_SUM)
	    result = force_operand (result, target);
	  return result;
	}

      /* Pass FALSE as the last argument to get_inner_reference although
	 we are expanding to RTL.  The rationale is that we know how to
	 handle "aligning nodes" here: we can just bypass them because
	 they won't change the final object whose address will be returned
	 (they actually exist only for that purpose).  */
      inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
				   &unsignedp, &reversep, &volatilep);
      break;
    }

  /* We must have made progress.  */
  gcc_assert (inner != exp);

  subtarget = offset || bitpos ? NULL_RTX : target;
  /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
     inner alignment, force the inner to be sufficiently aligned.  */
  if (CONSTANT_CLASS_P (inner)
      && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
    {
      inner = copy_node (inner);
      TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
      SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
      TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
    }
  result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);

  if (offset)
    {
      rtx tmp;

      if (modifier != EXPAND_NORMAL)
	result = force_operand (result, NULL);
      tmp = expand_expr (offset, NULL_RTX, tmode,
			 modifier == EXPAND_INITIALIZER
			  ? EXPAND_INITIALIZER : EXPAND_NORMAL);

      /* expand_expr is allowed to return an object in a mode other
	 than TMODE.  If it did, we need to convert.  */
      if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
	tmp = convert_modes (tmode, GET_MODE (tmp),
			     tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
      result = convert_memory_address_addr_space (tmode, result, as);
      tmp = convert_memory_address_addr_space (tmode, tmp, as);

      if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
	result = simplify_gen_binary (PLUS, tmode, result, tmp);
      else
	{
	  subtarget = bitpos ? NULL_RTX : target;
	  result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
					1, OPTAB_LIB_WIDEN);
	}
    }

  if (bitpos)
    {
      /* Someone beforehand should have rejected taking the address
	 of such an object.  */
      gcc_assert ((bitpos % BITS_PER_UNIT) == 0);

      result = convert_memory_address_addr_space (tmode, result, as);
      result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT);
      if (modifier < EXPAND_SUM)
	result = force_operand (result, target);
    }

  return result;
}

/* A subroutine of expand_expr.  Evaluate EXP, which is an ADDR_EXPR.
   The TARGET, TMODE and MODIFIER arguments are as for expand_expr.  */

static rtx
expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
		       enum expand_modifier modifier)
{
  addr_space_t as = ADDR_SPACE_GENERIC;
  machine_mode address_mode = Pmode;
  machine_mode pointer_mode = ptr_mode;
  machine_mode rmode;
  rtx result;

  /* Target mode of VOIDmode says "whatever's natural".  */
  if (tmode == VOIDmode)
    tmode = TYPE_MODE (TREE_TYPE (exp));

  if (POINTER_TYPE_P (TREE_TYPE (exp)))
    {
      as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
      address_mode = targetm.addr_space.address_mode (as);
      pointer_mode = targetm.addr_space.pointer_mode (as);
    }

  /* We can get called with some Weird Things if the user does silliness
     like "(short) &a".  In that case, convert_memory_address won't do
     the right thing, so ignore the given target mode.  */
  if (tmode != address_mode && tmode != pointer_mode)
    tmode = address_mode;

  result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
				    tmode, modifier, as);

  /* Despite expand_expr claims concerning ignoring TMODE when not
     strictly convenient, stuff breaks if we don't honor it.  Note
     that combined with the above, we only do this for pointer modes.  */
  rmode = GET_MODE (result);
  if (rmode == VOIDmode)
    rmode = tmode;
  if (rmode != tmode)
    result = convert_memory_address_addr_space (tmode, result, as);

  return result;
}

/* Generate code for computing CONSTRUCTOR EXP.
   An rtx for the computed value is returned.  If AVOID_TEMP_MEM
   is TRUE, instead of creating a temporary variable in memory
   NULL is returned and the caller needs to handle it differently.  */

static rtx
expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
		    bool avoid_temp_mem)
{
  tree type = TREE_TYPE (exp);
  machine_mode mode = TYPE_MODE (type);

  /* Try to avoid creating a temporary at all.  This is possible
     if all of the initializer is zero.
     FIXME: try to handle all [0..255] initializers we can handle
     with memset.  */
  if (TREE_STATIC (exp)
      && !TREE_ADDRESSABLE (exp)
      && target != 0 && mode == BLKmode
      && all_zeros_p (exp))
    {
      clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
      return target;
    }

  /* All elts simple constants => refer to a constant in memory.  But
     if this is a non-BLKmode mode, let it store a field at a time
     since that should make a CONST_INT, CONST_WIDE_INT or
     CONST_DOUBLE when we fold.  Likewise, if we have a target we can
     use, it is best to store directly into the target unless the type
     is large enough that memcpy will be used.  If we are making an
     initializer and all operands are constant, put it in memory as
     well.

     FIXME: Avoid trying to fill vector constructors piece-meal.
     Output them with output_constant_def below unless we're sure
     they're zeros.  This should go away when vector initializers
     are treated like VECTOR_CST instead of arrays.  */
  if ((TREE_STATIC (exp)
       && ((mode == BLKmode
	    && ! (target != 0 && safe_from_p (target, exp, 1)))
		  || TREE_ADDRESSABLE (exp)
		  || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
		      && (! can_move_by_pieces
				     (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
				      TYPE_ALIGN (type)))
		      && ! mostly_zeros_p (exp))))
      || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
	  && TREE_CONSTANT (exp)))
    {
      rtx constructor;

      if (avoid_temp_mem)
	return NULL_RTX;

      constructor = expand_expr_constant (exp, 1, modifier);

      if (modifier != EXPAND_CONST_ADDRESS
	  && modifier != EXPAND_INITIALIZER
	  && modifier != EXPAND_SUM)
	constructor = validize_mem (constructor);

      return constructor;
    }

  /* Handle calls that pass values in multiple non-contiguous
     locations.  The Irix 6 ABI has examples of this.  */
  if (target == 0 || ! safe_from_p (target, exp, 1)
      || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
    {
      if (avoid_temp_mem)
	return NULL_RTX;

      target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
    }

  store_constructor (exp, target, 0, int_expr_size (exp), false);
  return target;
}


/* expand_expr: generate code for computing expression EXP.
   An rtx for the computed value is returned.  The value is never null.
   In the case of a void EXP, const0_rtx is returned.

   The value may be stored in TARGET if TARGET is nonzero.
   TARGET is just a suggestion; callers must assume that
   the rtx returned may not be the same as TARGET.

   If TARGET is CONST0_RTX, it means that the value will be ignored.

   If TMODE is not VOIDmode, it suggests generating the
   result in mode TMODE.  But this is done only when convenient.
   Otherwise, TMODE is ignored and the value generated in its natural mode.
   TMODE is just a suggestion; callers must assume that
   the rtx returned may not have mode TMODE.

   Note that TARGET may have neither TMODE nor MODE.  In that case, it
   probably will not be used.

   If MODIFIER is EXPAND_SUM then when EXP is an addition
   we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
   or a nest of (PLUS ...) and (MINUS ...) where the terms are
   products as above, or REG or MEM, or constant.
   Ordinarily in such cases we would output mul or add instructions
   and then return a pseudo reg containing the sum.

   EXPAND_INITIALIZER is much like EXPAND_SUM except that
   it also marks a label as absolutely required (it can't be dead).
   It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
   This is used for outputting expressions used in initializers.

   EXPAND_CONST_ADDRESS says that it is okay to return a MEM
   with a constant address even if that address is not normally legitimate.
   EXPAND_INITIALIZER and EXPAND_SUM also have this effect.

   EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
   a call parameter.  Such targets require special care as we haven't yet
   marked TARGET so that it's safe from being trashed by libcalls.  We
   don't want to use TARGET for anything but the final result;
   Intermediate values must go elsewhere.   Additionally, calls to
   emit_block_move will be flagged with BLOCK_OP_CALL_PARM.

   If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
   address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
   DECL_RTL of the VAR_DECL.  *ALT_RTL is also set if EXP is a
   COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
   recursively.

   If INNER_REFERENCE_P is true, we are expanding an inner reference.
   In this case, we don't adjust a returned MEM rtx that wouldn't be
   sufficiently aligned for its mode; instead, it's up to the caller
   to deal with it afterwards.  This is used to make sure that unaligned
   base objects for which out-of-bounds accesses are supported, for
   example record types with trailing arrays, aren't realigned behind
   the back of the caller.
   The normal operating mode is to pass FALSE for this parameter.  */

rtx
expand_expr_real (tree exp, rtx target, machine_mode tmode,
		  enum expand_modifier modifier, rtx *alt_rtl,
		  bool inner_reference_p)
{
  rtx ret;

  /* Handle ERROR_MARK before anybody tries to access its type.  */
  if (TREE_CODE (exp) == ERROR_MARK
      || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
    {
      ret = CONST0_RTX (tmode);
      return ret ? ret : const0_rtx;
    }

  ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
			    inner_reference_p);
  return ret;
}

/* Try to expand the conditional expression which is represented by
   TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves.  If it succeeds
   return the rtl reg which represents the result.  Otherwise return
   NULL_RTX.  */

static rtx
expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
			      tree treeop1 ATTRIBUTE_UNUSED,
			      tree treeop2 ATTRIBUTE_UNUSED)
{
  rtx insn;
  rtx op00, op01, op1, op2;
  enum rtx_code comparison_code;
  machine_mode comparison_mode;
  gimple *srcstmt;
  rtx temp;
  tree type = TREE_TYPE (treeop1);
  int unsignedp = TYPE_UNSIGNED (type);
  machine_mode mode = TYPE_MODE (type);
  machine_mode orig_mode = mode;
  static bool expanding_cond_expr_using_cmove = false;

  /* Conditional move expansion can end up TERing two operands which,
     when recursively hitting conditional expressions can result in
     exponential behavior if the cmove expansion ultimatively fails.
     It's hardly profitable to TER a cmove into a cmove so avoid doing
     that by failing early if we end up recursing.  */
  if (expanding_cond_expr_using_cmove)
    return NULL_RTX;

  /* If we cannot do a conditional move on the mode, try doing it
     with the promoted mode. */
  if (!can_conditionally_move_p (mode))
    {
      mode = promote_mode (type, mode, &unsignedp);
      if (!can_conditionally_move_p (mode))
	return NULL_RTX;
      temp = assign_temp (type, 0, 0); /* Use promoted mode for temp.  */
    }
  else
    temp = assign_temp (type, 0, 1);

  expanding_cond_expr_using_cmove = true;
  start_sequence ();
  expand_operands (treeop1, treeop2,
		   temp, &op1, &op2, EXPAND_NORMAL);

  if (TREE_CODE (treeop0) == SSA_NAME
      && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
    {
      tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
      enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
      op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
      op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
      comparison_mode = TYPE_MODE (type);
      unsignedp = TYPE_UNSIGNED (type);
      comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
    }
  else if (COMPARISON_CLASS_P (treeop0))
    {
      tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
      enum tree_code cmpcode = TREE_CODE (treeop0);
      op00 = expand_normal (TREE_OPERAND (treeop0, 0));
      op01 = expand_normal (TREE_OPERAND (treeop0, 1));
      unsignedp = TYPE_UNSIGNED (type);
      comparison_mode = TYPE_MODE (type);
      comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
    }
  else
    {
      op00 = expand_normal (treeop0);
      op01 = const0_rtx;
      comparison_code = NE;
      comparison_mode = GET_MODE (op00);
      if (comparison_mode == VOIDmode)
	comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
    }
  expanding_cond_expr_using_cmove = false;

  if (GET_MODE (op1) != mode)
    op1 = gen_lowpart (mode, op1);

  if (GET_MODE (op2) != mode)
    op2 = gen_lowpart (mode, op2);

  /* Try to emit the conditional move.  */
  insn = emit_conditional_move (temp, comparison_code,
				op00, op01, comparison_mode,
				op1, op2, mode,
				unsignedp);

  /* If we could do the conditional move, emit the sequence,
     and return.  */
  if (insn)
    {
      rtx_insn *seq = get_insns ();
      end_sequence ();
      emit_insn (seq);
      return convert_modes (orig_mode, mode, temp, 0);
    }

  /* Otherwise discard the sequence and fall back to code with
     branches.  */
  end_sequence ();
  return NULL_RTX;
}

rtx
expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
		    enum expand_modifier modifier)
{
  rtx op0, op1, op2, temp;
  rtx_code_label *lab;
  tree type;
  int unsignedp;
  machine_mode mode;
  enum tree_code code = ops->code;
  optab this_optab;
  rtx subtarget, original_target;
  int ignore;
  bool reduce_bit_field;
  location_t loc = ops->location;
  tree treeop0, treeop1, treeop2;
#define REDUCE_BIT_FIELD(expr)	(reduce_bit_field			  \
				 ? reduce_to_bit_field_precision ((expr), \
								  target, \
								  type)	  \
				 : (expr))

  type = ops->type;
  mode = TYPE_MODE (type);
  unsignedp = TYPE_UNSIGNED (type);

  treeop0 = ops->op0;
  treeop1 = ops->op1;
  treeop2 = ops->op2;

  /* We should be called only on simple (binary or unary) expressions,
     exactly those that are valid in gimple expressions that aren't
     GIMPLE_SINGLE_RHS (or invalid).  */
  gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
	      || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
	      || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);

  ignore = (target == const0_rtx
	    || ((CONVERT_EXPR_CODE_P (code)
		 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
		&& TREE_CODE (type) == VOID_TYPE));

  /* We should be called only if we need the result.  */
  gcc_assert (!ignore);

  /* An operation in what may be a bit-field type needs the
     result to be reduced to the precision of the bit-field type,
     which is narrower than that of the type's mode.  */
  reduce_bit_field = (INTEGRAL_TYPE_P (type)
		      && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));

  if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
    target = 0;

  /* Use subtarget as the target for operand 0 of a binary operation.  */
  subtarget = get_subtarget (target);
  original_target = target;

  switch (code)
    {
    case NON_LVALUE_EXPR:
    case PAREN_EXPR:
    CASE_CONVERT:
      if (treeop0 == error_mark_node)
	return const0_rtx;

      if (TREE_CODE (type) == UNION_TYPE)
	{
	  tree valtype = TREE_TYPE (treeop0);

	  /* If both input and output are BLKmode, this conversion isn't doing
	     anything except possibly changing memory attribute.  */
	  if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
	    {
	      rtx result = expand_expr (treeop0, target, tmode,
					modifier);

	      result = copy_rtx (result);
	      set_mem_attributes (result, type, 0);
	      return result;
	    }

	  if (target == 0)
	    {
	      if (TYPE_MODE (type) != BLKmode)
		target = gen_reg_rtx (TYPE_MODE (type));
	      else
		target = assign_temp (type, 1, 1);
	    }

	  if (MEM_P (target))
	    /* Store data into beginning of memory target.  */
	    store_expr (treeop0,
			adjust_address (target, TYPE_MODE (valtype), 0),
			modifier == EXPAND_STACK_PARM,
			false, TYPE_REVERSE_STORAGE_ORDER (type));

	  else
	    {
	      gcc_assert (REG_P (target)
			  && !TYPE_REVERSE_STORAGE_ORDER (type));

	      /* Store this field into a union of the proper type.  */
	      store_field (target,
			   MIN ((int_size_in_bytes (TREE_TYPE
						    (treeop0))
				 * BITS_PER_UNIT),
				(HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
			   0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
			   false, false);
	    }

	  /* Return the entire union.  */
	  return target;
	}

      if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
	{
	  op0 = expand_expr (treeop0, target, VOIDmode,
			     modifier);

	  /* If the signedness of the conversion differs and OP0 is
	     a promoted SUBREG, clear that indication since we now
	     have to do the proper extension.  */
	  if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
	      && GET_CODE (op0) == SUBREG)
	    SUBREG_PROMOTED_VAR_P (op0) = 0;

	  return REDUCE_BIT_FIELD (op0);
	}

      op0 = expand_expr (treeop0, NULL_RTX, mode,
			 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
      if (GET_MODE (op0) == mode)
	;

      /* If OP0 is a constant, just convert it into the proper mode.  */
      else if (CONSTANT_P (op0))
	{
	  tree inner_type = TREE_TYPE (treeop0);
	  machine_mode inner_mode = GET_MODE (op0);

	  if (inner_mode == VOIDmode)
	    inner_mode = TYPE_MODE (inner_type);

	  if (modifier == EXPAND_INITIALIZER)
	    op0 = lowpart_subreg (mode, op0, inner_mode);
	  else
	    op0=  convert_modes (mode, inner_mode, op0,
				 TYPE_UNSIGNED (inner_type));
	}

      else if (modifier == EXPAND_INITIALIZER)
	op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
			     ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);

      else if (target == 0)
	op0 = convert_to_mode (mode, op0,
			       TYPE_UNSIGNED (TREE_TYPE
					      (treeop0)));
      else
	{
	  convert_move (target, op0,
			TYPE_UNSIGNED (TREE_TYPE (treeop0)));
	  op0 = target;
	}

      return REDUCE_BIT_FIELD (op0);

    case ADDR_SPACE_CONVERT_EXPR:
      {
	tree treeop0_type = TREE_TYPE (treeop0);

	gcc_assert (POINTER_TYPE_P (type));
	gcc_assert (POINTER_TYPE_P (treeop0_type));

	addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
	addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));

        /* Conversions between pointers to the same address space should
	   have been implemented via CONVERT_EXPR / NOP_EXPR.  */
	gcc_assert (as_to != as_from);

	op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);

        /* Ask target code to handle conversion between pointers
	   to overlapping address spaces.  */
	if (targetm.addr_space.subset_p (as_to, as_from)
	    || targetm.addr_space.subset_p (as_from, as_to))
	  {
	    op0 = targetm.addr_space.convert (op0, treeop0_type, type);
	  }
        else
          {
	    /* For disjoint address spaces, converting anything but a null
	       pointer invokes undefined behavior.  We truncate or extend the
	       value as if we'd converted via integers, which handles 0 as
	       required, and all others as the programmer likely expects.  */
#ifndef POINTERS_EXTEND_UNSIGNED
	    const int POINTERS_EXTEND_UNSIGNED = 1;
#endif
	    op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
				 op0, POINTERS_EXTEND_UNSIGNED);
	  }
	gcc_assert (op0);
	return op0;
      }

    case POINTER_PLUS_EXPR:
      /* Even though the sizetype mode and the pointer's mode can be different
         expand is able to handle this correctly and get the correct result out
         of the PLUS_EXPR code.  */
      /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
         if sizetype precision is smaller than pointer precision.  */
      if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
	treeop1 = fold_convert_loc (loc, type,
				    fold_convert_loc (loc, ssizetype,
						      treeop1));
      /* If sizetype precision is larger than pointer precision, truncate the
	 offset to have matching modes.  */
      else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
	treeop1 = fold_convert_loc (loc, type, treeop1);
      /* FALLTHRU */

    case PLUS_EXPR:
      /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
	 something else, make sure we add the register to the constant and
	 then to the other thing.  This case can occur during strength
	 reduction and doing it this way will produce better code if the
	 frame pointer or argument pointer is eliminated.

	 fold-const.c will ensure that the constant is always in the inner
	 PLUS_EXPR, so the only case we need to do anything about is if
	 sp, ap, or fp is our second argument, in which case we must swap
	 the innermost first argument and our second argument.  */

      if (TREE_CODE (treeop0) == PLUS_EXPR
	  && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
	  && VAR_P (treeop1)
	  && (DECL_RTL (treeop1) == frame_pointer_rtx
	      || DECL_RTL (treeop1) == stack_pointer_rtx
	      || DECL_RTL (treeop1) == arg_pointer_rtx))
	{
	  gcc_unreachable ();
	}

      /* If the result is to be ptr_mode and we are adding an integer to
	 something, we might be forming a constant.  So try to use
	 plus_constant.  If it produces a sum and we can't accept it,
	 use force_operand.  This allows P = &ARR[const] to generate
	 efficient code on machines where a SYMBOL_REF is not a valid
	 address.

	 If this is an EXPAND_SUM call, always return the sum.  */
      if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
	  || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
	{
	  if (modifier == EXPAND_STACK_PARM)
	    target = 0;
	  if (TREE_CODE (treeop0) == INTEGER_CST
	      && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
	      && TREE_CONSTANT (treeop1))
	    {
	      rtx constant_part;
	      HOST_WIDE_INT wc;
	      machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));

	      op1 = expand_expr (treeop1, subtarget, VOIDmode,
				 EXPAND_SUM);
	      /* Use wi::shwi to ensure that the constant is
		 truncated according to the mode of OP1, then sign extended
		 to a HOST_WIDE_INT.  Using the constant directly can result
		 in non-canonical RTL in a 64x32 cross compile.  */
	      wc = TREE_INT_CST_LOW (treeop0);
	      constant_part =
		immed_wide_int_const (wi::shwi (wc, wmode), wmode);
	      op1 = plus_constant (mode, op1, INTVAL (constant_part));
	      if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
		op1 = force_operand (op1, target);
	      return REDUCE_BIT_FIELD (op1);
	    }

	  else if (TREE_CODE (treeop1) == INTEGER_CST
		   && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
		   && TREE_CONSTANT (treeop0))
	    {
	      rtx constant_part;
	      HOST_WIDE_INT wc;
	      machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));

	      op0 = expand_expr (treeop0, subtarget, VOIDmode,
				 (modifier == EXPAND_INITIALIZER
				 ? EXPAND_INITIALIZER : EXPAND_SUM));
	      if (! CONSTANT_P (op0))
		{
		  op1 = expand_expr (treeop1, NULL_RTX,
				     VOIDmode, modifier);
		  /* Return a PLUS if modifier says it's OK.  */
		  if (modifier == EXPAND_SUM
		      || modifier == EXPAND_INITIALIZER)
		    return simplify_gen_binary (PLUS, mode, op0, op1);
		  goto binop2;
		}
	      /* Use wi::shwi to ensure that the constant is
		 truncated according to the mode of OP1, then sign extended
		 to a HOST_WIDE_INT.  Using the constant directly can result
		 in non-canonical RTL in a 64x32 cross compile.  */
	      wc = TREE_INT_CST_LOW (treeop1);
	      constant_part
		= immed_wide_int_const (wi::shwi (wc, wmode), wmode);
	      op0 = plus_constant (mode, op0, INTVAL (constant_part));
	      if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
		op0 = force_operand (op0, target);
	      return REDUCE_BIT_FIELD (op0);
	    }
	}

      /* Use TER to expand pointer addition of a negated value
	 as pointer subtraction.  */
      if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
	   || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
	       && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
	  && TREE_CODE (treeop1) == SSA_NAME
	  && TYPE_MODE (TREE_TYPE (treeop0))
	     == TYPE_MODE (TREE_TYPE (treeop1)))
	{
	  gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
	  if (def)
	    {
	      treeop1 = gimple_assign_rhs1 (def);
	      code = MINUS_EXPR;
	      goto do_minus;
	    }
	}

      /* No sense saving up arithmetic to be done
	 if it's all in the wrong mode to form part of an address.
	 And force_operand won't know whether to sign-extend or
	 zero-extend.  */
      if (modifier != EXPAND_INITIALIZER
	  && (modifier != EXPAND_SUM || mode != ptr_mode))
	{
	  expand_operands (treeop0, treeop1,
			   subtarget, &op0, &op1, modifier);
	  if (op0 == const0_rtx)
	    return op1;
	  if (op1 == const0_rtx)
	    return op0;
	  goto binop2;
	}

      expand_operands (treeop0, treeop1,
		       subtarget, &op0, &op1, modifier);
      return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));

    case MINUS_EXPR:
    do_minus:
      /* For initializers, we are allowed to return a MINUS of two
	 symbolic constants.  Here we handle all cases when both operands
	 are constant.  */
      /* Handle difference of two symbolic constants,
	 for the sake of an initializer.  */
      if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
	  && really_constant_p (treeop0)
	  && really_constant_p (treeop1))
	{
	  expand_operands (treeop0, treeop1,
			   NULL_RTX, &op0, &op1, modifier);

	  /* If the last operand is a CONST_INT, use plus_constant of
	     the negated constant.  Else make the MINUS.  */
	  if (CONST_INT_P (op1))
	    return REDUCE_BIT_FIELD (plus_constant (mode, op0,
						    -INTVAL (op1)));
	  else
	    return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
	}

      /* No sense saving up arithmetic to be done
	 if it's all in the wrong mode to form part of an address.
	 And force_operand won't know whether to sign-extend or
	 zero-extend.  */
      if (modifier != EXPAND_INITIALIZER
	  && (modifier != EXPAND_SUM || mode != ptr_mode))
	goto binop;

      expand_operands (treeop0, treeop1,
		       subtarget, &op0, &op1, modifier);

      /* Convert A - const to A + (-const).  */
      if (CONST_INT_P (op1))
	{
	  op1 = negate_rtx (mode, op1);
	  return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
	}

      goto binop2;

    case WIDEN_MULT_PLUS_EXPR:
    case WIDEN_MULT_MINUS_EXPR:
      expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
      op2 = expand_normal (treeop2);
      target = expand_widen_pattern_expr (ops, op0, op1, op2,
					  target, unsignedp);
      return target;

    case WIDEN_MULT_EXPR:
      /* If first operand is constant, swap them.
	 Thus the following special case checks need only
	 check the second operand.  */
      if (TREE_CODE (treeop0) == INTEGER_CST)
	std::swap (treeop0, treeop1);

      /* First, check if we have a multiplication of one signed and one
	 unsigned operand.  */
      if (TREE_CODE (treeop1) != INTEGER_CST
	  && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
	      != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
	{
	  machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
	  this_optab = usmul_widen_optab;
	  if (find_widening_optab_handler (this_optab, mode, innermode, 0)
		!= CODE_FOR_nothing)
	    {
	      if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
		expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
				 EXPAND_NORMAL);
	      else
		expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
				 EXPAND_NORMAL);
	      /* op0 and op1 might still be constant, despite the above
		 != INTEGER_CST check.  Handle it.  */
	      if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
		{
		  op0 = convert_modes (innermode, mode, op0, true);
		  op1 = convert_modes (innermode, mode, op1, false);
		  return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
							target, unsignedp));
		}
	      goto binop3;
	    }
	}
      /* Check for a multiplication with matching signedness.  */
      else if ((TREE_CODE (treeop1) == INTEGER_CST
		&& int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
	       || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
		   == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
	{
	  tree op0type = TREE_TYPE (treeop0);
	  machine_mode innermode = TYPE_MODE (op0type);
	  bool zextend_p = TYPE_UNSIGNED (op0type);
	  optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
	  this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;

	  if (TREE_CODE (treeop0) != INTEGER_CST)
	    {
	      if (find_widening_optab_handler (this_optab, mode, innermode, 0)
		    != CODE_FOR_nothing)
		{
		  expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
				   EXPAND_NORMAL);
		  /* op0 and op1 might still be constant, despite the above
		     != INTEGER_CST check.  Handle it.  */
		  if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
		    {
		     widen_mult_const:
		      op0 = convert_modes (innermode, mode, op0, zextend_p);
		      op1
			= convert_modes (innermode, mode, op1,
					 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
		      return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
							    target,
							    unsignedp));
		    }
		  temp = expand_widening_mult (mode, op0, op1, target,
					       unsignedp, this_optab);
		  return REDUCE_BIT_FIELD (temp);
		}
	      if (find_widening_optab_handler (other_optab, mode, innermode, 0)
		    != CODE_FOR_nothing
		  && innermode == word_mode)
		{
		  rtx htem, hipart;
		  op0 = expand_normal (treeop0);
		  if (TREE_CODE (treeop1) == INTEGER_CST)
		    op1 = convert_modes (innermode, mode,
					 expand_normal (treeop1),
					 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
		  else
		    op1 = expand_normal (treeop1);
		  /* op0 and op1 might still be constant, despite the above
		     != INTEGER_CST check.  Handle it.  */
		  if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
		    goto widen_mult_const;
		  temp = expand_binop (mode, other_optab, op0, op1, target,
				       unsignedp, OPTAB_LIB_WIDEN);
		  hipart = gen_highpart (innermode, temp);
		  htem = expand_mult_highpart_adjust (innermode, hipart,
						      op0, op1, hipart,
						      zextend_p);
		  if (htem != hipart)
		    emit_move_insn (hipart, htem);
		  return REDUCE_BIT_FIELD (temp);
		}
	    }
	}
      treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
      treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
      expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
      return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));

    case FMA_EXPR:
      {
	optab opt = fma_optab;
	gimple *def0, *def2;

	/* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
	   call.  */
	if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
	  {
	    tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
	    tree call_expr;

	    gcc_assert (fn != NULL_TREE);
	    call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
	    return expand_builtin (call_expr, target, subtarget, mode, false);
	  }

	def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
	/* The multiplication is commutative - look at its 2nd operand
	   if the first isn't fed by a negate.  */
	if (!def0)
	  {
	    def0 = get_def_for_expr (treeop1, NEGATE_EXPR);
	    /* Swap operands if the 2nd operand is fed by a negate.  */
	    if (def0)
	      std::swap (treeop0, treeop1);
	  }
	def2 = get_def_for_expr (treeop2, NEGATE_EXPR);

	op0 = op2 = NULL;

	if (def0 && def2
	    && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
	  {
	    opt = fnms_optab;
	    op0 = expand_normal (gimple_assign_rhs1 (def0));
	    op2 = expand_normal (gimple_assign_rhs1 (def2));
	  }
	else if (def0
		 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
	  {
	    opt = fnma_optab;
	    op0 = expand_normal (gimple_assign_rhs1 (def0));
	  }
	else if (def2
		 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
	  {
	    opt = fms_optab;
	    op2 = expand_normal (gimple_assign_rhs1 (def2));
	  }

	if (op0 == NULL)
	  op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
	if (op2 == NULL)
	  op2 = expand_normal (treeop2);
	op1 = expand_normal (treeop1);

	return expand_ternary_op (TYPE_MODE (type), opt,
				  op0, op1, op2, target, 0);
      }

    case MULT_EXPR:
      /* If this is a fixed-point operation, then we cannot use the code
	 below because "expand_mult" doesn't support sat/no-sat fixed-point
         multiplications.   */
      if (ALL_FIXED_POINT_MODE_P (mode))
	goto binop;

      /* If first operand is constant, swap them.
	 Thus the following special case checks need only
	 check the second operand.  */
      if (TREE_CODE (treeop0) == INTEGER_CST)
	std::swap (treeop0, treeop1);

      /* Attempt to return something suitable for generating an
	 indexed address, for machines that support that.  */

      if (modifier == EXPAND_SUM && mode == ptr_mode
	  && tree_fits_shwi_p (treeop1))
	{
	  tree exp1 = treeop1;

	  op0 = expand_expr (treeop0, subtarget, VOIDmode,
			     EXPAND_SUM);

	  if (!REG_P (op0))
	    op0 = force_operand (op0, NULL_RTX);
	  if (!REG_P (op0))
	    op0 = copy_to_mode_reg (mode, op0);

	  return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
			       gen_int_mode (tree_to_shwi (exp1),
					     TYPE_MODE (TREE_TYPE (exp1)))));
	}

      if (modifier == EXPAND_STACK_PARM)
	target = 0;

      expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
      return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));

    case TRUNC_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case EXACT_DIV_EXPR:
      /* If this is a fixed-point operation, then we cannot use the code
	 below because "expand_divmod" doesn't support sat/no-sat fixed-point
         divisions.   */
      if (ALL_FIXED_POINT_MODE_P (mode))
	goto binop;

      if (modifier == EXPAND_STACK_PARM)
	target = 0;
      /* Possible optimization: compute the dividend with EXPAND_SUM
	 then if the divisor is constant can optimize the case
	 where some terms of the dividend have coeffs divisible by it.  */
      expand_operands (treeop0, treeop1,
		       subtarget, &op0, &op1, EXPAND_NORMAL);
      if (SCALAR_INT_MODE_P (mode)
	  && optimize >= 2
	  && get_range_pos_neg (treeop0) == 1
	  && get_range_pos_neg (treeop1) == 1)
	{
	  /* If both arguments are known to be positive when interpreted
	     as signed, we can expand it as both signed and unsigned
	     division or modulo.  Choose the cheaper sequence in that case.  */
	  bool speed_p = optimize_insn_for_speed_p ();
	  do_pending_stack_adjust ();
	  start_sequence ();
	  rtx uns_ret = expand_divmod (0, code, mode, op0, op1, target, 1);
	  rtx_insn *uns_insns = get_insns ();
	  end_sequence ();
	  start_sequence ();
	  rtx sgn_ret = expand_divmod (0, code, mode, op0, op1, target, 0);
	  rtx_insn *sgn_insns = get_insns ();
	  end_sequence ();
	  unsigned uns_cost = seq_cost (uns_insns, speed_p);
	  unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
	  if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
	    {
	      emit_insn (uns_insns);
	      return uns_ret;
	    }
	  emit_insn (sgn_insns);
	  return sgn_ret;
	}
      return expand_divmod (0, code, mode, op0, op1, target, unsignedp);

    case RDIV_EXPR:
      goto binop;

    case MULT_HIGHPART_EXPR:
      expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
      temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
      gcc_assert (temp);
      return temp;

    case TRUNC_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case ROUND_MOD_EXPR:
      if (modifier == EXPAND_STACK_PARM)
	target = 0;
      expand_operands (treeop0, treeop1,
		       subtarget, &op0, &op1, EXPAND_NORMAL);
      return expand_divmod (1, code, mode, op0, op1, target, unsignedp);

    case FIXED_CONVERT_EXPR:
      op0 = expand_normal (treeop0);
      if (target == 0 || modifier == EXPAND_STACK_PARM)
	target = gen_reg_rtx (mode);

      if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
	   && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
          || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
	expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
      else
	expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
      return target;

    case FIX_TRUNC_EXPR:
      op0 = expand_normal (treeop0);
      if (target == 0 || modifier == EXPAND_STACK_PARM)
	target = gen_reg_rtx (mode);
      expand_fix (target, op0, unsignedp);
      return target;

    case FLOAT_EXPR:
      op0 = expand_normal (treeop0);
      if (target == 0 || modifier == EXPAND_STACK_PARM)
	target = gen_reg_rtx (mode);
      /* expand_float can't figure out what to do if FROM has VOIDmode.
	 So give it the correct mode.  With -O, cse will optimize this.  */
      if (GET_MODE (op0) == VOIDmode)
	op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
				op0);
      expand_float (target, op0,
		    TYPE_UNSIGNED (TREE_TYPE (treeop0)));
      return target;

    case NEGATE_EXPR:
      op0 = expand_expr (treeop0, subtarget,
			 VOIDmode, EXPAND_NORMAL);
      if (modifier == EXPAND_STACK_PARM)
	target = 0;
      temp = expand_unop (mode,
      			  optab_for_tree_code (NEGATE_EXPR, type,
					       optab_default),
			  op0, target, 0);
      gcc_assert (temp);
      return REDUCE_BIT_FIELD (temp);

    case ABS_EXPR:
      op0 = expand_expr (treeop0, subtarget,
			 VOIDmode, EXPAND_NORMAL);
      if (modifier == EXPAND_STACK_PARM)
	target = 0;

      /* ABS_EXPR is not valid for complex arguments.  */
      gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
		  && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);

      /* Unsigned abs is simply the operand.  Testing here means we don't
	 risk generating incorrect code below.  */
      if (TYPE_UNSIGNED (type))
	return op0;

      return expand_abs (mode, op0, target, unsignedp,
			 safe_from_p (target, treeop0, 1));

    case MAX_EXPR:
    case MIN_EXPR:
      target = original_target;
      if (target == 0
	  || modifier == EXPAND_STACK_PARM
	  || (MEM_P (target) && MEM_VOLATILE_P (target))
	  || GET_MODE (target) != mode
	  || (REG_P (target)
	      && REGNO (target) < FIRST_PSEUDO_REGISTER))
	target = gen_reg_rtx (mode);
      expand_operands (treeop0, treeop1,
		       target, &op0, &op1, EXPAND_NORMAL);

      /* First try to do it with a special MIN or MAX instruction.
	 If that does not win, use a conditional jump to select the proper
	 value.  */
      this_optab = optab_for_tree_code (code, type, optab_default);
      temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
			   OPTAB_WIDEN);
      if (temp != 0)
	return temp;

      /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y>
	 and similarly for MAX <x, y>.  */
      if (VECTOR_TYPE_P (type))
	{
	  tree t0 = make_tree (type, op0);
	  tree t1 = make_tree (type, op1);
	  tree comparison = build2 (code == MIN_EXPR ? LE_EXPR : GE_EXPR,
				    type, t0, t1);
	  return expand_vec_cond_expr (type, comparison, t0, t1,
				       original_target);
	}

      /* At this point, a MEM target is no longer useful; we will get better
	 code without it.  */

      if (! REG_P (target))
	target = gen_reg_rtx (mode);

      /* If op1 was placed in target, swap op0 and op1.  */
      if (target != op0 && target == op1)
	std::swap (op0, op1);

      /* We generate better code and avoid problems with op1 mentioning
	 target by forcing op1 into a pseudo if it isn't a constant.  */
      if (! CONSTANT_P (op1))
	op1 = force_reg (mode, op1);

      {
	enum rtx_code comparison_code;
	rtx cmpop1 = op1;

	if (code == MAX_EXPR)
	  comparison_code = unsignedp ? GEU : GE;
	else
	  comparison_code = unsignedp ? LEU : LE;

	/* Canonicalize to comparisons against 0.  */
	if (op1 == const1_rtx)
	  {
	    /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
	       or (a != 0 ? a : 1) for unsigned.
	       For MIN we are safe converting (a <= 1 ? a : 1)
	       into (a <= 0 ? a : 1)  */
	    cmpop1 = const0_rtx;
	    if (code == MAX_EXPR)
	      comparison_code = unsignedp ? NE : GT;
	  }
	if (op1 == constm1_rtx && !unsignedp)
	  {
	    /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
	       and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
	    cmpop1 = const0_rtx;
	    if (code == MIN_EXPR)
	      comparison_code = LT;
	  }

	/* Use a conditional move if possible.  */
	if (can_conditionally_move_p (mode))
	  {
	    rtx insn;

	    start_sequence ();

	    /* Try to emit the conditional move.  */
	    insn = emit_conditional_move (target, comparison_code,
					  op0, cmpop1, mode,
					  op0, op1, mode,
					  unsignedp);

	    /* If we could do the conditional move, emit the sequence,
	       and return.  */
	    if (insn)
	      {
		rtx_insn *seq = get_insns ();
		end_sequence ();
		emit_insn (seq);
		return target;
	      }

	    /* Otherwise discard the sequence and fall back to code with
	       branches.  */
	    end_sequence ();
	  }

	if (target != op0)
	  emit_move_insn (target, op0);

	lab = gen_label_rtx ();
	do_compare_rtx_and_jump (target, cmpop1, comparison_code,
				 unsignedp, mode, NULL_RTX, NULL, lab,
				 -1);
      }
      emit_move_insn (target, op1);
      emit_label (lab);
      return target;

    case BIT_NOT_EXPR:
      op0 = expand_expr (treeop0, subtarget,
			 VOIDmode, EXPAND_NORMAL);
      if (modifier == EXPAND_STACK_PARM)
	target = 0;
      /* In case we have to reduce the result to bitfield precision
	 for unsigned bitfield expand this as XOR with a proper constant
	 instead.  */
      if (reduce_bit_field && TYPE_UNSIGNED (type))
	{
	  wide_int mask = wi::mask (TYPE_PRECISION (type),
				    false, GET_MODE_PRECISION (mode));

	  temp = expand_binop (mode, xor_optab, op0,
			       immed_wide_int_const (mask, mode),
			       target, 1, OPTAB_LIB_WIDEN);
	}
      else
	temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
      gcc_assert (temp);
      return temp;

      /* ??? Can optimize bitwise operations with one arg constant.
	 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
	 and (a bitwise1 b) bitwise2 b (etc)
	 but that is probably not worth while.  */

    case BIT_AND_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
      goto binop;

    case LROTATE_EXPR:
    case RROTATE_EXPR:
      gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
		  || (GET_MODE_PRECISION (TYPE_MODE (type))
		      == TYPE_PRECISION (type)));
      /* fall through */

    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
      {
	/* If this is a fixed-point operation, then we cannot use the code
	   below because "expand_shift" doesn't support sat/no-sat fixed-point
	   shifts.  */
	if (ALL_FIXED_POINT_MODE_P (mode))
	  goto binop;

	if (! safe_from_p (subtarget, treeop1, 1))
	  subtarget = 0;
	if (modifier == EXPAND_STACK_PARM)
	  target = 0;
	op0 = expand_expr (treeop0, subtarget,
			   VOIDmode, EXPAND_NORMAL);

	/* Left shift optimization when shifting across word_size boundary.

	   If mode == GET_MODE_WIDER_MODE (word_mode), then normally
	   there isn't native instruction to support this wide mode
	   left shift.  Given below scenario:

	    Type A = (Type) B  << C

	    |<		 T	    >|
	    | dest_high  |  dest_low |

			 | word_size |

	   If the shift amount C caused we shift B to across the word
	   size boundary, i.e part of B shifted into high half of
	   destination register, and part of B remains in the low
	   half, then GCC will use the following left shift expand
	   logic:

	   1. Initialize dest_low to B.
	   2. Initialize every bit of dest_high to the sign bit of B.
	   3. Logic left shift dest_low by C bit to finalize dest_low.
	      The value of dest_low before this shift is kept in a temp D.
	   4. Logic left shift dest_high by C.
	   5. Logic right shift D by (word_size - C).
	   6. Or the result of 4 and 5 to finalize dest_high.

	   While, by checking gimple statements, if operand B is
	   coming from signed extension, then we can simplify above
	   expand logic into:

	      1. dest_high = src_low >> (word_size - C).
	      2. dest_low = src_low << C.

	   We can use one arithmetic right shift to finish all the
	   purpose of steps 2, 4, 5, 6, thus we reduce the steps
	   needed from 6 into 2.

	   The case is similar for zero extension, except that we
	   initialize dest_high to zero rather than copies of the sign
	   bit from B.  Furthermore, we need to use a logical right shift
	   in this case.

	   The choice of sign-extension versus zero-extension is
	   determined entirely by whether or not B is signed and is
	   independent of the current setting of unsignedp.  */

	temp = NULL_RTX;
	if (code == LSHIFT_EXPR
	    && target
	    && REG_P (target)
	    && mode == GET_MODE_WIDER_MODE (word_mode)
	    && GET_MODE_SIZE (mode) == 2 * GET_MODE_SIZE (word_mode)
	    && TREE_CONSTANT (treeop1)
	    && TREE_CODE (treeop0) == SSA_NAME)
	  {
	    gimple *def = SSA_NAME_DEF_STMT (treeop0);
	    if (is_gimple_assign (def)
		&& gimple_assign_rhs_code (def) == NOP_EXPR)
	      {
		machine_mode rmode = TYPE_MODE
		  (TREE_TYPE (gimple_assign_rhs1 (def)));

		if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (mode)
		    && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
		    && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
			>= GET_MODE_BITSIZE (word_mode)))
		  {
		    rtx_insn *seq, *seq_old;
		    unsigned int high_off = subreg_highpart_offset (word_mode,
								    mode);
		    bool extend_unsigned
		      = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
		    rtx low = lowpart_subreg (word_mode, op0, mode);
		    rtx dest_low = lowpart_subreg (word_mode, target, mode);
		    rtx dest_high = simplify_gen_subreg (word_mode, target,
							 mode, high_off);
		    HOST_WIDE_INT ramount = (BITS_PER_WORD
					     - TREE_INT_CST_LOW (treeop1));
		    tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);

		    start_sequence ();
		    /* dest_high = src_low >> (word_size - C).  */
		    temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
						  rshift, dest_high,
						  extend_unsigned);
		    if (temp != dest_high)
		      emit_move_insn (dest_high, temp);

		    /* dest_low = src_low << C.  */
		    temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
						  treeop1, dest_low, unsignedp);
		    if (temp != dest_low)
		      emit_move_insn (dest_low, temp);

		    seq = get_insns ();
		    end_sequence ();
		    temp = target ;

		    if (have_insn_for (ASHIFT, mode))
		      {
			bool speed_p = optimize_insn_for_speed_p ();
			start_sequence ();
			rtx ret_old = expand_variable_shift (code, mode, op0,
							     treeop1, target,
							     unsignedp);

			seq_old = get_insns ();
			end_sequence ();
			if (seq_cost (seq, speed_p)
			    >= seq_cost (seq_old, speed_p))
			  {
			    seq = seq_old;
			    temp = ret_old;
			  }
		      }
		      emit_insn (seq);
		  }
	      }
	  }

	if (temp == NULL_RTX)
	  temp = expand_variable_shift (code, mode, op0, treeop1, target,
					unsignedp);
	if (code == LSHIFT_EXPR)
	  temp = REDUCE_BIT_FIELD (temp);
	return temp;
      }

      /* Could determine the answer when only additive constants differ.  Also,
	 the addition of one can be handled by changing the condition.  */
    case LT_EXPR:
    case LE_EXPR:
    case GT_EXPR:
    case GE_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
    case UNORDERED_EXPR:
    case ORDERED_EXPR:
    case UNLT_EXPR:
    case UNLE_EXPR:
    case UNGT_EXPR:
    case UNGE_EXPR:
    case UNEQ_EXPR:
    case LTGT_EXPR:
      {
	temp = do_store_flag (ops,
			      modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
			      tmode != VOIDmode ? tmode : mode);
	if (temp)
	  return temp;

	/* Use a compare and a jump for BLKmode comparisons, or for function
	   type comparisons is have_canonicalize_funcptr_for_compare.  */

	if ((target == 0
	     || modifier == EXPAND_STACK_PARM
	     || ! safe_from_p (target, treeop0, 1)
	     || ! safe_from_p (target, treeop1, 1)
	     /* Make sure we don't have a hard reg (such as function's return
		value) live across basic blocks, if not optimizing.  */
	     || (!optimize && REG_P (target)
		 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
	  target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);

	emit_move_insn (target, const0_rtx);

	rtx_code_label *lab1 = gen_label_rtx ();
	jumpifnot_1 (code, treeop0, treeop1, lab1, -1);

	if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
	  emit_move_insn (target, constm1_rtx);
	else
	  emit_move_insn (target, const1_rtx);

	emit_label (lab1);
	return target;
      }
    case COMPLEX_EXPR:
      /* Get the rtx code of the operands.  */
      op0 = expand_normal (treeop0);
      op1 = expand_normal (treeop1);

      if (!target)
	target = gen_reg_rtx (TYPE_MODE (type));
      else
	/* If target overlaps with op1, then either we need to force
	   op1 into a pseudo (if target also overlaps with op0),
	   or write the complex parts in reverse order.  */
	switch (GET_CODE (target))
	  {
	  case CONCAT:
	    if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
	      {
		if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
		  {
		  complex_expr_force_op1:
		    temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
		    emit_move_insn (temp, op1);
		    op1 = temp;
		    break;
		  }
	      complex_expr_swap_order:
		/* Move the imaginary (op1) and real (op0) parts to their
		   location.  */
		write_complex_part (target, op1, true);
		write_complex_part (target, op0, false);

		return target;
	      }
	    break;
	  case MEM:
	    temp = adjust_address_nv (target,
				      GET_MODE_INNER (GET_MODE (target)), 0);
	    if (reg_overlap_mentioned_p (temp, op1))
	      {
		machine_mode imode = GET_MODE_INNER (GET_MODE (target));
		temp = adjust_address_nv (target, imode,
					  GET_MODE_SIZE (imode));
		if (reg_overlap_mentioned_p (temp, op0))
		  goto complex_expr_force_op1;
		goto complex_expr_swap_order;
	      }
	    break;
	  default:
	    if (reg_overlap_mentioned_p (target, op1))
	      {
		if (reg_overlap_mentioned_p (target, op0))
		  goto complex_expr_force_op1;
		goto complex_expr_swap_order;
	      }
	    break;
	  }

      /* Move the real (op0) and imaginary (op1) parts to their location.  */
      write_complex_part (target, op0, false);
      write_complex_part (target, op1, true);

      return target;

    case WIDEN_SUM_EXPR:
      {
        tree oprnd0 = treeop0;
        tree oprnd1 = treeop1;

        expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
        target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
                                            target, unsignedp);
        return target;
      }

    case REDUC_MAX_EXPR:
    case REDUC_MIN_EXPR:
    case REDUC_PLUS_EXPR:
      {
        op0 = expand_normal (treeop0);
        this_optab = optab_for_tree_code (code, type, optab_default);
        machine_mode vec_mode = TYPE_MODE (TREE_TYPE (treeop0));

	struct expand_operand ops[2];
	enum insn_code icode = optab_handler (this_optab, vec_mode);

	create_output_operand (&ops[0], target, mode);
	create_input_operand (&ops[1], op0, vec_mode);
	expand_insn (icode, 2, ops);
	target = ops[0].value;
	if (GET_MODE (target) != mode)
	  return gen_lowpart (tmode, target);
	return target;
      }

    case VEC_UNPACK_HI_EXPR:
    case VEC_UNPACK_LO_EXPR:
      {
	op0 = expand_normal (treeop0);
	temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
					  target, unsignedp);
	gcc_assert (temp);
	return temp;
      }

    case VEC_UNPACK_FLOAT_HI_EXPR:
    case VEC_UNPACK_FLOAT_LO_EXPR:
      {
	op0 = expand_normal (treeop0);
	/* The signedness is determined from input operand.  */
	temp = expand_widen_pattern_expr
	  (ops, op0, NULL_RTX, NULL_RTX,
	   target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));

	gcc_assert (temp);
	return temp;
      }

    case VEC_WIDEN_MULT_HI_EXPR:
    case VEC_WIDEN_MULT_LO_EXPR:
    case VEC_WIDEN_MULT_EVEN_EXPR:
    case VEC_WIDEN_MULT_ODD_EXPR:
    case VEC_WIDEN_LSHIFT_HI_EXPR:
    case VEC_WIDEN_LSHIFT_LO_EXPR:
      expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
      target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
					  target, unsignedp);
      gcc_assert (target);
      return target;

    case VEC_PACK_TRUNC_EXPR:
    case VEC_PACK_SAT_EXPR:
    case VEC_PACK_FIX_TRUNC_EXPR:
      mode = TYPE_MODE (TREE_TYPE (treeop0));
      goto binop;

    case VEC_PERM_EXPR:
      expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
      op2 = expand_normal (treeop2);

      /* Careful here: if the target doesn't support integral vector modes,
	 a constant selection vector could wind up smooshed into a normal
	 integral constant.  */
      if (CONSTANT_P (op2) && GET_CODE (op2) != CONST_VECTOR)
	{
	  tree sel_type = TREE_TYPE (treeop2);
	  machine_mode vmode
	    = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type)),
			       TYPE_VECTOR_SUBPARTS (sel_type));
	  gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
	  op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
	  gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
	}
      else
        gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);

      temp = expand_vec_perm (mode, op0, op1, op2, target);
      gcc_assert (temp);
      return temp;

    case DOT_PROD_EXPR:
      {
	tree oprnd0 = treeop0;
	tree oprnd1 = treeop1;
	tree oprnd2 = treeop2;
	rtx op2;

	expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
	op2 = expand_normal (oprnd2);
	target = expand_widen_pattern_expr (ops, op0, op1, op2,
					    target, unsignedp);
	return target;
      }

      case SAD_EXPR:
      {
	tree oprnd0 = treeop0;
	tree oprnd1 = treeop1;
	tree oprnd2 = treeop2;
	rtx op2;

	expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
	op2 = expand_normal (oprnd2);
	target = expand_widen_pattern_expr (ops, op0, op1, op2,
					    target, unsignedp);
	return target;
      }

    case REALIGN_LOAD_EXPR:
      {
        tree oprnd0 = treeop0;
        tree oprnd1 = treeop1;
        tree oprnd2 = treeop2;
        rtx op2;

        this_optab = optab_for_tree_code (code, type, optab_default);
        expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
        op2 = expand_normal (oprnd2);
        temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
				  target, unsignedp);
        gcc_assert (temp);
        return temp;
      }

    case COND_EXPR:
      {
	/* A COND_EXPR with its type being VOID_TYPE represents a
	   conditional jump and is handled in
	   expand_gimple_cond_expr.  */
	gcc_assert (!VOID_TYPE_P (type));

	/* Note that COND_EXPRs whose type is a structure or union
	   are required to be constructed to contain assignments of
	   a temporary variable, so that we can evaluate them here
	   for side effect only.  If type is void, we must do likewise.  */

	gcc_assert (!TREE_ADDRESSABLE (type)
		    && !ignore
		    && TREE_TYPE (treeop1) != void_type_node
		    && TREE_TYPE (treeop2) != void_type_node);

	temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
	if (temp)
	  return temp;

	/* If we are not to produce a result, we have no target.  Otherwise,
	   if a target was specified use it; it will not be used as an
	   intermediate target unless it is safe.  If no target, use a
	   temporary.  */

	if (modifier != EXPAND_STACK_PARM
	    && original_target
	    && safe_from_p (original_target, treeop0, 1)
	    && GET_MODE (original_target) == mode
	    && !MEM_P (original_target))
	  temp = original_target;
	else
	  temp = assign_temp (type, 0, 1);

	do_pending_stack_adjust ();
	NO_DEFER_POP;
	rtx_code_label *lab0 = gen_label_rtx ();
	rtx_code_label *lab1 = gen_label_rtx ();
	jumpifnot (treeop0, lab0, -1);
	store_expr (treeop1, temp,
		    modifier == EXPAND_STACK_PARM,
		    false, false);

	emit_jump_insn (targetm.gen_jump (lab1));
	emit_barrier ();
	emit_label (lab0);
	store_expr (treeop2, temp,
		    modifier == EXPAND_STACK_PARM,
		    false, false);

	emit_label (lab1);
	OK_DEFER_POP;
	return temp;
      }

    case VEC_COND_EXPR:
      target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
      return target;

    case BIT_INSERT_EXPR:
      {
	unsigned bitpos = tree_to_uhwi (treeop2);
	unsigned bitsize;
	if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
	  bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
	else
	  bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
	rtx op0 = expand_normal (treeop0);
	rtx op1 = expand_normal (treeop1);
	rtx dst = gen_reg_rtx (mode);
	emit_move_insn (dst, op0);
	store_bit_field (dst, bitsize, bitpos, 0, 0,
			 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
	return dst;
      }

    default:
      gcc_unreachable ();
    }

  /* Here to do an ordinary binary operator.  */
 binop:
  expand_operands (treeop0, treeop1,
		   subtarget, &op0, &op1, EXPAND_NORMAL);
 binop2:
  this_optab = optab_for_tree_code (code, type, optab_default);
 binop3:
  if (modifier == EXPAND_STACK_PARM)
    target = 0;
  temp = expand_binop (mode, this_optab, op0, op1, target,
		       unsignedp, OPTAB_LIB_WIDEN);
  gcc_assert (temp);
  /* Bitwise operations do not need bitfield reduction as we expect their
     operands being properly truncated.  */
  if (code == BIT_XOR_EXPR
      || code == BIT_AND_EXPR
      || code == BIT_IOR_EXPR)
    return temp;
  return REDUCE_BIT_FIELD (temp);
}
#undef REDUCE_BIT_FIELD


/* Return TRUE if expression STMT is suitable for replacement.  
   Never consider memory loads as replaceable, because those don't ever lead 
   into constant expressions.  */

static bool
stmt_is_replaceable_p (gimple *stmt)
{
  if (ssa_is_replaceable_p (stmt))
    {
      /* Don't move around loads.  */
      if (!gimple_assign_single_p (stmt)
	  || is_gimple_val (gimple_assign_rhs1 (stmt)))
	return true;
    }
  return false;
}

rtx
expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
		    enum expand_modifier modifier, rtx *alt_rtl,
		    bool inner_reference_p)
{
  rtx op0, op1, temp, decl_rtl;
  tree type;
  int unsignedp;
  machine_mode mode, dmode;
  enum tree_code code = TREE_CODE (exp);
  rtx subtarget, original_target;
  int ignore;
  tree context;
  bool reduce_bit_field;
  location_t loc = EXPR_LOCATION (exp);
  struct separate_ops ops;
  tree treeop0, treeop1, treeop2;
  tree ssa_name = NULL_TREE;
  gimple *g;

  type = TREE_TYPE (exp);
  mode = TYPE_MODE (type);
  unsignedp = TYPE_UNSIGNED (type);

  treeop0 = treeop1 = treeop2 = NULL_TREE;
  if (!VL_EXP_CLASS_P (exp))
    switch (TREE_CODE_LENGTH (code))
      {
	default:
	case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
	case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
	case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
	case 0: break;
      }
  ops.code = code;
  ops.type = type;
  ops.op0 = treeop0;
  ops.op1 = treeop1;
  ops.op2 = treeop2;
  ops.location = loc;

  ignore = (target == const0_rtx
	    || ((CONVERT_EXPR_CODE_P (code)
		 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
		&& TREE_CODE (type) == VOID_TYPE));

  /* An operation in what may be a bit-field type needs the
     result to be reduced to the precision of the bit-field type,
     which is narrower than that of the type's mode.  */
  reduce_bit_field = (!ignore
		      && INTEGRAL_TYPE_P (type)
		      && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));

  /* If we are going to ignore this result, we need only do something
     if there is a side-effect somewhere in the expression.  If there
     is, short-circuit the most common cases here.  Note that we must
     not call expand_expr with anything but const0_rtx in case this
     is an initial expansion of a size that contains a PLACEHOLDER_EXPR.  */

  if (ignore)
    {
      if (! TREE_SIDE_EFFECTS (exp))
	return const0_rtx;

      /* Ensure we reference a volatile object even if value is ignored, but
	 don't do this if all we are doing is taking its address.  */
      if (TREE_THIS_VOLATILE (exp)
	  && TREE_CODE (exp) != FUNCTION_DECL
	  && mode != VOIDmode && mode != BLKmode
	  && modifier != EXPAND_CONST_ADDRESS)
	{
	  temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
	  if (MEM_P (temp))
	    copy_to_reg (temp);
	  return const0_rtx;
	}

      if (TREE_CODE_CLASS (code) == tcc_unary
	  || code == BIT_FIELD_REF
	  || code == COMPONENT_REF
	  || code == INDIRECT_REF)
	return expand_expr (treeop0, const0_rtx, VOIDmode,
			    modifier);

      else if (TREE_CODE_CLASS (code) == tcc_binary
	       || TREE_CODE_CLASS (code) == tcc_comparison
	       || code == ARRAY_REF || code == ARRAY_RANGE_REF)
	{
	  expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
	  expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
	  return const0_rtx;
	}

      target = 0;
    }

  if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
    target = 0;

  /* Use subtarget as the target for operand 0 of a binary operation.  */
  subtarget = get_subtarget (target);
  original_target = target;

  switch (code)
    {
    case LABEL_DECL:
      {
	tree function = decl_function_context (exp);

	temp = label_rtx (exp);
	temp = gen_rtx_LABEL_REF (Pmode, temp);

	if (function != current_function_decl
	    && function != 0)
	  LABEL_REF_NONLOCAL_P (temp) = 1;

	temp = gen_rtx_MEM (FUNCTION_MODE, temp);
	return temp;
      }

    case SSA_NAME:
      /* ??? ivopts calls expander, without any preparation from
         out-of-ssa.  So fake instructions as if this was an access to the
	 base variable.  This unnecessarily allocates a pseudo, see how we can
	 reuse it, if partition base vars have it set already.  */
      if (!currently_expanding_to_rtl)
	{
	  tree var = SSA_NAME_VAR (exp);
	  if (var && DECL_RTL_SET_P (var))
	    return DECL_RTL (var);
	  return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
			      LAST_VIRTUAL_REGISTER + 1);
	}

      g = get_gimple_for_ssa_name (exp);
      /* For EXPAND_INITIALIZER try harder to get something simpler.  */
      if (g == NULL
	  && modifier == EXPAND_INITIALIZER
	  && !SSA_NAME_IS_DEFAULT_DEF (exp)
	  && (optimize || !SSA_NAME_VAR (exp)
	      || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
	  && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
	g = SSA_NAME_DEF_STMT (exp);
      if (g)
	{
	  rtx r;
	  location_t saved_loc = curr_insn_location ();
	  location_t loc = gimple_location (g);
	  if (loc != UNKNOWN_LOCATION)
	    set_curr_insn_location (loc);
	  ops.code = gimple_assign_rhs_code (g);
          switch (get_gimple_rhs_class (ops.code))
	    {
	    case GIMPLE_TERNARY_RHS:
	      ops.op2 = gimple_assign_rhs3 (g);
	      /* Fallthru */
	    case GIMPLE_BINARY_RHS:
	      ops.op1 = gimple_assign_rhs2 (g);

	      /* Try to expand conditonal compare.  */
	      if (targetm.gen_ccmp_first)
		{
		  gcc_checking_assert (targetm.gen_ccmp_next != NULL);
		  r = expand_ccmp_expr (g);
		  if (r)
		    break;
		}
	      /* Fallthru */
	    case GIMPLE_UNARY_RHS:
	      ops.op0 = gimple_assign_rhs1 (g);
	      ops.type = TREE_TYPE (gimple_assign_lhs (g));
	      ops.location = loc;
	      r = expand_expr_real_2 (&ops, target, tmode, modifier);
	      break;
	    case GIMPLE_SINGLE_RHS:
	      {
		r = expand_expr_real (gimple_assign_rhs1 (g), target,
				      tmode, modifier, NULL, inner_reference_p);
		break;
	      }
	    default:
	      gcc_unreachable ();
	    }
	  set_curr_insn_location (saved_loc);
	  if (REG_P (r) && !REG_EXPR (r))
	    set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
	  return r;
	}

      ssa_name = exp;
      decl_rtl = get_rtx_for_ssa_name (ssa_name);
      exp = SSA_NAME_VAR (ssa_name);
      goto expand_decl_rtl;

    case PARM_DECL:
    case VAR_DECL:
      /* If a static var's type was incomplete when the decl was written,
	 but the type is complete now, lay out the decl now.  */
      if (DECL_SIZE (exp) == 0
	  && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
	  && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
	layout_decl (exp, 0);

      /* fall through */

    case FUNCTION_DECL:
    case RESULT_DECL:
      decl_rtl = DECL_RTL (exp);
    expand_decl_rtl:
      gcc_assert (decl_rtl);

      /* DECL_MODE might change when TYPE_MODE depends on attribute target
	 settings for VECTOR_TYPE_P that might switch for the function.  */
      if (currently_expanding_to_rtl
	  && code == VAR_DECL && MEM_P (decl_rtl)
	  && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
	decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
      else
	decl_rtl = copy_rtx (decl_rtl);

      /* Record writes to register variables.  */
      if (modifier == EXPAND_WRITE
	  && REG_P (decl_rtl)
	  && HARD_REGISTER_P (decl_rtl))
        add_to_hard_reg_set (&crtl->asm_clobbers,
			     GET_MODE (decl_rtl), REGNO (decl_rtl));

      /* Ensure variable marked as used even if it doesn't go through
	 a parser.  If it hasn't be used yet, write out an external
	 definition.  */
      if (exp)
	TREE_USED (exp) = 1;

      /* Show we haven't gotten RTL for this yet.  */
      temp = 0;

      /* Variables inherited from containing functions should have
	 been lowered by this point.  */
      if (exp)
	context = decl_function_context (exp);
      gcc_assert (!exp
		  || SCOPE_FILE_SCOPE_P (context)
		  || context == current_function_decl
		  || TREE_STATIC (exp)
		  || DECL_EXTERNAL (exp)
		  /* ??? C++ creates functions that are not TREE_STATIC.  */
		  || TREE_CODE (exp) == FUNCTION_DECL);

      /* This is the case of an array whose size is to be determined
	 from its initializer, while the initializer is still being parsed.
	 ??? We aren't parsing while expanding anymore.  */

      if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
	temp = validize_mem (decl_rtl);

      /* If DECL_RTL is memory, we are in the normal case and the
	 address is not valid, get the address into a register.  */

      else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
	{
	  if (alt_rtl)
	    *alt_rtl = decl_rtl;
	  decl_rtl = use_anchored_address (decl_rtl);
	  if (modifier != EXPAND_CONST_ADDRESS
	      && modifier != EXPAND_SUM
	      && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
					       : GET_MODE (decl_rtl),
					       XEXP (decl_rtl, 0),
					       MEM_ADDR_SPACE (decl_rtl)))
	    temp = replace_equiv_address (decl_rtl,
					  copy_rtx (XEXP (decl_rtl, 0)));
	}

      /* If we got something, return it.  But first, set the alignment
	 if the address is a register.  */
      if (temp != 0)
	{
	  if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
	    mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));

	  return temp;
	}

      if (exp)
	dmode = DECL_MODE (exp);
      else
	dmode = TYPE_MODE (TREE_TYPE (ssa_name));

      /* If the mode of DECL_RTL does not match that of the decl,
	 there are two cases: we are dealing with a BLKmode value
	 that is returned in a register, or we are dealing with
	 a promoted value.  In the latter case, return a SUBREG
	 of the wanted mode, but mark it so that we know that it
	 was already extended.  */
      if (REG_P (decl_rtl)
	  && dmode != BLKmode
	  && GET_MODE (decl_rtl) != dmode)
	{
	  machine_mode pmode;

	  /* Get the signedness to be used for this variable.  Ensure we get
	     the same mode we got when the variable was declared.  */
	  if (code != SSA_NAME)
	    pmode = promote_decl_mode (exp, &unsignedp);
	  else if ((g = SSA_NAME_DEF_STMT (ssa_name))
		   && gimple_code (g) == GIMPLE_CALL
		   && !gimple_call_internal_p (g))
	    pmode = promote_function_mode (type, mode, &unsignedp,
					   gimple_call_fntype (g),
					   2);
	  else
	    pmode = promote_ssa_mode (ssa_name, &unsignedp);
	  gcc_assert (GET_MODE (decl_rtl) == pmode);

	  temp = gen_lowpart_SUBREG (mode, decl_rtl);
	  SUBREG_PROMOTED_VAR_P (temp) = 1;
	  SUBREG_PROMOTED_SET (temp, unsignedp);
	  return temp;
	}

      return decl_rtl;

    case INTEGER_CST:
      /* Given that TYPE_PRECISION (type) is not always equal to
         GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
         the former to the latter according to the signedness of the
         type. */
      temp = immed_wide_int_const (wi::to_wide
				   (exp,
				    GET_MODE_PRECISION (TYPE_MODE (type))),
				   TYPE_MODE (type));
      return temp;

    case VECTOR_CST:
      {
	tree tmp = NULL_TREE;
	if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
	    || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
	    || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
	    || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
	    || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
	    || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
	  return const_vector_from_tree (exp);
	if (GET_MODE_CLASS (mode) == MODE_INT)
	  {
	    if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
	      return const_scalar_mask_from_tree (exp);
	    else
	      {
		tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
		if (type_for_mode)
		  tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
					type_for_mode, exp);
	      }
	  }
	if (!tmp)
	  {
	    vec<constructor_elt, va_gc> *v;
	    unsigned i;
	    vec_alloc (v, VECTOR_CST_NELTS (exp));
	    for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
	      CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
	    tmp = build_constructor (type, v);
	  }
	return expand_expr (tmp, ignore ? const0_rtx : target,
			    tmode, modifier);
      }

    case CONST_DECL:
      if (modifier == EXPAND_WRITE)
	{
	  /* Writing into CONST_DECL is always invalid, but handle it
	     gracefully.  */
	  addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
	  machine_mode address_mode = targetm.addr_space.address_mode (as);
	  op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
					 EXPAND_NORMAL, as);
	  op0 = memory_address_addr_space (mode, op0, as);
	  temp = gen_rtx_MEM (mode, op0);
	  set_mem_addr_space (temp, as);
	  return temp;
	}
      return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);

    case REAL_CST:
      /* If optimized, generate immediate CONST_DOUBLE
	 which will be turned into memory by reload if necessary.

	 We used to force a register so that loop.c could see it.  But
	 this does not allow gen_* patterns to perform optimizations with
	 the constants.  It also produces two insns in cases like "x = 1.0;".
	 On most machines, floating-point constants are not permitted in
	 many insns, so we'd end up copying it to a register in any case.

	 Now, we do the copying in expand_binop, if appropriate.  */
      return const_double_from_real_value (TREE_REAL_CST (exp),
					   TYPE_MODE (TREE_TYPE (exp)));

    case FIXED_CST:
      return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
					   TYPE_MODE (TREE_TYPE (exp)));

    case COMPLEX_CST:
      /* Handle evaluating a complex constant in a CONCAT target.  */
      if (original_target && GET_CODE (original_target) == CONCAT)
	{
	  machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
	  rtx rtarg, itarg;

	  rtarg = XEXP (original_target, 0);
	  itarg = XEXP (original_target, 1);

	  /* Move the real and imaginary parts separately.  */
	  op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
	  op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);

	  if (op0 != rtarg)
	    emit_move_insn (rtarg, op0);
	  if (op1 != itarg)
	    emit_move_insn (itarg, op1);

	  return original_target;
	}

      /* fall through */

    case STRING_CST:
      temp = expand_expr_constant (exp, 1, modifier);

      /* temp contains a constant address.
	 On RISC machines where a constant address isn't valid,
	 make some insns to get that address into a register.  */
      if (modifier != EXPAND_CONST_ADDRESS
	  && modifier != EXPAND_INITIALIZER
	  && modifier != EXPAND_SUM
	  && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
					    MEM_ADDR_SPACE (temp)))
	return replace_equiv_address (temp,
				      copy_rtx (XEXP (temp, 0)));
      return temp;

    case SAVE_EXPR:
      {
	tree val = treeop0;
	rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
				      inner_reference_p);

	if (!SAVE_EXPR_RESOLVED_P (exp))
	  {
	    /* We can indeed still hit this case, typically via builtin
	       expanders calling save_expr immediately before expanding
	       something.  Assume this means that we only have to deal
	       with non-BLKmode values.  */
	    gcc_assert (GET_MODE (ret) != BLKmode);

	    val = build_decl (curr_insn_location (),
			      VAR_DECL, NULL, TREE_TYPE (exp));
	    DECL_ARTIFICIAL (val) = 1;
	    DECL_IGNORED_P (val) = 1;
	    treeop0 = val;
	    TREE_OPERAND (exp, 0) = treeop0;
	    SAVE_EXPR_RESOLVED_P (exp) = 1;

	    if (!CONSTANT_P (ret))
	      ret = copy_to_reg (ret);
	    SET_DECL_RTL (val, ret);
	  }

        return ret;
      }


    case CONSTRUCTOR:
      /* If we don't need the result, just ensure we evaluate any
	 subexpressions.  */
      if (ignore)
	{
	  unsigned HOST_WIDE_INT idx;
	  tree value;

	  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
	    expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);

	  return const0_rtx;
	}

      return expand_constructor (exp, target, modifier, false);

    case TARGET_MEM_REF:
      {
	addr_space_t as
	  = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
	enum insn_code icode;
	unsigned int align;

	op0 = addr_for_mem_ref (exp, as, true);
	op0 = memory_address_addr_space (mode, op0, as);
	temp = gen_rtx_MEM (mode, op0);
	set_mem_attributes (temp, exp, 0);
	set_mem_addr_space (temp, as);
	align = get_object_alignment (exp);
	if (modifier != EXPAND_WRITE
	    && modifier != EXPAND_MEMORY
	    && mode != BLKmode
	    && align < GET_MODE_ALIGNMENT (mode)
	    /* If the target does not have special handling for unaligned
	       loads of mode then it can use regular moves for them.  */
	    && ((icode = optab_handler (movmisalign_optab, mode))
		!= CODE_FOR_nothing))
	  {
	    struct expand_operand ops[2];

	    /* We've already validated the memory, and we're creating a
	       new pseudo destination.  The predicates really can't fail,
	       nor can the generator.  */
	    create_output_operand (&ops[0], NULL_RTX, mode);
	    create_fixed_operand (&ops[1], temp);
	    expand_insn (icode, 2, ops);
	    temp = ops[0].value;
	  }
	return temp;
      }

    case MEM_REF:
      {
	const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
	addr_space_t as
	  = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
	machine_mode address_mode;
	tree base = TREE_OPERAND (exp, 0);
	gimple *def_stmt;
	enum insn_code icode;
	unsigned align;
	/* Handle expansion of non-aliased memory with non-BLKmode.  That
	   might end up in a register.  */
	if (mem_ref_refers_to_non_mem_p (exp))
	  {
	    HOST_WIDE_INT offset = mem_ref_offset (exp).to_short_addr ();
	    base = TREE_OPERAND (base, 0);
	    if (offset == 0
	        && !reverse
		&& tree_fits_uhwi_p (TYPE_SIZE (type))
		&& (GET_MODE_BITSIZE (DECL_MODE (base))
		    == tree_to_uhwi (TYPE_SIZE (type))))
	      return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
				  target, tmode, modifier);
	    if (TYPE_MODE (type) == BLKmode)
	      {
		temp = assign_stack_temp (DECL_MODE (base),
					  GET_MODE_SIZE (DECL_MODE (base)));
		store_expr (base, temp, 0, false, false);
		temp = adjust_address (temp, BLKmode, offset);
		set_mem_size (temp, int_size_in_bytes (type));
		return temp;
	      }
	    exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
			  bitsize_int (offset * BITS_PER_UNIT));
	    REF_REVERSE_STORAGE_ORDER (exp) = reverse;
	    return expand_expr (exp, target, tmode, modifier);
	  }
	address_mode = targetm.addr_space.address_mode (as);
	base = TREE_OPERAND (exp, 0);
	if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
	  {
	    tree mask = gimple_assign_rhs2 (def_stmt);
	    base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
			   gimple_assign_rhs1 (def_stmt), mask);
	    TREE_OPERAND (exp, 0) = base;
	  }
	align = get_object_alignment (exp);
	op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
	op0 = memory_address_addr_space (mode, op0, as);
	if (!integer_zerop (TREE_OPERAND (exp, 1)))
	  {
	    rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
	    op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
	    op0 = memory_address_addr_space (mode, op0, as);
	  }
	temp = gen_rtx_MEM (mode, op0);
	set_mem_attributes (temp, exp, 0);
	set_mem_addr_space (temp, as);
	if (TREE_THIS_VOLATILE (exp))
	  MEM_VOLATILE_P (temp) = 1;
	if (modifier != EXPAND_WRITE
	    && modifier != EXPAND_MEMORY
	    && !inner_reference_p
	    && mode != BLKmode
	    && align < GET_MODE_ALIGNMENT (mode))
	  {
	    if ((icode = optab_handler (movmisalign_optab, mode))
		!= CODE_FOR_nothing)
	      {
		struct expand_operand ops[2];

		/* We've already validated the memory, and we're creating a
		   new pseudo destination.  The predicates really can't fail,
		   nor can the generator.  */
		create_output_operand (&ops[0], NULL_RTX, mode);
		create_fixed_operand (&ops[1], temp);
		expand_insn (icode, 2, ops);
		temp = ops[0].value;
	      }
	    else if (SLOW_UNALIGNED_ACCESS (mode, align))
	      temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
					0, TYPE_UNSIGNED (TREE_TYPE (exp)),
					(modifier == EXPAND_STACK_PARM
					 ? NULL_RTX : target),
					mode, mode, false);
	  }
	if (reverse
	    && modifier != EXPAND_MEMORY
	    && modifier != EXPAND_WRITE)
	  temp = flip_storage_order (mode, temp);
	return temp;
      }

    case ARRAY_REF:

      {
	tree array = treeop0;
	tree index = treeop1;
	tree init;

	/* Fold an expression like: "foo"[2].
	   This is not done in fold so it won't happen inside &.
	   Don't fold if this is for wide characters since it's too
	   difficult to do correctly and this is a very rare case.  */

	if (modifier != EXPAND_CONST_ADDRESS
	    && modifier != EXPAND_INITIALIZER
	    && modifier != EXPAND_MEMORY)
	  {
	    tree t = fold_read_from_constant_string (exp);

	    if (t)
	      return expand_expr (t, target, tmode, modifier);
	  }

	/* If this is a constant index into a constant array,
	   just get the value from the array.  Handle both the cases when
	   we have an explicit constructor and when our operand is a variable
	   that was declared const.  */

	if (modifier != EXPAND_CONST_ADDRESS
	    && modifier != EXPAND_INITIALIZER
	    && modifier != EXPAND_MEMORY
	    && TREE_CODE (array) == CONSTRUCTOR
	    && ! TREE_SIDE_EFFECTS (array)
	    && TREE_CODE (index) == INTEGER_CST)
	  {
	    unsigned HOST_WIDE_INT ix;
	    tree field, value;

	    FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
				      field, value)
	      if (tree_int_cst_equal (field, index))
		{
		  if (!TREE_SIDE_EFFECTS (value))
		    return expand_expr (fold (value), target, tmode, modifier);
		  break;
		}
	  }

	else if (optimize >= 1
		 && modifier != EXPAND_CONST_ADDRESS
		 && modifier != EXPAND_INITIALIZER
		 && modifier != EXPAND_MEMORY
		 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
		 && TREE_CODE (index) == INTEGER_CST
		 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
		 && (init = ctor_for_folding (array)) != error_mark_node)
	  {
	    if (init == NULL_TREE)
	      {
		tree value = build_zero_cst (type);
		if (TREE_CODE (value) == CONSTRUCTOR)
		  {
		    /* If VALUE is a CONSTRUCTOR, this optimization is only
		       useful if this doesn't store the CONSTRUCTOR into
		       memory.  If it does, it is more efficient to just
		       load the data from the array directly.  */
		    rtx ret = expand_constructor (value, target,
						  modifier, true);
		    if (ret == NULL_RTX)
		      value = NULL_TREE;
		  }

		if (value)
		  return expand_expr (value, target, tmode, modifier);
	      }
	    else if (TREE_CODE (init) == CONSTRUCTOR)
	      {
		unsigned HOST_WIDE_INT ix;
		tree field, value;

		FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
					  field, value)
		  if (tree_int_cst_equal (field, index))
		    {
		      if (TREE_SIDE_EFFECTS (value))
			break;

		      if (TREE_CODE (value) == CONSTRUCTOR)
			{
			  /* If VALUE is a CONSTRUCTOR, this
			     optimization is only useful if
			     this doesn't store the CONSTRUCTOR
			     into memory.  If it does, it is more
			     efficient to just load the data from
			     the array directly.  */
			  rtx ret = expand_constructor (value, target,
							modifier, true);
			  if (ret == NULL_RTX)
			    break;
			}

		      return
		        expand_expr (fold (value), target, tmode, modifier);
		    }
	      }
	    else if (TREE_CODE (init) == STRING_CST)
	      {
		tree low_bound = array_ref_low_bound (exp);
		tree index1 = fold_convert_loc (loc, sizetype, treeop1);

		/* Optimize the special case of a zero lower bound.

		   We convert the lower bound to sizetype to avoid problems
		   with constant folding.  E.g. suppose the lower bound is
		   1 and its mode is QI.  Without the conversion
		      (ARRAY + (INDEX - (unsigned char)1))
		   becomes
		      (ARRAY + (-(unsigned char)1) + INDEX)
		   which becomes
		      (ARRAY + 255 + INDEX).  Oops!  */
		if (!integer_zerop (low_bound))
		  index1 = size_diffop_loc (loc, index1,
					    fold_convert_loc (loc, sizetype,
							      low_bound));

		if (tree_fits_uhwi_p (index1)
		    && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
		  {
		    tree type = TREE_TYPE (TREE_TYPE (init));
		    machine_mode mode = TYPE_MODE (type);

		    if (GET_MODE_CLASS (mode) == MODE_INT
			&& GET_MODE_SIZE (mode) == 1)
		      return gen_int_mode (TREE_STRING_POINTER (init)
					   [TREE_INT_CST_LOW (index1)],
					   mode);
		  }
	      }
	  }
      }
      goto normal_inner_ref;

    case COMPONENT_REF:
      /* If the operand is a CONSTRUCTOR, we can just extract the
	 appropriate field if it is present.  */
      if (TREE_CODE (treeop0) == CONSTRUCTOR)
	{
	  unsigned HOST_WIDE_INT idx;
	  tree field, value;

	  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
				    idx, field, value)
	    if (field == treeop1
		/* We can normally use the value of the field in the
		   CONSTRUCTOR.  However, if this is a bitfield in
		   an integral mode that we can fit in a HOST_WIDE_INT,
		   we must mask only the number of bits in the bitfield,
		   since this is done implicitly by the constructor.  If
		   the bitfield does not meet either of those conditions,
		   we can't do this optimization.  */
		&& (! DECL_BIT_FIELD (field)
		    || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
			&& (GET_MODE_PRECISION (DECL_MODE (field))
			    <= HOST_BITS_PER_WIDE_INT))))
	      {
		if (DECL_BIT_FIELD (field)
		    && modifier == EXPAND_STACK_PARM)
		  target = 0;
		op0 = expand_expr (value, target, tmode, modifier);
		if (DECL_BIT_FIELD (field))
		  {
		    HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
		    machine_mode imode = TYPE_MODE (TREE_TYPE (field));

		    if (TYPE_UNSIGNED (TREE_TYPE (field)))
		      {
			op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
					    imode);
			op0 = expand_and (imode, op0, op1, target);
		      }
		    else
		      {
			int count = GET_MODE_PRECISION (imode) - bitsize;

			op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
					    target, 0);
			op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
					    target, 0);
		      }
		  }

		return op0;
	      }
	}
      goto normal_inner_ref;

    case BIT_FIELD_REF:
    case ARRAY_RANGE_REF:
    normal_inner_ref:
      {
	machine_mode mode1, mode2;
	HOST_WIDE_INT bitsize, bitpos;
	tree offset;
	int reversep, volatilep = 0, must_force_mem;
	tree tem
	  = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
				 &unsignedp, &reversep, &volatilep);
	rtx orig_op0, memloc;
	bool clear_mem_expr = false;

	/* If we got back the original object, something is wrong.  Perhaps
	   we are evaluating an expression too early.  In any event, don't
	   infinitely recurse.  */
	gcc_assert (tem != exp);

	/* If TEM's type is a union of variable size, pass TARGET to the inner
	   computation, since it will need a temporary and TARGET is known
	   to have to do.  This occurs in unchecked conversion in Ada.  */
	orig_op0 = op0
	  = expand_expr_real (tem,
			      (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
			       && COMPLETE_TYPE_P (TREE_TYPE (tem))
			       && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
				   != INTEGER_CST)
			       && modifier != EXPAND_STACK_PARM
			       ? target : NULL_RTX),
			      VOIDmode,
			      modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
			      NULL, true);

	/* If the field has a mode, we want to access it in the
	   field's mode, not the computed mode.
	   If a MEM has VOIDmode (external with incomplete type),
	   use BLKmode for it instead.  */
	if (MEM_P (op0))
	  {
	    if (mode1 != VOIDmode)
	      op0 = adjust_address (op0, mode1, 0);
	    else if (GET_MODE (op0) == VOIDmode)
	      op0 = adjust_address (op0, BLKmode, 0);
	  }

	mode2
	  = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);

	/* If we have either an offset, a BLKmode result, or a reference
	   outside the underlying object, we must force it to memory.
	   Such a case can occur in Ada if we have unchecked conversion
	   of an expression from a scalar type to an aggregate type or
	   for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
	   passed a partially uninitialized object or a view-conversion
	   to a larger size.  */
	must_force_mem = (offset
			  || mode1 == BLKmode
			  || bitpos + bitsize > GET_MODE_BITSIZE (mode2));

	/* Handle CONCAT first.  */
	if (GET_CODE (op0) == CONCAT && !must_force_mem)
	  {
	    if (bitpos == 0
		&& bitsize == GET_MODE_BITSIZE (GET_MODE (op0))
		&& COMPLEX_MODE_P (mode1)
		&& COMPLEX_MODE_P (GET_MODE (op0))
		&& (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
		    == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
	      {
		if (reversep)
		  op0 = flip_storage_order (GET_MODE (op0), op0);
		if (mode1 != GET_MODE (op0))
		  {
		    rtx parts[2];
		    for (int i = 0; i < 2; i++)
		      {
			rtx op = read_complex_part (op0, i != 0);
			if (GET_CODE (op) == SUBREG)
			  op = force_reg (GET_MODE (op), op);
			rtx temp = gen_lowpart_common (GET_MODE_INNER (mode1),
						       op);
			if (temp)
			  op = temp;
			else
			  {
			    if (!REG_P (op) && !MEM_P (op))
			      op = force_reg (GET_MODE (op), op);
			    op = gen_lowpart (GET_MODE_INNER (mode1), op);
			  }
			parts[i] = op;
		      }
		    op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
		  }
		return op0;
	      }
	    if (bitpos == 0
		&& bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
		&& bitsize)
	      {
		op0 = XEXP (op0, 0);
		mode2 = GET_MODE (op0);
	      }
	    else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
		     && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
		     && bitpos
		     && bitsize)
	      {
		op0 = XEXP (op0, 1);
		bitpos = 0;
		mode2 = GET_MODE (op0);
	      }
	    else
	      /* Otherwise force into memory.  */
	      must_force_mem = 1;
	  }

	/* If this is a constant, put it in a register if it is a legitimate
	   constant and we don't need a memory reference.  */
	if (CONSTANT_P (op0)
	    && mode2 != BLKmode
	    && targetm.legitimate_constant_p (mode2, op0)
	    && !must_force_mem)
	  op0 = force_reg (mode2, op0);

	/* Otherwise, if this is a constant, try to force it to the constant
	   pool.  Note that back-ends, e.g. MIPS, may refuse to do so if it
	   is a legitimate constant.  */
	else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
	  op0 = validize_mem (memloc);

	/* Otherwise, if this is a constant or the object is not in memory
	   and need be, put it there.  */
	else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
	  {
	    memloc = assign_temp (TREE_TYPE (tem), 1, 1);
	    emit_move_insn (memloc, op0);
	    op0 = memloc;
	    clear_mem_expr = true;
	  }

	if (offset)
	  {
	    machine_mode address_mode;
	    rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
					  EXPAND_SUM);

	    gcc_assert (MEM_P (op0));

	    address_mode = get_address_mode (op0);
	    if (GET_MODE (offset_rtx) != address_mode)
	      {
		/* We cannot be sure that the RTL in offset_rtx is valid outside
		   of a memory address context, so force it into a register
		   before attempting to convert it to the desired mode.  */
		offset_rtx = force_operand (offset_rtx, NULL_RTX);
		offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
	      }

	    /* See the comment in expand_assignment for the rationale.  */
	    if (mode1 != VOIDmode
		&& bitpos != 0
		&& bitsize > 0
		&& (bitpos % bitsize) == 0
		&& (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
		&& MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
	      {
		op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
		bitpos = 0;
	      }

	    op0 = offset_address (op0, offset_rtx,
				  highest_pow2_factor (offset));
	  }

	/* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
	   record its alignment as BIGGEST_ALIGNMENT.  */
	if (MEM_P (op0) && bitpos == 0 && offset != 0
	    && is_aligning_offset (offset, tem))
	  set_mem_align (op0, BIGGEST_ALIGNMENT);

	/* Don't forget about volatility even if this is a bitfield.  */
	if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
	  {
	    if (op0 == orig_op0)
	      op0 = copy_rtx (op0);

	    MEM_VOLATILE_P (op0) = 1;
	  }

	/* In cases where an aligned union has an unaligned object
	   as a field, we might be extracting a BLKmode value from
	   an integer-mode (e.g., SImode) object.  Handle this case
	   by doing the extract into an object as wide as the field
	   (which we know to be the width of a basic mode), then
	   storing into memory, and changing the mode to BLKmode.  */
	if (mode1 == VOIDmode
	    || REG_P (op0) || GET_CODE (op0) == SUBREG
	    || (mode1 != BLKmode && ! direct_load[(int) mode1]
		&& GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
		&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
		&& modifier != EXPAND_CONST_ADDRESS
		&& modifier != EXPAND_INITIALIZER
		&& modifier != EXPAND_MEMORY)
	    /* If the bitfield is volatile and the bitsize
	       is narrower than the access size of the bitfield,
	       we need to extract bitfields from the access.  */
	    || (volatilep && TREE_CODE (exp) == COMPONENT_REF
		&& DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
		&& mode1 != BLKmode
		&& bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)
	    /* If the field isn't aligned enough to fetch as a memref,
	       fetch it as a bit field.  */
	    || (mode1 != BLKmode
		&& (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
		      || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
		      || (MEM_P (op0)
			  && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
			      || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
		     && modifier != EXPAND_MEMORY
		     && ((modifier == EXPAND_CONST_ADDRESS
			  || modifier == EXPAND_INITIALIZER)
			 ? STRICT_ALIGNMENT
			 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
		    || (bitpos % BITS_PER_UNIT != 0)))
	    /* If the type and the field are a constant size and the
	       size of the type isn't the same size as the bitfield,
	       we must use bitfield operations.  */
	    || (bitsize >= 0
		&& TYPE_SIZE (TREE_TYPE (exp))
		&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
		&& 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
					  bitsize)))
	  {
	    machine_mode ext_mode = mode;

	    if (ext_mode == BLKmode
		&& ! (target != 0 && MEM_P (op0)
		      && MEM_P (target)
		      && bitpos % BITS_PER_UNIT == 0))
	      ext_mode = mode_for_size (bitsize, MODE_INT, 1);

	    if (ext_mode == BLKmode)
	      {
		if (target == 0)
		  target = assign_temp (type, 1, 1);

		/* ??? Unlike the similar test a few lines below, this one is
		   very likely obsolete.  */
		if (bitsize == 0)
		  return target;

		/* In this case, BITPOS must start at a byte boundary and
		   TARGET, if specified, must be a MEM.  */
		gcc_assert (MEM_P (op0)
			    && (!target || MEM_P (target))
			    && !(bitpos % BITS_PER_UNIT));

		emit_block_move (target,
				 adjust_address (op0, VOIDmode,
						 bitpos / BITS_PER_UNIT),
				 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
					  / BITS_PER_UNIT),
				 (modifier == EXPAND_STACK_PARM
				  ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));

		return target;
	      }

	    /* If we have nothing to extract, the result will be 0 for targets
	       with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise.  Always
	       return 0 for the sake of consistency, as reading a zero-sized
	       bitfield is valid in Ada and the value is fully specified.  */
	    if (bitsize == 0)
	      return const0_rtx;

	    op0 = validize_mem (op0);

	    if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
	      mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));

	    /* If the result has a record type and the extraction is done in
	       an integral mode, then the field may be not aligned on a byte
	       boundary; in this case, if it has reverse storage order, it
	       needs to be extracted as a scalar field with reverse storage
	       order and put back into memory order afterwards.  */
	    if (TREE_CODE (type) == RECORD_TYPE
		&& GET_MODE_CLASS (ext_mode) == MODE_INT)
	      reversep = TYPE_REVERSE_STORAGE_ORDER (type);

	    op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
				     (modifier == EXPAND_STACK_PARM
				      ? NULL_RTX : target),
				     ext_mode, ext_mode, reversep);

	    /* If the result has a record type and the mode of OP0 is an
	       integral mode then, if BITSIZE is narrower than this mode
	       and this is for big-endian data, we must put the field
	       into the high-order bits.  And we must also put it back
	       into memory order if it has been previously reversed.  */
	    if (TREE_CODE (type) == RECORD_TYPE
		&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
	      {
		HOST_WIDE_INT size = GET_MODE_BITSIZE (GET_MODE (op0));

		if (bitsize < size
		    && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
		  op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
				      size - bitsize, op0, 1);

		if (reversep)
		  op0 = flip_storage_order (GET_MODE (op0), op0);
	      }

	    /* If the result type is BLKmode, store the data into a temporary
	       of the appropriate type, but with the mode corresponding to the
	       mode for the data we have (op0's mode).  */
	    if (mode == BLKmode)
	      {
		rtx new_rtx
		  = assign_stack_temp_for_type (ext_mode,
						GET_MODE_BITSIZE (ext_mode),
						type);
		emit_move_insn (new_rtx, op0);
		op0 = copy_rtx (new_rtx);
		PUT_MODE (op0, BLKmode);
	      }

	    return op0;
	  }

	/* If the result is BLKmode, use that to access the object
	   now as well.  */
	if (mode == BLKmode)
	  mode1 = BLKmode;

	/* Get a reference to just this component.  */
	if (modifier == EXPAND_CONST_ADDRESS
	    || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
	  op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
	else
	  op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);

	if (op0 == orig_op0)
	  op0 = copy_rtx (op0);

	/* Don't set memory attributes if the base expression is
	   SSA_NAME that got expanded as a MEM.  In that case, we should
	   just honor its original memory attributes.  */
	if (TREE_CODE (tem) != SSA_NAME || !MEM_P (orig_op0))
	  set_mem_attributes (op0, exp, 0);

	if (REG_P (XEXP (op0, 0)))
	  mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));

	/* If op0 is a temporary because the original expressions was forced
	   to memory, clear MEM_EXPR so that the original expression cannot
	   be marked as addressable through MEM_EXPR of the temporary.  */
	if (clear_mem_expr)
	  set_mem_expr (op0, NULL_TREE);

	MEM_VOLATILE_P (op0) |= volatilep;

        if (reversep
	    && modifier != EXPAND_MEMORY
	    && modifier != EXPAND_WRITE)
	  op0 = flip_storage_order (mode1, op0);

	if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
	    || modifier == EXPAND_CONST_ADDRESS
	    || modifier == EXPAND_INITIALIZER)
	  return op0;

	if (target == 0)
	  target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);

	convert_move (target, op0, unsignedp);
	return target;
      }

    case OBJ_TYPE_REF:
      return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);

    case CALL_EXPR:
      /* All valid uses of __builtin_va_arg_pack () are removed during
	 inlining.  */
      if (CALL_EXPR_VA_ARG_PACK (exp))
	error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
      {
	tree fndecl = get_callee_fndecl (exp), attr;

	if (fndecl
	    && (attr = lookup_attribute ("error",
					 DECL_ATTRIBUTES (fndecl))) != NULL)
	  error ("%Kcall to %qs declared with attribute error: %s",
		 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
		 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
	if (fndecl
	    && (attr = lookup_attribute ("warning",
					 DECL_ATTRIBUTES (fndecl))) != NULL)
	  warning_at (tree_nonartificial_location (exp),
		      0, "%Kcall to %qs declared with attribute warning: %s",
		      exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
		      TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));

	/* Check for a built-in function.  */
	if (fndecl && DECL_BUILT_IN (fndecl))
	  {
	    gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
	    if (CALL_WITH_BOUNDS_P (exp))
	      return expand_builtin_with_bounds (exp, target, subtarget,
						 tmode, ignore);
	    else
	      return expand_builtin (exp, target, subtarget, tmode, ignore);
	  }
      }
      return expand_call (exp, target, ignore);

    case VIEW_CONVERT_EXPR:
      op0 = NULL_RTX;

      /* If we are converting to BLKmode, try to avoid an intermediate
	 temporary by fetching an inner memory reference.  */
      if (mode == BLKmode
	  && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
	  && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
	  && handled_component_p (treeop0))
      {
	machine_mode mode1;
	HOST_WIDE_INT bitsize, bitpos;
	tree offset;
	int unsignedp, reversep, volatilep = 0;
	tree tem
	  = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
				 &unsignedp, &reversep, &volatilep);
	rtx orig_op0;

	/* ??? We should work harder and deal with non-zero offsets.  */
	if (!offset
	    && (bitpos % BITS_PER_UNIT) == 0
	    && !reversep
	    && bitsize >= 0
	    && compare_tree_int (TYPE_SIZE (type), bitsize) == 0)
	  {
	    /* See the normal_inner_ref case for the rationale.  */
	    orig_op0
	      = expand_expr_real (tem,
				  (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
				   && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
				       != INTEGER_CST)
				   && modifier != EXPAND_STACK_PARM
				   ? target : NULL_RTX),
				  VOIDmode,
				  modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
				  NULL, true);

	    if (MEM_P (orig_op0))
	      {
		op0 = orig_op0;

		/* Get a reference to just this component.  */
		if (modifier == EXPAND_CONST_ADDRESS
		    || modifier == EXPAND_SUM
		    || modifier == EXPAND_INITIALIZER)
		  op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
		else
		  op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);

		if (op0 == orig_op0)
		  op0 = copy_rtx (op0);

		set_mem_attributes (op0, treeop0, 0);
		if (REG_P (XEXP (op0, 0)))
		  mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));

		MEM_VOLATILE_P (op0) |= volatilep;
	      }
	  }
      }

      if (!op0)
	op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
				NULL, inner_reference_p);

      /* If the input and output modes are both the same, we are done.  */
      if (mode == GET_MODE (op0))
	;
      /* If neither mode is BLKmode, and both modes are the same size
	 then we can use gen_lowpart.  */
      else if (mode != BLKmode && GET_MODE (op0) != BLKmode
	       && (GET_MODE_PRECISION (mode)
		   == GET_MODE_PRECISION (GET_MODE (op0)))
	       && !COMPLEX_MODE_P (GET_MODE (op0)))
	{
	  if (GET_CODE (op0) == SUBREG)
	    op0 = force_reg (GET_MODE (op0), op0);
	  temp = gen_lowpart_common (mode, op0);
	  if (temp)
	    op0 = temp;
	  else
	    {
	      if (!REG_P (op0) && !MEM_P (op0))
		op0 = force_reg (GET_MODE (op0), op0);
	      op0 = gen_lowpart (mode, op0);
	    }
	}
      /* If both types are integral, convert from one mode to the other.  */
      else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
	op0 = convert_modes (mode, GET_MODE (op0), op0,
			     TYPE_UNSIGNED (TREE_TYPE (treeop0)));
      /* If the output type is a bit-field type, do an extraction.  */
      else if (reduce_bit_field)
	return extract_bit_field (op0, TYPE_PRECISION (type), 0,
				  TYPE_UNSIGNED (type), NULL_RTX,
				  mode, mode, false);
      /* As a last resort, spill op0 to memory, and reload it in a
	 different mode.  */
      else if (!MEM_P (op0))
	{
	  /* If the operand is not a MEM, force it into memory.  Since we
	     are going to be changing the mode of the MEM, don't call
	     force_const_mem for constants because we don't allow pool
	     constants to change mode.  */
	  tree inner_type = TREE_TYPE (treeop0);

	  gcc_assert (!TREE_ADDRESSABLE (exp));

	  if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
	    target
	      = assign_stack_temp_for_type
		(TYPE_MODE (inner_type),
		 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);

	  emit_move_insn (target, op0);
	  op0 = target;
	}

      /* If OP0 is (now) a MEM, we need to deal with alignment issues.  If the
	 output type is such that the operand is known to be aligned, indicate
	 that it is.  Otherwise, we need only be concerned about alignment for
	 non-BLKmode results.  */
      if (MEM_P (op0))
	{
	  enum insn_code icode;

	  if (modifier != EXPAND_WRITE
	      && modifier != EXPAND_MEMORY
	      && !inner_reference_p
	      && mode != BLKmode
	      && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
	    {
	      /* If the target does have special handling for unaligned
		 loads of mode then use them.  */
	      if ((icode = optab_handler (movmisalign_optab, mode))
		  != CODE_FOR_nothing)
		{
		  rtx reg;

		  op0 = adjust_address (op0, mode, 0);
		  /* We've already validated the memory, and we're creating a
		     new pseudo destination.  The predicates really can't
		     fail.  */
		  reg = gen_reg_rtx (mode);

		  /* Nor can the insn generator.  */
		  rtx_insn *insn = GEN_FCN (icode) (reg, op0);
		  emit_insn (insn);
		  return reg;
		}
	      else if (STRICT_ALIGNMENT)
		{
		  tree inner_type = TREE_TYPE (treeop0);
		  HOST_WIDE_INT temp_size
		    = MAX (int_size_in_bytes (inner_type),
			   (HOST_WIDE_INT) GET_MODE_SIZE (mode));
		  rtx new_rtx
		    = assign_stack_temp_for_type (mode, temp_size, type);
		  rtx new_with_op0_mode
		    = adjust_address (new_rtx, GET_MODE (op0), 0);

		  gcc_assert (!TREE_ADDRESSABLE (exp));

		  if (GET_MODE (op0) == BLKmode)
		    emit_block_move (new_with_op0_mode, op0,
				     GEN_INT (GET_MODE_SIZE (mode)),
				     (modifier == EXPAND_STACK_PARM
				      ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
		  else
		    emit_move_insn (new_with_op0_mode, op0);

		  op0 = new_rtx;
		}
	    }

	  op0 = adjust_address (op0, mode, 0);
	}

      return op0;

    case MODIFY_EXPR:
      {
	tree lhs = treeop0;
	tree rhs = treeop1;
	gcc_assert (ignore);

	/* Check for |= or &= of a bitfield of size one into another bitfield
	   of size 1.  In this case, (unless we need the result of the
	   assignment) we can do this more efficiently with a
	   test followed by an assignment, if necessary.

	   ??? At this point, we can't get a BIT_FIELD_REF here.  But if
	   things change so we do, this code should be enhanced to
	   support it.  */
	if (TREE_CODE (lhs) == COMPONENT_REF
	    && (TREE_CODE (rhs) == BIT_IOR_EXPR
		|| TREE_CODE (rhs) == BIT_AND_EXPR)
	    && TREE_OPERAND (rhs, 0) == lhs
	    && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
	    && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
	    && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
	  {
	    rtx_code_label *label = gen_label_rtx ();
	    int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
	    do_jump (TREE_OPERAND (rhs, 1),
		     value ? label : 0,
		     value ? 0 : label, -1);
	    expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
			       false);
	    do_pending_stack_adjust ();
	    emit_label (label);
	    return const0_rtx;
	  }

	expand_assignment (lhs, rhs, false);
	return const0_rtx;
      }

    case ADDR_EXPR:
      return expand_expr_addr_expr (exp, target, tmode, modifier);

    case REALPART_EXPR:
      op0 = expand_normal (treeop0);
      return read_complex_part (op0, false);

    case IMAGPART_EXPR:
      op0 = expand_normal (treeop0);
      return read_complex_part (op0, true);

    case RETURN_EXPR:
    case LABEL_EXPR:
    case GOTO_EXPR:
    case SWITCH_EXPR:
    case ASM_EXPR:
      /* Expanded in cfgexpand.c.  */
      gcc_unreachable ();

    case TRY_CATCH_EXPR:
    case CATCH_EXPR:
    case EH_FILTER_EXPR:
    case TRY_FINALLY_EXPR:
      /* Lowered by tree-eh.c.  */
      gcc_unreachable ();

    case WITH_CLEANUP_EXPR:
    case CLEANUP_POINT_EXPR:
    case TARGET_EXPR:
    case CASE_LABEL_EXPR:
    case VA_ARG_EXPR:
    case BIND_EXPR:
    case INIT_EXPR:
    case CONJ_EXPR:
    case COMPOUND_EXPR:
    case PREINCREMENT_EXPR:
    case PREDECREMENT_EXPR:
    case POSTINCREMENT_EXPR:
    case POSTDECREMENT_EXPR:
    case LOOP_EXPR:
    case EXIT_EXPR:
    case COMPOUND_LITERAL_EXPR:
      /* Lowered by gimplify.c.  */
      gcc_unreachable ();

    case FDESC_EXPR:
      /* Function descriptors are not valid except for as
	 initialization constants, and should not be expanded.  */
      gcc_unreachable ();

    case WITH_SIZE_EXPR:
      /* WITH_SIZE_EXPR expands to its first argument.  The caller should
	 have pulled out the size to use in whatever context it needed.  */
      return expand_expr_real (treeop0, original_target, tmode,
			       modifier, alt_rtl, inner_reference_p);

    default:
      return expand_expr_real_2 (&ops, target, tmode, modifier);
    }
}

/* Subroutine of above: reduce EXP to the precision of TYPE (in the
   signedness of TYPE), possibly returning the result in TARGET.  */
static rtx
reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
{
  HOST_WIDE_INT prec = TYPE_PRECISION (type);
  if (target && GET_MODE (target) != GET_MODE (exp))
    target = 0;
  /* For constant values, reduce using build_int_cst_type. */
  if (CONST_INT_P (exp))
    {
      HOST_WIDE_INT value = INTVAL (exp);
      tree t = build_int_cst_type (type, value);
      return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
    }
  else if (TYPE_UNSIGNED (type))
    {
      machine_mode mode = GET_MODE (exp);
      rtx mask = immed_wide_int_const
	(wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
      return expand_and (mode, exp, mask, target);
    }
  else
    {
      int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
      exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
			  exp, count, target, 0);
      return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
			   exp, count, target, 0);
    }
}

/* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
   when applied to the address of EXP produces an address known to be
   aligned more than BIGGEST_ALIGNMENT.  */

static int
is_aligning_offset (const_tree offset, const_tree exp)
{
  /* Strip off any conversions.  */
  while (CONVERT_EXPR_P (offset))
    offset = TREE_OPERAND (offset, 0);

  /* We must now have a BIT_AND_EXPR with a constant that is one less than
     power of 2 and which is larger than BIGGEST_ALIGNMENT.  */
  if (TREE_CODE (offset) != BIT_AND_EXPR
      || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
      || compare_tree_int (TREE_OPERAND (offset, 1),
			   BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
      || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
    return 0;

  /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
     It must be NEGATE_EXPR.  Then strip any more conversions.  */
  offset = TREE_OPERAND (offset, 0);
  while (CONVERT_EXPR_P (offset))
    offset = TREE_OPERAND (offset, 0);

  if (TREE_CODE (offset) != NEGATE_EXPR)
    return 0;

  offset = TREE_OPERAND (offset, 0);
  while (CONVERT_EXPR_P (offset))
    offset = TREE_OPERAND (offset, 0);

  /* This must now be the address of EXP.  */
  return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
}

/* Return the tree node if an ARG corresponds to a string constant or zero
   if it doesn't.  If we return nonzero, set *PTR_OFFSET to the offset
   in bytes within the string that ARG is accessing.  The type of the
   offset will be `sizetype'.  */

tree
string_constant (tree arg, tree *ptr_offset)
{
  tree array, offset, lower_bound;
  STRIP_NOPS (arg);

  if (TREE_CODE (arg) == ADDR_EXPR)
    {
      if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
	{
	  *ptr_offset = size_zero_node;
	  return TREE_OPERAND (arg, 0);
	}
      else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
	{
	  array = TREE_OPERAND (arg, 0);
	  offset = size_zero_node;
	}
      else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
	{
	  array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
	  offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
	  if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
	    return 0;

	  /* Check if the array has a nonzero lower bound.  */
	  lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
	  if (!integer_zerop (lower_bound))
	    {
	      /* If the offset and base aren't both constants, return 0.  */
	      if (TREE_CODE (lower_bound) != INTEGER_CST)
	        return 0;
	      if (TREE_CODE (offset) != INTEGER_CST)
		return 0;
	      /* Adjust offset by the lower bound.  */
	      offset = size_diffop (fold_convert (sizetype, offset),
				    fold_convert (sizetype, lower_bound));
	    }
	}
      else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
	{
	  array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
	  offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
	  if (TREE_CODE (array) != ADDR_EXPR)
	    return 0;
	  array = TREE_OPERAND (array, 0);
	  if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
	    return 0;
	}
      else
	return 0;
    }
  else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
    {
      tree arg0 = TREE_OPERAND (arg, 0);
      tree arg1 = TREE_OPERAND (arg, 1);

      STRIP_NOPS (arg0);
      STRIP_NOPS (arg1);

      if (TREE_CODE (arg0) == ADDR_EXPR
	  && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
	      || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
	{
	  array = TREE_OPERAND (arg0, 0);
	  offset = arg1;
	}
      else if (TREE_CODE (arg1) == ADDR_EXPR
	       && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
		   || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
	{
	  array = TREE_OPERAND (arg1, 0);
	  offset = arg0;
	}
      else
	return 0;
    }
  else
    return 0;

  if (TREE_CODE (array) == STRING_CST)
    {
      *ptr_offset = fold_convert (sizetype, offset);
      return array;
    }
  else if (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
    {
      int length;
      tree init = ctor_for_folding (array);

      /* Variables initialized to string literals can be handled too.  */
      if (init == error_mark_node
	  || !init
	  || TREE_CODE (init) != STRING_CST)
	return 0;

      /* Avoid const char foo[4] = "abcde";  */
      if (DECL_SIZE_UNIT (array) == NULL_TREE
	  || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
	  || (length = TREE_STRING_LENGTH (init)) <= 0
	  || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
	return 0;

      /* If variable is bigger than the string literal, OFFSET must be constant
	 and inside of the bounds of the string literal.  */
      offset = fold_convert (sizetype, offset);
      if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
	  && (! tree_fits_uhwi_p (offset)
	      || compare_tree_int (offset, length) >= 0))
	return 0;

      *ptr_offset = offset;
      return init;
    }

  return 0;
}

/* Generate code to calculate OPS, and exploded expression
   using a store-flag instruction and return an rtx for the result.
   OPS reflects a comparison.

   If TARGET is nonzero, store the result there if convenient.

   Return zero if there is no suitable set-flag instruction
   available on this machine.

   Once expand_expr has been called on the arguments of the comparison,
   we are committed to doing the store flag, since it is not safe to
   re-evaluate the expression.  We emit the store-flag insn by calling
   emit_store_flag, but only expand the arguments if we have a reason
   to believe that emit_store_flag will be successful.  If we think that
   it will, but it isn't, we have to simulate the store-flag with a
   set/jump/set sequence.  */

static rtx
do_store_flag (sepops ops, rtx target, machine_mode mode)
{
  enum rtx_code code;
  tree arg0, arg1, type;
  machine_mode operand_mode;
  int unsignedp;
  rtx op0, op1;
  rtx subtarget = target;
  location_t loc = ops->location;

  arg0 = ops->op0;
  arg1 = ops->op1;

  /* Don't crash if the comparison was erroneous.  */
  if (arg0 == error_mark_node || arg1 == error_mark_node)
    return const0_rtx;

  type = TREE_TYPE (arg0);
  operand_mode = TYPE_MODE (type);
  unsignedp = TYPE_UNSIGNED (type);

  /* We won't bother with BLKmode store-flag operations because it would mean
     passing a lot of information to emit_store_flag.  */
  if (operand_mode == BLKmode)
    return 0;

  /* We won't bother with store-flag operations involving function pointers
     when function pointers must be canonicalized before comparisons.  */
  if (targetm.have_canonicalize_funcptr_for_compare ()
      && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
	   && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
	       == FUNCTION_TYPE))
	  || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
	      && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
		  == FUNCTION_TYPE))))
    return 0;

  STRIP_NOPS (arg0);
  STRIP_NOPS (arg1);
  
  /* For vector typed comparisons emit code to generate the desired
     all-ones or all-zeros mask.  Conveniently use the VEC_COND_EXPR
     expander for this.  */
  if (TREE_CODE (ops->type) == VECTOR_TYPE)
    {
      tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
      if (VECTOR_BOOLEAN_TYPE_P (ops->type)
	  && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
	return expand_vec_cmp_expr (ops->type, ifexp, target);
      else
	{
	  tree if_true = constant_boolean_node (true, ops->type);
	  tree if_false = constant_boolean_node (false, ops->type);
	  return expand_vec_cond_expr (ops->type, ifexp, if_true,
				       if_false, target);
	}
    }

  /* Get the rtx comparison code to use.  We know that EXP is a comparison
     operation of some type.  Some comparisons against 1 and -1 can be
     converted to comparisons with zero.  Do so here so that the tests
     below will be aware that we have a comparison with zero.   These
     tests will not catch constants in the first operand, but constants
     are rarely passed as the first operand.  */

  switch (ops->code)
    {
    case EQ_EXPR:
      code = EQ;
      break;
    case NE_EXPR:
      code = NE;
      break;
    case LT_EXPR:
      if (integer_onep (arg1))
	arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
      else
	code = unsignedp ? LTU : LT;
      break;
    case LE_EXPR:
      if (! unsignedp && integer_all_onesp (arg1))
	arg1 = integer_zero_node, code = LT;
      else
	code = unsignedp ? LEU : LE;
      break;
    case GT_EXPR:
      if (! unsignedp && integer_all_onesp (arg1))
	arg1 = integer_zero_node, code = GE;
      else
	code = unsignedp ? GTU : GT;
      break;
    case GE_EXPR:
      if (integer_onep (arg1))
	arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
      else
	code = unsignedp ? GEU : GE;
      break;

    case UNORDERED_EXPR:
      code = UNORDERED;
      break;
    case ORDERED_EXPR:
      code = ORDERED;
      break;
    case UNLT_EXPR:
      code = UNLT;
      break;
    case UNLE_EXPR:
      code = UNLE;
      break;
    case UNGT_EXPR:
      code = UNGT;
      break;
    case UNGE_EXPR:
      code = UNGE;
      break;
    case UNEQ_EXPR:
      code = UNEQ;
      break;
    case LTGT_EXPR:
      code = LTGT;
      break;

    default:
      gcc_unreachable ();
    }

  /* Put a constant second.  */
  if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
      || TREE_CODE (arg0) == FIXED_CST)
    {
      std::swap (arg0, arg1);
      code = swap_condition (code);
    }

  /* If this is an equality or inequality test of a single bit, we can
     do this by shifting the bit being tested to the low-order bit and
     masking the result with the constant 1.  If the condition was EQ,
     we xor it with 1.  This does not require an scc insn and is faster
     than an scc insn even if we have it.

     The code to make this transformation was moved into fold_single_bit_test,
     so we just call into the folder and expand its result.  */

  if ((code == NE || code == EQ)
      && integer_zerop (arg1)
      && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
    {
      gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
      if (srcstmt
	  && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
	{
	  enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
	  tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
	  tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
				       gimple_assign_rhs1 (srcstmt),
				       gimple_assign_rhs2 (srcstmt));
	  temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
	  if (temp)
	    return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
	}
    }

  if (! get_subtarget (target)
      || GET_MODE (subtarget) != operand_mode)
    subtarget = 0;

  expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);

  if (target == 0)
    target = gen_reg_rtx (mode);

  /* Try a cstore if possible.  */
  return emit_store_flag_force (target, code, op0, op1,
				operand_mode, unsignedp,
				(TYPE_PRECISION (ops->type) == 1
				 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
}

/* Attempt to generate a casesi instruction.  Returns 1 if successful,
   0 otherwise (i.e. if there is no casesi instruction).

   DEFAULT_PROBABILITY is the probability of jumping to the default
   label.  */
int
try_casesi (tree index_type, tree index_expr, tree minval, tree range,
	    rtx table_label, rtx default_label, rtx fallback_label,
            int default_probability)
{
  struct expand_operand ops[5];
  machine_mode index_mode = SImode;
  rtx op1, op2, index;

  if (! targetm.have_casesi ())
    return 0;

  /* Convert the index to SImode.  */
  if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
    {
      machine_mode omode = TYPE_MODE (index_type);
      rtx rangertx = expand_normal (range);

      /* We must handle the endpoints in the original mode.  */
      index_expr = build2 (MINUS_EXPR, index_type,
			   index_expr, minval);
      minval = integer_zero_node;
      index = expand_normal (index_expr);
      if (default_label)
        emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
				 omode, 1, default_label,
                                 default_probability);
      /* Now we can safely truncate.  */
      index = convert_to_mode (index_mode, index, 0);
    }
  else
    {
      if (TYPE_MODE (index_type) != index_mode)
	{
	  index_type = lang_hooks.types.type_for_mode (index_mode, 0);
	  index_expr = fold_convert (index_type, index_expr);
	}

      index = expand_normal (index_expr);
    }

  do_pending_stack_adjust ();

  op1 = expand_normal (minval);
  op2 = expand_normal (range);

  create_input_operand (&ops[0], index, index_mode);
  create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
  create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
  create_fixed_operand (&ops[3], table_label);
  create_fixed_operand (&ops[4], (default_label
				  ? default_label
				  : fallback_label));
  expand_jump_insn (targetm.code_for_casesi, 5, ops);
  return 1;
}

/* Attempt to generate a tablejump instruction; same concept.  */
/* Subroutine of the next function.

   INDEX is the value being switched on, with the lowest value
   in the table already subtracted.
   MODE is its expected mode (needed if INDEX is constant).
   RANGE is the length of the jump table.
   TABLE_LABEL is a CODE_LABEL rtx for the table itself.

   DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
   index value is out of range.
   DEFAULT_PROBABILITY is the probability of jumping to
   the default label.  */

static void
do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
	      rtx default_label, int default_probability)
{
  rtx temp, vector;

  if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
    cfun->cfg->max_jumptable_ents = INTVAL (range);

  /* Do an unsigned comparison (in the proper mode) between the index
     expression and the value which represents the length of the range.
     Since we just finished subtracting the lower bound of the range
     from the index expression, this comparison allows us to simultaneously
     check that the original index expression value is both greater than
     or equal to the minimum value of the range and less than or equal to
     the maximum value of the range.  */

  if (default_label)
    emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
			     default_label, default_probability);


  /* If index is in range, it must fit in Pmode.
     Convert to Pmode so we can index with it.  */
  if (mode != Pmode)
    index = convert_to_mode (Pmode, index, 1);

  /* Don't let a MEM slip through, because then INDEX that comes
     out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
     and break_out_memory_refs will go to work on it and mess it up.  */
#ifdef PIC_CASE_VECTOR_ADDRESS
  if (flag_pic && !REG_P (index))
    index = copy_to_mode_reg (Pmode, index);
#endif

  /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
     GET_MODE_SIZE, because this indicates how large insns are.  The other
     uses should all be Pmode, because they are addresses.  This code
     could fail if addresses and insns are not the same size.  */
  index = simplify_gen_binary (MULT, Pmode, index,
			       gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
					     Pmode));
  index = simplify_gen_binary (PLUS, Pmode, index,
			       gen_rtx_LABEL_REF (Pmode, table_label));

#ifdef PIC_CASE_VECTOR_ADDRESS
  if (flag_pic)
    index = PIC_CASE_VECTOR_ADDRESS (index);
  else
#endif
    index = memory_address (CASE_VECTOR_MODE, index);
  temp = gen_reg_rtx (CASE_VECTOR_MODE);
  vector = gen_const_mem (CASE_VECTOR_MODE, index);
  convert_move (temp, vector, 0);

  emit_jump_insn (targetm.gen_tablejump (temp, table_label));

  /* If we are generating PIC code or if the table is PC-relative, the
     table and JUMP_INSN must be adjacent, so don't output a BARRIER.  */
  if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
    emit_barrier ();
}

int
try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
	       rtx table_label, rtx default_label, int default_probability)
{
  rtx index;

  if (! targetm.have_tablejump ())
    return 0;

  index_expr = fold_build2 (MINUS_EXPR, index_type,
			    fold_convert (index_type, index_expr),
			    fold_convert (index_type, minval));
  index = expand_normal (index_expr);
  do_pending_stack_adjust ();

  do_tablejump (index, TYPE_MODE (index_type),
		convert_modes (TYPE_MODE (index_type),
			       TYPE_MODE (TREE_TYPE (range)),
			       expand_normal (range),
			       TYPE_UNSIGNED (TREE_TYPE (range))),
		table_label, default_label, default_probability);
  return 1;
}

/* Return a CONST_VECTOR rtx representing vector mask for
   a VECTOR_CST of booleans.  */
static rtx
const_vector_mask_from_tree (tree exp)
{
  rtvec v;
  unsigned i;
  int units;
  tree elt;
  machine_mode inner, mode;

  mode = TYPE_MODE (TREE_TYPE (exp));
  units = GET_MODE_NUNITS (mode);
  inner = GET_MODE_INNER (mode);

  v = rtvec_alloc (units);

  for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
    {
      elt = VECTOR_CST_ELT (exp, i);

      gcc_assert (TREE_CODE (elt) == INTEGER_CST);
      if (integer_zerop (elt))
	RTVEC_ELT (v, i) = CONST0_RTX (inner);
      else if (integer_onep (elt)
	       || integer_minus_onep (elt))
	RTVEC_ELT (v, i) = CONSTM1_RTX (inner);
      else
	gcc_unreachable ();
    }

  return gen_rtx_CONST_VECTOR (mode, v);
}

/* Return a CONST_INT rtx representing vector mask for
   a VECTOR_CST of booleans.  */
static rtx
const_scalar_mask_from_tree (tree exp)
{
  machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
  wide_int res = wi::zero (GET_MODE_PRECISION (mode));
  tree elt;
  unsigned i;

  for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
    {
      elt = VECTOR_CST_ELT (exp, i);
      gcc_assert (TREE_CODE (elt) == INTEGER_CST);
      if (integer_all_onesp (elt))
	res = wi::set_bit (res, i);
      else
	gcc_assert (integer_zerop (elt));
    }

  return immed_wide_int_const (res, mode);
}

/* Return a CONST_VECTOR rtx for a VECTOR_CST tree.  */
static rtx
const_vector_from_tree (tree exp)
{
  rtvec v;
  unsigned i;
  int units;
  tree elt;
  machine_mode inner, mode;

  mode = TYPE_MODE (TREE_TYPE (exp));

  if (initializer_zerop (exp))
    return CONST0_RTX (mode);

  if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
    return const_vector_mask_from_tree (exp);

  units = GET_MODE_NUNITS (mode);
  inner = GET_MODE_INNER (mode);

  v = rtvec_alloc (units);

  for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
    {
      elt = VECTOR_CST_ELT (exp, i);

      if (TREE_CODE (elt) == REAL_CST)
	RTVEC_ELT (v, i) = const_double_from_real_value (TREE_REAL_CST (elt),
							 inner);
      else if (TREE_CODE (elt) == FIXED_CST)
	RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
							 inner);
      else
	RTVEC_ELT (v, i) = immed_wide_int_const (elt, inner);
    }

  return gen_rtx_CONST_VECTOR (mode, v);
}

/* Build a decl for a personality function given a language prefix.  */

tree
build_personality_function (const char *lang)
{
  const char *unwind_and_version;
  tree decl, type;
  char *name;

  switch (targetm_common.except_unwind_info (&global_options))
    {
    case UI_NONE:
      return NULL;
    case UI_SJLJ:
      unwind_and_version = "_sj0";
      break;
    case UI_DWARF2:
    case UI_TARGET:
      unwind_and_version = "_v0";
      break;
    case UI_SEH:
      unwind_and_version = "_seh0";
      break;
    default:
      gcc_unreachable ();
    }

  name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));

  type = build_function_type_list (integer_type_node, integer_type_node,
				   long_long_unsigned_type_node,
				   ptr_type_node, ptr_type_node, NULL_TREE);
  decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
		     get_identifier (name), type);
  DECL_ARTIFICIAL (decl) = 1;
  DECL_EXTERNAL (decl) = 1;
  TREE_PUBLIC (decl) = 1;

  /* Zap the nonsensical SYMBOL_REF_DECL for this.  What we're left with
     are the flags assigned by targetm.encode_section_info.  */
  SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);

  return decl;
}

/* Extracts the personality function of DECL and returns the corresponding
   libfunc.  */

rtx
get_personality_function (tree decl)
{
  tree personality = DECL_FUNCTION_PERSONALITY (decl);
  enum eh_personality_kind pk;

  pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
  if (pk == eh_personality_none)
    return NULL;

  if (!personality
      && pk == eh_personality_any)
    personality = lang_hooks.eh_personality ();

  if (pk == eh_personality_lang)
    gcc_assert (personality != NULL_TREE);

  return XEXP (DECL_RTL (personality), 0);
}

/* Returns a tree for the size of EXP in bytes.  */

static tree
tree_expr_size (const_tree exp)
{
  if (DECL_P (exp)
      && DECL_SIZE_UNIT (exp) != 0)
    return DECL_SIZE_UNIT (exp);
  else
    return size_in_bytes (TREE_TYPE (exp));
}

/* Return an rtx for the size in bytes of the value of EXP.  */

rtx
expr_size (tree exp)
{
  tree size;

  if (TREE_CODE (exp) == WITH_SIZE_EXPR)
    size = TREE_OPERAND (exp, 1);
  else
    {
      size = tree_expr_size (exp);
      gcc_assert (size);
      gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
    }

  return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
}

/* Return a wide integer for the size in bytes of the value of EXP, or -1
   if the size can vary or is larger than an integer.  */

static HOST_WIDE_INT
int_expr_size (tree exp)
{
  tree size;

  if (TREE_CODE (exp) == WITH_SIZE_EXPR)
    size = TREE_OPERAND (exp, 1);
  else
    {
      size = tree_expr_size (exp);
      gcc_assert (size);
    }

  if (size == 0 || !tree_fits_shwi_p (size))
    return -1;

  return tree_to_shwi (size);
}