aboutsummaryrefslogtreecommitdiff
path: root/gcc/gimple-iterator.c
blob: be5171bfc28a6f065274dc4591976c20bac0edc9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
/* Iterator routines for GIMPLE statements.
   Copyright (C) 2007, 2008, 2010 Free Software Foundation, Inc.
   Contributed by Aldy Hernandez  <aldy@quesejoda.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "gimple.h"
#include "tree-flow.h"
#include "value-prof.h"


/* Mark the statement STMT as modified, and update it.  */

static inline void
update_modified_stmt (gimple stmt)
{
  if (!ssa_operands_active ())
    return;
  update_stmt_if_modified (stmt);
}


/* Mark the statements in SEQ as modified, and update them.  */

static void
update_modified_stmts (gimple_seq seq)
{
  gimple_stmt_iterator gsi;

  if (!ssa_operands_active ())
    return;
  for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
    update_stmt_if_modified (gsi_stmt (gsi));
}


/* Set BB to be the basic block for all the statements in the list
   starting at FIRST and LAST.  */

static void
update_bb_for_stmts (gimple_seq_node first, basic_block bb)
{
  gimple_seq_node n;

  for (n = first; n; n = n->next)
    gimple_set_bb (n->stmt, bb);
}


/* Insert the sequence delimited by nodes FIRST and LAST before
   iterator I.  M specifies how to update iterator I after insertion
   (see enum gsi_iterator_update).

   This routine assumes that there is a forward and backward path
   between FIRST and LAST (i.e., they are linked in a doubly-linked
   list).  Additionally, if FIRST == LAST, this routine will properly
   insert a single node.  */

static void
gsi_insert_seq_nodes_before (gimple_stmt_iterator *i,
			     gimple_seq_node first,
			     gimple_seq_node last,
			     enum gsi_iterator_update mode)
{
  basic_block bb;
  gimple_seq_node cur = i->ptr;

  if ((bb = gsi_bb (*i)) != NULL)
    update_bb_for_stmts (first, bb);

  /* Link SEQ before CUR in the sequence.  */
  if (cur)
    {
      first->prev = cur->prev;
      if (first->prev)
	first->prev->next = first;
      else
	gimple_seq_set_first (i->seq, first);
      last->next = cur;
      cur->prev = last;
    }
  else
    {
      gimple_seq_node itlast = gimple_seq_last (i->seq);

      /* If CUR is NULL, we link at the end of the sequence (this case happens
	 when gsi_after_labels is called for a basic block that contains only
	 labels, so it returns an iterator after the end of the block, and
	 we need to insert before it; it might be cleaner to add a flag to the
	 iterator saying whether we are at the start or end of the list).  */
      first->prev = itlast;
      if (itlast)
	itlast->next = first;
      else
	gimple_seq_set_first (i->seq, first);
      gimple_seq_set_last (i->seq, last);
    }

  /* Update the iterator, if requested.  */
  switch (mode)
    {
    case GSI_NEW_STMT:
    case GSI_CONTINUE_LINKING:
      i->ptr = first;
      break;
    case GSI_SAME_STMT:
      break;
    default:
      gcc_unreachable ();
    }
}


/* Inserts the sequence of statements SEQ before the statement pointed
   by iterator I.  MODE indicates what to do with the iterator after
   insertion (see enum gsi_iterator_update).

   This function does not scan for new operands.  It is provided for
   the use of the gimplifier, which manipulates statements for which
   def/use information has not yet been constructed.  Most callers
   should use gsi_insert_seq_before.  */

void
gsi_insert_seq_before_without_update (gimple_stmt_iterator *i, gimple_seq seq,
                                      enum gsi_iterator_update mode)
{
  gimple_seq_node first, last;

  if (seq == NULL)
    return;

  /* Don't allow inserting a sequence into itself.  */
  gcc_assert (seq != i->seq);

  first = gimple_seq_first (seq);
  last = gimple_seq_last (seq);

  gimple_seq_set_first (seq, NULL);
  gimple_seq_set_last (seq, NULL);
  gimple_seq_free (seq);

  /* Empty sequences need no work.  */
  if (!first || !last)
    {
      gcc_assert (first == last);
      return;
    }

  gsi_insert_seq_nodes_before (i, first, last, mode);
}


/* Inserts the sequence of statements SEQ before the statement pointed
   by iterator I.  MODE indicates what to do with the iterator after
   insertion (see enum gsi_iterator_update). Scan the statements in SEQ
   for new operands.  */

void
gsi_insert_seq_before (gimple_stmt_iterator *i, gimple_seq seq,
		       enum gsi_iterator_update mode)
{
  update_modified_stmts (seq);
  gsi_insert_seq_before_without_update (i, seq, mode);
}


/* Insert the sequence delimited by nodes FIRST and LAST after
   iterator I.  M specifies how to update iterator I after insertion
   (see enum gsi_iterator_update).

   This routine assumes that there is a forward and backward path
   between FIRST and LAST (i.e., they are linked in a doubly-linked
   list).  Additionally, if FIRST == LAST, this routine will properly
   insert a single node.  */

static void
gsi_insert_seq_nodes_after (gimple_stmt_iterator *i,
			    gimple_seq_node first,
			    gimple_seq_node last,
			    enum gsi_iterator_update m)
{
  basic_block bb;
  gimple_seq_node cur = i->ptr;

  /* If the iterator is inside a basic block, we need to update the
     basic block information for all the nodes between FIRST and LAST.  */
  if ((bb = gsi_bb (*i)) != NULL)
    update_bb_for_stmts (first, bb);

  /* Link SEQ after CUR.  */
  if (cur)
    {
      last->next = cur->next;
      if (last->next)
	last->next->prev = last;
      else
	gimple_seq_set_last (i->seq, last);
      first->prev = cur;
      cur->next = first;
    }
  else
    {
      gcc_assert (!gimple_seq_last (i->seq));
      gimple_seq_set_first (i->seq, first);
      gimple_seq_set_last (i->seq, last);
    }

  /* Update the iterator, if requested.  */
  switch (m)
    {
    case GSI_NEW_STMT:
      i->ptr = first;
      break;
    case GSI_CONTINUE_LINKING:
      i->ptr = last;
      break;
    case GSI_SAME_STMT:
      gcc_assert (cur);
      break;
    default:
      gcc_unreachable ();
    }
}


/* Links sequence SEQ after the statement pointed-to by iterator I.
   MODE is as in gsi_insert_after.

   This function does not scan for new operands.  It is provided for
   the use of the gimplifier, which manipulates statements for which
   def/use information has not yet been constructed.  Most callers
   should use gsi_insert_seq_after.  */

void
gsi_insert_seq_after_without_update (gimple_stmt_iterator *i, gimple_seq seq,
                                     enum gsi_iterator_update mode)
{
  gimple_seq_node first, last;

  if (seq == NULL)
    return;

  /* Don't allow inserting a sequence into itself.  */
  gcc_assert (seq != i->seq);

  first = gimple_seq_first (seq);
  last = gimple_seq_last (seq);

  gimple_seq_set_first (seq, NULL);
  gimple_seq_set_last (seq, NULL);
  gimple_seq_free (seq);

  /* Empty sequences need no work.  */
  if (!first || !last)
    {
      gcc_assert (first == last);
      return;
    }

  gsi_insert_seq_nodes_after (i, first, last, mode);
}


/* Links sequence SEQ after the statement pointed-to by iterator I.
   MODE is as in gsi_insert_after.  Scan the statements in SEQ
   for new operands.  */

void
gsi_insert_seq_after (gimple_stmt_iterator *i, gimple_seq seq,
		      enum gsi_iterator_update mode)
{
  update_modified_stmts (seq);
  gsi_insert_seq_after_without_update (i, seq, mode);
}


/* Move all statements in the sequence after I to a new sequence.
   Return this new sequence.  */

gimple_seq
gsi_split_seq_after (gimple_stmt_iterator i)
{
  gimple_seq_node cur, next;
  gimple_seq old_seq, new_seq;

  cur = i.ptr;

  /* How can we possibly split after the end, or before the beginning?  */
  gcc_assert (cur && cur->next);
  next = cur->next;

  old_seq = i.seq;
  new_seq = gimple_seq_alloc ();

  gimple_seq_set_first (new_seq, next);
  gimple_seq_set_last (new_seq, gimple_seq_last (old_seq));
  gimple_seq_set_last (old_seq, cur);
  cur->next = NULL;
  next->prev = NULL;

  return new_seq;
}


/* Move all statements in the sequence before I to a new sequence.
   Return this new sequence.  I is set to the head of the new list.  */

gimple_seq
gsi_split_seq_before (gimple_stmt_iterator *i)
{
  gimple_seq_node cur, prev;
  gimple_seq old_seq, new_seq;

  cur = i->ptr;

  /* How can we possibly split after the end?  */
  gcc_assert (cur);
  prev = cur->prev;

  old_seq = i->seq;
  new_seq = gimple_seq_alloc ();
  i->seq = new_seq;

  /* Set the limits on NEW_SEQ.  */
  gimple_seq_set_first (new_seq, cur);
  gimple_seq_set_last (new_seq, gimple_seq_last (old_seq));

  /* Cut OLD_SEQ before I.  */
  gimple_seq_set_last (old_seq, prev);
  cur->prev = NULL;
  if (prev)
    prev->next = NULL;
  else
    gimple_seq_set_first (old_seq, NULL);

  return new_seq;
}


/* Replace the statement pointed-to by GSI to STMT.  If UPDATE_EH_INFO
   is true, the exception handling information of the original
   statement is moved to the new statement.  Assignments must only be
   replaced with assignments to the same LHS.  */

void
gsi_replace (gimple_stmt_iterator *gsi, gimple stmt, bool update_eh_info)
{
  gimple orig_stmt = gsi_stmt (*gsi);

  if (stmt == orig_stmt)
    return;

  gcc_assert (!gimple_has_lhs (orig_stmt)
	      || gimple_get_lhs (orig_stmt) == gimple_get_lhs (stmt));

  gimple_set_location (stmt, gimple_location (orig_stmt));
  gimple_set_bb (stmt, gsi_bb (*gsi));

  /* Preserve EH region information from the original statement, if
     requested by the caller.  */
  if (update_eh_info)
    maybe_clean_or_replace_eh_stmt (orig_stmt, stmt);

  gimple_duplicate_stmt_histograms (cfun, stmt, cfun, orig_stmt);
  gimple_remove_stmt_histograms (cfun, orig_stmt);
  delink_stmt_imm_use (orig_stmt);
  *gsi_stmt_ptr (gsi) = stmt;
  gimple_set_modified (stmt, true);
  update_modified_stmt (stmt);
}


/* Insert statement STMT before the statement pointed-to by iterator I.
   M specifies how to update iterator I after insertion (see enum
   gsi_iterator_update).

   This function does not scan for new operands.  It is provided for
   the use of the gimplifier, which manipulates statements for which
   def/use information has not yet been constructed.  Most callers
   should use gsi_insert_before.  */

void
gsi_insert_before_without_update (gimple_stmt_iterator *i, gimple stmt,
                                  enum gsi_iterator_update m)
{
  gimple_seq_node n;

  n = GGC_NEW (struct gimple_seq_node_d);
  n->prev = n->next = NULL;
  n->stmt = stmt;
  gsi_insert_seq_nodes_before (i, n, n, m);
}

/* Insert statement STMT before the statement pointed-to by iterator I.
   Update STMT's basic block and scan it for new operands.  M
   specifies how to update iterator I after insertion (see enum
   gsi_iterator_update).  */

void
gsi_insert_before (gimple_stmt_iterator *i, gimple stmt,
                   enum gsi_iterator_update m)
{
  update_modified_stmt (stmt);
  gsi_insert_before_without_update (i, stmt, m);
}


/* Insert statement STMT after the statement pointed-to by iterator I.
   M specifies how to update iterator I after insertion (see enum
   gsi_iterator_update).

   This function does not scan for new operands.  It is provided for
   the use of the gimplifier, which manipulates statements for which
   def/use information has not yet been constructed.  Most callers
   should use gsi_insert_after.  */

void
gsi_insert_after_without_update (gimple_stmt_iterator *i, gimple stmt,
                                 enum gsi_iterator_update m)
{
  gimple_seq_node n;

  n = GGC_NEW (struct gimple_seq_node_d);
  n->prev = n->next = NULL;
  n->stmt = stmt;
  gsi_insert_seq_nodes_after (i, n, n, m);
}


/* Insert statement STMT after the statement pointed-to by iterator I.
   Update STMT's basic block and scan it for new operands.  M
   specifies how to update iterator I after insertion (see enum
   gsi_iterator_update).  */

void
gsi_insert_after (gimple_stmt_iterator *i, gimple stmt,
		  enum gsi_iterator_update m)
{
  update_modified_stmt (stmt);
  gsi_insert_after_without_update (i, stmt, m);
}


/* Remove the current stmt from the sequence.  The iterator is updated
   to point to the next statement.

   REMOVE_PERMANENTLY is true when the statement is going to be removed
   from the IL and not reinserted elsewhere.  In that case we remove the
   statement pointed to by iterator I from the EH tables, and free its
   operand caches.  Otherwise we do not modify this information.  */

void
gsi_remove (gimple_stmt_iterator *i, bool remove_permanently)
{
  gimple_seq_node cur, next, prev;
  gimple stmt = gsi_stmt (*i);

  if (gimple_code (stmt) != GIMPLE_PHI)
    insert_debug_temps_for_defs (i);

  /* Free all the data flow information for STMT.  */
  gimple_set_bb (stmt, NULL);
  delink_stmt_imm_use (stmt);
  gimple_set_modified (stmt, true);

  if (remove_permanently)
    {
      remove_stmt_from_eh_lp (stmt);
      gimple_remove_stmt_histograms (cfun, stmt);
    }

  /* Update the iterator and re-wire the links in I->SEQ.  */
  cur = i->ptr;
  next = cur->next;
  prev = cur->prev;

  if (prev)
    prev->next = next;
  else
    gimple_seq_set_first (i->seq, next);

  if (next)
    next->prev = prev;
  else
    gimple_seq_set_last (i->seq, prev);

  i->ptr = next;
}


/* Finds iterator for STMT.  */

gimple_stmt_iterator
gsi_for_stmt (gimple stmt)
{
  gimple_stmt_iterator i;
  basic_block bb = gimple_bb (stmt);

  if (gimple_code (stmt) == GIMPLE_PHI)
    i = gsi_start_phis (bb);
  else
    i = gsi_start_bb (bb);

  for (; !gsi_end_p (i); gsi_next (&i))
    if (gsi_stmt (i) == stmt)
      return i;

  gcc_unreachable ();
}


/* Move the statement at FROM so it comes right after the statement at TO.  */

void
gsi_move_after (gimple_stmt_iterator *from, gimple_stmt_iterator *to)
{
  gimple stmt = gsi_stmt (*from);
  gsi_remove (from, false);

  /* We must have GSI_NEW_STMT here, as gsi_move_after is sometimes used to
     move statements to an empty block.  */
  gsi_insert_after (to, stmt, GSI_NEW_STMT);
}


/* Move the statement at FROM so it comes right before the statement
   at TO.  */

void
gsi_move_before (gimple_stmt_iterator *from, gimple_stmt_iterator *to)
{
  gimple stmt = gsi_stmt (*from);
  gsi_remove (from, false);

  /* For consistency with gsi_move_after, it might be better to have
     GSI_NEW_STMT here; however, that breaks several places that expect
     that TO does not change.  */
  gsi_insert_before (to, stmt, GSI_SAME_STMT);
}


/* Move the statement at FROM to the end of basic block BB.  */

void
gsi_move_to_bb_end (gimple_stmt_iterator *from, basic_block bb)
{
  gimple_stmt_iterator last = gsi_last_bb (bb);
#ifdef ENABLE_CHECKING
  gcc_assert (gsi_bb (last) == bb);
#endif

  /* Have to check gsi_end_p because it could be an empty block.  */
  if (!gsi_end_p (last) && is_ctrl_stmt (gsi_stmt (last)))
    gsi_move_before (from, &last);
  else
    gsi_move_after (from, &last);
}


/* Add STMT to the pending list of edge E.  No actual insertion is
   made until a call to gsi_commit_edge_inserts () is made.  */

void
gsi_insert_on_edge (edge e, gimple stmt)
{
  gimple_seq_add_stmt (&PENDING_STMT (e), stmt);
}

/* Add the sequence of statements SEQ to the pending list of edge E.
   No actual insertion is made until a call to gsi_commit_edge_inserts
   is made.  */

void
gsi_insert_seq_on_edge (edge e, gimple_seq seq)
{
  gimple_seq_add_seq (&PENDING_STMT (e), seq);
}


/* Insert the statement pointed-to by GSI into edge E.  Every attempt
   is made to place the statement in an existing basic block, but
   sometimes that isn't possible.  When it isn't possible, the edge is
   split and the statement is added to the new block.

   In all cases, the returned *GSI points to the correct location.  The
   return value is true if insertion should be done after the location,
   or false if it should be done before the location.  If a new basic block
   has to be created, it is stored in *NEW_BB.  */

static bool
gimple_find_edge_insert_loc (edge e, gimple_stmt_iterator *gsi,
			     basic_block *new_bb)
{
  basic_block dest, src;
  gimple tmp;

  dest = e->dest;

  /* If the destination has one predecessor which has no PHI nodes,
     insert there.  Except for the exit block.

     The requirement for no PHI nodes could be relaxed.  Basically we
     would have to examine the PHIs to prove that none of them used
     the value set by the statement we want to insert on E.  That
     hardly seems worth the effort.  */
 restart:
  if (single_pred_p (dest)
      && gimple_seq_empty_p (phi_nodes (dest))
      && dest != EXIT_BLOCK_PTR)
    {
      *gsi = gsi_start_bb (dest);
      if (gsi_end_p (*gsi))
	return true;

      /* Make sure we insert after any leading labels.  */
      tmp = gsi_stmt (*gsi);
      while (gimple_code (tmp) == GIMPLE_LABEL)
	{
	  gsi_next (gsi);
	  if (gsi_end_p (*gsi))
	    break;
	  tmp = gsi_stmt (*gsi);
	}

      if (gsi_end_p (*gsi))
	{
	  *gsi = gsi_last_bb (dest);
	  return true;
	}
      else
	return false;
    }

  /* If the source has one successor, the edge is not abnormal and
     the last statement does not end a basic block, insert there.
     Except for the entry block.  */
  src = e->src;
  if ((e->flags & EDGE_ABNORMAL) == 0
      && single_succ_p (src)
      && src != ENTRY_BLOCK_PTR)
    {
      *gsi = gsi_last_bb (src);
      if (gsi_end_p (*gsi))
	return true;

      tmp = gsi_stmt (*gsi);
      if (!stmt_ends_bb_p (tmp))
	return true;

      switch (gimple_code (tmp))
	{
	case GIMPLE_RETURN:
	case GIMPLE_RESX:
	  return false;
	default:
	  break;
        }
    }

  /* Otherwise, create a new basic block, and split this edge.  */
  dest = split_edge (e);
  if (new_bb)
    *new_bb = dest;
  e = single_pred_edge (dest);
  goto restart;
}


/* Similar to gsi_insert_on_edge+gsi_commit_edge_inserts.  If a new
   block has to be created, it is returned.  */

basic_block
gsi_insert_on_edge_immediate (edge e, gimple stmt)
{
  gimple_stmt_iterator gsi;
  basic_block new_bb = NULL;

  gcc_assert (!PENDING_STMT (e));

  if (gimple_find_edge_insert_loc (e, &gsi, &new_bb))
    gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
  else
    gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);

  return new_bb;
}

/* Insert STMTS on edge E.  If a new block has to be created, it
   is returned.  */

basic_block
gsi_insert_seq_on_edge_immediate (edge e, gimple_seq stmts)
{
  gimple_stmt_iterator gsi;
  basic_block new_bb = NULL;

  gcc_assert (!PENDING_STMT (e));

  if (gimple_find_edge_insert_loc (e, &gsi, &new_bb))
    gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
  else
    gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);

  return new_bb;
}

/* This routine will commit all pending edge insertions, creating any new
   basic blocks which are necessary.  */

void
gsi_commit_edge_inserts (void)
{
  basic_block bb;
  edge e;
  edge_iterator ei;

  gsi_commit_one_edge_insert (single_succ_edge (ENTRY_BLOCK_PTR), NULL);

  FOR_EACH_BB (bb)
    FOR_EACH_EDGE (e, ei, bb->succs)
      gsi_commit_one_edge_insert (e, NULL);
}


/* Commit insertions pending at edge E. If a new block is created, set NEW_BB
   to this block, otherwise set it to NULL.  */

void
gsi_commit_one_edge_insert (edge e, basic_block *new_bb)
{
  if (new_bb)
    *new_bb = NULL;

  if (PENDING_STMT (e))
    {
      gimple_stmt_iterator gsi;
      gimple_seq seq = PENDING_STMT (e);

      PENDING_STMT (e) = NULL;

      if (gimple_find_edge_insert_loc (e, &gsi, new_bb))
	gsi_insert_seq_after (&gsi, seq, GSI_NEW_STMT);
      else
	gsi_insert_seq_before (&gsi, seq, GSI_NEW_STMT);
    }
}

/* Returns iterator at the start of the list of phi nodes of BB.  */

gimple_stmt_iterator
gsi_start_phis (basic_block bb)
{
  return gsi_start (phi_nodes (bb));
}
/a> 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
/* Conditional constant propagation pass for the GNU compiler.
   Copyright (C) 2000-2019 Free Software Foundation, Inc.
   Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
   Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* Conditional constant propagation (CCP) is based on the SSA
   propagation engine (tree-ssa-propagate.c).  Constant assignments of
   the form VAR = CST are propagated from the assignments into uses of
   VAR, which in turn may generate new constants.  The simulation uses
   a four level lattice to keep track of constant values associated
   with SSA names.  Given an SSA name V_i, it may take one of the
   following values:

	UNINITIALIZED   ->  the initial state of the value.  This value
			    is replaced with a correct initial value
			    the first time the value is used, so the
			    rest of the pass does not need to care about
			    it.  Using this value simplifies initialization
			    of the pass, and prevents us from needlessly
			    scanning statements that are never reached.

	UNDEFINED	->  V_i is a local variable whose definition
			    has not been processed yet.  Therefore we
			    don't yet know if its value is a constant
			    or not.

	CONSTANT	->  V_i has been found to hold a constant
			    value C.

	VARYING		->  V_i cannot take a constant value, or if it
			    does, it is not possible to determine it
			    at compile time.

   The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:

   1- In ccp_visit_stmt, we are interested in assignments whose RHS
      evaluates into a constant and conditional jumps whose predicate
      evaluates into a boolean true or false.  When an assignment of
      the form V_i = CONST is found, V_i's lattice value is set to
      CONSTANT and CONST is associated with it.  This causes the
      propagation engine to add all the SSA edges coming out the
      assignment into the worklists, so that statements that use V_i
      can be visited.

      If the statement is a conditional with a constant predicate, we
      mark the outgoing edges as executable or not executable
      depending on the predicate's value.  This is then used when
      visiting PHI nodes to know when a PHI argument can be ignored.


   2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
      same constant C, then the LHS of the PHI is set to C.  This
      evaluation is known as the "meet operation".  Since one of the
      goals of this evaluation is to optimistically return constant
      values as often as possible, it uses two main short cuts:

      - If an argument is flowing in through a non-executable edge, it
	is ignored.  This is useful in cases like this:

			if (PRED)
			  a_9 = 3;
			else
			  a_10 = 100;
			a_11 = PHI (a_9, a_10)

	If PRED is known to always evaluate to false, then we can
	assume that a_11 will always take its value from a_10, meaning
	that instead of consider it VARYING (a_9 and a_10 have
	different values), we can consider it CONSTANT 100.

      - If an argument has an UNDEFINED value, then it does not affect
	the outcome of the meet operation.  If a variable V_i has an
	UNDEFINED value, it means that either its defining statement
	hasn't been visited yet or V_i has no defining statement, in
	which case the original symbol 'V' is being used
	uninitialized.  Since 'V' is a local variable, the compiler
	may assume any initial value for it.


   After propagation, every variable V_i that ends up with a lattice
   value of CONSTANT will have the associated constant value in the
   array CONST_VAL[i].VALUE.  That is fed into substitute_and_fold for
   final substitution and folding.

   This algorithm uses wide-ints at the max precision of the target.
   This means that, with one uninteresting exception, variables with
   UNSIGNED types never go to VARYING because the bits above the
   precision of the type of the variable are always zero.  The
   uninteresting case is a variable of UNSIGNED type that has the
   maximum precision of the target.  Such variables can go to VARYING,
   but this causes no loss of infomation since these variables will
   never be extended.

   References:

     Constant propagation with conditional branches,
     Wegman and Zadeck, ACM TOPLAS 13(2):181-210.

     Building an Optimizing Compiler,
     Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.

     Advanced Compiler Design and Implementation,
     Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa-propagate.h"
#include "dbgcnt.h"
#include "params.h"
#include "builtins.h"
#include "cfgloop.h"
#include "stor-layout.h"
#include "optabs-query.h"
#include "tree-ssa-ccp.h"
#include "tree-dfa.h"
#include "diagnostic-core.h"
#include "stringpool.h"
#include "attribs.h"
#include "tree-vector-builder.h"

/* Possible lattice values.  */
typedef enum
{
  UNINITIALIZED,
  UNDEFINED,
  CONSTANT,
  VARYING
} ccp_lattice_t;

struct ccp_prop_value_t {
    /* Lattice value.  */
    ccp_lattice_t lattice_val;

    /* Propagated value.  */
    tree value;

    /* Mask that applies to the propagated value during CCP.  For X
       with a CONSTANT lattice value X & ~mask == value & ~mask.  The
       zero bits in the mask cover constant values.  The ones mean no
       information.  */
    widest_int mask;
};

class ccp_propagate : public ssa_propagation_engine
{
 public:
  enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
  enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
};

/* Array of propagated constant values.  After propagation,
   CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I).  If
   the constant is held in an SSA name representing a memory store
   (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
   memory reference used to store (i.e., the LHS of the assignment
   doing the store).  */
static ccp_prop_value_t *const_val;
static unsigned n_const_val;

static void canonicalize_value (ccp_prop_value_t *);
static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);

/* Dump constant propagation value VAL to file OUTF prefixed by PREFIX.  */

static void
dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
{
  switch (val.lattice_val)
    {
    case UNINITIALIZED:
      fprintf (outf, "%sUNINITIALIZED", prefix);
      break;
    case UNDEFINED:
      fprintf (outf, "%sUNDEFINED", prefix);
      break;
    case VARYING:
      fprintf (outf, "%sVARYING", prefix);
      break;
    case CONSTANT:
      if (TREE_CODE (val.value) != INTEGER_CST
	  || val.mask == 0)
	{
	  fprintf (outf, "%sCONSTANT ", prefix);
	  print_generic_expr (outf, val.value, dump_flags);
	}
      else
	{
	  widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
					     val.mask);
	  fprintf (outf, "%sCONSTANT ", prefix);
	  print_hex (cval, outf);
	  fprintf (outf, " (");
	  print_hex (val.mask, outf);
	  fprintf (outf, ")");
	}
      break;
    default:
      gcc_unreachable ();
    }
}


/* Print lattice value VAL to stderr.  */

void debug_lattice_value (ccp_prop_value_t val);

DEBUG_FUNCTION void
debug_lattice_value (ccp_prop_value_t val)
{
  dump_lattice_value (stderr, "", val);
  fprintf (stderr, "\n");
}

/* Extend NONZERO_BITS to a full mask, based on sgn.  */ 

static widest_int
extend_mask (const wide_int &nonzero_bits, signop sgn)
{
  return widest_int::from (nonzero_bits, sgn); 
}

/* Compute a default value for variable VAR and store it in the
   CONST_VAL array.  The following rules are used to get default
   values:

   1- Global and static variables that are declared constant are
      considered CONSTANT.

   2- Any other value is considered UNDEFINED.  This is useful when
      considering PHI nodes.  PHI arguments that are undefined do not
      change the constant value of the PHI node, which allows for more
      constants to be propagated.

   3- Variables defined by statements other than assignments and PHI
      nodes are considered VARYING.

   4- Initial values of variables that are not GIMPLE registers are
      considered VARYING.  */

static ccp_prop_value_t
get_default_value (tree var)
{
  ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
  gimple *stmt;

  stmt = SSA_NAME_DEF_STMT (var);

  if (gimple_nop_p (stmt))
    {
      /* Variables defined by an empty statement are those used
	 before being initialized.  If VAR is a local variable, we
	 can assume initially that it is UNDEFINED, otherwise we must
	 consider it VARYING.  */
      if (!virtual_operand_p (var)
	  && SSA_NAME_VAR (var)
	  && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
	val.lattice_val = UNDEFINED;
      else
	{
	  val.lattice_val = VARYING;
	  val.mask = -1;
	  if (flag_tree_bit_ccp)
	    {
	      wide_int nonzero_bits = get_nonzero_bits (var);
	      if (nonzero_bits != -1)
		{
		  val.lattice_val = CONSTANT;
		  val.value = build_zero_cst (TREE_TYPE (var));
		  val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (var)));
		}
	    }
	}
    }
  else if (is_gimple_assign (stmt))
    {
      tree cst;
      if (gimple_assign_single_p (stmt)
	  && DECL_P (gimple_assign_rhs1 (stmt))
	  && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
	{
	  val.lattice_val = CONSTANT;
	  val.value = cst;
	}
      else
	{
	  /* Any other variable defined by an assignment is considered
	     UNDEFINED.  */
	  val.lattice_val = UNDEFINED;
	}
    }
  else if ((is_gimple_call (stmt)
	    && gimple_call_lhs (stmt) != NULL_TREE)
	   || gimple_code (stmt) == GIMPLE_PHI)
    {
      /* A variable defined by a call or a PHI node is considered
	 UNDEFINED.  */
      val.lattice_val = UNDEFINED;
    }
  else
    {
      /* Otherwise, VAR will never take on a constant value.  */
      val.lattice_val = VARYING;
      val.mask = -1;
    }

  return val;
}


/* Get the constant value associated with variable VAR.  */

static inline ccp_prop_value_t *
get_value (tree var)
{
  ccp_prop_value_t *val;

  if (const_val == NULL
      || SSA_NAME_VERSION (var) >= n_const_val)
    return NULL;

  val = &const_val[SSA_NAME_VERSION (var)];
  if (val->lattice_val == UNINITIALIZED)
    *val = get_default_value (var);

  canonicalize_value (val);

  return val;
}

/* Return the constant tree value associated with VAR.  */

static inline tree
get_constant_value (tree var)
{
  ccp_prop_value_t *val;
  if (TREE_CODE (var) != SSA_NAME)
    {
      if (is_gimple_min_invariant (var))
        return var;
      return NULL_TREE;
    }
  val = get_value (var);
  if (val
      && val->lattice_val == CONSTANT
      && (TREE_CODE (val->value) != INTEGER_CST
	  || val->mask == 0))
    return val->value;
  return NULL_TREE;
}

/* Sets the value associated with VAR to VARYING.  */

static inline void
set_value_varying (tree var)
{
  ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];

  val->lattice_val = VARYING;
  val->value = NULL_TREE;
  val->mask = -1;
}

/* For integer constants, make sure to drop TREE_OVERFLOW.  */

static void
canonicalize_value (ccp_prop_value_t *val)
{
  if (val->lattice_val != CONSTANT)
    return;

  if (TREE_OVERFLOW_P (val->value))
    val->value = drop_tree_overflow (val->value);
}

/* Return whether the lattice transition is valid.  */

static bool
valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
{
  /* Lattice transitions must always be monotonically increasing in
     value.  */
  if (old_val.lattice_val < new_val.lattice_val)
    return true;

  if (old_val.lattice_val != new_val.lattice_val)
    return false;

  if (!old_val.value && !new_val.value)
    return true;

  /* Now both lattice values are CONSTANT.  */

  /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
     when only a single copy edge is executable.  */
  if (TREE_CODE (old_val.value) == SSA_NAME
      && TREE_CODE (new_val.value) == SSA_NAME)
    return true;

  /* Allow transitioning from a constant to a copy.  */
  if (is_gimple_min_invariant (old_val.value)
      && TREE_CODE (new_val.value) == SSA_NAME)
    return true;

  /* Allow transitioning from PHI <&x, not executable> == &x
     to PHI <&x, &y> == common alignment.  */
  if (TREE_CODE (old_val.value) != INTEGER_CST
      && TREE_CODE (new_val.value) == INTEGER_CST)
    return true;

  /* Bit-lattices have to agree in the still valid bits.  */
  if (TREE_CODE (old_val.value) == INTEGER_CST
      && TREE_CODE (new_val.value) == INTEGER_CST)
    return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
	    == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));

  /* Otherwise constant values have to agree.  */
  if (operand_equal_p (old_val.value, new_val.value, 0))
    return true;

  /* At least the kinds and types should agree now.  */
  if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
      || !types_compatible_p (TREE_TYPE (old_val.value),
			      TREE_TYPE (new_val.value)))
    return false;

  /* For floats and !HONOR_NANS allow transitions from (partial) NaN
     to non-NaN.  */
  tree type = TREE_TYPE (new_val.value);
  if (SCALAR_FLOAT_TYPE_P (type)
      && !HONOR_NANS (type))
    {
      if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
	return true;
    }
  else if (VECTOR_FLOAT_TYPE_P (type)
	   && !HONOR_NANS (type))
    {
      unsigned int count
	= tree_vector_builder::binary_encoded_nelts (old_val.value,
						     new_val.value);
      for (unsigned int i = 0; i < count; ++i)
	if (!REAL_VALUE_ISNAN
	       (TREE_REAL_CST (VECTOR_CST_ENCODED_ELT (old_val.value, i)))
	    && !operand_equal_p (VECTOR_CST_ENCODED_ELT (old_val.value, i),
				 VECTOR_CST_ENCODED_ELT (new_val.value, i), 0))
	  return false;
      return true;
    }
  else if (COMPLEX_FLOAT_TYPE_P (type)
	   && !HONOR_NANS (type))
    {
      if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
	  && !operand_equal_p (TREE_REALPART (old_val.value),
			       TREE_REALPART (new_val.value), 0))
	return false;
      if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
	  && !operand_equal_p (TREE_IMAGPART (old_val.value),
			       TREE_IMAGPART (new_val.value), 0))
	return false;
      return true;
    }
  return false;
}

/* Set the value for variable VAR to NEW_VAL.  Return true if the new
   value is different from VAR's previous value.  */

static bool
set_lattice_value (tree var, ccp_prop_value_t *new_val)
{
  /* We can deal with old UNINITIALIZED values just fine here.  */
  ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];

  canonicalize_value (new_val);

  /* We have to be careful to not go up the bitwise lattice
     represented by the mask.  Instead of dropping to VARYING
     use the meet operator to retain a conservative value.
     Missed optimizations like PR65851 makes this necessary.
     It also ensures we converge to a stable lattice solution.  */
  if (old_val->lattice_val != UNINITIALIZED)
    ccp_lattice_meet (new_val, old_val);

  gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));

  /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
     caller that this was a non-transition.  */
  if (old_val->lattice_val != new_val->lattice_val
      || (new_val->lattice_val == CONSTANT
	  && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
	      || (TREE_CODE (new_val->value) == INTEGER_CST
		  && (new_val->mask != old_val->mask
		      || (wi::bit_and_not (wi::to_widest (old_val->value),
					   new_val->mask)
			  != wi::bit_and_not (wi::to_widest (new_val->value),
					      new_val->mask))))
	      || (TREE_CODE (new_val->value) != INTEGER_CST
		  && !operand_equal_p (new_val->value, old_val->value, 0)))))
    {
      /* ???  We would like to delay creation of INTEGER_CSTs from
	 partially constants here.  */

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
	  fprintf (dump_file, ".  Adding SSA edges to worklist.\n");
	}

      *old_val = *new_val;

      gcc_assert (new_val->lattice_val != UNINITIALIZED);
      return true;
    }

  return false;
}

static ccp_prop_value_t get_value_for_expr (tree, bool);
static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
		      signop, int, const widest_int &, const widest_int &,
		      signop, int, const widest_int &, const widest_int &);

/* Return a widest_int that can be used for bitwise simplifications
   from VAL.  */

static widest_int
value_to_wide_int (ccp_prop_value_t val)
{
  if (val.value
      && TREE_CODE (val.value) == INTEGER_CST)
    return wi::to_widest (val.value);

  return 0;
}

/* Return the value for the address expression EXPR based on alignment
   information.  */

static ccp_prop_value_t
get_value_from_alignment (tree expr)
{
  tree type = TREE_TYPE (expr);
  ccp_prop_value_t val;
  unsigned HOST_WIDE_INT bitpos;
  unsigned int align;

  gcc_assert (TREE_CODE (expr) == ADDR_EXPR);

  get_pointer_alignment_1 (expr, &align, &bitpos);
  val.mask = wi::bit_and_not
    (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
     ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
     : -1,
     align / BITS_PER_UNIT - 1);
  val.lattice_val
    = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
  if (val.lattice_val == CONSTANT)
    val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
  else
    val.value = NULL_TREE;

  return val;
}

/* Return the value for the tree operand EXPR.  If FOR_BITS_P is true
   return constant bits extracted from alignment information for
   invariant addresses.  */

static ccp_prop_value_t
get_value_for_expr (tree expr, bool for_bits_p)
{
  ccp_prop_value_t val;

  if (TREE_CODE (expr) == SSA_NAME)
    {
      ccp_prop_value_t *val_ = get_value (expr);
      if (val_)
	val = *val_;
      else
	{
	  val.lattice_val = VARYING;
	  val.value = NULL_TREE;
	  val.mask = -1;
	}
      if (for_bits_p
	  && val.lattice_val == CONSTANT
	  && TREE_CODE (val.value) == ADDR_EXPR)
	val = get_value_from_alignment (val.value);
      /* Fall back to a copy value.  */
      if (!for_bits_p
	  && val.lattice_val == VARYING
	  && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
	{
	  val.lattice_val = CONSTANT;
	  val.value = expr;
	  val.mask = -1;
	}
    }
  else if (is_gimple_min_invariant (expr)
	   && (!for_bits_p || TREE_CODE (expr) == INTEGER_CST))
    {
      val.lattice_val = CONSTANT;
      val.value = expr;
      val.mask = 0;
      canonicalize_value (&val);
    }
  else if (TREE_CODE (expr) == ADDR_EXPR)
    val = get_value_from_alignment (expr);
  else
    {
      val.lattice_val = VARYING;
      val.mask = -1;
      val.value = NULL_TREE;
    }

  if (val.lattice_val == VARYING
      && TYPE_UNSIGNED (TREE_TYPE (expr)))
    val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));

  return val;
}

/* Return the likely CCP lattice value for STMT.

   If STMT has no operands, then return CONSTANT.

   Else if undefinedness of operands of STMT cause its value to be
   undefined, then return UNDEFINED.

   Else if any operands of STMT are constants, then return CONSTANT.

   Else return VARYING.  */

static ccp_lattice_t
likely_value (gimple *stmt)
{
  bool has_constant_operand, has_undefined_operand, all_undefined_operands;
  bool has_nsa_operand;
  tree use;
  ssa_op_iter iter;
  unsigned i;

  enum gimple_code code = gimple_code (stmt);

  /* This function appears to be called only for assignments, calls,
     conditionals, and switches, due to the logic in visit_stmt.  */
  gcc_assert (code == GIMPLE_ASSIGN
              || code == GIMPLE_CALL
              || code == GIMPLE_COND
              || code == GIMPLE_SWITCH);

  /* If the statement has volatile operands, it won't fold to a
     constant value.  */
  if (gimple_has_volatile_ops (stmt))
    return VARYING;

  /* Arrive here for more complex cases.  */
  has_constant_operand = false;
  has_undefined_operand = false;
  all_undefined_operands = true;
  has_nsa_operand = false;
  FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
    {
      ccp_prop_value_t *val = get_value (use);

      if (val && val->lattice_val == UNDEFINED)
	has_undefined_operand = true;
      else
	all_undefined_operands = false;

      if (val && val->lattice_val == CONSTANT)
	has_constant_operand = true;

      if (SSA_NAME_IS_DEFAULT_DEF (use)
	  || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
	has_nsa_operand = true;
    }

  /* There may be constants in regular rhs operands.  For calls we
     have to ignore lhs, fndecl and static chain, otherwise only
     the lhs.  */
  for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
       i < gimple_num_ops (stmt); ++i)
    {
      tree op = gimple_op (stmt, i);
      if (!op || TREE_CODE (op) == SSA_NAME)
	continue;
      if (is_gimple_min_invariant (op))
	has_constant_operand = true;
    }

  if (has_constant_operand)
    all_undefined_operands = false;

  if (has_undefined_operand
      && code == GIMPLE_CALL
      && gimple_call_internal_p (stmt))
    switch (gimple_call_internal_fn (stmt))
      {
	/* These 3 builtins use the first argument just as a magic
	   way how to find out a decl uid.  */
      case IFN_GOMP_SIMD_LANE:
      case IFN_GOMP_SIMD_VF:
      case IFN_GOMP_SIMD_LAST_LANE:
	has_undefined_operand = false;
	break;
      default:
	break;
      }

  /* If the operation combines operands like COMPLEX_EXPR make sure to
     not mark the result UNDEFINED if only one part of the result is
     undefined.  */
  if (has_undefined_operand && all_undefined_operands)
    return UNDEFINED;
  else if (code == GIMPLE_ASSIGN && has_undefined_operand)
    {
      switch (gimple_assign_rhs_code (stmt))
	{
	/* Unary operators are handled with all_undefined_operands.  */
	case PLUS_EXPR:
	case MINUS_EXPR:
	case POINTER_PLUS_EXPR:
	case BIT_XOR_EXPR:
	  /* Not MIN_EXPR, MAX_EXPR.  One VARYING operand may be selected.
	     Not bitwise operators, one VARYING operand may specify the
	     result completely.
	     Not logical operators for the same reason, apart from XOR.
	     Not COMPLEX_EXPR as one VARYING operand makes the result partly
	     not UNDEFINED.  Not *DIV_EXPR, comparisons and shifts because
	     the undefined operand may be promoted.  */
	  return UNDEFINED;

	case ADDR_EXPR:
	  /* If any part of an address is UNDEFINED, like the index
	     of an ARRAY_EXPR, then treat the result as UNDEFINED.  */
	  return UNDEFINED;

	default:
	  ;
	}
    }
  /* If there was an UNDEFINED operand but the result may be not UNDEFINED
     fall back to CONSTANT.  During iteration UNDEFINED may still drop
     to CONSTANT.  */
  if (has_undefined_operand)
    return CONSTANT;

  /* We do not consider virtual operands here -- load from read-only
     memory may have only VARYING virtual operands, but still be
     constant.  Also we can combine the stmt with definitions from
     operands whose definitions are not simulated again.  */
  if (has_constant_operand
      || has_nsa_operand
      || gimple_references_memory_p (stmt))
    return CONSTANT;

  return VARYING;
}

/* Returns true if STMT cannot be constant.  */

static bool
surely_varying_stmt_p (gimple *stmt)
{
  /* If the statement has operands that we cannot handle, it cannot be
     constant.  */
  if (gimple_has_volatile_ops (stmt))
    return true;

  /* If it is a call and does not return a value or is not a
     builtin and not an indirect call or a call to function with
     assume_aligned/alloc_align attribute, it is varying.  */
  if (is_gimple_call (stmt))
    {
      tree fndecl, fntype = gimple_call_fntype (stmt);
      if (!gimple_call_lhs (stmt)
	  || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
	      && !fndecl_built_in_p (fndecl)
	      && !lookup_attribute ("assume_aligned",
				    TYPE_ATTRIBUTES (fntype))
	      && !lookup_attribute ("alloc_align",
				    TYPE_ATTRIBUTES (fntype))))
	return true;
    }

  /* Any other store operation is not interesting.  */
  else if (gimple_vdef (stmt))
    return true;

  /* Anything other than assignments and conditional jumps are not
     interesting for CCP.  */
  if (gimple_code (stmt) != GIMPLE_ASSIGN
      && gimple_code (stmt) != GIMPLE_COND
      && gimple_code (stmt) != GIMPLE_SWITCH
      && gimple_code (stmt) != GIMPLE_CALL)
    return true;

  return false;
}

/* Initialize local data structures for CCP.  */

static void
ccp_initialize (void)
{
  basic_block bb;

  n_const_val = num_ssa_names;
  const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);

  /* Initialize simulation flags for PHI nodes and statements.  */
  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple_stmt_iterator i;

      for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
        {
	  gimple *stmt = gsi_stmt (i);
	  bool is_varying;

	  /* If the statement is a control insn, then we do not
	     want to avoid simulating the statement once.  Failure
	     to do so means that those edges will never get added.  */
	  if (stmt_ends_bb_p (stmt))
	    is_varying = false;
	  else
	    is_varying = surely_varying_stmt_p (stmt);

	  if (is_varying)
	    {
	      tree def;
	      ssa_op_iter iter;

	      /* If the statement will not produce a constant, mark
		 all its outputs VARYING.  */
	      FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
		set_value_varying (def);
	    }
          prop_set_simulate_again (stmt, !is_varying);
	}
    }

  /* Now process PHI nodes.  We never clear the simulate_again flag on
     phi nodes, since we do not know which edges are executable yet,
     except for phi nodes for virtual operands when we do not do store ccp.  */
  FOR_EACH_BB_FN (bb, cfun)
    {
      gphi_iterator i;

      for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
        {
          gphi *phi = i.phi ();

	  if (virtual_operand_p (gimple_phi_result (phi)))
            prop_set_simulate_again (phi, false);
	  else
            prop_set_simulate_again (phi, true);
	}
    }
}

/* Debug count support. Reset the values of ssa names
   VARYING when the total number ssa names analyzed is
   beyond the debug count specified.  */

static void
do_dbg_cnt (void)
{
  unsigned i;
  for (i = 0; i < num_ssa_names; i++)
    {
      if (!dbg_cnt (ccp))
        {
          const_val[i].lattice_val = VARYING;
	  const_val[i].mask = -1;
          const_val[i].value = NULL_TREE;
        }
    }
}


/* We want to provide our own GET_VALUE and FOLD_STMT virtual methods.  */
class ccp_folder : public substitute_and_fold_engine
{
 public:
  tree get_value (tree) FINAL OVERRIDE;
  bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
};

/* This method just wraps GET_CONSTANT_VALUE for now.  Over time
   naked calls to GET_CONSTANT_VALUE should be eliminated in favor
   of calling member functions.  */

tree
ccp_folder::get_value (tree op)
{
  return get_constant_value (op);
}

/* Do final substitution of propagated values, cleanup the flowgraph and
   free allocated storage.  If NONZERO_P, record nonzero bits.

   Return TRUE when something was optimized.  */

static bool
ccp_finalize (bool nonzero_p) 
{
  bool something_changed;
  unsigned i;
  tree name;

  do_dbg_cnt ();

  /* Derive alignment and misalignment information from partially
     constant pointers in the lattice or nonzero bits from partially
     constant integers.  */
  FOR_EACH_SSA_NAME (i, name, cfun)
    {
      ccp_prop_value_t *val;
      unsigned int tem, align;

      if (!POINTER_TYPE_P (TREE_TYPE (name))
	  && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
	      /* Don't record nonzero bits before IPA to avoid
		 using too much memory.  */
	      || !nonzero_p))
	continue;

      val = get_value (name);
      if (val->lattice_val != CONSTANT
	  || TREE_CODE (val->value) != INTEGER_CST
	  || val->mask == 0)
	continue;

      if (POINTER_TYPE_P (TREE_TYPE (name)))
	{
	  /* Trailing mask bits specify the alignment, trailing value
	     bits the misalignment.  */
	  tem = val->mask.to_uhwi ();
	  align = least_bit_hwi (tem);
	  if (align > 1)
	    set_ptr_info_alignment (get_ptr_info (name), align,
				    (TREE_INT_CST_LOW (val->value)
				     & (align - 1)));
	}
      else
	{
	  unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
	  wide_int nonzero_bits
	    = (wide_int::from (val->mask, precision, UNSIGNED)
	       | wi::to_wide (val->value));
	  nonzero_bits &= get_nonzero_bits (name);
	  set_nonzero_bits (name, nonzero_bits);
	}
    }

  /* Perform substitutions based on the known constant values.  */
  class ccp_folder ccp_folder;
  something_changed = ccp_folder.substitute_and_fold ();

  free (const_val);
  const_val = NULL;
  return something_changed;
}


/* Compute the meet operator between *VAL1 and *VAL2.  Store the result
   in VAL1.

   		any  M UNDEFINED   = any
		any  M VARYING     = VARYING
		Ci   M Cj	   = Ci		if (i == j)
		Ci   M Cj	   = VARYING	if (i != j)
   */

static void
ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
{
  if (val1->lattice_val == UNDEFINED
      /* For UNDEFINED M SSA we can't always SSA because its definition
         may not dominate the PHI node.  Doing optimistic copy propagation
	 also causes a lot of gcc.dg/uninit-pred*.c FAILs.  */
      && (val2->lattice_val != CONSTANT
	  || TREE_CODE (val2->value) != SSA_NAME))
    {
      /* UNDEFINED M any = any   */
      *val1 = *val2;
    }
  else if (val2->lattice_val == UNDEFINED
	   /* See above.  */
	   && (val1->lattice_val != CONSTANT
	       || TREE_CODE (val1->value) != SSA_NAME))
    {
      /* any M UNDEFINED = any
         Nothing to do.  VAL1 already contains the value we want.  */
      ;
    }
  else if (val1->lattice_val == VARYING
           || val2->lattice_val == VARYING)
    {
      /* any M VARYING = VARYING.  */
      val1->lattice_val = VARYING;
      val1->mask = -1;
      val1->value = NULL_TREE;
    }
  else if (val1->lattice_val == CONSTANT
	   && val2->lattice_val == CONSTANT
	   && TREE_CODE (val1->value) == INTEGER_CST
	   && TREE_CODE (val2->value) == INTEGER_CST)
    {
      /* Ci M Cj = Ci		if (i == j)
	 Ci M Cj = VARYING	if (i != j)

         For INTEGER_CSTs mask unequal bits.  If no equal bits remain,
	 drop to varying.  */
      val1->mask = (val1->mask | val2->mask
		    | (wi::to_widest (val1->value)
		       ^ wi::to_widest (val2->value)));
      if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
	{
	  val1->lattice_val = VARYING;
	  val1->value = NULL_TREE;
	}
    }
  else if (val1->lattice_val == CONSTANT
	   && val2->lattice_val == CONSTANT
	   && operand_equal_p (val1->value, val2->value, 0))
    {
      /* Ci M Cj = Ci		if (i == j)
	 Ci M Cj = VARYING	if (i != j)

         VAL1 already contains the value we want for equivalent values.  */
    }
  else if (val1->lattice_val == CONSTANT
	   && val2->lattice_val == CONSTANT
	   && (TREE_CODE (val1->value) == ADDR_EXPR
	       || TREE_CODE (val2->value) == ADDR_EXPR))
    {
      /* When not equal addresses are involved try meeting for
	 alignment.  */
      ccp_prop_value_t tem = *val2;
      if (TREE_CODE (val1->value) == ADDR_EXPR)
	*val1 = get_value_for_expr (val1->value, true);
      if (TREE_CODE (val2->value) == ADDR_EXPR)
	tem = get_value_for_expr (val2->value, true);
      ccp_lattice_meet (val1, &tem);
    }
  else
    {
      /* Any other combination is VARYING.  */
      val1->lattice_val = VARYING;
      val1->mask = -1;
      val1->value = NULL_TREE;
    }
}


/* Loop through the PHI_NODE's parameters for BLOCK and compare their
   lattice values to determine PHI_NODE's lattice value.  The value of a
   PHI node is determined calling ccp_lattice_meet with all the arguments
   of the PHI node that are incoming via executable edges.  */

enum ssa_prop_result
ccp_propagate::visit_phi (gphi *phi)
{
  unsigned i;
  ccp_prop_value_t new_val;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nVisiting PHI node: ");
      print_gimple_stmt (dump_file, phi, 0, dump_flags);
    }

  new_val.lattice_val = UNDEFINED;
  new_val.value = NULL_TREE;
  new_val.mask = 0;

  bool first = true;
  bool non_exec_edge = false;
  for (i = 0; i < gimple_phi_num_args (phi); i++)
    {
      /* Compute the meet operator over all the PHI arguments flowing
	 through executable edges.  */
      edge e = gimple_phi_arg_edge (phi, i);

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file,
	      "\tArgument #%d (%d -> %d %sexecutable)\n",
	      i, e->src->index, e->dest->index,
	      (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
	}

      /* If the incoming edge is executable, Compute the meet operator for
	 the existing value of the PHI node and the current PHI argument.  */
      if (e->flags & EDGE_EXECUTABLE)
	{
	  tree arg = gimple_phi_arg (phi, i)->def;
	  ccp_prop_value_t arg_val = get_value_for_expr (arg, false);

	  if (first)
	    {
	      new_val = arg_val;
	      first = false;
	    }
	  else
	    ccp_lattice_meet (&new_val, &arg_val);

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "\t");
	      print_generic_expr (dump_file, arg, dump_flags);
	      dump_lattice_value (dump_file, "\tValue: ", arg_val);
	      fprintf (dump_file, "\n");
	    }

	  if (new_val.lattice_val == VARYING)
	    break;
	}
      else
	non_exec_edge = true;
    }

  /* In case there were non-executable edges and the value is a copy
     make sure its definition dominates the PHI node.  */
  if (non_exec_edge
      && new_val.lattice_val == CONSTANT
      && TREE_CODE (new_val.value) == SSA_NAME
      && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
      && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
			   gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
    {
      new_val.lattice_val = VARYING;
      new_val.value = NULL_TREE;
      new_val.mask = -1;
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      dump_lattice_value (dump_file, "\n    PHI node value: ", new_val);
      fprintf (dump_file, "\n\n");
    }

  /* Make the transition to the new value.  */
  if (set_lattice_value (gimple_phi_result (phi), &new_val))
    {
      if (new_val.lattice_val == VARYING)
	return SSA_PROP_VARYING;
      else
	return SSA_PROP_INTERESTING;
    }
  else
    return SSA_PROP_NOT_INTERESTING;
}

/* Return the constant value for OP or OP otherwise.  */

static tree
valueize_op (tree op)
{
  if (TREE_CODE (op) == SSA_NAME)
    {
      tree tem = get_constant_value (op);
      if (tem)
	return tem;
    }
  return op;
}

/* Return the constant value for OP, but signal to not follow SSA
   edges if the definition may be simulated again.  */

static tree
valueize_op_1 (tree op)
{
  if (TREE_CODE (op) == SSA_NAME)
    {
      /* If the definition may be simulated again we cannot follow
         this SSA edge as the SSA propagator does not necessarily
	 re-visit the use.  */
      gimple *def_stmt = SSA_NAME_DEF_STMT (op);
      if (!gimple_nop_p (def_stmt)
	  && prop_simulate_again_p (def_stmt))
	return NULL_TREE;
      tree tem = get_constant_value (op);
      if (tem)
	return tem;
    }
  return op;
}

/* CCP specific front-end to the non-destructive constant folding
   routines.

   Attempt to simplify the RHS of STMT knowing that one or more
   operands are constants.

   If simplification is possible, return the simplified RHS,
   otherwise return the original RHS or NULL_TREE.  */

static tree
ccp_fold (gimple *stmt)
{
  location_t loc = gimple_location (stmt);
  switch (gimple_code (stmt))
    {
    case GIMPLE_COND:
      {
        /* Handle comparison operators that can appear in GIMPLE form.  */
        tree op0 = valueize_op (gimple_cond_lhs (stmt));
        tree op1 = valueize_op (gimple_cond_rhs (stmt));
        enum tree_code code = gimple_cond_code (stmt);
        return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
      }

    case GIMPLE_SWITCH:
      {
	/* Return the constant switch index.  */
        return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
      }

    case GIMPLE_ASSIGN:
    case GIMPLE_CALL:
      return gimple_fold_stmt_to_constant_1 (stmt,
					     valueize_op, valueize_op_1);

    default:
      gcc_unreachable ();
    }
}

/* Apply the operation CODE in type TYPE to the value, mask pair
   RVAL and RMASK representing a value of type RTYPE and set
   the value, mask pair *VAL and *MASK to the result.  */

void
bit_value_unop (enum tree_code code, signop type_sgn, int type_precision, 
		widest_int *val, widest_int *mask,
		signop rtype_sgn, int rtype_precision,
		const widest_int &rval, const widest_int &rmask)
{
  switch (code)
    {
    case BIT_NOT_EXPR:
      *mask = rmask;
      *val = ~rval;
      break;

    case NEGATE_EXPR:
      {
	widest_int temv, temm;
	/* Return ~rval + 1.  */
	bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
			type_sgn, type_precision, rval, rmask);
	bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
			 type_sgn, type_precision, temv, temm,
			 type_sgn, type_precision, 1, 0);
	break;
      }

    CASE_CONVERT:
      {
	/* First extend mask and value according to the original type.  */
	*mask = wi::ext (rmask, rtype_precision, rtype_sgn);
	*val = wi::ext (rval, rtype_precision, rtype_sgn);

	/* Then extend mask and value according to the target type.  */
	*mask = wi::ext (*mask, type_precision, type_sgn);
	*val = wi::ext (*val, type_precision, type_sgn);
	break;
      }

    default:
      *mask = -1;
      break;
    }
}

/* Apply the operation CODE in type TYPE to the value, mask pairs
   R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
   and R2TYPE and set the value, mask pair *VAL and *MASK to the result.  */

void
bit_value_binop (enum tree_code code, signop sgn, int width, 
		 widest_int *val, widest_int *mask,
		 signop r1type_sgn, int r1type_precision,
		 const widest_int &r1val, const widest_int &r1mask,
		 signop r2type_sgn, int r2type_precision,
		 const widest_int &r2val, const widest_int &r2mask)
{
  bool swap_p = false;

  /* Assume we'll get a constant result.  Use an initial non varying
     value, we fall back to varying in the end if necessary.  */
  *mask = -1;

  switch (code)
    {
    case BIT_AND_EXPR:
      /* The mask is constant where there is a known not
	 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
      *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
      *val = r1val & r2val;
      break;

    case BIT_IOR_EXPR:
      /* The mask is constant where there is a known
	 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)).  */
      *mask = wi::bit_and_not (r1mask | r2mask,
			       wi::bit_and_not (r1val, r1mask)
			       | wi::bit_and_not (r2val, r2mask));
      *val = r1val | r2val;
      break;

    case BIT_XOR_EXPR:
      /* m1 | m2  */
      *mask = r1mask | r2mask;
      *val = r1val ^ r2val;
      break;

    case LROTATE_EXPR:
    case RROTATE_EXPR:
      if (r2mask == 0)
	{
	  widest_int shift = r2val;
	  if (shift == 0)
	    {
	      *mask = r1mask;
	      *val = r1val;
	    }
	  else
	    {
	      if (wi::neg_p (shift))
		{
		  shift = -shift;
		  if (code == RROTATE_EXPR)
		    code = LROTATE_EXPR;
		  else
		    code = RROTATE_EXPR;
		}
	      if (code == RROTATE_EXPR)
		{
		  *mask = wi::rrotate (r1mask, shift, width);
		  *val = wi::rrotate (r1val, shift, width);
		}
	      else
		{
		  *mask = wi::lrotate (r1mask, shift, width);
		  *val = wi::lrotate (r1val, shift, width);
		}
	    }
	}
      break;

    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
      /* ???  We can handle partially known shift counts if we know
	 its sign.  That way we can tell that (x << (y | 8)) & 255
	 is zero.  */
      if (r2mask == 0)
	{
	  widest_int shift = r2val;
	  if (shift == 0)
	    {
	      *mask = r1mask;
	      *val = r1val;
	    }
	  else
	    {
	      if (wi::neg_p (shift))
		{
		  shift = -shift;
		  if (code == RSHIFT_EXPR)
		    code = LSHIFT_EXPR;
		  else
		    code = RSHIFT_EXPR;
		}
	      if (code == RSHIFT_EXPR)
		{
		  *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
		  *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
		}
	      else
		{
		  *mask = wi::ext (r1mask << shift, width, sgn);
		  *val = wi::ext (r1val << shift, width, sgn);
		}
	    }
	}
      break;

    case PLUS_EXPR:
    case POINTER_PLUS_EXPR:
      {
	/* Do the addition with unknown bits set to zero, to give carry-ins of
	   zero wherever possible.  */
	widest_int lo = (wi::bit_and_not (r1val, r1mask)
			 + wi::bit_and_not (r2val, r2mask));
	lo = wi::ext (lo, width, sgn);
	/* Do the addition with unknown bits set to one, to give carry-ins of
	   one wherever possible.  */
	widest_int hi = (r1val | r1mask) + (r2val | r2mask);
	hi = wi::ext (hi, width, sgn);
	/* Each bit in the result is known if (a) the corresponding bits in
	   both inputs are known, and (b) the carry-in to that bit position
	   is known.  We can check condition (b) by seeing if we got the same
	   result with minimised carries as with maximised carries.  */
	*mask = r1mask | r2mask | (lo ^ hi);
	*mask = wi::ext (*mask, width, sgn);
	/* It shouldn't matter whether we choose lo or hi here.  */
	*val = lo;
	break;
      }

    case MINUS_EXPR:
      {
	widest_int temv, temm;
	bit_value_unop (NEGATE_EXPR, r2type_sgn, r2type_precision, &temv, &temm,
			  r2type_sgn, r2type_precision, r2val, r2mask);
	bit_value_binop (PLUS_EXPR, sgn, width, val, mask,
			 r1type_sgn, r1type_precision, r1val, r1mask,
			 r2type_sgn, r2type_precision, temv, temm);
	break;
      }

    case MULT_EXPR:
      {
	/* Just track trailing zeros in both operands and transfer
	   them to the other.  */
	int r1tz = wi::ctz (r1val | r1mask);
	int r2tz = wi::ctz (r2val | r2mask);
	if (r1tz + r2tz >= width)
	  {
	    *mask = 0;
	    *val = 0;
	  }
	else if (r1tz + r2tz > 0)
	  {
	    *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
			     width, sgn);
	    *val = 0;
	  }
	break;
      }

    case EQ_EXPR:
    case NE_EXPR:
      {
	widest_int m = r1mask | r2mask;
	if (wi::bit_and_not (r1val, m) != wi::bit_and_not (r2val, m))
	  {
	    *mask = 0;
	    *val = ((code == EQ_EXPR) ? 0 : 1);
	  }
	else
	  {
	    /* We know the result of a comparison is always one or zero.  */
	    *mask = 1;
	    *val = 0;
	  }
	break;
      }

    case GE_EXPR:
    case GT_EXPR:
      swap_p = true;
      code = swap_tree_comparison (code);
      /* Fall through.  */
    case LT_EXPR:
    case LE_EXPR:
      {
	int minmax, maxmin;

	const widest_int &o1val = swap_p ? r2val : r1val;
	const widest_int &o1mask = swap_p ? r2mask : r1mask;
	const widest_int &o2val = swap_p ? r1val : r2val;
	const widest_int &o2mask = swap_p ? r1mask : r2mask;

	/* If the most significant bits are not known we know nothing.  */
	if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
	  break;

	/* For comparisons the signedness is in the comparison operands.  */
	sgn = r1type_sgn;

	/* If we know the most significant bits we know the values
	   value ranges by means of treating varying bits as zero
	   or one.  Do a cross comparison of the max/min pairs.  */
	maxmin = wi::cmp (o1val | o1mask,
			  wi::bit_and_not (o2val, o2mask), sgn);
	minmax = wi::cmp (wi::bit_and_not (o1val, o1mask),
			  o2val | o2mask, sgn);
	if (maxmin < 0)  /* o1 is less than o2.  */
	  {
	    *mask = 0;
	    *val = 1;
	  }
	else if (minmax > 0)  /* o1 is not less or equal to o2.  */
	  {
	    *mask = 0;
	    *val = 0;
	  }
	else if (maxmin == minmax)  /* o1 and o2 are equal.  */
	  {
	    /* This probably should never happen as we'd have
	       folded the thing during fully constant value folding.  */
	    *mask = 0;
	    *val = (code == LE_EXPR ? 1 : 0);
	  }
	else
	  {
	    /* We know the result of a comparison is always one or zero.  */
	    *mask = 1;
	    *val = 0;
	  }
	break;
      }

    default:;
    }
}

/* Return the propagation value when applying the operation CODE to
   the value RHS yielding type TYPE.  */

static ccp_prop_value_t
bit_value_unop (enum tree_code code, tree type, tree rhs)
{
  ccp_prop_value_t rval = get_value_for_expr (rhs, true);
  widest_int value, mask;
  ccp_prop_value_t val;

  if (rval.lattice_val == UNDEFINED)
    return rval;

  gcc_assert ((rval.lattice_val == CONSTANT
	       && TREE_CODE (rval.value) == INTEGER_CST)
	      || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
  bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
		  TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
		  value_to_wide_int (rval), rval.mask);
  if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
    {
      val.lattice_val = CONSTANT;
      val.mask = mask;
      /* ???  Delay building trees here.  */
      val.value = wide_int_to_tree (type, value);
    }
  else
    {
      val.lattice_val = VARYING;
      val.value = NULL_TREE;
      val.mask = -1;
    }
  return val;
}

/* Return the propagation value when applying the operation CODE to
   the values RHS1 and RHS2 yielding type TYPE.  */

static ccp_prop_value_t
bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
{
  ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
  ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
  widest_int value, mask;
  ccp_prop_value_t val;

  if (r1val.lattice_val == UNDEFINED
      || r2val.lattice_val == UNDEFINED)
    {
      val.lattice_val = VARYING;
      val.value = NULL_TREE;
      val.mask = -1;
      return val;
    }

  gcc_assert ((r1val.lattice_val == CONSTANT
	       && TREE_CODE (r1val.value) == INTEGER_CST)
	      || wi::sext (r1val.mask,
			   TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
  gcc_assert ((r2val.lattice_val == CONSTANT
	       && TREE_CODE (r2val.value) == INTEGER_CST)
	      || wi::sext (r2val.mask,
			   TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
  bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
		   TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
		   value_to_wide_int (r1val), r1val.mask,
		   TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
		   value_to_wide_int (r2val), r2val.mask);

  if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
    {
      val.lattice_val = CONSTANT;
      val.mask = mask;
      /* ???  Delay building trees here.  */
      val.value = wide_int_to_tree (type, value);
    }
  else
    {
      val.lattice_val = VARYING;
      val.value = NULL_TREE;
      val.mask = -1;
    }
  return val;
}

/* Return the propagation value for __builtin_assume_aligned
   and functions with assume_aligned or alloc_aligned attribute.
   For __builtin_assume_aligned, ATTR is NULL_TREE,
   for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
   is false, for alloc_aligned attribute ATTR is non-NULL and
   ALLOC_ALIGNED is true.  */

static ccp_prop_value_t
bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
			  bool alloc_aligned)
{
  tree align, misalign = NULL_TREE, type;
  unsigned HOST_WIDE_INT aligni, misaligni = 0;
  ccp_prop_value_t alignval;
  widest_int value, mask;
  ccp_prop_value_t val;

  if (attr == NULL_TREE)
    {
      tree ptr = gimple_call_arg (stmt, 0);
      type = TREE_TYPE (ptr);
      ptrval = get_value_for_expr (ptr, true);
    }
  else
    {
      tree lhs = gimple_call_lhs (stmt);
      type = TREE_TYPE (lhs);
    }

  if (ptrval.lattice_val == UNDEFINED)
    return ptrval;
  gcc_assert ((ptrval.lattice_val == CONSTANT
	       && TREE_CODE (ptrval.value) == INTEGER_CST)
	      || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
  if (attr == NULL_TREE)
    {
      /* Get aligni and misaligni from __builtin_assume_aligned.  */
      align = gimple_call_arg (stmt, 1);
      if (!tree_fits_uhwi_p (align))
	return ptrval;
      aligni = tree_to_uhwi (align);
      if (gimple_call_num_args (stmt) > 2)
	{
	  misalign = gimple_call_arg (stmt, 2);
	  if (!tree_fits_uhwi_p (misalign))
	    return ptrval;
	  misaligni = tree_to_uhwi (misalign);
	}
    }
  else
    {
      /* Get aligni and misaligni from assume_aligned or
	 alloc_align attributes.  */
      if (TREE_VALUE (attr) == NULL_TREE)
	return ptrval;
      attr = TREE_VALUE (attr);
      align = TREE_VALUE (attr);
      if (!tree_fits_uhwi_p (align))
	return ptrval;
      aligni = tree_to_uhwi (align);
      if (alloc_aligned)
	{
	  if (aligni == 0 || aligni > gimple_call_num_args (stmt))
	    return ptrval;
	  align = gimple_call_arg (stmt, aligni - 1);
	  if (!tree_fits_uhwi_p (align))
	    return ptrval;
	  aligni = tree_to_uhwi (align);
	}
      else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
	{
	  misalign = TREE_VALUE (TREE_CHAIN (attr));
	  if (!tree_fits_uhwi_p (misalign))
	    return ptrval;
	  misaligni = tree_to_uhwi (misalign);
	}
    }
  if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
    return ptrval;

  align = build_int_cst_type (type, -aligni);
  alignval = get_value_for_expr (align, true);
  bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
		   TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
		   TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);

  if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
    {
      val.lattice_val = CONSTANT;
      val.mask = mask;
      gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
      gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
      value |= misaligni;
      /* ???  Delay building trees here.  */
      val.value = wide_int_to_tree (type, value);
    }
  else
    {
      val.lattice_val = VARYING;
      val.value = NULL_TREE;
      val.mask = -1;
    }
  return val;
}

/* Evaluate statement STMT.
   Valid only for assignments, calls, conditionals, and switches. */

static ccp_prop_value_t
evaluate_stmt (gimple *stmt)
{
  ccp_prop_value_t val;
  tree simplified = NULL_TREE;
  ccp_lattice_t likelyvalue = likely_value (stmt);
  bool is_constant = false;
  unsigned int align;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "which is likely ");
      switch (likelyvalue)
	{
	case CONSTANT:
	  fprintf (dump_file, "CONSTANT");
	  break;
	case UNDEFINED:
	  fprintf (dump_file, "UNDEFINED");
	  break;
	case VARYING:
	  fprintf (dump_file, "VARYING");
	  break;
	default:;
	}
      fprintf (dump_file, "\n");
    }

  /* If the statement is likely to have a CONSTANT result, then try
     to fold the statement to determine the constant value.  */
  /* FIXME.  This is the only place that we call ccp_fold.
     Since likely_value never returns CONSTANT for calls, we will
     not attempt to fold them, including builtins that may profit.  */
  if (likelyvalue == CONSTANT)
    {
      fold_defer_overflow_warnings ();
      simplified = ccp_fold (stmt);
      if (simplified
	  && TREE_CODE (simplified) == SSA_NAME)
	{
	  /* We may not use values of something that may be simulated again,
	     see valueize_op_1.  */
	  if (SSA_NAME_IS_DEFAULT_DEF (simplified)
	      || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified)))
	    {
	      ccp_prop_value_t *val = get_value (simplified);
	      if (val && val->lattice_val != VARYING)
		{
		  fold_undefer_overflow_warnings (true, stmt, 0);
		  return *val;
		}
	    }
	  else
	    /* We may also not place a non-valueized copy in the lattice
	       as that might become stale if we never re-visit this stmt.  */
	    simplified = NULL_TREE;
	}
      is_constant = simplified && is_gimple_min_invariant (simplified);
      fold_undefer_overflow_warnings (is_constant, stmt, 0);
      if (is_constant)
	{
	  /* The statement produced a constant value.  */
	  val.lattice_val = CONSTANT;
	  val.value = simplified;
	  val.mask = 0;
	  return val;
	}
    }
  /* If the statement is likely to have a VARYING result, then do not
     bother folding the statement.  */
  else if (likelyvalue == VARYING)
    {
      enum gimple_code code = gimple_code (stmt);
      if (code == GIMPLE_ASSIGN)
        {
          enum tree_code subcode = gimple_assign_rhs_code (stmt);

          /* Other cases cannot satisfy is_gimple_min_invariant
             without folding.  */
          if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
            simplified = gimple_assign_rhs1 (stmt);
        }
      else if (code == GIMPLE_SWITCH)
        simplified = gimple_switch_index (as_a <gswitch *> (stmt));
      else
	/* These cannot satisfy is_gimple_min_invariant without folding.  */
	gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
      is_constant = simplified && is_gimple_min_invariant (simplified);
      if (is_constant)
	{
	  /* The statement produced a constant value.  */
	  val.lattice_val = CONSTANT;
	  val.value = simplified;
	  val.mask = 0;
	}
    }
  /* If the statement result is likely UNDEFINED, make it so.  */
  else if (likelyvalue == UNDEFINED)
    {
      val.lattice_val = UNDEFINED;
      val.value = NULL_TREE;
      val.mask = 0;
      return val;
    }

  /* Resort to simplification for bitwise tracking.  */
  if (flag_tree_bit_ccp
      && (likelyvalue == CONSTANT || is_gimple_call (stmt)
	  || (gimple_assign_single_p (stmt)
	      && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
      && !is_constant)
    {
      enum gimple_code code = gimple_code (stmt);
      val.lattice_val = VARYING;
      val.value = NULL_TREE;
      val.mask = -1;
      if (code == GIMPLE_ASSIGN)
	{
	  enum tree_code subcode = gimple_assign_rhs_code (stmt);
	  tree rhs1 = gimple_assign_rhs1 (stmt);
	  tree lhs = gimple_assign_lhs (stmt);
	  if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
	       || POINTER_TYPE_P (TREE_TYPE (lhs)))
	      && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
		  || POINTER_TYPE_P (TREE_TYPE (rhs1))))
	    switch (get_gimple_rhs_class (subcode))
	      {
	      case GIMPLE_SINGLE_RHS:
	        val = get_value_for_expr (rhs1, true);
		break;

	      case GIMPLE_UNARY_RHS:
		val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
		break;

	      case GIMPLE_BINARY_RHS:
		val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
				       gimple_assign_rhs2 (stmt));
		break;

	      default:;
	      }
	}
      else if (code == GIMPLE_COND)
	{
	  enum tree_code code = gimple_cond_code (stmt);
	  tree rhs1 = gimple_cond_lhs (stmt);
	  tree rhs2 = gimple_cond_rhs (stmt);
	  if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
	      || POINTER_TYPE_P (TREE_TYPE (rhs1)))
	    val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
	}
      else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
	{
	  tree fndecl = gimple_call_fndecl (stmt);
	  switch (DECL_FUNCTION_CODE (fndecl))
	    {
	    case BUILT_IN_MALLOC:
	    case BUILT_IN_REALLOC:
	    case BUILT_IN_CALLOC:
	    case BUILT_IN_STRDUP:
	    case BUILT_IN_STRNDUP:
	      val.lattice_val = CONSTANT;
	      val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
	      val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
			   / BITS_PER_UNIT - 1);
	      break;

	    CASE_BUILT_IN_ALLOCA:
	      align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
		       ? BIGGEST_ALIGNMENT
		       : TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
	      val.lattice_val = CONSTANT;
	      val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
	      val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
	      break;

	    /* These builtins return their first argument, unmodified.  */
	    case BUILT_IN_MEMCPY:
	    case BUILT_IN_MEMMOVE:
	    case BUILT_IN_MEMSET:
	    case BUILT_IN_STRCPY:
	    case BUILT_IN_STRNCPY:
	    case BUILT_IN_MEMCPY_CHK:
	    case BUILT_IN_MEMMOVE_CHK:
	    case BUILT_IN_MEMSET_CHK:
	    case BUILT_IN_STRCPY_CHK:
	    case BUILT_IN_STRNCPY_CHK:
	      val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
	      break;

	    case BUILT_IN_ASSUME_ALIGNED:
	      val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
	      break;

	    case BUILT_IN_ALIGNED_ALLOC:
	      {
		tree align = get_constant_value (gimple_call_arg (stmt, 0));
		if (align
		    && tree_fits_uhwi_p (align))
		  {
		    unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
		    if (aligni > 1
			/* align must be power-of-two */
			&& (aligni & (aligni - 1)) == 0)
		      {
			val.lattice_val = CONSTANT;
			val.value = build_int_cst (ptr_type_node, 0);
			val.mask = -aligni;
		      }
		  }
		break;
	      }

	    default:;
	    }
	}
      if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
	{
	  tree fntype = gimple_call_fntype (stmt);
	  if (fntype)
	    {
	      tree attrs = lookup_attribute ("assume_aligned",
					     TYPE_ATTRIBUTES (fntype));
	      if (attrs)
		val = bit_value_assume_aligned (stmt, attrs, val, false);
	      attrs = lookup_attribute ("alloc_align",
					TYPE_ATTRIBUTES (fntype));
	      if (attrs)
		val = bit_value_assume_aligned (stmt, attrs, val, true);
	    }
	}
      is_constant = (val.lattice_val == CONSTANT);
    }

  if (flag_tree_bit_ccp
      && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
	  || !is_constant)
      && gimple_get_lhs (stmt)
      && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
    {
      tree lhs = gimple_get_lhs (stmt);
      wide_int nonzero_bits = get_nonzero_bits (lhs);
      if (nonzero_bits != -1)
	{
	  if (!is_constant)
	    {
	      val.lattice_val = CONSTANT;
	      val.value = build_zero_cst (TREE_TYPE (lhs));
	      val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
	      is_constant = true;
	    }
	  else
	    {
	      if (wi::bit_and_not (wi::to_wide (val.value), nonzero_bits) != 0)
		val.value = wide_int_to_tree (TREE_TYPE (lhs),
					      nonzero_bits
					      & wi::to_wide (val.value));
	      if (nonzero_bits == 0)
		val.mask = 0;
	      else
		val.mask = val.mask & extend_mask (nonzero_bits,
						   TYPE_SIGN (TREE_TYPE (lhs)));
	    }
	}
    }

  /* The statement produced a nonconstant value.  */
  if (!is_constant)
    {
      /* The statement produced a copy.  */
      if (simplified && TREE_CODE (simplified) == SSA_NAME
	  && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
	{
	  val.lattice_val = CONSTANT;
	  val.value = simplified;
	  val.mask = -1;
	}
      /* The statement is VARYING.  */
      else
	{
	  val.lattice_val = VARYING;
	  val.value = NULL_TREE;
	  val.mask = -1;
	}
    }

  return val;
}

typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;

/* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
   each matching BUILT_IN_STACK_RESTORE.  Mark visited phis in VISITED.  */

static void
insert_clobber_before_stack_restore (tree saved_val, tree var,
				     gimple_htab **visited)
{
  gimple *stmt;
  gassign *clobber_stmt;
  tree clobber;
  imm_use_iterator iter;
  gimple_stmt_iterator i;
  gimple **slot;

  FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
    if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
      {
	clobber = build_constructor (TREE_TYPE (var),
				     NULL);
	TREE_THIS_VOLATILE (clobber) = 1;
	clobber_stmt = gimple_build_assign (var, clobber);

	i = gsi_for_stmt (stmt);
	gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
      }
    else if (gimple_code (stmt) == GIMPLE_PHI)
      {
	if (!*visited)
	  *visited = new gimple_htab (10);

	slot = (*visited)->find_slot (stmt, INSERT);
	if (*slot != NULL)
	  continue;

	*slot = stmt;
	insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
					     visited);
      }
    else if (gimple_assign_ssa_name_copy_p (stmt))
      insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
					   visited);
    else
      gcc_assert (is_gimple_debug (stmt));
}

/* Advance the iterator to the previous non-debug gimple statement in the same
   or dominating basic block.  */

static inline void
gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
{
  basic_block dom;

  gsi_prev_nondebug (i);
  while (gsi_end_p (*i))
    {
      dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
      if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
	return;

      *i = gsi_last_bb (dom);
    }
}

/* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
   a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.

   It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
   previous pass (such as DOM) duplicated it along multiple paths to a BB.  In
   that case the function gives up without inserting the clobbers.  */

static void
insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
{
  gimple *stmt;
  tree saved_val;
  gimple_htab *visited = NULL;

  for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
    {
      stmt = gsi_stmt (i);

      if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
	continue;

      saved_val = gimple_call_lhs (stmt);
      if (saved_val == NULL_TREE)
	continue;

      insert_clobber_before_stack_restore (saved_val, var, &visited);
      break;
    }

  delete visited;
}

/* Detects a __builtin_alloca_with_align with constant size argument.  Declares
   fixed-size array and returns the address, if found, otherwise returns
   NULL_TREE.  */

static tree
fold_builtin_alloca_with_align (gimple *stmt)
{
  unsigned HOST_WIDE_INT size, threshold, n_elem;
  tree lhs, arg, block, var, elem_type, array_type;

  /* Get lhs.  */
  lhs = gimple_call_lhs (stmt);
  if (lhs == NULL_TREE)
    return NULL_TREE;

  /* Detect constant argument.  */
  arg = get_constant_value (gimple_call_arg (stmt, 0));
  if (arg == NULL_TREE
      || TREE_CODE (arg) != INTEGER_CST
      || !tree_fits_uhwi_p (arg))
    return NULL_TREE;

  size = tree_to_uhwi (arg);

  /* Heuristic: don't fold large allocas.  */
  threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
  /* In case the alloca is located at function entry, it has the same lifetime
     as a declared array, so we allow a larger size.  */
  block = gimple_block (stmt);
  if (!(cfun->after_inlining
	&& block
        && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
    threshold /= 10;
  if (size > threshold)
    return NULL_TREE;

  /* Declare array.  */
  elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
  n_elem = size * 8 / BITS_PER_UNIT;
  array_type = build_array_type_nelts (elem_type, n_elem);
  var = create_tmp_var (array_type);
  SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
  {
    struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
    if (pi != NULL && !pi->pt.anything)
      {
	bool singleton_p;
	unsigned uid;
	singleton_p = pt_solution_singleton_or_null_p (&pi->pt, &uid);
	gcc_assert (singleton_p);
	SET_DECL_PT_UID (var, uid);
      }
  }

  /* Fold alloca to the address of the array.  */
  return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
}

/* Fold the stmt at *GSI with CCP specific information that propagating
   and regular folding does not catch.  */

bool
ccp_folder::fold_stmt (gimple_stmt_iterator *gsi)
{
  gimple *stmt = gsi_stmt (*gsi);

  switch (gimple_code (stmt))
    {
    case GIMPLE_COND:
      {
	gcond *cond_stmt = as_a <gcond *> (stmt);
	ccp_prop_value_t val;
	/* Statement evaluation will handle type mismatches in constants
	   more gracefully than the final propagation.  This allows us to
	   fold more conditionals here.  */
	val = evaluate_stmt (stmt);
	if (val.lattice_val != CONSTANT
	    || val.mask != 0)
	  return false;

	if (dump_file)
	  {
	    fprintf (dump_file, "Folding predicate ");
	    print_gimple_expr (dump_file, stmt, 0);
	    fprintf (dump_file, " to ");
	    print_generic_expr (dump_file, val.value);
	    fprintf (dump_file, "\n");
	  }

	if (integer_zerop (val.value))
	  gimple_cond_make_false (cond_stmt);
	else
	  gimple_cond_make_true (cond_stmt);

	return true;
      }

    case GIMPLE_CALL:
      {
	tree lhs = gimple_call_lhs (stmt);
	int flags = gimple_call_flags (stmt);
	tree val;
	tree argt;
	bool changed = false;
	unsigned i;

	/* If the call was folded into a constant make sure it goes
	   away even if we cannot propagate into all uses because of
	   type issues.  */
	if (lhs
	    && TREE_CODE (lhs) == SSA_NAME
	    && (val = get_constant_value (lhs))
	    /* Don't optimize away calls that have side-effects.  */
	    && (flags & (ECF_CONST|ECF_PURE)) != 0
	    && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
	  {
	    tree new_rhs = unshare_expr (val);
	    bool res;
	    if (!useless_type_conversion_p (TREE_TYPE (lhs),
					    TREE_TYPE (new_rhs)))
	      new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
	    res = update_call_from_tree (gsi, new_rhs);
	    gcc_assert (res);
	    return true;
	  }

	/* Internal calls provide no argument types, so the extra laxity
	   for normal calls does not apply.  */
	if (gimple_call_internal_p (stmt))
	  return false;

        /* The heuristic of fold_builtin_alloca_with_align differs before and
	   after inlining, so we don't require the arg to be changed into a
	   constant for folding, but just to be constant.  */
        if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN)
	    || gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX))
          {
            tree new_rhs = fold_builtin_alloca_with_align (stmt);
            if (new_rhs)
	      {
		bool res = update_call_from_tree (gsi, new_rhs);
		tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
		gcc_assert (res);
		insert_clobbers_for_var (*gsi, var);
		return true;
	      }
          }

	/* Propagate into the call arguments.  Compared to replace_uses_in
	   this can use the argument slot types for type verification
	   instead of the current argument type.  We also can safely
	   drop qualifiers here as we are dealing with constants anyway.  */
	argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
	for (i = 0; i < gimple_call_num_args (stmt) && argt;
	     ++i, argt = TREE_CHAIN (argt))
	  {
	    tree arg = gimple_call_arg (stmt, i);
	    if (TREE_CODE (arg) == SSA_NAME
		&& (val = get_constant_value (arg))
		&& useless_type_conversion_p
		     (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
		      TYPE_MAIN_VARIANT (TREE_TYPE (val))))
	      {
		gimple_call_set_arg (stmt, i, unshare_expr (val));
		changed = true;
	      }
	  }

	return changed;
      }

    case GIMPLE_ASSIGN:
      {
	tree lhs = gimple_assign_lhs (stmt);
	tree val;

	/* If we have a load that turned out to be constant replace it
	   as we cannot propagate into all uses in all cases.  */
	if (gimple_assign_single_p (stmt)
	    && TREE_CODE (lhs) == SSA_NAME
	    && (val = get_constant_value (lhs)))
	  {
	    tree rhs = unshare_expr (val);
	    if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
	      rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
	    gimple_assign_set_rhs_from_tree (gsi, rhs);
	    return true;
	  }

	return false;
      }

    default:
      return false;
    }
}

/* Visit the assignment statement STMT.  Set the value of its LHS to the
   value computed by the RHS and store LHS in *OUTPUT_P.  If STMT
   creates virtual definitions, set the value of each new name to that
   of the RHS (if we can derive a constant out of the RHS).
   Value-returning call statements also perform an assignment, and
   are handled here.  */

static enum ssa_prop_result
visit_assignment (gimple *stmt, tree *output_p)
{
  ccp_prop_value_t val;
  enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;

  tree lhs = gimple_get_lhs (stmt);
  if (TREE_CODE (lhs) == SSA_NAME)
    {
      /* Evaluate the statement, which could be
	 either a GIMPLE_ASSIGN or a GIMPLE_CALL.  */
      val = evaluate_stmt (stmt);

      /* If STMT is an assignment to an SSA_NAME, we only have one
	 value to set.  */
      if (set_lattice_value (lhs, &val))
	{
	  *output_p = lhs;
	  if (val.lattice_val == VARYING)
	    retval = SSA_PROP_VARYING;
	  else
	    retval = SSA_PROP_INTERESTING;
	}
    }

  return retval;
}


/* Visit the conditional statement STMT.  Return SSA_PROP_INTERESTING
   if it can determine which edge will be taken.  Otherwise, return
   SSA_PROP_VARYING.  */

static enum ssa_prop_result
visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
{
  ccp_prop_value_t val;
  basic_block block;

  block = gimple_bb (stmt);
  val = evaluate_stmt (stmt);
  if (val.lattice_val != CONSTANT
      || val.mask != 0)
    return SSA_PROP_VARYING;

  /* Find which edge out of the conditional block will be taken and add it
     to the worklist.  If no single edge can be determined statically,
     return SSA_PROP_VARYING to feed all the outgoing edges to the
     propagation engine.  */
  *taken_edge_p = find_taken_edge (block, val.value);
  if (*taken_edge_p)
    return SSA_PROP_INTERESTING;
  else
    return SSA_PROP_VARYING;
}


/* Evaluate statement STMT.  If the statement produces an output value and
   its evaluation changes the lattice value of its output, return
   SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
   output value.

   If STMT is a conditional branch and we can determine its truth
   value, set *TAKEN_EDGE_P accordingly.  If STMT produces a varying
   value, return SSA_PROP_VARYING.  */

enum ssa_prop_result
ccp_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
{
  tree def;
  ssa_op_iter iter;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nVisiting statement:\n");
      print_gimple_stmt (dump_file, stmt, 0, dump_flags);
    }

  switch (gimple_code (stmt))
    {
      case GIMPLE_ASSIGN:
        /* If the statement is an assignment that produces a single
           output value, evaluate its RHS to see if the lattice value of
           its output has changed.  */
        return visit_assignment (stmt, output_p);

      case GIMPLE_CALL:
        /* A value-returning call also performs an assignment.  */
        if (gimple_call_lhs (stmt) != NULL_TREE)
          return visit_assignment (stmt, output_p);
        break;

      case GIMPLE_COND:
      case GIMPLE_SWITCH:
        /* If STMT is a conditional branch, see if we can determine
           which branch will be taken.   */
        /* FIXME.  It appears that we should be able to optimize
           computed GOTOs here as well.  */
        return visit_cond_stmt (stmt, taken_edge_p);

      default:
        break;
    }

  /* Any other kind of statement is not interesting for constant
     propagation and, therefore, not worth simulating.  */
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "No interesting values produced.  Marked VARYING.\n");

  /* Definitions made by statements other than assignments to
     SSA_NAMEs represent unknown modifications to their outputs.
     Mark them VARYING.  */
  FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
    set_value_varying (def);

  return SSA_PROP_VARYING;
}


/* Main entry point for SSA Conditional Constant Propagation.  If NONZERO_P,
   record nonzero bits.  */

static unsigned int
do_ssa_ccp (bool nonzero_p)
{
  unsigned int todo = 0;
  calculate_dominance_info (CDI_DOMINATORS);

  ccp_initialize ();
  class ccp_propagate ccp_propagate;
  ccp_propagate.ssa_propagate ();
  if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
    {
      todo = (TODO_cleanup_cfg | TODO_update_ssa);

      /* ccp_finalize does not preserve loop-closed ssa.  */
      loops_state_clear (LOOP_CLOSED_SSA);
    }

  free_dominance_info (CDI_DOMINATORS);
  return todo;
}


namespace {

const pass_data pass_data_ccp =
{
  GIMPLE_PASS, /* type */
  "ccp", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_CCP, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_update_address_taken, /* todo_flags_finish */
};

class pass_ccp : public gimple_opt_pass
{
public:
  pass_ccp (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
  {}

  /* opt_pass methods: */
  opt_pass * clone () { return new pass_ccp (m_ctxt); }
  void set_pass_param (unsigned int n, bool param)
    {
      gcc_assert (n == 0);
      nonzero_p = param;
    }
  virtual bool gate (function *) { return flag_tree_ccp != 0; }
  virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }

 private:
  /* Determines whether the pass instance records nonzero bits.  */
  bool nonzero_p;
}; // class pass_ccp

} // anon namespace

gimple_opt_pass *
make_pass_ccp (gcc::context *ctxt)
{
  return new pass_ccp (ctxt);
}



/* Try to optimize out __builtin_stack_restore.  Optimize it out
   if there is another __builtin_stack_restore in the same basic
   block and no calls or ASM_EXPRs are in between, or if this block's
   only outgoing edge is to EXIT_BLOCK and there are no calls or
   ASM_EXPRs after this __builtin_stack_restore.  */

static tree
optimize_stack_restore (gimple_stmt_iterator i)
{
  tree callee;
  gimple *stmt;

  basic_block bb = gsi_bb (i);
  gimple *call = gsi_stmt (i);

  if (gimple_code (call) != GIMPLE_CALL
      || gimple_call_num_args (call) != 1
      || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
      || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
    return NULL_TREE;

  for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
    {
      stmt = gsi_stmt (i);
      if (gimple_code (stmt) == GIMPLE_ASM)
	return NULL_TREE;
      if (gimple_code (stmt) != GIMPLE_CALL)
	continue;

      callee = gimple_call_fndecl (stmt);
      if (!callee
	  || !fndecl_built_in_p (callee, BUILT_IN_NORMAL)
	  /* All regular builtins are ok, just obviously not alloca.  */
	  || ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee)))
	return NULL_TREE;

      if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
	goto second_stack_restore;
    }

  if (!gsi_end_p (i))
    return NULL_TREE;

  /* Allow one successor of the exit block, or zero successors.  */
  switch (EDGE_COUNT (bb->succs))
    {
    case 0:
      break;
    case 1:
      if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
	return NULL_TREE;
      break;
    default:
      return NULL_TREE;
    }
 second_stack_restore:

  /* If there's exactly one use, then zap the call to __builtin_stack_save.
     If there are multiple uses, then the last one should remove the call.
     In any case, whether the call to __builtin_stack_save can be removed
     or not is irrelevant to removing the call to __builtin_stack_restore.  */
  if (has_single_use (gimple_call_arg (call, 0)))
    {
      gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
      if (is_gimple_call (stack_save))
	{
	  callee = gimple_call_fndecl (stack_save);
	  if (callee && fndecl_built_in_p (callee, BUILT_IN_STACK_SAVE))
	    {
	      gimple_stmt_iterator stack_save_gsi;
	      tree rhs;

	      stack_save_gsi = gsi_for_stmt (stack_save);
	      rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
	      update_call_from_tree (&stack_save_gsi, rhs);
	    }
	}
    }

  /* No effect, so the statement will be deleted.  */
  return integer_zero_node;
}

/* If va_list type is a simple pointer and nothing special is needed,
   optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
   __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
   pointer assignment.  */

static tree
optimize_stdarg_builtin (gimple *call)
{
  tree callee, lhs, rhs, cfun_va_list;
  bool va_list_simple_ptr;
  location_t loc = gimple_location (call);

  if (gimple_code (call) != GIMPLE_CALL)
    return NULL_TREE;

  callee = gimple_call_fndecl (call);

  cfun_va_list = targetm.fn_abi_va_list (callee);
  va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
		       && (TREE_TYPE (cfun_va_list) == void_type_node
			   || TREE_TYPE (cfun_va_list) == char_type_node);

  switch (DECL_FUNCTION_CODE (callee))
    {
    case BUILT_IN_VA_START:
      if (!va_list_simple_ptr
	  || targetm.expand_builtin_va_start != NULL
	  || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
	return NULL_TREE;

      if (gimple_call_num_args (call) != 2)
	return NULL_TREE;

      lhs = gimple_call_arg (call, 0);
      if (!POINTER_TYPE_P (TREE_TYPE (lhs))
	  || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
	     != TYPE_MAIN_VARIANT (cfun_va_list))
	return NULL_TREE;

      lhs = build_fold_indirect_ref_loc (loc, lhs);
      rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
                             1, integer_zero_node);
      rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
      return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);

    case BUILT_IN_VA_COPY:
      if (!va_list_simple_ptr)
	return NULL_TREE;

      if (gimple_call_num_args (call) != 2)
	return NULL_TREE;

      lhs = gimple_call_arg (call, 0);
      if (!POINTER_TYPE_P (TREE_TYPE (lhs))
	  || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
	     != TYPE_MAIN_VARIANT (cfun_va_list))
	return NULL_TREE;

      lhs = build_fold_indirect_ref_loc (loc, lhs);
      rhs = gimple_call_arg (call, 1);
      if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
	  != TYPE_MAIN_VARIANT (cfun_va_list))
	return NULL_TREE;

      rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
      return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);

    case BUILT_IN_VA_END:
      /* No effect, so the statement will be deleted.  */
      return integer_zero_node;

    default:
      gcc_unreachable ();
    }
}

/* Attemp to make the block of __builtin_unreachable I unreachable by changing
   the incoming jumps.  Return true if at least one jump was changed.  */

static bool
optimize_unreachable (gimple_stmt_iterator i)
{
  basic_block bb = gsi_bb (i);
  gimple_stmt_iterator gsi;
  gimple *stmt;
  edge_iterator ei;
  edge e;
  bool ret;

  if (flag_sanitize & SANITIZE_UNREACHABLE)
    return false;

  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      stmt = gsi_stmt (gsi);

      if (is_gimple_debug (stmt))
       continue;

      if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
	{
	  /* Verify we do not need to preserve the label.  */
	  if (FORCED_LABEL (gimple_label_label (label_stmt)))
	    return false;

	  continue;
	}

      /* Only handle the case that __builtin_unreachable is the first statement
	 in the block.  We rely on DCE to remove stmts without side-effects
	 before __builtin_unreachable.  */
      if (gsi_stmt (gsi) != gsi_stmt (i))
        return false;
    }

  ret = false;
  FOR_EACH_EDGE (e, ei, bb->preds)
    {
      gsi = gsi_last_bb (e->src);
      if (gsi_end_p (gsi))
	continue;

      stmt = gsi_stmt (gsi);
      if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
	{
	  if (e->flags & EDGE_TRUE_VALUE)
	    gimple_cond_make_false (cond_stmt);
	  else if (e->flags & EDGE_FALSE_VALUE)
	    gimple_cond_make_true (cond_stmt);
	  else
	    gcc_unreachable ();
	  update_stmt (cond_stmt);
	}
      else
	{
	  /* Todo: handle other cases.  Note that unreachable switch case
	     statements have already been removed.  */
	  continue;
	}

      ret = true;
    }

  return ret;
}

/* Optimize
     mask_2 = 1 << cnt_1;
     _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
     _5 = _4 & mask_2;
   to
     _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
     _5 = _4;
   If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
   is passed instead of 0, and the builtin just returns a zero
   or 1 value instead of the actual bit.
   Similarly for __sync_fetch_and_or_* (without the ", _3" part
   in there), and/or if mask_2 is a power of 2 constant.
   Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
   in that case.  And similarly for and instead of or, except that
   the second argument to the builtin needs to be one's complement
   of the mask instead of mask.  */

static void
optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
			      enum internal_fn fn, bool has_model_arg,
			      bool after)
{
  gimple *call = gsi_stmt (*gsip);
  tree lhs = gimple_call_lhs (call);
  use_operand_p use_p;
  gimple *use_stmt;
  tree mask, bit;
  optab optab;

  if (!flag_inline_atomics
      || optimize_debug
      || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
      || !lhs
      || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
      || !single_imm_use (lhs, &use_p, &use_stmt)
      || !is_gimple_assign (use_stmt)
      || gimple_assign_rhs_code (use_stmt) != BIT_AND_EXPR
      || !gimple_vdef (call))
    return;

  switch (fn)
    {
    case IFN_ATOMIC_BIT_TEST_AND_SET:
      optab = atomic_bit_test_and_set_optab;
      break;
    case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
      optab = atomic_bit_test_and_complement_optab;
      break;
    case IFN_ATOMIC_BIT_TEST_AND_RESET:
      optab = atomic_bit_test_and_reset_optab;
      break;
    default:
      return;
    }

  if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs))) == CODE_FOR_nothing)
    return;

  mask = gimple_call_arg (call, 1);
  tree use_lhs = gimple_assign_lhs (use_stmt);
  if (!use_lhs)
    return;

  if (TREE_CODE (mask) == INTEGER_CST)
    {
      if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
	mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
      mask = fold_convert (TREE_TYPE (lhs), mask);
      int ibit = tree_log2 (mask);
      if (ibit < 0)
	return;
      bit = build_int_cst (TREE_TYPE (lhs), ibit);
    }
  else if (TREE_CODE (mask) == SSA_NAME)
    {
      gimple *g = SSA_NAME_DEF_STMT (mask);
      if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
	{
	  if (!is_gimple_assign (g)
	      || gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
	    return;
	  mask = gimple_assign_rhs1 (g);
	  if (TREE_CODE (mask) != SSA_NAME)
	    return;
	  g = SSA_NAME_DEF_STMT (mask);
	}
      if (!is_gimple_assign (g)
	  || gimple_assign_rhs_code (g) != LSHIFT_EXPR
	  || !integer_onep (gimple_assign_rhs1 (g)))
	return;
      bit = gimple_assign_rhs2 (g);
    }
  else
    return;

  if (gimple_assign_rhs1 (use_stmt) == lhs)
    {
      if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), mask, 0))
	return;
    }
  else if (gimple_assign_rhs2 (use_stmt) != lhs
	   || !operand_equal_p (gimple_assign_rhs1 (use_stmt), mask, 0))
    return;

  bool use_bool = true;
  bool has_debug_uses = false;
  imm_use_iterator iter;
  gimple *g;

  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
    use_bool = false;
  FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
    {
      enum tree_code code = ERROR_MARK;
      tree op0 = NULL_TREE, op1 = NULL_TREE;
      if (is_gimple_debug (g))
	{
	  has_debug_uses = true;
	  continue;
	}
      else if (is_gimple_assign (g))
	switch (gimple_assign_rhs_code (g))
	  {
	  case COND_EXPR:
	    op1 = gimple_assign_rhs1 (g);
	    code = TREE_CODE (op1);
	    op0 = TREE_OPERAND (op1, 0);
	    op1 = TREE_OPERAND (op1, 1);
	    break;
	  case EQ_EXPR:
	  case NE_EXPR:
	    code = gimple_assign_rhs_code (g);
	    op0 = gimple_assign_rhs1 (g);
	    op1 = gimple_assign_rhs2 (g);
	    break;
	  default:
	    break;
	  }
      else if (gimple_code (g) == GIMPLE_COND)
	{
	  code = gimple_cond_code (g);
	  op0 = gimple_cond_lhs (g);
	  op1 = gimple_cond_rhs (g);
	}

      if ((code == EQ_EXPR || code == NE_EXPR)
	  && op0 == use_lhs
	  && integer_zerop (op1))
	{
	  use_operand_p use_p;
	  int n = 0;
	  FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
	    n++;
	  if (n == 1)
	    continue;
	}

      use_bool = false;
      BREAK_FROM_IMM_USE_STMT (iter);
    }

  tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
  tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
  if (has_model_arg)
    g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
				    bit, flag, gimple_call_arg (call, 2));
  else
    g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
				    bit, flag);
  gimple_call_set_lhs (g, new_lhs);
  gimple_set_location (g, gimple_location (call));
  gimple_set_vuse (g, gimple_vuse (call));
  gimple_set_vdef (g, gimple_vdef (call));
  bool throws = stmt_can_throw_internal (cfun, call);
  gimple_call_set_nothrow (as_a <gcall *> (g),
			   gimple_call_nothrow_p (as_a <gcall *> (call)));
  SSA_NAME_DEF_STMT (gimple_vdef (call)) = g;
  gimple_stmt_iterator gsi = *gsip;
  gsi_insert_after (&gsi, g, GSI_NEW_STMT);
  edge e = NULL;
  if (throws)
    {
      maybe_clean_or_replace_eh_stmt (call, g);
      if (after || (use_bool && has_debug_uses))
	e = find_fallthru_edge (gsi_bb (gsi)->succs);
    }
  if (after)
    {
      /* The internal function returns the value of the specified bit
	 before the atomic operation.  If we are interested in the value
	 of the specified bit after the atomic operation (makes only sense
	 for xor, otherwise the bit content is compile time known),
	 we need to invert the bit.  */
      g = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
			       BIT_XOR_EXPR, new_lhs,
			       use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
					: mask);
      new_lhs = gimple_assign_lhs (g);
      if (throws)
	{
	  gsi_insert_on_edge_immediate (e, g);
	  gsi = gsi_for_stmt (g);
	}
      else
	gsi_insert_after (&gsi, g, GSI_NEW_STMT);
    }
  if (use_bool && has_debug_uses)
    {
      tree temp = NULL_TREE;
      if (!throws || after || single_pred_p (e->dest))
	{
	  temp = make_node (DEBUG_EXPR_DECL);
	  DECL_ARTIFICIAL (temp) = 1;
	  TREE_TYPE (temp) = TREE_TYPE (lhs);
	  SET_DECL_MODE (temp, TYPE_MODE (TREE_TYPE (lhs)));
	  tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
	  g = gimple_build_debug_bind (temp, t, g);
	  if (throws && !after)
	    {
	      gsi = gsi_after_labels (e->dest);
	      gsi_insert_before (&gsi, g, GSI_SAME_STMT);
	    }
	  else
	    gsi_insert_after (&gsi, g, GSI_NEW_STMT);
	}
      FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
	if (is_gimple_debug (g))
	  {
	    use_operand_p use_p;
	    if (temp == NULL_TREE)
	      gimple_debug_bind_reset_value (g);
	    else
	      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
		SET_USE (use_p, temp);
	    update_stmt (g);
	  }
    }
  SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
    = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
  replace_uses_by (use_lhs, new_lhs);
  gsi = gsi_for_stmt (use_stmt);
  gsi_remove (&gsi, true);
  release_defs (use_stmt);
  gsi_remove (gsip, true);
  release_ssa_name (lhs);
}

/* Optimize
   a = {};
   b = a;
   into
   a = {};
   b = {};
   Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
   and/or memcpy (&b, &a, sizeof (a)); instead of b = a;  */

static void
optimize_memcpy (gimple_stmt_iterator *gsip, tree dest, tree src, tree len)
{
  gimple *stmt = gsi_stmt (*gsip);
  if (gimple_has_volatile_ops (stmt))
    return;

  tree vuse = gimple_vuse (stmt);
  if (vuse == NULL)
    return;

  gimple *defstmt = SSA_NAME_DEF_STMT (vuse);
  tree src2 = NULL_TREE, len2 = NULL_TREE;
  poly_int64 offset, offset2;
  tree val = integer_zero_node;
  if (gimple_store_p (defstmt)
      && gimple_assign_single_p (defstmt)
      && TREE_CODE (gimple_assign_rhs1 (defstmt)) == CONSTRUCTOR
      && !gimple_clobber_p (defstmt))
    src2 = gimple_assign_lhs (defstmt);
  else if (gimple_call_builtin_p (defstmt, BUILT_IN_MEMSET)
	   && TREE_CODE (gimple_call_arg (defstmt, 0)) == ADDR_EXPR
	   && TREE_CODE (gimple_call_arg (defstmt, 1)) == INTEGER_CST)
    {
      src2 = TREE_OPERAND (gimple_call_arg (defstmt, 0), 0);
      len2 = gimple_call_arg (defstmt, 2);
      val = gimple_call_arg (defstmt, 1);
      /* For non-0 val, we'd have to transform stmt from assignment
	 into memset (only if dest is addressable).  */
      if (!integer_zerop (val) && is_gimple_assign (stmt))
	src2 = NULL_TREE;
    }

  if (src2 == NULL_TREE)
    return;

  if (len == NULL_TREE)
    len = (TREE_CODE (src) == COMPONENT_REF
	   ? DECL_SIZE_UNIT (TREE_OPERAND (src, 1))
	   : TYPE_SIZE_UNIT (TREE_TYPE (src)));
  if (len2 == NULL_TREE)
    len2 = (TREE_CODE (src2) == COMPONENT_REF
	    ? DECL_SIZE_UNIT (TREE_OPERAND (src2, 1))
	    : TYPE_SIZE_UNIT (TREE_TYPE (src2)));
  if (len == NULL_TREE
      || !poly_int_tree_p (len)
      || len2 == NULL_TREE
      || !poly_int_tree_p (len2))
    return;

  src = get_addr_base_and_unit_offset (src, &offset);
  src2 = get_addr_base_and_unit_offset (src2, &offset2);
  if (src == NULL_TREE
      || src2 == NULL_TREE
      || maybe_lt (offset, offset2))
    return;

  if (!operand_equal_p (src, src2, 0))
    return;

  /* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
     Make sure that
     [ src + offset, src + offset + len - 1 ] is a subset of that.  */
  if (maybe_gt (wi::to_poly_offset (len) + (offset - offset2),
		wi::to_poly_offset (len2)))
    return;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Simplified\n  ");
      print_gimple_stmt (dump_file, stmt, 0, dump_flags);
      fprintf (dump_file, "after previous\n  ");
      print_gimple_stmt (dump_file, defstmt, 0, dump_flags);
    }

  /* For simplicity, don't change the kind of the stmt,
     turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
     into memset (&dest, val, len);
     In theory we could change dest = src into memset if dest
     is addressable (maybe beneficial if val is not 0), or
     memcpy (&dest, &src, len) into dest = {} if len is the size
     of dest, dest isn't volatile.  */
  if (is_gimple_assign (stmt))
    {
      tree ctor = build_constructor (TREE_TYPE (dest), NULL);