aboutsummaryrefslogtreecommitdiff
path: root/gcc/function.c
blob: 035a49eff3f00f37d3a3d9b7a7ee12d7df5920d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
/* Expands front end tree to back end RTL for GCC.
   Copyright (C) 1987-2015 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* This file handles the generation of rtl code from tree structure
   at the level of the function as a whole.
   It creates the rtl expressions for parameters and auto variables
   and has full responsibility for allocating stack slots.

   `expand_function_start' is called at the beginning of a function,
   before the function body is parsed, and `expand_function_end' is
   called after parsing the body.

   Call `assign_stack_local' to allocate a stack slot for a local variable.
   This is usually done during the RTL generation for the function body,
   but it can also be done in the reload pass when a pseudo-register does
   not get a hard register.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple-expr.h"
#include "cfghooks.h"
#include "df.h"
#include "tm_p.h"
#include "stringpool.h"
#include "expmed.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "rtl-error.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "varasm.h"
#include "except.h"
#include "dojump.h"
#include "explow.h"
#include "calls.h"
#include "expr.h"
#include "optabs-tree.h"
#include "output.h"
#include "langhooks.h"
#include "common/common-target.h"
#include "gimplify.h"
#include "tree-pass.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "cfgexpand.h"
#include "shrink-wrap.h"
#include "toplev.h"
#include "rtl-iter.h"
#include "tree-chkp.h"
#include "rtl-chkp.h"
#include "tree-dfa.h"
#include "tree-ssa.h"

/* So we can assign to cfun in this file.  */
#undef cfun

#ifndef STACK_ALIGNMENT_NEEDED
#define STACK_ALIGNMENT_NEEDED 1
#endif

#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)

/* Round a value to the lowest integer less than it that is a multiple of
   the required alignment.  Avoid using division in case the value is
   negative.  Assume the alignment is a power of two.  */
#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))

/* Similar, but round to the next highest integer that meets the
   alignment.  */
#define CEIL_ROUND(VALUE,ALIGN)	(((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))

/* Nonzero once virtual register instantiation has been done.
   assign_stack_local uses frame_pointer_rtx when this is nonzero.
   calls.c:emit_library_call_value_1 uses it to set up
   post-instantiation libcalls.  */
int virtuals_instantiated;

/* Assign unique numbers to labels generated for profiling, debugging, etc.  */
static GTY(()) int funcdef_no;

/* These variables hold pointers to functions to create and destroy
   target specific, per-function data structures.  */
struct machine_function * (*init_machine_status) (void);

/* The currently compiled function.  */
struct function *cfun = 0;

/* These hashes record the prologue and epilogue insns.  */

struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
{
  static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
  static bool equal (rtx a, rtx b) { return a == b; }
};

static GTY((cache))
  hash_table<insn_cache_hasher> *prologue_insn_hash;
static GTY((cache))
  hash_table<insn_cache_hasher> *epilogue_insn_hash;


hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
vec<tree, va_gc> *types_used_by_cur_var_decl;

/* Forward declarations.  */

static struct temp_slot *find_temp_slot_from_address (rtx);
static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
static void pad_below (struct args_size *, machine_mode, tree);
static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
static int all_blocks (tree, tree *);
static tree *get_block_vector (tree, int *);
extern tree debug_find_var_in_block_tree (tree, tree);
/* We always define `record_insns' even if it's not used so that we
   can always export `prologue_epilogue_contains'.  */
static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
     ATTRIBUTE_UNUSED;
static bool contains (const_rtx, hash_table<insn_cache_hasher> *);
static void prepare_function_start (void);
static void do_clobber_return_reg (rtx, void *);
static void do_use_return_reg (rtx, void *);


/* Stack of nested functions.  */
/* Keep track of the cfun stack.  */

static vec<function *> function_context_stack;

/* Save the current context for compilation of a nested function.
   This is called from language-specific code.  */

void
push_function_context (void)
{
  if (cfun == 0)
    allocate_struct_function (NULL, false);

  function_context_stack.safe_push (cfun);
  set_cfun (NULL);
}

/* Restore the last saved context, at the end of a nested function.
   This function is called from language-specific code.  */

void
pop_function_context (void)
{
  struct function *p = function_context_stack.pop ();
  set_cfun (p);
  current_function_decl = p->decl;

  /* Reset variables that have known state during rtx generation.  */
  virtuals_instantiated = 0;
  generating_concat_p = 1;
}

/* Clear out all parts of the state in F that can safely be discarded
   after the function has been parsed, but not compiled, to let
   garbage collection reclaim the memory.  */

void
free_after_parsing (struct function *f)
{
  f->language = 0;
}

/* Clear out all parts of the state in F that can safely be discarded
   after the function has been compiled, to let garbage collection
   reclaim the memory.  */

void
free_after_compilation (struct function *f)
{
  prologue_insn_hash = NULL;
  epilogue_insn_hash = NULL;

  free (crtl->emit.regno_pointer_align);

  memset (crtl, 0, sizeof (struct rtl_data));
  f->eh = NULL;
  f->machine = NULL;
  f->cfg = NULL;
  f->curr_properties &= ~PROP_cfg;

  regno_reg_rtx = NULL;
}

/* Return size needed for stack frame based on slots so far allocated.
   This size counts from zero.  It is not rounded to PREFERRED_STACK_BOUNDARY;
   the caller may have to do that.  */

HOST_WIDE_INT
get_frame_size (void)
{
  if (FRAME_GROWS_DOWNWARD)
    return -frame_offset;
  else
    return frame_offset;
}

/* Issue an error message and return TRUE if frame OFFSET overflows in
   the signed target pointer arithmetics for function FUNC.  Otherwise
   return FALSE.  */

bool
frame_offset_overflow (HOST_WIDE_INT offset, tree func)
{
  unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;

  if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
	       /* Leave room for the fixed part of the frame.  */
	       - 64 * UNITS_PER_WORD)
    {
      error_at (DECL_SOURCE_LOCATION (func),
		"total size of local objects too large");
      return TRUE;
    }

  return FALSE;
}

/* Return stack slot alignment in bits for TYPE and MODE.  */

static unsigned int
get_stack_local_alignment (tree type, machine_mode mode)
{
  unsigned int alignment;

  if (mode == BLKmode)
    alignment = BIGGEST_ALIGNMENT;
  else
    alignment = GET_MODE_ALIGNMENT (mode);

  /* Allow the frond-end to (possibly) increase the alignment of this
     stack slot.  */
  if (! type)
    type = lang_hooks.types.type_for_mode (mode, 0);

  return STACK_SLOT_ALIGNMENT (type, mode, alignment);
}

/* Determine whether it is possible to fit a stack slot of size SIZE and
   alignment ALIGNMENT into an area in the stack frame that starts at
   frame offset START and has a length of LENGTH.  If so, store the frame
   offset to be used for the stack slot in *POFFSET and return true;
   return false otherwise.  This function will extend the frame size when
   given a start/length pair that lies at the end of the frame.  */

static bool
try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
		     HOST_WIDE_INT size, unsigned int alignment,
		     HOST_WIDE_INT *poffset)
{
  HOST_WIDE_INT this_frame_offset;
  int frame_off, frame_alignment, frame_phase;

  /* Calculate how many bytes the start of local variables is off from
     stack alignment.  */
  frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
  frame_off = STARTING_FRAME_OFFSET % frame_alignment;
  frame_phase = frame_off ? frame_alignment - frame_off : 0;

  /* Round the frame offset to the specified alignment.  */

  /*  We must be careful here, since FRAME_OFFSET might be negative and
      division with a negative dividend isn't as well defined as we might
      like.  So we instead assume that ALIGNMENT is a power of two and
      use logical operations which are unambiguous.  */
  if (FRAME_GROWS_DOWNWARD)
    this_frame_offset
      = (FLOOR_ROUND (start + length - size - frame_phase,
		      (unsigned HOST_WIDE_INT) alignment)
	 + frame_phase);
  else
    this_frame_offset
      = (CEIL_ROUND (start - frame_phase,
		     (unsigned HOST_WIDE_INT) alignment)
	 + frame_phase);

  /* See if it fits.  If this space is at the edge of the frame,
     consider extending the frame to make it fit.  Our caller relies on
     this when allocating a new slot.  */
  if (frame_offset == start && this_frame_offset < frame_offset)
    frame_offset = this_frame_offset;
  else if (this_frame_offset < start)
    return false;
  else if (start + length == frame_offset
	   && this_frame_offset + size > start + length)
    frame_offset = this_frame_offset + size;
  else if (this_frame_offset + size > start + length)
    return false;

  *poffset = this_frame_offset;
  return true;
}

/* Create a new frame_space structure describing free space in the stack
   frame beginning at START and ending at END, and chain it into the
   function's frame_space_list.  */

static void
add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
{
  struct frame_space *space = ggc_alloc<frame_space> ();
  space->next = crtl->frame_space_list;
  crtl->frame_space_list = space;
  space->start = start;
  space->length = end - start;
}

/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
   with machine mode MODE.

   ALIGN controls the amount of alignment for the address of the slot:
   0 means according to MODE,
   -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
   -2 means use BITS_PER_UNIT,
   positive specifies alignment boundary in bits.

   KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
   alignment and ASLK_RECORD_PAD bit set if we should remember
   extra space we allocated for alignment purposes.  When we are
   called from assign_stack_temp_for_type, it is not set so we don't
   track the same stack slot in two independent lists.

   We do not round to stack_boundary here.  */

rtx
assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size,
		      int align, int kind)
{
  rtx x, addr;
  int bigend_correction = 0;
  HOST_WIDE_INT slot_offset = 0, old_frame_offset;
  unsigned int alignment, alignment_in_bits;

  if (align == 0)
    {
      alignment = get_stack_local_alignment (NULL, mode);
      alignment /= BITS_PER_UNIT;
    }
  else if (align == -1)
    {
      alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
      size = CEIL_ROUND (size, alignment);
    }
  else if (align == -2)
    alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
  else
    alignment = align / BITS_PER_UNIT;

  alignment_in_bits = alignment * BITS_PER_UNIT;

  /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT.  */
  if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
    {
      alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
      alignment = alignment_in_bits / BITS_PER_UNIT;
    }

  if (SUPPORTS_STACK_ALIGNMENT)
    {
      if (crtl->stack_alignment_estimated < alignment_in_bits)
	{
          if (!crtl->stack_realign_processed)
	    crtl->stack_alignment_estimated = alignment_in_bits;
          else
	    {
	      /* If stack is realigned and stack alignment value
		 hasn't been finalized, it is OK not to increase
		 stack_alignment_estimated.  The bigger alignment
		 requirement is recorded in stack_alignment_needed
		 below.  */
	      gcc_assert (!crtl->stack_realign_finalized);
	      if (!crtl->stack_realign_needed)
		{
		  /* It is OK to reduce the alignment as long as the
		     requested size is 0 or the estimated stack
		     alignment >= mode alignment.  */
		  gcc_assert ((kind & ASLK_REDUCE_ALIGN)
		              || size == 0
			      || (crtl->stack_alignment_estimated
				  >= GET_MODE_ALIGNMENT (mode)));
		  alignment_in_bits = crtl->stack_alignment_estimated;
		  alignment = alignment_in_bits / BITS_PER_UNIT;
		}
	    }
	}
    }

  if (crtl->stack_alignment_needed < alignment_in_bits)
    crtl->stack_alignment_needed = alignment_in_bits;
  if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
    crtl->max_used_stack_slot_alignment = alignment_in_bits;

  if (mode != BLKmode || size != 0)
    {
      if (kind & ASLK_RECORD_PAD)
	{
	  struct frame_space **psp;

	  for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
	    {
	      struct frame_space *space = *psp;
	      if (!try_fit_stack_local (space->start, space->length, size,
					alignment, &slot_offset))
		continue;
	      *psp = space->next;
	      if (slot_offset > space->start)
		add_frame_space (space->start, slot_offset);
	      if (slot_offset + size < space->start + space->length)
		add_frame_space (slot_offset + size,
				 space->start + space->length);
	      goto found_space;
	    }
	}
    }
  else if (!STACK_ALIGNMENT_NEEDED)
    {
      slot_offset = frame_offset;
      goto found_space;
    }

  old_frame_offset = frame_offset;

  if (FRAME_GROWS_DOWNWARD)
    {
      frame_offset -= size;
      try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);

      if (kind & ASLK_RECORD_PAD)
	{
	  if (slot_offset > frame_offset)
	    add_frame_space (frame_offset, slot_offset);
	  if (slot_offset + size < old_frame_offset)
	    add_frame_space (slot_offset + size, old_frame_offset);
	}
    }
  else
    {
      frame_offset += size;
      try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);

      if (kind & ASLK_RECORD_PAD)
	{
	  if (slot_offset > old_frame_offset)
	    add_frame_space (old_frame_offset, slot_offset);
	  if (slot_offset + size < frame_offset)
	    add_frame_space (slot_offset + size, frame_offset);
	}
    }

 found_space:
  /* On a big-endian machine, if we are allocating more space than we will use,
     use the least significant bytes of those that are allocated.  */
  if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
    bigend_correction = size - GET_MODE_SIZE (mode);

  /* If we have already instantiated virtual registers, return the actual
     address relative to the frame pointer.  */
  if (virtuals_instantiated)
    addr = plus_constant (Pmode, frame_pointer_rtx,
			  trunc_int_for_mode
			  (slot_offset + bigend_correction
			   + STARTING_FRAME_OFFSET, Pmode));
  else
    addr = plus_constant (Pmode, virtual_stack_vars_rtx,
			  trunc_int_for_mode
			  (slot_offset + bigend_correction,
			   Pmode));

  x = gen_rtx_MEM (mode, addr);
  set_mem_align (x, alignment_in_bits);
  MEM_NOTRAP_P (x) = 1;

  stack_slot_list
    = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);

  if (frame_offset_overflow (frame_offset, current_function_decl))
    frame_offset = 0;

  return x;
}

/* Wrap up assign_stack_local_1 with last parameter as false.  */

rtx
assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align)
{
  return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
}

/* In order to evaluate some expressions, such as function calls returning
   structures in memory, we need to temporarily allocate stack locations.
   We record each allocated temporary in the following structure.

   Associated with each temporary slot is a nesting level.  When we pop up
   one level, all temporaries associated with the previous level are freed.
   Normally, all temporaries are freed after the execution of the statement
   in which they were created.  However, if we are inside a ({...}) grouping,
   the result may be in a temporary and hence must be preserved.  If the
   result could be in a temporary, we preserve it if we can determine which
   one it is in.  If we cannot determine which temporary may contain the
   result, all temporaries are preserved.  A temporary is preserved by
   pretending it was allocated at the previous nesting level.  */

struct GTY(()) temp_slot {
  /* Points to next temporary slot.  */
  struct temp_slot *next;
  /* Points to previous temporary slot.  */
  struct temp_slot *prev;
  /* The rtx to used to reference the slot.  */
  rtx slot;
  /* The size, in units, of the slot.  */
  HOST_WIDE_INT size;
  /* The type of the object in the slot, or zero if it doesn't correspond
     to a type.  We use this to determine whether a slot can be reused.
     It can be reused if objects of the type of the new slot will always
     conflict with objects of the type of the old slot.  */
  tree type;
  /* The alignment (in bits) of the slot.  */
  unsigned int align;
  /* Nonzero if this temporary is currently in use.  */
  char in_use;
  /* Nesting level at which this slot is being used.  */
  int level;
  /* The offset of the slot from the frame_pointer, including extra space
     for alignment.  This info is for combine_temp_slots.  */
  HOST_WIDE_INT base_offset;
  /* The size of the slot, including extra space for alignment.  This
     info is for combine_temp_slots.  */
  HOST_WIDE_INT full_size;
};

/* Entry for the below hash table.  */
struct GTY((for_user)) temp_slot_address_entry {
  hashval_t hash;
  rtx address;
  struct temp_slot *temp_slot;
};

struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
{
  static hashval_t hash (temp_slot_address_entry *);
  static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
};

/* A table of addresses that represent a stack slot.  The table is a mapping
   from address RTXen to a temp slot.  */
static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
static size_t n_temp_slots_in_use;

/* Removes temporary slot TEMP from LIST.  */

static void
cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
{
  if (temp->next)
    temp->next->prev = temp->prev;
  if (temp->prev)
    temp->prev->next = temp->next;
  else
    *list = temp->next;

  temp->prev = temp->next = NULL;
}

/* Inserts temporary slot TEMP to LIST.  */

static void
insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
{
  temp->next = *list;
  if (*list)
    (*list)->prev = temp;
  temp->prev = NULL;
  *list = temp;
}

/* Returns the list of used temp slots at LEVEL.  */

static struct temp_slot **
temp_slots_at_level (int level)
{
  if (level >= (int) vec_safe_length (used_temp_slots))
    vec_safe_grow_cleared (used_temp_slots, level + 1);

  return &(*used_temp_slots)[level];
}

/* Returns the maximal temporary slot level.  */

static int
max_slot_level (void)
{
  if (!used_temp_slots)
    return -1;

  return used_temp_slots->length () - 1;
}

/* Moves temporary slot TEMP to LEVEL.  */

static void
move_slot_to_level (struct temp_slot *temp, int level)
{
  cut_slot_from_list (temp, temp_slots_at_level (temp->level));
  insert_slot_to_list (temp, temp_slots_at_level (level));
  temp->level = level;
}

/* Make temporary slot TEMP available.  */

static void
make_slot_available (struct temp_slot *temp)
{
  cut_slot_from_list (temp, temp_slots_at_level (temp->level));
  insert_slot_to_list (temp, &avail_temp_slots);
  temp->in_use = 0;
  temp->level = -1;
  n_temp_slots_in_use--;
}

/* Compute the hash value for an address -> temp slot mapping.
   The value is cached on the mapping entry.  */
static hashval_t
temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
{
  int do_not_record = 0;
  return hash_rtx (t->address, GET_MODE (t->address),
		   &do_not_record, NULL, false);
}

/* Return the hash value for an address -> temp slot mapping.  */
hashval_t
temp_address_hasher::hash (temp_slot_address_entry *t)
{
  return t->hash;
}

/* Compare two address -> temp slot mapping entries.  */
bool
temp_address_hasher::equal (temp_slot_address_entry *t1,
			    temp_slot_address_entry *t2)
{
  return exp_equiv_p (t1->address, t2->address, 0, true);
}

/* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping.  */
static void
insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
{
  struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
  t->address = address;
  t->temp_slot = temp_slot;
  t->hash = temp_slot_address_compute_hash (t);
  *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
}

/* Remove an address -> temp slot mapping entry if the temp slot is
   not in use anymore.  Callback for remove_unused_temp_slot_addresses.  */
int
remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
{
  const struct temp_slot_address_entry *t = *slot;
  if (! t->temp_slot->in_use)
    temp_slot_address_table->clear_slot (slot);
  return 1;
}

/* Remove all mappings of addresses to unused temp slots.  */
static void
remove_unused_temp_slot_addresses (void)
{
  /* Use quicker clearing if there aren't any active temp slots.  */
  if (n_temp_slots_in_use)
    temp_slot_address_table->traverse
      <void *, remove_unused_temp_slot_addresses_1> (NULL);
  else
    temp_slot_address_table->empty ();
}

/* Find the temp slot corresponding to the object at address X.  */

static struct temp_slot *
find_temp_slot_from_address (rtx x)
{
  struct temp_slot *p;
  struct temp_slot_address_entry tmp, *t;

  /* First try the easy way:
     See if X exists in the address -> temp slot mapping.  */
  tmp.address = x;
  tmp.temp_slot = NULL;
  tmp.hash = temp_slot_address_compute_hash (&tmp);
  t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
  if (t)
    return t->temp_slot;

  /* If we have a sum involving a register, see if it points to a temp
     slot.  */
  if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
      && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
    return p;
  else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
	   && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
    return p;

  /* Last resort: Address is a virtual stack var address.  */
  if (GET_CODE (x) == PLUS
      && XEXP (x, 0) == virtual_stack_vars_rtx
      && CONST_INT_P (XEXP (x, 1)))
    {
      int i;
      for (i = max_slot_level (); i >= 0; i--)
	for (p = *temp_slots_at_level (i); p; p = p->next)
	  {
	    if (INTVAL (XEXP (x, 1)) >= p->base_offset
		&& INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
	      return p;
	  }
    }

  return NULL;
}

/* Allocate a temporary stack slot and record it for possible later
   reuse.

   MODE is the machine mode to be given to the returned rtx.

   SIZE is the size in units of the space required.  We do no rounding here
   since assign_stack_local will do any required rounding.

   TYPE is the type that will be used for the stack slot.  */

rtx
assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size,
			    tree type)
{
  unsigned int align;
  struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
  rtx slot;

  /* If SIZE is -1 it means that somebody tried to allocate a temporary
     of a variable size.  */
  gcc_assert (size != -1);

  align = get_stack_local_alignment (type, mode);

  /* Try to find an available, already-allocated temporary of the proper
     mode which meets the size and alignment requirements.  Choose the
     smallest one with the closest alignment.

     If assign_stack_temp is called outside of the tree->rtl expansion,
     we cannot reuse the stack slots (that may still refer to
     VIRTUAL_STACK_VARS_REGNUM).  */
  if (!virtuals_instantiated)
    {
      for (p = avail_temp_slots; p; p = p->next)
	{
	  if (p->align >= align && p->size >= size
	      && GET_MODE (p->slot) == mode
	      && objects_must_conflict_p (p->type, type)
	      && (best_p == 0 || best_p->size > p->size
		  || (best_p->size == p->size && best_p->align > p->align)))
	    {
	      if (p->align == align && p->size == size)
		{
		  selected = p;
		  cut_slot_from_list (selected, &avail_temp_slots);
		  best_p = 0;
		  break;
		}
	      best_p = p;
	    }
	}
    }

  /* Make our best, if any, the one to use.  */
  if (best_p)
    {
      selected = best_p;
      cut_slot_from_list (selected, &avail_temp_slots);

      /* If there are enough aligned bytes left over, make them into a new
	 temp_slot so that the extra bytes don't get wasted.  Do this only
	 for BLKmode slots, so that we can be sure of the alignment.  */
      if (GET_MODE (best_p->slot) == BLKmode)
	{
	  int alignment = best_p->align / BITS_PER_UNIT;
	  HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);

	  if (best_p->size - rounded_size >= alignment)
	    {
	      p = ggc_alloc<temp_slot> ();
	      p->in_use = 0;
	      p->size = best_p->size - rounded_size;
	      p->base_offset = best_p->base_offset + rounded_size;
	      p->full_size = best_p->full_size - rounded_size;
	      p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
	      p->align = best_p->align;
	      p->type = best_p->type;
	      insert_slot_to_list (p, &avail_temp_slots);

	      stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
						   stack_slot_list);

	      best_p->size = rounded_size;
	      best_p->full_size = rounded_size;
	    }
	}
    }

  /* If we still didn't find one, make a new temporary.  */
  if (selected == 0)
    {
      HOST_WIDE_INT frame_offset_old = frame_offset;

      p = ggc_alloc<temp_slot> ();

      /* We are passing an explicit alignment request to assign_stack_local.
	 One side effect of that is assign_stack_local will not round SIZE
	 to ensure the frame offset remains suitably aligned.

	 So for requests which depended on the rounding of SIZE, we go ahead
	 and round it now.  We also make sure ALIGNMENT is at least
	 BIGGEST_ALIGNMENT.  */
      gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
      p->slot = assign_stack_local_1 (mode,
				      (mode == BLKmode
				       ? CEIL_ROUND (size,
						     (int) align
						     / BITS_PER_UNIT)
				       : size),
				      align, 0);

      p->align = align;

      /* The following slot size computation is necessary because we don't
	 know the actual size of the temporary slot until assign_stack_local
	 has performed all the frame alignment and size rounding for the
	 requested temporary.  Note that extra space added for alignment
	 can be either above or below this stack slot depending on which
	 way the frame grows.  We include the extra space if and only if it
	 is above this slot.  */
      if (FRAME_GROWS_DOWNWARD)
	p->size = frame_offset_old - frame_offset;
      else
	p->size = size;

      /* Now define the fields used by combine_temp_slots.  */
      if (FRAME_GROWS_DOWNWARD)
	{
	  p->base_offset = frame_offset;
	  p->full_size = frame_offset_old - frame_offset;
	}
      else
	{
	  p->base_offset = frame_offset_old;
	  p->full_size = frame_offset - frame_offset_old;
	}

      selected = p;
    }

  p = selected;
  p->in_use = 1;
  p->type = type;
  p->level = temp_slot_level;
  n_temp_slots_in_use++;

  pp = temp_slots_at_level (p->level);
  insert_slot_to_list (p, pp);
  insert_temp_slot_address (XEXP (p->slot, 0), p);

  /* Create a new MEM rtx to avoid clobbering MEM flags of old slots.  */
  slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
  stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);

  /* If we know the alias set for the memory that will be used, use
     it.  If there's no TYPE, then we don't know anything about the
     alias set for the memory.  */
  set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
  set_mem_align (slot, align);

  /* If a type is specified, set the relevant flags.  */
  if (type != 0)
    MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
  MEM_NOTRAP_P (slot) = 1;

  return slot;
}

/* Allocate a temporary stack slot and record it for possible later
   reuse.  First two arguments are same as in preceding function.  */

rtx
assign_stack_temp (machine_mode mode, HOST_WIDE_INT size)
{
  return assign_stack_temp_for_type (mode, size, NULL_TREE);
}

/* Assign a temporary.
   If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
   and so that should be used in error messages.  In either case, we
   allocate of the given type.
   MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
   it is 0 if a register is OK.
   DONT_PROMOTE is 1 if we should not promote values in register
   to wider modes.  */

rtx
assign_temp (tree type_or_decl, int memory_required,
	     int dont_promote ATTRIBUTE_UNUSED)
{
  tree type, decl;
  machine_mode mode;
#ifdef PROMOTE_MODE
  int unsignedp;
#endif

  if (DECL_P (type_or_decl))
    decl = type_or_decl, type = TREE_TYPE (decl);
  else
    decl = NULL, type = type_or_decl;

  mode = TYPE_MODE (type);
#ifdef PROMOTE_MODE
  unsignedp = TYPE_UNSIGNED (type);
#endif

  if (mode == BLKmode || memory_required)
    {
      HOST_WIDE_INT size = int_size_in_bytes (type);
      rtx tmp;

      /* Zero sized arrays are GNU C extension.  Set size to 1 to avoid
	 problems with allocating the stack space.  */
      if (size == 0)
	size = 1;

      /* Unfortunately, we don't yet know how to allocate variable-sized
	 temporaries.  However, sometimes we can find a fixed upper limit on
	 the size, so try that instead.  */
      else if (size == -1)
	size = max_int_size_in_bytes (type);

      /* The size of the temporary may be too large to fit into an integer.  */
      /* ??? Not sure this should happen except for user silliness, so limit
	 this to things that aren't compiler-generated temporaries.  The
	 rest of the time we'll die in assign_stack_temp_for_type.  */
      if (decl && size == -1
	  && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
	{
	  error ("size of variable %q+D is too large", decl);
	  size = 1;
	}

      tmp = assign_stack_temp_for_type (mode, size, type);
      return tmp;
    }

#ifdef PROMOTE_MODE
  if (! dont_promote)
    mode = promote_mode (type, mode, &unsignedp);
#endif

  return gen_reg_rtx (mode);
}

/* Combine temporary stack slots which are adjacent on the stack.

   This allows for better use of already allocated stack space.  This is only
   done for BLKmode slots because we can be sure that we won't have alignment
   problems in this case.  */

static void
combine_temp_slots (void)
{
  struct temp_slot *p, *q, *next, *next_q;
  int num_slots;

  /* We can't combine slots, because the information about which slot
     is in which alias set will be lost.  */
  if (flag_strict_aliasing)
    return;

  /* If there are a lot of temp slots, don't do anything unless
     high levels of optimization.  */
  if (! flag_expensive_optimizations)
    for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
      if (num_slots > 100 || (num_slots > 10 && optimize == 0))
	return;

  for (p = avail_temp_slots; p; p = next)
    {
      int delete_p = 0;

      next = p->next;

      if (GET_MODE (p->slot) != BLKmode)
	continue;

      for (q = p->next; q; q = next_q)
	{
       	  int delete_q = 0;

	  next_q = q->next;

	  if (GET_MODE (q->slot) != BLKmode)
	    continue;

	  if (p->base_offset + p->full_size == q->base_offset)
	    {
	      /* Q comes after P; combine Q into P.  */
	      p->size += q->size;
	      p->full_size += q->full_size;
	      delete_q = 1;
	    }
	  else if (q->base_offset + q->full_size == p->base_offset)
	    {
	      /* P comes after Q; combine P into Q.  */
	      q->size += p->size;
	      q->full_size += p->full_size;
	      delete_p = 1;
	      break;
	    }
	  if (delete_q)
	    cut_slot_from_list (q, &avail_temp_slots);
	}

      /* Either delete P or advance past it.  */
      if (delete_p)
	cut_slot_from_list (p, &avail_temp_slots);
    }
}

/* Indicate that NEW_RTX is an alternate way of referring to the temp
   slot that previously was known by OLD_RTX.  */

void
update_temp_slot_address (rtx old_rtx, rtx new_rtx)
{
  struct temp_slot *p;

  if (rtx_equal_p (old_rtx, new_rtx))
    return;

  p = find_temp_slot_from_address (old_rtx);

  /* If we didn't find one, see if both OLD_RTX is a PLUS.  If so, and
     NEW_RTX is a register, see if one operand of the PLUS is a
     temporary location.  If so, NEW_RTX points into it.  Otherwise,
     if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
     in common between them.  If so, try a recursive call on those
     values.  */
  if (p == 0)
    {
      if (GET_CODE (old_rtx) != PLUS)
	return;

      if (REG_P (new_rtx))
	{
	  update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
	  update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
	  return;
	}
      else if (GET_CODE (new_rtx) != PLUS)
	return;

      if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
	update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
      else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
	update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
      else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
	update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
      else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
	update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));

      return;
    }

  /* Otherwise add an alias for the temp's address.  */
  insert_temp_slot_address (new_rtx, p);
}

/* If X could be a reference to a temporary slot, mark that slot as
   belonging to the to one level higher than the current level.  If X
   matched one of our slots, just mark that one.  Otherwise, we can't
   easily predict which it is, so upgrade all of them.

   This is called when an ({...}) construct occurs and a statement
   returns a value in memory.  */

void
preserve_temp_slots (rtx x)
{
  struct temp_slot *p = 0, *next;

  if (x == 0)
    return;

  /* If X is a register that is being used as a pointer, see if we have
     a temporary slot we know it points to.  */
  if (REG_P (x) && REG_POINTER (x))
    p = find_temp_slot_from_address (x);

  /* If X is not in memory or is at a constant address, it cannot be in
     a temporary slot.  */
  if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
    return;

  /* First see if we can find a match.  */
  if (p == 0)
    p = find_temp_slot_from_address (XEXP (x, 0));

  if (p != 0)
    {
      if (p->level == temp_slot_level)
	move_slot_to_level (p, temp_slot_level - 1);
      return;
    }

  /* Otherwise, preserve all non-kept slots at this level.  */
  for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
    {
      next = p->next;
      move_slot_to_level (p, temp_slot_level - 1);
    }
}

/* Free all temporaries used so far.  This is normally called at the
   end of generating code for a statement.  */

void
free_temp_slots (void)
{
  struct temp_slot *p, *next;
  bool some_available = false;

  for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
    {
      next = p->next;
      make_slot_available (p);
      some_available = true;
    }

  if (some_available)
    {
      remove_unused_temp_slot_addresses ();
      combine_temp_slots ();
    }
}

/* Push deeper into the nesting level for stack temporaries.  */

void
push_temp_slots (void)
{
  temp_slot_level++;
}

/* Pop a temporary nesting level.  All slots in use in the current level
   are freed.  */

void
pop_temp_slots (void)
{
  free_temp_slots ();
  temp_slot_level--;
}

/* Initialize temporary slots.  */

void
init_temp_slots (void)
{
  /* We have not allocated any temporaries yet.  */
  avail_temp_slots = 0;
  vec_alloc (used_temp_slots, 0);
  temp_slot_level = 0;
  n_temp_slots_in_use = 0;

  /* Set up the table to map addresses to temp slots.  */
  if (! temp_slot_address_table)
    temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
  else
    temp_slot_address_table->empty ();
}

/* Functions and data structures to keep track of the values hard regs
   had at the start of the function.  */

/* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
   and has_hard_reg_initial_val..  */
struct GTY(()) initial_value_pair {
  rtx hard_reg;
  rtx pseudo;
};
/* ???  This could be a VEC but there is currently no way to define an
   opaque VEC type.  This could be worked around by defining struct
   initial_value_pair in function.h.  */
struct GTY(()) initial_value_struct {
  int num_entries;
  int max_entries;
  initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
};

/* If a pseudo represents an initial hard reg (or expression), return
   it, else return NULL_RTX.  */

rtx
get_hard_reg_initial_reg (rtx reg)
{
  struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
  int i;

  if (ivs == 0)
    return NULL_RTX;

  for (i = 0; i < ivs->num_entries; i++)
    if (rtx_equal_p (ivs->entries[i].pseudo, reg))
      return ivs->entries[i].hard_reg;

  return NULL_RTX;
}

/* Make sure that there's a pseudo register of mode MODE that stores the
   initial value of hard register REGNO.  Return an rtx for such a pseudo.  */

rtx
get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
{
  struct initial_value_struct *ivs;
  rtx rv;

  rv = has_hard_reg_initial_val (mode, regno);
  if (rv)
    return rv;

  ivs = crtl->hard_reg_initial_vals;
  if (ivs == 0)
    {
      ivs = ggc_alloc<initial_value_struct> ();
      ivs->num_entries = 0;
      ivs->max_entries = 5;
      ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
      crtl->hard_reg_initial_vals = ivs;
    }

  if (ivs->num_entries >= ivs->max_entries)
    {
      ivs->max_entries += 5;
      ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
				    ivs->max_entries);
    }

  ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
  ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);

  return ivs->entries[ivs->num_entries++].pseudo;
}

/* See if get_hard_reg_initial_val has been used to create a pseudo
   for the initial value of hard register REGNO in mode MODE.  Return
   the associated pseudo if so, otherwise return NULL.  */

rtx
has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
{
  struct initial_value_struct *ivs;
  int i;

  ivs = crtl->hard_reg_initial_vals;
  if (ivs != 0)
    for (i = 0; i < ivs->num_entries; i++)
      if (GET_MODE (ivs->entries[i].hard_reg) == mode
	  && REGNO (ivs->entries[i].hard_reg) == regno)
	return ivs->entries[i].pseudo;

  return NULL_RTX;
}

unsigned int
emit_initial_value_sets (void)
{
  struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
  int i;
  rtx_insn *seq;

  if (ivs == 0)
    return 0;

  start_sequence ();
  for (i = 0; i < ivs->num_entries; i++)
    emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
  seq = get_insns ();
  end_sequence ();

  emit_insn_at_entry (seq);
  return 0;
}

/* Return the hardreg-pseudoreg initial values pair entry I and
   TRUE if I is a valid entry, or FALSE if I is not a valid entry.  */
bool
initial_value_entry (int i, rtx *hreg, rtx *preg)
{
  struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
  if (!ivs || i >= ivs->num_entries)
    return false;

  *hreg = ivs->entries[i].hard_reg;
  *preg = ivs->entries[i].pseudo;
  return true;
}

/* These routines are responsible for converting virtual register references
   to the actual hard register references once RTL generation is complete.

   The following four variables are used for communication between the
   routines.  They contain the offsets of the virtual registers from their
   respective hard registers.  */

static int in_arg_offset;
static int var_offset;
static int dynamic_offset;
static int out_arg_offset;
static int cfa_offset;

/* In most machines, the stack pointer register is equivalent to the bottom
   of the stack.  */

#ifndef STACK_POINTER_OFFSET
#define STACK_POINTER_OFFSET	0
#endif

#if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
#define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
#endif

/* If not defined, pick an appropriate default for the offset of dynamically
   allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
   INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE.  */

#ifndef STACK_DYNAMIC_OFFSET

/* The bottom of the stack points to the actual arguments.  If
   REG_PARM_STACK_SPACE is defined, this includes the space for the register
   parameters.  However, if OUTGOING_REG_PARM_STACK space is not defined,
   stack space for register parameters is not pushed by the caller, but
   rather part of the fixed stack areas and hence not included in
   `crtl->outgoing_args_size'.  Nevertheless, we must allow
   for it when allocating stack dynamic objects.  */

#ifdef INCOMING_REG_PARM_STACK_SPACE
#define STACK_DYNAMIC_OFFSET(FNDECL)	\
((ACCUMULATE_OUTGOING_ARGS						      \
  ? (crtl->outgoing_args_size				      \
     + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
					       : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
  : 0) + (STACK_POINTER_OFFSET))
#else
#define STACK_DYNAMIC_OFFSET(FNDECL)	\
((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0)	      \
 + (STACK_POINTER_OFFSET))
#endif
#endif


/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
   is a virtual register, return the equivalent hard register and set the
   offset indirectly through the pointer.  Otherwise, return 0.  */

static rtx
instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
{
  rtx new_rtx;
  HOST_WIDE_INT offset;

  if (x == virtual_incoming_args_rtx)
    {
      if (stack_realign_drap)
        {
	  /* Replace virtual_incoming_args_rtx with internal arg
	     pointer if DRAP is used to realign stack.  */
          new_rtx = crtl->args.internal_arg_pointer;
          offset = 0;
        }
      else
        new_rtx = arg_pointer_rtx, offset = in_arg_offset;
    }
  else if (x == virtual_stack_vars_rtx)
    new_rtx = frame_pointer_rtx, offset = var_offset;
  else if (x == virtual_stack_dynamic_rtx)
    new_rtx = stack_pointer_rtx, offset = dynamic_offset;
  else if (x == virtual_outgoing_args_rtx)
    new_rtx = stack_pointer_rtx, offset = out_arg_offset;
  else if (x == virtual_cfa_rtx)
    {
#ifdef FRAME_POINTER_CFA_OFFSET
      new_rtx = frame_pointer_rtx;
#else
      new_rtx = arg_pointer_rtx;
#endif
      offset = cfa_offset;
    }
  else if (x == virtual_preferred_stack_boundary_rtx)
    {
      new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
      offset = 0;
    }
  else
    return NULL_RTX;

  *poffset = offset;
  return new_rtx;
}

/* A subroutine of instantiate_virtual_regs.  Instantiate any virtual
   registers present inside of *LOC.  The expression is simplified,
   as much as possible, but is not to be considered "valid" in any sense
   implied by the target.  Return true if any change is made.  */

static bool
instantiate_virtual_regs_in_rtx (rtx *loc)
{
  if (!*loc)
    return false;
  bool changed = false;
  subrtx_ptr_iterator::array_type array;
  FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
    {
      rtx *loc = *iter;
      if (rtx x = *loc)
	{
	  rtx new_rtx;
	  HOST_WIDE_INT offset;
	  switch (GET_CODE (x))
	    {
	    case REG:
	      new_rtx = instantiate_new_reg (x, &offset);
	      if (new_rtx)
		{
		  *loc = plus_constant (GET_MODE (x), new_rtx, offset);
		  changed = true;
		}
	      iter.skip_subrtxes ();
	      break;

	    case PLUS:
	      new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
	      if (new_rtx)
		{
		  XEXP (x, 0) = new_rtx;
		  *loc = plus_constant (GET_MODE (x), x, offset, true);
		  changed = true;
		  iter.skip_subrtxes ();
		  break;
		}

	      /* FIXME -- from old code */
	      /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
		 we can commute the PLUS and SUBREG because pointers into the
		 frame are well-behaved.  */
	      break;

	    default:
	      break;
	    }
	}
    }
  return changed;
}

/* A subroutine of instantiate_virtual_regs_in_insn.  Return true if X
   matches the predicate for insn CODE operand OPERAND.  */

static int
safe_insn_predicate (int code, int operand, rtx x)
{
  return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
}

/* A subroutine of instantiate_virtual_regs.  Instantiate any virtual
   registers present inside of insn.  The result will be a valid insn.  */

static void
instantiate_virtual_regs_in_insn (rtx_insn *insn)
{
  HOST_WIDE_INT offset;
  int insn_code, i;
  bool any_change = false;
  rtx set, new_rtx, x;
  rtx_insn *seq;

  /* There are some special cases to be handled first.  */
  set = single_set (insn);
  if (set)
    {
      /* We're allowed to assign to a virtual register.  This is interpreted
	 to mean that the underlying register gets assigned the inverse
	 transformation.  This is used, for example, in the handling of
	 non-local gotos.  */
      new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
      if (new_rtx)
	{
	  start_sequence ();

	  instantiate_virtual_regs_in_rtx (&SET_SRC (set));
	  x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
				   gen_int_mode (-offset, GET_MODE (new_rtx)));
	  x = force_operand (x, new_rtx);
	  if (x != new_rtx)
	    emit_move_insn (new_rtx, x);

	  seq = get_insns ();
	  end_sequence ();

	  emit_insn_before (seq, insn);
	  delete_insn (insn);
	  return;
	}

      /* Handle a straight copy from a virtual register by generating a
	 new add insn.  The difference between this and falling through
	 to the generic case is avoiding a new pseudo and eliminating a
	 move insn in the initial rtl stream.  */
      new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
      if (new_rtx && offset != 0
	  && REG_P (SET_DEST (set))
	  && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
	{
	  start_sequence ();

	  x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
				   gen_int_mode (offset,
						 GET_MODE (SET_DEST (set))),
				   SET_DEST (set), 1, OPTAB_LIB_WIDEN);
	  if (x != SET_DEST (set))
	    emit_move_insn (SET_DEST (set), x);

	  seq = get_insns ();
	  end_sequence ();

	  emit_insn_before (seq, insn);
	  delete_insn (insn);
	  return;
	}

      extract_insn (insn);
      insn_code = INSN_CODE (insn);

      /* Handle a plus involving a virtual register by determining if the
	 operands remain valid if they're modified in place.  */
      if (GET_CODE (SET_SRC (set)) == PLUS
	  && recog_data.n_operands >= 3
	  && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
	  && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
	  && CONST_INT_P (recog_data.operand[2])
	  && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
	{
	  offset += INTVAL (recog_data.operand[2]);

	  /* If the sum is zero, then replace with a plain move.  */
	  if (offset == 0
	      && REG_P (SET_DEST (set))
	      && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
	    {
	      start_sequence ();
	      emit_move_insn (SET_DEST (set), new_rtx);
	      seq = get_insns ();
	      end_sequence ();

	      emit_insn_before (seq, insn);
	      delete_insn (insn);
	      return;
	    }

	  x = gen_int_mode (offset, recog_data.operand_mode[2]);

	  /* Using validate_change and apply_change_group here leaves
	     recog_data in an invalid state.  Since we know exactly what
	     we want to check, do those two by hand.  */
	  if (safe_insn_predicate (insn_code, 1, new_rtx)
	      && safe_insn_predicate (insn_code, 2, x))
	    {
	      *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
	      *recog_data.operand_loc[2] = recog_data.operand[2] = x;
	      any_change = true;

	      /* Fall through into the regular operand fixup loop in
		 order to take care of operands other than 1 and 2.  */
	    }
	}
    }
  else
    {
      extract_insn (insn);
      insn_code = INSN_CODE (insn);
    }

  /* In the general case, we expect virtual registers to appear only in
     operands, and then only as either bare registers or inside memories.  */
  for (i = 0; i < recog_data.n_operands; ++i)
    {
      x = recog_data.operand[i];
      switch (GET_CODE (x))
	{
	case MEM:
	  {
	    rtx addr = XEXP (x, 0);

	    if (!instantiate_virtual_regs_in_rtx (&addr))
	      continue;

	    start_sequence ();
	    x = replace_equiv_address (x, addr, true);
	    /* It may happen that the address with the virtual reg
	       was valid (e.g. based on the virtual stack reg, which might
	       be acceptable to the predicates with all offsets), whereas
	       the address now isn't anymore, for instance when the address
	       is still offsetted, but the base reg isn't virtual-stack-reg
	       anymore.  Below we would do a force_reg on the whole operand,
	       but this insn might actually only accept memory.  Hence,
	       before doing that last resort, try to reload the address into
	       a register, so this operand stays a MEM.  */
	    if (!safe_insn_predicate (insn_code, i, x))
	      {
		addr = force_reg (GET_MODE (addr), addr);
		x = replace_equiv_address (x, addr, true);
	      }
	    seq = get_insns ();
	    end_sequence ();
	    if (seq)
	      emit_insn_before (seq, insn);
	  }
	  break;

	case REG:
	  new_rtx = instantiate_new_reg (x, &offset);
	  if (new_rtx == NULL)
	    continue;
	  if (offset == 0)
	    x = new_rtx;
	  else
	    {
	      start_sequence ();

	      /* Careful, special mode predicates may have stuff in
		 insn_data[insn_code].operand[i].mode that isn't useful
		 to us for computing a new value.  */
	      /* ??? Recognize address_operand and/or "p" constraints
		 to see if (plus new offset) is a valid before we put
		 this through expand_simple_binop.  */
	      x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
				       gen_int_mode (offset, GET_MODE (x)),
				       NULL_RTX, 1, OPTAB_LIB_WIDEN);
	      seq = get_insns ();
	      end_sequence ();
	      emit_insn_before (seq, insn);
	    }
	  break;

	case SUBREG:
	  new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
	  if (new_rtx == NULL)
	    continue;
	  if (offset != 0)
	    {
	      start_sequence ();
	      new_rtx = expand_simple_binop
		(GET_MODE (new_rtx), PLUS, new_rtx,
		 gen_int_mode (offset, GET_MODE (new_rtx)),
		 NULL_RTX, 1, OPTAB_LIB_WIDEN);
	      seq = get_insns ();
	      end_sequence ();
	      emit_insn_before (seq, insn);
	    }
	  x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
				   GET_MODE (new_rtx), SUBREG_BYTE (x));
	  gcc_assert (x);
	  break;

	default:
	  continue;
	}

      /* At this point, X contains the new value for the operand.
	 Validate the new value vs the insn predicate.  Note that
	 asm insns will have insn_code -1 here.  */
      if (!safe_insn_predicate (insn_code, i, x))
	{
	  start_sequence ();
	  if (REG_P (x))
	    {
	      gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
	      x = copy_to_reg (x);
	    }
	  else
	    x = force_reg (insn_data[insn_code].operand[i].mode, x);
	  seq = get_insns ();
	  end_sequence ();
	  if (seq)
	    emit_insn_before (seq, insn);
	}

      *recog_data.operand_loc[i] = recog_data.operand[i] = x;
      any_change = true;
    }

  if (any_change)
    {
      /* Propagate operand changes into the duplicates.  */
      for (i = 0; i < recog_data.n_dups; ++i)
	*recog_data.dup_loc[i]
	  = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);

      /* Force re-recognition of the instruction for validation.  */
      INSN_CODE (insn) = -1;
    }

  if (asm_noperands (PATTERN (insn)) >= 0)
    {
      if (!check_asm_operands (PATTERN (insn)))
	{
	  error_for_asm (insn, "impossible constraint in %<asm%>");
	  /* For asm goto, instead of fixing up all the edges
	     just clear the template and clear input operands
	     (asm goto doesn't have any output operands).  */
	  if (JUMP_P (insn))
	    {
	      rtx asm_op = extract_asm_operands (PATTERN (insn));
	      ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
	      ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
	      ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
	    }
	  else
	    delete_insn (insn);
	}
    }
  else
    {
      if (recog_memoized (insn) < 0)
	fatal_insn_not_found (insn);
    }
}

/* Subroutine of instantiate_decls.  Given RTL representing a decl,
   do any instantiation required.  */

void
instantiate_decl_rtl (rtx x)
{
  rtx addr;

  if (x == 0)
    return;

  /* If this is a CONCAT, recurse for the pieces.  */
  if (GET_CODE (x) == CONCAT)
    {
      instantiate_decl_rtl (XEXP (x, 0));
      instantiate_decl_rtl (XEXP (x, 1));
      return;
    }

  /* If this is not a MEM, no need to do anything.  Similarly if the
     address is a constant or a register that is not a virtual register.  */
  if (!MEM_P (x))
    return;

  addr = XEXP (x, 0);
  if (CONSTANT_P (addr)
      || (REG_P (addr)
	  && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
	      || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
    return;

  instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
}

/* Helper for instantiate_decls called via walk_tree: Process all decls
   in the given DECL_VALUE_EXPR.  */

static tree
instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
  tree t = *tp;
  if (! EXPR_P (t))
    {
      *walk_subtrees = 0;
      if (DECL_P (t))
	{
	  if (DECL_RTL_SET_P (t))
	    instantiate_decl_rtl (DECL_RTL (t));
	  if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
	      && DECL_INCOMING_RTL (t))
	    instantiate_decl_rtl (DECL_INCOMING_RTL (t));
	  if ((TREE_CODE (t) == VAR_DECL
	       || TREE_CODE (t) == RESULT_DECL)
	      && DECL_HAS_VALUE_EXPR_P (t))
	    {
	      tree v = DECL_VALUE_EXPR (t);
	      walk_tree (&v, instantiate_expr, NULL, NULL);
	    }
	}
    }
  return NULL;
}

/* Subroutine of instantiate_decls: Process all decls in the given
   BLOCK node and all its subblocks.  */

static void
instantiate_decls_1 (tree let)
{
  tree t;

  for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
    {
      if (DECL_RTL_SET_P (t))
	instantiate_decl_rtl (DECL_RTL (t));
      if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
	{
	  tree v = DECL_VALUE_EXPR (t);
	  walk_tree (&v, instantiate_expr, NULL, NULL);
	}
    }

  /* Process all subblocks.  */
  for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
    instantiate_decls_1 (t);
}

/* Scan all decls in FNDECL (both variables and parameters) and instantiate
   all virtual registers in their DECL_RTL's.  */

static void
instantiate_decls (tree fndecl)
{
  tree decl;
  unsigned ix;

  /* Process all parameters of the function.  */
  for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
    {
      instantiate_decl_rtl (DECL_RTL (decl));
      instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
      if (DECL_HAS_VALUE_EXPR_P (decl))
	{
	  tree v = DECL_VALUE_EXPR (decl);
	  walk_tree (&v, instantiate_expr, NULL, NULL);
	}
    }

  if ((decl = DECL_RESULT (fndecl))
      && TREE_CODE (decl) == RESULT_DECL)
    {
      if (DECL_RTL_SET_P (decl))
	instantiate_decl_rtl (DECL_RTL (decl));
      if (DECL_HAS_VALUE_EXPR_P (decl))
	{
	  tree v = DECL_VALUE_EXPR (decl);
	  walk_tree (&v, instantiate_expr, NULL, NULL);
	}
    }

  /* Process the saved static chain if it exists.  */
  decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
  if (decl && DECL_HAS_VALUE_EXPR_P (decl))
    instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));

  /* Now process all variables defined in the function or its subblocks.  */
  instantiate_decls_1 (DECL_INITIAL (fndecl));

  FOR_EACH_LOCAL_DECL (cfun, ix, decl)
    if (DECL_RTL_SET_P (decl))
      instantiate_decl_rtl (DECL_RTL (decl));
  vec_free (cfun->local_decls);
}

/* Pass through the INSNS of function FNDECL and convert virtual register
   references to hard register references.  */

static unsigned int
instantiate_virtual_regs (void)
{
  rtx_insn *insn;

  /* Compute the offsets to use for this function.  */
  in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
  var_offset = STARTING_FRAME_OFFSET;
  dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
  out_arg_offset = STACK_POINTER_OFFSET;
#ifdef FRAME_POINTER_CFA_OFFSET
  cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
#else
  cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
#endif

  /* Initialize recognition, indicating that volatile is OK.  */
  init_recog ();

  /* Scan through all the insns, instantiating every virtual register still
     present.  */
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
      {
	/* These patterns in the instruction stream can never be recognized.
	   Fortunately, they shouldn't contain virtual registers either.  */
        if (GET_CODE (PATTERN (insn)) == USE
	    || GET_CODE (PATTERN (insn)) == CLOBBER
	    || GET_CODE (PATTERN (insn)) == ASM_INPUT)
	  continue;
	else if (DEBUG_INSN_P (insn))
	  instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
	else
	  instantiate_virtual_regs_in_insn (insn);

	if (insn->deleted ())
	  continue;

	instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));

	/* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE.  */
	if (CALL_P (insn))
	  instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
      }

  /* Instantiate the virtual registers in the DECLs for debugging purposes.  */
  instantiate_decls (current_function_decl);

  targetm.instantiate_decls ();

  /* Indicate that, from now on, assign_stack_local should use
     frame_pointer_rtx.  */
  virtuals_instantiated = 1;

  return 0;
}

namespace {

const pass_data pass_data_instantiate_virtual_regs =
{
  RTL_PASS, /* type */
  "vregs", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_instantiate_virtual_regs : public rtl_opt_pass
{
public:
  pass_instantiate_virtual_regs (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
  {}

  /* opt_pass methods: */
  virtual unsigned int execute (function *)
    {
      return instantiate_virtual_regs ();
    }

}; // class pass_instantiate_virtual_regs

} // anon namespace

rtl_opt_pass *
make_pass_instantiate_virtual_regs (gcc::context *ctxt)
{
  return new pass_instantiate_virtual_regs (ctxt);
}


/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
   This means a type for which function calls must pass an address to the
   function or get an address back from the function.
   EXP may be a type node or an expression (whose type is tested).  */

int
aggregate_value_p (const_tree exp, const_tree fntype)
{
  const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
  int i, regno, nregs;
  rtx reg;

  if (fntype)
    switch (TREE_CODE (fntype))
      {
      case CALL_EXPR:
	{
	  tree fndecl = get_callee_fndecl (fntype);
	  if (fndecl)
	    fntype = TREE_TYPE (fndecl);
	  else if (CALL_EXPR_FN (fntype))
	    fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
	  else
	    /* For internal functions, assume nothing needs to be
	       returned in memory.  */
	    return 0;
	}
	break;
      case FUNCTION_DECL:
	fntype = TREE_TYPE (fntype);
	break;
      case FUNCTION_TYPE:
      case METHOD_TYPE:
        break;
      case IDENTIFIER_NODE:
	fntype = NULL_TREE;
	break;
      default:
	/* We don't expect other tree types here.  */
	gcc_unreachable ();
      }

  if (VOID_TYPE_P (type))
    return 0;

  /* If a record should be passed the same as its first (and only) member
     don't pass it as an aggregate.  */
  if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
    return aggregate_value_p (first_field (type), fntype);

  /* If the front end has decided that this needs to be passed by
     reference, do so.  */
  if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
      && DECL_BY_REFERENCE (exp))
    return 1;

  /* Function types that are TREE_ADDRESSABLE force return in memory.  */
  if (fntype && TREE_ADDRESSABLE (fntype))
    return 1;

  /* Types that are TREE_ADDRESSABLE must be constructed in memory,
     and thus can't be returned in registers.  */
  if (TREE_ADDRESSABLE (type))
    return 1;

  if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
    return 1;

  if (targetm.calls.return_in_memory (type, fntype))
    return 1;

  /* Make sure we have suitable call-clobbered regs to return
     the value in; if not, we must return it in memory.  */
  reg = hard_function_value (type, 0, fntype, 0);

  /* If we have something other than a REG (e.g. a PARALLEL), then assume
     it is OK.  */
  if (!REG_P (reg))
    return 0;

  regno = REGNO (reg);
  nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
  for (i = 0; i < nregs; i++)
    if (! call_used_regs[regno + i])
      return 1;

  return 0;
}

/* Return true if we should assign DECL a pseudo register; false if it
   should live on the local stack.  */

bool
use_register_for_decl (const_tree decl)
{
  if (TREE_CODE (decl) == SSA_NAME)
    {
      /* We often try to use the SSA_NAME, instead of its underlying
	 decl, to get type information and guide decisions, to avoid
	 differences of behavior between anonymous and named
	 variables, but in this one case we have to go for the actual
	 variable if there is one.  The main reason is that, at least
	 at -O0, we want to place user variables on the stack, but we
	 don't mind using pseudos for anonymous or ignored temps.
	 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
	 should go in pseudos, whereas their corresponding variables
	 might have to go on the stack.  So, disregarding the decl
	 here would negatively impact debug info at -O0, enable
	 coalescing between SSA_NAMEs that ought to get different
	 stack/pseudo assignments, and get the incoming argument
	 processing thoroughly confused by PARM_DECLs expected to live
	 in stack slots but assigned to pseudos.  */
      if (!SSA_NAME_VAR (decl))
	return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
	  && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));

      decl = SSA_NAME_VAR (decl);
    }

  /* Honor volatile.  */
  if (TREE_SIDE_EFFECTS (decl))
    return false;

  /* Honor addressability.  */
  if (TREE_ADDRESSABLE (decl))
    return false;

  /* RESULT_DECLs are a bit special in that they're assigned without
     regard to use_register_for_decl, but we generally only store in
     them.  If we coalesce their SSA NAMEs, we'd better return a
     result that matches the assignment in expand_function_start.  */
  if (TREE_CODE (decl) == RESULT_DECL)
    {
      /* If it's not an aggregate, we're going to use a REG or a
	 PARALLEL containing a REG.  */
      if (!aggregate_value_p (decl, current_function_decl))
	return true;

      /* If expand_function_start determines the return value, we'll
	 use MEM if it's not by reference.  */
      if (cfun->returns_pcc_struct
	  || (targetm.calls.struct_value_rtx
	      (TREE_TYPE (current_function_decl), 1)))
	return DECL_BY_REFERENCE (decl);

      /* Otherwise, we're taking an extra all.function_result_decl
	 argument.  It's set up in assign_parms_augmented_arg_list,
	 under the (negated) conditions above, and then it's used to
	 set up the RESULT_DECL rtl in assign_params, after looping
	 over all parameters.  Now, if the RESULT_DECL is not by
	 reference, we'll use a MEM either way.  */
      if (!DECL_BY_REFERENCE (decl))
	return false;

      /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
	 the function_result_decl's assignment.  Since it's a pointer,
	 we can short-circuit a number of the tests below, and we must
	 duplicat e them because we don't have the
	 function_result_decl to test.  */
      if (!targetm.calls.allocate_stack_slots_for_args ())
	return true;
      /* We don't set DECL_IGNORED_P for the function_result_decl.  */
      if (optimize)
	return true;
      /* We don't set DECL_REGISTER for the function_result_decl.  */
      return false;
    }

  /* Decl is implicitly addressible by bound stores and loads
     if it is an aggregate holding bounds.  */
  if (chkp_function_instrumented_p (current_function_decl)
      && TREE_TYPE (decl)
      && !BOUNDED_P (decl)
      && chkp_type_has_pointer (TREE_TYPE (decl)))
    return false;

  /* Only register-like things go in registers.  */
  if (DECL_MODE (decl) == BLKmode)
    return false;

  /* If -ffloat-store specified, don't put explicit float variables
     into registers.  */
  /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
     propagates values across these stores, and it probably shouldn't.  */
  if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
    return false;

  if (!targetm.calls.allocate_stack_slots_for_args ())
    return true;

  /* If we're not interested in tracking debugging information for
     this decl, then we can certainly put it in a register.  */
  if (DECL_IGNORED_P (decl))
    return true;

  if (optimize)
    return true;

  if (!DECL_REGISTER (decl))
    return false;

  switch (TREE_CODE (TREE_TYPE (decl)))
    {
    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      /* When not optimizing, disregard register keyword for variables with
	 types containing methods, otherwise the methods won't be callable
	 from the debugger.  */
      if (TYPE_METHODS (TYPE_MAIN_VARIANT (TREE_TYPE (decl))))
	return false;
      break;
    default:
      break;
    }

  return true;
}

/* Structures to communicate between the subroutines of assign_parms.
   The first holds data persistent across all parameters, the second
   is cleared out for each parameter.  */

struct assign_parm_data_all
{
  /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
     should become a job of the target or otherwise encapsulated.  */
  CUMULATIVE_ARGS args_so_far_v;
  cumulative_args_t args_so_far;
  struct args_size stack_args_size;
  tree function_result_decl;
  tree orig_fnargs;
  rtx_insn *first_conversion_insn;
  rtx_insn *last_conversion_insn;
  HOST_WIDE_INT pretend_args_size;
  HOST_WIDE_INT extra_pretend_bytes;
  int reg_parm_stack_space;
};

struct assign_parm_data_one
{
  tree nominal_type;
  tree passed_type;
  rtx entry_parm;
  rtx stack_parm;
  machine_mode nominal_mode;
  machine_mode passed_mode;
  machine_mode promoted_mode;
  struct locate_and_pad_arg_data locate;
  int partial;
  BOOL_BITFIELD named_arg : 1;
  BOOL_BITFIELD passed_pointer : 1;
  BOOL_BITFIELD on_stack : 1;
  BOOL_BITFIELD loaded_in_reg : 1;
};

struct bounds_parm_data
{
  assign_parm_data_one parm_data;
  tree bounds_parm;
  tree ptr_parm;
  rtx ptr_entry;
  int bound_no;
};

/* A subroutine of assign_parms.  Initialize ALL.  */

static void
assign_parms_initialize_all (struct assign_parm_data_all *all)
{
  tree fntype ATTRIBUTE_UNUSED;

  memset (all, 0, sizeof (*all));

  fntype = TREE_TYPE (current_function_decl);

#ifdef INIT_CUMULATIVE_INCOMING_ARGS
  INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
#else
  INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
			current_function_decl, -1);
#endif
  all->args_so_far = pack_cumulative_args (&all->args_so_far_v);

#ifdef INCOMING_REG_PARM_STACK_SPACE
  all->reg_parm_stack_space
    = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
#endif
}

/* If ARGS contains entries with complex types, split the entry into two
   entries of the component type.  Return a new list of substitutions are
   needed, else the old list.  */

static void
split_complex_args (vec<tree> *args)
{
  unsigned i;
  tree p;

  FOR_EACH_VEC_ELT (*args, i, p)
    {
      tree type = TREE_TYPE (p);
      if (TREE_CODE (type) == COMPLEX_TYPE
	  && targetm.calls.split_complex_arg (type))
	{
	  tree decl;
	  tree subtype = TREE_TYPE (type);
	  bool addressable = TREE_ADDRESSABLE (p);

	  /* Rewrite the PARM_DECL's type with its component.  */
	  p = copy_node (p);
	  TREE_TYPE (p) = subtype;
	  DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
	  DECL_MODE (p) = VOIDmode;
	  DECL_SIZE (p) = NULL;
	  DECL_SIZE_UNIT (p) = NULL;
	  /* If this arg must go in memory, put it in a pseudo here.
	     We can't allow it to go in memory as per normal parms,
	     because the usual place might not have the imag part
	     adjacent to the real part.  */
	  DECL_ARTIFICIAL (p) = addressable;
	  DECL_IGNORED_P (p) = addressable;
	  TREE_ADDRESSABLE (p) = 0;
	  layout_decl (p, 0);
	  (*args)[i] = p;

	  /* Build a second synthetic decl.  */
	  decl = build_decl (EXPR_LOCATION (p),
			     PARM_DECL, NULL_TREE, subtype);
	  DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
	  DECL_ARTIFICIAL (decl) = addressable;
	  DECL_IGNORED_P (decl) = addressable;
	  layout_decl (decl, 0);
	  args->safe_insert (++i, decl);
	}
    }
}

/* A subroutine of assign_parms.  Adjust the parameter list to incorporate
   the hidden struct return argument, and (abi willing) complex args.
   Return the new parameter list.  */

static vec<tree> 
assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
{
  tree fndecl = current_function_decl;
  tree fntype = TREE_TYPE (fndecl);
  vec<tree> fnargs = vNULL;
  tree arg;

  for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
    fnargs.safe_push (arg);

  all->orig_fnargs = DECL_ARGUMENTS (fndecl);

  /* If struct value address is treated as the first argument, make it so.  */
  if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
      && ! cfun->returns_pcc_struct
      && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
    {
      tree type = build_pointer_type (TREE_TYPE (fntype));
      tree decl;

      decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
			 PARM_DECL, get_identifier (".result_ptr"), type);
      DECL_ARG_TYPE (decl) = type;
      DECL_ARTIFICIAL (decl) = 1;
      DECL_NAMELESS (decl) = 1;
      TREE_CONSTANT (decl) = 1;
      /* We don't set DECL_IGNORED_P or DECL_REGISTER here.  If this
	 changes, the end of the RESULT_DECL handling block in
	 use_register_for_decl must be adjusted to match.  */

      DECL_CHAIN (decl) = all->orig_fnargs;
      all->orig_fnargs = decl;
      fnargs.safe_insert (0, decl);

      all->function_result_decl = decl;

      /* If function is instrumented then bounds of the
	 passed structure address is the second argument.  */
      if (chkp_function_instrumented_p (fndecl))
	{
	  decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
			     PARM_DECL, get_identifier (".result_bnd"),
			     pointer_bounds_type_node);
	  DECL_ARG_TYPE (decl) = pointer_bounds_type_node;
	  DECL_ARTIFICIAL (decl) = 1;
	  DECL_NAMELESS (decl) = 1;
	  TREE_CONSTANT (decl) = 1;

	  DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs);
	  DECL_CHAIN (all->orig_fnargs) = decl;
	  fnargs.safe_insert (1, decl);
	}
    }

  /* If the target wants to split complex arguments into scalars, do so.  */
  if (targetm.calls.split_complex_arg)
    split_complex_args (&fnargs);

  return fnargs;
}

/* A subroutine of assign_parms.  Examine PARM and pull out type and mode
   data for the parameter.  Incorporate ABI specifics such as pass-by-
   reference and type promotion.  */

static void
assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
			     struct assign_parm_data_one *data)
{
  tree nominal_type, passed_type;
  machine_mode nominal_mode, passed_mode, promoted_mode;
  int unsignedp;

  memset (data, 0, sizeof (*data));

  /* NAMED_ARG is a misnomer.  We really mean 'non-variadic'. */
  if (!cfun->stdarg)
    data->named_arg = 1;  /* No variadic parms.  */
  else if (DECL_CHAIN (parm))
    data->named_arg = 1;  /* Not the last non-variadic parm. */
  else if (targetm.calls.strict_argument_naming (all->args_so_far))
    data->named_arg = 1;  /* Only variadic ones are unnamed.  */
  else
    data->named_arg = 0;  /* Treat as variadic.  */

  nominal_type = TREE_TYPE (parm);
  passed_type = DECL_ARG_TYPE (parm);

  /* Look out for errors propagating this far.  Also, if the parameter's
     type is void then its value doesn't matter.  */
  if (TREE_TYPE (parm) == error_mark_node
      /* This can happen after weird syntax errors
	 or if an enum type is defined among the parms.  */
      || TREE_CODE (parm) != PARM_DECL
      || passed_type == NULL
      || VOID_TYPE_P (nominal_type))
    {
      nominal_type = passed_type = void_type_node;
      nominal_mode = passed_mode = promoted_mode = VOIDmode;
      goto egress;
    }

  /* Find mode of arg as it is passed, and mode of arg as it should be
     during execution of this function.  */
  passed_mode = TYPE_MODE (passed_type);
  nominal_mode = TYPE_MODE (nominal_type);

  /* If the parm is to be passed as a transparent union or record, use the
     type of the first field for the tests below.  We have already verified
     that the modes are the same.  */
  if ((TREE_CODE (passed_type) == UNION_TYPE
       || TREE_CODE (passed_type) == RECORD_TYPE)
      && TYPE_TRANSPARENT_AGGR (passed_type))
    passed_type = TREE_TYPE (first_field (passed_type));

  /* See if this arg was passed by invisible reference.  */
  if (pass_by_reference (&all->args_so_far_v, passed_mode,
			 passed_type, data->named_arg))
    {
      passed_type = nominal_type = build_pointer_type (passed_type);
      data->passed_pointer = true;
      passed_mode = nominal_mode = TYPE_MODE (nominal_type);
    }

  /* Find mode as it is passed by the ABI.  */
  unsignedp = TYPE_UNSIGNED (passed_type);
  promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
				         TREE_TYPE (current_function_decl), 0);

 egress:
  data->nominal_type = nominal_type;
  data->passed_type = passed_type;
  data->nominal_mode = nominal_mode;
  data->passed_mode = passed_mode;
  data->promoted_mode = promoted_mode;
}

/* A subroutine of assign_parms.  Invoke setup_incoming_varargs.  */

static void
assign_parms_setup_varargs (struct assign_parm_data_all *all,
			    struct assign_parm_data_one *data, bool no_rtl)
{
  int varargs_pretend_bytes = 0;

  targetm.calls.setup_incoming_varargs (all->args_so_far,
					data->promoted_mode,
					data->passed_type,
					&varargs_pretend_bytes, no_rtl);

  /* If the back-end has requested extra stack space, record how much is
     needed.  Do not change pretend_args_size otherwise since it may be
     nonzero from an earlier partial argument.  */
  if (varargs_pretend_bytes > 0)
    all->pretend_args_size = varargs_pretend_bytes;
}

/* A subroutine of assign_parms.  Set DATA->ENTRY_PARM corresponding to
   the incoming location of the current parameter.  */

static void
assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
			    struct assign_parm_data_one *data)
{
  HOST_WIDE_INT pretend_bytes = 0;
  rtx entry_parm;
  bool in_regs;

  if (data->promoted_mode == VOIDmode)
    {
      data->entry_parm = data->stack_parm = const0_rtx;
      return;
    }

  entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
						    data->promoted_mode,
						    data->passed_type,
						    data->named_arg);

  if (entry_parm == 0)
    data->promoted_mode = data->passed_mode;

  /* Determine parm's home in the stack, in case it arrives in the stack
     or we should pretend it did.  Compute the stack position and rtx where
     the argument arrives and its size.

     There is one complexity here:  If this was a parameter that would
     have been passed in registers, but wasn't only because it is
     __builtin_va_alist, we want locate_and_pad_parm to treat it as if
     it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
     In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
     as it was the previous time.  */
  in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type);
#ifdef STACK_PARMS_IN_REG_PARM_AREA
  in_regs = true;
#endif
  if (!in_regs && !data->named_arg)
    {
      if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
	{
	  rtx tem;
	  tem = targetm.calls.function_incoming_arg (all->args_so_far,
						     data->promoted_mode,
						     data->passed_type, true);
	  in_regs = tem != NULL;
	}
    }

  /* If this parameter was passed both in registers and in the stack, use
     the copy on the stack.  */
  if (targetm.calls.must_pass_in_stack (data->promoted_mode,
					data->passed_type))
    entry_parm = 0;

  if (entry_parm)
    {
      int partial;

      partial = targetm.calls.arg_partial_bytes (all->args_so_far,
						 data->promoted_mode,
						 data->passed_type,
						 data->named_arg);
      data->partial = partial;

      /* The caller might already have allocated stack space for the
	 register parameters.  */
      if (partial != 0 && all->reg_parm_stack_space == 0)
	{
	  /* Part of this argument is passed in registers and part
	     is passed on the stack.  Ask the prologue code to extend
	     the stack part so that we can recreate the full value.

	     PRETEND_BYTES is the size of the registers we need to store.
	     CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
	     stack space that the prologue should allocate.

	     Internally, gcc assumes that the argument pointer is aligned
	     to STACK_BOUNDARY bits.  This is used both for alignment
	     optimizations (see init_emit) and to locate arguments that are
	     aligned to more than PARM_BOUNDARY bits.  We must preserve this
	     invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
	     a stack boundary.  */

	  /* We assume at most one partial arg, and it must be the first
	     argument on the stack.  */
	  gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);

	  pretend_bytes = partial;
	  all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);

	  /* We want to align relative to the actual stack pointer, so
	     don't include this in the stack size until later.  */
	  all->extra_pretend_bytes = all->pretend_args_size;
	}
    }

  locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
		       all->reg_parm_stack_space,
		       entry_parm ? data->partial : 0, current_function_decl,
		       &all->stack_args_size, &data->locate);

  /* Update parm_stack_boundary if this parameter is passed in the
     stack.  */
  if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
    crtl->parm_stack_boundary = data->locate.boundary;

  /* Adjust offsets to include the pretend args.  */
  pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
  data->locate.slot_offset.constant += pretend_bytes;
  data->locate.offset.constant += pretend_bytes;

  data->entry_parm = entry_parm;
}

/* A subroutine of assign_parms.  If there is actually space on the stack
   for this parm, count it in stack_args_size and return true.  */

static bool
assign_parm_is_stack_parm (struct assign_parm_data_all *all,
			   struct assign_parm_data_one *data)
{
  /* Bounds are never passed on the stack to keep compatibility
     with not instrumented code.  */
  if (POINTER_BOUNDS_TYPE_P (data->passed_type))
    return false;
  /* Trivially true if we've no incoming register.  */
  else if (data->entry_parm == NULL)
    ;
  /* Also true if we're partially in registers and partially not,
     since we've arranged to drop the entire argument on the stack.  */
  else if (data->partial != 0)
    ;
  /* Also true if the target says that it's passed in both registers
     and on the stack.  */
  else if (GET_CODE (data->entry_parm) == PARALLEL
	   && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
    ;
  /* Also true if the target says that there's stack allocated for
     all register parameters.  */
  else if (all->reg_parm_stack_space > 0)
    ;
  /* Otherwise, no, this parameter has no ABI defined stack slot.  */
  else
    return false;

  all->stack_args_size.constant += data->locate.size.constant;
  if (data->locate.size.var)
    ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);

  return true;
}

/* A subroutine of assign_parms.  Given that this parameter is allocated
   stack space by the ABI, find it.  */

static void
assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
{
  rtx offset_rtx, stack_parm;
  unsigned int align, boundary;

  /* If we're passing this arg using a reg, make its stack home the
     aligned stack slot.  */
  if (data->entry_parm)
    offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
  else
    offset_rtx = ARGS_SIZE_RTX (data->locate.offset);

  stack_parm = crtl->args.internal_arg_pointer;
  if (offset_rtx != const0_rtx)
    stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
  stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);

  if (!data->passed_pointer)
    {
      set_mem_attributes (stack_parm, parm, 1);
      /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
	 while promoted mode's size is needed.  */
      if (data->promoted_mode != BLKmode
	  && data->promoted_mode != DECL_MODE (parm))
	{
	  set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
	  if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
	    {
	      int offset = subreg_lowpart_offset (DECL_MODE (parm),
						  data->promoted_mode);
	      if (offset)
		set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
	    }
	}
    }

  boundary = data->locate.boundary;
  align = BITS_PER_UNIT;

  /* If we're padding upward, we know that the alignment of the slot
     is TARGET_FUNCTION_ARG_BOUNDARY.  If we're using slot_offset, we're
     intentionally forcing upward padding.  Otherwise we have to come
     up with a guess at the alignment based on OFFSET_RTX.  */
  if (data->locate.where_pad != downward || data->entry_parm)
    align = boundary;
  else if (CONST_INT_P (offset_rtx))
    {
      align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
      align = align & -align;
    }
  set_mem_align (stack_parm, align);

  if (data->entry_parm)
    set_reg_attrs_for_parm (data->entry_parm, stack_parm);

  data->stack_parm = stack_parm;
}

/* A subroutine of assign_parms.  Adjust DATA->ENTRY_RTL such that it's
   always valid and contiguous.  */

static void
assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
{
  rtx entry_parm = data->entry_parm;
  rtx stack_parm = data->stack_parm;

  /* If this parm was passed part in regs and part in memory, pretend it
     arrived entirely in memory by pushing the register-part onto the stack.
     In the special case of a DImode or DFmode that is split, we could put
     it together in a pseudoreg directly, but for now that's not worth
     bothering with.  */
  if (data->partial != 0)
    {
      /* Handle calls that pass values in multiple non-contiguous
	 locations.  The Irix 6 ABI has examples of this.  */
      if (GET_CODE (entry_parm) == PARALLEL)
	emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
			  data->passed_type,
			  int_size_in_bytes (data->passed_type));
      else
	{
	  gcc_assert (data->partial % UNITS_PER_WORD == 0);
	  move_block_from_reg (REGNO (entry_parm),
			       validize_mem (copy_rtx (stack_parm)),
			       data->partial / UNITS_PER_WORD);
	}

      entry_parm = stack_parm;
    }

  /* If we didn't decide this parm came in a register, by default it came
     on the stack.  */
  else if (entry_parm == NULL)
    entry_parm = stack_parm;

  /* When an argument is passed in multiple locations, we can't make use
     of this information, but we can save some copying if the whole argument
     is passed in a single register.  */
  else if (GET_CODE (entry_parm) == PARALLEL
	   && data->nominal_mode != BLKmode
	   && data->passed_mode != BLKmode)
    {
      size_t i, len = XVECLEN (entry_parm, 0);

      for (i = 0; i < len; i++)
	if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
	    && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
	    && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
		== data->passed_mode)
	    && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
	  {
	    entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
	    break;
	  }
    }

  data->entry_parm = entry_parm;
}

/* A subroutine of assign_parms.  Reconstitute any values which were
   passed in multiple registers and would fit in a single register.  */

static void
assign_parm_remove_parallels (struct assign_parm_data_one *data)
{
  rtx entry_parm = data->entry_parm;

  /* Convert the PARALLEL to a REG of the same mode as the parallel.
     This can be done with register operations rather than on the
     stack, even if we will store the reconstituted parameter on the
     stack later.  */
  if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
    {
      rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
      emit_group_store (parmreg, entry_parm, data->passed_type,
			GET_MODE_SIZE (GET_MODE (entry_parm)));
      entry_parm = parmreg;
    }

  data->entry_parm = entry_parm;
}

/* A subroutine of assign_parms.  Adjust DATA->STACK_RTL such that it's
   always valid and properly aligned.  */

static void
assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
{
  rtx stack_parm = data->stack_parm;

  /* If we can't trust the parm stack slot to be aligned enough for its
     ultimate type, don't use that slot after entry.  We'll make another
     stack slot, if we need one.  */
  if (stack_parm
      && ((STRICT_ALIGNMENT
	   && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
	  || (data->nominal_type
	      && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
	      && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
    stack_parm = NULL;

  /* If parm was passed in memory, and we need to convert it on entry,
     don't store it back in that same slot.  */
  else if (data->entry_parm == stack_parm
	   && data->nominal_mode != BLKmode
	   && data->nominal_mode != data->passed_mode)
    stack_parm = NULL;

  /* If stack protection is in effect for this function, don't leave any
     pointers in their passed stack slots.  */
  else if (crtl->stack_protect_guard
	   && (flag_stack_protect == 2
	       || data->passed_pointer
	       || POINTER_TYPE_P (data->nominal_type)))
    stack_parm = NULL;

  data->stack_parm = stack_parm;
}

/* A subroutine of assign_parms.  Return true if the current parameter
   should be stored as a BLKmode in the current frame.  */

static bool
assign_parm_setup_block_p (struct assign_parm_data_one *data)
{
  if (data->nominal_mode == BLKmode)
    return true;
  if (GET_MODE (data->entry_parm) == BLKmode)
    return true;

#ifdef BLOCK_REG_PADDING
  /* Only assign_parm_setup_block knows how to deal with register arguments
     that are padded at the least significant end.  */
  if (REG_P (data->entry_parm)
      && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
      && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
	  == (BYTES_BIG_ENDIAN ? upward : downward)))
    return true;
#endif

  return false;
}

/* A subroutine of assign_parms.  Arrange for the parameter to be
   present and valid in DATA->STACK_RTL.  */

static void
assign_parm_setup_block (struct assign_parm_data_all *all,
			 tree parm, struct assign_parm_data_one *data)
{
  rtx entry_parm = data->entry_parm;
  rtx stack_parm = data->stack_parm;
  rtx target_reg = NULL_RTX;
  bool in_conversion_seq = false;
  HOST_WIDE_INT size;
  HOST_WIDE_INT size_stored;

  if (GET_CODE (entry_parm) == PARALLEL)
    entry_parm = emit_group_move_into_temps (entry_parm);

  /* If we want the parameter in a pseudo, don't use a stack slot.  */
  if (is_gimple_reg (parm) && use_register_for_decl (parm))
    {
      tree def = ssa_default_def (cfun, parm);
      gcc_assert (def);
      machine_mode mode = promote_ssa_mode (def, NULL);
      rtx reg = gen_reg_rtx (mode);
      if (GET_CODE (reg) != CONCAT)
	stack_parm = reg;
      else
	{
	  target_reg = reg;
	  /* Avoid allocating a stack slot, if there isn't one
	     preallocated by the ABI.  It might seem like we should
	     always prefer a pseudo, but converting between
	     floating-point and integer modes goes through the stack
	     on various machines, so it's better to use the reserved
	     stack slot than to risk wasting it and allocating more
	     for the conversion.  */
	  if (stack_parm == NULL_RTX)
	    {
	      int save = generating_concat_p;
	      generating_concat_p = 0;
	      stack_parm = gen_reg_rtx (mode);
	      generating_concat_p = save;
	    }
	}
      data->stack_parm = NULL;
    }

  size = int_size_in_bytes (data->passed_type);
  size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
  if (stack_parm == 0)
    {
      DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
      stack_parm = assign_stack_local (BLKmode, size_stored,
				       DECL_ALIGN (parm));
      if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
	PUT_MODE (stack_parm, GET_MODE (entry_parm));
      set_mem_attributes (stack_parm, parm, 1);
    }

  /* If a BLKmode arrives in registers, copy it to a stack slot.  Handle
     calls that pass values in multiple non-contiguous locations.  */
  if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
    {
      rtx mem;

      /* Note that we will be storing an integral number of words.
	 So we have to be careful to ensure that we allocate an
	 integral number of words.  We do this above when we call
	 assign_stack_local if space was not allocated in the argument
	 list.  If it was, this will not work if PARM_BOUNDARY is not
	 a multiple of BITS_PER_WORD.  It isn't clear how to fix this
	 if it becomes a problem.  Exception is when BLKmode arrives
	 with arguments not conforming to word_mode.  */

      if (data->stack_parm == 0)
	;
      else if (GET_CODE (entry_parm) == PARALLEL)
	;
      else
	gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));

      mem = validize_mem (copy_rtx (stack_parm));

      /* Handle values in multiple non-contiguous locations.  */
      if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
	emit_group_store (mem, entry_parm, data->passed_type, size);
      else if (GET_CODE (entry_parm) == PARALLEL)
	{
	  push_to_sequence2 (all->first_conversion_insn,
			     all->last_conversion_insn);
	  emit_group_store (mem, entry_parm, data->passed_type, size);
	  all->first_conversion_insn = get_insns ();
	  all->last_conversion_insn = get_last_insn ();
	  end_sequence ();
	  in_conversion_seq = true;
	}

      else if (size == 0)
	;

      /* If SIZE is that of a mode no bigger than a word, just use
	 that mode's store operation.  */
      else if (size <= UNITS_PER_WORD)
	{
	  machine_mode mode
	    = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);

	  if (mode != BLKmode
#ifdef BLOCK_REG_PADDING
	      && (size == UNITS_PER_WORD
		  || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
		      != (BYTES_BIG_ENDIAN ? upward : downward)))
#endif
	      )
	    {
	      rtx reg;

	      /* We are really truncating a word_mode value containing
		 SIZE bytes into a value of mode MODE.  If such an
		 operation requires no actual instructions, we can refer
		 to the value directly in mode MODE, otherwise we must
		 start with the register in word_mode and explicitly
		 convert it.  */
	      if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
		reg = gen_rtx_REG (mode, REGNO (entry_parm));
	      else
		{
		  reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
		  reg = convert_to_mode (mode, copy_to_reg (reg), 1);
		}
	      emit_move_insn (change_address (mem, mode, 0), reg);
	    }

#ifdef BLOCK_REG_PADDING
	  /* Storing the register in memory as a full word, as
	     move_block_from_reg below would do, and then using the
	     MEM in a smaller mode, has the effect of shifting right
	     if BYTES_BIG_ENDIAN.  If we're bypassing memory, the
	     shifting must be explicit.  */
	  else if (!MEM_P (mem))
	    {
	      rtx x;

	      /* If the assert below fails, we should have taken the
		 mode != BLKmode path above, unless we have downward
		 padding of smaller-than-word arguments on a machine
		 with little-endian bytes, which would likely require
		 additional changes to work correctly.  */
	      gcc_checking_assert (BYTES_BIG_ENDIAN
				   && (BLOCK_REG_PADDING (mode,
							  data->passed_type, 1)
				       == upward));

	      int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;

	      x = gen_rtx_REG (word_mode, REGNO (entry_parm));
	      x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
				NULL_RTX, 1);
	      x = force_reg (word_mode, x);
	      x = gen_lowpart_SUBREG (GET_MODE (mem), x);

	      emit_move_insn (mem, x);
	    }
#endif

	  /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
	     machine must be aligned to the left before storing
	     to memory.  Note that the previous test doesn't
	     handle all cases (e.g. SIZE == 3).  */
	  else if (size != UNITS_PER_WORD
#ifdef BLOCK_REG_PADDING
		   && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
		       == downward)
#else
		   && BYTES_BIG_ENDIAN
#endif
		   )
	    {
	      rtx tem, x;
	      int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
	      rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));

	      x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
	      tem = change_address (mem, word_mode, 0);
	      emit_move_insn (tem, x);
	    }
	  else
	    move_block_from_reg (REGNO (entry_parm), mem,
				 size_stored / UNITS_PER_WORD);
	}
      else if (!MEM_P (mem))
	{
	  gcc_checking_assert (size > UNITS_PER_WORD);
#ifdef BLOCK_REG_PADDING
	  gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
						  data->passed_type, 0)
			       == upward);
#endif
	  emit_move_insn (mem, entry_parm);
	}
      else
	move_block_from_reg (REGNO (entry_parm), mem,
			     size_stored / UNITS_PER_WORD);
    }
  else if (data->stack_parm == 0)
    {
      push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
      emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
		       BLOCK_OP_NORMAL);
      all->first_conversion_insn = get_insns ();
      all->last_conversion_insn = get_last_insn ();
      end_sequence ();
      in_conversion_seq = true;
    }

  if (target_reg)
    {
      if (!in_conversion_seq)
	emit_move_insn (target_reg, stack_parm);
      else
	{
	  push_to_sequence2 (all->first_conversion_insn,
			     all->last_conversion_insn);
	  emit_move_insn (target_reg, stack_parm);
	  all->first_conversion_insn = get_insns ();
	  all->last_conversion_insn = get_last_insn ();
	  end_sequence ();
	}
      stack_parm = target_reg;
    }

  data->stack_parm = stack_parm;
  set_parm_rtl (parm, stack_parm);
}

/* A subroutine of assign_parms.  Allocate a pseudo to hold the current
   parameter.  Get it there.  Perform all ABI specified conversions.  */

static void
assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
		       struct assign_parm_data_one *data)
{
  rtx parmreg, validated_mem;
  rtx equiv_stack_parm;
  machine_mode promoted_nominal_mode;
  int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
  bool did_conversion = false;
  bool need_conversion, moved;
  rtx rtl;

  /* Store the parm in a pseudoregister during the function, but we may
     need to do it in a wider mode.  Using 2 here makes the result
     consistent with promote_decl_mode and thus expand_expr_real_1.  */
  promoted_nominal_mode
    = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
			     TREE_TYPE (current_function_decl), 2);

  parmreg = gen_reg_rtx (promoted_nominal_mode);
  if (!DECL_ARTIFICIAL (parm))
    mark_user_reg (parmreg);

  /* If this was an item that we received a pointer to,
     set rtl appropriately.  */
  if (data->passed_pointer)
    {
      rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
      set_mem_attributes (rtl, parm, 1);
    }
  else
    rtl = parmreg;

  assign_parm_remove_parallels (data);

  /* Copy the value into the register, thus bridging between
     assign_parm_find_data_types and expand_expr_real_1.  */

  equiv_stack_parm = data->stack_parm;
  validated_mem = validize_mem (copy_rtx (data->entry_parm));

  need_conversion = (data->nominal_mode != data->passed_mode
		     || promoted_nominal_mode != data->promoted_mode);
  moved = false;

  if (need_conversion
      && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
      && data->nominal_mode == data->passed_mode
      && data->nominal_mode == GET_MODE (data->entry_parm))
    {
      /* ENTRY_PARM has been converted to PROMOTED_MODE, its
	 mode, by the caller.  We now have to convert it to
	 NOMINAL_MODE, if different.  However, PARMREG may be in
	 a different mode than NOMINAL_MODE if it is being stored
	 promoted.

	 If ENTRY_PARM is a hard register, it might be in a register
	 not valid for operating in its mode (e.g., an odd-numbered
	 register for a DFmode).  In that case, moves are the only
	 thing valid, so we can't do a convert from there.  This
	 occurs when the calling sequence allow such misaligned
	 usages.

	 In addition, the conversion may involve a call, which could
	 clobber parameters which haven't been copied to pseudo
	 registers yet.

	 First, we try to emit an insn which performs the necessary
	 conversion.  We verify that this insn does not clobber any
	 hard registers.  */

      enum insn_code icode;
      rtx op0, op1;

      icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
			    unsignedp);

      op0 = parmreg;
      op1 = validated_mem;
      if (icode != CODE_FOR_nothing
	  && insn_operand_matches (icode, 0, op0)
	  && insn_operand_matches (icode, 1, op1))
	{
	  enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
	  rtx_insn *insn, *insns;
	  rtx t = op1;
	  HARD_REG_SET hardregs;

	  start_sequence ();
	  /* If op1 is a hard register that is likely spilled, first
	     force it into a pseudo, otherwise combiner might extend
	     its lifetime too much.  */
	  if (GET_CODE (t) == SUBREG)
	    t = SUBREG_REG (t);
	  if (REG_P (t)
	      && HARD_REGISTER_P (t)
	      && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
	      && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
	    {
	      t = gen_reg_rtx (GET_MODE (op1));
	      emit_move_insn (t, op1);
	    }
	  else
	    t = op1;
	  rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
					   data->passed_mode, unsignedp);
	  emit_insn (pat);
	  insns = get_insns ();

	  moved = true;
	  CLEAR_HARD_REG_SET (hardregs);
	  for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
	    {
	      if (INSN_P (insn))
		note_stores (PATTERN (insn), record_hard_reg_sets,
			     &hardregs);
	      if (!hard_reg_set_empty_p (hardregs))
		moved = false;
	    }

	  end_sequence ();

	  if (moved)
	    {
	      emit_insn (insns);
	      if (equiv_stack_parm != NULL_RTX)
		equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
						  equiv_stack_parm);
	    }
	}
    }

  if (moved)
    /* Nothing to do.  */
    ;
  else if (need_conversion)
    {
      /* We did not have an insn to convert directly, or the sequence
	 generated appeared unsafe.  We must first copy the parm to a
	 pseudo reg, and save the conversion until after all
	 parameters have been moved.  */

      int save_tree_used;
      rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));

      emit_move_insn (tempreg, validated_mem);

      push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
      tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);

      if (GET_CODE (tempreg) == SUBREG
	  && GET_MODE (tempreg) == data->nominal_mode
	  && REG_P (SUBREG_REG (tempreg))
	  && data->nominal_mode == data->passed_mode
	  && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
	  && GET_MODE_SIZE (GET_MODE (tempreg))
	     < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
	{
	  /* The argument is already sign/zero extended, so note it
	     into the subreg.  */
	  SUBREG_PROMOTED_VAR_P (tempreg) = 1;
	  SUBREG_PROMOTED_SET (tempreg, unsignedp);
	}

      /* TREE_USED gets set erroneously during expand_assignment.  */
      save_tree_used = TREE_USED (parm);
      SET_DECL_RTL (parm, rtl);
      expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
      SET_DECL_RTL (parm, NULL_RTX);
      TREE_USED (parm) = save_tree_used;
      all->first_conversion_insn = get_insns ();
      all->last_conversion_insn = get_last_insn ();
      end_sequence ();

      did_conversion = true;
    }
  else
    emit_move_insn (parmreg, validated_mem);

  /* If we were passed a pointer but the actual value can safely live
     in a register, retrieve it and use it directly.  */
  if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
    {
      /* We can't use nominal_mode, because it will have been set to
	 Pmode above.  We must use the actual mode of the parm.  */
      if (use_register_for_decl (parm))
	{
	  parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
	  mark_user_reg (parmreg);
	}
      else
	{
	  int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
					    TYPE_MODE (TREE_TYPE (parm)),
					    TYPE_ALIGN (TREE_TYPE (parm)));
	  parmreg
	    = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
				  GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
				  align);
	  set_mem_attributes (parmreg, parm, 1);
	}

      if (GET_MODE (parmreg) != GET_MODE (rtl))
	{
	  rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
	  int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));

	  push_to_sequence2 (all->first_conversion_insn,
			     all->last_conversion_insn);
	  emit_move_insn (tempreg, rtl);
	  tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
	  emit_move_insn (parmreg, tempreg);
	  all->first_conversion_insn = get_insns ();
	  all->last_conversion_insn = get_last_insn ();
	  end_sequence ();

	  did_conversion = true;
	}
      else
	emit_move_insn (parmreg, rtl);

      rtl = parmreg;

      /* STACK_PARM is the pointer, not the parm, and PARMREG is
	 now the parm.  */
      data->stack_parm = NULL;
    }

  set_parm_rtl (parm, rtl);

  /* Mark the register as eliminable if we did no conversion and it was
     copied from memory at a fixed offset, and the arg pointer was not
     copied to a pseudo-reg.  If the arg pointer is a pseudo reg or the
     offset formed an invalid address, such memory-equivalences as we
     make here would screw up life analysis for it.  */
  if (data->nominal_mode == data->passed_mode
      && !did_conversion
      && data->stack_parm != 0
      && MEM_P (data->stack_parm)
      && data->locate.offset.var == 0
      && reg_mentioned_p (virtual_incoming_args_rtx,
			  XEXP (data->stack_parm, 0)))
    {
      rtx_insn *linsn = get_last_insn ();
      rtx_insn *sinsn;
      rtx set;

      /* Mark complex types separately.  */
      if (GET_CODE (parmreg) == CONCAT)
	{
	  machine_mode submode
	    = GET_MODE_INNER (GET_MODE (parmreg));
	  int regnor = REGNO (XEXP (parmreg, 0));
	  int regnoi = REGNO (XEXP (parmreg, 1));
	  rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
	  rtx stacki = adjust_address_nv (data->stack_parm, submode,
					  GET_MODE_SIZE (submode));

	  /* Scan backwards for the set of the real and
	     imaginary parts.  */
	  for (sinsn = linsn; sinsn != 0;
	       sinsn = prev_nonnote_insn (sinsn))
	    {
	      set = single_set (sinsn);
	      if (set == 0)
		continue;

	      if (SET_DEST (set) == regno_reg_rtx [regnoi])
		set_unique_reg_note (sinsn, REG_EQUIV, stacki);
	      else if (SET_DEST (set) == regno_reg_rtx [regnor])
		set_unique_reg_note (sinsn, REG_EQUIV, stackr);
	    }
	}
      else
	set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
    }

  /* For pointer data type, suggest pointer register.  */
  if (POINTER_TYPE_P (TREE_TYPE (parm)))
    mark_reg_pointer (parmreg,
		      TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
}

/* A subroutine of assign_parms.  Allocate stack space to hold the current
   parameter.  Get it there.  Perform all ABI specified conversions.  */

static void
assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
		         struct assign_parm_data_one *data)
{
  /* Value must be stored in the stack slot STACK_PARM during function
     execution.  */
  bool to_conversion = false;

  assign_parm_remove_parallels (data);

  if (data->promoted_mode != data->nominal_mode)
    {
      /* Conversion is required.  */
      rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));

      emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));

      push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
      to_conversion = true;

      data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
					  TYPE_UNSIGNED (TREE_TYPE (parm)));

      if (data->stack_parm)
	{
	  int offset = subreg_lowpart_offset (data->nominal_mode,
					      GET_MODE (data->stack_parm));
	  /* ??? This may need a big-endian conversion on sparc64.  */
	  data->stack_parm
	    = adjust_address (data->stack_parm, data->nominal_mode, 0);
	  if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
	    set_mem_offset (data->stack_parm,
			    MEM_OFFSET (data->stack_parm) + offset);
	}
    }

  if (data->entry_parm != data->stack_parm)
    {
      rtx src, dest;

      if (data->stack_parm == 0)
	{
	  int align = STACK_SLOT_ALIGNMENT (data->passed_type,
					    GET_MODE (data->entry_parm),
					    TYPE_ALIGN (data->passed_type));
	  data->stack_parm
	    = assign_stack_local (GET_MODE (data->entry_parm),
				  GET_MODE_SIZE (GET_MODE (data->entry_parm)),
				  align);
	  set_mem_attributes (data->stack_parm, parm, 1);
	}

      dest = validize_mem (copy_rtx (data->stack_parm));
      src = validize_mem (copy_rtx (data->entry_parm));

      if (MEM_P (src))
	{
	  /* Use a block move to handle potentially misaligned entry_parm.  */
	  if (!to_conversion)
	    push_to_sequence2 (all->first_conversion_insn,
			       all->last_conversion_insn);
	  to_conversion = true;

	  emit_block_move (dest, src,
			   GEN_INT (int_size_in_bytes (data->passed_type)),
			   BLOCK_OP_NORMAL);
	}
      else
	emit_move_insn (dest, src);
    }

  if (to_conversion)
    {
      all->first_conversion_insn = get_insns ();
      all->last_conversion_insn = get_last_insn ();
      end_sequence ();
    }

  set_parm_rtl (parm, data->stack_parm);
}

/* A subroutine of assign_parms.  If the ABI splits complex arguments, then
   undo the frobbing that we did in assign_parms_augmented_arg_list.  */

static void
assign_parms_unsplit_complex (struct assign_parm_data_all *all,
			      vec<tree> fnargs)
{
  tree parm;
  tree orig_fnargs = all->orig_fnargs;
  unsigned i = 0;

  for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
    {
      if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
	  && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
	{
	  rtx tmp, real, imag;
	  machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));

	  real = DECL_RTL (fnargs[i]);
	  imag = DECL_RTL (fnargs[i + 1]);
	  if (inner != GET_MODE (real))
	    {
	      real = gen_lowpart_SUBREG (inner, real);
	      imag = gen_lowpart_SUBREG (inner, imag);
	    }

	  if (TREE_ADDRESSABLE (parm))
	    {
	      rtx rmem, imem;
	      HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
	      int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
						DECL_MODE (parm),
						TYPE_ALIGN (TREE_TYPE (parm)));

	      /* split_complex_arg put the real and imag parts in
		 pseudos.  Move them to memory.  */
	      tmp = assign_stack_local (DECL_MODE (parm), size, align);
	      set_mem_attributes (tmp, parm, 1);
	      rmem = adjust_address_nv (tmp, inner, 0);
	      imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
	      push_to_sequence2 (all->first_conversion_insn,
				 all->last_conversion_insn);
	      emit_move_insn (rmem, real);
	      emit_move_insn (imem, imag);
	      all->first_conversion_insn = get_insns ();
	      all->last_conversion_insn = get_last_insn ();
	      end_sequence ();
	    }
	  else
	    tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
	  set_parm_rtl (parm, tmp);

	  real = DECL_INCOMING_RTL (fnargs[i]);
	  imag = DECL_INCOMING_RTL (fnargs[i + 1]);
	  if (inner != GET_MODE (real))
	    {
	      real = gen_lowpart_SUBREG (inner, real);
	      imag = gen_lowpart_SUBREG (inner, imag);
	    }
	  tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
	  set_decl_incoming_rtl (parm, tmp, false);
	  i++;
	}
    }
}

/* Load bounds of PARM from bounds table.  */
static void
assign_parm_load_bounds (struct assign_parm_data_one *data,
			 tree parm,
			 rtx entry,
			 unsigned bound_no)
{
  bitmap_iterator bi;
  unsigned i, offs = 0;
  int bnd_no = -1;
  rtx slot = NULL, ptr = NULL;

  if (parm)
    {
      bitmap slots;
      bitmap_obstack_initialize (NULL);
      slots = BITMAP_ALLOC (NULL);
      chkp_find_bound_slots (TREE_TYPE (parm), slots);
      EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi)
	{
	  if (bound_no)
	    bound_no--;
	  else
	    {
	      bnd_no = i;
	      break;
	    }
	}
      BITMAP_FREE (slots);
      bitmap_obstack_release (NULL);
    }

  /* We may have bounds not associated with any pointer.  */
  if (bnd_no != -1)
    offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT;

  /* Find associated pointer.  */
  if (bnd_no == -1)
    {
      /* If bounds are not associated with any bounds,
	 then it is passed in a register or special slot.  */
      gcc_assert (data->entry_parm);
      ptr = const0_rtx;
    }
  else if (MEM_P (entry))
    slot = adjust_address (entry, Pmode, offs);
  else if (REG_P (entry))
    ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no);
  else if (GET_CODE (entry) == PARALLEL)
    ptr = chkp_get_value_with_offs (entry, GEN_INT (offs));
  else
    gcc_unreachable ();
  data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr,
							data->entry_parm);
}

/* Assign RTL expressions to the function's bounds parameters BNDARGS.  */

static void
assign_bounds (vec<bounds_parm_data> &bndargs,
	       struct assign_parm_data_all &all,
	       bool assign_regs, bool assign_special,
	       bool assign_bt)
{
  unsigned i, pass;
  bounds_parm_data *pbdata;

  if (!bndargs.exists ())
    return;

  /* We make few passes to store input bounds.  Firstly handle bounds
     passed in registers.  After that we load bounds passed in special
     slots.  Finally we load bounds from Bounds Table.  */
  for (pass = 0; pass < 3; pass++)
    FOR_EACH_VEC_ELT (bndargs, i, pbdata)
      {
	/* Pass 0 => regs only.  */
	if (pass == 0
	    && (!assign_regs
		||(!pbdata->parm_data.entry_parm
		   || GET_CODE (pbdata->parm_data.entry_parm) != REG)))
	  continue;
	/* Pass 1 => slots only.  */
	else if (pass == 1
		 && (!assign_special
		     || (!pbdata->parm_data.entry_parm
			 || GET_CODE (pbdata->parm_data.entry_parm) == REG)))
	  continue;
	/* Pass 2 => BT only.  */
	else if (pass == 2
		 && (!assign_bt
		     || pbdata->parm_data.entry_parm))
	  continue;

	if (!pbdata->parm_data.entry_parm
	    || GET_CODE (pbdata->parm_data.entry_parm) != REG)
	  assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm,
				   pbdata->ptr_entry, pbdata->bound_no);

	set_decl_incoming_rtl (pbdata->bounds_parm,
			       pbdata->parm_data.entry_parm, false);

	if (assign_parm_setup_block_p (&pbdata->parm_data))
	  assign_parm_setup_block (&all, pbdata->bounds_parm,
				   &pbdata->parm_data);
	else if (pbdata->parm_data.passed_pointer
		 || use_register_for_decl (pbdata->bounds_parm))
	  assign_parm_setup_reg (&all, pbdata->bounds_parm,
				 &pbdata->parm_data);
	else
	  assign_parm_setup_stack (&all, pbdata->bounds_parm,
				   &pbdata->parm_data);
      }
}

/* Assign RTL expressions to the function's parameters.  This may involve
   copying them into registers and using those registers as the DECL_RTL.  */

static void
assign_parms (tree fndecl)
{
  struct assign_parm_data_all all;
  tree parm;
  vec<tree> fnargs;
  unsigned i, bound_no = 0;
  tree last_arg = NULL;
  rtx last_arg_entry = NULL;
  vec<bounds_parm_data> bndargs = vNULL;
  bounds_parm_data bdata;

  crtl->args.internal_arg_pointer
    = targetm.calls.internal_arg_pointer ();

  assign_parms_initialize_all (&all);
  fnargs = assign_parms_augmented_arg_list (&all);

  FOR_EACH_VEC_ELT (fnargs, i, parm)
    {
      struct assign_parm_data_one data;

      /* Extract the type of PARM; adjust it according to ABI.  */
      assign_parm_find_data_types (&all, parm, &data);

      /* Early out for errors and void parameters.  */
      if (data.passed_mode == VOIDmode)
	{
	  SET_DECL_RTL (parm, const0_rtx);
	  DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
	  continue;
	}

      /* Estimate stack alignment from parameter alignment.  */
      if (SUPPORTS_STACK_ALIGNMENT)
        {
          unsigned int align
	    = targetm.calls.function_arg_boundary (data.promoted_mode,
						   data.passed_type);
	  align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
				     align);
	  if (TYPE_ALIGN (data.nominal_type) > align)
	    align = MINIMUM_ALIGNMENT (data.nominal_type,
				       TYPE_MODE (data.nominal_type),
				       TYPE_ALIGN (data.nominal_type));
	  if (crtl->stack_alignment_estimated < align)
	    {
	      gcc_assert (!crtl->stack_realign_processed);
	      crtl->stack_alignment_estimated = align;
	    }
	}

      /* Find out where the parameter arrives in this function.  */
      assign_parm_find_entry_rtl (&all, &data);

      /* Find out where stack space for this parameter might be.  */
      if (assign_parm_is_stack_parm (&all, &data))
	{
	  assign_parm_find_stack_rtl (parm, &data);
	  assign_parm_adjust_entry_rtl (&data);
	}
      if (!POINTER_BOUNDS_TYPE_P (data.passed_type))
	{
	  /* Remember where last non bounds arg was passed in case
	     we have to load associated bounds for it from Bounds
	     Table.  */
	  last_arg = parm;
	  last_arg_entry = data.entry_parm;
	  bound_no = 0;
	}
      /* Record permanently how this parm was passed.  */
      if (data.passed_pointer)
	{
	  rtx incoming_rtl
	    = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
			   data.entry_parm);
	  set_decl_incoming_rtl (parm, incoming_rtl, true);
	}
      else
	set_decl_incoming_rtl (parm, data.entry_parm, false);

      assign_parm_adjust_stack_rtl (&data);

      /* Bounds should be loaded in the particular order to
	 have registers allocated correctly.  Collect info about
	 input bounds and load them later.  */
      if (POINTER_BOUNDS_TYPE_P (data.passed_type))
	{
	  /* Expect bounds in instrumented functions only.  */
	  gcc_assert (chkp_function_instrumented_p (fndecl));

	  bdata.parm_data = data;
	  bdata.bounds_parm = parm;
	  bdata.ptr_parm = last_arg;
	  bdata.ptr_entry = last_arg_entry;
	  bdata.bound_no = bound_no;
	  bndargs.safe_push (bdata);
	}
      else
	{
	  if (assign_parm_setup_block_p (&data))
	    assign_parm_setup_block (&all, parm, &data);
	  else if (data.passed_pointer || use_register_for_decl (parm))
	    assign_parm_setup_reg (&all, parm, &data);
	  else
	    assign_parm_setup_stack (&all, parm, &data);
	}

      if (cfun->stdarg && !DECL_CHAIN (parm))
	{
	  int pretend_bytes = 0;

	  assign_parms_setup_varargs (&all, &data, false);

	  if (chkp_function_instrumented_p (fndecl))
	    {
	      /* We expect this is the last parm.  Otherwise it is wrong
		 to assign bounds right now.  */
	      gcc_assert (i == (fnargs.length () - 1));
	      assign_bounds (bndargs, all, true, false, false);
	      targetm.calls.setup_incoming_vararg_bounds (all.args_so_far,
							  data.promoted_mode,
							  data.passed_type,
							  &pretend_bytes,
							  false);
	      assign_bounds (bndargs, all, false, true, true);
	      bndargs.release ();
	    }
	}

      /* Update info on where next arg arrives in registers.  */
      targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
					  data.passed_type, data.named_arg);

      if (POINTER_BOUNDS_TYPE_P (data.passed_type))
	bound_no++;
    }

  assign_bounds (bndargs, all, true, true, true);
  bndargs.release ();

  if (targetm.calls.split_complex_arg)
    assign_parms_unsplit_complex (&all, fnargs);

  fnargs.release ();

  /* Output all parameter conversion instructions (possibly including calls)
     now that all parameters have been copied out of hard registers.  */
  emit_insn (all.first_conversion_insn);

  /* Estimate reload stack alignment from scalar return mode.  */
  if (SUPPORTS_STACK_ALIGNMENT)
    {
      if (DECL_RESULT (fndecl))
	{
	  tree type = TREE_TYPE (DECL_RESULT (fndecl));
	  machine_mode mode = TYPE_MODE (type);

	  if (mode != BLKmode
	      && mode != VOIDmode
	      && !AGGREGATE_TYPE_P (type))
	    {
	      unsigned int align = GET_MODE_ALIGNMENT (mode);
	      if (crtl->stack_alignment_estimated < align)
		{
		  gcc_assert (!crtl->stack_realign_processed);
		  crtl->stack_alignment_estimated = align;
		}
	    }
	}
    }

  /* If we are receiving a struct value address as the first argument, set up
     the RTL for the function result. As this might require code to convert
     the transmitted address to Pmode, we do this here to ensure that possible
     preliminary conversions of the address have been emitted already.  */
  if (all.function_result_decl)
    {
      tree result = DECL_RESULT (current_function_decl);
      rtx addr = DECL_RTL (all.function_result_decl);
      rtx x;

      if (DECL_BY_REFERENCE (result))
	{
	  SET_DECL_VALUE_EXPR (result, all.function_result_decl);
	  x = addr;
	}
      else
	{
	  SET_DECL_VALUE_EXPR (result,
			       build1 (INDIRECT_REF, TREE_TYPE (result),
				       all.function_result_decl));
	  addr = convert_memory_address (Pmode, addr);
	  x = gen_rtx_MEM (DECL_MODE (result), addr);
	  set_mem_attributes (x, result, 1);
	}

      DECL_HAS_VALUE_EXPR_P (result) = 1;

      set_parm_rtl (result, x);
    }

  /* We have aligned all the args, so add space for the pretend args.  */
  crtl->args.pretend_args_size = all.pretend_args_size;
  all.stack_args_size.constant += all.extra_pretend_bytes;
  crtl->args.size = all.stack_args_size.constant;

  /* Adjust function incoming argument size for alignment and
     minimum length.  */

  crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
  crtl->args.size = CEIL_ROUND (crtl->args.size,
					   PARM_BOUNDARY / BITS_PER_UNIT);

  if (ARGS_GROW_DOWNWARD)
    {
      crtl->args.arg_offset_rtx
	= (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
	   : expand_expr (size_diffop (all.stack_args_size.var,
				       size_int (-all.stack_args_size.constant)),
			  NULL_RTX, VOIDmode, EXPAND_NORMAL));
    }
  else
    crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);

  /* See how many bytes, if any, of its args a function should try to pop
     on return.  */

  crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
							 TREE_TYPE (fndecl),
							 crtl->args.size);

  /* For stdarg.h function, save info about
     regs and stack space used by the named args.  */

  crtl->args.info = all.args_so_far_v;

  /* Set the rtx used for the function return value.  Put this in its
     own variable so any optimizers that need this information don't have
     to include tree.h.  Do this here so it gets done when an inlined
     function gets output.  */

  crtl->return_rtx
    = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
       ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);

  /* If scalar return value was computed in a pseudo-reg, or was a named
     return value that got dumped to the stack, copy that to the hard
     return register.  */
  if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
    {
      tree decl_result = DECL_RESULT (fndecl);
      rtx decl_rtl = DECL_RTL (decl_result);

      if (REG_P (decl_rtl)
	  ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
	  : DECL_REGISTER (decl_result))
	{
	  rtx real_decl_rtl;

	  real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
							fndecl, true);
	  if (chkp_function_instrumented_p (fndecl))
	    crtl->return_bnd
	      = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result),
							  fndecl, true);
	  REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
	  /* The delay slot scheduler assumes that crtl->return_rtx
	     holds the hard register containing the return value, not a
	     temporary pseudo.  */
	  crtl->return_rtx = real_decl_rtl;
	}
    }
}

/* A subroutine of gimplify_parameters, invoked via walk_tree.
   For all seen types, gimplify their sizes.  */

static tree
gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
{
  tree t = *tp;

  *walk_subtrees = 0;
  if (TYPE_P (t))
    {
      if (POINTER_TYPE_P (t))
	*walk_subtrees = 1;
      else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
	       && !TYPE_SIZES_GIMPLIFIED (t))
	{
	  gimplify_type_sizes (t, (gimple_seq *) data);
	  *walk_subtrees = 1;
	}
    }

  return NULL;
}

/* Gimplify the parameter list for current_function_decl.  This involves
   evaluating SAVE_EXPRs of variable sized parameters and generating code
   to implement callee-copies reference parameters.  Returns a sequence of
   statements to add to the beginning of the function.  */

gimple_seq
gimplify_parameters (void)
{
  struct assign_parm_data_all all;
  tree parm;
  gimple_seq stmts = NULL;
  vec<tree> fnargs;
  unsigned i;

  assign_parms_initialize_all (&all);
  fnargs = assign_parms_augmented_arg_list (&all);

  FOR_EACH_VEC_ELT (fnargs, i, parm)
    {
      struct assign_parm_data_one data;

      /* Extract the type of PARM; adjust it according to ABI.  */
      assign_parm_find_data_types (&all, parm, &data);

      /* Early out for errors and void parameters.  */
      if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
	continue;

      /* Update info on where next arg arrives in registers.  */
      targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
					  data.passed_type, data.named_arg);

      /* ??? Once upon a time variable_size stuffed parameter list
	 SAVE_EXPRs (amongst others) onto a pending sizes list.  This
	 turned out to be less than manageable in the gimple world.
	 Now we have to hunt them down ourselves.  */
      walk_tree_without_duplicates (&data.passed_type,
				    gimplify_parm_type, &stmts);

      if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
	{
	  gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
	  gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
	}

      if (data.passed_pointer)
	{
          tree type = TREE_TYPE (data.passed_type);
	  if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
				       type, data.named_arg))
	    {
	      tree local, t;

	      /* For constant-sized objects, this is trivial; for
		 variable-sized objects, we have to play games.  */
	      if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
		  && !(flag_stack_check == GENERIC_STACK_CHECK
		       && compare_tree_int (DECL_SIZE_UNIT (parm),
					    STACK_CHECK_MAX_VAR_SIZE) > 0))
		{
		  local = create_tmp_var (type, get_name (parm));
		  DECL_IGNORED_P (local) = 0;
		  /* If PARM was addressable, move that flag over
		     to the local copy, as its address will be taken,
		     not the PARMs.  Keep the parms address taken
		     as we'll query that flag during gimplification.  */
		  if (TREE_ADDRESSABLE (parm))
		    TREE_ADDRESSABLE (local) = 1;
		  else if (TREE_CODE (type) == COMPLEX_TYPE
			   || TREE_CODE (type) == VECTOR_TYPE)
		    DECL_GIMPLE_REG_P (local) = 1;
		}
	      else
		{
		  tree ptr_type, addr;

		  ptr_type = build_pointer_type (type);
		  addr = create_tmp_reg (ptr_type, get_name (parm));
		  DECL_IGNORED_P (addr) = 0;
		  local = build_fold_indirect_ref (addr);

		  t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
		  t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
				       size_int (DECL_ALIGN (parm)));

		  /* The call has been built for a variable-sized object.  */
		  CALL_ALLOCA_FOR_VAR_P (t) = 1;
		  t = fold_convert (ptr_type, t);
		  t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
		  gimplify_and_add (t, &stmts);
		}

	      gimplify_assign (local, parm, &stmts);

	      SET_DECL_VALUE_EXPR (parm, local);
	      DECL_HAS_VALUE_EXPR_P (parm) = 1;
	    }
	}
    }

  fnargs.release ();

  return stmts;
}

/* Compute the size and offset from the start of the stacked arguments for a
   parm passed in mode PASSED_MODE and with type TYPE.

   INITIAL_OFFSET_PTR points to the current offset into the stacked
   arguments.

   The starting offset and size for this parm are returned in
   LOCATE->OFFSET and LOCATE->SIZE, respectively.  When IN_REGS is
   nonzero, the offset is that of stack slot, which is returned in
   LOCATE->SLOT_OFFSET.  LOCATE->ALIGNMENT_PAD is the amount of
   padding required from the initial offset ptr to the stack slot.

   IN_REGS is nonzero if the argument will be passed in registers.  It will
   never be set if REG_PARM_STACK_SPACE is not defined.

   REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
   for arguments which are passed in registers.

   FNDECL is the function in which the argument was defined.

   There are two types of rounding that are done.  The first, controlled by
   TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
   argument list to be aligned to the specific boundary (in bits).  This
   rounding affects the initial and starting offsets, but not the argument
   size.

   The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
   optionally rounds the size of the parm to PARM_BOUNDARY.  The
   initial offset is not affected by this rounding, while the size always
   is and the starting offset may be.  */

/*  LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
    INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
    callers pass in the total size of args so far as
    INITIAL_OFFSET_PTR.  LOCATE->SIZE is always positive.  */

void
locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
		     int reg_parm_stack_space, int partial,
		     tree fndecl ATTRIBUTE_UNUSED,
		     struct args_size *initial_offset_ptr,
		     struct locate_and_pad_arg_data *locate)
{
  tree sizetree;
  enum direction where_pad;
  unsigned int boundary, round_boundary;
  int part_size_in_regs;

  /* If we have found a stack parm before we reach the end of the
     area reserved for registers, skip that area.  */
  if (! in_regs)
    {
      if (reg_parm_stack_space > 0)
	{
	  if (initial_offset_ptr->var)
	    {
	      initial_offset_ptr->var
		= size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
			      ssize_int (reg_parm_stack_space));
	      initial_offset_ptr->constant = 0;
	    }
	  else if (initial_offset_ptr->constant < reg_parm_stack_space)
	    initial_offset_ptr->constant = reg_parm_stack_space;
	}
    }

  part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);

  sizetree
    = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
  where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
  boundary = targetm.calls.function_arg_boundary (passed_mode, type);
  round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
							      type);
  locate->where_pad = where_pad;

  /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT.  */
  if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
    boundary = MAX_SUPPORTED_STACK_ALIGNMENT;

  locate->boundary = boundary;

  if (SUPPORTS_STACK_ALIGNMENT)
    {
      /* stack_alignment_estimated can't change after stack has been
	 realigned.  */
      if (crtl->stack_alignment_estimated < boundary)
        {
          if (!crtl->stack_realign_processed)
	    crtl->stack_alignment_estimated = boundary;
	  else
	    {
	      /* If stack is realigned and stack alignment value
		 hasn't been finalized, it is OK not to increase
		 stack_alignment_estimated.  The bigger alignment
		 requirement is recorded in stack_alignment_needed
		 below.  */
	      gcc_assert (!crtl->stack_realign_finalized
			  && crtl->stack_realign_needed);
	    }
	}
    }

  /* Remember if the outgoing parameter requires extra alignment on the
     calling function side.  */
  if (crtl->stack_alignment_needed < boundary)
    crtl->stack_alignment_needed = boundary;
  if (crtl->preferred_stack_boundary < boundary)
    crtl->preferred_stack_boundary = boundary;

  if (ARGS_GROW_DOWNWARD)
    {
      locate->slot_offset.constant = -initial_offset_ptr->constant;
      if (initial_offset_ptr->var)
	locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
					      initial_offset_ptr->var);

      {
	tree s2 = sizetree;
	if (where_pad != none
	    && (!tree_fits_uhwi_p (sizetree)
		|| (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
	  s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
	SUB_PARM_SIZE (locate->slot_offset, s2);
      }

      locate->slot_offset.constant += part_size_in_regs;

      if (!in_regs || reg_parm_stack_space > 0)
	pad_to_arg_alignment (&locate->slot_offset, boundary,
			      &locate->alignment_pad);

      locate->size.constant = (-initial_offset_ptr->constant
			       - locate->slot_offset.constant);
      if (initial_offset_ptr->var)
	locate->size.var = size_binop (MINUS_EXPR,
				       size_binop (MINUS_EXPR,
						   ssize_int (0),
						   initial_offset_ptr->var),
				       locate->slot_offset.var);

      /* Pad_below needs the pre-rounded size to know how much to pad
	 below.  */
      locate->offset = locate->slot_offset;
      if (where_pad == downward)
	pad_below (&locate->offset, passed_mode, sizetree);

    }
  else
    {
      if (!in_regs || reg_parm_stack_space > 0)
	pad_to_arg_alignment (initial_offset_ptr, boundary,
			      &locate->alignment_pad);
      locate->slot_offset = *initial_offset_ptr;

#ifdef PUSH_ROUNDING
      if (passed_mode != BLKmode)
	sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
#endif

      /* Pad_below needs the pre-rounded size to know how much to pad below
	 so this must be done before rounding up.  */
      locate->offset = locate->slot_offset;
      if (where_pad == downward)
	pad_below (&locate->offset, passed_mode, sizetree);

      if (where_pad != none
	  && (!tree_fits_uhwi_p (sizetree)
	      || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
	sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);

      ADD_PARM_SIZE (locate->size, sizetree);

      locate->size.constant -= part_size_in_regs;
    }

#ifdef FUNCTION_ARG_OFFSET
  locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
#endif
}

/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
   BOUNDARY is measured in bits, but must be a multiple of a storage unit.  */

static void
pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
		      struct args_size *alignment_pad)
{
  tree save_var = NULL_TREE;
  HOST_WIDE_INT save_constant = 0;
  int boundary_in_bytes = boundary / BITS_PER_UNIT;
  HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;

#ifdef SPARC_STACK_BOUNDARY_HACK
  /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
     the real alignment of %sp.  However, when it does this, the
     alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY.  */
  if (SPARC_STACK_BOUNDARY_HACK)
    sp_offset = 0;
#endif

  if (boundary > PARM_BOUNDARY)
    {
      save_var = offset_ptr->var;
      save_constant = offset_ptr->constant;
    }

  alignment_pad->var = NULL_TREE;
  alignment_pad->constant = 0;

  if (boundary > BITS_PER_UNIT)
    {
      if (offset_ptr->var)
	{
	  tree sp_offset_tree = ssize_int (sp_offset);
	  tree offset = size_binop (PLUS_EXPR,
				    ARGS_SIZE_TREE (*offset_ptr),
				    sp_offset_tree);
	  tree rounded;
	  if (ARGS_GROW_DOWNWARD)
	    rounded = round_down (offset, boundary / BITS_PER_UNIT);
	  else
	    rounded = round_up   (offset, boundary / BITS_PER_UNIT);

	  offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
	  /* ARGS_SIZE_TREE includes constant term.  */
	  offset_ptr->constant = 0;
	  if (boundary > PARM_BOUNDARY)
	    alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
					     save_var);
	}
      else
	{
	  offset_ptr->constant = -sp_offset +
	    (ARGS_GROW_DOWNWARD
	    ? FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes)
	    : CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes));

	    if (boundary > PARM_BOUNDARY)
	      alignment_pad->constant = offset_ptr->constant - save_constant;
	}
    }
}

static void
pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
{
  if (passed_mode != BLKmode)
    {
      if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
	offset_ptr->constant
	  += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
	       / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
	      - GET_MODE_SIZE (passed_mode));
    }
  else
    {
      if (TREE_CODE (sizetree) != INTEGER_CST
	  || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
	{
	  /* Round the size up to multiple of PARM_BOUNDARY bits.  */
	  tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
	  /* Add it in.  */
	  ADD_PARM_SIZE (*offset_ptr, s2);
	  SUB_PARM_SIZE (*offset_ptr, sizetree);
	}
    }
}


/* True if register REGNO was alive at a place where `setjmp' was
   called and was set more than once or is an argument.  Such regs may
   be clobbered by `longjmp'.  */

static bool
regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
{
  /* There appear to be cases where some local vars never reach the
     backend but have bogus regnos.  */
  if (regno >= max_reg_num ())
    return false;

  return ((REG_N_SETS (regno) > 1
	   || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
			       regno))
	  && REGNO_REG_SET_P (setjmp_crosses, regno));
}

/* Walk the tree of blocks describing the binding levels within a
   function and warn about variables the might be killed by setjmp or
   vfork.  This is done after calling flow_analysis before register
   allocation since that will clobber the pseudo-regs to hard
   regs.  */

static void
setjmp_vars_warning (bitmap setjmp_crosses, tree block)
{
  tree decl, sub;

  for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
    {
      if (TREE_CODE (decl) == VAR_DECL
	  && DECL_RTL_SET_P (decl)
	  && REG_P (DECL_RTL (decl))
	  && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
	warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
                 " %<longjmp%> or %<vfork%>", decl);
    }

  for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
    setjmp_vars_warning (setjmp_crosses, sub);
}

/* Do the appropriate part of setjmp_vars_warning
   but for arguments instead of local variables.  */

static void
setjmp_args_warning (bitmap setjmp_crosses)
{
  tree decl;
  for (decl = DECL_ARGUMENTS (current_function_decl);
       decl; decl = DECL_CHAIN (decl))
    if (DECL_RTL (decl) != 0
	&& REG_P (DECL_RTL (decl))
	&& regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
      warning (OPT_Wclobbered,
               "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
	       decl);
}

/* Generate warning messages for variables live across setjmp.  */

void
generate_setjmp_warnings (void)
{
  bitmap setjmp_crosses = regstat_get_setjmp_crosses ();

  if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
      || bitmap_empty_p (setjmp_crosses))
    return;

  setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
  setjmp_args_warning (setjmp_crosses);
}


/* Reverse the order of elements in the fragment chain T of blocks,
   and return the new head of the chain (old last element).
   In addition to that clear BLOCK_SAME_RANGE flags when needed
   and adjust BLOCK_SUPERCONTEXT from the super fragment to
   its super fragment origin.  */

static tree
block_fragments_nreverse (tree t)
{
  tree prev = 0, block, next, prev_super = 0;
  tree super = BLOCK_SUPERCONTEXT (t);
  if (BLOCK_FRAGMENT_ORIGIN (super))
    super = BLOCK_FRAGMENT_ORIGIN (super);
  for (block = t; block; block = next)
    {
      next = BLOCK_FRAGMENT_CHAIN (block);
      BLOCK_FRAGMENT_CHAIN (block) = prev;
      if ((prev && !BLOCK_SAME_RANGE (prev))
	  || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
	      != prev_super))
	BLOCK_SAME_RANGE (block) = 0;
      prev_super = BLOCK_SUPERCONTEXT (block);
      BLOCK_SUPERCONTEXT (block) = super;
      prev = block;
    }
  t = BLOCK_FRAGMENT_ORIGIN (t);
  if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
      != prev_super)
    BLOCK_SAME_RANGE (t) = 0;
  BLOCK_SUPERCONTEXT (t) = super;
  return prev;
}

/* Reverse the order of elements in the chain T of blocks,
   and return the new head of the chain (old last element).
   Also do the same on subblocks and reverse the order of elements
   in BLOCK_FRAGMENT_CHAIN as well.  */

static tree
blocks_nreverse_all (tree t)
{
  tree prev = 0, block, next;
  for (block = t; block; block = next)
    {
      next = BLOCK_CHAIN (block);
      BLOCK_CHAIN (block) = prev;
      if (BLOCK_FRAGMENT_CHAIN (block)
	  && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
	{
	  BLOCK_FRAGMENT_CHAIN (block)
	    = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
	  if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
	    BLOCK_SAME_RANGE (block) = 0;
	}
      BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
      prev = block;
    }
  return prev;
}


/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
   and create duplicate blocks.  */
/* ??? Need an option to either create block fragments or to create
   abstract origin duplicates of a source block.  It really depends
   on what optimization has been performed.  */

void
reorder_blocks (void)
{
  tree block = DECL_INITIAL (current_function_decl);

  if (block == NULL_TREE)
    return;

  auto_vec<tree, 10> block_stack;

  /* Reset the TREE_ASM_WRITTEN bit for all blocks.  */
  clear_block_marks (block);

  /* Prune the old trees away, so that they don't get in the way.  */
  BLOCK_SUBBLOCKS (block) = NULL_TREE;
  BLOCK_CHAIN (block) = NULL_TREE;

  /* Recreate the block tree from the note nesting.  */
  reorder_blocks_1 (get_insns (), block, &block_stack);
  BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
}

/* Helper function for reorder_blocks.  Reset TREE_ASM_WRITTEN.  */

void
clear_block_marks (tree block)
{
  while (block)
    {
      TREE_ASM_WRITTEN (block) = 0;
      clear_block_marks (BLOCK_SUBBLOCKS (block));
      block = BLOCK_CHAIN (block);
    }
}

static void
reorder_blocks_1 (rtx_insn *insns, tree current_block,
		  vec<tree> *p_block_stack)
{
  rtx_insn *insn;
  tree prev_beg = NULL_TREE, prev_end = NULL_TREE;

  for (insn = insns; insn; insn = NEXT_INSN (insn))
    {
      if (NOTE_P (insn))
	{
	  if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
	    {
	      tree block = NOTE_BLOCK (insn);
	      tree origin;

	      gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
	      origin = block;

	      if (prev_end)
		BLOCK_SAME_RANGE (prev_end) = 0;
	      prev_end = NULL_TREE;

	      /* If we have seen this block before, that means it now
		 spans multiple address regions.  Create a new fragment.  */
	      if (TREE_ASM_WRITTEN (block))
		{
		  tree new_block = copy_node (block);

		  BLOCK_SAME_RANGE (new_block) = 0;
		  BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
		  BLOCK_FRAGMENT_CHAIN (new_block)
		    = BLOCK_FRAGMENT_CHAIN (origin);
		  BLOCK_FRAGMENT_CHAIN (origin) = new_block;

		  NOTE_BLOCK (insn) = new_block;
		  block = new_block;
		}

	      if (prev_beg == current_block && prev_beg)
		BLOCK_SAME_RANGE (block) = 1;

	      prev_beg = origin;

	      BLOCK_SUBBLOCKS (block) = 0;
	      TREE_ASM_WRITTEN (block) = 1;
	      /* When there's only one block for the entire function,
		 current_block == block and we mustn't do this, it
		 will cause infinite recursion.  */
	      if (block != current_block)
		{
		  tree super;
		  if (block != origin)
		    gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
				|| BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
								      (origin))
				   == current_block);
		  if (p_block_stack->is_empty ())
		    super = current_block;
		  else
		    {
		      super = p_block_stack->last ();
		      gcc_assert (super == current_block
				  || BLOCK_FRAGMENT_ORIGIN (super)
				     == current_block);
		    }
		  BLOCK_SUPERCONTEXT (block) = super;
		  BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
		  BLOCK_SUBBLOCKS (current_block) = block;
		  current_block = origin;
		}
	      p_block_stack->safe_push (block);
	    }
	  else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
	    {
	      NOTE_BLOCK (insn) = p_block_stack->pop ();
	      current_block = BLOCK_SUPERCONTEXT (current_block);
	      if (BLOCK_FRAGMENT_ORIGIN (current_block))
		current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
	      prev_beg = NULL_TREE;
	      prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
			 ? NOTE_BLOCK (insn) : NULL_TREE;
	    }
	}
      else
	{
	  prev_beg = NULL_TREE;
	  if (prev_end)
	    BLOCK_SAME_RANGE (prev_end) = 0;
	  prev_end = NULL_TREE;
	}
    }
}

/* Reverse the order of elements in the chain T of blocks,
   and return the new head of the chain (old last element).  */

tree
blocks_nreverse (tree t)
{
  tree prev = 0, block, next;
  for (block = t; block; block = next)
    {
      next = BLOCK_CHAIN (block);
      BLOCK_CHAIN (block) = prev;
      prev = block;
    }
  return prev;
}

/* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
   by modifying the last node in chain 1 to point to chain 2.  */

tree
block_chainon (tree op1, tree op2)
{
  tree t1;

  if (!op1)
    return op2;
  if (!op2)
    return op1;

  for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
    continue;
  BLOCK_CHAIN (t1) = op2;

#ifdef ENABLE_TREE_CHECKING
  {
    tree t2;
    for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
      gcc_assert (t2 != t1);
  }
#endif

  return op1;
}

/* Count the subblocks of the list starting with BLOCK.  If VECTOR is
   non-NULL, list them all into VECTOR, in a depth-first preorder
   traversal of the block tree.  Also clear TREE_ASM_WRITTEN in all
   blocks.  */

static int
all_blocks (tree block, tree *vector)
{
  int n_blocks = 0;

  while (block)
    {
      TREE_ASM_WRITTEN (block) = 0;

      /* Record this block.  */
      if (vector)
	vector[n_blocks] = block;

      ++n_blocks;

      /* Record the subblocks, and their subblocks...  */
      n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
			      vector ? vector + n_blocks : 0);
      block = BLOCK_CHAIN (block);
    }

  return n_blocks;
}

/* Return a vector containing all the blocks rooted at BLOCK.  The
   number of elements in the vector is stored in N_BLOCKS_P.  The
   vector is dynamically allocated; it is the caller's responsibility
   to call `free' on the pointer returned.  */

static tree *
get_block_vector (tree block, int *n_blocks_p)
{
  tree *block_vector;

  *n_blocks_p = all_blocks (block, NULL);
  block_vector = XNEWVEC (tree, *n_blocks_p);
  all_blocks (block, block_vector);

  return block_vector;
}

static GTY(()) int next_block_index = 2;

/* Set BLOCK_NUMBER for all the blocks in FN.  */

void
number_blocks (tree fn)
{
  int i;
  int n_blocks;
  tree *block_vector;

  /* For SDB and XCOFF debugging output, we start numbering the blocks
     from 1 within each function, rather than keeping a running
     count.  */
#if SDB_DEBUGGING_INFO || defined (XCOFF_DEBUGGING_INFO)
  if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
    next_block_index = 1;
#endif

  block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);

  /* The top-level BLOCK isn't numbered at all.  */
  for (i = 1; i < n_blocks; ++i)
    /* We number the blocks from two.  */
    BLOCK_NUMBER (block_vector[i]) = next_block_index++;

  free (block_vector);

  return;
}

/* If VAR is present in a subblock of BLOCK, return the subblock.  */

DEBUG_FUNCTION tree
debug_find_var_in_block_tree (tree var, tree block)
{
  tree t;

  for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
    if (t == var)
      return block;

  for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
    {
      tree ret = debug_find_var_in_block_tree (var, t);
      if (ret)
	return ret;
    }

  return NULL_TREE;
}

/* Keep track of whether we're in a dummy function context.  If we are,
   we don't want to invoke the set_current_function hook, because we'll
   get into trouble if the hook calls target_reinit () recursively or
   when the initial initialization is not yet complete.  */

static bool in_dummy_function;

/* Invoke the target hook when setting cfun.  Update the optimization options
   if the function uses different options than the default.  */

static void
invoke_set_current_function_hook (tree fndecl)
{
  if (!in_dummy_function)
    {
      tree opts = ((fndecl)
		   ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
		   : optimization_default_node);

      if (!opts)
	opts = optimization_default_node;

      /* Change optimization options if needed.  */
      if (optimization_current_node != opts)
	{
	  optimization_current_node = opts;
	  cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
	}

      targetm.set_current_function (fndecl);
      this_fn_optabs = this_target_optabs;

      if (opts != optimization_default_node)
	{
	  init_tree_optimization_optabs (opts);
	  if (TREE_OPTIMIZATION_OPTABS (opts))
	    this_fn_optabs = (struct target_optabs *)
	      TREE_OPTIMIZATION_OPTABS (opts);
	}
    }
}

/* cfun should never be set directly; use this function.  */

void
set_cfun (struct function *new_cfun)
{
  if (cfun != new_cfun)
    {
      cfun = new_cfun;
      invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
      redirect_edge_var_map_empty ();
    }
}

/* Initialized with NOGC, making this poisonous to the garbage collector.  */

static vec<function *> cfun_stack;

/* Push the current cfun onto the stack, and set cfun to new_cfun.  Also set
   current_function_decl accordingly.  */

void
push_cfun (struct function *new_cfun)
{
  gcc_assert ((!cfun && !current_function_decl)
	      || (cfun && current_function_decl == cfun->decl));
  cfun_stack.safe_push (cfun);
  current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
  set_cfun (new_cfun);
}

/* Pop cfun from the stack.  Also set current_function_decl accordingly.  */

void
pop_cfun (void)
{
  struct function *new_cfun = cfun_stack.pop ();
  /* When in_dummy_function, we do have a cfun but current_function_decl is
     NULL.  We also allow pushing NULL cfun and subsequently changing
     current_function_decl to something else and have both restored by
     pop_cfun.  */
  gcc_checking_assert (in_dummy_function
		       || !cfun
		       || current_function_decl == cfun->decl);
  set_cfun (new_cfun);
  current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
}

/* Return value of funcdef and increase it.  */
int
get_next_funcdef_no (void)
{
  return funcdef_no++;
}

/* Return value of funcdef.  */
int
get_last_funcdef_no (void)
{
  return funcdef_no;
}

/* Allocate a function structure for FNDECL and set its contents
   to the defaults.  Set cfun to the newly-allocated object.
   Some of the helper functions invoked during initialization assume
   that cfun has already been set.  Therefore, assign the new object
   directly into cfun and invoke the back end hook explicitly at the
   very end, rather than initializing a temporary and calling set_cfun
   on it.

   ABSTRACT_P is true if this is a function that will never be seen by
   the middle-end.  Such functions are front-end concepts (like C++
   function templates) that do not correspond directly to functions
   placed in object files.  */

void
allocate_struct_function (tree fndecl, bool abstract_p)
{
  tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;

  cfun = ggc_cleared_alloc<function> ();

  init_eh_for_function ();

  if (init_machine_status)
    cfun->machine = (*init_machine_status) ();

#ifdef OVERRIDE_ABI_FORMAT
  OVERRIDE_ABI_FORMAT (fndecl);
#endif

  if (fndecl != NULL_TREE)
    {
      DECL_STRUCT_FUNCTION (fndecl) = cfun;
      cfun->decl = fndecl;
      current_function_funcdef_no = get_next_funcdef_no ();
    }

  invoke_set_current_function_hook (fndecl);

  if (fndecl != NULL_TREE)
    {
      tree result = DECL_RESULT (fndecl);

      if (!abstract_p)
	{
	  /* Now that we have activated any function-specific attributes
	     that might affect layout, particularly vector modes, relayout
	     each of the parameters and the result.  */
	  relayout_decl (result);
	  for (tree parm = DECL_ARGUMENTS (fndecl); parm;
	       parm = DECL_CHAIN (parm))
	    relayout_decl (parm);

	  /* Similarly relayout the function decl.  */
	  targetm.target_option.relayout_function (fndecl);
	}

      if (!abstract_p && aggregate_value_p (result, fndecl))
	{
#ifdef PCC_STATIC_STRUCT_RETURN
	  cfun->returns_pcc_struct = 1;
#endif
	  cfun->returns_struct = 1;
	}

      cfun->stdarg = stdarg_p (fntype);

      /* Assume all registers in stdarg functions need to be saved.  */
      cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
      cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;

      /* ??? This could be set on a per-function basis by the front-end
         but is this worth the hassle?  */
      cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
      cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;

      if (!profile_flag && !flag_instrument_function_entry_exit)
	DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
    }
}

/* This is like allocate_struct_function, but pushes a new cfun for FNDECL
   instead of just setting it.  */

void
push_struct_function (tree fndecl)
{
  /* When in_dummy_function we might be in the middle of a pop_cfun and
     current_function_decl and cfun may not match.  */
  gcc_assert (in_dummy_function
	      || (!cfun && !current_function_decl)
	      || (cfun && current_function_decl == cfun->decl));
  cfun_stack.safe_push (cfun);
  current_function_decl = fndecl;
  allocate_struct_function (fndecl, false);
}

/* Reset crtl and other non-struct-function variables to defaults as
   appropriate for emitting rtl at the start of a function.  */

static void
prepare_function_start (void)
{
  gcc_assert (!get_last_insn ());
  init_temp_slots ();
  init_emit ();
  init_varasm_status ();
  init_expr ();
  default_rtl_profile ();

  if (flag_stack_usage_info)
    {
      cfun->su = ggc_cleared_alloc<stack_usage> ();
      cfun->su->static_stack_size = -1;
    }

  cse_not_expected = ! optimize;

  /* Caller save not needed yet.  */
  caller_save_needed = 0;

  /* We haven't done register allocation yet.  */
  reg_renumber = 0;

  /* Indicate that we have not instantiated virtual registers yet.  */
  virtuals_instantiated = 0;

  /* Indicate that we want CONCATs now.  */
  generating_concat_p = 1;

  /* Indicate we have no need of a frame pointer yet.  */
  frame_pointer_needed = 0;
}

void
push_dummy_function (bool with_decl)
{
  tree fn_decl, fn_type, fn_result_decl;

  gcc_assert (!in_dummy_function);
  in_dummy_function = true;

  if (with_decl)
    {
      fn_type = build_function_type_list (void_type_node, NULL_TREE);
      fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
			    fn_type);
      fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
					 NULL_TREE, void_type_node);
      DECL_RESULT (fn_decl) = fn_result_decl;
    }
  else
    fn_decl = NULL_TREE;

  push_struct_function (fn_decl);
}

/* Initialize the rtl expansion mechanism so that we can do simple things
   like generate sequences.  This is used to provide a context during global
   initialization of some passes.  You must call expand_dummy_function_end
   to exit this context.  */

void
init_dummy_function_start (void)
{
  push_dummy_function (false);
  prepare_function_start ();
}

/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
   and initialize static variables for generating RTL for the statements
   of the function.  */

void
init_function_start (tree subr)
{
  /* Initialize backend, if needed.  */
  initialize_rtl ();

  prepare_function_start ();
  decide_function_section (subr);

  /* Warn if this value is an aggregate type,
     regardless of which calling convention we are using for it.  */
  if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
    warning (OPT_Waggregate_return, "function returns an aggregate");
}

/* Expand code to verify the stack_protect_guard.  This is invoked at
   the end of a function to be protected.  */

void
stack_protect_epilogue (void)
{
  tree guard_decl = targetm.stack_protect_guard ();
  rtx_code_label *label = gen_label_rtx ();
  rtx x, y;
  rtx_insn *seq;

  x = expand_normal (crtl->stack_protect_guard);
  y = expand_normal (guard_decl);

  /* Allow the target to compare Y with X without leaking either into
     a register.  */
  if (targetm.have_stack_protect_test ()
      && ((seq = targetm.gen_stack_protect_test (x, y, label)) != NULL_RTX))
    emit_insn (seq);
  else
    emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);

  /* The noreturn predictor has been moved to the tree level.  The rtl-level
     predictors estimate this branch about 20%, which isn't enough to get
     things moved out of line.  Since this is the only extant case of adding
     a noreturn function at the rtl level, it doesn't seem worth doing ought
     except adding the prediction by hand.  */
  rtx_insn *tmp = get_last_insn ();
  if (JUMP_P (tmp))
    predict_insn_def (tmp, PRED_NORETURN, TAKEN);

  expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
  free_temp_slots ();
  emit_label (label);
}

/* Start the RTL for a new function, and set variables used for
   emitting RTL.
   SUBR is the FUNCTION_DECL node.
   PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
   the function's parameters, which must be run at any return statement.  */

void
expand_function_start (tree subr)
{
  /* Make sure volatile mem refs aren't considered
     valid operands of arithmetic insns.  */
  init_recog_no_volatile ();

  crtl->profile
    = (profile_flag
       && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));

  crtl->limit_stack
    = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));

  /* Make the label for return statements to jump to.  Do not special
     case machines with special return instructions -- they will be
     handled later during jump, ifcvt, or epilogue creation.  */
  return_label = gen_label_rtx ();

  /* Initialize rtx used to return the value.  */
  /* Do this before assign_parms so that we copy the struct value address
     before any library calls that assign parms might generate.  */

  /* Decide whether to return the value in memory or in a register.  */
  tree res = DECL_RESULT (subr);
  if (aggregate_value_p (res, subr))
    {
      /* Returning something that won't go in a register.  */
      rtx value_address = 0;

#ifdef PCC_STATIC_STRUCT_RETURN
      if (cfun->returns_pcc_struct)
	{
	  int size = int_size_in_bytes (TREE_TYPE (res));
	  value_address = assemble_static_space (size);
	}
      else
#endif
	{
	  rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
	  /* Expect to be passed the address of a place to store the value.
	     If it is passed as an argument, assign_parms will take care of
	     it.  */
	  if (sv)
	    {
	      value_address = gen_reg_rtx (Pmode);
	      emit_move_insn (value_address, sv);
	    }
	}
      if (value_address)
	{
	  rtx x = value_address;
	  if (!DECL_BY_REFERENCE (res))
	    {
	      x = gen_rtx_MEM (DECL_MODE (res), x);
	      set_mem_attributes (x, res, 1);
	    }
	  set_parm_rtl (res, x);
	}
    }
  else if (DECL_MODE (res) == VOIDmode)
    /* If return mode is void, this decl rtl should not be used.  */
    set_parm_rtl (res, NULL_RTX);
  else 
    {
      /* Compute the return values into a pseudo reg, which we will copy
	 into the true return register after the cleanups are done.  */
      tree return_type = TREE_TYPE (res);

      /* If we may coalesce this result, make sure it has the expected mode
	 in case it was promoted.  But we need not bother about BLKmode.  */
      machine_mode promoted_mode
	= flag_tree_coalesce_vars && is_gimple_reg (res)
	  ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
	  : BLKmode;

      if (promoted_mode != BLKmode)
	set_parm_rtl (res, gen_reg_rtx (promoted_mode));
      else if (TYPE_MODE (return_type) != BLKmode
	       && targetm.calls.return_in_msb (return_type))
	/* expand_function_end will insert the appropriate padding in
	   this case.  Use the return value's natural (unpadded) mode
	   within the function proper.  */
	set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
      else
	{
	  /* In order to figure out what mode to use for the pseudo, we
	     figure out what the mode of the eventual return register will
	     actually be, and use that.  */
	  rtx hard_reg = hard_function_value (return_type, subr, 0, 1);

	  /* Structures that are returned in registers are not
	     aggregate_value_p, so we may see a PARALLEL or a REG.  */
	  if (REG_P (hard_reg))
	    set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
	  else
	    {
	      gcc_assert (GET_CODE (hard_reg) == PARALLEL);
	      set_parm_rtl (res, gen_group_rtx (hard_reg));
	    }
	}

      /* Set DECL_REGISTER flag so that expand_function_end will copy the
	 result to the real return register(s).  */
      DECL_REGISTER (res) = 1;

      if (chkp_function_instrumented_p (current_function_decl))
	{
	  tree return_type = TREE_TYPE (res);
	  rtx bounds = targetm.calls.chkp_function_value_bounds (return_type,
								 subr, 1);
	  SET_DECL_BOUNDS_RTL (res, bounds);
	}
    }

  /* Initialize rtx for parameters and local variables.
     In some cases this requires emitting insns.  */
  assign_parms (subr);

  /* If function gets a static chain arg, store it.  */
  if (cfun->static_chain_decl)
    {
      tree parm = cfun->static_chain_decl;
      rtx local, chain;
      rtx_insn *insn;
      int unsignedp;

      local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
      chain = targetm.calls.static_chain (current_function_decl, true);

      set_decl_incoming_rtl (parm, chain, false);
      set_parm_rtl (parm, local);
      mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));

      if (GET_MODE (local) != GET_MODE (chain))
	{
	  convert_move (local, chain, unsignedp);
	  insn = get_last_insn ();
	}
      else
	insn = emit_move_insn (local, chain);

      /* Mark the register as eliminable, similar to parameters.  */
      if (MEM_P (chain)
	  && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
	set_dst_reg_note (insn, REG_EQUIV, chain, local);

      /* If we aren't optimizing, save the static chain onto the stack.  */
      if (!optimize)
	{
	  tree saved_static_chain_decl
	    = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
			  DECL_NAME (parm), TREE_TYPE (parm));
	  rtx saved_static_chain_rtx
	    = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
	  SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
	  emit_move_insn (saved_static_chain_rtx, chain);
	  SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
	  DECL_HAS_VALUE_EXPR_P (parm) = 1;
	}
    }

  /* If the function receives a non-local goto, then store the
     bits we need to restore the frame pointer.  */
  if (cfun->nonlocal_goto_save_area)
    {
      tree t_save;
      rtx r_save;

      tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
      gcc_assert (DECL_RTL_SET_P (var));

      t_save = build4 (ARRAY_REF,
		       TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
		       cfun->nonlocal_goto_save_area,
		       integer_zero_node, NULL_TREE, NULL_TREE);
      r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
      gcc_assert (GET_MODE (r_save) == Pmode);

      emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
      update_nonlocal_goto_save_area ();
    }

  /* The following was moved from init_function_start.
     The move is supposed to make sdb output more accurate.  */
  /* Indicate the beginning of the function body,
     as opposed to parm setup.  */
  emit_note (NOTE_INSN_FUNCTION_BEG);

  gcc_assert (NOTE_P (get_last_insn ()));

  parm_birth_insn = get_last_insn ();

  if (crtl->profile)
    {
#ifdef PROFILE_HOOK
      PROFILE_HOOK (current_function_funcdef_no);
#endif
    }

  /* If we are doing generic stack checking, the probe should go here.  */
  if (flag_stack_check == GENERIC_STACK_CHECK)
    stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
}

void
pop_dummy_function (void)
{
  pop_cfun ();
  in_dummy_function = false;
}

/* Undo the effects of init_dummy_function_start.  */
void
expand_dummy_function_end (void)
{
  gcc_assert (in_dummy_function);

  /* End any sequences that failed to be closed due to syntax errors.  */
  while (in_sequence_p ())
    end_sequence ();

  /* Outside function body, can't compute type's actual size
     until next function's body starts.  */

  free_after_parsing (cfun);
  free_after_compilation (cfun);
  pop_dummy_function ();
}

/* Helper for diddle_return_value.  */

void
diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
{
  if (! outgoing)
    return;

  if (REG_P (outgoing))
    (*doit) (outgoing, arg);
  else if (GET_CODE (outgoing) == PARALLEL)
    {
      int i;

      for (i = 0; i < XVECLEN (outgoing, 0); i++)
	{
	  rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);

	  if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
	    (*doit) (x, arg);
	}
    }
}

/* Call DOIT for each hard register used as a return value from
   the current function.  */

void
diddle_return_value (void (*doit) (rtx, void *), void *arg)
{
  diddle_return_value_1 (doit, arg, crtl->return_bnd);
  diddle_return_value_1 (doit, arg, crtl->return_rtx);
}

static void
do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
{
  emit_clobber (reg);
}

void
clobber_return_register (void)
{
  diddle_return_value (do_clobber_return_reg, NULL);

  /* In case we do use pseudo to return value, clobber it too.  */
  if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
    {
      tree decl_result = DECL_RESULT (current_function_decl);
      rtx decl_rtl = DECL_RTL (decl_result);
      if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
	{
	  do_clobber_return_reg (decl_rtl, NULL);
	}
    }
}

static void
do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
{
  emit_use (reg);
}

static void
use_return_register (void)
{
  diddle_return_value (do_use_return_reg, NULL);
}

/* Set the location of the insn chain starting at INSN to LOC.  */

static void
set_insn_locations (rtx_insn *insn, int loc)
{
  while (insn != NULL)
    {
      if (INSN_P (insn))
	INSN_LOCATION (insn) = loc;
      insn = NEXT_INSN (insn);
    }
}

/* Generate RTL for the end of the current function.  */

void
expand_function_end (void)
{
  /* If arg_pointer_save_area was referenced only from a nested
     function, we will not have initialized it yet.  Do that now.  */
  if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
    get_arg_pointer_save_area ();

  /* If we are doing generic stack checking and this function makes calls,
     do a stack probe at the start of the function to ensure we have enough
     space for another stack frame.  */
  if (flag_stack_check == GENERIC_STACK_CHECK)
    {
      rtx_insn *insn, *seq;

      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
	if (CALL_P (insn))
	  {
	    rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
	    start_sequence ();
	    if (STACK_CHECK_MOVING_SP)
	      anti_adjust_stack_and_probe (max_frame_size, true);
	    else
	      probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
	    seq = get_insns ();
	    end_sequence ();
	    set_insn_locations (seq, prologue_location);
	    emit_insn_before (seq, stack_check_probe_note);
	    break;
	  }
    }

  /* End any sequences that failed to be closed due to syntax errors.  */
  while (in_sequence_p ())
    end_sequence ();

  clear_pending_stack_adjust ();
  do_pending_stack_adjust ();

  /* Output a linenumber for the end of the function.
     SDB depends on this.  */
  set_curr_insn_location (input_location);

  /* Before the return label (if any), clobber the return
     registers so that they are not propagated live to the rest of
     the function.  This can only happen with functions that drop
     through; if there had been a return statement, there would
     have either been a return rtx, or a jump to the return label.

     We delay actual code generation after the current_function_value_rtx
     is computed.  */
  rtx_insn *clobber_after = get_last_insn ();

  /* Output the label for the actual return from the function.  */
  emit_label (return_label);

  if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
    {
      /* Let except.c know where it should emit the call to unregister
	 the function context for sjlj exceptions.  */
      if (flag_exceptions)
	sjlj_emit_function_exit_after (get_last_insn ());
    }
  else
    {
      /* We want to ensure that instructions that may trap are not
	 moved into the epilogue by scheduling, because we don't
	 always emit unwind information for the epilogue.  */
      if (cfun->can_throw_non_call_exceptions)
	emit_insn (gen_blockage ());
    }

  /* If this is an implementation of throw, do what's necessary to
     communicate between __builtin_eh_return and the epilogue.  */
  expand_eh_return ();

  /* If scalar return value was computed in a pseudo-reg, or was a named
     return value that got dumped to the stack, copy that to the hard
     return register.  */
  if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
    {
      tree decl_result = DECL_RESULT (current_function_decl);
      rtx decl_rtl = DECL_RTL (decl_result);

      if (REG_P (decl_rtl)
	  ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
	  : DECL_REGISTER (decl_result))
	{
	  rtx real_decl_rtl = crtl->return_rtx;

	  /* This should be set in assign_parms.  */
	  gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));

	  /* If this is a BLKmode structure being returned in registers,
	     then use the mode computed in expand_return.  Note that if
	     decl_rtl is memory, then its mode may have been changed,
	     but that crtl->return_rtx has not.  */
	  if (GET_MODE (real_decl_rtl) == BLKmode)
	    PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));

	  /* If a non-BLKmode return value should be padded at the least
	     significant end of the register, shift it left by the appropriate
	     amount.  BLKmode results are handled using the group load/store
	     machinery.  */
	  if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
	      && REG_P (real_decl_rtl)
	      && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
	    {
	      emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
					   REGNO (real_decl_rtl)),
			      decl_rtl);
	      shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
	    }
	  else if (GET_CODE (real_decl_rtl) == PARALLEL)
	    {
	      /* If expand_function_start has created a PARALLEL for decl_rtl,
		 move the result to the real return registers.  Otherwise, do
		 a group load from decl_rtl for a named return.  */
	      if (GET_CODE (decl_rtl) == PARALLEL)
		emit_group_move (real_decl_rtl, decl_rtl);
	      else
		emit_group_load (real_decl_rtl, decl_rtl,
				 TREE_TYPE (decl_result),
				 int_size_in_bytes (TREE_TYPE (decl_result)));
	    }
	  /* In the case of complex integer modes smaller than a word, we'll
	     need to generate some non-trivial bitfield insertions.  Do that
	     on a pseudo and not the hard register.  */
	  else if (GET_CODE (decl_rtl) == CONCAT
		   && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
		   && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
	    {
	      int old_generating_concat_p;
	      rtx tmp;

	      old_generating_concat_p = generating_concat_p;
	      generating_concat_p = 0;
	      tmp = gen_reg_rtx (GET_MODE (decl_rtl));
	      generating_concat_p = old_generating_concat_p;

	      emit_move_insn (tmp, decl_rtl);
	      emit_move_insn (real_decl_rtl, tmp);
	    }
	  /* If a named return value dumped decl_return to memory, then
	     we may need to re-do the PROMOTE_MODE signed/unsigned
	     extension.  */
	  else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
	    {
	      int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
	      promote_function_mode (TREE_TYPE (decl_result),
				     GET_MODE (decl_rtl), &unsignedp,
				     TREE_TYPE (current_function_decl), 1);

	      convert_move (real_decl_rtl, decl_rtl, unsignedp);
	    }
	  else
	    emit_move_insn (real_decl_rtl, decl_rtl);
	}
    }

  /* If returning a structure, arrange to return the address of the value
     in a place where debuggers expect to find it.

     If returning a structure PCC style,
     the caller also depends on this value.
     And cfun->returns_pcc_struct is not necessarily set.  */
  if ((cfun->returns_struct || cfun->returns_pcc_struct)
      && !targetm.calls.omit_struct_return_reg)
    {
      rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
      tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
      rtx outgoing;

      if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
	type = TREE_TYPE (type);
      else
	value_address = XEXP (value_address, 0);

      outgoing = targetm.calls.function_value (build_pointer_type (type),
					       current_function_decl, true);

      /* Mark this as a function return value so integrate will delete the
	 assignment and USE below when inlining this function.  */
      REG_FUNCTION_VALUE_P (outgoing) = 1;

      /* The address may be ptr_mode and OUTGOING may be Pmode.  */
      value_address = convert_memory_address (GET_MODE (outgoing),
					      value_address);

      emit_move_insn (outgoing, value_address);

      /* Show return register used to hold result (in this case the address
	 of the result.  */
      crtl->return_rtx = outgoing;
    }

  /* Emit the actual code to clobber return register.  Don't emit
     it if clobber_after is a barrier, then the previous basic block
     certainly doesn't fall thru into the exit block.  */
  if (!BARRIER_P (clobber_after))
    {
      start_sequence ();
      clobber_return_register ();
      rtx_insn *seq = get_insns ();
      end_sequence ();

      emit_insn_after (seq, clobber_after);
    }

  /* Output the label for the naked return from the function.  */
  if (naked_return_label)
    emit_label (naked_return_label);

  /* @@@ This is a kludge.  We want to ensure that instructions that
     may trap are not moved into the epilogue by scheduling, because
     we don't always emit unwind information for the epilogue.  */
  if (cfun->can_throw_non_call_exceptions
      && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
    emit_insn (gen_blockage ());

  /* If stack protection is enabled for this function, check the guard.  */
  if (crtl->stack_protect_guard)
    stack_protect_epilogue ();

  /* If we had calls to alloca, and this machine needs
     an accurate stack pointer to exit the function,
     insert some code to save and restore the stack pointer.  */
  if (! EXIT_IGNORE_STACK
      && cfun->calls_alloca)
    {
      rtx tem = 0;

      start_sequence ();
      emit_stack_save (SAVE_FUNCTION, &tem);
      rtx_insn *seq = get_insns ();
      end_sequence ();
      emit_insn_before (seq, parm_birth_insn);

      emit_stack_restore (SAVE_FUNCTION, tem);
    }

  /* ??? This should no longer be necessary since stupid is no longer with
     us, but there are some parts of the compiler (eg reload_combine, and
     sh mach_dep_reorg) that still try and compute their own lifetime info
     instead of using the general framework.  */
  use_return_register ();
}

rtx
get_arg_pointer_save_area (void)
{
  rtx ret = arg_pointer_save_area;

  if (! ret)
    {
      ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
      arg_pointer_save_area = ret;
    }

  if (! crtl->arg_pointer_save_area_init)
    {
      /* Save the arg pointer at the beginning of the function.  The
	 generated stack slot may not be a valid memory address, so we
	 have to check it and fix it if necessary.  */
      start_sequence ();
      emit_move_insn (validize_mem (copy_rtx (ret)),
                      crtl->args.internal_arg_pointer);
      rtx_insn *seq = get_insns ();
      end_sequence ();

      push_topmost_sequence ();
      emit_insn_after (seq, entry_of_function ());
      pop_topmost_sequence ();

      crtl->arg_pointer_save_area_init = true;
    }

  return ret;
}

/* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
   for the first time.  */

static void
record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
{
  rtx_insn *tmp;
  hash_table<insn_cache_hasher> *hash = *hashp;

  if (hash == NULL)
    *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);

  for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
    {
      rtx *slot = hash->find_slot (tmp, INSERT);
      gcc_assert (*slot == NULL);
      *slot = tmp;
    }
}

/* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
   basic block, splitting or peepholes.  If INSN is a prologue or epilogue
   insn, then record COPY as well.  */

void
maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
{
  hash_table<insn_cache_hasher> *hash;
  rtx *slot;

  hash = epilogue_insn_hash;
  if (!hash || !hash->find (insn))
    {
      hash = prologue_insn_hash;
      if (!hash || !hash->find (insn))
	return;
    }

  slot = hash->find_slot (copy, INSERT);
  gcc_assert (*slot == NULL);
  *slot = copy;
}

/* Determine if any INSNs in HASH are, or are part of, INSN.  Because
   we can be running after reorg, SEQUENCE rtl is possible.  */

static bool
contains (const_rtx insn, hash_table<insn_cache_hasher> *hash)
{
  if (hash == NULL)
    return false;

  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
    {
      rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
      int i;
      for (i = seq->len () - 1; i >= 0; i--)
	if (hash->find (seq->element (i)))
	  return true;
      return false;
    }

  return hash->find (const_cast<rtx> (insn)) != NULL;
}

int
prologue_epilogue_contains (const_rtx insn)
{
  if (contains (insn, prologue_insn_hash))
    return 1;
  if (contains (insn, epilogue_insn_hash))
    return 1;
  return 0;
}

/* Insert use of return register before the end of BB.  */

static void
emit_use_return_register_into_block (basic_block bb)
{
  start_sequence ();
  use_return_register ();
  rtx_insn *seq = get_insns ();
  end_sequence ();
  rtx_insn *insn = BB_END (bb);
  if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
    insn = prev_cc0_setter (insn);

  emit_insn_before (seq, insn);
}


/* Create a return pattern, either simple_return or return, depending on
   simple_p.  */

static rtx_insn *
gen_return_pattern (bool simple_p)
{
  return (simple_p
	  ? targetm.gen_simple_return ()
	  : targetm.gen_return ());
}

/* Insert an appropriate return pattern at the end of block BB.  This
   also means updating block_for_insn appropriately.  SIMPLE_P is
   the same as in gen_return_pattern and passed to it.  */

void
emit_return_into_block (bool simple_p, basic_block bb)
{
  rtx_jump_insn *jump = emit_jump_insn_after (gen_return_pattern (simple_p),
					      BB_END (bb));
  rtx pat = PATTERN (jump);
  if (GET_CODE (pat) == PARALLEL)
    pat = XVECEXP (pat, 0, 0);
  gcc_assert (ANY_RETURN_P (pat));
  JUMP_LABEL (jump) = pat;
}

/* Set JUMP_LABEL for a return insn.  */

void
set_return_jump_label (rtx_insn *returnjump)
{
  rtx pat = PATTERN (returnjump);
  if (GET_CODE (pat) == PARALLEL)
    pat = XVECEXP (pat, 0, 0);
  if (ANY_RETURN_P (pat))
    JUMP_LABEL (returnjump) = pat;
  else
    JUMP_LABEL (returnjump) = ret_rtx;
}

/* Return true if there are any active insns between HEAD and TAIL.  */
bool
active_insn_between (rtx_insn *head, rtx_insn *tail)
{
  while (tail)
    {
      if (active_insn_p (tail))
	return true;
      if (tail == head)
	return false;
      tail = PREV_INSN (tail);
    }
  return false;
}

/* LAST_BB is a block that exits, and empty of active instructions.
   Examine its predecessors for jumps that can be converted to
   (conditional) returns.  */
vec<edge>
convert_jumps_to_returns (basic_block last_bb, bool simple_p,
			  vec<edge> unconverted ATTRIBUTE_UNUSED)
{
  int i;
  basic_block bb;
  edge_iterator ei;
  edge e;
  auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));

  FOR_EACH_EDGE (e, ei, last_bb->preds)
    if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
      src_bbs.quick_push (e->src);

  rtx_insn *label = BB_HEAD (last_bb);

  FOR_EACH_VEC_ELT (src_bbs, i, bb)
    {
      rtx_insn *jump = BB_END (bb);

      if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
	continue;

      e = find_edge (bb, last_bb);

      /* If we have an unconditional jump, we can replace that
	 with a simple return instruction.  */
      if (simplejump_p (jump))
	{
	  /* The use of the return register might be present in the exit
	     fallthru block.  Either:
	     - removing the use is safe, and we should remove the use in
	     the exit fallthru block, or
	     - removing the use is not safe, and we should add it here.
	     For now, we conservatively choose the latter.  Either of the
	     2 helps in crossjumping.  */
	  emit_use_return_register_into_block (bb);

	  emit_return_into_block (simple_p, bb);
	  delete_insn (jump);
	}

      /* If we have a conditional jump branching to the last
	 block, we can try to replace that with a conditional
	 return instruction.  */
      else if (condjump_p (jump))
	{
	  rtx dest;

	  if (simple_p)
	    dest = simple_return_rtx;
	  else
	    dest = ret_rtx;
	  if (!redirect_jump (as_a <rtx_jump_insn *> (jump), dest, 0))
	    {
	      if (targetm.have_simple_return () && simple_p)
		{
		  if (dump_file)
		    fprintf (dump_file,
			     "Failed to redirect bb %d branch.\n", bb->index);
		  unconverted.safe_push (e);
		}
	      continue;
	    }

	  /* See comment in simplejump_p case above.  */
	  emit_use_return_register_into_block (bb);

	  /* If this block has only one successor, it both jumps
	     and falls through to the fallthru block, so we can't
	     delete the edge.  */
	  if (single_succ_p (bb))
	    continue;
	}
      else
	{
	  if (targetm.have_simple_return () && simple_p)
	    {
	      if (dump_file)
		fprintf (dump_file,
			 "Failed to redirect bb %d branch.\n", bb->index);
	      unconverted.safe_push (e);
	    }
	  continue;
	}

      /* Fix up the CFG for the successful change we just made.  */
      redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
      e->flags &= ~EDGE_CROSSING;
    }
  src_bbs.release ();
  return unconverted;
}

/* Emit a return insn for the exit fallthru block.  */
basic_block
emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
{
  basic_block last_bb = exit_fallthru_edge->src;

  if (JUMP_P (BB_END (last_bb)))
    {
      last_bb = split_edge (exit_fallthru_edge);
      exit_fallthru_edge = single_succ_edge (last_bb);
    }
  emit_barrier_after (BB_END (last_bb));
  emit_return_into_block (simple_p, last_bb);
  exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
  return last_bb;
}


/* Generate the prologue and epilogue RTL if the machine supports it.  Thread
   this into place with notes indicating where the prologue ends and where
   the epilogue begins.  Update the basic block information when possible.

   Notes on epilogue placement:
   There are several kinds of edges to the exit block:
   * a single fallthru edge from LAST_BB
   * possibly, edges from blocks containing sibcalls
   * possibly, fake edges from infinite loops

   The epilogue is always emitted on the fallthru edge from the last basic
   block in the function, LAST_BB, into the exit block.

   If LAST_BB is empty except for a label, it is the target of every
   other basic block in the function that ends in a return.  If a
   target has a return or simple_return pattern (possibly with
   conditional variants), these basic blocks can be changed so that a
   return insn is emitted into them, and their target is adjusted to
   the real exit block.

   Notes on shrink wrapping: We implement a fairly conservative
   version of shrink-wrapping rather than the textbook one.  We only
   generate a single prologue and a single epilogue.  This is
   sufficient to catch a number of interesting cases involving early
   exits.

   First, we identify the blocks that require the prologue to occur before
   them.  These are the ones that modify a call-saved register, or reference
   any of the stack or frame pointer registers.  To simplify things, we then
   mark everything reachable from these blocks as also requiring a prologue.
   This takes care of loops automatically, and avoids the need to examine
   whether MEMs reference the frame, since it is sufficient to check for
   occurrences of the stack or frame pointer.

   We then compute the set of blocks for which the need for a prologue
   is anticipatable (borrowing terminology from the shrink-wrapping
   description in Muchnick's book).  These are the blocks which either
   require a prologue themselves, or those that have only successors
   where the prologue is anticipatable.  The prologue needs to be
   inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
   is not.  For the moment, we ensure that only one such edge exists.

   The epilogue is placed as described above, but we make a
   distinction between inserting return and simple_return patterns
   when modifying other blocks that end in a return.  Blocks that end
   in a sibcall omit the sibcall_epilogue if the block is not in
   ANTIC.  */

void
thread_prologue_and_epilogue_insns (void)
{
  bool inserted;
  vec<edge> unconverted_simple_returns = vNULL;
  bitmap_head bb_flags;
  rtx_insn *returnjump;
  rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
  rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
  edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
  edge_iterator ei;

  df_analyze ();

  rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));

  inserted = false;
  epilogue_end = NULL;
  returnjump = NULL;

  /* Can't deal with multiple successors of the entry block at the
     moment.  Function should always have at least one entry
     point.  */
  gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
  entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
  orig_entry_edge = entry_edge;

  split_prologue_seq = NULL;
  if (flag_split_stack
      && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
	  == NULL))
    {
      start_sequence ();
      emit_insn (targetm.gen_split_stack_prologue ());
      split_prologue_seq = get_insns ();
      end_sequence ();

      record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
      set_insn_locations (split_prologue_seq, prologue_location);
    }

  prologue_seq = NULL;
  if (targetm.have_prologue ())
    {
      start_sequence ();
      rtx_insn *seq = targetm.gen_prologue ();
      emit_insn (seq);

      /* Insert an explicit USE for the frame pointer
         if the profiling is on and the frame pointer is required.  */
      if (crtl->profile && frame_pointer_needed)
	emit_use (hard_frame_pointer_rtx);

      /* Retain a map of the prologue insns.  */
      record_insns (seq, NULL, &prologue_insn_hash);
      emit_note (NOTE_INSN_PROLOGUE_END);

      /* Ensure that instructions are not moved into the prologue when
	 profiling is on.  The call to the profiling routine can be
	 emitted within the live range of a call-clobbered register.  */
      if (!targetm.profile_before_prologue () && crtl->profile)
        emit_insn (gen_blockage ());

      prologue_seq = get_insns ();
      end_sequence ();
      set_insn_locations (prologue_seq, prologue_location);
    }

  bitmap_initialize (&bb_flags, &bitmap_default_obstack);

  /* Try to perform a kind of shrink-wrapping, making sure the
     prologue/epilogue is emitted only around those parts of the
     function that require it.  */

  try_shrink_wrapping (&entry_edge, &bb_flags, prologue_seq);

  if (split_prologue_seq != NULL_RTX)
    {
      insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
      inserted = true;
    }
  if (prologue_seq != NULL_RTX)
    {
      insert_insn_on_edge (prologue_seq, entry_edge);
      inserted = true;
    }

  /* If the exit block has no non-fake predecessors, we don't need
     an epilogue.  */
  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
    if ((e->flags & EDGE_FAKE) == 0)
      break;
  if (e == NULL)
    goto epilogue_done;

  rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));

  exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);

  if (targetm.have_simple_return () && entry_edge != orig_entry_edge)
    exit_fallthru_edge
	= get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
					 &unconverted_simple_returns,
					 &returnjump);
  if (targetm.have_return ())
    {
      if (exit_fallthru_edge == NULL)
	goto epilogue_done;

      if (optimize)
	{
	  basic_block last_bb = exit_fallthru_edge->src;

	  if (LABEL_P (BB_HEAD (last_bb))
	      && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
	    convert_jumps_to_returns (last_bb, false, vNULL);

	  if (EDGE_COUNT (last_bb->preds) != 0
	      && single_succ_p (last_bb))
	    {
	      last_bb = emit_return_for_exit (exit_fallthru_edge, false);
	      epilogue_end = returnjump = BB_END (last_bb);

	      /* Emitting the return may add a basic block.
		 Fix bb_flags for the added block.  */
	      if (targetm.have_simple_return ()
		  && last_bb != exit_fallthru_edge->src)
		bitmap_set_bit (&bb_flags, last_bb->index);

	      goto epilogue_done;
	    }
	}
    }

  /* A small fib -- epilogue is not yet completed, but we wish to re-use
     this marker for the splits of EH_RETURN patterns, and nothing else
     uses the flag in the meantime.  */
  epilogue_completed = 1;

  /* Find non-fallthru edges that end with EH_RETURN instructions.  On
     some targets, these get split to a special version of the epilogue
     code.  In order to be able to properly annotate these with unwind
     info, try to split them now.  If we get a valid split, drop an
     EPILOGUE_BEG note and mark the insns as epilogue insns.  */
  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
    {
      rtx_insn *prev, *last, *trial;

      if (e->flags & EDGE_FALLTHRU)
	continue;
      last = BB_END (e->src);
      if (!eh_returnjump_p (last))
	continue;

      prev = PREV_INSN (last);
      trial = try_split (PATTERN (last), last, 1);
      if (trial == last)
	continue;

      record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
      emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
    }

  /* If nothing falls through into the exit block, we don't need an
     epilogue.  */

  if (exit_fallthru_edge == NULL)
    goto epilogue_done;

  if (targetm.have_epilogue ())
    {
      start_sequence ();
      epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
      rtx_insn *seq = targetm.gen_epilogue ();
      if (seq)
	emit_jump_insn (seq);

      /* Retain a map of the epilogue insns.  */
      record_insns (seq, NULL, &epilogue_insn_hash);
      set_insn_locations (seq, epilogue_location);

      seq = get_insns ();
      returnjump = get_last_insn ();
      end_sequence ();

      insert_insn_on_edge (seq, exit_fallthru_edge);
      inserted = true;

      if (JUMP_P (returnjump))
	set_return_jump_label (returnjump);
    }
  else
    {
      basic_block cur_bb;

      if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
	goto epilogue_done;
      /* We have a fall-through edge to the exit block, the source is not
         at the end of the function, and there will be an assembler epilogue
         at the end of the function.
         We can't use force_nonfallthru here, because that would try to
	 use return.  Inserting a jump 'by hand' is extremely messy, so
	 we take advantage of cfg_layout_finalize using
	 fixup_fallthru_exit_predecessor.  */
      cfg_layout_initialize (0);
      FOR_EACH_BB_FN (cur_bb, cfun)
	if (cur_bb->index >= NUM_FIXED_BLOCKS
	    && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
	  cur_bb->aux = cur_bb->next_bb;
      cfg_layout_finalize ();
    }

epilogue_done:

  default_rtl_profile ();

  if (inserted)
    {
      sbitmap blocks;

      commit_edge_insertions ();

      /* Look for basic blocks within the prologue insns.  */
      blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
      bitmap_clear (blocks);
      bitmap_set_bit (blocks, entry_edge->dest->index);
      bitmap_set_bit (blocks, orig_entry_edge->dest->index);
      find_many_sub_basic_blocks (blocks);
      sbitmap_free (blocks);

      /* The epilogue insns we inserted may cause the exit edge to no longer
	 be fallthru.  */
      FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
	{
	  if (((e->flags & EDGE_FALLTHRU) != 0)
	      && returnjump_p (BB_END (e->src)))
	    e->flags &= ~EDGE_FALLTHRU;
	}
    }

  if (targetm.have_simple_return ())
    convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags,
			      returnjump, unconverted_simple_returns);

  /* Emit sibling epilogues before any sibling call sites.  */
  for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
							     ei_safe_edge (ei));
							     )
    {
      basic_block bb = e->src;
      rtx_insn *insn = BB_END (bb);

      if (!CALL_P (insn)
	  || ! SIBLING_CALL_P (insn)
	  || (targetm.have_simple_return ()
	      && entry_edge != orig_entry_edge
	      && !bitmap_bit_p (&bb_flags, bb->index)))
	{
	  ei_next (&ei);
	  continue;
	}

      if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
	{
	  start_sequence ();
	  emit_note (NOTE_INSN_EPILOGUE_BEG);
	  emit_insn (ep_seq);
	  rtx_insn *seq = get_insns ();
	  end_sequence ();

	  /* Retain a map of the epilogue insns.  Used in life analysis to
	     avoid getting rid of sibcall epilogue insns.  Do this before we
	     actually emit the sequence.  */
	  record_insns (seq, NULL, &epilogue_insn_hash);
	  set_insn_locations (seq, epilogue_location);

	  emit_insn_before (seq, insn);
	}
      ei_next (&ei);
    }

  if (epilogue_end)
    {
      rtx_insn *insn, *next;

      /* Similarly, move any line notes that appear after the epilogue.
         There is no need, however, to be quite so anal about the existence
	 of such a note.  Also possibly move
	 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
	 info generation.  */
      for (insn = epilogue_end; insn; insn = next)
	{
	  next = NEXT_INSN (insn);
	  if (NOTE_P (insn)
	      && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
	    reorder_insns (insn, insn, PREV_INSN (epilogue_end));
	}
    }

  bitmap_clear (&bb_flags);

  /* Threading the prologue and epilogue changes the artificial refs
     in the entry and exit blocks.  */
  epilogue_completed = 1;
  df_update_entry_exit_and_calls ();
}

/* Reposition the prologue-end and epilogue-begin notes after
   instruction scheduling.  */

void
reposition_prologue_and_epilogue_notes (void)
{
  if (!targetm.have_prologue ()
      && !targetm.have_epilogue ()
      && !targetm.have_sibcall_epilogue ())
    return;

  /* Since the hash table is created on demand, the fact that it is
     non-null is a signal that it is non-empty.  */
  if (prologue_insn_hash != NULL)
    {
      size_t len = prologue_insn_hash->elements ();
      rtx_insn *insn, *last = NULL, *note = NULL;

      /* Scan from the beginning until we reach the last prologue insn.  */
      /* ??? While we do have the CFG intact, there are two problems:
	 (1) The prologue can contain loops (typically probing the stack),
	     which means that the end of the prologue isn't in the first bb.
	 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb.  */
      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
	{
	  if (NOTE_P (insn))
	    {
	      if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
		note = insn;
	    }
	  else if (contains (insn, prologue_insn_hash))
	    {
	      last = insn;
	      if (--len == 0)
		break;
	    }
	}

      if (last)
	{
	  if (note == NULL)
	    {
	      /* Scan forward looking for the PROLOGUE_END note.  It should
		 be right at the beginning of the block, possibly with other
		 insn notes that got moved there.  */
	      for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
		{
		  if (NOTE_P (note)
		      && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
		    break;
		}
	    }

	  /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note.  */
	  if (LABEL_P (last))
	    last = NEXT_INSN (last);
	  reorder_insns (note, note, last);
	}
    }

  if (epilogue_insn_hash != NULL)
    {
      edge_iterator ei;
      edge e;

      FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
	{
	  rtx_insn *insn, *first = NULL, *note = NULL;
	  basic_block bb = e->src;

	  /* Scan from the beginning until we reach the first epilogue insn. */
	  FOR_BB_INSNS (bb, insn)
	    {
	      if (NOTE_P (insn))
		{
		  if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
		    {
		      note = insn;
		      if (first != NULL)
			break;
		    }
		}
	      else if (first == NULL && contains (insn, epilogue_insn_hash))
		{
		  first = insn;
		  if (note != NULL)
		    break;
		}
	    }

	  if (note)
	    {
	      /* If the function has a single basic block, and no real
		 epilogue insns (e.g. sibcall with no cleanup), the
		 epilogue note can get scheduled before the prologue
		 note.  If we have frame related prologue insns, having
		 them scanned during the epilogue will result in a crash.
		 In this case re-order the epilogue note to just before
		 the last insn in the block.  */
	      if (first == NULL)
		first = BB_END (bb);

	      if (PREV_INSN (first) != note)
		reorder_insns (note, note, PREV_INSN (first));
	    }
	}
    }
}

/* Returns the name of function declared by FNDECL.  */
const char *
fndecl_name (tree fndecl)
{
  if (fndecl == NULL)
    return "(nofn)";
  return lang_hooks.decl_printable_name (fndecl, 2);
}

/* Returns the name of function FN.  */
const char *
function_name (struct function *fn)
{
  tree fndecl = (fn == NULL) ? NULL : fn->decl;
  return fndecl_name (fndecl);
}

/* Returns the name of the current function.  */
const char *
current_function_name (void)
{
  return function_name (cfun);
}


static unsigned int
rest_of_handle_check_leaf_regs (void)
{
#ifdef LEAF_REGISTERS
  crtl->uses_only_leaf_regs
    = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
#endif
  return 0;
}

/* Insert a TYPE into the used types hash table of CFUN.  */

static void
used_types_insert_helper (tree type, struct function *func)
{
  if (type != NULL && func != NULL)
    {
      if (func->used_types_hash == NULL)
	func->used_types_hash = hash_set<tree>::create_ggc (37);

      func->used_types_hash->add (type);
    }
}

/* Given a type, insert it into the used hash table in cfun.  */
void
used_types_insert (tree t)
{
  while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
    if (TYPE_NAME (t))
      break;
    else
      t = TREE_TYPE (t);
  if (TREE_CODE (t) == ERROR_MARK)
    return;
  if (TYPE_NAME (t) == NULL_TREE
      || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
    t = TYPE_MAIN_VARIANT (t);
  if (debug_info_level > DINFO_LEVEL_NONE)
    {
      if (cfun)
	used_types_insert_helper (t, cfun);
      else
	{
	  /* So this might be a type referenced by a global variable.
	     Record that type so that we can later decide to emit its
	     debug information.  */
	  vec_safe_push (types_used_by_cur_var_decl, t);
	}
    }
}

/* Helper to Hash a struct types_used_by_vars_entry.  */

static hashval_t
hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
{
  gcc_assert (entry && entry->var_decl && entry->type);

  return iterative_hash_object (entry->type,
				iterative_hash_object (entry->var_decl, 0));
}

/* Hash function of the types_used_by_vars_entry hash table.  */

hashval_t
used_type_hasher::hash (types_used_by_vars_entry *entry)
{
  return hash_types_used_by_vars_entry (entry);
}

/*Equality function of the types_used_by_vars_entry hash table.  */

bool
used_type_hasher::equal (types_used_by_vars_entry *e1,
			 types_used_by_vars_entry *e2)
{
  return (e1->var_decl == e2->var_decl && e1->type == e2->type);
}

/* Inserts an entry into the types_used_by_vars_hash hash table. */

void
types_used_by_var_decl_insert (tree type, tree var_decl)
{
  if (type != NULL && var_decl != NULL)
    {
      types_used_by_vars_entry **slot;
      struct types_used_by_vars_entry e;
      e.var_decl = var_decl;
      e.type = type;
      if (types_used_by_vars_hash == NULL)
	types_used_by_vars_hash
	  = hash_table<used_type_hasher>::create_ggc (37);

      slot = types_used_by_vars_hash->find_slot (&e, INSERT);
      if (*slot == NULL)
	{
	  struct types_used_by_vars_entry *entry;
	  entry = ggc_alloc<types_used_by_vars_entry> ();
	  entry->type = type;
	  entry->var_decl = var_decl;
	  *slot = entry;
	}
    }
}

namespace {

const pass_data pass_data_leaf_regs =
{
  RTL_PASS, /* type */
  "*leaf_regs", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_leaf_regs : public rtl_opt_pass
{
public:
  pass_leaf_regs (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_leaf_regs, ctxt)
  {}

  /* opt_pass methods: */
  virtual unsigned int execute (function *)
    {
      return rest_of_handle_check_leaf_regs ();
    }

}; // class pass_leaf_regs

} // anon namespace

rtl_opt_pass *
make_pass_leaf_regs (gcc::context *ctxt)
{
  return new pass_leaf_regs (ctxt);
}

static unsigned int
rest_of_handle_thread_prologue_and_epilogue (void)
{
  if (optimize)
    cleanup_cfg (CLEANUP_EXPENSIVE);

  /* On some machines, the prologue and epilogue code, or parts thereof,
     can be represented as RTL.  Doing so lets us schedule insns between
     it and the rest of the code and also allows delayed branch
     scheduling to operate in the epilogue.  */
  thread_prologue_and_epilogue_insns ();

  /* Some non-cold blocks may now be only reachable from cold blocks.
     Fix that up.  */
  fixup_partitions ();

  /* Shrink-wrapping can result in unreachable edges in the epilogue,
     see PR57320.  */
  cleanup_cfg (0);

  /* The stack usage info is finalized during prologue expansion.  */
  if (flag_stack_usage_info)
    output_stack_usage ();

  return 0;
}

namespace {

const pass_data pass_data_thread_prologue_and_epilogue =
{
  RTL_PASS, /* type */
  "pro_and_epilogue", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
};

class pass_thread_prologue_and_epilogue : public rtl_opt_pass
{
public:
  pass_thread_prologue_and_epilogue (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
  {}

  /* opt_pass methods: */
  virtual unsigned int execute (function *)
    {
      return rest_of_handle_thread_prologue_and_epilogue ();
    }

}; // class pass_thread_prologue_and_epilogue

} // anon namespace

rtl_opt_pass *
make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
{
  return new pass_thread_prologue_and_epilogue (ctxt);
}


/* This mini-pass fixes fall-out from SSA in asm statements that have
   in-out constraints.  Say you start with

     orig = inout;
     asm ("": "+mr" (inout));
     use (orig);

   which is transformed very early to use explicit output and match operands:

     orig = inout;
     asm ("": "=mr" (inout) : "0" (inout));
     use (orig);

   Or, after SSA and copyprop,

     asm ("": "=mr" (inout_2) : "0" (inout_1));
     use (inout_1);

   Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
   they represent two separate values, so they will get different pseudo
   registers during expansion.  Then, since the two operands need to match
   per the constraints, but use different pseudo registers, reload can
   only register a reload for these operands.  But reloads can only be
   satisfied by hardregs, not by memory, so we need a register for this
   reload, just because we are presented with non-matching operands.
   So, even though we allow memory for this operand, no memory can be
   used for it, just because the two operands don't match.  This can
   cause reload failures on register-starved targets.

   So it's a symptom of reload not being able to use memory for reloads
   or, alternatively it's also a symptom of both operands not coming into
   reload as matching (in which case the pseudo could go to memory just
   fine, as the alternative allows it, and no reload would be necessary).
   We fix the latter problem here, by transforming

     asm ("": "=mr" (inout_2) : "0" (inout_1));

   back to

     inout_2 = inout_1;
     asm ("": "=mr" (inout_2) : "0" (inout_2));  */

static void
match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
{
  int i;
  bool changed = false;
  rtx op = SET_SRC (p_sets[0]);
  int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
  rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
  bool *output_matched = XALLOCAVEC (bool, noutputs);

  memset (output_matched, 0, noutputs * sizeof (bool));
  for (i = 0; i < ninputs; i++)
    {
      rtx input, output;
      rtx_insn *insns;
      const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
      char *end;
      int match, j;

      if (*constraint == '%')
	constraint++;

      match = strtoul (constraint, &end, 10);
      if (end == constraint)
	continue;

      gcc_assert (match < noutputs);
      output = SET_DEST (p_sets[match]);
      input = RTVEC_ELT (inputs, i);
      /* Only do the transformation for pseudos.  */
      if (! REG_P (output)
	  || rtx_equal_p (output, input)
	  || (GET_MODE (input) != VOIDmode
	      && GET_MODE (input) != GET_MODE (output)))
	continue;

      /* We can't do anything if the output is also used as input,
	 as we're going to overwrite it.  */
      for (j = 0; j < ninputs; j++)
        if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
	  break;
      if (j != ninputs)
	continue;

      /* Avoid changing the same input several times.  For
	 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
	 only change in once (to out1), rather than changing it
	 first to out1 and afterwards to out2.  */
      if (i > 0)
	{
	  for (j = 0; j < noutputs; j++)
	    if (output_matched[j] && input == SET_DEST (p_sets[j]))
	      break;
	  if (j != noutputs)
	    continue;
	}
      output_matched[match] = true;

      start_sequence ();
      emit_move_insn (output, input);
      insns = get_insns ();
      end_sequence ();
      emit_insn_before (insns, insn);

      /* Now replace all mentions of the input with output.  We can't
	 just replace the occurrence in inputs[i], as the register might
	 also be used in some other input (or even in an address of an
	 output), which would mean possibly increasing the number of
	 inputs by one (namely 'output' in addition), which might pose
	 a too complicated problem for reload to solve.  E.g. this situation:

	   asm ("" : "=r" (output), "=m" (input) : "0" (input))

	 Here 'input' is used in two occurrences as input (once for the
	 input operand, once for the address in the second output operand).
	 If we would replace only the occurrence of the input operand (to
	 make the matching) we would be left with this:

	   output = input
	   asm ("" : "=r" (output), "=m" (input) : "0" (output))

	 Now we suddenly have two different input values (containing the same
	 value, but different pseudos) where we formerly had only one.
	 With more complicated asms this might lead to reload failures
	 which wouldn't have happen without this pass.  So, iterate over
	 all operands and replace all occurrences of the register used.  */
      for (j = 0; j < noutputs; j++)
	if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
	    && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
	  SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
					      input, output);
      for (j = 0; j < ninputs; j++)
	if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
	  RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
					       input, output);

      changed = true;
    }

  if (changed)
    df_insn_rescan (insn);
}

/* Add the decl D to the local_decls list of FUN.  */

void
add_local_decl (struct function *fun, tree d)
{
  gcc_assert (TREE_CODE (d) == VAR_DECL);
  vec_safe_push (fun->local_decls, d);
}

namespace {

const pass_data pass_data_match_asm_constraints =
{
  RTL_PASS, /* type */
  "asmcons", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  0, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_match_asm_constraints : public rtl_opt_pass
{
public:
  pass_match_asm_constraints (gcc::context *ctxt)
    : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
  {}

  /* opt_pass methods: */
  virtual unsigned int execute (function *);

}; // class pass_match_asm_constraints

unsigned
pass_match_asm_constraints::execute (function *fun)
{
  basic_block bb;
  rtx_insn *insn;
  rtx pat, *p_sets;
  int noutputs;

  if (!crtl->has_asm_statement)
    return 0;

  df_set_flags (DF_DEFER_INSN_RESCAN);
  FOR_EACH_BB_FN (bb, fun)
    {
      FOR_BB_INSNS (bb, insn)
	{
	  if (!INSN_P (insn))
	    continue;

	  pat = PATTERN (insn);
	  if (GET_CODE (pat) == PARALLEL)
	    p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
	  else if (GET_CODE (pat) == SET)
	    p_sets = &PATTERN (insn), noutputs = 1;
	  else
	    continue;

	  if (GET_CODE (*p_sets) == SET
	      && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
	    match_asm_constraints_1 (insn, p_sets, noutputs);
	 }
    }

  return TODO_df_finish;
}

} // anon namespace

rtl_opt_pass *
make_pass_match_asm_constraints (gcc::context *ctxt)
{
  return new pass_match_asm_constraints (ctxt);
}


#include "gt-function.h"