aboutsummaryrefslogtreecommitdiff
path: root/gcc/gimple-range-gori.cc
blob: 4ee0ae36014f146c56d1619a97f997df47cd8904 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
/* Gimple range GORI functions.
   Copyright (C) 2017-2023 Free Software Foundation, Inc.
   Contributed by Andrew MacLeod <amacleod@redhat.com>
   and Aldy Hernandez <aldyh@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "gimple-range.h"

// Return TRUE if GS is a logical && or || expression.

static inline bool
is_gimple_logical_p (const gimple *gs)
{
  // Look for boolean and/or condition.
  if (is_gimple_assign (gs))
    switch (gimple_expr_code (gs))
      {
	case TRUTH_AND_EXPR:
	case TRUTH_OR_EXPR:
	  return true;

	case BIT_AND_EXPR:
	case BIT_IOR_EXPR:
	  // Bitwise operations on single bits are logical too.
	  if (types_compatible_p (TREE_TYPE (gimple_assign_rhs1 (gs)),
				  boolean_type_node))
	    return true;
	  break;

	default:
	  break;
      }
  return false;
}

/* RANGE_DEF_CHAIN is used to determine which SSA names in a block can
   have range information calculated for them, and what the
   dependencies on each other are.

   Information for a basic block is calculated once and stored.  It is
   only calculated the first time a query is made, so if no queries
   are made, there is little overhead.

   The def_chain bitmap is indexed by SSA_NAME_VERSION.  Bits are set
   within this bitmap to indicate SSA names that are defined in the
   SAME block and used to calculate this SSA name.


    <bb 2> :
      _1 = x_4(D) + -2;
      _2 = _1 * 4;
      j_7 = foo ();
      q_5 = _2 + 3;
      if (q_5 <= 13)

    _1  : x_4(D)
    _2  : 1  x_4(D)
    q_5  : _1  _2  x_4(D)

    This dump indicates the bits set in the def_chain vector.
    as well as demonstrates the def_chain bits for the related ssa_names.

    Checking the chain for _2 indicates that _1 and x_4 are used in
    its evaluation.

    Def chains also only include statements which are valid gimple
    so a def chain will only span statements for which the range
    engine implements operations for.  */


// Construct a range_def_chain.

range_def_chain::range_def_chain ()
{
  bitmap_obstack_initialize (&m_bitmaps);
  m_def_chain.create (0);
  m_def_chain.safe_grow_cleared (num_ssa_names);
  m_logical_depth = 0;
}

// Destruct a range_def_chain.

range_def_chain::~range_def_chain ()
{
  m_def_chain.release ();
  bitmap_obstack_release (&m_bitmaps);
}

// Return true if NAME is in the def chain of DEF.  If BB is provided,
// only return true if the defining statement of DEF is in BB.

bool
range_def_chain::in_chain_p (tree name, tree def)
{
  gcc_checking_assert (gimple_range_ssa_p (def));
  gcc_checking_assert (gimple_range_ssa_p (name));

  // Get the definition chain for DEF.
  bitmap chain = get_def_chain (def);

  if (chain == NULL)
    return false;
  return bitmap_bit_p (chain, SSA_NAME_VERSION (name));
}

// Add either IMP or the import list B to the import set of DATA.

void
range_def_chain::set_import (struct rdc &data, tree imp, bitmap b)
{
  // If there are no imports, just return
  if (imp == NULL_TREE && !b)
    return;
  if (!data.m_import)
    data.m_import = BITMAP_ALLOC (&m_bitmaps);
  if (imp != NULL_TREE)
    bitmap_set_bit (data.m_import, SSA_NAME_VERSION (imp));
  else
    bitmap_ior_into (data.m_import, b);
}

// Return the import list for NAME.

bitmap
range_def_chain::get_imports (tree name)
{
  if (!has_def_chain (name))
    get_def_chain (name);
  bitmap i = m_def_chain[SSA_NAME_VERSION (name)].m_import;
  return i;
}

// Return true if IMPORT is an import to NAMEs def chain.

bool
range_def_chain::chain_import_p (tree name, tree import)
{
  bitmap b = get_imports (name);
  if (b)
    return bitmap_bit_p (b, SSA_NAME_VERSION (import));
  return false;
}

// Build def_chains for NAME if it is in BB.  Copy the def chain into RESULT.

void
range_def_chain::register_dependency (tree name, tree dep, basic_block bb)
{
  if (!gimple_range_ssa_p (dep))
    return;

  unsigned v = SSA_NAME_VERSION (name);
  if (v >= m_def_chain.length ())
    m_def_chain.safe_grow_cleared (num_ssa_names + 1);
  struct rdc &src = m_def_chain[v];
  gimple *def_stmt = SSA_NAME_DEF_STMT (dep);
  unsigned dep_v = SSA_NAME_VERSION (dep);
  bitmap b;

  // Set the direct dependency cache entries.
  if (!src.ssa1)
    src.ssa1 = SSA_NAME_VERSION (dep);
  else if (!src.ssa2 && src.ssa1 != SSA_NAME_VERSION (dep))
    src.ssa2 = SSA_NAME_VERSION (dep);

  // Don't calculate imports or export/dep chains if BB is not provided.
  // This is usually the case for when the temporal cache wants the direct
  // dependencies of a stmt.
  if (!bb)
    return;

  if (!src.bm)
    src.bm = BITMAP_ALLOC (&m_bitmaps);

  // Add this operand into the result.
  bitmap_set_bit (src.bm, dep_v);

  if (gimple_bb (def_stmt) == bb && !is_a<gphi *>(def_stmt))
    {
      // Get the def chain for the operand.
      b = get_def_chain (dep);
      // If there was one, copy it into result.  Access def_chain directly
      // as the get_def_chain request above could reallocate the vector.
      if (b)
	bitmap_ior_into (m_def_chain[v].bm, b);
      // And copy the import list.
      set_import (m_def_chain[v], NULL_TREE, get_imports (dep));
    }
  else
    // Originated outside the block, so it is an import.
    set_import (src, dep, NULL);
}

bool
range_def_chain::def_chain_in_bitmap_p (tree name, bitmap b)
{
  bitmap a = get_def_chain (name);
  if (a && b)
    return bitmap_intersect_p (a, b);
  return false;
}

void
range_def_chain::add_def_chain_to_bitmap (bitmap b, tree name)
{
  bitmap r = get_def_chain (name);
  if (r)
    bitmap_ior_into (b, r);
}


// Return TRUE if NAME has been processed for a def_chain.

inline bool
range_def_chain::has_def_chain (tree name)
{
  // Ensure there is an entry in the internal vector.
  unsigned v = SSA_NAME_VERSION (name);
  if (v >= m_def_chain.length ())
    m_def_chain.safe_grow_cleared (num_ssa_names + 1);
  return (m_def_chain[v].ssa1 != 0);
}



// Calculate the def chain for NAME and all of its dependent
// operands. Only using names in the same BB.  Return the bitmap of
// all names in the m_def_chain.  This only works for supported range
// statements.

bitmap
range_def_chain::get_def_chain (tree name)
{
  tree ssa[3];
  unsigned v = SSA_NAME_VERSION (name);

  // If it has already been processed, just return the cached value.
  if (has_def_chain (name) && m_def_chain[v].bm)
    return m_def_chain[v].bm;

  // No definition chain for default defs.
  if (SSA_NAME_IS_DEFAULT_DEF (name))
    {
      // A Default def is always an import.
      set_import (m_def_chain[v], name, NULL);
      return NULL;
    }

  gimple *stmt = SSA_NAME_DEF_STMT (name);
  unsigned count = gimple_range_ssa_names (ssa, 3, stmt);
  if (count == 0)
    {
      // Stmts not understood or with no operands are always imports.
      set_import (m_def_chain[v], name, NULL);
      return NULL;
    }

  // Terminate the def chains if we see too many cascading stmts.
  if (m_logical_depth == param_ranger_logical_depth)
    return NULL;

  // Increase the depth if we have a pair of ssa-names.
  if (count > 1)
    m_logical_depth++;

  for (unsigned x = 0; x < count; x++)
    register_dependency (name, ssa[x], gimple_bb (stmt));

  if (count > 1)
    m_logical_depth--;

  return m_def_chain[v].bm;
}

// Dump what we know for basic block BB to file F.

void
range_def_chain::dump (FILE *f, basic_block bb, const char *prefix)
{
  unsigned x, y;
  bitmap_iterator bi;

  // Dump the def chain for each SSA_NAME defined in BB.
  for (x = 1; x < num_ssa_names; x++)
    {
      tree name = ssa_name (x);
      if (!name)
	continue;
      gimple *stmt = SSA_NAME_DEF_STMT (name);
      if (!stmt || (bb && gimple_bb (stmt) != bb))
	continue;
      bitmap chain = (has_def_chain (name) ? get_def_chain (name) : NULL);
      if (chain && !bitmap_empty_p (chain))
	{
	  fprintf (f, prefix);
	  print_generic_expr (f, name, TDF_SLIM);
	  fprintf (f, " : ");

	  bitmap imports = get_imports (name);
	  EXECUTE_IF_SET_IN_BITMAP (chain, 0, y, bi)
	    {
	      print_generic_expr (f, ssa_name (y), TDF_SLIM);
	      if (imports && bitmap_bit_p (imports, y))
		fprintf (f, "(I)");
	      fprintf (f, "  ");
	    }
	  fprintf (f, "\n");
	}
    }
}


// -------------------------------------------------------------------

/* GORI_MAP is used to accumulate what SSA names in a block can
   generate range information, and provides tools for the block ranger
   to enable it to efficiently calculate these ranges.

   GORI stands for "Generates Outgoing Range Information."

   It utilizes the range_def_chain class to construct def_chains.
   Information for a basic block is calculated once and stored.  It is
   only calculated the first time a query is made.  If no queries are
   made, there is little overhead.

   one bitmap is maintained for each basic block:
   m_outgoing  : a set bit indicates a range can be generated for a name.

   Generally speaking, the m_outgoing vector is the union of the
   entire def_chain of all SSA names used in the last statement of the
   block which generate ranges.  */


// Initialize a gori-map structure.

gori_map::gori_map ()
{
  m_outgoing.create (0);
  m_outgoing.safe_grow_cleared (last_basic_block_for_fn (cfun));
  m_incoming.create (0);
  m_incoming.safe_grow_cleared (last_basic_block_for_fn (cfun));
  m_maybe_variant = BITMAP_ALLOC (&m_bitmaps);
}

// Free any memory the GORI map allocated.

gori_map::~gori_map ()
{
  m_incoming.release ();
  m_outgoing.release ();
}

// Return the bitmap vector of all export from BB.  Calculate if necessary.

bitmap
gori_map::exports (basic_block bb)
{
  if (bb->index >= (signed int)m_outgoing.length () || !m_outgoing[bb->index])
    calculate_gori (bb);
  return m_outgoing[bb->index];
}

// Return the bitmap vector of all imports to BB.  Calculate if necessary.

bitmap
gori_map::imports (basic_block bb)
{
  if (bb->index >= (signed int)m_outgoing.length () || !m_outgoing[bb->index])
    calculate_gori (bb);
  return m_incoming[bb->index];
}

// Return true if NAME is can have ranges generated for it from basic
// block BB.

bool
gori_map::is_export_p (tree name, basic_block bb)
{
  // If no BB is specified, test if it is exported anywhere in the IL.
  if (!bb)
    return bitmap_bit_p (m_maybe_variant, SSA_NAME_VERSION (name));
  return bitmap_bit_p (exports (bb), SSA_NAME_VERSION (name));
}

// Set or clear the m_maybe_variant bit to determine if ranges will be tracked
// for NAME.  A clear bit means they will NOT be tracked.

void
gori_map::set_range_invariant (tree name, bool invariant)
{
  if (invariant)
    bitmap_clear_bit (m_maybe_variant, SSA_NAME_VERSION (name));
  else
    bitmap_set_bit (m_maybe_variant, SSA_NAME_VERSION (name));
}

// Return true if NAME is an import to block BB.

bool
gori_map::is_import_p (tree name, basic_block bb)
{
  // If no BB is specified, test if it is exported anywhere in the IL.
  return bitmap_bit_p (imports (bb), SSA_NAME_VERSION (name));
}

// If NAME is non-NULL and defined in block BB, calculate the def
// chain and add it to m_outgoing.

void
gori_map::maybe_add_gori (tree name, basic_block bb)
{
  if (name)
    {
      // Check if there is a def chain, regardless of the block.
      add_def_chain_to_bitmap (m_outgoing[bb->index], name);
      // Check for any imports.
      bitmap imp = get_imports (name);
      // If there were imports, add them so we can recompute
      if (imp)
	bitmap_ior_into (m_incoming[bb->index], imp);
      // This name is always an import.
      if (gimple_bb (SSA_NAME_DEF_STMT (name)) != bb)
	bitmap_set_bit (m_incoming[bb->index], SSA_NAME_VERSION (name));

      // Def chain doesn't include itself, and even if there isn't a
      // def chain, this name should be added to exports.
      bitmap_set_bit (m_outgoing[bb->index], SSA_NAME_VERSION (name));
    }
}

// Calculate all the required information for BB.

void
gori_map::calculate_gori (basic_block bb)
{
  tree name;
  if (bb->index >= (signed int)m_outgoing.length ())
    {
      m_outgoing.safe_grow_cleared (last_basic_block_for_fn (cfun));
      m_incoming.safe_grow_cleared (last_basic_block_for_fn (cfun));
    }
  gcc_checking_assert (m_outgoing[bb->index] == NULL);
  m_outgoing[bb->index] = BITMAP_ALLOC (&m_bitmaps);
  m_incoming[bb->index] = BITMAP_ALLOC (&m_bitmaps);

  if (single_succ_p (bb))
    return;

  // If this block's last statement may generate range information, go
  // calculate it.
  gimple *stmt = gimple_outgoing_range_stmt_p (bb);
  if (!stmt)
    return;
  if (is_a<gcond *> (stmt))
    {
      gcond *gc = as_a<gcond *>(stmt);
      name = gimple_range_ssa_p (gimple_cond_lhs (gc));
      maybe_add_gori (name, gimple_bb (stmt));

      name = gimple_range_ssa_p (gimple_cond_rhs (gc));
      maybe_add_gori (name, gimple_bb (stmt));
    }
  else
    {
      // Do not process switches if they are too large.
      if (EDGE_COUNT (bb->succs) > (unsigned)param_vrp_switch_limit)
	return;
      gswitch *gs = as_a<gswitch *>(stmt);
      name = gimple_range_ssa_p (gimple_switch_index (gs));
      maybe_add_gori (name, gimple_bb (stmt));
    }
  // Add this bitmap to the aggregate list of all outgoing names.
  bitmap_ior_into (m_maybe_variant, m_outgoing[bb->index]);
}

// Dump the table information for BB to file F.

void
gori_map::dump (FILE *f, basic_block bb, bool verbose)
{
  // BB was not processed.
  if (!m_outgoing[bb->index] || bitmap_empty_p (m_outgoing[bb->index]))
    return;

  tree name;

  bitmap imp = imports (bb);
  if (!bitmap_empty_p (imp))
    {
      if (verbose)
	fprintf (f, "bb<%u> Imports: ",bb->index);
      else
	fprintf (f, "Imports: ");
      FOR_EACH_GORI_IMPORT_NAME (*this, bb, name)
	{
	  print_generic_expr (f, name, TDF_SLIM);
	  fprintf (f, "  ");
	}
      fputc ('\n', f);
    }

  if (verbose)
    fprintf (f, "bb<%u> Exports: ",bb->index);
  else
    fprintf (f, "Exports: ");
  // Dump the export vector.
  FOR_EACH_GORI_EXPORT_NAME (*this, bb, name)
    {
      print_generic_expr (f, name, TDF_SLIM);
      fprintf (f, "  ");
    }
  fputc ('\n', f);

  range_def_chain::dump (f, bb, "         ");
}

// Dump the entire GORI map structure to file F.

void
gori_map::dump (FILE *f)
{
  basic_block bb;
  FOR_EACH_BB_FN (bb, cfun)
    dump (f, bb);
}

DEBUG_FUNCTION void
debug (gori_map &g)
{
  g.dump (stderr);
}

// -------------------------------------------------------------------

// Construct a gori_compute object.

gori_compute::gori_compute (int not_executable_flag)
		      : outgoing (param_vrp_switch_limit), tracer ("GORI ")
{
  m_not_executable_flag = not_executable_flag;
  // Create a boolean_type true and false range.
  m_bool_zero = range_false ();
  m_bool_one = range_true ();
  if (dump_file && (param_ranger_debug & RANGER_DEBUG_GORI))
    tracer.enable_trace ();
}

// Given the switch S, return an evaluation in R for NAME when the lhs
// evaluates to LHS.  Returning false means the name being looked for
// was not resolvable.

bool
gori_compute::compute_operand_range_switch (vrange &r, gswitch *s,
					    const vrange &lhs,
					    tree name, fur_source &src)
{
  tree op1 = gimple_switch_index (s);

  // If name matches, the range is simply the range from the edge.
  // Empty ranges are viral as they are on a path which isn't
  // executable.
  if (op1 == name || lhs.undefined_p ())
    {
      r = lhs;
      return true;
    }

  // If op1 is in the definition chain, pass lhs back.
  if (gimple_range_ssa_p (op1) && in_chain_p (name, op1))
    return compute_operand_range (r, SSA_NAME_DEF_STMT (op1), lhs, name, src);

  return false;
}


// Return an evaluation for NAME as it would appear in STMT when the
// statement's lhs evaluates to LHS.  If successful, return TRUE and
// store the evaluation in R, otherwise return FALSE.

bool
gori_compute::compute_operand_range (vrange &r, gimple *stmt,
				     const vrange &lhs, tree name,
				     fur_source &src, value_relation *rel)
{
  value_relation vrel;
  value_relation *vrel_ptr = rel;
  // Empty ranges are viral as they are on an unexecutable path.
  if (lhs.undefined_p ())
    {
      r.set_undefined ();
      return true;
    }
  if (is_a<gswitch *> (stmt))
    return compute_operand_range_switch (r, as_a<gswitch *> (stmt), lhs, name,
					 src);
  gimple_range_op_handler handler (stmt);
  if (!handler)
    return false;

  tree op1 = gimple_range_ssa_p (handler.operand1 ());
  tree op2 = gimple_range_ssa_p (handler.operand2 ());

  // Handle end of lookup first.
  if (op1 == name)
    return compute_operand1_range (r, handler, lhs, name, src, vrel_ptr);
  if (op2 == name)
    return compute_operand2_range (r, handler, lhs, name, src, vrel_ptr);

  // NAME is not in this stmt, but one of the names in it ought to be
  // derived from it.
  bool op1_in_chain = op1 && in_chain_p (name, op1);
  bool op2_in_chain = op2 && in_chain_p (name, op2);

  // If neither operand is derived, then this stmt tells us nothing.
  if (!op1_in_chain && !op2_in_chain)
    return false;

  bool res = false;
  // If the lhs doesn't tell us anything only a relation can possibly enhance
  // the result.
  if (lhs.varying_p ())
    {
      if (!vrel_ptr)
	return false;
      // If there is a relation (ie: x != y) , it can only be relevant if
      // a) both elements are in the defchain
      //    c = x > y   // (x and y are in c's defchain)
      if (op1_in_chain)
	res = in_chain_p (vrel_ptr->op1 (), op1)
	      && in_chain_p (vrel_ptr->op2 (), op1);
      if (!res && op2_in_chain)
	res = in_chain_p (vrel_ptr->op1 (), op2)
	      || in_chain_p (vrel_ptr->op2 (), op2);
      if (!res)
	{
	  // or b) one relation element is in the defchain of the other and the
	  //       other is the LHS of this stmt.
	  //  x = y + 2
	  if (vrel_ptr->op1 () == handler.lhs ()
	      && (vrel_ptr->op2 () == op1 || vrel_ptr->op2 () == op2))
	    res = true;
	  else if (vrel_ptr->op2 () == handler.lhs ()
		   && (vrel_ptr->op1 () == op1 || vrel_ptr->op1 () == op2))
	    res = true;
	}
      if (!res)
	return false;
    }

  // Process logicals as they have special handling.
  if (is_gimple_logical_p (stmt))
    {
      // If the lhs doesn't tell us anything, neither will combining operands.
      if (lhs.varying_p ())
	return false;

      unsigned idx;
      if ((idx = tracer.header ("compute_operand ")))
	{
	  print_generic_expr (dump_file, name, TDF_SLIM);
	  fprintf (dump_file, " with LHS = ");
	  lhs.dump (dump_file);
	  fprintf (dump_file, " at stmt ");
	  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
	}

      tree type = TREE_TYPE (name);
      Value_Range op1_trange (type), op1_frange (type);
      Value_Range op2_trange (type), op2_frange (type);
      compute_logical_operands (op1_trange, op1_frange, handler,
				as_a <irange> (lhs),
				name, src, op1, op1_in_chain);
      compute_logical_operands (op2_trange, op2_frange, handler,
				as_a <irange> (lhs),
				name, src, op2, op2_in_chain);
      res = logical_combine (r,
			     gimple_expr_code (stmt),
			     as_a <irange> (lhs),
			     op1_trange, op1_frange, op2_trange, op2_frange);
      if (idx)
	tracer.trailer (idx, "compute_operand", res, name, r);
    }
  // Follow the appropriate operands now.
  else if (op1_in_chain && op2_in_chain)
    res = compute_operand1_and_operand2_range (r, handler, lhs, name, src,
					       vrel_ptr);
  else if (op1_in_chain)
    res = compute_operand1_range (r, handler, lhs, name, src, vrel_ptr);
  else if (op2_in_chain)
    res = compute_operand2_range (r, handler, lhs, name, src, vrel_ptr);
  else
    gcc_unreachable ();

  // If neither operand is derived, this statement tells us nothing.
  return res;
}


// Return TRUE if range R is either a true or false compatible range.

static bool
range_is_either_true_or_false (const irange &r)
{
  if (r.undefined_p ())
    return false;

  // This is complicated by the fact that Ada has multi-bit booleans,
  // so true can be ~[0, 0] (i.e. [1,MAX]).
  tree type = r.type ();
  gcc_checking_assert (range_compatible_p (type, boolean_type_node));
  return (r.singleton_p ()
	  || !r.contains_p (wi::zero (TYPE_PRECISION (type))));
}

// Evaluate a binary logical expression by combining the true and
// false ranges for each of the operands based on the result value in
// the LHS.

bool
gori_compute::logical_combine (vrange &r, enum tree_code code,
			       const irange &lhs,
			       const vrange &op1_true, const vrange &op1_false,
			       const vrange &op2_true, const vrange &op2_false)
{
  if (op1_true.varying_p () && op1_false.varying_p ()
      && op2_true.varying_p () && op2_false.varying_p ())
    return false;

  unsigned idx;
  if ((idx = tracer.header ("logical_combine")))
    {
      switch (code)
        {
	  case TRUTH_OR_EXPR:
	  case BIT_IOR_EXPR:
	    fprintf (dump_file, " || ");
	    break;
	  case TRUTH_AND_EXPR:
	  case BIT_AND_EXPR:
	    fprintf (dump_file, " && ");
	    break;
	  default:
	    break;
	}
      fprintf (dump_file, " with LHS = ");
      lhs.dump (dump_file);
      fputc ('\n', dump_file);

      tracer.print (idx, "op1_true = ");
      op1_true.dump (dump_file);
      fprintf (dump_file, "  op1_false = ");
      op1_false.dump (dump_file);
      fputc ('\n', dump_file);
      tracer.print (idx, "op2_true = ");
      op2_true.dump (dump_file);
      fprintf (dump_file, "  op2_false = ");
      op2_false.dump (dump_file);
      fputc ('\n', dump_file);
    }

  // This is not a simple fold of a logical expression, rather it
  // determines ranges which flow through the logical expression.
  //
  // Assuming x_8 is an unsigned char, and relational statements:
  //	      b_1 = x_8 < 20
  //	      b_2 = x_8 > 5
  // consider the logical expression and branch:
  //          c_2 = b_1 && b_2
  //          if (c_2)
  //
  // To determine the range of x_8 on either edge of the branch, one
  // must first determine what the range of x_8 is when the boolean
  // values of b_1 and b_2 are both true and false.
  //    b_1 TRUE      x_8 = [0, 19]
  //    b_1 FALSE     x_8 = [20, 255]
  //    b_2 TRUE      x_8 = [6, 255]
  //    b_2 FALSE     x_8 = [0,5].
  //
  // These ranges are then combined based on the expected outcome of
  // the branch.  The range on the TRUE side of the branch must satisfy
  //     b_1 == true && b_2 == true
  //
  // In terms of x_8, that means both x_8 == [0, 19] and x_8 = [6, 255]
  // must be true.  The range of x_8 on the true side must be the
  // intersection of both ranges since both must be true.  Thus the
  // range of x_8 on the true side is [6, 19].
  //
  // To determine the ranges on the FALSE side, all 3 combinations of
  // failing ranges must be considered, and combined as any of them
  // can cause the false result.
  //
  // If the LHS can be TRUE or FALSE, then evaluate both a TRUE and
  // FALSE results and combine them.  If we fell back to VARYING any
  // range restrictions that have been discovered up to this point
  // would be lost.
  if (!range_is_either_true_or_false (lhs))
    {
      bool res;
      Value_Range r1 (r);
      if (logical_combine (r1, code, m_bool_zero, op1_true, op1_false,
			   op2_true, op2_false)
	  && logical_combine (r, code, m_bool_one, op1_true, op1_false,
			      op2_true, op2_false))
	{
	  r.union_ (r1);
	  res = true;
	}
      else
	res = false;
      if (idx && res)
	{
	  tracer.print (idx, "logical_combine produced ");
	  r.dump (dump_file);
	  fputc ('\n', dump_file);
	}
    }

  switch (code)
    {
      //  A logical AND combines ranges from 2 boolean conditions.
      //       c_2 = b_1 && b_2
      case TRUTH_AND_EXPR:
      case BIT_AND_EXPR:
        if (!lhs.zero_p ())
	  {
	    // The TRUE side is the intersection of the 2 true ranges.
	    r = op1_true;
	    r.intersect (op2_true);
	  }
	else
	  {
	    // The FALSE side is the union of the other 3 cases.
	    Value_Range ff (op1_false);
	    ff.intersect (op2_false);
	    Value_Range tf (op1_true);
	    tf.intersect (op2_false);
	    Value_Range ft (op1_false);
	    ft.intersect (op2_true);
	    r = ff;
	    r.union_ (tf);
	    r.union_ (ft);
	  }
        break;
      //  A logical OR combines ranges from 2 boolean conditions.
      // 	c_2 = b_1 || b_2
      case TRUTH_OR_EXPR:
      case BIT_IOR_EXPR:
        if (lhs.zero_p ())
	  {
	    // An OR operation will only take the FALSE path if both
	    // operands are false simultaneously, which means they should
	    // be intersected.  !(x || y) == !x && !y
	    r = op1_false;
	    r.intersect (op2_false);
	  }
	else
	  {
	    // The TRUE side of an OR operation will be the union of
	    // the other three combinations.
	    Value_Range tt (op1_true);
	    tt.intersect (op2_true);
	    Value_Range tf (op1_true);
	    tf.intersect (op2_false);
	    Value_Range ft (op1_false);
	    ft.intersect (op2_true);
	    r = tt;
	    r.union_ (tf);
	    r.union_ (ft);
	  }
	break;
      default:
        gcc_unreachable ();
    }

  if (idx)
    tracer.trailer (idx, "logical_combine", true, NULL_TREE, r);
  return true;
}


// Given a logical STMT, calculate true and false ranges for each
// potential path of NAME, assuming NAME came through the OP chain if
// OP_IN_CHAIN is true.

void
gori_compute::compute_logical_operands (vrange &true_range, vrange &false_range,
					gimple_range_op_handler &handler,
					const irange &lhs,
					tree name, fur_source &src,
					tree op, bool op_in_chain)
{
  gimple *stmt = handler.stmt ();
  gimple *src_stmt = gimple_range_ssa_p (op) ? SSA_NAME_DEF_STMT (op) : NULL;
  if (!op_in_chain || !src_stmt || chain_import_p (handler.lhs (), op))
    {
      // If op is not in the def chain, or defined in this block,
      // use its known value on entry to the block.
      src.get_operand (true_range, name);
      false_range = true_range;
      unsigned idx;
      if ((idx = tracer.header ("logical_operand")))
	{
	  print_generic_expr (dump_file, op, TDF_SLIM);
	  fprintf (dump_file, " not in computation chain. Queried.\n");
	  tracer.trailer (idx, "logical_operand", true, NULL_TREE, true_range);
        }
      return;
    }

  enum tree_code code = gimple_expr_code (stmt);
  // Optimize [0 = x | y], since neither operand can ever be non-zero.
  if ((code == BIT_IOR_EXPR || code == TRUTH_OR_EXPR) && lhs.zero_p ())
    {
      if (!compute_operand_range (false_range, src_stmt, m_bool_zero, name,
				  src))
	src.get_operand (false_range, name);
      true_range = false_range;
      return;
    }

  // Optimize [1 = x & y], since neither operand can ever be zero.
  if ((code == BIT_AND_EXPR || code == TRUTH_AND_EXPR) && lhs == m_bool_one)
    {
      if (!compute_operand_range (true_range, src_stmt, m_bool_one, name, src))
	src.get_operand (true_range, name);
      false_range = true_range;
      return;
    }

  // Calculate ranges for true and false on both sides, since the false
  // path is not always a simple inversion of the true side.
  if (!compute_operand_range (true_range, src_stmt, m_bool_one, name, src))
    src.get_operand (true_range, name);
  if (!compute_operand_range (false_range, src_stmt, m_bool_zero, name, src))
    src.get_operand (false_range, name);
}


// This routine will try to refine the ranges of OP1 and OP2 given a relation
// K between them.  In order to perform this refinement, one of the operands
// must be in the definition chain of the other.  The use is refined using
// op1/op2_range on the statement, and the definition is then recalculated
// using the relation.

bool
gori_compute::refine_using_relation (tree op1, vrange &op1_range,
			       tree op2, vrange &op2_range,
			       fur_source &src, relation_kind k)
{
  gcc_checking_assert (TREE_CODE (op1) == SSA_NAME);
  gcc_checking_assert (TREE_CODE (op2) == SSA_NAME);

  if (k == VREL_VARYING || k == VREL_EQ || k == VREL_UNDEFINED)
    return false;

  bool change = false;
  bool op1_def_p = in_chain_p (op2, op1);
  if (!op1_def_p)
    if (!in_chain_p (op1, op2))
      return false;

  tree def_op = op1_def_p ? op1 : op2;
  tree use_op = op1_def_p ? op2 : op1;

  if (!op1_def_p)
    k = relation_swap (k);

  // op1_def is true if we want to look up op1, otherwise we want op2.
  // if neither is the case, we returned in the above check.

  gimple *def_stmt = SSA_NAME_DEF_STMT (def_op);
  gimple_range_op_handler op_handler (def_stmt);
  if (!op_handler)
    return false;
  tree def_op1 = op_handler.operand1 ();
  tree def_op2 = op_handler.operand2 ();
  // if the def isn't binary, the relation will not be useful.
  if (!def_op2)
    return false;

  // Determine if op2 is directly referenced as an operand.
  if (def_op1 == use_op)
    {
      // def_stmt has op1 in the 1st operand position.
      Value_Range other_op (TREE_TYPE (def_op2));
      src.get_operand (other_op, def_op2);

      // Using op1_range as the LHS, and relation REL, evaluate op2.
      tree type = TREE_TYPE (def_op1);
      Value_Range new_result (type);
      if (!op_handler.op1_range (new_result, type,
				 op1_def_p ? op1_range : op2_range,
				 other_op, relation_trio::lhs_op1 (k)))
	return false;
      if (op1_def_p)
	{
	  change |= op2_range.intersect (new_result);
	  // Recalculate op2.
	  if (op_handler.fold_range (new_result, type, op2_range, other_op))
	    {
	      change |= op1_range.intersect (new_result);
	    }
	}
      else
	{
	  change |= op1_range.intersect (new_result);
	  // Recalculate op1.
	  if (op_handler.fold_range (new_result, type, op1_range, other_op))
	    {
	      change |= op2_range.intersect (new_result);
	    }
	}
    }
  else if (def_op2 == use_op)
    {
      // def_stmt has op1 in the 1st operand position.
      Value_Range other_op (TREE_TYPE (def_op1));
      src.get_operand (other_op, def_op1);

      // Using op1_range as the LHS, and relation REL, evaluate op2.
      tree type = TREE_TYPE (def_op2);
      Value_Range new_result (type);
      if (!op_handler.op2_range (new_result, type,
				 op1_def_p ? op1_range : op2_range,
				 other_op, relation_trio::lhs_op2 (k)))
	return false;
      if (op1_def_p)
	{
	  change |= op2_range.intersect (new_result);
	  // Recalculate op1.
	  if (op_handler.fold_range (new_result, type, other_op, op2_range))
	    {
	      change |= op1_range.intersect (new_result);
	    }
	}
      else
	{
	  change |= op1_range.intersect (new_result);
	  // Recalculate op2.
	  if (op_handler.fold_range (new_result, type, other_op, op1_range))
	    {
	      change |= op2_range.intersect (new_result);
	    }
	}
    }
  return change;
}

// Calculate a range for NAME from the operand 1 position of STMT
// assuming the result of the statement is LHS.  Return the range in
// R, or false if no range could be calculated.

bool
gori_compute::compute_operand1_range (vrange &r,
				      gimple_range_op_handler &handler,
				      const vrange &lhs, tree name,
				      fur_source &src, value_relation *rel)
{
  value_relation local_rel;
  gimple *stmt = handler.stmt ();
  tree op1 = handler.operand1 ();
  tree op2 = handler.operand2 ();
  tree lhs_name = gimple_get_lhs (stmt);

  relation_trio trio;
  if (rel)
    trio = rel->create_trio (lhs_name, op1, op2);
  relation_kind op_op = trio.op1_op2 ();

  Value_Range op1_range (TREE_TYPE (op1));
  Value_Range tmp (TREE_TYPE (op1));
  Value_Range op2_range (op2 ? TREE_TYPE (op2) : TREE_TYPE (op1));

  // Fetch the known range for op1 in this block.
  src.get_operand (op1_range, op1);

  // Now range-op calculate and put that result in r.
  if (op2)
    {
      src.get_operand (op2_range, op2);

      // If there is a relation betwen op1 and op2, use it instead.
      // This allows multiple relations to be processed in compound logicals.
      if (gimple_range_ssa_p (op1) && gimple_range_ssa_p (op2))
	{
	  relation_kind k = handler.op1_op2_relation (lhs);
	  if (k != VREL_VARYING)
	    {
	      op_op = k;
	      local_rel.set_relation (op_op, op1, op2);
	      rel = &local_rel;
	    }
	}

      if (op_op != VREL_VARYING)
	refine_using_relation (op1, op1_range, op2, op2_range, src, op_op);

      // If op1 == op2, create a new trio for just this call.
      if (op1 == op2 && gimple_range_ssa_p (op1))
	trio = relation_trio (trio.lhs_op1 (), trio.lhs_op2 (), VREL_EQ);
      if (!handler.calc_op1 (tmp, lhs, op2_range, trio))
	return false;
    }
  else
    {
      // We pass op1_range to the unary operation.  Normally it's a
      // hidden range_for_type parameter, but sometimes having the
      // actual range can result in better information.
      if (!handler.calc_op1 (tmp, lhs, op1_range, trio))
	return false;
    }

  unsigned idx;
  if ((idx = tracer.header ("compute op 1 (")))
    {
      print_generic_expr (dump_file, op1, TDF_SLIM);
      fprintf (dump_file, ") at ");
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
      tracer.print (idx, "LHS =");
      lhs.dump (dump_file);
      if (op2 && TREE_CODE (op2) == SSA_NAME)
	{
	  fprintf (dump_file, ", ");
	  print_generic_expr (dump_file, op2, TDF_SLIM);
	  fprintf (dump_file, " = ");
	  op2_range.dump (dump_file);
	}
      fprintf (dump_file, "\n");
      tracer.print (idx, "Computes ");
      print_generic_expr (dump_file, op1, TDF_SLIM);
      fprintf (dump_file, " = ");
      tmp.dump (dump_file);
      fprintf (dump_file, " intersect Known range : ");
      op1_range.dump (dump_file);
      fputc ('\n', dump_file);
    }
  // Intersect the calculated result with the known result and return if done.
  if (op1 == name)
    {
      tmp.intersect (op1_range);
      r = tmp;
      if (idx)
	tracer.trailer (idx, "produces ", true, name, r);
      return true;
    }
  // If the calculation continues, we're using op1_range as the new LHS.
  op1_range.intersect (tmp);

  if (idx)
    tracer.trailer (idx, "produces ", true, op1, op1_range);
  gimple *src_stmt = SSA_NAME_DEF_STMT (op1);
  gcc_checking_assert (src_stmt);

  // Then feed this range back as the LHS of the defining statement.
  return compute_operand_range (r, src_stmt, op1_range, name, src, rel);
}


// Calculate a range for NAME from the operand 2 position of S
// assuming the result of the statement is LHS.  Return the range in
// R, or false if no range could be calculated.

bool
gori_compute::compute_operand2_range (vrange &r,
				      gimple_range_op_handler &handler,
				      const vrange &lhs, tree name,
				      fur_source &src, value_relation *rel)
{
  value_relation local_rel;
  gimple *stmt = handler.stmt ();
  tree op1 = handler.operand1 ();
  tree op2 = handler.operand2 ();
  tree lhs_name = gimple_get_lhs (stmt);

  Value_Range op1_range (TREE_TYPE (op1));
  Value_Range op2_range (TREE_TYPE (op2));
  Value_Range tmp (TREE_TYPE (op2));

  src.get_operand (op1_range, op1);
  src.get_operand (op2_range, op2);

  relation_trio trio;
  if (rel)
    trio = rel->create_trio (lhs_name, op1, op2);
  relation_kind op_op = trio.op1_op2 ();

  // If there is a relation betwen op1 and op2, use it instead.
  // This allows multiple relations to be processed in compound logicals.
  if (gimple_range_ssa_p (op1) && gimple_range_ssa_p (op2))
    {
      relation_kind k = handler.op1_op2_relation (lhs);
      if (k != VREL_VARYING)
	{
	  op_op = k;
	  local_rel.set_relation (op_op, op1, op2);
	  rel = &local_rel;
	}
    }

  if (op_op != VREL_VARYING)
    refine_using_relation (op1, op1_range, op2, op2_range, src, op_op);

  // If op1 == op2, create a new trio for this stmt.
  if (op1 == op2 && gimple_range_ssa_p (op1))
    trio = relation_trio (trio.lhs_op1 (), trio.lhs_op2 (), VREL_EQ);
  // Intersect with range for op2 based on lhs and op1.
  if (!handler.calc_op2 (tmp, lhs, op1_range, trio))
    return false;

  unsigned idx;
  if ((idx = tracer.header ("compute op 2 (")))
    {
      print_generic_expr (dump_file, op2, TDF_SLIM);
      fprintf (dump_file, ") at ");
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
      tracer.print (idx, "LHS = ");
      lhs.dump (dump_file);
      if (TREE_CODE (op1) == SSA_NAME)
	{
	  fprintf (dump_file, ", ");
	  print_generic_expr (dump_file, op1, TDF_SLIM);
	  fprintf (dump_file, " = ");
	  op1_range.dump (dump_file);
	}
      fprintf (dump_file, "\n");
      tracer.print (idx, "Computes ");
      print_generic_expr (dump_file, op2, TDF_SLIM);
      fprintf (dump_file, " = ");
      tmp.dump (dump_file);
      fprintf (dump_file, " intersect Known range : ");
      op2_range.dump (dump_file);
      fputc ('\n', dump_file);
    }
  // Intersect the calculated result with the known result and return if done.
  if (op2 == name)
    {
      tmp.intersect (op2_range);
      r = tmp;
      if (idx)
	tracer.trailer (idx, " produces ", true, NULL_TREE, r);
      return true;
    }
  // If the calculation continues, we're using op2_range as the new LHS.
  op2_range.intersect (tmp);

  if (idx)
    tracer.trailer (idx, " produces ", true, op2, op2_range);
  gimple *src_stmt = SSA_NAME_DEF_STMT (op2);
  gcc_checking_assert (src_stmt);
//  gcc_checking_assert (!is_import_p (op2, find.bb));

  // Then feed this range back as the LHS of the defining statement.
  return compute_operand_range (r, src_stmt, op2_range, name, src, rel);
}

// Calculate a range for NAME from both operand positions of S
// assuming the result of the statement is LHS.  Return the range in
// R, or false if no range could be calculated.

bool
gori_compute::compute_operand1_and_operand2_range (vrange &r,
						   gimple_range_op_handler
								     &handler,
						   const vrange &lhs,
						   tree name,
						   fur_source &src,
						   value_relation *rel)
{
  Value_Range op_range (TREE_TYPE (name));

  // If op1 is in the def chain of op2, we'll do the work twice to evalaute
  // op1.  This can result in an exponential time calculation.
  // Instead just evaluate op2, which will eventualy get to op1.
  if (in_chain_p (handler.operand1 (), handler.operand2 ()))
    return compute_operand2_range (r, handler, lhs, name, src, rel);

  // Likewise if op2 is in the def chain of op1.
  if (in_chain_p (handler.operand2 (), handler.operand1 ()))
    return compute_operand1_range (r, handler, lhs, name, src, rel);

  // Calculate a good a range through op2.
  if (!compute_operand2_range (r, handler, lhs, name, src, rel))
    return false;

  // If op1 == op2 there is again no need to go further.
  if (handler.operand1 () == handler.operand2 ())
    return true;

  // Now get the range thru op1.
  if (!compute_operand1_range (op_range, handler, lhs, name, src, rel))
    return false;

  // Both operands have to be simultaneously true, so perform an intersection.
  r.intersect (op_range);
  return true;
}

// Return TRUE if NAME can be recomputed on any edge exiting BB.  If any
// direct dependent is exported, it may also change the computed value of NAME.

bool
gori_compute::may_recompute_p (tree name, basic_block bb, int depth)
{
  tree dep1 = depend1 (name);
  tree dep2 = depend2 (name);

  // If the first dependency is not set, there is no recomputation.
  // Dependencies reflect original IL, not current state.   Check if the
  // SSA_NAME is still valid as well.
  if (!dep1)
    return false;

  // Don't recalculate PHIs or statements with side_effects.
  gimple *s = SSA_NAME_DEF_STMT (name);
  if (is_a<gphi *> (s) || gimple_has_side_effects (s))
    return false;

  if (!dep2)
    {
      // -1 indicates a default param, convert it to the real default.
      if (depth == -1)
	{
	  depth = (int)param_ranger_recompute_depth;
	  gcc_checking_assert (depth >= 1);
	}

      bool res = (bb ? is_export_p (dep1, bb) : is_export_p (dep1));
      if (res || depth <= 1)
	return res;
      // Check another level of recomputation.
      return may_recompute_p (dep1, bb, --depth);
    }
  // Two dependencies terminate the depth of the search.
  if (bb)
    return is_export_p (dep1, bb) || is_export_p (dep2, bb);
  else
    return is_export_p (dep1) || is_export_p (dep2);
}

// Return TRUE if NAME can be recomputed on edge E.  If any direct dependent
// is exported on edge E, it may change the computed value of NAME.

bool
gori_compute::may_recompute_p (tree name, edge e, int depth)
{
  gcc_checking_assert (e);
  return may_recompute_p (name, e->src, depth);
}


// Return TRUE if a range can be calculated or recomputed for NAME on any
// edge exiting BB.

bool
gori_compute::has_edge_range_p (tree name, basic_block bb)
{
  // Check if NAME is an export or can be recomputed.
  if (bb)
    return is_export_p (name, bb) || may_recompute_p (name, bb);

  // If no block is specified, check for anywhere in the IL.
  return is_export_p (name) || may_recompute_p (name);
}

// Return TRUE if a range can be calculated or recomputed for NAME on edge E.

bool
gori_compute::has_edge_range_p (tree name, edge e)
{
  gcc_checking_assert (e);
  return has_edge_range_p (name, e->src);
}

// Calculate a range on edge E and return it in R.  Try to evaluate a
// range for NAME on this edge.  Return FALSE if this is either not a
// control edge or NAME is not defined by this edge.

bool
gori_compute::outgoing_edge_range_p (vrange &r, edge e, tree name,
				     range_query &q)
{
  unsigned idx;

  if ((e->flags & m_not_executable_flag))
    {
      r.set_undefined ();
      if (dump_file && (dump_flags & TDF_DETAILS))
	  fprintf (dump_file, "Outgoing edge %d->%d unexecutable.\n",
		   e->src->index, e->dest->index);
      return true;
    }

  gcc_checking_assert (gimple_range_ssa_p (name));
  int_range_max lhs;
  // Determine if there is an outgoing edge.
  gimple *stmt = outgoing.edge_range_p (lhs, e);
  if (!stmt)
    return false;

  fur_stmt src (stmt, &q);
  // If NAME can be calculated on the edge, use that.
  if (is_export_p (name, e->src))
    {
      bool res;
      if ((idx = tracer.header ("outgoing_edge")))
	{
	  fprintf (dump_file, " for ");
	  print_generic_expr (dump_file, name, TDF_SLIM);
	  fprintf (dump_file, " on edge %d->%d\n",
		   e->src->index, e->dest->index);
	}
      if ((res = compute_operand_range (r, stmt, lhs, name, src)))
	{
	  // Sometimes compatible types get interchanged. See PR97360.
	  // Make sure we are returning the type of the thing we asked for.
	  if (!r.undefined_p () && r.type () != TREE_TYPE (name))
	    {
	      gcc_checking_assert (range_compatible_p (r.type (),
						       TREE_TYPE (name)));
	      range_cast (r, TREE_TYPE (name));
	    }
	}
      if (idx)
	tracer.trailer (idx, "outgoing_edge", res, name, r);
      return res;
    }
  // If NAME isn't exported, check if it can be recomputed.
  else if (may_recompute_p (name, e))
    {
      gimple *def_stmt = SSA_NAME_DEF_STMT (name);

      if ((idx = tracer.header ("recomputation")))
	{
	  fprintf (dump_file, " attempt on edge %d->%d for ",
		   e->src->index, e->dest->index);
	  print_gimple_stmt (dump_file, def_stmt, 0, TDF_SLIM);
	}
      // Simply calculate DEF_STMT on edge E using the range query Q.
      fold_range (r, def_stmt, e, &q);
      if (idx)
	tracer.trailer (idx, "recomputation", true, name, r);
      return true;
    }
  return false;
}

// Given COND ? OP1 : OP2 with ranges R1 for OP1 and R2 for OP2, Use gori
// to further resolve R1 and R2 if there are any dependencies between
// OP1 and COND or OP2 and COND.  All values can are to be calculated using SRC
// as the origination source location for operands..
// Effectively, use COND an the edge condition and solve for OP1 on the true
// edge and OP2 on the false edge.

bool
gori_compute::condexpr_adjust (vrange &r1, vrange &r2, gimple *, tree cond,
			       tree op1, tree op2, fur_source &src)
{
  tree ssa1 = gimple_range_ssa_p (op1);
  tree ssa2 = gimple_range_ssa_p (op2);
  if (!ssa1 && !ssa2)
    return false;
  if (TREE_CODE (cond) != SSA_NAME)
    return false;
  gassign *cond_def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (cond));
  if (!cond_def
      || TREE_CODE_CLASS (gimple_assign_rhs_code (cond_def)) != tcc_comparison)
    return false;
  tree type = TREE_TYPE (gimple_assign_rhs1 (cond_def));
  if (!range_compatible_p (type, TREE_TYPE (gimple_assign_rhs2 (cond_def))))
    return false;
  range_op_handler hand (gimple_assign_rhs_code (cond_def));
  if (!hand)
    return false;

  tree c1 = gimple_range_ssa_p (gimple_assign_rhs1 (cond_def));
  tree c2 = gimple_range_ssa_p (gimple_assign_rhs2 (cond_def));

  // Only solve if there is one SSA name in the condition.
  if ((!c1 && !c2) || (c1 && c2))
    return false;

  // Pick up the current values of each part of the condition.
  tree rhs1 = gimple_assign_rhs1 (cond_def);
  tree rhs2 = gimple_assign_rhs2 (cond_def);
  Value_Range cl (TREE_TYPE (rhs1));
  Value_Range cr (TREE_TYPE (rhs2));
  src.get_operand (cl, rhs1);
  src.get_operand (cr, rhs2);

  tree cond_name = c1 ? c1 : c2;
  gimple *def_stmt = SSA_NAME_DEF_STMT (cond_name);

  // Evaluate the value of COND_NAME on the true and false edges, using either
  // the op1 or op2 routines based on its location.
  Value_Range cond_true (type), cond_false (type);
  if (c1)
    {
      if (!hand.op1_range (cond_false, type, m_bool_zero, cr))
	return false;
      if (!hand.op1_range (cond_true, type, m_bool_one, cr))
	return false;
      cond_false.intersect (cl);
      cond_true.intersect (cl);
    }
  else
    {
      if (!hand.op2_range (cond_false, type, m_bool_zero, cl))
	return false;
      if (!hand.op2_range (cond_true, type, m_bool_one, cl))
	return false;
      cond_false.intersect (cr);
      cond_true.intersect (cr);
    }

  unsigned idx;
  if ((idx = tracer.header ("cond_expr evaluation : ")))
    {
      fprintf (dump_file, " range1 = ");
      r1.dump (dump_file);
      fprintf (dump_file, ", range2 = ");
      r1.dump (dump_file);
      fprintf (dump_file, "\n");
    }

   // Now solve for SSA1 or SSA2 if they are in the dependency chain.
   if (ssa1 && in_chain_p (ssa1, cond_name))
    {
      Value_Range tmp1 (TREE_TYPE (ssa1));
      if (compute_operand_range (tmp1, def_stmt, cond_true, ssa1, src))
	r1.intersect (tmp1);
    }
  if (ssa2 && in_chain_p (ssa2, cond_name))
    {
      Value_Range tmp2 (TREE_TYPE (ssa2));
      if (compute_operand_range (tmp2, def_stmt, cond_false, ssa2, src))
	r2.intersect (tmp2);
    }
  if (idx)
    {
      tracer.print (idx, "outgoing: range1 = ");
      r1.dump (dump_file);
      fprintf (dump_file, ", range2 = ");
      r1.dump (dump_file);
      fprintf (dump_file, "\n");
      tracer.trailer (idx, "cond_expr", true, cond_name, cond_true);
    }
  return true;
}

// Dump what is known to GORI computes to listing file F.

void
gori_compute::dump (FILE *f)
{
  gori_map::dump (f);
}

// ------------------------------------------------------------------------
//  GORI iterator.  Although we have bitmap iterators, don't expose that it
//  is currently a bitmap.  Use an export iterator to hide future changes.

// Construct a basic iterator over an export bitmap.

gori_export_iterator::gori_export_iterator (bitmap b)
{
  bm = b;
  if (b)
    bmp_iter_set_init (&bi, b, 1, &y);
}


// Move to the next export bitmap spot.

void
gori_export_iterator::next ()
{
  bmp_iter_next (&bi, &y);
}


// Fetch the name of the next export in the export list.  Return NULL if
// iteration is done.

tree
gori_export_iterator::get_name ()
{
  if (!bm)
    return NULL_TREE;

  while (bmp_iter_set (&bi, &y))
    {
      tree t = ssa_name (y);
      if (t)
	return t;
      next ();
    }
  return NULL_TREE;
}