1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
|
/* Conversion of SESE regions to Polyhedra.
Copyright (C) 2009-2018 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define USES_ISL
#include "config.h"
#ifdef HAVE_isl
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "cfghooks.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "params.h"
#include "fold-const.h"
#include "gimple-iterator.h"
#include "gimplify.h"
#include "gimplify-me.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-into-ssa.h"
#include "tree-pass.h"
#include "cfgloop.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "domwalk.h"
#include "tree-ssa-propagate.h"
#include <isl/constraint.h>
#include <isl/set.h>
#include <isl/map.h>
#include <isl/union_map.h>
#include <isl/constraint.h>
#include <isl/aff.h>
#include <isl/val.h>
#include "graphite.h"
/* Assigns to RES the value of the INTEGER_CST T. */
static inline void
tree_int_to_gmp (tree t, mpz_t res)
{
wi::to_mpz (wi::to_wide (t), res, TYPE_SIGN (TREE_TYPE (t)));
}
/* Return an isl identifier for the polyhedral basic block PBB. */
static isl_id *
isl_id_for_pbb (scop_p s, poly_bb_p pbb)
{
char name[14];
snprintf (name, sizeof (name), "S_%d", pbb_index (pbb));
return isl_id_alloc (s->isl_context, name, pbb);
}
static isl_pw_aff *extract_affine (scop_p, tree, __isl_take isl_space *space);
/* Extract an affine expression from the chain of recurrence E. */
static isl_pw_aff *
extract_affine_chrec (scop_p s, tree e, __isl_take isl_space *space)
{
isl_pw_aff *lhs = extract_affine (s, CHREC_LEFT (e), isl_space_copy (space));
isl_pw_aff *rhs = extract_affine (s, CHREC_RIGHT (e), isl_space_copy (space));
isl_local_space *ls = isl_local_space_from_space (space);
unsigned pos = sese_loop_depth (s->scop_info->region, get_chrec_loop (e)) - 1;
isl_aff *loop = isl_aff_set_coefficient_si
(isl_aff_zero_on_domain (ls), isl_dim_in, pos, 1);
isl_pw_aff *l = isl_pw_aff_from_aff (loop);
/* Before multiplying, make sure that the result is affine. */
gcc_assert (isl_pw_aff_is_cst (rhs)
|| isl_pw_aff_is_cst (l));
return isl_pw_aff_add (lhs, isl_pw_aff_mul (rhs, l));
}
/* Extract an affine expression from the mult_expr E. */
static isl_pw_aff *
extract_affine_mul (scop_p s, tree e, __isl_take isl_space *space)
{
isl_pw_aff *lhs = extract_affine (s, TREE_OPERAND (e, 0),
isl_space_copy (space));
isl_pw_aff *rhs = extract_affine (s, TREE_OPERAND (e, 1), space);
if (!isl_pw_aff_is_cst (lhs)
&& !isl_pw_aff_is_cst (rhs))
{
isl_pw_aff_free (lhs);
isl_pw_aff_free (rhs);
return NULL;
}
return isl_pw_aff_mul (lhs, rhs);
}
/* Return an isl identifier from the name of the ssa_name E. */
static isl_id *
isl_id_for_ssa_name (scop_p s, tree e)
{
char name1[14];
snprintf (name1, sizeof (name1), "P_%d", SSA_NAME_VERSION (e));
return isl_id_alloc (s->isl_context, name1, e);
}
/* Return an isl identifier for the data reference DR. Data references and
scalar references get the same isl_id. They need to be comparable and are
distinguished through the first dimension, which contains the alias set or
SSA_NAME_VERSION number. */
static isl_id *
isl_id_for_dr (scop_p s)
{
return isl_id_alloc (s->isl_context, "", 0);
}
/* Extract an affine expression from the ssa_name E. */
static isl_pw_aff *
extract_affine_name (int dimension, __isl_take isl_space *space)
{
isl_set *dom = isl_set_universe (isl_space_copy (space));
isl_aff *aff = isl_aff_zero_on_domain (isl_local_space_from_space (space));
aff = isl_aff_add_coefficient_si (aff, isl_dim_param, dimension, 1);
return isl_pw_aff_alloc (dom, aff);
}
/* Convert WI to a isl_val with CTX. */
static __isl_give isl_val *
isl_val_int_from_wi (isl_ctx *ctx, const widest_int &wi)
{
if (wi::neg_p (wi, SIGNED))
{
widest_int mwi = -wi;
return isl_val_neg (isl_val_int_from_chunks (ctx, mwi.get_len (),
sizeof (HOST_WIDE_INT),
mwi.get_val ()));
}
return isl_val_int_from_chunks (ctx, wi.get_len (), sizeof (HOST_WIDE_INT),
wi.get_val ());
}
/* Extract an affine expression from the gmp constant G. */
static isl_pw_aff *
extract_affine_wi (const widest_int &g, __isl_take isl_space *space)
{
isl_local_space *ls = isl_local_space_from_space (isl_space_copy (space));
isl_aff *aff = isl_aff_zero_on_domain (ls);
isl_set *dom = isl_set_universe (space);
isl_ctx *ct = isl_aff_get_ctx (aff);
isl_val *v = isl_val_int_from_wi (ct, g);
aff = isl_aff_add_constant_val (aff, v);
return isl_pw_aff_alloc (dom, aff);
}
/* Extract an affine expression from the integer_cst E. */
static isl_pw_aff *
extract_affine_int (tree e, __isl_take isl_space *space)
{
isl_pw_aff *res = extract_affine_wi (wi::to_widest (e), space);
return res;
}
/* Compute pwaff mod 2^width. */
static isl_pw_aff *
wrap (isl_pw_aff *pwaff, unsigned width)
{
isl_val *mod;
mod = isl_val_int_from_ui (isl_pw_aff_get_ctx (pwaff), width);
mod = isl_val_2exp (mod);
pwaff = isl_pw_aff_mod_val (pwaff, mod);
return pwaff;
}
/* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
Otherwise returns -1. */
static inline int
parameter_index_in_region (tree name, sese_info_p region)
{
int i;
tree p;
FOR_EACH_VEC_ELT (region->params, i, p)
if (p == name)
return i;
return -1;
}
/* Extract an affine expression from the tree E in the scop S. */
static isl_pw_aff *
extract_affine (scop_p s, tree e, __isl_take isl_space *space)
{
isl_pw_aff *lhs, *rhs, *res;
if (e == chrec_dont_know) {
isl_space_free (space);
return NULL;
}
tree type = TREE_TYPE (e);
switch (TREE_CODE (e))
{
case POLYNOMIAL_CHREC:
res = extract_affine_chrec (s, e, space);
break;
case MULT_EXPR:
res = extract_affine_mul (s, e, space);
break;
case POINTER_PLUS_EXPR:
{
lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
/* The RHS of a pointer-plus expression is to be interpreted
as signed value. Try to look through a sign-changing conversion
first. */
tree tem = TREE_OPERAND (e, 1);
STRIP_NOPS (tem);
rhs = extract_affine (s, tem, space);
if (TYPE_UNSIGNED (TREE_TYPE (tem)))
rhs = wrap (rhs, TYPE_PRECISION (type) - 1);
res = isl_pw_aff_add (lhs, rhs);
break;
}
case PLUS_EXPR:
lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
rhs = extract_affine (s, TREE_OPERAND (e, 1), space);
res = isl_pw_aff_add (lhs, rhs);
break;
case MINUS_EXPR:
lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
rhs = extract_affine (s, TREE_OPERAND (e, 1), space);
res = isl_pw_aff_sub (lhs, rhs);
break;
case BIT_NOT_EXPR:
lhs = extract_affine (s, integer_minus_one_node, isl_space_copy (space));
rhs = extract_affine (s, TREE_OPERAND (e, 0), space);
res = isl_pw_aff_sub (lhs, rhs);
break;
case NEGATE_EXPR:
lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
rhs = extract_affine (s, integer_minus_one_node, space);
res = isl_pw_aff_mul (lhs, rhs);
break;
case SSA_NAME:
{
gcc_assert (! defined_in_sese_p (e, s->scop_info->region));
int dim = parameter_index_in_region (e, s->scop_info);
gcc_assert (dim != -1);
res = extract_affine_name (dim, space);
break;
}
case INTEGER_CST:
res = extract_affine_int (e, space);
/* No need to wrap a single integer. */
return res;
CASE_CONVERT:
{
tree itype = TREE_TYPE (TREE_OPERAND (e, 0));
res = extract_affine (s, TREE_OPERAND (e, 0), space);
/* Signed values, even if overflow is undefined, get modulo-reduced.
But only if not all values of the old type fit in the new. */
if (! TYPE_UNSIGNED (type)
&& ((TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (e, 0)))
&& TYPE_PRECISION (type) <= TYPE_PRECISION (itype))
|| TYPE_PRECISION (type) < TYPE_PRECISION (itype)))
res = wrap (res, TYPE_PRECISION (type) - 1);
break;
}
case NON_LVALUE_EXPR:
res = extract_affine (s, TREE_OPERAND (e, 0), space);
break;
default:
gcc_unreachable ();
break;
}
if (TYPE_UNSIGNED (type))
res = wrap (res, TYPE_PRECISION (type));
return res;
}
/* Returns a linear expression for tree T evaluated in PBB. */
static isl_pw_aff *
create_pw_aff_from_tree (poly_bb_p pbb, loop_p loop, tree t)
{
scop_p scop = PBB_SCOP (pbb);
t = scalar_evolution_in_region (scop->scop_info->region, loop, t);
gcc_assert (!chrec_contains_undetermined (t));
gcc_assert (!automatically_generated_chrec_p (t));
return extract_affine (scop, t, isl_set_get_space (pbb->domain));
}
/* Add conditional statement STMT to pbb. CODE is used as the comparison
operator. This allows us to invert the condition or to handle
inequalities. */
static void
add_condition_to_pbb (poly_bb_p pbb, gcond *stmt, enum tree_code code)
{
loop_p loop = gimple_bb (stmt)->loop_father;
isl_pw_aff *lhs = create_pw_aff_from_tree (pbb, loop, gimple_cond_lhs (stmt));
isl_pw_aff *rhs = create_pw_aff_from_tree (pbb, loop, gimple_cond_rhs (stmt));
isl_set *cond;
switch (code)
{
case LT_EXPR:
cond = isl_pw_aff_lt_set (lhs, rhs);
break;
case GT_EXPR:
cond = isl_pw_aff_gt_set (lhs, rhs);
break;
case LE_EXPR:
cond = isl_pw_aff_le_set (lhs, rhs);
break;
case GE_EXPR:
cond = isl_pw_aff_ge_set (lhs, rhs);
break;
case EQ_EXPR:
cond = isl_pw_aff_eq_set (lhs, rhs);
break;
case NE_EXPR:
cond = isl_pw_aff_ne_set (lhs, rhs);
break;
default:
gcc_unreachable ();
}
cond = isl_set_coalesce (cond);
cond = isl_set_set_tuple_id (cond, isl_set_get_tuple_id (pbb->domain));
pbb->domain = isl_set_coalesce (isl_set_intersect (pbb->domain, cond));
}
/* Add conditions to the domain of PBB. */
static void
add_conditions_to_domain (poly_bb_p pbb)
{
unsigned int i;
gimple *stmt;
gimple_poly_bb_p gbb = PBB_BLACK_BOX (pbb);
if (GBB_CONDITIONS (gbb).is_empty ())
return;
FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb), i, stmt)
switch (gimple_code (stmt))
{
case GIMPLE_COND:
{
/* Don't constrain on anything else than INTEGER_TYPE. */
if (TREE_CODE (TREE_TYPE (gimple_cond_lhs (stmt))) != INTEGER_TYPE)
break;
gcond *cond_stmt = as_a <gcond *> (stmt);
enum tree_code code = gimple_cond_code (cond_stmt);
/* The conditions for ELSE-branches are inverted. */
if (!GBB_CONDITION_CASES (gbb)[i])
code = invert_tree_comparison (code, false);
add_condition_to_pbb (pbb, cond_stmt, code);
break;
}
default:
gcc_unreachable ();
break;
}
}
/* Add constraints on the possible values of parameter P from the type
of P. */
static void
add_param_constraints (scop_p scop, graphite_dim_t p, tree parameter)
{
tree type = TREE_TYPE (parameter);
wide_int min, max;
gcc_assert (INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type));
if (INTEGRAL_TYPE_P (type)
&& get_range_info (parameter, &min, &max) == VR_RANGE)
;
else
{
min = wi::min_value (TYPE_PRECISION (type), TYPE_SIGN (type));
max = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
}
isl_space *space = isl_set_get_space (scop->param_context);
isl_constraint *c = isl_inequality_alloc (isl_local_space_from_space (space));
isl_val *v = isl_val_int_from_wi (scop->isl_context,
widest_int::from (min, TYPE_SIGN (type)));
v = isl_val_neg (v);
c = isl_constraint_set_constant_val (c, v);
c = isl_constraint_set_coefficient_si (c, isl_dim_param, p, 1);
scop->param_context = isl_set_coalesce
(isl_set_add_constraint (scop->param_context, c));
space = isl_set_get_space (scop->param_context);
c = isl_inequality_alloc (isl_local_space_from_space (space));
v = isl_val_int_from_wi (scop->isl_context,
widest_int::from (max, TYPE_SIGN (type)));
c = isl_constraint_set_constant_val (c, v);
c = isl_constraint_set_coefficient_si (c, isl_dim_param, p, -1);
scop->param_context = isl_set_coalesce
(isl_set_add_constraint (scop->param_context, c));
}
/* Add a constrain to the ACCESSES polyhedron for the alias set of
data reference DR. ACCESSP_NB_DIMS is the dimension of the
ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
domain. */
static isl_map *
pdr_add_alias_set (isl_map *acc, dr_info &dri)
{
isl_constraint *c = isl_equality_alloc
(isl_local_space_from_space (isl_map_get_space (acc)));
/* Positive numbers for all alias sets. */
c = isl_constraint_set_constant_si (c, -dri.alias_set);
c = isl_constraint_set_coefficient_si (c, isl_dim_out, 0, 1);
return isl_map_add_constraint (acc, c);
}
/* Assign the affine expression INDEX to the output dimension POS of
MAP and return the result. */
static isl_map *
set_index (isl_map *map, int pos, isl_pw_aff *index)
{
isl_map *index_map;
int len = isl_map_dim (map, isl_dim_out);
isl_id *id;
index_map = isl_map_from_pw_aff (index);
index_map = isl_map_insert_dims (index_map, isl_dim_out, 0, pos);
index_map = isl_map_add_dims (index_map, isl_dim_out, len - pos - 1);
id = isl_map_get_tuple_id (map, isl_dim_out);
index_map = isl_map_set_tuple_id (index_map, isl_dim_out, id);
id = isl_map_get_tuple_id (map, isl_dim_in);
index_map = isl_map_set_tuple_id (index_map, isl_dim_in, id);
return isl_map_intersect (map, index_map);
}
/* Add to ACCESSES polyhedron equalities defining the access functions
to the memory. ACCESSP_NB_DIMS is the dimension of the ACCESSES
polyhedron, DOM_NB_DIMS is the dimension of the iteration domain.
PBB is the poly_bb_p that contains the data reference DR. */
static isl_map *
pdr_add_memory_accesses (isl_map *acc, dr_info &dri)
{
data_reference_p dr = dri.dr;
poly_bb_p pbb = dri.pbb;
int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
scop_p scop = PBB_SCOP (pbb);
for (i = 0; i < nb_subscripts; i++)
{
isl_pw_aff *aff;
tree afn = DR_ACCESS_FN (dr, i);
aff = extract_affine (scop, afn,
isl_space_domain (isl_map_get_space (acc)));
acc = set_index (acc, nb_subscripts - i , aff);
}
return isl_map_coalesce (acc);
}
/* Return true when the LOW and HIGH bounds of an array reference REF are valid
to extract constraints on accessed elements of the array. Returning false is
the conservative answer. */
static bool
bounds_are_valid (tree ref, tree low, tree high)
{
if (!high)
return false;
if (!tree_fits_shwi_p (low)
|| !tree_fits_shwi_p (high))
return false;
/* 1-element arrays at end of structures may extend over
their declared size. */
if (array_at_struct_end_p (ref)
&& operand_equal_p (low, high, 0))
return false;
/* Fortran has some arrays where high bound is -1 and low is 0. */
if (integer_onep (fold_build2 (LT_EXPR, boolean_type_node, high, low)))
return false;
return true;
}
/* Add constrains representing the size of the accessed data to the
ACCESSES polyhedron. ACCESSP_NB_DIMS is the dimension of the
ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
domain. */
static isl_set *
pdr_add_data_dimensions (isl_set *subscript_sizes, scop_p scop,
data_reference_p dr)
{
tree ref = DR_REF (dr);
int nb_subscripts = DR_NUM_DIMENSIONS (dr);
for (int i = nb_subscripts - 1; i >= 0; i--, ref = TREE_OPERAND (ref, 0))
{
if (TREE_CODE (ref) != ARRAY_REF)
return subscript_sizes;
tree low = array_ref_low_bound (ref);
tree high = array_ref_up_bound (ref);
if (!bounds_are_valid (ref, low, high))
continue;
isl_space *space = isl_set_get_space (subscript_sizes);
isl_pw_aff *lb = extract_affine_int (low, isl_space_copy (space));
isl_pw_aff *ub = extract_affine_int (high, isl_space_copy (space));
/* high >= 0 */
isl_set *valid = isl_pw_aff_nonneg_set (isl_pw_aff_copy (ub));
valid = isl_set_project_out (valid, isl_dim_set, 0,
isl_set_dim (valid, isl_dim_set));
scop->param_context = isl_set_coalesce
(isl_set_intersect (scop->param_context, valid));
isl_aff *aff
= isl_aff_zero_on_domain (isl_local_space_from_space (space));
aff = isl_aff_add_coefficient_si (aff, isl_dim_in, i + 1, 1);
isl_set *univ
= isl_set_universe (isl_space_domain (isl_aff_get_space (aff)));
isl_pw_aff *index = isl_pw_aff_alloc (univ, aff);
isl_id *id = isl_set_get_tuple_id (subscript_sizes);
lb = isl_pw_aff_set_tuple_id (lb, isl_dim_in, isl_id_copy (id));
ub = isl_pw_aff_set_tuple_id (ub, isl_dim_in, id);
/* low <= sub_i <= high */
isl_set *lbs = isl_pw_aff_ge_set (isl_pw_aff_copy (index), lb);
isl_set *ubs = isl_pw_aff_le_set (index, ub);
subscript_sizes = isl_set_intersect (subscript_sizes, lbs);
subscript_sizes = isl_set_intersect (subscript_sizes, ubs);
}
return isl_set_coalesce (subscript_sizes);
}
/* Build data accesses for DRI. */
static void
build_poly_dr (dr_info &dri)
{
isl_map *acc;
isl_set *subscript_sizes;
poly_bb_p pbb = dri.pbb;
data_reference_p dr = dri.dr;
scop_p scop = PBB_SCOP (pbb);
isl_id *id = isl_id_for_dr (scop);
{
isl_space *dc = isl_set_get_space (pbb->domain);
int nb_out = 1 + DR_NUM_DIMENSIONS (dr);
isl_space *space = isl_space_add_dims (isl_space_from_domain (dc),
isl_dim_out, nb_out);
acc = isl_map_universe (space);
acc = isl_map_set_tuple_id (acc, isl_dim_out, isl_id_copy (id));
}
acc = pdr_add_alias_set (acc, dri);
acc = pdr_add_memory_accesses (acc, dri);
{
int nb = 1 + DR_NUM_DIMENSIONS (dr);
isl_space *space = isl_space_set_alloc (scop->isl_context, 0, nb);
space = isl_space_set_tuple_id (space, isl_dim_set, id);
subscript_sizes = isl_set_nat_universe (space);
subscript_sizes = isl_set_fix_si (subscript_sizes, isl_dim_set, 0,
dri.alias_set);
subscript_sizes = pdr_add_data_dimensions (subscript_sizes, scop, dr);
}
new_poly_dr (pbb, DR_STMT (dr), DR_IS_READ (dr) ? PDR_READ : PDR_WRITE,
acc, subscript_sizes);
}
static void
build_poly_sr_1 (poly_bb_p pbb, gimple *stmt, tree var, enum poly_dr_type kind,
isl_map *acc, isl_set *subscript_sizes)
{
scop_p scop = PBB_SCOP (pbb);
/* Each scalar variables has a unique alias set number starting from
the maximum alias set assigned to a dr. */
int alias_set = scop->max_alias_set + SSA_NAME_VERSION (var);
subscript_sizes = isl_set_fix_si (subscript_sizes, isl_dim_set, 0,
alias_set);
/* Add a constrain to the ACCESSES polyhedron for the alias set of
data reference DR. */
isl_constraint *c
= isl_equality_alloc (isl_local_space_from_space (isl_map_get_space (acc)));
c = isl_constraint_set_constant_si (c, -alias_set);
c = isl_constraint_set_coefficient_si (c, isl_dim_out, 0, 1);
new_poly_dr (pbb, stmt, kind, isl_map_add_constraint (acc, c),
subscript_sizes);
}
/* Record all cross basic block scalar variables in PBB. */
static void
build_poly_sr (poly_bb_p pbb)
{
scop_p scop = PBB_SCOP (pbb);
gimple_poly_bb_p gbb = PBB_BLACK_BOX (pbb);
vec<scalar_use> &reads = gbb->read_scalar_refs;
vec<tree> &writes = gbb->write_scalar_refs;
isl_space *dc = isl_set_get_space (pbb->domain);
int nb_out = 1;
isl_space *space = isl_space_add_dims (isl_space_from_domain (dc),
isl_dim_out, nb_out);
isl_id *id = isl_id_for_dr (scop);
space = isl_space_set_tuple_id (space, isl_dim_set, isl_id_copy (id));
isl_map *acc = isl_map_universe (isl_space_copy (space));
acc = isl_map_set_tuple_id (acc, isl_dim_out, id);
isl_set *subscript_sizes = isl_set_nat_universe (space);
int i;
tree var;
FOR_EACH_VEC_ELT (writes, i, var)
build_poly_sr_1 (pbb, SSA_NAME_DEF_STMT (var), var, PDR_WRITE,
isl_map_copy (acc), isl_set_copy (subscript_sizes));
scalar_use *use;
FOR_EACH_VEC_ELT (reads, i, use)
build_poly_sr_1 (pbb, use->first, use->second, PDR_READ, isl_map_copy (acc),
isl_set_copy (subscript_sizes));
isl_map_free (acc);
isl_set_free (subscript_sizes);
}
/* Build data references in SCOP. */
static void
build_scop_drs (scop_p scop)
{
int i;
dr_info *dri;
FOR_EACH_VEC_ELT (scop->drs, i, dri)
build_poly_dr (*dri);
poly_bb_p pbb;
FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
build_poly_sr (pbb);
}
/* Add to the iteration DOMAIN one extra dimension for LOOP->num. */
static isl_set *
add_iter_domain_dimension (__isl_take isl_set *domain, loop_p loop, scop_p scop)
{
int loop_index = isl_set_dim (domain, isl_dim_set);
domain = isl_set_add_dims (domain, isl_dim_set, 1);
char name[50];
snprintf (name, sizeof(name), "i%d", loop->num);
isl_id *label = isl_id_alloc (scop->isl_context, name, NULL);
return isl_set_set_dim_id (domain, isl_dim_set, loop_index, label);
}
/* Add constraints to DOMAIN for each loop from LOOP up to CONTEXT. */
static isl_set *
add_loop_constraints (scop_p scop, __isl_take isl_set *domain, loop_p loop,
loop_p context)
{
if (loop == context)
return domain;
const sese_l ®ion = scop->scop_info->region;
if (!loop_in_sese_p (loop, region))
return domain;
/* Recursion all the way up to the context loop. */
domain = add_loop_constraints (scop, domain, loop_outer (loop), context);
/* Then, build constraints over the loop in post-order: outer to inner. */
int loop_index = isl_set_dim (domain, isl_dim_set);
if (dump_file)
fprintf (dump_file, "[sese-to-poly] adding one extra dimension to the "
"domain for loop_%d.\n", loop->num);
domain = add_iter_domain_dimension (domain, loop, scop);
isl_space *space = isl_set_get_space (domain);
/* 0 <= loop_i */
isl_local_space *ls = isl_local_space_from_space (isl_space_copy (space));
isl_constraint *c = isl_inequality_alloc (ls);
c = isl_constraint_set_coefficient_si (c, isl_dim_set, loop_index, 1);
if (dump_file)
{
fprintf (dump_file, "[sese-to-poly] adding constraint to the domain: ");
print_isl_constraint (dump_file, c);
}
domain = isl_set_add_constraint (domain, c);
tree nb_iters = number_of_latch_executions (loop);
if (TREE_CODE (nb_iters) == INTEGER_CST)
{
/* loop_i <= cst_nb_iters */
isl_local_space *ls = isl_local_space_from_space (space);
isl_constraint *c = isl_inequality_alloc (ls);
c = isl_constraint_set_coefficient_si (c, isl_dim_set, loop_index, -1);
isl_val *v
= isl_val_int_from_wi (scop->isl_context, wi::to_widest (nb_iters));
c = isl_constraint_set_constant_val (c, v);
return isl_set_add_constraint (domain, c);
}
/* loop_i <= expr_nb_iters */
gcc_assert (!chrec_contains_undetermined (nb_iters));
nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
gcc_assert (!chrec_contains_undetermined (nb_iters));
isl_pw_aff *aff_nb_iters = extract_affine (scop, nb_iters,
isl_space_copy (space));
isl_set *valid = isl_pw_aff_nonneg_set (isl_pw_aff_copy (aff_nb_iters));
valid = isl_set_project_out (valid, isl_dim_set, 0,
isl_set_dim (valid, isl_dim_set));
if (valid)
scop->param_context = isl_set_intersect (scop->param_context, valid);
ls = isl_local_space_from_space (isl_space_copy (space));
isl_aff *loop_i = isl_aff_set_coefficient_si (isl_aff_zero_on_domain (ls),
isl_dim_in, loop_index, 1);
isl_set *le = isl_pw_aff_le_set (isl_pw_aff_from_aff (loop_i),
isl_pw_aff_copy (aff_nb_iters));
if (dump_file)
{
fprintf (dump_file, "[sese-to-poly] adding constraint to the domain: ");
print_isl_set (dump_file, le);
}
domain = isl_set_intersect (domain, le);
widest_int nit;
if (!max_stmt_executions (loop, &nit))
{
isl_pw_aff_free (aff_nb_iters);
isl_space_free (space);
return domain;
}
/* NIT is an upper bound to NB_ITERS: "NIT >= NB_ITERS", although we
do not know whether the loop executes at least once. */
--nit;
isl_pw_aff *approx = extract_affine_wi (nit, isl_space_copy (space));
isl_set *x = isl_pw_aff_ge_set (approx, aff_nb_iters);
x = isl_set_project_out (x, isl_dim_set, 0,
isl_set_dim (x, isl_dim_set));
scop->param_context = isl_set_intersect (scop->param_context, x);
ls = isl_local_space_from_space (space);
c = isl_inequality_alloc (ls);
c = isl_constraint_set_coefficient_si (c, isl_dim_set, loop_index, -1);
isl_val *v = isl_val_int_from_wi (scop->isl_context, nit);
c = isl_constraint_set_constant_val (c, v);
if (dump_file)
{
fprintf (dump_file, "[sese-to-poly] adding constraint to the domain: ");
print_isl_constraint (dump_file, c);
}
return isl_set_add_constraint (domain, c);
}
/* Builds the original iteration domains for each pbb in the SCOP. */
static int
build_iteration_domains (scop_p scop, __isl_keep isl_set *context,
int index, loop_p context_loop)
{
loop_p current = pbb_loop (scop->pbbs[index]);
isl_set *domain = isl_set_copy (context);
domain = add_loop_constraints (scop, domain, current, context_loop);
const sese_l ®ion = scop->scop_info->region;
int i;
poly_bb_p pbb;
FOR_EACH_VEC_ELT_FROM (scop->pbbs, i, pbb, index)
{
loop_p loop = pbb_loop (pbb);
if (current == loop)
{
pbb->iterators = isl_set_copy (domain);
pbb->domain = isl_set_copy (domain);
pbb->domain = isl_set_set_tuple_id (pbb->domain,
isl_id_for_pbb (scop, pbb));
add_conditions_to_domain (pbb);
if (dump_file)
{
fprintf (dump_file, "[sese-to-poly] set pbb_%d->domain: ",
pbb_index (pbb));
print_isl_set (dump_file, domain);
}
continue;
}
while (loop_in_sese_p (loop, region)
&& current != loop)
loop = loop_outer (loop);
if (current != loop)
{
/* A statement in a different loop nest than CURRENT loop. */
isl_set_free (domain);
return i;
}
/* A statement nested in the CURRENT loop. */
i = build_iteration_domains (scop, domain, i, current);
i--;
}
isl_set_free (domain);
return i;
}
/* Assign dimension for each parameter in SCOP and add constraints for the
parameters. */
static void
build_scop_context (scop_p scop)
{
sese_info_p region = scop->scop_info;
unsigned nbp = sese_nb_params (region);
isl_space *space = isl_space_set_alloc (scop->isl_context, nbp, 0);
unsigned i;
tree e;
FOR_EACH_VEC_ELT (region->params, i, e)
space = isl_space_set_dim_id (space, isl_dim_param, i,
isl_id_for_ssa_name (scop, e));
scop->param_context = isl_set_universe (space);
FOR_EACH_VEC_ELT (region->params, i, e)
add_param_constraints (scop, i, e);
}
/* Return true when loop A is nested in loop B. */
static bool
nested_in (loop_p a, loop_p b)
{
return b == find_common_loop (a, b);
}
/* Return the loop at a specific SCOP->pbbs[*INDEX]. */
static loop_p
loop_at (scop_p scop, int *index)
{
return pbb_loop (scop->pbbs[*index]);
}
/* Return the index of any pbb belonging to loop or a subloop of A. */
static int
index_outermost_in_loop (loop_p a, scop_p scop)
{
int i, outermost = -1;
int last_depth = -1;
poly_bb_p pbb;
FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
if (nested_in (pbb_loop (pbb), a)
&& (last_depth == -1
|| last_depth > (int) loop_depth (pbb_loop (pbb))))
{
outermost = i;
last_depth = loop_depth (pbb_loop (pbb));
}
return outermost;
}
/* Return the index of any pbb belonging to loop or a subloop of A. */
static int
index_pbb_in_loop (loop_p a, scop_p scop)
{
int i;
poly_bb_p pbb;
FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
if (pbb_loop (pbb) == a)
return i;
return -1;
}
static poly_bb_p
outermost_pbb_in (loop_p loop, scop_p scop)
{
int x = index_pbb_in_loop (loop, scop);
if (x == -1)
x = index_outermost_in_loop (loop, scop);
return scop->pbbs[x];
}
static isl_schedule *
add_in_sequence (__isl_take isl_schedule *a, __isl_take isl_schedule *b)
{
gcc_assert (a || b);
if (!a)
return b;
if (!b)
return a;
return isl_schedule_sequence (a, b);
}
struct map_to_dimension_data {
int n;
isl_union_pw_multi_aff *res;
};
/* Create a function that maps the elements of SET to its N-th dimension and add
it to USER->res. */
static isl_stat
add_outer_projection (__isl_take isl_set *set, void *user)
{
struct map_to_dimension_data *data = (struct map_to_dimension_data *) user;
int dim = isl_set_dim (set, isl_dim_set);
isl_space *space = isl_set_get_space (set);
gcc_assert (dim >= data->n);
isl_pw_multi_aff *pma
= isl_pw_multi_aff_project_out_map (space, isl_dim_set, data->n,
dim - data->n);
data->res = isl_union_pw_multi_aff_add_pw_multi_aff (data->res, pma);
isl_set_free (set);
return isl_stat_ok;
}
/* Return SET in which all inner dimensions above N are removed. */
static isl_multi_union_pw_aff *
outer_projection_mupa (__isl_take isl_union_set *set, int n)
{
gcc_assert (n >= 0);
gcc_assert (set);
gcc_assert (!isl_union_set_is_empty (set));
isl_space *space = isl_union_set_get_space (set);
isl_union_pw_multi_aff *pwaff = isl_union_pw_multi_aff_empty (space);
struct map_to_dimension_data data = {n, pwaff};
if (isl_union_set_foreach_set (set, &add_outer_projection, &data) < 0)
data.res = isl_union_pw_multi_aff_free (data.res);
isl_union_set_free (set);
return isl_multi_union_pw_aff_from_union_pw_multi_aff (data.res);
}
/* Embed SCHEDULE in the constraints of the LOOP domain. */
static isl_schedule *
add_loop_schedule (__isl_take isl_schedule *schedule, loop_p loop,
scop_p scop)
{
poly_bb_p pbb = outermost_pbb_in (loop, scop);
isl_set *iterators = pbb->iterators;
int empty = isl_set_is_empty (iterators);
if (empty < 0 || empty)
return empty < 0 ? isl_schedule_free (schedule) : schedule;
isl_union_set *domain = isl_schedule_get_domain (schedule);
/* We cannot apply an empty domain to pbbs in this loop so return early. */
if (isl_union_set_is_empty (domain))
{
isl_union_set_free (domain);
return schedule;
}
isl_space *space = isl_set_get_space (iterators);
int loop_index = isl_space_dim (space, isl_dim_set) - 1;
loop_p ploop = pbb_loop (pbb);
while (loop != ploop)
{
--loop_index;
ploop = loop_outer (ploop);
}
isl_local_space *ls = isl_local_space_from_space (space);
isl_aff *aff = isl_aff_var_on_domain (ls, isl_dim_set, loop_index);
isl_multi_aff *prefix = isl_multi_aff_from_aff (aff);
char name[50];
snprintf (name, sizeof(name), "L_%d", loop->num);
isl_id *label = isl_id_alloc (isl_schedule_get_ctx (schedule),
name, NULL);
prefix = isl_multi_aff_set_tuple_id (prefix, isl_dim_out, label);
int n = isl_multi_aff_dim (prefix, isl_dim_in);
isl_multi_union_pw_aff *mupa = outer_projection_mupa (domain, n);
mupa = isl_multi_union_pw_aff_apply_multi_aff (mupa, prefix);
return isl_schedule_insert_partial_schedule (schedule, mupa);
}
/* Build schedule for the pbb at INDEX. */
static isl_schedule *
build_schedule_pbb (scop_p scop, int *index)
{
poly_bb_p pbb = scop->pbbs[*index];
++*index;
isl_set *domain = isl_set_copy (pbb->domain);
isl_union_set *ud = isl_union_set_from_set (domain);
return isl_schedule_from_domain (ud);
}
static isl_schedule *build_schedule_loop_nest (scop_p, int *, loop_p);
/* Build the schedule of the loop containing the SCOP pbb at INDEX. */
static isl_schedule *
build_schedule_loop (scop_p scop, int *index)
{
int max = scop->pbbs.length ();
gcc_assert (*index < max);
loop_p loop = loop_at (scop, index);
isl_schedule *s = NULL;
while (nested_in (loop_at (scop, index), loop))
{
if (loop == loop_at (scop, index))
s = add_in_sequence (s, build_schedule_pbb (scop, index));
else
s = add_in_sequence (s, build_schedule_loop_nest (scop, index, loop));
if (*index == max)
break;
}
return add_loop_schedule (s, loop, scop);
}
/* S is the schedule of the loop LOOP. Embed the schedule S in all outer loops.
When CONTEXT_LOOP is null, embed the schedule in all loops contained in the
SCOP surrounding LOOP. When CONTEXT_LOOP is non null, only embed S in the
maximal loop nest contained within CONTEXT_LOOP. */
static isl_schedule *
embed_in_surrounding_loops (__isl_take isl_schedule *s, scop_p scop,
loop_p loop, int *index, loop_p context_loop)
{
loop_p outer = loop_outer (loop);
sese_l region = scop->scop_info->region;
if (context_loop == outer
|| !loop_in_sese_p (outer, region))
return s;
int max = scop->pbbs.length ();
if (*index == max
|| (context_loop && !nested_in (loop_at (scop, index), context_loop))
|| (!context_loop
&& !loop_in_sese_p (find_common_loop (outer, loop_at (scop, index)),
region)))
return embed_in_surrounding_loops (add_loop_schedule (s, outer, scop),
scop, outer, index, context_loop);
bool a_pbb;
while ((a_pbb = (outer == loop_at (scop, index)))
|| nested_in (loop_at (scop, index), outer))
{
if (a_pbb)
s = add_in_sequence (s, build_schedule_pbb (scop, index));
else
s = add_in_sequence (s, build_schedule_loop (scop, index));
if (*index == max)
break;
}
/* We reached the end of the OUTER loop: embed S in OUTER. */
return embed_in_surrounding_loops (add_loop_schedule (s, outer, scop), scop,
outer, index, context_loop);
}
/* Build schedule for the full loop nest containing the pbb at INDEX. When
CONTEXT_LOOP is null, build the schedule of all loops contained in the SCOP
surrounding the pbb. When CONTEXT_LOOP is non null, only build the maximal loop
nest contained within CONTEXT_LOOP. */
static isl_schedule *
build_schedule_loop_nest (scop_p scop, int *index, loop_p context_loop)
{
gcc_assert (*index != (int) scop->pbbs.length ());
loop_p loop = loop_at (scop, index);
isl_schedule *s = build_schedule_loop (scop, index);
return embed_in_surrounding_loops (s, scop, loop, index, context_loop);
}
/* Build the schedule of the SCOP. */
static void
build_original_schedule (scop_p scop)
{
int i = 0;
int n = scop->pbbs.length ();
while (i < n)
{
poly_bb_p pbb = scop->pbbs[i];
isl_schedule *s = NULL;
if (!loop_in_sese_p (pbb_loop (pbb), scop->scop_info->region))
s = build_schedule_pbb (scop, &i);
else
s = build_schedule_loop_nest (scop, &i, NULL);
scop->original_schedule = add_in_sequence (scop->original_schedule, s);
}
if (dump_file)
{
fprintf (dump_file, "[sese-to-poly] original schedule:\n");
print_isl_schedule (dump_file, scop->original_schedule);
}
}
/* Builds the polyhedral representation for a SESE region. */
bool
build_poly_scop (scop_p scop)
{
int old_err = isl_options_get_on_error (scop->isl_context);
isl_options_set_on_error (scop->isl_context, ISL_ON_ERROR_CONTINUE);
build_scop_context (scop);
unsigned i = 0;
unsigned n = scop->pbbs.length ();
while (i < n)
i = build_iteration_domains (scop, scop->param_context, i, NULL);
build_scop_drs (scop);
build_original_schedule (scop);
enum isl_error err = isl_ctx_last_error (scop->isl_context);
isl_ctx_reset_error (scop->isl_context);
isl_options_set_on_error (scop->isl_context, old_err);
if (err != isl_error_none)
dump_printf (MSG_MISSED_OPTIMIZATION,
"ISL error while building poly scop\n");
return err == isl_error_none;
}
#endif /* HAVE_isl */
|