aboutsummaryrefslogtreecommitdiff
path: root/gcc/fortran/simplify.c
blob: 72d03eab672cad1b451864cfd7ff21a2aceaad3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
/* Simplify intrinsic functions at compile-time.
   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation,
   Inc.
   Contributed by Andy Vaught & Katherine Holcomb

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

#include "config.h"
#include "system.h"
#include "flags.h"
#include "gfortran.h"
#include "arith.h"
#include "intrinsic.h"

gfc_expr gfc_bad_expr;


/* Note that 'simplification' is not just transforming expressions.
   For functions that are not simplified at compile time, range
   checking is done if possible.

   The return convention is that each simplification function returns:

     A new expression node corresponding to the simplified arguments.
     The original arguments are destroyed by the caller, and must not
     be a part of the new expression.

     NULL pointer indicating that no simplification was possible and
     the original expression should remain intact.  If the
     simplification function sets the type and/or the function name
     via the pointer gfc_simple_expression, then this type is
     retained.

     An expression pointer to gfc_bad_expr (a static placeholder)
     indicating that some error has prevented simplification.  For
     example, sqrt(-1.0).  The error is generated within the function
     and should be propagated upwards

   By the time a simplification function gets control, it has been
   decided that the function call is really supposed to be the
   intrinsic.  No type checking is strictly necessary, since only
   valid types will be passed on.  On the other hand, a simplification
   subroutine may have to look at the type of an argument as part of
   its processing.

   Array arguments are never passed to these subroutines.

   The functions in this file don't have much comment with them, but
   everything is reasonably straight-forward.  The Standard, chapter 13
   is the best comment you'll find for this file anyway.  */

/* Static table for converting non-ascii character sets to ascii.
   The xascii_table[] is the inverse table.  */

static int ascii_table[256] = {
  '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0',
  '\b', '\t', '\n', '\v', '\0', '\r', '\0', '\0',
  '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0',
  '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0',
  ' ', '!', '\'', '#', '$', '%', '&', '\'',
  '(', ')', '*', '+', ',', '-', '.', '/',
  '0', '1', '2', '3', '4', '5', '6', '7',
  '8', '9', ':', ';', '<', '=', '>', '?',
  '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',
  'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',
  'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
  'X', 'Y', 'Z', '[', '\\', ']', '^', '_',
  '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g',
  'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
  'p', 'q', 'r', 's', 't', 'u', 'v', 'w',
  'x', 'y', 'z', '{', '|', '}', '~', '\?'
};

static int xascii_table[256];


/* Range checks an expression node.  If all goes well, returns the
   node, otherwise returns &gfc_bad_expr and frees the node.  */

static gfc_expr *
range_check (gfc_expr * result, const char *name)
{
  if (gfc_range_check (result) == ARITH_OK)
    return result;

  gfc_error ("Result of %s overflows its kind at %L", name, &result->where);
  gfc_free_expr (result);
  return &gfc_bad_expr;
}


/* A helper function that gets an optional and possibly missing
   kind parameter.  Returns the kind, -1 if something went wrong.  */

static int
get_kind (bt type, gfc_expr * k, const char *name, int default_kind)
{
  int kind;

  if (k == NULL)
    return default_kind;

  if (k->expr_type != EXPR_CONSTANT)
    {
      gfc_error ("KIND parameter of %s at %L must be an initialization "
		 "expression", name, &k->where);

      return -1;
    }

  if (gfc_extract_int (k, &kind) != NULL
      || gfc_validate_kind (type, kind, true) < 0)
    {

      gfc_error ("Invalid KIND parameter of %s at %L", name, &k->where);
      return -1;
    }

  return kind;
}


/* Checks if X, which is assumed to represent a two's complement
   integer of binary width BITSIZE, has the signbit set.  If so, makes 
   X the corresponding negative number.  */

static void
twos_complement (mpz_t x, int bitsize)
{
  mpz_t mask;

  if (mpz_tstbit (x, bitsize - 1) == 1)
    {
      mpz_init_set_ui(mask, 1);
      mpz_mul_2exp(mask, mask, bitsize);
      mpz_sub_ui(mask, mask, 1);

      /* We negate the number by hand, zeroing the high bits, that is
        make it the corresponding positive number, and then have it
        negated by GMP, giving the correct representation of the
        negative number.  */
      mpz_com (x, x);
      mpz_add_ui (x, x, 1);
      mpz_and (x, x, mask);

      mpz_neg (x, x);

      mpz_clear (mask);
    }
}


/********************** Simplification functions *****************************/

gfc_expr *
gfc_simplify_abs (gfc_expr * e)
{
  gfc_expr *result;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  switch (e->ts.type)
    {
    case BT_INTEGER:
      result = gfc_constant_result (BT_INTEGER, e->ts.kind, &e->where);

      mpz_abs (result->value.integer, e->value.integer);

      result = range_check (result, "IABS");
      break;

    case BT_REAL:
      result = gfc_constant_result (BT_REAL, e->ts.kind, &e->where);

      mpfr_abs (result->value.real, e->value.real, GFC_RND_MODE);

      result = range_check (result, "ABS");
      break;

    case BT_COMPLEX:
      result = gfc_constant_result (BT_REAL, e->ts.kind, &e->where);

      gfc_set_model_kind (e->ts.kind);

      mpfr_hypot (result->value.real, e->value.complex.r, 
		  e->value.complex.i, GFC_RND_MODE);
      result = range_check (result, "CABS");
      break;

    default:
      gfc_internal_error ("gfc_simplify_abs(): Bad type");
    }

  return result;
}


gfc_expr *
gfc_simplify_achar (gfc_expr * e)
{
  gfc_expr *result;
  int index;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  /* We cannot assume that the native character set is ASCII in this
     function.  */
  if (gfc_extract_int (e, &index) != NULL || index < 0 || index > 127)
    {
      gfc_error ("Extended ASCII not implemented: argument of ACHAR at %L "
		 "must be between 0 and 127", &e->where);
      return &gfc_bad_expr;
    }

  result = gfc_constant_result (BT_CHARACTER, gfc_default_character_kind,
				&e->where);

  result->value.character.string = gfc_getmem (2);

  result->value.character.length = 1;
  result->value.character.string[0] = ascii_table[index];
  result->value.character.string[1] = '\0';	/* For debugger */
  return result;
}


gfc_expr *
gfc_simplify_acos (gfc_expr * x)
{
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  if (mpfr_cmp_si (x->value.real, 1) > 0 || mpfr_cmp_si (x->value.real, -1) < 0)
    {
      gfc_error ("Argument of ACOS at %L must be between -1 and 1",
		 &x->where);
      return &gfc_bad_expr;
    }

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  mpfr_acos (result->value.real, x->value.real, GFC_RND_MODE);

  return range_check (result, "ACOS");
}

gfc_expr *
gfc_simplify_acosh (gfc_expr * x)
{
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  if (mpfr_cmp_si (x->value.real, 1) < 0)
    {
      gfc_error ("Argument of ACOSH at %L must not be less than 1",
		 &x->where);
      return &gfc_bad_expr;
    }

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  mpfr_acosh (result->value.real, x->value.real, GFC_RND_MODE);

  return range_check (result, "ACOSH");
}

gfc_expr *
gfc_simplify_adjustl (gfc_expr * e)
{
  gfc_expr *result;
  int count, i, len;
  char ch;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  len = e->value.character.length;

  result = gfc_constant_result (BT_CHARACTER, e->ts.kind, &e->where);

  result->value.character.length = len;
  result->value.character.string = gfc_getmem (len + 1);

  for (count = 0, i = 0; i < len; ++i)
    {
      ch = e->value.character.string[i];
      if (ch != ' ')
	break;
      ++count;
    }

  for (i = 0; i < len - count; ++i)
    {
      result->value.character.string[i] =
	e->value.character.string[count + i];
    }

  for (i = len - count; i < len; ++i)
    {
      result->value.character.string[i] = ' ';
    }

  result->value.character.string[len] = '\0';	/* For debugger */

  return result;
}


gfc_expr *
gfc_simplify_adjustr (gfc_expr * e)
{
  gfc_expr *result;
  int count, i, len;
  char ch;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  len = e->value.character.length;

  result = gfc_constant_result (BT_CHARACTER, e->ts.kind, &e->where);

  result->value.character.length = len;
  result->value.character.string = gfc_getmem (len + 1);

  for (count = 0, i = len - 1; i >= 0; --i)
    {
      ch = e->value.character.string[i];
      if (ch != ' ')
	break;
      ++count;
    }

  for (i = 0; i < count; ++i)
    {
      result->value.character.string[i] = ' ';
    }

  for (i = count; i < len; ++i)
    {
      result->value.character.string[i] =
	e->value.character.string[i - count];
    }

  result->value.character.string[len] = '\0';	/* For debugger */

  return result;
}


gfc_expr *
gfc_simplify_aimag (gfc_expr * e)
{
  gfc_expr *result;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_REAL, e->ts.kind, &e->where);
  mpfr_set (result->value.real, e->value.complex.i, GFC_RND_MODE);

  return range_check (result, "AIMAG");
}


gfc_expr *
gfc_simplify_aint (gfc_expr * e, gfc_expr * k)
{
  gfc_expr *rtrunc, *result;
  int kind;

  kind = get_kind (BT_REAL, k, "AINT", e->ts.kind);
  if (kind == -1)
    return &gfc_bad_expr;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  rtrunc = gfc_copy_expr (e);

  mpfr_trunc (rtrunc->value.real, e->value.real);

  result = gfc_real2real (rtrunc, kind);
  gfc_free_expr (rtrunc);

  return range_check (result, "AINT");
}


gfc_expr *
gfc_simplify_dint (gfc_expr * e)
{
  gfc_expr *rtrunc, *result;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  rtrunc = gfc_copy_expr (e);

  mpfr_trunc (rtrunc->value.real, e->value.real);

  result = gfc_real2real (rtrunc, gfc_default_double_kind);
  gfc_free_expr (rtrunc);

  return range_check (result, "DINT");
}


gfc_expr *
gfc_simplify_anint (gfc_expr * e, gfc_expr * k)
{
  gfc_expr *result;
  int kind;

  kind = get_kind (BT_REAL, k, "ANINT", e->ts.kind);
  if (kind == -1)
    return &gfc_bad_expr;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (e->ts.type, kind, &e->where);

  mpfr_round (result->value.real, e->value.real);

  return range_check (result, "ANINT");
}


gfc_expr *
gfc_simplify_dnint (gfc_expr * e)
{
  gfc_expr *result;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_REAL, gfc_default_double_kind, &e->where);

  mpfr_round (result->value.real, e->value.real);

  return range_check (result, "DNINT");
}


gfc_expr *
gfc_simplify_asin (gfc_expr * x)
{
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  if (mpfr_cmp_si (x->value.real, 1) > 0 || mpfr_cmp_si (x->value.real, -1) < 0)
    {
      gfc_error ("Argument of ASIN at %L must be between -1 and 1",
		 &x->where);
      return &gfc_bad_expr;
    }

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  mpfr_asin(result->value.real, x->value.real, GFC_RND_MODE);

  return range_check (result, "ASIN");
}


gfc_expr *
gfc_simplify_asinh (gfc_expr * x)
{
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  mpfr_asinh(result->value.real, x->value.real, GFC_RND_MODE);

  return range_check (result, "ASINH");
}


gfc_expr *
gfc_simplify_atan (gfc_expr * x)
{
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;
    
  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  mpfr_atan(result->value.real, x->value.real, GFC_RND_MODE);

  return range_check (result, "ATAN");
}


gfc_expr *
gfc_simplify_atanh (gfc_expr * x)
{
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  if (mpfr_cmp_si (x->value.real, 1) >= 0 ||
      mpfr_cmp_si (x->value.real, -1) <= 0)
    {
      gfc_error ("Argument of ATANH at %L must be inside the range -1 to 1",
		 &x->where);
      return &gfc_bad_expr;
    }

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  mpfr_atanh(result->value.real, x->value.real, GFC_RND_MODE);

  return range_check (result, "ATANH");
}


gfc_expr *
gfc_simplify_atan2 (gfc_expr * y, gfc_expr * x)
{
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  if (mpfr_sgn (y->value.real) == 0 && mpfr_sgn (x->value.real) == 0)
    {
      gfc_error
	("If first argument of ATAN2 %L is zero, then the second argument "
	  "must not be zero", &x->where);
      gfc_free_expr (result);
      return &gfc_bad_expr;
    }

  arctangent2 (y->value.real, x->value.real, result->value.real);

  return range_check (result, "ATAN2");
}


gfc_expr *
gfc_simplify_bit_size (gfc_expr * e)
{
  gfc_expr *result;
  int i;

  i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
  result = gfc_constant_result (BT_INTEGER, e->ts.kind, &e->where);
  mpz_set_ui (result->value.integer, gfc_integer_kinds[i].bit_size);

  return result;
}


gfc_expr *
gfc_simplify_btest (gfc_expr * e, gfc_expr * bit)
{
  int b;

  if (e->expr_type != EXPR_CONSTANT || bit->expr_type != EXPR_CONSTANT)
    return NULL;

  if (gfc_extract_int (bit, &b) != NULL || b < 0)
    return gfc_logical_expr (0, &e->where);

  return gfc_logical_expr (mpz_tstbit (e->value.integer, b), &e->where);
}


gfc_expr *
gfc_simplify_ceiling (gfc_expr * e, gfc_expr * k)
{
  gfc_expr *ceil, *result;
  int kind;

  kind = get_kind (BT_INTEGER, k, "CEILING", gfc_default_integer_kind);
  if (kind == -1)
    return &gfc_bad_expr;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_INTEGER, kind, &e->where);

  ceil = gfc_copy_expr (e);

  mpfr_ceil (ceil->value.real, e->value.real);
  gfc_mpfr_to_mpz(result->value.integer, ceil->value.real);

  gfc_free_expr (ceil);

  return range_check (result, "CEILING");
}


gfc_expr *
gfc_simplify_char (gfc_expr * e, gfc_expr * k)
{
  gfc_expr *result;
  int c, kind;

  kind = get_kind (BT_CHARACTER, k, "CHAR", gfc_default_character_kind);
  if (kind == -1)
    return &gfc_bad_expr;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  if (gfc_extract_int (e, &c) != NULL || c < 0 || c > 255)
    {
      gfc_error ("Bad character in CHAR function at %L", &e->where);
      return &gfc_bad_expr;
    }

  result = gfc_constant_result (BT_CHARACTER, kind, &e->where);

  result->value.character.length = 1;
  result->value.character.string = gfc_getmem (2);

  result->value.character.string[0] = c;
  result->value.character.string[1] = '\0';	/* For debugger */

  return result;
}


/* Common subroutine for simplifying CMPLX and DCMPLX.  */

static gfc_expr *
simplify_cmplx (const char *name, gfc_expr * x, gfc_expr * y, int kind)
{
  gfc_expr *result;

  result = gfc_constant_result (BT_COMPLEX, kind, &x->where);

  mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE);

  switch (x->ts.type)
    {
    case BT_INTEGER:
      mpfr_set_z (result->value.complex.r, x->value.integer, GFC_RND_MODE);
      break;

    case BT_REAL:
      mpfr_set (result->value.complex.r, x->value.real, GFC_RND_MODE);
      break;

    case BT_COMPLEX:
      mpfr_set (result->value.complex.r, x->value.complex.r, GFC_RND_MODE);
      mpfr_set (result->value.complex.i, x->value.complex.i, GFC_RND_MODE);
      break;

    default:
      gfc_internal_error ("gfc_simplify_dcmplx(): Bad type (x)");
    }

  if (y != NULL)
    {
      switch (y->ts.type)
	{
	case BT_INTEGER:
	  mpfr_set_z (result->value.complex.i, y->value.integer, GFC_RND_MODE);
	  break;

	case BT_REAL:
	  mpfr_set (result->value.complex.i, y->value.real, GFC_RND_MODE);
	  break;

	default:
	  gfc_internal_error ("gfc_simplify_dcmplx(): Bad type (y)");
	}
    }

  return range_check (result, name);
}


gfc_expr *
gfc_simplify_cmplx (gfc_expr * x, gfc_expr * y, gfc_expr * k)
{
  int kind;

  if (x->expr_type != EXPR_CONSTANT
      || (y != NULL && y->expr_type != EXPR_CONSTANT))
    return NULL;

  kind = get_kind (BT_REAL, k, "CMPLX", gfc_default_real_kind);
  if (kind == -1)
    return &gfc_bad_expr;

  return simplify_cmplx ("CMPLX", x, y, kind);
}


gfc_expr *
gfc_simplify_conjg (gfc_expr * e)
{
  gfc_expr *result;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_copy_expr (e);
  mpfr_neg (result->value.complex.i, result->value.complex.i, GFC_RND_MODE);

  return range_check (result, "CONJG");
}


gfc_expr *
gfc_simplify_cos (gfc_expr * x)
{
  gfc_expr *result;
  mpfr_t xp, xq;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  switch (x->ts.type)
    {
    case BT_REAL:
      mpfr_cos (result->value.real, x->value.real, GFC_RND_MODE);
      break;
    case BT_COMPLEX:
      gfc_set_model_kind (x->ts.kind);
      mpfr_init (xp);
      mpfr_init (xq);

      mpfr_cos  (xp, x->value.complex.r, GFC_RND_MODE);
      mpfr_cosh (xq, x->value.complex.i, GFC_RND_MODE);
      mpfr_mul(result->value.complex.r, xp, xq, GFC_RND_MODE);

      mpfr_sin  (xp, x->value.complex.r, GFC_RND_MODE);
      mpfr_sinh (xq, x->value.complex.i, GFC_RND_MODE);
      mpfr_mul (xp, xp, xq, GFC_RND_MODE);
      mpfr_neg (result->value.complex.i, xp, GFC_RND_MODE );

      mpfr_clear (xp);
      mpfr_clear (xq);
      break;
    default:
      gfc_internal_error ("in gfc_simplify_cos(): Bad type");
    }

  return range_check (result, "COS");

}


gfc_expr *
gfc_simplify_cosh (gfc_expr * x)
{
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  mpfr_cosh (result->value.real, x->value.real, GFC_RND_MODE);

  return range_check (result, "COSH");
}


gfc_expr *
gfc_simplify_dcmplx (gfc_expr * x, gfc_expr * y)
{

  if (x->expr_type != EXPR_CONSTANT
      || (y != NULL && y->expr_type != EXPR_CONSTANT))
    return NULL;

  return simplify_cmplx ("DCMPLX", x, y, gfc_default_double_kind);
}


gfc_expr *
gfc_simplify_dble (gfc_expr * e)
{
  gfc_expr *result;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  switch (e->ts.type)
    {
    case BT_INTEGER:
      result = gfc_int2real (e, gfc_default_double_kind);
      break;

    case BT_REAL:
      result = gfc_real2real (e, gfc_default_double_kind);
      break;

    case BT_COMPLEX:
      result = gfc_complex2real (e, gfc_default_double_kind);
      break;

    default:
      gfc_internal_error ("gfc_simplify_dble(): bad type at %L", &e->where);
    }

  return range_check (result, "DBLE");
}


gfc_expr *
gfc_simplify_digits (gfc_expr * x)
{
  int i, digits;

  i = gfc_validate_kind (x->ts.type, x->ts.kind, false);
  switch (x->ts.type)
    {
    case BT_INTEGER:
      digits = gfc_integer_kinds[i].digits;
      break;

    case BT_REAL:
    case BT_COMPLEX:
      digits = gfc_real_kinds[i].digits;
      break;

    default:
      gcc_unreachable ();
    }

  return gfc_int_expr (digits);
}


gfc_expr *
gfc_simplify_dim (gfc_expr * x, gfc_expr * y)
{
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  switch (x->ts.type)
    {
    case BT_INTEGER:
      if (mpz_cmp (x->value.integer, y->value.integer) > 0)
	mpz_sub (result->value.integer, x->value.integer, y->value.integer);
      else
	mpz_set_ui (result->value.integer, 0);

      break;

    case BT_REAL:
      if (mpfr_cmp (x->value.real, y->value.real) > 0)
	mpfr_sub (result->value.real, x->value.real, y->value.real, GFC_RND_MODE);
      else
	mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);

      break;

    default:
      gfc_internal_error ("gfc_simplify_dim(): Bad type");
    }

  return range_check (result, "DIM");
}


gfc_expr *
gfc_simplify_dprod (gfc_expr * x, gfc_expr * y)
{
  gfc_expr *a1, *a2, *result;

  if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
    return NULL;

  result =
    gfc_constant_result (BT_REAL, gfc_default_double_kind, &x->where);

  a1 = gfc_real2real (x, gfc_default_double_kind);
  a2 = gfc_real2real (y, gfc_default_double_kind);

  mpfr_mul (result->value.real, a1->value.real, a2->value.real, GFC_RND_MODE);

  gfc_free_expr (a1);
  gfc_free_expr (a2);

  return range_check (result, "DPROD");
}


gfc_expr *
gfc_simplify_epsilon (gfc_expr * e)
{
  gfc_expr *result;
  int i;

  i = gfc_validate_kind (e->ts.type, e->ts.kind, false);

  result = gfc_constant_result (BT_REAL, e->ts.kind, &e->where);

  mpfr_set (result->value.real, gfc_real_kinds[i].epsilon, GFC_RND_MODE);

  return range_check (result, "EPSILON");
}


gfc_expr *
gfc_simplify_exp (gfc_expr * x)
{
  gfc_expr *result;
  mpfr_t xp, xq;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  switch (x->ts.type)
    {
    case BT_REAL:
      mpfr_exp(result->value.real, x->value.real, GFC_RND_MODE);
      break;

    case BT_COMPLEX:
      gfc_set_model_kind (x->ts.kind);
      mpfr_init (xp);
      mpfr_init (xq);
      mpfr_exp (xq, x->value.complex.r, GFC_RND_MODE);
      mpfr_cos (xp, x->value.complex.i, GFC_RND_MODE);
      mpfr_mul (result->value.complex.r, xq, xp, GFC_RND_MODE);
      mpfr_sin (xp, x->value.complex.i, GFC_RND_MODE);
      mpfr_mul (result->value.complex.i, xq, xp, GFC_RND_MODE);
      mpfr_clear (xp);
      mpfr_clear (xq);
      break;

    default:
      gfc_internal_error ("in gfc_simplify_exp(): Bad type");
    }

  return range_check (result, "EXP");
}

/* FIXME:  MPFR should be able to do this better */
gfc_expr *
gfc_simplify_exponent (gfc_expr * x)
{
  int i;
  mpfr_t tmp;
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_INTEGER, gfc_default_integer_kind,
				&x->where);

  gfc_set_model (x->value.real);

  if (mpfr_sgn (x->value.real) == 0)
    {
      mpz_set_ui (result->value.integer, 0);
      return result;
    }

  mpfr_init (tmp);

  mpfr_abs (tmp, x->value.real, GFC_RND_MODE);
  mpfr_log2 (tmp, tmp, GFC_RND_MODE);

  gfc_mpfr_to_mpz (result->value.integer, tmp);

  /* The model number for tiny(x) is b**(emin - 1) where b is the base and emin
     is the smallest exponent value.  So, we need to add 1 if x is tiny(x).  */
  i = gfc_validate_kind (x->ts.type, x->ts.kind, false);
  if (mpfr_cmp (x->value.real, gfc_real_kinds[i].tiny) == 0)
    mpz_add_ui (result->value.integer,result->value.integer, 1);

  mpfr_clear (tmp);

  return range_check (result, "EXPONENT");
}


gfc_expr *
gfc_simplify_float (gfc_expr * a)
{
  gfc_expr *result;

  if (a->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_int2real (a, gfc_default_real_kind);
  return range_check (result, "FLOAT");
}


gfc_expr *
gfc_simplify_floor (gfc_expr * e, gfc_expr * k)
{
  gfc_expr *result;
  mpfr_t floor;
  int kind;

  kind = get_kind (BT_INTEGER, k, "FLOOR", gfc_default_integer_kind);
  if (kind == -1)
    gfc_internal_error ("gfc_simplify_floor(): Bad kind");

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_INTEGER, kind, &e->where);

  gfc_set_model_kind (kind);
  mpfr_init (floor);
  mpfr_floor (floor, e->value.real);

  gfc_mpfr_to_mpz (result->value.integer, floor);

  mpfr_clear (floor);

  return range_check (result, "FLOOR");
}


gfc_expr *
gfc_simplify_fraction (gfc_expr * x)
{
  gfc_expr *result;
  mpfr_t absv, exp, pow2;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_REAL, x->ts.kind, &x->where);

  gfc_set_model_kind (x->ts.kind);

  if (mpfr_sgn (x->value.real) == 0)
    {
      mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
      return result;
    }

  mpfr_init (exp);
  mpfr_init (absv);
  mpfr_init (pow2);

  mpfr_abs (absv, x->value.real, GFC_RND_MODE);
  mpfr_log2 (exp, absv, GFC_RND_MODE);

  mpfr_trunc (exp, exp);
  mpfr_add_ui (exp, exp, 1, GFC_RND_MODE);

  mpfr_ui_pow (pow2, 2, exp, GFC_RND_MODE);

  mpfr_div (result->value.real, absv, pow2, GFC_RND_MODE);

  mpfr_clear (exp);
  mpfr_clear (absv);
  mpfr_clear (pow2);

  return range_check (result, "FRACTION");
}


gfc_expr *
gfc_simplify_huge (gfc_expr * e)
{
  gfc_expr *result;
  int i;

  i = gfc_validate_kind (e->ts.type, e->ts.kind, false);

  result = gfc_constant_result (e->ts.type, e->ts.kind, &e->where);

  switch (e->ts.type)
    {
    case BT_INTEGER:
      mpz_set (result->value.integer, gfc_integer_kinds[i].huge);
      break;

    case BT_REAL:
      mpfr_set (result->value.real, gfc_real_kinds[i].huge, GFC_RND_MODE);
      break;

    default:
      gcc_unreachable ();
    }

  return result;
}


gfc_expr *
gfc_simplify_iachar (gfc_expr * e)
{
  gfc_expr *result;
  int index;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  if (e->value.character.length != 1)
    {
      gfc_error ("Argument of IACHAR at %L must be of length one", &e->where);
      return &gfc_bad_expr;
    }

  index = xascii_table[(int) e->value.character.string[0] & 0xFF];

  result = gfc_int_expr (index);
  result->where = e->where;

  return range_check (result, "IACHAR");
}


gfc_expr *
gfc_simplify_iand (gfc_expr * x, gfc_expr * y)
{
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_INTEGER, x->ts.kind, &x->where);

  mpz_and (result->value.integer, x->value.integer, y->value.integer);

  return range_check (result, "IAND");
}


gfc_expr *
gfc_simplify_ibclr (gfc_expr * x, gfc_expr * y)
{
  gfc_expr *result;
  int k, pos;

  if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
    return NULL;

  if (gfc_extract_int (y, &pos) != NULL || pos < 0)
    {
      gfc_error ("Invalid second argument of IBCLR at %L", &y->where);
      return &gfc_bad_expr;
    }

  k = gfc_validate_kind (x->ts.type, x->ts.kind, false);

  if (pos > gfc_integer_kinds[k].bit_size)
    {
      gfc_error ("Second argument of IBCLR exceeds bit size at %L",
		 &y->where);
      return &gfc_bad_expr;
    }

  result = gfc_copy_expr (x);

  mpz_clrbit (result->value.integer, pos);
  return range_check (result, "IBCLR");
}


gfc_expr *
gfc_simplify_ibits (gfc_expr * x, gfc_expr * y, gfc_expr * z)
{
  gfc_expr *result;
  int pos, len;
  int i, k, bitsize;
  int *bits;

  if (x->expr_type != EXPR_CONSTANT
      || y->expr_type != EXPR_CONSTANT
      || z->expr_type != EXPR_CONSTANT)
    return NULL;

  if (gfc_extract_int (y, &pos) != NULL || pos < 0)
    {
      gfc_error ("Invalid second argument of IBITS at %L", &y->where);
      return &gfc_bad_expr;
    }

  if (gfc_extract_int (z, &len) != NULL || len < 0)
    {
      gfc_error ("Invalid third argument of IBITS at %L", &z->where);
      return &gfc_bad_expr;
    }

  k = gfc_validate_kind (BT_INTEGER, x->ts.kind, false);

  bitsize = gfc_integer_kinds[k].bit_size;

  if (pos + len > bitsize)
    {
      gfc_error
	("Sum of second and third arguments of IBITS exceeds bit size "
	 "at %L", &y->where);
      return &gfc_bad_expr;
    }

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  bits = gfc_getmem (bitsize * sizeof (int));

  for (i = 0; i < bitsize; i++)
    bits[i] = 0;

  for (i = 0; i < len; i++)
    bits[i] = mpz_tstbit (x->value.integer, i + pos);

  for (i = 0; i < bitsize; i++)
    {
      if (bits[i] == 0)
	{
	  mpz_clrbit (result->value.integer, i);
	}
      else if (bits[i] == 1)
	{
	  mpz_setbit (result->value.integer, i);
	}
      else
	{
	  gfc_internal_error ("IBITS: Bad bit");
	}
    }

  gfc_free (bits);

  return range_check (result, "IBITS");
}


gfc_expr *
gfc_simplify_ibset (gfc_expr * x, gfc_expr * y)
{
  gfc_expr *result;
  int k, pos;

  if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
    return NULL;

  if (gfc_extract_int (y, &pos) != NULL || pos < 0)
    {
      gfc_error ("Invalid second argument of IBSET at %L", &y->where);
      return &gfc_bad_expr;
    }

  k = gfc_validate_kind (x->ts.type, x->ts.kind, false);

  if (pos > gfc_integer_kinds[k].bit_size)
    {
      gfc_error ("Second argument of IBSET exceeds bit size at %L",
		 &y->where);
      return &gfc_bad_expr;
    }

  result = gfc_copy_expr (x);

  mpz_setbit (result->value.integer, pos);
  return range_check (result, "IBSET");
}


gfc_expr *
gfc_simplify_ichar (gfc_expr * e)
{
  gfc_expr *result;
  int index;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  if (e->value.character.length != 1)
    {
      gfc_error ("Argument of ICHAR at %L must be of length one", &e->where);
      return &gfc_bad_expr;
    }

  index = (int) e->value.character.string[0];

  if (index < CHAR_MIN || index > CHAR_MAX)
    {
      gfc_error ("Argument of ICHAR at %L out of range of this processor",
		 &e->where);
      return &gfc_bad_expr;
    }

  result = gfc_int_expr (index);
  result->where = e->where;
  return range_check (result, "ICHAR");
}


gfc_expr *
gfc_simplify_ieor (gfc_expr * x, gfc_expr * y)
{
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_INTEGER, x->ts.kind, &x->where);

  mpz_xor (result->value.integer, x->value.integer, y->value.integer);

  return range_check (result, "IEOR");
}


gfc_expr *
gfc_simplify_index (gfc_expr * x, gfc_expr * y, gfc_expr * b)
{
  gfc_expr *result;
  int back, len, lensub;
  int i, j, k, count, index = 0, start;

  if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
    return NULL;

  if (b != NULL && b->value.logical != 0)
    back = 1;
  else
    back = 0;

  result = gfc_constant_result (BT_INTEGER, gfc_default_integer_kind,
				&x->where);

  len = x->value.character.length;
  lensub = y->value.character.length;

  if (len < lensub)
    {
      mpz_set_si (result->value.integer, 0);
      return result;
    }

  if (back == 0)
    {

      if (lensub == 0)
	{
	  mpz_set_si (result->value.integer, 1);
	  return result;
	}
      else if (lensub == 1)
	{
	  for (i = 0; i < len; i++)
	    {
	      for (j = 0; j < lensub; j++)
		{
		  if (y->value.character.string[j] ==
		      x->value.character.string[i])
		    {
		      index = i + 1;
		      goto done;
		    }
		}
	    }
	}
      else
	{
	  for (i = 0; i < len; i++)
	    {
	      for (j = 0; j < lensub; j++)
		{
		  if (y->value.character.string[j] ==
		      x->value.character.string[i])
		    {
		      start = i;
		      count = 0;

		      for (k = 0; k < lensub; k++)
			{
			  if (y->value.character.string[k] ==
			      x->value.character.string[k + start])
			    count++;
			}

		      if (count == lensub)
			{
			  index = start + 1;
			  goto done;
			}
		    }
		}
	    }
	}

    }
  else
    {

      if (lensub == 0)
	{
	  mpz_set_si (result->value.integer, len + 1);
	  return result;
	}
      else if (lensub == 1)
	{
	  for (i = 0; i < len; i++)
	    {
	      for (j = 0; j < lensub; j++)
		{
		  if (y->value.character.string[j] ==
		      x->value.character.string[len - i])
		    {
		      index = len - i + 1;
		      goto done;
		    }
		}
	    }
	}
      else
	{
	  for (i = 0; i < len; i++)
	    {
	      for (j = 0; j < lensub; j++)
		{
		  if (y->value.character.string[j] ==
		      x->value.character.string[len - i])
		    {
		      start = len - i;
		      if (start <= len - lensub)
			{
			  count = 0;
			  for (k = 0; k < lensub; k++)
			    if (y->value.character.string[k] ==
				x->value.character.string[k + start])
			      count++;

			  if (count == lensub)
			    {
			      index = start + 1;
			      goto done;
			    }
			}
		      else
			{
			  continue;
			}
		    }
		}
	    }
	}
    }

done:
  mpz_set_si (result->value.integer, index);
  return range_check (result, "INDEX");
}


gfc_expr *
gfc_simplify_int (gfc_expr * e, gfc_expr * k)
{
  gfc_expr *rpart, *rtrunc, *result;
  int kind;

  kind = get_kind (BT_INTEGER, k, "INT", gfc_default_integer_kind);
  if (kind == -1)
    return &gfc_bad_expr;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_INTEGER, kind, &e->where);

  switch (e->ts.type)
    {
    case BT_INTEGER:
      mpz_set (result->value.integer, e->value.integer);
      break;

    case BT_REAL:
      rtrunc = gfc_copy_expr (e);
      mpfr_trunc (rtrunc->value.real, e->value.real);
      gfc_mpfr_to_mpz (result->value.integer, rtrunc->value.real);
      gfc_free_expr (rtrunc);
      break;

    case BT_COMPLEX:
      rpart = gfc_complex2real (e, kind);
      rtrunc = gfc_copy_expr (rpart);
      mpfr_trunc (rtrunc->value.real, rpart->value.real);
      gfc_mpfr_to_mpz (result->value.integer, rtrunc->value.real);
      gfc_free_expr (rpart);
      gfc_free_expr (rtrunc);
      break;

    default:
      gfc_error ("Argument of INT at %L is not a valid type", &e->where);
      gfc_free_expr (result);
      return &gfc_bad_expr;
    }

  return range_check (result, "INT");
}


gfc_expr *
gfc_simplify_ifix (gfc_expr * e)
{
  gfc_expr *rtrunc, *result;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_INTEGER, gfc_default_integer_kind,
				&e->where);

  rtrunc = gfc_copy_expr (e);

  mpfr_trunc (rtrunc->value.real, e->value.real);
  gfc_mpfr_to_mpz (result->value.integer, rtrunc->value.real);

  gfc_free_expr (rtrunc);
  return range_check (result, "IFIX");
}


gfc_expr *
gfc_simplify_idint (gfc_expr * e)
{
  gfc_expr *rtrunc, *result;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_INTEGER, gfc_default_integer_kind,
				&e->where);

  rtrunc = gfc_copy_expr (e);

  mpfr_trunc (rtrunc->value.real, e->value.real);
  gfc_mpfr_to_mpz (result->value.integer, rtrunc->value.real);

  gfc_free_expr (rtrunc);
  return range_check (result, "IDINT");
}


gfc_expr *
gfc_simplify_ior (gfc_expr * x, gfc_expr * y)
{
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_INTEGER, x->ts.kind, &x->where);

  mpz_ior (result->value.integer, x->value.integer, y->value.integer);
  return range_check (result, "IOR");
}


gfc_expr *
gfc_simplify_ishft (gfc_expr * e, gfc_expr * s)
{
  gfc_expr *result;
  int shift, ashift, isize, k, *bits, i;

  if (e->expr_type != EXPR_CONSTANT || s->expr_type != EXPR_CONSTANT)
    return NULL;

  if (gfc_extract_int (s, &shift) != NULL)
    {
      gfc_error ("Invalid second argument of ISHFT at %L", &s->where);
      return &gfc_bad_expr;
    }

  k = gfc_validate_kind (BT_INTEGER, e->ts.kind, false);

  isize = gfc_integer_kinds[k].bit_size;

  if (shift >= 0)
    ashift = shift;
  else
    ashift = -shift;

  if (ashift > isize)
    {
      gfc_error
	("Magnitude of second argument of ISHFT exceeds bit size at %L",
	 &s->where);
      return &gfc_bad_expr;
    }

  result = gfc_constant_result (e->ts.type, e->ts.kind, &e->where);

  if (shift == 0)
    {
      mpz_set (result->value.integer, e->value.integer);
      return range_check (result, "ISHFT");
    }
  
  bits = gfc_getmem (isize * sizeof (int));

  for (i = 0; i < isize; i++)
    bits[i] = mpz_tstbit (e->value.integer, i);

  if (shift > 0)
    {
      for (i = 0; i < shift; i++)
	mpz_clrbit (result->value.integer, i);

      for (i = 0; i < isize - shift; i++)
	{
	  if (bits[i] == 0)
	    mpz_clrbit (result->value.integer, i + shift);
	  else
	    mpz_setbit (result->value.integer, i + shift);
	}
    }
  else
    {
      for (i = isize - 1; i >= isize - ashift; i--)
	mpz_clrbit (result->value.integer, i);

      for (i = isize - 1; i >= ashift; i--)
	{
	  if (bits[i] == 0)
	    mpz_clrbit (result->value.integer, i - ashift);
	  else
	    mpz_setbit (result->value.integer, i - ashift);
	}
    }

  twos_complement (result->value.integer, isize);

  gfc_free (bits);
  return result;
}


gfc_expr *
gfc_simplify_ishftc (gfc_expr * e, gfc_expr * s, gfc_expr * sz)
{
  gfc_expr *result;
  int shift, ashift, isize, delta, k;
  int i, *bits;

  if (e->expr_type != EXPR_CONSTANT || s->expr_type != EXPR_CONSTANT)
    return NULL;

  if (gfc_extract_int (s, &shift) != NULL)
    {
      gfc_error ("Invalid second argument of ISHFTC at %L", &s->where);
      return &gfc_bad_expr;
    }

  k = gfc_validate_kind (e->ts.type, e->ts.kind, false);

  if (sz != NULL)
    {
      if (gfc_extract_int (sz, &isize) != NULL || isize < 0)
	{
	  gfc_error ("Invalid third argument of ISHFTC at %L", &sz->where);
	  return &gfc_bad_expr;
	}
    }
  else
    isize = gfc_integer_kinds[k].bit_size;

  if (shift >= 0)
    ashift = shift;
  else
    ashift = -shift;

  if (ashift > isize)
    {
      gfc_error
	("Magnitude of second argument of ISHFTC exceeds third argument "
	 "at %L", &s->where);
      return &gfc_bad_expr;
    }

  result = gfc_constant_result (e->ts.type, e->ts.kind, &e->where);

  if (shift == 0)
    {
      mpz_set (result->value.integer, e->value.integer);
      return result;
    }

  bits = gfc_getmem (isize * sizeof (int));

  for (i = 0; i < isize; i++)
    bits[i] = mpz_tstbit (e->value.integer, i);

  delta = isize - ashift;

  if (shift > 0)
    {
      for (i = 0; i < delta; i++)
	{
	  if (bits[i] == 0)
	    mpz_clrbit (result->value.integer, i + shift);
	  else
	    mpz_setbit (result->value.integer, i + shift);
	}

      for (i = delta; i < isize; i++)
	{
	  if (bits[i] == 0)
	    mpz_clrbit (result->value.integer, i - delta);
	  else
	    mpz_setbit (result->value.integer, i - delta);
	}
    }
  else
    {
      for (i = 0; i < ashift; i++)
	{
	  if (bits[i] == 0)
	    mpz_clrbit (result->value.integer, i + delta);
	  else
	    mpz_setbit (result->value.integer, i + delta);
	}

      for (i = ashift; i < isize; i++)
	{
	  if (bits[i] == 0)
	    mpz_clrbit (result->value.integer, i + shift);
	  else
	    mpz_setbit (result->value.integer, i + shift);
	}
    }

  twos_complement (result->value.integer, isize);

  gfc_free (bits);
  return result;
}


gfc_expr *
gfc_simplify_kind (gfc_expr * e)
{

  if (e->ts.type == BT_DERIVED)
    {
      gfc_error ("Argument of KIND at %L is a DERIVED type", &e->where);
      return &gfc_bad_expr;
    }

  return gfc_int_expr (e->ts.kind);
}


static gfc_expr *
simplify_bound (gfc_expr * array, gfc_expr * dim, int upper)
{
  gfc_ref *ref;
  gfc_array_spec *as;
  gfc_expr *e;
  int d;

  if (array->expr_type != EXPR_VARIABLE)
    return NULL;

  if (dim == NULL)
    /* TODO: Simplify constant multi-dimensional bounds.  */
    return NULL;

  if (dim->expr_type != EXPR_CONSTANT)
    return NULL;

  /* Follow any component references.  */
  as = array->symtree->n.sym->as;
  for (ref = array->ref; ref; ref = ref->next)
    {
      switch (ref->type)
	{
	case REF_ARRAY:
	  switch (ref->u.ar.type)
	    {
	    case AR_ELEMENT:
	      as = NULL;
	      continue;

	    case AR_FULL:
	      /* We're done because 'as' has already been set in the
		 previous iteration.  */
	      goto done;

	    case AR_SECTION:
	    case AR_UNKNOWN:
	      return NULL;
	    }

	  gcc_unreachable ();

	case REF_COMPONENT:
	  as = ref->u.c.component->as;
	  continue;

	case REF_SUBSTRING:
	  continue;
	}
    }

  gcc_unreachable ();

 done:
  if (as->type == AS_DEFERRED || as->type == AS_ASSUMED_SHAPE)
    return NULL;

  d = mpz_get_si (dim->value.integer);

  if (d < 1 || d > as->rank
      || (d == as->rank && as->type == AS_ASSUMED_SIZE && upper))
    {
      gfc_error ("DIM argument at %L is out of bounds", &dim->where);
      return &gfc_bad_expr;
    }

  e = upper ? as->upper[d-1] : as->lower[d-1];

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  return gfc_copy_expr (e);
}


gfc_expr *
gfc_simplify_lbound (gfc_expr * array, gfc_expr * dim)
{
  return simplify_bound (array, dim, 0);
}


gfc_expr *
gfc_simplify_len (gfc_expr * e)
{
  gfc_expr *result;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_INTEGER, gfc_default_integer_kind,
				&e->where);

  mpz_set_si (result->value.integer, e->value.character.length);
  return range_check (result, "LEN");
}


gfc_expr *
gfc_simplify_len_trim (gfc_expr * e)
{
  gfc_expr *result;
  int count, len, lentrim, i;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_INTEGER, gfc_default_integer_kind,
				&e->where);

  len = e->value.character.length;

  for (count = 0, i = 1; i <= len; i++)
    if (e->value.character.string[len - i] == ' ')
      count++;
    else
      break;

  lentrim = len - count;

  mpz_set_si (result->value.integer, lentrim);
  return range_check (result, "LEN_TRIM");
}


gfc_expr *
gfc_simplify_lge (gfc_expr * a, gfc_expr * b)
{

  if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT)
    return NULL;

  return gfc_logical_expr (gfc_compare_string (a, b, xascii_table) >= 0,
			   &a->where);
}


gfc_expr *
gfc_simplify_lgt (gfc_expr * a, gfc_expr * b)
{

  if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT)
    return NULL;

  return gfc_logical_expr (gfc_compare_string (a, b, xascii_table) > 0,
			   &a->where);
}


gfc_expr *
gfc_simplify_lle (gfc_expr * a, gfc_expr * b)
{

  if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT)
    return NULL;

  return gfc_logical_expr (gfc_compare_string (a, b, xascii_table) <= 0,
			   &a->where);
}


gfc_expr *
gfc_simplify_llt (gfc_expr * a, gfc_expr * b)
{

  if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT)
    return NULL;

  return gfc_logical_expr (gfc_compare_string (a, b, xascii_table) < 0,
			   &a->where);
}


gfc_expr *
gfc_simplify_log (gfc_expr * x)
{
  gfc_expr *result;
  mpfr_t xr, xi;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  gfc_set_model_kind (x->ts.kind);

  switch (x->ts.type)
    {
    case BT_REAL:
      if (mpfr_sgn (x->value.real) <= 0)
	{
	  gfc_error
	    ("Argument of LOG at %L cannot be less than or equal to zero",
	     &x->where);
	  gfc_free_expr (result);
	  return &gfc_bad_expr;
	}

      mpfr_log(result->value.real, x->value.real, GFC_RND_MODE);
      break;

    case BT_COMPLEX:
      if ((mpfr_sgn (x->value.complex.r) == 0)
	  && (mpfr_sgn (x->value.complex.i) == 0))
	{
	  gfc_error ("Complex argument of LOG at %L cannot be zero",
		     &x->where);
	  gfc_free_expr (result);
	  return &gfc_bad_expr;
	}

      mpfr_init (xr);
      mpfr_init (xi);

      arctangent2 (x->value.complex.i, x->value.complex.r,
	           result->value.complex.i);

      mpfr_mul (xr, x->value.complex.r, x->value.complex.r, GFC_RND_MODE);
      mpfr_mul (xi, x->value.complex.i, x->value.complex.i, GFC_RND_MODE);
      mpfr_add (xr, xr, xi, GFC_RND_MODE);
      mpfr_sqrt (xr, xr, GFC_RND_MODE);
      mpfr_log (result->value.complex.r, xr, GFC_RND_MODE);

      mpfr_clear (xr);
      mpfr_clear (xi);

      break;

    default:
      gfc_internal_error ("gfc_simplify_log: bad type");
    }

  return range_check (result, "LOG");
}


gfc_expr *
gfc_simplify_log10 (gfc_expr * x)
{
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  gfc_set_model_kind (x->ts.kind);

  if (mpfr_sgn (x->value.real) <= 0)
    {
      gfc_error
	("Argument of LOG10 at %L cannot be less than or equal to zero",
	 &x->where);
      return &gfc_bad_expr;
    }

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  mpfr_log10 (result->value.real, x->value.real, GFC_RND_MODE);

  return range_check (result, "LOG10");
}


gfc_expr *
gfc_simplify_logical (gfc_expr * e, gfc_expr * k)
{
  gfc_expr *result;
  int kind;

  kind = get_kind (BT_LOGICAL, k, "LOGICAL", gfc_default_logical_kind);
  if (kind < 0)
    return &gfc_bad_expr;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_LOGICAL, kind, &e->where);

  result->value.logical = e->value.logical;

  return result;
}


/* This function is special since MAX() can take any number of
   arguments.  The simplified expression is a rewritten version of the
   argument list containing at most one constant element.  Other
   constant elements are deleted.  Because the argument list has
   already been checked, this function always succeeds.  sign is 1 for
   MAX(), -1 for MIN().  */

static gfc_expr *
simplify_min_max (gfc_expr * expr, int sign)
{
  gfc_actual_arglist *arg, *last, *extremum;
  gfc_intrinsic_sym * specific;

  last = NULL;
  extremum = NULL;
  specific = expr->value.function.isym;

  arg = expr->value.function.actual;

  for (; arg; last = arg, arg = arg->next)
    {
      if (arg->expr->expr_type != EXPR_CONSTANT)
	continue;

      if (extremum == NULL)
	{
	  extremum = arg;
	  continue;
	}

      switch (arg->expr->ts.type)
	{
	case BT_INTEGER:
	  if (mpz_cmp (arg->expr->value.integer,
		       extremum->expr->value.integer) * sign > 0)
	    mpz_set (extremum->expr->value.integer, arg->expr->value.integer);

	  break;

	case BT_REAL:
	  if (mpfr_cmp (arg->expr->value.real, extremum->expr->value.real) *
	      sign > 0)
	    mpfr_set (extremum->expr->value.real, arg->expr->value.real,
                      GFC_RND_MODE);

	  break;

	default:
	  gfc_internal_error ("gfc_simplify_max(): Bad type in arglist");
	}

      /* Delete the extra constant argument.  */
      if (last == NULL)
	expr->value.function.actual = arg->next;
      else
	last->next = arg->next;

      arg->next = NULL;
      gfc_free_actual_arglist (arg);
      arg = last;
    }

  /* If there is one value left, replace the function call with the
     expression.  */
  if (expr->value.function.actual->next != NULL)
    return NULL;

  /* Convert to the correct type and kind.  */
  if (expr->ts.type != BT_UNKNOWN) 
    return gfc_convert_constant (expr->value.function.actual->expr,
	expr->ts.type, expr->ts.kind);

  if (specific->ts.type != BT_UNKNOWN) 
    return gfc_convert_constant (expr->value.function.actual->expr,
	specific->ts.type, specific->ts.kind); 
 
  return gfc_copy_expr (expr->value.function.actual->expr);
}


gfc_expr *
gfc_simplify_min (gfc_expr * e)
{
  return simplify_min_max (e, -1);
}


gfc_expr *
gfc_simplify_max (gfc_expr * e)
{
  return simplify_min_max (e, 1);
}


gfc_expr *
gfc_simplify_maxexponent (gfc_expr * x)
{
  gfc_expr *result;
  int i;

  i = gfc_validate_kind (BT_REAL, x->ts.kind, false);

  result = gfc_int_expr (gfc_real_kinds[i].max_exponent);
  result->where = x->where;

  return result;
}


gfc_expr *
gfc_simplify_minexponent (gfc_expr * x)
{
  gfc_expr *result;
  int i;

  i = gfc_validate_kind (BT_REAL, x->ts.kind, false);

  result = gfc_int_expr (gfc_real_kinds[i].min_exponent);
  result->where = x->where;

  return result;
}


gfc_expr *
gfc_simplify_mod (gfc_expr * a, gfc_expr * p)
{
  gfc_expr *result;
  mpfr_t quot, iquot, term;

  if (a->expr_type != EXPR_CONSTANT || p->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (a->ts.type, a->ts.kind, &a->where);

  switch (a->ts.type)
    {
    case BT_INTEGER:
      if (mpz_cmp_ui (p->value.integer, 0) == 0)
	{
	  /* Result is processor-dependent.  */
	  gfc_error ("Second argument MOD at %L is zero", &a->where);
	  gfc_free_expr (result);
	  return &gfc_bad_expr;
	}
      mpz_tdiv_r (result->value.integer, a->value.integer, p->value.integer);
      break;

    case BT_REAL:
      if (mpfr_cmp_ui (p->value.real, 0) == 0)
	{
	  /* Result is processor-dependent.  */
	  gfc_error ("Second argument of MOD at %L is zero", &p->where);
	  gfc_free_expr (result);
	  return &gfc_bad_expr;
	}

      gfc_set_model_kind (a->ts.kind);
      mpfr_init (quot);
      mpfr_init (iquot);
      mpfr_init (term);

      mpfr_div (quot, a->value.real, p->value.real, GFC_RND_MODE);
      mpfr_trunc (iquot, quot);
      mpfr_mul (term, iquot, p->value.real, GFC_RND_MODE);
      mpfr_sub (result->value.real, a->value.real, term, GFC_RND_MODE);

      mpfr_clear (quot);
      mpfr_clear (iquot);
      mpfr_clear (term);
      break;

    default:
      gfc_internal_error ("gfc_simplify_mod(): Bad arguments");
    }

  return range_check (result, "MOD");
}


gfc_expr *
gfc_simplify_modulo (gfc_expr * a, gfc_expr * p)
{
  gfc_expr *result;
  mpfr_t quot, iquot, term;

  if (a->expr_type != EXPR_CONSTANT || p->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (a->ts.type, a->ts.kind, &a->where);

  switch (a->ts.type)
    {
    case BT_INTEGER:
      if (mpz_cmp_ui (p->value.integer, 0) == 0)
	{
	  /* Result is processor-dependent. This processor just opts
             to not handle it at all.  */
	  gfc_error ("Second argument of MODULO at %L is zero", &a->where);
	  gfc_free_expr (result);
	  return &gfc_bad_expr;
	}
      mpz_fdiv_r (result->value.integer, a->value.integer, p->value.integer);

      break;

    case BT_REAL:
      if (mpfr_cmp_ui (p->value.real, 0) == 0)
	{
	  /* Result is processor-dependent.  */
	  gfc_error ("Second argument of MODULO at %L is zero", &p->where);
	  gfc_free_expr (result);
	  return &gfc_bad_expr;
	}

      gfc_set_model_kind (a->ts.kind);
      mpfr_init (quot);
      mpfr_init (iquot);
      mpfr_init (term);

      mpfr_div (quot, a->value.real, p->value.real, GFC_RND_MODE);
      mpfr_floor (iquot, quot);
      mpfr_mul (term, iquot, p->value.real, GFC_RND_MODE);
      mpfr_sub (result->value.real, a->value.real, term, GFC_RND_MODE);

      mpfr_clear (quot);
      mpfr_clear (iquot);
      mpfr_clear (term);
      break;

    default:
      gfc_internal_error ("gfc_simplify_modulo(): Bad arguments");
    }

  return range_check (result, "MODULO");
}


/* Exists for the sole purpose of consistency with other intrinsics.  */
gfc_expr *
gfc_simplify_mvbits (gfc_expr * f  ATTRIBUTE_UNUSED,
		     gfc_expr * fp ATTRIBUTE_UNUSED,
		     gfc_expr * l  ATTRIBUTE_UNUSED,
		     gfc_expr * to ATTRIBUTE_UNUSED,
		     gfc_expr * tp ATTRIBUTE_UNUSED)
{
  return NULL;
}


gfc_expr *
gfc_simplify_nearest (gfc_expr * x, gfc_expr * s)
{
  gfc_expr *result;
  mpfr_t tmp;
  int direction, sgn;

  if (x->expr_type != EXPR_CONSTANT || s->expr_type != EXPR_CONSTANT)
    return NULL;

  gfc_set_model_kind (x->ts.kind);
  result = gfc_copy_expr (x);

  direction = mpfr_sgn (s->value.real);

  if (direction == 0)
    {
      gfc_error ("Second argument of NEAREST at %L may not be zero",
		 &s->where);
      gfc_free (result);
      return &gfc_bad_expr;
    }

  /* TODO: Use mpfr_nextabove and mpfr_nextbelow once we move to a
     newer version of mpfr.  */

  sgn = mpfr_sgn (x->value.real);

  if (sgn == 0)
    {
      int k = gfc_validate_kind (BT_REAL, x->ts.kind, 0);

      if (direction > 0)
	mpfr_add (result->value.real,
		  x->value.real, gfc_real_kinds[k].subnormal, GFC_RND_MODE);
      else
	mpfr_sub (result->value.real,
		  x->value.real, gfc_real_kinds[k].subnormal, GFC_RND_MODE);
    }
  else
    {
      if (sgn < 0)
	{
	  direction = -direction;
	  mpfr_neg (result->value.real, result->value.real, GFC_RND_MODE);
	}

      if (direction > 0)
	mpfr_add_one_ulp (result->value.real, GFC_RND_MODE);
      else
	{
	  /* In this case the exponent can shrink, which makes us skip
	     over one number because we subtract one ulp with the
	     larger exponent.  Thus we need to compensate for this.  */
	  mpfr_init_set (tmp, result->value.real, GFC_RND_MODE);

	  mpfr_sub_one_ulp (result->value.real, GFC_RND_MODE);
	  mpfr_add_one_ulp (result->value.real, GFC_RND_MODE);

	  /* If we're back to where we started, the spacing is one
	     ulp, and we get the correct result by subtracting.  */
	  if (mpfr_cmp (tmp, result->value.real) == 0)
	    mpfr_sub_one_ulp (result->value.real, GFC_RND_MODE);

	  mpfr_clear (tmp);
	}

      if (sgn < 0)
	mpfr_neg (result->value.real, result->value.real, GFC_RND_MODE);
    }

  return range_check (result, "NEAREST");
}


static gfc_expr *
simplify_nint (const char *name, gfc_expr * e, gfc_expr * k)
{
  gfc_expr *itrunc, *result;
  int kind;

  kind = get_kind (BT_INTEGER, k, name, gfc_default_integer_kind);
  if (kind == -1)
    return &gfc_bad_expr;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_INTEGER, kind, &e->where);

  itrunc = gfc_copy_expr (e);

  mpfr_round(itrunc->value.real, e->value.real);

  gfc_mpfr_to_mpz (result->value.integer, itrunc->value.real);

  gfc_free_expr (itrunc);

  return range_check (result, name);
}


gfc_expr *
gfc_simplify_nint (gfc_expr * e, gfc_expr * k)
{
  return simplify_nint ("NINT", e, k);
}


gfc_expr *
gfc_simplify_idnint (gfc_expr * e)
{
  return simplify_nint ("IDNINT", e, NULL);
}


gfc_expr *
gfc_simplify_not (gfc_expr * e)
{
  gfc_expr *result;
  int i;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (e->ts.type, e->ts.kind, &e->where);

  mpz_com (result->value.integer, e->value.integer);

  /* Because of how GMP handles numbers, the result must be ANDed with
     the max_int mask.  For radices <> 2, this will require change.  */

  i = gfc_validate_kind (BT_INTEGER, e->ts.kind, false);

  mpz_and (result->value.integer, result->value.integer,
	   gfc_integer_kinds[i].max_int);

  return range_check (result, "NOT");
}


gfc_expr *
gfc_simplify_null (gfc_expr * mold)
{
  gfc_expr *result;

  result = gfc_get_expr ();
  result->expr_type = EXPR_NULL;

  if (mold == NULL)
    result->ts.type = BT_UNKNOWN;
  else
    {
      result->ts = mold->ts;
      result->where = mold->where;
    }

  return result;
}


gfc_expr *
gfc_simplify_precision (gfc_expr * e)
{
  gfc_expr *result;
  int i;

  i = gfc_validate_kind (e->ts.type, e->ts.kind, false);

  result = gfc_int_expr (gfc_real_kinds[i].precision);
  result->where = e->where;

  return result;
}


gfc_expr *
gfc_simplify_radix (gfc_expr * e)
{
  gfc_expr *result;
  int i;

  i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
  switch (e->ts.type)
    {
    case BT_INTEGER:
      i = gfc_integer_kinds[i].radix;
      break;

    case BT_REAL:
      i = gfc_real_kinds[i].radix;
      break;

    default:
      gcc_unreachable ();
    }

  result = gfc_int_expr (i);
  result->where = e->where;

  return result;
}


gfc_expr *
gfc_simplify_range (gfc_expr * e)
{
  gfc_expr *result;
  int i;
  long j;

  i = gfc_validate_kind (e->ts.type, e->ts.kind, false);

  switch (e->ts.type)
    {
    case BT_INTEGER:
      j = gfc_integer_kinds[i].range;
      break;

    case BT_REAL:
    case BT_COMPLEX:
      j = gfc_real_kinds[i].range;
      break;

    default:
      gcc_unreachable ();
    }

  result = gfc_int_expr (j);
  result->where = e->where;

  return result;
}


gfc_expr *
gfc_simplify_real (gfc_expr * e, gfc_expr * k)
{
  gfc_expr *result;
  int kind;

  if (e->ts.type == BT_COMPLEX)
    kind = get_kind (BT_REAL, k, "REAL", e->ts.kind);
  else
    kind = get_kind (BT_REAL, k, "REAL", gfc_default_real_kind);

  if (kind == -1)
    return &gfc_bad_expr;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  switch (e->ts.type)
    {
    case BT_INTEGER:
      result = gfc_int2real (e, kind);
      break;

    case BT_REAL:
      result = gfc_real2real (e, kind);
      break;

    case BT_COMPLEX:
      result = gfc_complex2real (e, kind);
      break;

    default:
      gfc_internal_error ("bad type in REAL");
      /* Not reached */
    }

  return range_check (result, "REAL");
}

gfc_expr *
gfc_simplify_repeat (gfc_expr * e, gfc_expr * n)
{
  gfc_expr *result;
  int i, j, len, ncopies, nlen;

  if (e->expr_type != EXPR_CONSTANT || n->expr_type != EXPR_CONSTANT)
    return NULL;

  if (n != NULL && (gfc_extract_int (n, &ncopies) != NULL || ncopies < 0))
    {
      gfc_error ("Invalid second argument of REPEAT at %L", &n->where);
      return &gfc_bad_expr;
    }

  len = e->value.character.length;
  nlen = ncopies * len;

  result = gfc_constant_result (BT_CHARACTER, e->ts.kind, &e->where);

  if (ncopies == 0)
    {
      result->value.character.string = gfc_getmem (1);
      result->value.character.length = 0;
      result->value.character.string[0] = '\0';
      return result;
    }

  result->value.character.length = nlen;
  result->value.character.string = gfc_getmem (nlen + 1);

  for (i = 0; i < ncopies; i++)
    for (j = 0; j < len; j++)
      result->value.character.string[j + i * len] =
	e->value.character.string[j];

  result->value.character.string[nlen] = '\0';	/* For debugger */
  return result;
}


/* This one is a bear, but mainly has to do with shuffling elements.  */

gfc_expr *
gfc_simplify_reshape (gfc_expr * source, gfc_expr * shape_exp,
		      gfc_expr * pad, gfc_expr * order_exp)
{

  int order[GFC_MAX_DIMENSIONS], shape[GFC_MAX_DIMENSIONS];
  int i, rank, npad, x[GFC_MAX_DIMENSIONS];
  gfc_constructor *head, *tail;
  mpz_t index, size;
  unsigned long j;
  size_t nsource;
  gfc_expr *e;

  /* Unpack the shape array.  */
  if (source->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (source))
    return NULL;

  if (shape_exp->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (shape_exp))
    return NULL;

  if (pad != NULL
      && (pad->expr_type != EXPR_ARRAY
	  || !gfc_is_constant_expr (pad)))
    return NULL;

  if (order_exp != NULL
      && (order_exp->expr_type != EXPR_ARRAY
	  || !gfc_is_constant_expr (order_exp)))
    return NULL;

  mpz_init (index);
  rank = 0;
  head = tail = NULL;

  for (;;)
    {
      e = gfc_get_array_element (shape_exp, rank);
      if (e == NULL)
	break;

      if (gfc_extract_int (e, &shape[rank]) != NULL)
	{
	  gfc_error ("Integer too large in shape specification at %L",
		     &e->where);
	  gfc_free_expr (e);
	  goto bad_reshape;
	}

      gfc_free_expr (e);

      if (rank >= GFC_MAX_DIMENSIONS)
	{
	  gfc_error ("Too many dimensions in shape specification for RESHAPE "
		     "at %L", &e->where);

	  goto bad_reshape;
	}

      if (shape[rank] < 0)
	{
	  gfc_error ("Shape specification at %L cannot be negative",
		     &e->where);
	  goto bad_reshape;
	}

      rank++;
    }

  if (rank == 0)
    {
      gfc_error ("Shape specification at %L cannot be the null array",
		 &shape_exp->where);
      goto bad_reshape;
    }

  /* Now unpack the order array if present.  */
  if (order_exp == NULL)
    {
      for (i = 0; i < rank; i++)
	order[i] = i;

    }
  else
    {

      for (i = 0; i < rank; i++)
	x[i] = 0;

      for (i = 0; i < rank; i++)
	{
	  e = gfc_get_array_element (order_exp, i);
	  if (e == NULL)
	    {
	      gfc_error
		("ORDER parameter of RESHAPE at %L is not the same size "
		 "as SHAPE parameter", &order_exp->where);
	      goto bad_reshape;
	    }

	  if (gfc_extract_int (e, &order[i]) != NULL)
	    {
	      gfc_error ("Error in ORDER parameter of RESHAPE at %L",
			 &e->where);
	      gfc_free_expr (e);
	      goto bad_reshape;
	    }

	  gfc_free_expr (e);

	  if (order[i] < 1 || order[i] > rank)
	    {
	      gfc_error ("ORDER parameter of RESHAPE at %L is out of range",
			 &e->where);
	      goto bad_reshape;
	    }

	  order[i]--;

	  if (x[order[i]])
	    {
	      gfc_error ("Invalid permutation in ORDER parameter at %L",
			 &e->where);
	      goto bad_reshape;
	    }

	  x[order[i]] = 1;
	}
    }

  /* Count the elements in the source and padding arrays.  */

  npad = 0;
  if (pad != NULL)
    {
      gfc_array_size (pad, &size);
      npad = mpz_get_ui (size);
      mpz_clear (size);
    }

  gfc_array_size (source, &size);
  nsource = mpz_get_ui (size);
  mpz_clear (size);

  /* If it weren't for that pesky permutation we could just loop
     through the source and round out any shortage with pad elements.
     But no, someone just had to have the compiler do something the
     user should be doing.  */

  for (i = 0; i < rank; i++)
    x[i] = 0;

  for (;;)
    {
      /* Figure out which element to extract.  */
      mpz_set_ui (index, 0);

      for (i = rank - 1; i >= 0; i--)
	{
	  mpz_add_ui (index, index, x[order[i]]);
	  if (i != 0)
	    mpz_mul_ui (index, index, shape[order[i - 1]]);
	}

      if (mpz_cmp_ui (index, INT_MAX) > 0)
	gfc_internal_error ("Reshaped array too large at %L", &e->where);

      j = mpz_get_ui (index);

      if (j < nsource)
	e = gfc_get_array_element (source, j);
      else
	{
	  j = j - nsource;

	  if (npad == 0)
	    {
	      gfc_error
		("PAD parameter required for short SOURCE parameter at %L",
		 &source->where);
	      goto bad_reshape;
	    }

	  j = j % npad;
	  e = gfc_get_array_element (pad, j);
	}

      if (head == NULL)
	head = tail = gfc_get_constructor ();
      else
	{
	  tail->next = gfc_get_constructor ();
	  tail = tail->next;
	}

      if (e == NULL)
	goto bad_reshape;

      tail->where = e->where;
      tail->expr = e;

      /* Calculate the next element.  */
      i = 0;

inc:
      if (++x[i] < shape[i])
	continue;
      x[i++] = 0;
      if (i < rank)
	goto inc;

      break;
    }

  mpz_clear (index);

  e = gfc_get_expr ();
  e->where = source->where;
  e->expr_type = EXPR_ARRAY;
  e->value.constructor = head;
  e->shape = gfc_get_shape (rank);

  for (i = 0; i < rank; i++)
    mpz_init_set_ui (e->shape[i], shape[i]);

  e->ts = head->expr->ts;
  e->rank = rank;

  return e;

bad_reshape:
  gfc_free_constructor (head);
  mpz_clear (index);
  return &gfc_bad_expr;
}


gfc_expr *
gfc_simplify_rrspacing (gfc_expr * x)
{
  gfc_expr *result;
  mpfr_t absv, log2, exp, frac, pow2;
  int i, p;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  i = gfc_validate_kind (x->ts.type, x->ts.kind, false);

  result = gfc_constant_result (BT_REAL, x->ts.kind, &x->where);

  p = gfc_real_kinds[i].digits;

  gfc_set_model_kind (x->ts.kind);

  if (mpfr_sgn (x->value.real) == 0)
    {
      mpfr_ui_div (result->value.real, 1, gfc_real_kinds[i].tiny, GFC_RND_MODE);
      return result;
    }

  mpfr_init (log2);
  mpfr_init (absv);
  mpfr_init (frac);
  mpfr_init (pow2);

  mpfr_abs (absv, x->value.real, GFC_RND_MODE);
  mpfr_log2 (log2, absv, GFC_RND_MODE);

  mpfr_trunc (log2, log2);
  mpfr_add_ui (exp, log2, 1, GFC_RND_MODE);

  mpfr_ui_pow (pow2, 2, exp, GFC_RND_MODE);
  mpfr_div (frac, absv, pow2, GFC_RND_MODE);

  mpfr_mul_2exp (result->value.real, frac, (unsigned long)p, GFC_RND_MODE);

  mpfr_clear (log2);
  mpfr_clear (absv);
  mpfr_clear (frac);
  mpfr_clear (pow2);

  return range_check (result, "RRSPACING");
}


gfc_expr *
gfc_simplify_scale (gfc_expr * x, gfc_expr * i)
{
  int k, neg_flag, power, exp_range;
  mpfr_t scale, radix;
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT || i->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_REAL, x->ts.kind, &x->where);

  if (mpfr_sgn (x->value.real) == 0)
    {
      mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
      return result;
    }

  k = gfc_validate_kind (BT_REAL, x->ts.kind, false);

  exp_range = gfc_real_kinds[k].max_exponent - gfc_real_kinds[k].min_exponent;

  /* This check filters out values of i that would overflow an int.  */
  if (mpz_cmp_si (i->value.integer, exp_range + 2) > 0
      || mpz_cmp_si (i->value.integer, -exp_range - 2) < 0)
    {
      gfc_error ("Result of SCALE overflows its kind at %L", &result->where);
      return &gfc_bad_expr;
    }

  /* Compute scale = radix ** power.  */
  power = mpz_get_si (i->value.integer);

  if (power >= 0)
    neg_flag = 0;
  else
    {
      neg_flag = 1;
      power = -power;
    }

  gfc_set_model_kind (x->ts.kind);
  mpfr_init (scale);
  mpfr_init (radix);
  mpfr_set_ui (radix, gfc_real_kinds[k].radix, GFC_RND_MODE);
  mpfr_pow_ui (scale, radix, power, GFC_RND_MODE);

  if (neg_flag)
    mpfr_div (result->value.real, x->value.real, scale, GFC_RND_MODE);
  else
    mpfr_mul (result->value.real, x->value.real, scale, GFC_RND_MODE);

  mpfr_clear (scale);
  mpfr_clear (radix);

  return range_check (result, "SCALE");
}


gfc_expr *
gfc_simplify_scan (gfc_expr * e, gfc_expr * c, gfc_expr * b)
{
  gfc_expr *result;
  int back;
  size_t i;
  size_t indx, len, lenc;

  if (e->expr_type != EXPR_CONSTANT || c->expr_type != EXPR_CONSTANT)
    return NULL;

  if (b != NULL && b->value.logical != 0)
    back = 1;
  else
    back = 0;

  result = gfc_constant_result (BT_INTEGER, gfc_default_integer_kind,
				&e->where);

  len = e->value.character.length;
  lenc = c->value.character.length;

  if (len == 0 || lenc == 0)
    {
      indx = 0;
    }
  else
    {
      if (back == 0)
        {
          indx =
            strcspn (e->value.character.string, c->value.character.string) + 1;
          if (indx > len)
            indx = 0;
        }
      else
        {
          i = 0;
          for (indx = len; indx > 0; indx--)
            {
              for (i = 0; i < lenc; i++)
                {
                  if (c->value.character.string[i]
                        == e->value.character.string[indx - 1])
                    break;
                }
              if (i < lenc)
                break;
            }
        }
    }
  mpz_set_ui (result->value.integer, indx);
  return range_check (result, "SCAN");
}


gfc_expr *
gfc_simplify_selected_int_kind (gfc_expr * e)
{
  int i, kind, range;
  gfc_expr *result;

  if (e->expr_type != EXPR_CONSTANT || gfc_extract_int (e, &range) != NULL)
    return NULL;

  kind = INT_MAX;

  for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
    if (gfc_integer_kinds[i].range >= range
	&& gfc_integer_kinds[i].kind < kind)
      kind = gfc_integer_kinds[i].kind;

  if (kind == INT_MAX)
    kind = -1;

  result = gfc_int_expr (kind);
  result->where = e->where;

  return result;
}


gfc_expr *
gfc_simplify_selected_real_kind (gfc_expr * p, gfc_expr * q)
{
  int range, precision, i, kind, found_precision, found_range;
  gfc_expr *result;

  if (p == NULL)
    precision = 0;
  else
    {
      if (p->expr_type != EXPR_CONSTANT
	  || gfc_extract_int (p, &precision) != NULL)
	return NULL;
    }

  if (q == NULL)
    range = 0;
  else
    {
      if (q->expr_type != EXPR_CONSTANT
	  || gfc_extract_int (q, &range) != NULL)
	return NULL;
    }

  kind = INT_MAX;
  found_precision = 0;
  found_range = 0;

  for (i = 0; gfc_real_kinds[i].kind != 0; i++)
    {
      if (gfc_real_kinds[i].precision >= precision)
	found_precision = 1;

      if (gfc_real_kinds[i].range >= range)
	found_range = 1;

      if (gfc_real_kinds[i].precision >= precision
	  && gfc_real_kinds[i].range >= range && gfc_real_kinds[i].kind < kind)
	kind = gfc_real_kinds[i].kind;
    }

  if (kind == INT_MAX)
    {
      kind = 0;

      if (!found_precision)
	kind = -1;
      if (!found_range)
	kind -= 2;
    }

  result = gfc_int_expr (kind);
  result->where = (p != NULL) ? p->where : q->where;

  return result;
}


gfc_expr *
gfc_simplify_set_exponent (gfc_expr * x, gfc_expr * i)
{
  gfc_expr *result;
  mpfr_t exp, absv, log2, pow2, frac;
  unsigned long exp2;

  if (x->expr_type != EXPR_CONSTANT || i->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (BT_REAL, x->ts.kind, &x->where);

  gfc_set_model_kind (x->ts.kind);

  if (mpfr_sgn (x->value.real) == 0)
    {
      mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
      return result;
    }

  mpfr_init (absv);
  mpfr_init (log2);
  mpfr_init (exp);
  mpfr_init (pow2);
  mpfr_init (frac);

  mpfr_abs (absv, x->value.real, GFC_RND_MODE);
  mpfr_log2 (log2, absv, GFC_RND_MODE);

  mpfr_trunc (log2, log2);
  mpfr_add_ui (exp, log2, 1, GFC_RND_MODE);

  /* Old exponent value, and fraction.  */
  mpfr_ui_pow (pow2, 2, exp, GFC_RND_MODE);

  mpfr_div (frac, absv, pow2, GFC_RND_MODE);

  /* New exponent.  */
  exp2 = (unsigned long) mpz_get_d (i->value.integer);
  mpfr_mul_2exp (result->value.real, frac, exp2, GFC_RND_MODE);

  mpfr_clear (absv);
  mpfr_clear (log2);
  mpfr_clear (pow2);
  mpfr_clear (frac);

  return range_check (result, "SET_EXPONENT");
}


gfc_expr *
gfc_simplify_shape (gfc_expr * source)
{
  mpz_t shape[GFC_MAX_DIMENSIONS];
  gfc_expr *result, *e, *f;
  gfc_array_ref *ar;
  int n;
  try t;

  if (source->rank == 0 || source->expr_type != EXPR_VARIABLE)
    return NULL;

  result = gfc_start_constructor (BT_INTEGER, gfc_default_integer_kind,
				  &source->where);

  ar = gfc_find_array_ref (source);

  t = gfc_array_ref_shape (ar, shape);

  for (n = 0; n < source->rank; n++)
    {
      e = gfc_constant_result (BT_INTEGER, gfc_default_integer_kind,
			       &source->where);

      if (t == SUCCESS)
	{
	  mpz_set (e->value.integer, shape[n]);
	  mpz_clear (shape[n]);
	}
      else
	{
	  mpz_set_ui (e->value.integer, n + 1);

	  f = gfc_simplify_size (source, e);
	  gfc_free_expr (e);
	  if (f == NULL)
	    {
	      gfc_free_expr (result);
	      return NULL;
	    }
	  else
	    {
	      e = f;
	    }
	}

      gfc_append_constructor (result, e);
    }

  return result;
}


gfc_expr *
gfc_simplify_size (gfc_expr * array, gfc_expr * dim)
{
  mpz_t size;
  gfc_expr *result;
  int d;

  if (dim == NULL)
    {
      if (gfc_array_size (array, &size) == FAILURE)
	return NULL;
    }
  else
    {
      if (dim->expr_type != EXPR_CONSTANT)
	return NULL;

      d = mpz_get_ui (dim->value.integer) - 1;
      if (gfc_array_dimen_size (array, d, &size) == FAILURE)
	return NULL;
    }

  result = gfc_constant_result (BT_INTEGER, gfc_default_integer_kind,
				&array->where);

  mpz_set (result->value.integer, size);

  return result;
}


gfc_expr *
gfc_simplify_sign (gfc_expr * x, gfc_expr * y)
{
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  switch (x->ts.type)
    {
    case BT_INTEGER:
      mpz_abs (result->value.integer, x->value.integer);
      if (mpz_sgn (y->value.integer) < 0)
	mpz_neg (result->value.integer, result->value.integer);

      break;

    case BT_REAL:
      /* TODO: Handle -0.0 and +0.0 correctly on machines that support
         it.  */
      mpfr_abs (result->value.real, x->value.real, GFC_RND_MODE);
      if (mpfr_sgn (y->value.real) < 0)
	mpfr_neg (result->value.real, result->value.real, GFC_RND_MODE);

      break;

    default:
      gfc_internal_error ("Bad type in gfc_simplify_sign");
    }

  return result;
}


gfc_expr *
gfc_simplify_sin (gfc_expr * x)
{
  gfc_expr *result;
  mpfr_t xp, xq;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  switch (x->ts.type)
    {
    case BT_REAL:
      mpfr_sin (result->value.real, x->value.real, GFC_RND_MODE);
      break;

    case BT_COMPLEX:
      gfc_set_model (x->value.real);
      mpfr_init (xp);
      mpfr_init (xq);

      mpfr_sin  (xp, x->value.complex.r, GFC_RND_MODE);
      mpfr_cosh (xq, x->value.complex.i, GFC_RND_MODE);
      mpfr_mul (result->value.complex.r, xp, xq, GFC_RND_MODE);

      mpfr_cos  (xp, x->value.complex.r, GFC_RND_MODE);
      mpfr_sinh (xq, x->value.complex.i, GFC_RND_MODE);
      mpfr_mul (result->value.complex.i, xp, xq, GFC_RND_MODE);

      mpfr_clear (xp);
      mpfr_clear (xq);
      break;

    default:
      gfc_internal_error ("in gfc_simplify_sin(): Bad type");
    }

  return range_check (result, "SIN");
}


gfc_expr *
gfc_simplify_sinh (gfc_expr * x)
{
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  mpfr_sinh(result->value.real, x->value.real, GFC_RND_MODE);

  return range_check (result, "SINH");
}


/* The argument is always a double precision real that is converted to
   single precision.  TODO: Rounding!  */

gfc_expr *
gfc_simplify_sngl (gfc_expr * a)
{
  gfc_expr *result;

  if (a->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_real2real (a, gfc_default_real_kind);
  return range_check (result, "SNGL");
}


gfc_expr *
gfc_simplify_spacing (gfc_expr * x)
{
  gfc_expr *result;
  mpfr_t absv, log2;
  long diff;
  int i, p;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  i = gfc_validate_kind (x->ts.type, x->ts.kind, false);

  p = gfc_real_kinds[i].digits;

  result = gfc_constant_result (BT_REAL, x->ts.kind, &x->where);

  gfc_set_model_kind (x->ts.kind);

  if (mpfr_sgn (x->value.real) == 0)
    {
      mpfr_set (result->value.real, gfc_real_kinds[i].tiny, GFC_RND_MODE);
      return result;
    }

  mpfr_init (log2);
  mpfr_init (absv);

  mpfr_abs (absv, x->value.real, GFC_RND_MODE);
  mpfr_log2 (log2, absv, GFC_RND_MODE);
  mpfr_trunc (log2, log2);

  mpfr_add_ui (log2, log2, 1, GFC_RND_MODE);

  /* FIXME: We should be using mpfr_get_si here, but this function is
     not available with the version of mpfr distributed with gmp (as of
     2004-09-17). Replace once mpfr has been imported into the gcc cvs
     tree.  */
  diff = (long)mpfr_get_d (log2, GFC_RND_MODE) - (long)p;
  mpfr_set_ui (result->value.real, 1, GFC_RND_MODE);
  mpfr_mul_2si (result->value.real, result->value.real, diff, GFC_RND_MODE);

  mpfr_clear (log2);
  mpfr_clear (absv);

  if (mpfr_cmp (result->value.real, gfc_real_kinds[i].tiny) < 0)
    mpfr_set (result->value.real, gfc_real_kinds[i].tiny, GFC_RND_MODE);

  return range_check (result, "SPACING");
}


gfc_expr *
gfc_simplify_sqrt (gfc_expr * e)
{
  gfc_expr *result;
  mpfr_t ac, ad, s, t, w;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (e->ts.type, e->ts.kind, &e->where);

  switch (e->ts.type)
    {
    case BT_REAL:
      if (mpfr_cmp_si (e->value.real, 0) < 0)
	goto negative_arg;
      mpfr_sqrt (result->value.real, e->value.real, GFC_RND_MODE);

      break;

    case BT_COMPLEX:
      /* Formula taken from Numerical Recipes to avoid over- and
         underflow.  */

      gfc_set_model (e->value.real);
      mpfr_init (ac);
      mpfr_init (ad);
      mpfr_init (s);
      mpfr_init (t);
      mpfr_init (w);

      if (mpfr_cmp_ui (e->value.complex.r, 0) == 0
	  && mpfr_cmp_ui (e->value.complex.i, 0) == 0)
	{

	  mpfr_set_ui (result->value.complex.r, 0, GFC_RND_MODE);
	  mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE);
	  break;
	}

      mpfr_abs (ac, e->value.complex.r, GFC_RND_MODE);
      mpfr_abs (ad, e->value.complex.i, GFC_RND_MODE);

      if (mpfr_cmp (ac, ad) >= 0)
	{
	  mpfr_div (t, e->value.complex.i, e->value.complex.r, GFC_RND_MODE);
	  mpfr_mul (t, t, t, GFC_RND_MODE);
	  mpfr_add_ui (t, t, 1, GFC_RND_MODE);
	  mpfr_sqrt (t, t, GFC_RND_MODE);
	  mpfr_add_ui (t, t, 1, GFC_RND_MODE);
	  mpfr_div_ui (t, t, 2, GFC_RND_MODE);
	  mpfr_sqrt (t, t, GFC_RND_MODE);
	  mpfr_sqrt (s, ac, GFC_RND_MODE);
	  mpfr_mul (w, s, t, GFC_RND_MODE);
	}
      else
	{
	  mpfr_div (s, e->value.complex.r, e->value.complex.i, GFC_RND_MODE);
	  mpfr_mul (t, s, s, GFC_RND_MODE);
	  mpfr_add_ui (t, t, 1, GFC_RND_MODE);
	  mpfr_sqrt (t, t, GFC_RND_MODE);
	  mpfr_abs (s, s, GFC_RND_MODE);
	  mpfr_add (t, t, s, GFC_RND_MODE);
	  mpfr_div_ui (t, t, 2, GFC_RND_MODE);
	  mpfr_sqrt (t, t, GFC_RND_MODE);
	  mpfr_sqrt (s, ad, GFC_RND_MODE);
	  mpfr_mul (w, s, t, GFC_RND_MODE);
	}

      if (mpfr_cmp_ui (w, 0) != 0 && mpfr_cmp_ui (e->value.complex.r, 0) >= 0)
	{
	  mpfr_mul_ui (t, w, 2, GFC_RND_MODE);
	  mpfr_div (result->value.complex.i, e->value.complex.i, t, GFC_RND_MODE);
	  mpfr_set (result->value.complex.r, w, GFC_RND_MODE);
	}
      else if (mpfr_cmp_ui (w, 0) != 0
	       && mpfr_cmp_ui (e->value.complex.r, 0) < 0
	       && mpfr_cmp_ui (e->value.complex.i, 0) >= 0)
	{
	  mpfr_mul_ui (t, w, 2, GFC_RND_MODE);
	  mpfr_div (result->value.complex.r, e->value.complex.i, t, GFC_RND_MODE);
	  mpfr_set (result->value.complex.i, w, GFC_RND_MODE);
	}
      else if (mpfr_cmp_ui (w, 0) != 0
	       && mpfr_cmp_ui (e->value.complex.r, 0) < 0
	       && mpfr_cmp_ui (e->value.complex.i, 0) < 0)
	{
	  mpfr_mul_ui (t, w, 2, GFC_RND_MODE);
	  mpfr_div (result->value.complex.r, ad, t, GFC_RND_MODE);
	  mpfr_neg (w, w, GFC_RND_MODE);
	  mpfr_set (result->value.complex.i, w, GFC_RND_MODE);
	}
      else
	gfc_internal_error ("invalid complex argument of SQRT at %L",
			    &e->where);

      mpfr_clear (s);
      mpfr_clear (t);
      mpfr_clear (ac);
      mpfr_clear (ad);
      mpfr_clear (w);

      break;

    default:
      gfc_internal_error ("invalid argument of SQRT at %L", &e->where);
    }

  return range_check (result, "SQRT");

negative_arg:
  gfc_free_expr (result);
  gfc_error ("Argument of SQRT at %L has a negative value", &e->where);
  return &gfc_bad_expr;
}


gfc_expr *
gfc_simplify_tan (gfc_expr * x)
{
  int i;
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  i = gfc_validate_kind (BT_REAL, x->ts.kind, false);

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  mpfr_tan (result->value.real, x->value.real, GFC_RND_MODE);

  return range_check (result, "TAN");
}


gfc_expr *
gfc_simplify_tanh (gfc_expr * x)
{
  gfc_expr *result;

  if (x->expr_type != EXPR_CONSTANT)
    return NULL;

  result = gfc_constant_result (x->ts.type, x->ts.kind, &x->where);

  mpfr_tanh (result->value.real, x->value.real, GFC_RND_MODE);

  return range_check (result, "TANH");

}


gfc_expr *
gfc_simplify_tiny (gfc_expr * e)
{
  gfc_expr *result;
  int i;

  i = gfc_validate_kind (BT_REAL, e->ts.kind, false);

  result = gfc_constant_result (BT_REAL, e->ts.kind, &e->where);
  mpfr_set (result->value.real, gfc_real_kinds[i].tiny, GFC_RND_MODE);

  return result;
}


gfc_expr *
gfc_simplify_trim (gfc_expr * e)
{
  gfc_expr *result;
  int count, i, len, lentrim;

  if (e->expr_type != EXPR_CONSTANT)
    return NULL;

  len = e->value.character.length;

  result = gfc_constant_result (BT_CHARACTER, e->ts.kind, &e->where);

  for (count = 0, i = 1; i <= len; ++i)
    {
      if (e->value.character.string[len - i] == ' ')
	count++;
      else
	break;
    }

  lentrim = len - count;

  result->value.character.length = lentrim;
  result->value.character.string = gfc_getmem (lentrim + 1);

  for (i = 0; i < lentrim; i++)
    result->value.character.string[i] = e->value.character.string[i];

  result->value.character.string[lentrim] = '\0';	/* For debugger */

  return result;
}


gfc_expr *
gfc_simplify_ubound (gfc_expr * array, gfc_expr * dim)
{
  return simplify_bound (array, dim, 1);
}


gfc_expr *
gfc_simplify_verify (gfc_expr * s, gfc_expr * set, gfc_expr * b)
{
  gfc_expr *result;
  int back;
  size_t index, len, lenset;
  size_t i;

  if (s->expr_type != EXPR_CONSTANT || set->expr_type != EXPR_CONSTANT)
    return NULL;

  if (b != NULL && b->value.logical != 0)
    back = 1;
  else
    back = 0;

  result = gfc_constant_result (BT_INTEGER, gfc_default_integer_kind,
				&s->where);

  len = s->value.character.length;
  lenset = set->value.character.length;

  if (len == 0)
    {
      mpz_set_ui (result->value.integer, 0);
      return result;
    }

  if (back == 0)
    {
      if (lenset == 0)
	{
	  mpz_set_ui (result->value.integer, len);
	  return result;
	}

      index =
	strspn (s->value.character.string, set->value.character.string) + 1;
      if (index > len)
	index = 0;

    }
  else
    {
      if (lenset == 0)
	{
	  mpz_set_ui (result->value.integer, 1);
	  return result;
	}
      for (index = len; index > 0; index --)
        {
          for (i = 0; i < lenset; i++)
            {
              if (s->value.character.string[index - 1]
                    == set->value.character.string[i])
                break;
            }
          if (i == lenset)
            break;
        }
    }

  mpz_set_ui (result->value.integer, index);
  return result;
}

/****************** Constant simplification *****************/

/* Master function to convert one constant to another.  While this is
   used as a simplification function, it requires the destination type
   and kind information which is supplied by a special case in
   do_simplify().  */

gfc_expr *
gfc_convert_constant (gfc_expr * e, bt type, int kind)
{
  gfc_expr *g, *result, *(*f) (gfc_expr *, int);
  gfc_constructor *head, *c, *tail = NULL;

  switch (e->ts.type)
    {
    case BT_INTEGER:
      switch (type)
	{
	case BT_INTEGER:
	  f = gfc_int2int;
	  break;
	case BT_REAL:
	  f = gfc_int2real;
	  break;
	case BT_COMPLEX:
	  f = gfc_int2complex;
	  break;
	case BT_LOGICAL:
	  f = gfc_int2log;
	  break;
	default:
	  goto oops;
	}
      break;

    case BT_REAL:
      switch (type)
	{
	case BT_INTEGER:
	  f = gfc_real2int;
	  break;
	case BT_REAL:
	  f = gfc_real2real;
	  break;
	case BT_COMPLEX:
	  f = gfc_real2complex;
	  break;
	default:
	  goto oops;
	}
      break;

    case BT_COMPLEX:
      switch (type)
	{
	case BT_INTEGER:
	  f = gfc_complex2int;
	  break;
	case BT_REAL:
	  f = gfc_complex2real;
	  break;
	case BT_COMPLEX:
	  f = gfc_complex2complex;
	  break;

	default:
	  goto oops;
	}
      break;

    case BT_LOGICAL:
      switch (type)
	{
	case BT_INTEGER:
	  f = gfc_log2int;
	  break;
	case BT_LOGICAL:
	  f = gfc_log2log;
	  break;
	default:
	  goto oops;
	}
      break;

    case BT_HOLLERITH:
      switch (type)
	{
	case BT_INTEGER:
	  f = gfc_hollerith2int;
	  break;

	case BT_REAL:
	  f = gfc_hollerith2real;
	  break;

	case BT_COMPLEX:
	  f = gfc_hollerith2complex;
	  break;

	case BT_CHARACTER:
	  f = gfc_hollerith2character;
	  break;

	case BT_LOGICAL:
	  f = gfc_hollerith2logical;
	  break;

	default:
	  goto oops;
	}
      break;

    default:
    oops:
      gfc_internal_error ("gfc_convert_constant(): Unexpected type");
    }

  result = NULL;

  switch (e->expr_type)
    {
    case EXPR_CONSTANT:
      result = f (e, kind);
      if (result == NULL)
	return &gfc_bad_expr;
      break;

    case EXPR_ARRAY:
      if (!gfc_is_constant_expr (e))
	break;

      head = NULL;

      for (c = e->value.constructor; c; c = c->next)
	{
	  if (head == NULL)
	    head = tail = gfc_get_constructor ();
	  else
	    {
	      tail->next = gfc_get_constructor ();
	      tail = tail->next;
	    }

	  tail->where = c->where;

	  if (c->iterator == NULL)
	    tail->expr = f (c->expr, kind);
	  else
	    {
	      g = gfc_convert_constant (c->expr, type, kind);
	      if (g == &gfc_bad_expr)
		return g;
	      tail->expr = g;
	    }

	  if (tail->expr == NULL)
	    {
	      gfc_free_constructor (head);
	      return NULL;
	    }
	}

      result = gfc_get_expr ();
      result->ts.type = type;
      result->ts.kind = kind;
      result->expr_type = EXPR_ARRAY;
      result->value.constructor = head;
      result->shape = gfc_copy_shape (e->shape, e->rank);
      result->where = e->where;
      result->rank = e->rank;
      break;

    default:
      break;
    }

  return result;
}


/****************** Helper functions ***********************/

/* Given a collating table, create the inverse table.  */

static void
invert_table (const int *table, int *xtable)
{
  int i;

  for (i = 0; i < 256; i++)
    xtable[i] = 0;

  for (i = 0; i < 256; i++)
    xtable[table[i]] = i;
}


void
gfc_simplify_init_1 (void)
{

  invert_table (ascii_table, xascii_table);
}
pan>; i >= 0; i--) { if (fmt[i] == 'e') XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn); else if (fmt[i] == 'E') { register int j; for (j = 0; j < XVECLEN (x, i); j++) XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn); } } return x; } /* Optimization: a bit-field instruction whose field happens to be a byte or halfword in memory can be changed to a move instruction. We call here when INSN is an insn to examine or store into a bit-field. BODY is the SET-rtx to be altered. EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0. (Currently this is called only from function.c, and EQUIV_MEM is always 0.) */ static void optimize_bit_field (body, insn, equiv_mem) rtx body; rtx insn; rtx *equiv_mem; { register rtx bitfield; int destflag; rtx seq = 0; enum machine_mode mode; if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT) bitfield = SET_DEST (body), destflag = 1; else bitfield = SET_SRC (body), destflag = 0; /* First check that the field being stored has constant size and position and is in fact a byte or halfword suitably aligned. */ if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT && GET_CODE (XEXP (bitfield, 2)) == CONST_INT && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1)) != BLKmode) && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0) { register rtx memref = 0; /* Now check that the containing word is memory, not a register, and that it is safe to change the machine mode. */ if (GET_CODE (XEXP (bitfield, 0)) == MEM) memref = XEXP (bitfield, 0); else if (GET_CODE (XEXP (bitfield, 0)) == REG && equiv_mem != 0) memref = equiv_mem[REGNO (XEXP (bitfield, 0))]; else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM) memref = SUBREG_REG (XEXP (bitfield, 0)); else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG && equiv_mem != 0 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG) memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))]; if (memref && ! mode_dependent_address_p (XEXP (memref, 0)) && ! MEM_VOLATILE_P (memref)) { /* Now adjust the address, first for any subreg'ing that we are now getting rid of, and then for which byte of the word is wanted. */ HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2)); rtx insns; /* Adjust OFFSET to count bits from low-address byte. */ if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN) offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0))) - offset - INTVAL (XEXP (bitfield, 1))); /* Adjust OFFSET to count bytes from low-address byte. */ offset /= BITS_PER_UNIT; if (GET_CODE (XEXP (bitfield, 0)) == SUBREG) { offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD; if (BYTES_BIG_ENDIAN) offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0)))) - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (memref)))); } start_sequence (); memref = change_address (memref, mode, plus_constant (XEXP (memref, 0), offset)); insns = get_insns (); end_sequence (); emit_insns_before (insns, insn); /* Store this memory reference where we found the bit field reference. */ if (destflag) { validate_change (insn, &SET_DEST (body), memref, 1); if (! CONSTANT_ADDRESS_P (SET_SRC (body))) { rtx src = SET_SRC (body); while (GET_CODE (src) == SUBREG && SUBREG_WORD (src) == 0) src = SUBREG_REG (src); if (GET_MODE (src) != GET_MODE (memref)) src = gen_lowpart (GET_MODE (memref), SET_SRC (body)); validate_change (insn, &SET_SRC (body), src, 1); } else if (GET_MODE (SET_SRC (body)) != VOIDmode && GET_MODE (SET_SRC (body)) != GET_MODE (memref)) /* This shouldn't happen because anything that didn't have one of these modes should have got converted explicitly and then referenced through a subreg. This is so because the original bit-field was handled by agg_mode and so its tree structure had the same mode that memref now has. */ abort (); } else { rtx dest = SET_DEST (body); while (GET_CODE (dest) == SUBREG && SUBREG_WORD (dest) == 0 && (GET_MODE_CLASS (GET_MODE (dest)) == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest)))) && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) <= UNITS_PER_WORD)) dest = SUBREG_REG (dest); validate_change (insn, &SET_DEST (body), dest, 1); if (GET_MODE (dest) == GET_MODE (memref)) validate_change (insn, &SET_SRC (body), memref, 1); else { /* Convert the mem ref to the destination mode. */ rtx newreg = gen_reg_rtx (GET_MODE (dest)); start_sequence (); convert_move (newreg, memref, GET_CODE (SET_SRC (body)) == ZERO_EXTRACT); seq = get_insns (); end_sequence (); validate_change (insn, &SET_SRC (body), newreg, 1); } } /* See if we can convert this extraction or insertion into a simple move insn. We might not be able to do so if this was, for example, part of a PARALLEL. If we succeed, write out any needed conversions. If we fail, it is hard to guess why we failed, so don't do anything special; just let the optimization be suppressed. */ if (apply_change_group () && seq) emit_insns_before (seq, insn); } } } /* These routines are responsible for converting virtual register references to the actual hard register references once RTL generation is complete. The following four variables are used for communication between the routines. They contain the offsets of the virtual registers from their respective hard registers. */ static int in_arg_offset; static int var_offset; static int dynamic_offset; static int out_arg_offset; static int cfa_offset; /* In most machines, the stack pointer register is equivalent to the bottom of the stack. */ #ifndef STACK_POINTER_OFFSET #define STACK_POINTER_OFFSET 0 #endif /* If not defined, pick an appropriate default for the offset of dynamically allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS, REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */ #ifndef STACK_DYNAMIC_OFFSET /* The bottom of the stack points to the actual arguments. If REG_PARM_STACK_SPACE is defined, this includes the space for the register parameters. However, if OUTGOING_REG_PARM_STACK space is not defined, stack space for register parameters is not pushed by the caller, but rather part of the fixed stack areas and hence not included in `current_function_outgoing_args_size'. Nevertheless, we must allow for it when allocating stack dynamic objects. */ #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE) #define STACK_DYNAMIC_OFFSET(FNDECL) \ ((ACCUMULATE_OUTGOING_ARGS \ ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\ + (STACK_POINTER_OFFSET)) \ #else #define STACK_DYNAMIC_OFFSET(FNDECL) \ ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \ + (STACK_POINTER_OFFSET)) #endif #endif /* On most machines, the CFA coincides with the first incoming parm. */ #ifndef ARG_POINTER_CFA_OFFSET #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL) #endif /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had its address taken. DECL is the decl for the object stored in the register, for later use if we do need to force REG into the stack. REG is overwritten by the MEM like in put_reg_into_stack. */ rtx gen_mem_addressof (reg, decl) rtx reg; tree decl; { rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)), REGNO (reg), decl); /* If the original REG was a user-variable, then so is the REG whose address is being taken. Likewise for unchanging. */ REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg); RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg); PUT_CODE (reg, MEM); XEXP (reg, 0) = r; if (decl) { tree type = TREE_TYPE (decl); PUT_MODE (reg, DECL_MODE (decl)); MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl); MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type)); MEM_ALIAS_SET (reg) = get_alias_set (decl); if (TREE_USED (decl) || DECL_INITIAL (decl) != 0) fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0); } else fixup_var_refs (reg, GET_MODE (reg), 0, 0); return reg; } /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */ void flush_addressof (decl) tree decl; { if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL) && DECL_RTL (decl) != 0 && GET_CODE (DECL_RTL (decl)) == MEM && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG) put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0); } /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */ static void put_addressof_into_stack (r, ht) rtx r; struct hash_table *ht; { tree decl, type; int volatile_p, used_p; rtx reg = XEXP (r, 0); if (GET_CODE (reg) != REG) abort (); decl = ADDRESSOF_DECL (r); if (decl) { type = TREE_TYPE (decl); volatile_p = (TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl)); used_p = (TREE_USED (decl) || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0)); } else { type = NULL_TREE; volatile_p = 0; used_p = 1; } put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg), volatile_p, ADDRESSOF_REGNO (r), used_p, ht); } /* List of replacements made below in purge_addressof_1 when creating bitfield insertions. */ static rtx purge_bitfield_addressof_replacements; /* List of replacements made below in purge_addressof_1 for patterns (MEM (ADDRESSOF (REG ...))). The key of the list entry is the corresponding (ADDRESSOF (REG ...)) and value is a substitution for the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not enough in complex cases, e.g. when some field values can be extracted by usage MEM with narrower mode. */ static rtx purge_addressof_replacements; /* Helper function for purge_addressof. See if the rtx expression at *LOC in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into the stack. If the function returns FALSE then the replacement could not be made. */ static boolean purge_addressof_1 (loc, insn, force, store, ht) rtx *loc; rtx insn; int force, store; struct hash_table *ht; { rtx x; RTX_CODE code; int i, j; const char *fmt; boolean result = true; /* Re-start here to avoid recursion in common cases. */ restart: x = *loc; if (x == 0) return true; code = GET_CODE (x); /* If we don't return in any of the cases below, we will recurse inside the RTX, which will normally result in any ADDRESSOF being forced into memory. */ if (code == SET) { result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht); result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht); return result; } else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM) { /* We must create a copy of the rtx because it was created by overwriting a REG rtx which is always shared. */ rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0)); rtx insns; if (validate_change (insn, loc, sub, 0) || validate_replace_rtx (x, sub, insn)) return true; start_sequence (); sub = force_operand (sub, NULL_RTX); if (! validate_change (insn, loc, sub, 0) && ! validate_replace_rtx (x, sub, insn)) abort (); insns = gen_sequence (); end_sequence (); emit_insn_before (insns, insn); return true; } else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force) { rtx sub = XEXP (XEXP (x, 0), 0); rtx sub2; if (GET_CODE (sub) == MEM) { sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0))); MEM_COPY_ATTRIBUTES (sub2, sub); sub = sub2; } else if (GET_CODE (sub) == REG && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)) ; else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub)) { int size_x, size_sub; if (!insn) { /* When processing REG_NOTES look at the list of replacements done on the insn to find the register that X was replaced by. */ rtx tem; for (tem = purge_bitfield_addressof_replacements; tem != NULL_RTX; tem = XEXP (XEXP (tem, 1), 1)) if (rtx_equal_p (x, XEXP (tem, 0))) { *loc = XEXP (XEXP (tem, 1), 0); return true; } /* See comment for purge_addressof_replacements. */ for (tem = purge_addressof_replacements; tem != NULL_RTX; tem = XEXP (XEXP (tem, 1), 1)) if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0))) { rtx z = XEXP (XEXP (tem, 1), 0); if (GET_MODE (x) == GET_MODE (z) || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG)) abort (); /* It can happen that the note may speak of things in a wider (or just different) mode than the code did. This is especially true of REG_RETVAL. */ if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0) z = SUBREG_REG (z); if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD && (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (z)))) { /* This can occur as a result in invalid pointer casts, e.g. float f; ... *(long long int *)&f. ??? We could emit a warning here, but without a line number that wouldn't be very helpful. */ z = gen_rtx_SUBREG (GET_MODE (x), z, 0); } else z = gen_lowpart (GET_MODE (x), z); *loc = z; return true; } /* Sometimes we may not be able to find the replacement. For example when the original insn was a MEM in a wider mode, and the note is part of a sign extension of a narrowed version of that MEM. Gcc testcase compile/990829-1.c can generate an example of this siutation. Rather than complain we return false, which will prompt our caller to remove the offending note. */ return false; } size_x = GET_MODE_BITSIZE (GET_MODE (x)); size_sub = GET_MODE_BITSIZE (GET_MODE (sub)); /* Don't even consider working with paradoxical subregs, or the moral equivalent seen here. */ if (size_x <= size_sub && int_mode_for_mode (GET_MODE (sub)) != BLKmode) { /* Do a bitfield insertion to mirror what would happen in memory. */ rtx val, seq; if (store) { rtx p = PREV_INSN (insn); start_sequence (); val = gen_reg_rtx (GET_MODE (x)); if (! validate_change (insn, loc, val, 0)) { /* Discard the current sequence and put the ADDRESSOF on stack. */ end_sequence (); goto give_up; } seq = gen_sequence (); end_sequence (); emit_insn_before (seq, insn); compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (), insn, ht); start_sequence (); store_bit_field (sub, size_x, 0, GET_MODE (x), val, GET_MODE_SIZE (GET_MODE (sub)), GET_MODE_ALIGNMENT (GET_MODE (sub))); /* Make sure to unshare any shared rtl that store_bit_field might have created. */ unshare_all_rtl_again (get_insns ()); seq = gen_sequence (); end_sequence (); p = emit_insn_after (seq, insn); if (NEXT_INSN (insn)) compute_insns_for_mem (NEXT_INSN (insn), p ? NEXT_INSN (p) : NULL_RTX, ht); } else { rtx p = PREV_INSN (insn); start_sequence (); val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX, GET_MODE (x), GET_MODE (x), GET_MODE_SIZE (GET_MODE (sub)), GET_MODE_SIZE (GET_MODE (sub))); if (! validate_change (insn, loc, val, 0)) { /* Discard the current sequence and put the ADDRESSOF on stack. */ end_sequence (); goto give_up; } seq = gen_sequence (); end_sequence (); emit_insn_before (seq, insn); compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (), insn, ht); } /* Remember the replacement so that the same one can be done on the REG_NOTES. */ purge_bitfield_addressof_replacements = gen_rtx_EXPR_LIST (VOIDmode, x, gen_rtx_EXPR_LIST (VOIDmode, val, purge_bitfield_addressof_replacements)); /* We replaced with a reg -- all done. */ return true; } } else if (validate_change (insn, loc, sub, 0)) { /* Remember the replacement so that the same one can be done on the REG_NOTES. */ if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG) { rtx tem; for (tem = purge_addressof_replacements; tem != NULL_RTX; tem = XEXP (XEXP (tem, 1), 1)) if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0))) { XEXP (XEXP (tem, 1), 0) = sub; return true; } purge_addressof_replacements = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0), gen_rtx_EXPR_LIST (VOIDmode, sub, purge_addressof_replacements)); return true; } goto restart; } give_up:; /* else give up and put it into the stack */ } else if (code == ADDRESSOF) { put_addressof_into_stack (x, ht); return true; } else if (code == SET) { result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht); result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht); return result; } /* Scan all subexpressions. */ fmt = GET_RTX_FORMAT (code); for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++) { if (*fmt == 'e') result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht); else if (*fmt == 'E') for (j = 0; j < XVECLEN (x, i); j++) result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht); } return result; } /* Return a new hash table entry in HT. */ static struct hash_entry * insns_for_mem_newfunc (he, ht, k) struct hash_entry *he; struct hash_table *ht; hash_table_key k ATTRIBUTE_UNUSED; { struct insns_for_mem_entry *ifmhe; if (he) return he; ifmhe = ((struct insns_for_mem_entry *) hash_allocate (ht, sizeof (struct insns_for_mem_entry))); ifmhe->insns = NULL_RTX; return &ifmhe->he; } /* Return a hash value for K, a REG. */ static unsigned long insns_for_mem_hash (k) hash_table_key k; { /* K is really a RTX. Just use the address as the hash value. */ return (unsigned long) k; } /* Return non-zero if K1 and K2 (two REGs) are the same. */ static boolean insns_for_mem_comp (k1, k2) hash_table_key k1; hash_table_key k2; { return k1 == k2; } struct insns_for_mem_walk_info { /* The hash table that we are using to record which INSNs use which MEMs. */ struct hash_table *ht; /* The INSN we are currently proessing. */ rtx insn; /* Zero if we are walking to find ADDRESSOFs, one if we are walking to find the insns that use the REGs in the ADDRESSOFs. */ int pass; }; /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG that might be used in an ADDRESSOF expression, record this INSN in the hash table given by DATA (which is really a pointer to an insns_for_mem_walk_info structure). */ static int insns_for_mem_walk (r, data) rtx *r; void *data; { struct insns_for_mem_walk_info *ifmwi = (struct insns_for_mem_walk_info *) data; if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF && GET_CODE (XEXP (*r, 0)) == REG) hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0); else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG) { /* Lookup this MEM in the hashtable, creating it if necessary. */ struct insns_for_mem_entry *ifme = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht, *r, /*create=*/0, /*copy=*/0); /* If we have not already recorded this INSN, do so now. Since we process the INSNs in order, we know that if we have recorded it it must be at the front of the list. */ if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn)) { /* We do the allocation on the same obstack as is used for the hash table since this memory will not be used once the hash table is deallocated. */ push_obstacks (&ifmwi->ht->memory, &ifmwi->ht->memory); ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn, ifme->insns); pop_obstacks (); } } return 0; } /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use which REGs in HT. */ static void compute_insns_for_mem (insns, last_insn, ht) rtx insns; rtx last_insn; struct hash_table *ht; { rtx insn; struct insns_for_mem_walk_info ifmwi; ifmwi.ht = ht; for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass) for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn)) if (INSN_P (insn)) { ifmwi.insn = insn; for_each_rtx (&insn, insns_for_mem_walk, &ifmwi); } } /* Helper function for purge_addressof called through for_each_rtx. Returns true iff the rtl is an ADDRESSOF. */ static int is_addressof (rtl, data) rtx *rtl; void *data ATTRIBUTE_UNUSED; { return GET_CODE (*rtl) == ADDRESSOF; } /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining (MEM (ADDRESSOF)) patterns, and force any needed registers into the stack. */ void purge_addressof (insns) rtx insns; { rtx insn; struct hash_table ht; /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That requires a fixup pass over the instruction stream to correct INSNs that depended on the REG being a REG, and not a MEM. But, these fixup passes are slow. Furthermore, most MEMs are not mentioned in very many instructions. So, we speed up the process by pre-calculating which REGs occur in which INSNs; that allows us to perform the fixup passes much more quickly. */ hash_table_init (&ht, insns_for_mem_newfunc, insns_for_mem_hash, insns_for_mem_comp); compute_insns_for_mem (insns, NULL_RTX, &ht); for (insn = insns; insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN) { if (! purge_addressof_1 (&PATTERN (insn), insn, asm_noperands (PATTERN (insn)) > 0, 0, &ht)) /* If we could not replace the ADDRESSOFs in the insn, something is wrong. */ abort (); if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht)) { /* If we could not replace the ADDRESSOFs in the insn's notes, we can just remove the offending notes instead. */ rtx note; for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) { /* If we find a REG_RETVAL note then the insn is a libcall. Such insns must have REG_EQUAL notes as well, in order for later passes of the compiler to work. So it is not safe to delete the notes here, and instead we abort. */ if (REG_NOTE_KIND (note) == REG_RETVAL) abort (); if (for_each_rtx (&note, is_addressof, NULL)) remove_note (insn, note); } } } /* Clean up. */ hash_table_free (&ht); purge_bitfield_addressof_replacements = 0; purge_addressof_replacements = 0; /* REGs are shared. purge_addressof will destructively replace a REG with a MEM, which creates shared MEMs. Unfortunately, the children of put_reg_into_stack assume that MEMs referring to the same stack slot are shared (fixup_var_refs and the associated hash table code). So, we have to do another unsharing pass after we have flushed any REGs that had their address taken into the stack. It may be worth tracking whether or not we converted any REGs into MEMs to avoid this overhead when it is not needed. */ unshare_all_rtl_again (get_insns ()); } /* Pass through the INSNS of function FNDECL and convert virtual register references to hard register references. */ void instantiate_virtual_regs (fndecl, insns) tree fndecl; rtx insns; { rtx insn; unsigned int i; /* Compute the offsets to use for this function. */ in_arg_offset = FIRST_PARM_OFFSET (fndecl); var_offset = STARTING_FRAME_OFFSET; dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl); out_arg_offset = STACK_POINTER_OFFSET; cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl); /* Scan all variables and parameters of this function. For each that is in memory, instantiate all virtual registers if the result is a valid address. If not, we do it later. That will handle most uses of virtual regs on many machines. */ instantiate_decls (fndecl, 1); /* Initialize recognition, indicating that volatile is OK. */ init_recog (); /* Scan through all the insns, instantiating every virtual register still present. */ for (insn = insns; insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN) { instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1); instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0); } /* Instantiate the stack slots for the parm registers, for later use in addressof elimination. */ for (i = 0; i < max_parm_reg; ++i) if (parm_reg_stack_loc[i]) instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0); /* Now instantiate the remaining register equivalences for debugging info. These will not be valid addresses. */ instantiate_decls (fndecl, 0); /* Indicate that, from now on, assign_stack_local should use frame_pointer_rtx. */ virtuals_instantiated = 1; } /* Scan all decls in FNDECL (both variables and parameters) and instantiate all virtual registers in their DECL_RTL's. If VALID_ONLY, do this only if the resulting address is still valid. Otherwise, always do it. */ static void instantiate_decls (fndecl, valid_only) tree fndecl; int valid_only; { tree decl; if (DECL_SAVED_INSNS (fndecl)) /* When compiling an inline function, the obstack used for rtl allocation is the maybepermanent_obstack. Calling `resume_temporary_allocation' switches us back to that obstack while we process this function's parameters. */ resume_temporary_allocation (); /* Process all parameters of the function. */ for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl)) { HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl)); instantiate_decl (DECL_RTL (decl), size, valid_only); /* If the parameter was promoted, then the incoming RTL mode may be larger than the declared type size. We must use the larger of the two sizes. */ size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size); instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only); } /* Now process all variables defined in the function or its subblocks. */ instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only); if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl)) { /* Save all rtl allocated for this function by raising the high-water mark on the maybepermanent_obstack. */ preserve_data (); /* All further rtl allocation is now done in the current_obstack. */ rtl_in_current_obstack (); } } /* Subroutine of instantiate_decls: Process all decls in the given BLOCK node and all its subblocks. */ static void instantiate_decls_1 (let, valid_only) tree let; int valid_only; { tree t; for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t)) instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)), valid_only); /* Process all subblocks. */ for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t)) instantiate_decls_1 (t, valid_only); } /* Subroutine of the preceding procedures: Given RTL representing a decl and the size of the object, do any instantiation required. If VALID_ONLY is non-zero, it means that the RTL should only be changed if the new address is valid. */ static void instantiate_decl (x, size, valid_only) rtx x; HOST_WIDE_INT size; int valid_only; { enum machine_mode mode; rtx addr; /* If this is not a MEM, no need to do anything. Similarly if the address is a constant or a register that is not a virtual register. */ if (x == 0 || GET_CODE (x) != MEM) return; addr = XEXP (x, 0); if (CONSTANT_P (addr) || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG) || (GET_CODE (addr) == REG && (REGNO (addr) < FIRST_VIRTUAL_REGISTER || REGNO (addr) > LAST_VIRTUAL_REGISTER))) return; /* If we should only do this if the address is valid, copy the address. We need to do this so we can undo any changes that might make the address invalid. This copy is unfortunate, but probably can't be avoided. */ if (valid_only) addr = copy_rtx (addr); instantiate_virtual_regs_1 (&addr, NULL_RTX, 0); if (valid_only && size >= 0) { unsigned HOST_WIDE_INT decl_size = size; /* Now verify that the resulting address is valid for every integer or floating-point mode up to and including SIZE bytes long. We do this since the object might be accessed in any mode and frame addresses are shared. */ for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size; mode = GET_MODE_WIDER_MODE (mode)) if (! memory_address_p (mode, addr)) return; for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size; mode = GET_MODE_WIDER_MODE (mode)) if (! memory_address_p (mode, addr)) return; } /* Put back the address now that we have updated it and we either know it is valid or we don't care whether it is valid. */ XEXP (x, 0) = addr; } /* Given a pointer to a piece of rtx and an optional pointer to the containing object, instantiate any virtual registers present in it. If EXTRA_INSNS, we always do the replacement and generate any extra insns before OBJECT. If it zero, we do nothing if replacement is not valid. Return 1 if we either had nothing to do or if we were able to do the needed replacement. Return 0 otherwise; we only return zero if EXTRA_INSNS is zero. We first try some simple transformations to avoid the creation of extra pseudos. */ static int instantiate_virtual_regs_1 (loc, object, extra_insns) rtx *loc; rtx object; int extra_insns; { rtx x; RTX_CODE code; rtx new = 0; HOST_WIDE_INT offset = 0; rtx temp; rtx seq; int i, j; const char *fmt; /* Re-start here to avoid recursion in common cases. */ restart: x = *loc; if (x == 0) return 1; code = GET_CODE (x); /* Check for some special cases. */ switch (code) { case CONST_INT: case CONST_DOUBLE: case CONST: case SYMBOL_REF: case CODE_LABEL: case PC: case CC0: case ASM_INPUT: case ADDR_VEC: case ADDR_DIFF_VEC: case RETURN: return 1; case SET: /* We are allowed to set the virtual registers. This means that the actual register should receive the source minus the appropriate offset. This is used, for example, in the handling of non-local gotos. */ if (SET_DEST (x) == virtual_incoming_args_rtx) new = arg_pointer_rtx, offset = -in_arg_offset; else if (SET_DEST (x) == virtual_stack_vars_rtx) new = frame_pointer_rtx, offset = -var_offset; else if (SET_DEST (x) == virtual_stack_dynamic_rtx) new = stack_pointer_rtx, offset = -dynamic_offset; else if (SET_DEST (x) == virtual_outgoing_args_rtx) new = stack_pointer_rtx, offset = -out_arg_offset; else if (SET_DEST (x) == virtual_cfa_rtx) new = arg_pointer_rtx, offset = -cfa_offset; if (new) { rtx src = SET_SRC (x); instantiate_virtual_regs_1 (&src, NULL_RTX, 0); /* The only valid sources here are PLUS or REG. Just do the simplest possible thing to handle them. */ if (GET_CODE (src) != REG && GET_CODE (src) != PLUS) abort (); start_sequence (); if (GET_CODE (src) != REG) temp = force_operand (src, NULL_RTX); else temp = src; temp = force_operand (plus_constant (temp, offset), NULL_RTX); seq = get_insns (); end_sequence (); emit_insns_before (seq, object); SET_DEST (x) = new; if (! validate_change (object, &SET_SRC (x), temp, 0) || ! extra_insns) abort (); return 1; } instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns); loc = &SET_SRC (x); goto restart; case PLUS: /* Handle special case of virtual register plus constant. */ if (CONSTANT_P (XEXP (x, 1))) { rtx old, new_offset; /* Check for (plus (plus VIRT foo) (const_int)) first. */ if (GET_CODE (XEXP (x, 0)) == PLUS) { rtx inner = XEXP (XEXP (x, 0), 0); if (inner == virtual_incoming_args_rtx) new = arg_pointer_rtx, offset = in_arg_offset; else if (inner == virtual_stack_vars_rtx) new = frame_pointer_rtx, offset = var_offset; else if (inner == virtual_stack_dynamic_rtx) new = stack_pointer_rtx, offset = dynamic_offset; else if (inner == virtual_outgoing_args_rtx) new = stack_pointer_rtx, offset = out_arg_offset; else if (inner == virtual_cfa_rtx) new = arg_pointer_rtx, offset = cfa_offset; else { loc = &XEXP (x, 0); goto restart; } instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object, extra_insns); new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1)); } else if (XEXP (x, 0) == virtual_incoming_args_rtx) new = arg_pointer_rtx, offset = in_arg_offset; else if (XEXP (x, 0) == virtual_stack_vars_rtx) new = frame_pointer_rtx, offset = var_offset; else if (XEXP (x, 0) == virtual_stack_dynamic_rtx) new = stack_pointer_rtx, offset = dynamic_offset; else if (XEXP (x, 0) == virtual_outgoing_args_rtx) new = stack_pointer_rtx, offset = out_arg_offset; else if (XEXP (x, 0) == virtual_cfa_rtx) new = arg_pointer_rtx, offset = cfa_offset; else { /* We know the second operand is a constant. Unless the first operand is a REG (which has been already checked), it needs to be checked. */ if (GET_CODE (XEXP (x, 0)) != REG) { loc = &XEXP (x, 0); goto restart; } return 1; } new_offset = plus_constant (XEXP (x, 1), offset); /* If the new constant is zero, try to replace the sum with just the register. */ if (new_offset == const0_rtx && validate_change (object, loc, new, 0)) return 1; /* Next try to replace the register and new offset. There are two changes to validate here and we can't assume that in the case of old offset equals new just changing the register will yield a valid insn. In the interests of a little efficiency, however, we only call validate change once (we don't queue up the changes and then call apply_change_group). */ old = XEXP (x, 0); if (offset == 0 ? ! validate_change (object, &XEXP (x, 0), new, 0) : (XEXP (x, 0) = new, ! validate_change (object, &XEXP (x, 1), new_offset, 0))) { if (! extra_insns) { XEXP (x, 0) = old; return 0; } /* Otherwise copy the new constant into a register and replace constant with that register. */ temp = gen_reg_rtx (Pmode); XEXP (x, 0) = new; if (validate_change (object, &XEXP (x, 1), temp, 0)) emit_insn_before (gen_move_insn (temp, new_offset), object); else { /* If that didn't work, replace this expression with a register containing the sum. */ XEXP (x, 0) = old; new = gen_rtx_PLUS (Pmode, new, new_offset); start_sequence (); temp = force_operand (new, NULL_RTX); seq = get_insns (); end_sequence (); emit_insns_before (seq, object); if (! validate_change (object, loc, temp, 0) && ! validate_replace_rtx (x, temp, object)) abort (); } } return 1; } /* Fall through to generic two-operand expression case. */ case EXPR_LIST: case CALL: case COMPARE: case MINUS: case MULT: case DIV: case UDIV: case MOD: case UMOD: case AND: case IOR: case XOR: case ROTATERT: case ROTATE: case ASHIFTRT: case LSHIFTRT: case ASHIFT: case NE: case EQ: case GE: case GT: case GEU: case GTU: case LE: case LT: case LEU: case LTU: if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1))) instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns); loc = &XEXP (x, 0); goto restart; case MEM: /* Most cases of MEM that convert to valid addresses have already been handled by our scan of decls. The only special handling we need here is to make a copy of the rtx to ensure it isn't being shared if we have to change it to a pseudo. If the rtx is a simple reference to an address via a virtual register, it can potentially be shared. In such cases, first try to make it a valid address, which can also be shared. Otherwise, copy it and proceed normally. First check for common cases that need no processing. These are usually due to instantiation already being done on a previous instance of a shared rtx. */ temp = XEXP (x, 0); if (CONSTANT_ADDRESS_P (temp) #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM || temp == arg_pointer_rtx #endif #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM || temp == hard_frame_pointer_rtx #endif || temp == frame_pointer_rtx) return 1; if (GET_CODE (temp) == PLUS && CONSTANT_ADDRESS_P (XEXP (temp, 1)) && (XEXP (temp, 0) == frame_pointer_rtx #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM || XEXP (temp, 0) == hard_frame_pointer_rtx #endif #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM || XEXP (temp, 0) == arg_pointer_rtx #endif )) return 1; if (temp == virtual_stack_vars_rtx || temp == virtual_incoming_args_rtx || (GET_CODE (temp) == PLUS && CONSTANT_ADDRESS_P (XEXP (temp, 1)) && (XEXP (temp, 0) == virtual_stack_vars_rtx || XEXP (temp, 0) == virtual_incoming_args_rtx))) { /* This MEM may be shared. If the substitution can be done without the need to generate new pseudos, we want to do it in place so all copies of the shared rtx benefit. The call below will only make substitutions if the resulting address is still valid. Note that we cannot pass X as the object in the recursive call since the insn being processed may not allow all valid addresses. However, if we were not passed on object, we can only modify X without copying it if X will have a valid address. ??? Also note that this can still lose if OBJECT is an insn that has less restrictions on an address that some other insn. In that case, we will modify the shared address. This case doesn't seem very likely, though. One case where this could happen is in the case of a USE or CLOBBER reference, but we take care of that below. */ if (instantiate_virtual_regs_1 (&XEXP (x, 0), object ? object : x, 0)) return 1; /* Otherwise make a copy and process that copy. We copy the entire RTL expression since it might be a PLUS which could also be shared. */ *loc = x = copy_rtx (x); } /* Fall through to generic unary operation case. */ case SUBREG: case STRICT_LOW_PART: case NEG: case NOT: case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC: case SIGN_EXTEND: case ZERO_EXTEND: case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT: case FIX: case UNSIGNED_FIX: case UNSIGNED_FLOAT: case ABS: case SQRT: case FFS: /* These case either have just one operand or we know that we need not check the rest of the operands. */ loc = &XEXP (x, 0); goto restart; case USE: case CLOBBER: /* If the operand is a MEM, see if the change is a valid MEM. If not, go ahead and make the invalid one, but do it to a copy. For a REG, just make the recursive call, since there's no chance of a problem. */ if ((GET_CODE (XEXP (x, 0)) == MEM && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0), 0)) || (GET_CODE (XEXP (x, 0)) == REG && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0))) return 1; XEXP (x, 0) = copy_rtx (XEXP (x, 0)); loc = &XEXP (x, 0); goto restart; case REG: /* Try to replace with a PLUS. If that doesn't work, compute the sum in front of this insn and substitute the temporary. */ if (x == virtual_incoming_args_rtx) new = arg_pointer_rtx, offset = in_arg_offset; else if (x == virtual_stack_vars_rtx) new = frame_pointer_rtx, offset = var_offset; else if (x == virtual_stack_dynamic_rtx) new = stack_pointer_rtx, offset = dynamic_offset; else if (x == virtual_outgoing_args_rtx) new = stack_pointer_rtx, offset = out_arg_offset; else if (x == virtual_cfa_rtx) new = arg_pointer_rtx, offset = cfa_offset; if (new) { temp = plus_constant (new, offset); if (!validate_change (object, loc, temp, 0)) { if (! extra_insns) return 0; start_sequence (); temp = force_operand (temp, NULL_RTX); seq = get_insns (); end_sequence (); emit_insns_before (seq, object); if (! validate_change (object, loc, temp, 0) && ! validate_replace_rtx (x, temp, object)) abort (); } } return 1; case ADDRESSOF: if (GET_CODE (XEXP (x, 0)) == REG) return 1; else if (GET_CODE (XEXP (x, 0)) == MEM) { /* If we have a (addressof (mem ..)), do any instantiation inside since we know we'll be making the inside valid when we finally remove the ADDRESSOF. */ instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0); return 1; } break; default: break; } /* Scan all subexpressions. */ fmt = GET_RTX_FORMAT (code); for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++) if (*fmt == 'e') { if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns)) return 0; } else if (*fmt == 'E') for (j = 0; j < XVECLEN (x, i); j++) if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object, extra_insns)) return 0; return 1; } /* Optimization: assuming this function does not receive nonlocal gotos, delete the handlers for such, as well as the insns to establish and disestablish them. */ static void delete_handlers () { rtx insn; for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) { /* Delete the handler by turning off the flag that would prevent jump_optimize from deleting it. Also permit deletion of the nonlocal labels themselves if nothing local refers to them. */ if (GET_CODE (insn) == CODE_LABEL) { tree t, last_t; LABEL_PRESERVE_P (insn) = 0; /* Remove it from the nonlocal_label list, to avoid confusing flow. */ for (t = nonlocal_labels, last_t = 0; t; last_t = t, t = TREE_CHAIN (t)) if (DECL_RTL (TREE_VALUE (t)) == insn) break; if (t) { if (! last_t) nonlocal_labels = TREE_CHAIN (nonlocal_labels); else TREE_CHAIN (last_t) = TREE_CHAIN (t); } } if (GET_CODE (insn) == INSN) { int can_delete = 0; rtx t; for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1)) if (reg_mentioned_p (t, PATTERN (insn))) { can_delete = 1; break; } if (can_delete || (nonlocal_goto_stack_level != 0 && reg_mentioned_p (nonlocal_goto_stack_level, PATTERN (insn)))) delete_insn (insn); } } } int max_parm_reg_num () { return max_parm_reg; } /* Return the first insn following those generated by `assign_parms'. */ rtx get_first_nonparm_insn () { if (last_parm_insn) return NEXT_INSN (last_parm_insn); return get_insns (); } /* Return the first NOTE_INSN_BLOCK_BEG note in the function. Crash if there is none. */ rtx get_first_block_beg () { register rtx searcher; register rtx insn = get_first_nonparm_insn (); for (searcher = insn; searcher; searcher = NEXT_INSN (searcher)) if (GET_CODE (searcher) == NOTE && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG) return searcher; abort (); /* Invalid call to this function. (See comments above.) */ return NULL_RTX; } /* Return 1 if EXP is an aggregate type (or a value with aggregate type). This means a type for which function calls must pass an address to the function or get an address back from the function. EXP may be a type node or an expression (whose type is tested). */ int aggregate_value_p (exp) tree exp; { int i, regno, nregs; rtx reg; tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp); if (TREE_CODE (type) == VOID_TYPE) return 0; if (RETURN_IN_MEMORY (type)) return 1; /* Types that are TREE_ADDRESSABLE must be constructed in memory, and thus can't be returned in registers. */ if (TREE_ADDRESSABLE (type)) return 1; if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type)) return 1; /* Make sure we have suitable call-clobbered regs to return the value in; if not, we must return it in memory. */ reg = hard_function_value (type, 0, 0); /* If we have something other than a REG (e.g. a PARALLEL), then assume it is OK. */ if (GET_CODE (reg) != REG) return 0; regno = REGNO (reg); nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type)); for (i = 0; i < nregs; i++) if (! call_used_regs[regno + i]) return 1; return 0; } /* Assign RTL expressions to the function's parameters. This may involve copying them into registers and using those registers as the RTL for them. */ void assign_parms (fndecl) tree fndecl; { register tree parm; register rtx entry_parm = 0; register rtx stack_parm = 0; CUMULATIVE_ARGS args_so_far; enum machine_mode promoted_mode, passed_mode; enum machine_mode nominal_mode, promoted_nominal_mode; int unsignedp; /* Total space needed so far for args on the stack, given as a constant and a tree-expression. */ struct args_size stack_args_size; tree fntype = TREE_TYPE (fndecl); tree fnargs = DECL_ARGUMENTS (fndecl); /* This is used for the arg pointer when referring to stack args. */ rtx internal_arg_pointer; /* This is a dummy PARM_DECL that we used for the function result if the function returns a structure. */ tree function_result_decl = 0; #ifdef SETUP_INCOMING_VARARGS int varargs_setup = 0; #endif rtx conversion_insns = 0; struct args_size alignment_pad; /* Nonzero if the last arg is named `__builtin_va_alist', which is used on some machines for old-fashioned non-ANSI varargs.h; this should be stuck onto the stack as if it had arrived there. */ int hide_last_arg = (current_function_varargs && fnargs && (parm = tree_last (fnargs)) != 0 && DECL_NAME (parm) && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)), "__builtin_va_alist"))); /* Nonzero if function takes extra anonymous args. This means the last named arg must be on the stack right before the anonymous ones. */ int stdarg = (TYPE_ARG_TYPES (fntype) != 0 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) != void_type_node)); current_function_stdarg = stdarg; /* If the reg that the virtual arg pointer will be translated into is not a fixed reg or is the stack pointer, make a copy of the virtual arg pointer, and address parms via the copy. The frame pointer is considered fixed even though it is not marked as such. The second time through, simply use ap to avoid generating rtx. */ if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM || ! (fixed_regs[ARG_POINTER_REGNUM] || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM))) internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx); else internal_arg_pointer = virtual_incoming_args_rtx; current_function_internal_arg_pointer = internal_arg_pointer; stack_args_size.constant = 0; stack_args_size.var = 0; /* If struct value address is treated as the first argument, make it so. */ if (aggregate_value_p (DECL_RESULT (fndecl)) && ! current_function_returns_pcc_struct && struct_value_incoming_rtx == 0) { tree type = build_pointer_type (TREE_TYPE (fntype)); function_result_decl = build_decl (PARM_DECL, NULL_TREE, type); DECL_ARG_TYPE (function_result_decl) = type; TREE_CHAIN (function_result_decl) = fnargs; fnargs = function_result_decl; } max_parm_reg = LAST_VIRTUAL_REGISTER + 1; parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx)); #ifdef INIT_CUMULATIVE_INCOMING_ARGS INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX); #else INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0); #endif /* We haven't yet found an argument that we must push and pretend the caller did. */ current_function_pretend_args_size = 0; for (parm = fnargs; parm; parm = TREE_CHAIN (parm)) { struct args_size stack_offset; struct args_size arg_size; int passed_pointer = 0; int did_conversion = 0; tree passed_type = DECL_ARG_TYPE (parm); tree nominal_type = TREE_TYPE (parm); int pretend_named; /* Set LAST_NAMED if this is last named arg before some anonymous args. */ int last_named = ((TREE_CHAIN (parm) == 0 || DECL_NAME (TREE_CHAIN (parm)) == 0) && (stdarg || current_function_varargs)); /* Set NAMED_ARG if this arg should be treated as a named arg. For most machines, if this is a varargs/stdarg function, then we treat the last named arg as if it were anonymous too. */ int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named; if (TREE_TYPE (parm) == error_mark_node /* This can happen after weird syntax errors or if an enum type is defined among the parms. */ || TREE_CODE (parm) != PARM_DECL || passed_type == NULL) { DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = gen_rtx_MEM (BLKmode, const0_rtx); TREE_USED (parm) = 1; continue; } /* For varargs.h function, save info about regs and stack space used by the individual args, not including the va_alist arg. */ if (hide_last_arg && last_named) current_function_args_info = args_so_far; /* Find mode of arg as it is passed, and mode of arg as it should be during execution of this function. */ passed_mode = TYPE_MODE (passed_type); nominal_mode = TYPE_MODE (nominal_type); /* If the parm's mode is VOID, its value doesn't matter, and avoid the usual things like emit_move_insn that could crash. */ if (nominal_mode == VOIDmode) { DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx; continue; } /* If the parm is to be passed as a transparent union, use the type of the first field for the tests below. We have already verified that the modes are the same. */ if (DECL_TRANSPARENT_UNION (parm) || (TREE_CODE (passed_type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (passed_type))) passed_type = TREE_TYPE (TYPE_FIELDS (passed_type)); /* See if this arg was passed by invisible reference. It is if it is an object whose size depends on the contents of the object itself or if the machine requires these objects be passed that way. */ if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST && contains_placeholder_p (TYPE_SIZE (passed_type))) || TREE_ADDRESSABLE (passed_type) #ifdef FUNCTION_ARG_PASS_BY_REFERENCE || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode, passed_type, named_arg) #endif ) { passed_type = nominal_type = build_pointer_type (passed_type); passed_pointer = 1; passed_mode = nominal_mode = Pmode; } promoted_mode = passed_mode; #ifdef PROMOTE_FUNCTION_ARGS /* Compute the mode in which the arg is actually extended to. */ unsignedp = TREE_UNSIGNED (passed_type); promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1); #endif /* Let machine desc say which reg (if any) the parm arrives in. 0 means it arrives on the stack. */ #ifdef FUNCTION_INCOMING_ARG entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode, passed_type, named_arg); #else entry_parm = FUNCTION_ARG (args_so_far, promoted_mode, passed_type, named_arg); #endif if (entry_parm == 0) promoted_mode = passed_mode; #ifdef SETUP_INCOMING_VARARGS /* If this is the last named parameter, do any required setup for varargs or stdargs. We need to know about the case of this being an addressable type, in which case we skip the registers it would have arrived in. For stdargs, LAST_NAMED will be set for two parameters, the one that is actually the last named, and the dummy parameter. We only want to do this action once. Also, indicate when RTL generation is to be suppressed. */ if (last_named && !varargs_setup) { SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type, current_function_pretend_args_size, 0); varargs_setup = 1; } #endif /* Determine parm's home in the stack, in case it arrives in the stack or we should pretend it did. Compute the stack position and rtx where the argument arrives and its size. There is one complexity here: If this was a parameter that would have been passed in registers, but wasn't only because it is __builtin_va_alist, we want locate_and_pad_parm to treat it as if it came in a register so that REG_PARM_STACK_SPACE isn't skipped. In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0 as it was the previous time. */ pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED; locate_and_pad_parm (promoted_mode, passed_type, #ifdef STACK_PARMS_IN_REG_PARM_AREA 1, #else #ifdef FUNCTION_INCOMING_ARG FUNCTION_INCOMING_ARG (args_so_far, promoted_mode, passed_type, pretend_named) != 0, #else FUNCTION_ARG (args_so_far, promoted_mode, passed_type, pretend_named) != 0, #endif #endif fndecl, &stack_args_size, &stack_offset, &arg_size, &alignment_pad); { rtx offset_rtx = ARGS_SIZE_RTX (stack_offset); if (offset_rtx == const0_rtx) stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer); else stack_parm = gen_rtx_MEM (promoted_mode, gen_rtx_PLUS (Pmode, internal_arg_pointer, offset_rtx)); set_mem_attributes (stack_parm, parm, 1); } /* If this parameter was passed both in registers and in the stack, use the copy on the stack. */ if (MUST_PASS_IN_STACK (promoted_mode, passed_type)) entry_parm = 0; #ifdef FUNCTION_ARG_PARTIAL_NREGS /* If this parm was passed part in regs and part in memory, pretend it arrived entirely in memory by pushing the register-part onto the stack. In the special case of a DImode or DFmode that is split, we could put it together in a pseudoreg directly, but for now that's not worth bothering with. */ if (entry_parm) { int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode, passed_type, named_arg); if (nregs > 0) { current_function_pretend_args_size = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1) / (PARM_BOUNDARY / BITS_PER_UNIT) * (PARM_BOUNDARY / BITS_PER_UNIT)); /* Handle calls that pass values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ if (GET_CODE (entry_parm) == PARALLEL) emit_group_store (validize_mem (stack_parm), entry_parm, int_size_in_bytes (TREE_TYPE (parm)), TYPE_ALIGN (TREE_TYPE (parm))); else move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm), nregs, int_size_in_bytes (TREE_TYPE (parm))); entry_parm = stack_parm; } } #endif /* If we didn't decide this parm came in a register, by default it came on the stack. */ if (entry_parm == 0) entry_parm = stack_parm; /* Record permanently how this parm was passed. */ DECL_INCOMING_RTL (parm) = entry_parm; /* If there is actually space on the stack for this parm, count it in stack_args_size; otherwise set stack_parm to 0 to indicate there is no preallocated stack slot for the parm. */ if (entry_parm == stack_parm || (GET_CODE (entry_parm) == PARALLEL && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX) #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE) /* On some machines, even if a parm value arrives in a register there is still an (uninitialized) stack slot allocated for it. ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell whether this parameter already has a stack slot allocated, because an arg block exists only if current_function_args_size is larger than some threshold, and we haven't calculated that yet. So, for now, we just assume that stack slots never exist in this case. */ || REG_PARM_STACK_SPACE (fndecl) > 0 #endif ) { stack_args_size.constant += arg_size.constant; if (arg_size.var) ADD_PARM_SIZE (stack_args_size, arg_size.var); } else /* No stack slot was pushed for this parm. */ stack_parm = 0; /* Update info on where next arg arrives in registers. */ FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode, passed_type, named_arg); /* If we can't trust the parm stack slot to be aligned enough for its ultimate type, don't use that slot after entry. We'll make another stack slot, if we need one. */ { unsigned int thisparm_boundary = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type); if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary) stack_parm = 0; } /* If parm was passed in memory, and we need to convert it on entry, don't store it back in that same slot. */ if (entry_parm != 0 && nominal_mode != BLKmode && nominal_mode != passed_mode) stack_parm = 0; /* ENTRY_PARM is an RTX for the parameter as it arrives, in the mode in which it arrives. STACK_PARM is an RTX for a stack slot where the parameter can live during the function (in case we want to put it there). STACK_PARM is 0 if no stack slot was pushed for it. Now output code if necessary to convert ENTRY_PARM to the type in which this function declares it, and store that result in an appropriate place, which may be a pseudo reg, may be STACK_PARM, or may be a local stack slot if STACK_PARM is 0. Set DECL_RTL to that place. */ if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL) { /* If a BLKmode arrives in registers, copy it to a stack slot. Handle calls that pass values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ if (GET_CODE (entry_parm) == REG || GET_CODE (entry_parm) == PARALLEL) { int size_stored = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)), UNITS_PER_WORD); /* Note that we will be storing an integral number of words. So we have to be careful to ensure that we allocate an integral number of words. We do this below in the assign_stack_local if space was not allocated in the argument list. If it was, this will not work if PARM_BOUNDARY is not a multiple of BITS_PER_WORD. It isn't clear how to fix this if it becomes a problem. */ if (stack_parm == 0) { stack_parm = assign_stack_local (GET_MODE (entry_parm), size_stored, 0); set_mem_attributes (stack_parm, parm, 1); } else if (PARM_BOUNDARY % BITS_PER_WORD != 0) abort (); /* Handle calls that pass values in multiple non-contiguous locations. The Irix 6 ABI has examples of this. */ if (GET_CODE (entry_parm) == PARALLEL) emit_group_store (validize_mem (stack_parm), entry_parm, int_size_in_bytes (TREE_TYPE (parm)), TYPE_ALIGN (TREE_TYPE (parm))); else move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm), size_stored / UNITS_PER_WORD, int_size_in_bytes (TREE_TYPE (parm))); } DECL_RTL (parm) = stack_parm; } else if (! ((! optimize && ! DECL_REGISTER (parm) && ! DECL_INLINE (fndecl)) /* layout_decl may set this. */ || TREE_ADDRESSABLE (parm) || TREE_SIDE_EFFECTS (parm) /* If -ffloat-store specified, don't put explicit float variables into registers. */ || (flag_float_store && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)) /* Always assign pseudo to structure return or item passed by invisible reference. */ || passed_pointer || parm == function_result_decl) { /* Store the parm in a pseudoregister during the function, but we may need to do it in a wider mode. */ register rtx parmreg; unsigned int regno, regnoi = 0, regnor = 0; unsignedp = TREE_UNSIGNED (TREE_TYPE (parm)); promoted_nominal_mode = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0); parmreg = gen_reg_rtx (promoted_nominal_mode); mark_user_reg (parmreg); /* If this was an item that we received a pointer to, set DECL_RTL appropriately. */ if (passed_pointer) { DECL_RTL (parm) = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg); set_mem_attributes (DECL_RTL (parm), parm, 1); } else DECL_RTL (parm) = parmreg; /* Copy the value into the register. */ if (nominal_mode != passed_mode || promoted_nominal_mode != promoted_mode) { int save_tree_used; /* ENTRY_PARM has been converted to PROMOTED_MODE, its mode, by the caller. We now have to convert it to NOMINAL_MODE, if different. However, PARMREG may be in a different mode than NOMINAL_MODE if it is being stored promoted. If ENTRY_PARM is a hard register, it might be in a register not valid for operating in its mode (e.g., an odd-numbered register for a DFmode). In that case, moves are the only thing valid, so we can't do a convert from there. This occurs when the calling sequence allow such misaligned usages. In addition, the conversion may involve a call, which could clobber parameters which haven't been copied to pseudo registers yet. Therefore, we must first copy the parm to a pseudo reg here, and save the conversion until after all parameters have been moved. */ rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm)); emit_move_insn (tempreg, validize_mem (entry_parm)); push_to_sequence (conversion_insns); tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp); /* TREE_USED gets set erroneously during expand_assignment. */ save_tree_used = TREE_USED (parm); expand_assignment (parm, make_tree (nominal_type, tempreg), 0, 0); TREE_USED (parm) = save_tree_used; conversion_insns = get_insns (); did_conversion = 1; end_sequence (); } else emit_move_insn (parmreg, validize_mem (entry_parm)); /* If we were passed a pointer but the actual value can safely live in a register, put it in one. */ if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode && ! ((! optimize && ! DECL_REGISTER (parm) && ! DECL_INLINE (fndecl)) /* layout_decl may set this. */ || TREE_ADDRESSABLE (parm) || TREE_SIDE_EFFECTS (parm) /* If -ffloat-store specified, don't put explicit float variables into registers. */ || (flag_float_store && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))) { /* We can't use nominal_mode, because it will have been set to Pmode above. We must use the actual mode of the parm. */ parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm))); mark_user_reg (parmreg); emit_move_insn (parmreg, DECL_RTL (parm)); DECL_RTL (parm) = parmreg; /* STACK_PARM is the pointer, not the parm, and PARMREG is now the parm. */ stack_parm = 0; } #ifdef FUNCTION_ARG_CALLEE_COPIES /* If we are passed an arg by reference and it is our responsibility to make a copy, do it now. PASSED_TYPE and PASSED mode now refer to the pointer, not the original argument, so we must recreate them in the call to FUNCTION_ARG_CALLEE_COPIES. */ /* ??? Later add code to handle the case that if the argument isn't modified, don't do the copy. */ else if (passed_pointer && FUNCTION_ARG_CALLEE_COPIES (args_so_far, TYPE_MODE (DECL_ARG_TYPE (parm)), DECL_ARG_TYPE (parm), named_arg) && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm))) { rtx copy; tree type = DECL_ARG_TYPE (parm); /* This sequence may involve a library call perhaps clobbering registers that haven't been copied to pseudos yet. */ push_to_sequence (conversion_insns); if (!COMPLETE_TYPE_P (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) /* This is a variable sized object. */ copy = gen_rtx_MEM (BLKmode, allocate_dynamic_stack_space (expr_size (parm), NULL_RTX, TYPE_ALIGN (type))); else copy = assign_stack_temp (TYPE_MODE (type), int_size_in_bytes (type), 1); set_mem_attributes (copy, parm, 1); store_expr (parm, copy, 0); emit_move_insn (parmreg, XEXP (copy, 0)); if (current_function_check_memory_usage) emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3, XEXP (copy, 0), Pmode, GEN_INT (int_size_in_bytes (type)), TYPE_MODE (sizetype), GEN_INT (MEMORY_USE_RW), TYPE_MODE (integer_type_node)); conversion_insns = get_insns (); did_conversion = 1; end_sequence (); } #endif /* FUNCTION_ARG_CALLEE_COPIES */ /* In any case, record the parm's desired stack location in case we later discover it must live in the stack. If it is a COMPLEX value, store the stack location for both halves. */ if (GET_CODE (parmreg) == CONCAT) regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1))); else regno = REGNO (parmreg); if (regno >= max_parm_reg) { rtx *new; int old_max_parm_reg = max_parm_reg; /* It's slow to expand this one register at a time, but it's also rare and we need max_parm_reg to be precisely correct. */ max_parm_reg = regno + 1; new = (rtx *) xrealloc (parm_reg_stack_loc, max_parm_reg * sizeof (rtx)); bzero ((char *) (new + old_max_parm_reg), (max_parm_reg - old_max_parm_reg) * sizeof (rtx)); parm_reg_stack_loc = new; } if (GET_CODE (parmreg) == CONCAT) { enum machine_mode submode = GET_MODE (XEXP (parmreg, 0)); regnor = REGNO (gen_realpart (submode, parmreg)); regnoi = REGNO (gen_imagpart (submode, parmreg)); if (stack_parm != 0) { parm_reg_stack_loc[regnor] = gen_realpart (submode, stack_parm); parm_reg_stack_loc[regnoi] = gen_imagpart (submode, stack_parm); } else { parm_reg_stack_loc[regnor] = 0; parm_reg_stack_loc[regnoi] = 0; } } else parm_reg_stack_loc[REGNO (parmreg)] = stack_parm; /* Mark the register as eliminable if we did no conversion and it was copied from memory at a fixed offset, and the arg pointer was not copied to a pseudo-reg. If the arg pointer is a pseudo reg or the offset formed an invalid address, such memory-equivalences as we make here would screw up life analysis for it. */ if (nominal_mode == passed_mode && ! did_conversion && stack_parm != 0 && GET_CODE (stack_parm) == MEM && stack_offset.var == 0 && reg_mentioned_p (virtual_incoming_args_rtx, XEXP (stack_parm, 0))) { rtx linsn = get_last_insn (); rtx sinsn, set; /* Mark complex types separately. */ if (GET_CODE (parmreg) == CONCAT) /* Scan backwards for the set of the real and imaginary parts. */ for (sinsn = linsn; sinsn != 0; sinsn = prev_nonnote_insn (sinsn)) { set = single_set (sinsn); if (set != 0 && SET_DEST (set) == regno_reg_rtx [regnoi]) REG_NOTES (sinsn) = gen_rtx_EXPR_LIST (REG_EQUIV, parm_reg_stack_loc[regnoi], REG_NOTES (sinsn)); else if (set != 0 && SET_DEST (set) == regno_reg_rtx [regnor]) REG_NOTES (sinsn) = gen_rtx_EXPR_LIST (REG_EQUIV, parm_reg_stack_loc[regnor], REG_NOTES (sinsn)); } else if ((set = single_set (linsn)) != 0 && SET_DEST (set) == parmreg) REG_NOTES (linsn) = gen_rtx_EXPR_LIST (REG_EQUIV, stack_parm, REG_NOTES (linsn)); } /* For pointer data type, suggest pointer register. */ if (POINTER_TYPE_P (TREE_TYPE (parm))) mark_reg_pointer (parmreg, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))); } else { /* Value must be stored in the stack slot STACK_PARM during function execution. */ if (promoted_mode != nominal_mode) { /* Conversion is required. */ rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm)); emit_move_insn (tempreg, validize_mem (entry_parm)); push_to_sequence (conversion_insns); entry_parm = convert_to_mode (nominal_mode, tempreg, TREE_UNSIGNED (TREE_TYPE (parm))); if (stack_parm) { /* ??? This may need a big-endian conversion on sparc64. */ stack_parm = change_address (stack_parm, nominal_mode, NULL_RTX); } conversion_insns = get_insns (); did_conversion = 1; end_sequence (); } if (entry_parm != stack_parm) { if (stack_parm == 0) { stack_parm = assign_stack_local (GET_MODE (entry_parm), GET_MODE_SIZE (GET_MODE (entry_parm)), 0); set_mem_attributes (stack_parm, parm, 1); } if (promoted_mode != nominal_mode) { push_to_sequence (conversion_insns); emit_move_insn (validize_mem (stack_parm), validize_mem (entry_parm)); conversion_insns = get_insns (); end_sequence (); } else emit_move_insn (validize_mem (stack_parm), validize_mem (entry_parm)); } if (current_function_check_memory_usage) { push_to_sequence (conversion_insns); emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3, XEXP (stack_parm, 0), Pmode, GEN_INT (GET_MODE_SIZE (GET_MODE (entry_parm))), TYPE_MODE (sizetype), GEN_INT (MEMORY_USE_RW), TYPE_MODE (integer_type_node)); conversion_insns = get_insns (); end_sequence (); } DECL_RTL (parm) = stack_parm; } /* If this "parameter" was the place where we are receiving the function's incoming structure pointer, set up the result. */ if (parm == function_result_decl) { tree result = DECL_RESULT (fndecl); DECL_RTL (result) = gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm)); set_mem_attributes (DECL_RTL (result), result, 1); } } /* Output all parameter conversion instructions (possibly including calls) now that all parameters have been copied out of hard registers. */ emit_insns (conversion_insns); last_parm_insn = get_last_insn (); current_function_args_size = stack_args_size.constant; /* Adjust function incoming argument size for alignment and minimum length. */ #ifdef REG_PARM_STACK_SPACE #ifndef MAYBE_REG_PARM_STACK_SPACE current_function_args_size = MAX (current_function_args_size, REG_PARM_STACK_SPACE (fndecl)); #endif #endif #ifdef STACK_BOUNDARY #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT) current_function_args_size = ((current_function_args_size + STACK_BYTES - 1) / STACK_BYTES) * STACK_BYTES; #endif #ifdef ARGS_GROW_DOWNWARD current_function_arg_offset_rtx = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant) : expand_expr (size_diffop (stack_args_size.var, size_int (-stack_args_size.constant)), NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD)); #else current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size); #endif /* See how many bytes, if any, of its args a function should try to pop on return. */ current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl), current_function_args_size); /* For stdarg.h function, save info about regs and stack space used by the named args. */ if (!hide_last_arg) current_function_args_info = args_so_far; /* Set the rtx used for the function return value. Put this in its own variable so any optimizers that need this information don't have to include tree.h. Do this here so it gets done when an inlined function gets output. */ current_function_return_rtx = DECL_RTL (DECL_RESULT (fndecl)); } /* Indicate whether REGNO is an incoming argument to the current function that was promoted to a wider mode. If so, return the RTX for the register (to get its mode). PMODE and PUNSIGNEDP are set to the mode that REGNO is promoted from and whether the promotion was signed or unsigned. */ #ifdef PROMOTE_FUNCTION_ARGS rtx promoted_input_arg (regno, pmode, punsignedp) unsigned int regno; enum machine_mode *pmode; int *punsignedp; { tree arg; for (arg = DECL_ARGUMENTS (current_function_decl); arg; arg = TREE_CHAIN (arg)) if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG && REGNO (DECL_INCOMING_RTL (arg)) == regno && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg))) { enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg)); int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg)); mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1); if (mode == GET_MODE (DECL_INCOMING_RTL (arg)) && mode != DECL_MODE (arg)) { *pmode = DECL_MODE (arg); *punsignedp = unsignedp; return DECL_INCOMING_RTL (arg); } } return 0; } #endif /* Compute the size and offset from the start of the stacked arguments for a parm passed in mode PASSED_MODE and with type TYPE. INITIAL_OFFSET_PTR points to the current offset into the stacked arguments. The starting offset and size for this parm are returned in *OFFSET_PTR and *ARG_SIZE_PTR, respectively. IN_REGS is non-zero if the argument will be passed in registers. It will never be set if REG_PARM_STACK_SPACE is not defined. FNDECL is the function in which the argument was defined. There are two types of rounding that are done. The first, controlled by FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument list to be aligned to the specific boundary (in bits). This rounding affects the initial and starting offsets, but not the argument size. The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY, optionally rounds the size of the parm to PARM_BOUNDARY. The initial offset is not affected by this rounding, while the size always is and the starting offset may be. */ /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case; initial_offset_ptr is positive because locate_and_pad_parm's callers pass in the total size of args so far as initial_offset_ptr. arg_size_ptr is always positive.*/ void locate_and_pad_parm (passed_mode, type, in_regs, fndecl, initial_offset_ptr, offset_ptr, arg_size_ptr, alignment_pad) enum machine_mode passed_mode; tree type; int in_regs ATTRIBUTE_UNUSED; tree fndecl ATTRIBUTE_UNUSED; struct args_size *initial_offset_ptr; struct args_size *offset_ptr; struct args_size *arg_size_ptr; struct args_size *alignment_pad; { tree sizetree = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode)); enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type); int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type); #ifdef REG_PARM_STACK_SPACE /* If we have found a stack parm before we reach the end of the area reserved for registers, skip that area. */ if (! in_regs) { int reg_parm_stack_space = 0; #ifdef MAYBE_REG_PARM_STACK_SPACE reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE; #else reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl); #endif if (reg_parm_stack_space > 0) { if (initial_offset_ptr->var) { initial_offset_ptr->var = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr), ssize_int (reg_parm_stack_space)); initial_offset_ptr->constant = 0; } else if (initial_offset_ptr->constant < reg_parm_stack_space) initial_offset_ptr->constant = reg_parm_stack_space; } } #endif /* REG_PARM_STACK_SPACE */ arg_size_ptr->var = 0; arg_size_ptr->constant = 0; #ifdef ARGS_GROW_DOWNWARD if (initial_offset_ptr->var) { offset_ptr->constant = 0; offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0), initial_offset_ptr->var); } else { offset_ptr->constant = -initial_offset_ptr->constant; offset_ptr->var = 0; } if (where_pad != none && (TREE_CODE (sizetree) != INTEGER_CST || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY))) sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT); SUB_PARM_SIZE (*offset_ptr, sizetree); if (where_pad != downward) pad_to_arg_alignment (offset_ptr, boundary, alignment_pad); if (initial_offset_ptr->var) arg_size_ptr->var = size_binop (MINUS_EXPR, size_binop (MINUS_EXPR, ssize_int (0), initial_offset_ptr->var), offset_ptr->var); else arg_size_ptr->constant = (-initial_offset_ptr->constant - offset_ptr->constant); #else /* !ARGS_GROW_DOWNWARD */ pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad); *offset_ptr = *initial_offset_ptr; #ifdef PUSH_ROUNDING if (passed_mode != BLKmode) sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree))); #endif /* Pad_below needs the pre-rounded size to know how much to pad below so this must be done before rounding up. */ if (where_pad == downward /* However, BLKmode args passed in regs have their padding done elsewhere. The stack slot must be able to hold the entire register. */ && !(in_regs && passed_mode == BLKmode)) pad_below (offset_ptr, passed_mode, sizetree); if (where_pad != none && (TREE_CODE (sizetree) != INTEGER_CST || ((TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY))) sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT); ADD_PARM_SIZE (*arg_size_ptr, sizetree); #endif /* ARGS_GROW_DOWNWARD */ } /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY. BOUNDARY is measured in bits, but must be a multiple of a storage unit. */ static void pad_to_arg_alignment (offset_ptr, boundary, alignment_pad) struct args_size *offset_ptr; int boundary; struct args_size *alignment_pad; { tree save_var = NULL_TREE; HOST_WIDE_INT save_constant = 0; int boundary_in_bytes = boundary / BITS_PER_UNIT; if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY) { save_var = offset_ptr->var; save_constant = offset_ptr->constant; } alignment_pad->var = NULL_TREE; alignment_pad->constant = 0; if (boundary > BITS_PER_UNIT) { if (offset_ptr->var) { offset_ptr->var = #ifdef ARGS_GROW_DOWNWARD round_down #else round_up #endif (ARGS_SIZE_TREE (*offset_ptr), boundary / BITS_PER_UNIT); offset_ptr->constant = 0; /*?*/ if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY) alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var, save_var); } else { offset_ptr->constant = #ifdef ARGS_GROW_DOWNWARD FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes); #else CEIL_ROUND (offset_ptr->constant, boundary_in_bytes); #endif if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY) alignment_pad->constant = offset_ptr->constant - save_constant; } } } #ifndef ARGS_GROW_DOWNWARD static void pad_below (offset_ptr, passed_mode, sizetree) struct args_size *offset_ptr; enum machine_mode passed_mode; tree sizetree; { if (passed_mode != BLKmode) { if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY) offset_ptr->constant += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1) / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT) - GET_MODE_SIZE (passed_mode)); } else { if (TREE_CODE (sizetree) != INTEGER_CST || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY) { /* Round the size up to multiple of PARM_BOUNDARY bits. */ tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT); /* Add it in. */ ADD_PARM_SIZE (*offset_ptr, s2); SUB_PARM_SIZE (*offset_ptr, sizetree); } } } #endif /* Walk the tree of blocks describing the binding levels within a function and warn about uninitialized variables. This is done after calling flow_analysis and before global_alloc clobbers the pseudo-regs to hard regs. */ void uninitialized_vars_warning (block) tree block; { register tree decl, sub; for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl)) { if (warn_uninitialized && TREE_CODE (decl) == VAR_DECL /* These warnings are unreliable for and aggregates because assigning the fields one by one can fail to convince flow.c that the entire aggregate was initialized. Unions are troublesome because members may be shorter. */ && ! AGGREGATE_TYPE_P (TREE_TYPE (decl)) && DECL_RTL (decl) != 0 && GET_CODE (DECL_RTL (decl)) == REG /* Global optimizations can make it difficult to determine if a particular variable has been initialized. However, a VAR_DECL with a nonzero DECL_INITIAL had an initializer, so do not claim it is potentially uninitialized. We do not care about the actual value in DECL_INITIAL, so we do not worry that it may be a dangling pointer. */ && DECL_INITIAL (decl) == NULL_TREE && regno_uninitialized (REGNO (DECL_RTL (decl)))) warning_with_decl (decl, "`%s' might be used uninitialized in this function"); if (extra_warnings && TREE_CODE (decl) == VAR_DECL && DECL_RTL (decl) != 0 && GET_CODE (DECL_RTL (decl)) == REG && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl)))) warning_with_decl (decl, "variable `%s' might be clobbered by `longjmp' or `vfork'"); } for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub)) uninitialized_vars_warning (sub); } /* Do the appropriate part of uninitialized_vars_warning but for arguments instead of local variables. */ void setjmp_args_warning () { register tree decl; for (decl = DECL_ARGUMENTS (current_function_decl); decl; decl = TREE_CHAIN (decl)) if (DECL_RTL (decl) != 0 && GET_CODE (DECL_RTL (decl)) == REG && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl)))) warning_with_decl (decl, "argument `%s' might be clobbered by `longjmp' or `vfork'"); } /* If this function call setjmp, put all vars into the stack unless they were declared `register'. */ void setjmp_protect (block) tree block; { register tree decl, sub; for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl)) if ((TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL) && DECL_RTL (decl) != 0 && (GET_CODE (DECL_RTL (decl)) == REG || (GET_CODE (DECL_RTL (decl)) == MEM && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF)) /* If this variable came from an inline function, it must be that its life doesn't overlap the setjmp. If there was a setjmp in the function, it would already be in memory. We must exclude such variable because their DECL_RTL might be set to strange things such as virtual_stack_vars_rtx. */ && ! DECL_FROM_INLINE (decl) && ( #ifdef NON_SAVING_SETJMP /* If longjmp doesn't restore the registers, don't put anything in them. */ NON_SAVING_SETJMP || #endif ! DECL_REGISTER (decl))) put_var_into_stack (decl); for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub)) setjmp_protect (sub); } /* Like the previous function, but for args instead of local variables. */ void setjmp_protect_args () { register tree decl; for (decl = DECL_ARGUMENTS (current_function_decl); decl; decl = TREE_CHAIN (decl)) if ((TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL) && DECL_RTL (decl) != 0 && (GET_CODE (DECL_RTL (decl)) == REG || (GET_CODE (DECL_RTL (decl)) == MEM && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF)) && ( /* If longjmp doesn't restore the registers, don't put anything in them. */ #ifdef NON_SAVING_SETJMP NON_SAVING_SETJMP || #endif ! DECL_REGISTER (decl))) put_var_into_stack (decl); } /* Return the context-pointer register corresponding to DECL, or 0 if it does not need one. */ rtx lookup_static_chain (decl) tree decl; { tree context = decl_function_context (decl); tree link; if (context == 0 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl))) return 0; /* We treat inline_function_decl as an alias for the current function because that is the inline function whose vars, types, etc. are being merged into the current function. See expand_inline_function. */ if (context == current_function_decl || context == inline_function_decl) return virtual_stack_vars_rtx; for (link = context_display; link; link = TREE_CHAIN (link)) if (TREE_PURPOSE (link) == context) return RTL_EXPR_RTL (TREE_VALUE (link)); abort (); } /* Convert a stack slot address ADDR for variable VAR (from a containing function) into an address valid in this function (using a static chain). */ rtx fix_lexical_addr (addr, var) rtx addr; tree var; { rtx basereg; HOST_WIDE_INT displacement; tree context = decl_function_context (var); struct function *fp; rtx base = 0; /* If this is the present function, we need not do anything. */ if (context == current_function_decl || context == inline_function_decl) return addr; for (fp = outer_function_chain; fp; fp = fp->next) if (fp->decl == context) break; if (fp == 0) abort (); if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM) addr = XEXP (XEXP (addr, 0), 0); /* Decode given address as base reg plus displacement. */ if (GET_CODE (addr) == REG) basereg = addr, displacement = 0; else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT) basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1)); else abort (); /* We accept vars reached via the containing function's incoming arg pointer and via its stack variables pointer. */ if (basereg == fp->internal_arg_pointer) { /* If reached via arg pointer, get the arg pointer value out of that function's stack frame. There are two cases: If a separate ap is needed, allocate a slot in the outer function for it and dereference it that way. This is correct even if the real ap is actually a pseudo. Otherwise, just adjust the offset from the frame pointer to compensate. */ #ifdef NEED_SEPARATE_AP rtx addr; if (fp->x_arg_pointer_save_area == 0) fp->x_arg_pointer_save_area = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp); addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var); addr = memory_address (Pmode, addr); base = gen_rtx_MEM (Pmode, addr); MEM_ALIAS_SET (base) = get_frame_alias_set (); base = copy_to_reg (base); #else displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET); base = lookup_static_chain (var); #endif } else if (basereg == virtual_stack_vars_rtx) { /* This is the same code as lookup_static_chain, duplicated here to avoid an extra call to decl_function_context. */ tree link; for (link = context_display; link; link = TREE_CHAIN (link)) if (TREE_PURPOSE (link) == context) { base = RTL_EXPR_RTL (TREE_VALUE (link)); break; } } if (base == 0) abort (); /* Use same offset, relative to appropriate static chain or argument pointer. */ return plus_constant (base, displacement); } /* Return the address of the trampoline for entering nested fn FUNCTION. If necessary, allocate a trampoline (in the stack frame) and emit rtl to initialize its contents (at entry to this function). */ rtx trampoline_address (function) tree function; { tree link; tree rtlexp; rtx tramp; struct function *fp; tree fn_context; /* Find an existing trampoline and return it. */ for (link = trampoline_list; link; link = TREE_CHAIN (link)) if (TREE_PURPOSE (link) == function) return round_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0)); for (fp = outer_function_chain; fp; fp = fp->next) for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link)) if (TREE_PURPOSE (link) == function) { tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0), function); return round_trampoline_addr (tramp); } /* None exists; we must make one. */ /* Find the `struct function' for the function containing FUNCTION. */ fp = 0; fn_context = decl_function_context (function); if (fn_context != current_function_decl && fn_context != inline_function_decl) for (fp = outer_function_chain; fp; fp = fp->next) if (fp->decl == fn_context) break; /* Allocate run-time space for this trampoline (usually in the defining function's stack frame). */ #ifdef ALLOCATE_TRAMPOLINE tramp = ALLOCATE_TRAMPOLINE (fp); #else /* If rounding needed, allocate extra space to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */ #ifdef TRAMPOLINE_ALIGNMENT #define TRAMPOLINE_REAL_SIZE \ (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1) #else #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE) #endif tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0, fp ? fp : cfun); #endif /* Record the trampoline for reuse and note it for later initialization by expand_function_end. */ if (fp != 0) { push_obstacks (fp->function_maybepermanent_obstack, fp->function_maybepermanent_obstack); rtlexp = make_node (RTL_EXPR); RTL_EXPR_RTL (rtlexp) = tramp; fp->x_trampoline_list = tree_cons (function, rtlexp, fp->x_trampoline_list); pop_obstacks (); } else { /* Make the RTL_EXPR node temporary, not momentary, so that the trampoline_list doesn't become garbage. */ int momentary = suspend_momentary (); rtlexp = make_node (RTL_EXPR); resume_momentary (momentary); RTL_EXPR_RTL (rtlexp) = tramp; trampoline_list = tree_cons (function, rtlexp, trampoline_list); } tramp = fix_lexical_addr (XEXP (tramp, 0), function); return round_trampoline_addr (tramp); } /* Given a trampoline address, round it to multiple of TRAMPOLINE_ALIGNMENT. */ static rtx round_trampoline_addr (tramp) rtx tramp; { #ifdef TRAMPOLINE_ALIGNMENT /* Round address up to desired boundary. */ rtx temp = gen_reg_rtx (Pmode); temp = expand_binop (Pmode, add_optab, tramp, GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1), temp, 0, OPTAB_LIB_WIDEN); tramp = expand_binop (Pmode, and_optab, temp, GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT), temp, 0, OPTAB_LIB_WIDEN); #endif return tramp; } /* Put all this function's BLOCK nodes including those that are chained onto the first block into a vector, and return it. Also store in each NOTE for the beginning or end of a block the index of that block in the vector. The arguments are BLOCK, the chain of top-level blocks of the function, and INSNS, the insn chain of the function. */ void identify_blocks () { int n_blocks; tree *block_vector, *last_block_vector; tree *block_stack; tree block = DECL_INITIAL (current_function_decl); if (block == 0) return; /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in depth-first order. */ block_vector = get_block_vector (block, &n_blocks); block_stack = (tree *) xmalloc (n_blocks * sizeof (tree)); last_block_vector = identify_blocks_1 (get_insns (), block_vector + 1, block_vector + n_blocks, block_stack); /* If we didn't use all of the subblocks, we've misplaced block notes. */ /* ??? This appears to happen all the time. Latent bugs elsewhere? */ if (0 && last_block_vector != block_vector + n_blocks) abort (); free (block_vector); free (block_stack); } /* Subroutine of identify_blocks. Do the block substitution on the insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains. BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair. BLOCK_VECTOR is incremented for each block seen. */ static tree * identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack) rtx insns; tree *block_vector; tree *end_block_vector; tree *orig_block_stack; { rtx insn; tree *block_stack = orig_block_stack; for (insn = insns; insn; insn = NEXT_INSN (insn)) { if (GET_CODE (insn) == NOTE) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG) { tree b; /* If there are more block notes than BLOCKs, something is badly wrong. */ if (block_vector == end_block_vector) abort (); b = *block_vector++; NOTE_BLOCK (insn) = b; *block_stack++ = b; } else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END) { /* If there are more NOTE_INSN_BLOCK_ENDs than NOTE_INSN_BLOCK_BEGs, something is badly wrong. */ if (block_stack == orig_block_stack) abort (); NOTE_BLOCK (insn) = *--block_stack; } } else if (GET_CODE (insn) == CALL_INSN && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER) { rtx cp = PATTERN (insn); block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector, end_block_vector, block_stack); if (XEXP (cp, 1)) block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector, end_block_vector, block_stack); if (XEXP (cp, 2)) block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector, end_block_vector, block_stack); } } /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs, something is badly wrong. */ if (block_stack != orig_block_stack) abort (); return block_vector; } /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */ void reorder_blocks () { tree block = DECL_INITIAL (current_function_decl); varray_type block_stack; if (block == NULL_TREE) return; VARRAY_TREE_INIT (block_stack, 10, "block_stack"); /* Prune the old trees away, so that they don't get in the way. */ BLOCK_SUBBLOCKS (block) = NULL_TREE; BLOCK_CHAIN (block) = NULL_TREE; reorder_blocks_1 (get_insns (), block, &block_stack); BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block)); VARRAY_FREE (block_stack); } /* Helper function for reorder_blocks. Process the insn chain beginning at INSNS. Recurse for CALL_PLACEHOLDER insns. */ static void reorder_blocks_1 (insns, current_block, p_block_stack) rtx insns; tree current_block; varray_type *p_block_stack; { rtx insn; for (insn = insns; insn; insn = NEXT_INSN (insn)) { if (GET_CODE (insn) == NOTE) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG) { tree block = NOTE_BLOCK (insn); /* If we have seen this block before, copy it. */ if (TREE_ASM_WRITTEN (block)) { block = copy_node (block); NOTE_BLOCK (insn) = block; } BLOCK_SUBBLOCKS (block) = 0; TREE_ASM_WRITTEN (block) = 1; BLOCK_SUPERCONTEXT (block) = current_block; BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block); BLOCK_SUBBLOCKS (current_block) = block; current_block = block; VARRAY_PUSH_TREE (*p_block_stack, block); } else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END) { NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack); VARRAY_POP (*p_block_stack); BLOCK_SUBBLOCKS (current_block) = blocks_nreverse (BLOCK_SUBBLOCKS (current_block)); current_block = BLOCK_SUPERCONTEXT (current_block); } } else if (GET_CODE (insn) == CALL_INSN && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER) { rtx cp = PATTERN (insn); reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack); if (XEXP (cp, 1)) reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack); if (XEXP (cp, 2)) reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack); } } } /* Reverse the order of elements in the chain T of blocks, and return the new head of the chain (old last element). */ static tree blocks_nreverse (t) tree t; { register tree prev = 0, decl, next; for (decl = t; decl; decl = next) { next = BLOCK_CHAIN (decl); BLOCK_CHAIN (decl) = prev; prev = decl; } return prev; } /* Count the subblocks of the list starting with BLOCK. If VECTOR is non-NULL, list them all into VECTOR, in a depth-first preorder traversal of the block tree. Also clear TREE_ASM_WRITTEN in all blocks. */ static int all_blocks (block, vector) tree block; tree *vector; { int n_blocks = 0; while (block) { TREE_ASM_WRITTEN (block) = 0; /* Record this block. */ if (vector) vector[n_blocks] = block; ++n_blocks; /* Record the subblocks, and their subblocks... */ n_blocks += all_blocks (BLOCK_SUBBLOCKS (block), vector ? vector + n_blocks : 0); block = BLOCK_CHAIN (block); } return n_blocks; } /* Return a vector containing all the blocks rooted at BLOCK. The number of elements in the vector is stored in N_BLOCKS_P. The vector is dynamically allocated; it is the caller's responsibility to call `free' on the pointer returned. */ static tree * get_block_vector (block, n_blocks_p) tree block; int *n_blocks_p; { tree *block_vector; *n_blocks_p = all_blocks (block, NULL); block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree)); all_blocks (block, block_vector); return block_vector; } static int next_block_index = 2; /* Set BLOCK_NUMBER for all the blocks in FN. */ void number_blocks (fn) tree fn; { int i; int n_blocks; tree *block_vector; /* For SDB and XCOFF debugging output, we start numbering the blocks from 1 within each function, rather than keeping a running count. */ #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO) if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG) next_block_index = 1; #endif block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks); /* The top-level BLOCK isn't numbered at all. */ for (i = 1; i < n_blocks; ++i) /* We number the blocks from two. */ BLOCK_NUMBER (block_vector[i]) = next_block_index++; free (block_vector); return; } /* Allocate a function structure and reset its contents to the defaults. */ static void prepare_function_start () { cfun = (struct function *) xcalloc (1, sizeof (struct function)); init_stmt_for_function (); init_eh_for_function (); cse_not_expected = ! optimize; /* Caller save not needed yet. */ caller_save_needed = 0; /* No stack slots have been made yet. */ stack_slot_list = 0; current_function_has_nonlocal_label = 0; current_function_has_nonlocal_goto = 0; /* There is no stack slot for handling nonlocal gotos. */ nonlocal_goto_handler_slots = 0; nonlocal_goto_stack_level = 0; /* No labels have been declared for nonlocal use. */ nonlocal_labels = 0; nonlocal_goto_handler_labels = 0; /* No function calls so far in this function. */ function_call_count = 0; /* No parm regs have been allocated. (This is important for output_inline_function.) */ max_parm_reg = LAST_VIRTUAL_REGISTER + 1; /* Initialize the RTL mechanism. */ init_emit (); /* Initialize the queue of pending postincrement and postdecrements, and some other info in expr.c. */ init_expr (); /* We haven't done register allocation yet. */ reg_renumber = 0; init_varasm_status (cfun); /* Clear out data used for inlining. */ cfun->inlinable = 0; cfun->original_decl_initial = 0; cfun->original_arg_vector = 0; #ifdef STACK_BOUNDARY cfun->stack_alignment_needed = STACK_BOUNDARY; cfun->preferred_stack_boundary = STACK_BOUNDARY; #else cfun->stack_alignment_needed = 0; cfun->preferred_stack_boundary = 0; #endif /* Set if a call to setjmp is seen. */ current_function_calls_setjmp = 0; /* Set if a call to longjmp is seen. */ current_function_calls_longjmp = 0; current_function_calls_alloca = 0; current_function_contains_functions = 0; current_function_is_leaf = 0; current_function_nothrow = 0; current_function_sp_is_unchanging = 0; current_function_uses_only_leaf_regs = 0; current_function_has_computed_jump = 0; current_function_is_thunk = 0; current_function_returns_pcc_struct = 0; current_function_returns_struct = 0; current_function_epilogue_delay_list = 0; current_function_uses_const_pool = 0; current_function_uses_pic_offset_table = 0; current_function_cannot_inline = 0; /* We have not yet needed to make a label to jump to for tail-recursion. */ tail_recursion_label = 0; /* We haven't had a need to make a save area for ap yet. */ arg_pointer_save_area = 0; /* No stack slots allocated yet. */ frame_offset = 0; /* No SAVE_EXPRs in this function yet. */ save_expr_regs = 0; /* No RTL_EXPRs in this function yet. */ rtl_expr_chain = 0; /* Set up to allocate temporaries. */ init_temp_slots (); /* Indicate that we need to distinguish between the return value of the present function and the return value of a function being called. */ rtx_equal_function_value_matters = 1; /* Indicate that we have not instantiated virtual registers yet. */ virtuals_instantiated = 0; /* Indicate we have no need of a frame pointer yet. */ frame_pointer_needed = 0; /* By default assume not varargs or stdarg. */ current_function_varargs = 0; current_function_stdarg = 0; /* We haven't made any trampolines for this function yet. */ trampoline_list = 0; init_pending_stack_adjust (); inhibit_defer_pop = 0; current_function_outgoing_args_size = 0; if (init_lang_status) (*init_lang_status) (cfun); if (init_machine_status) (*init_machine_status) (cfun); } /* Initialize the rtl expansion mechanism so that we can do simple things like generate sequences. This is used to provide a context during global initialization of some passes. */ void init_dummy_function_start () { prepare_function_start (); } /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node) and initialize static variables for generating RTL for the statements of the function. */ void init_function_start (subr, filename, line) tree subr; const char *filename; int line; { prepare_function_start (); /* Remember this function for later. */ cfun->next_global = all_functions; all_functions = cfun; current_function_name = (*decl_printable_name) (subr, 2); cfun->decl = subr; /* Nonzero if this is a nested function that uses a static chain. */ current_function_needs_context = (decl_function_context (current_function_decl) != 0 && ! DECL_NO_STATIC_CHAIN (current_function_decl)); /* Within function body, compute a type's size as soon it is laid out. */ immediate_size_expand++; /* Prevent ever trying to delete the first instruction of a function. Also tell final how to output a linenum before the function prologue. Note linenums could be missing, e.g. when compiling a Java .class file. */ if (line > 0) emit_line_note (filename, line); /* Make sure first insn is a note even if we don't want linenums. This makes sure the first insn will never be deleted. Also, final expects a note to appear there. */ emit_note (NULL_PTR, NOTE_INSN_DELETED); /* Set flags used by final.c. */ if (aggregate_value_p (DECL_RESULT (subr))) { #ifdef PCC_STATIC_STRUCT_RETURN current_function_returns_pcc_struct = 1; #endif current_function_returns_struct = 1; } /* Warn if this value is an aggregate type, regardless of which calling convention we are using for it. */ if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr)))) warning ("function returns an aggregate"); current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr))); } /* Make sure all values used by the optimization passes have sane defaults. */ void init_function_for_compilation () { reg_renumber = 0; /* No prologue/epilogue insns yet. */ VARRAY_GROW (prologue, 0); VARRAY_GROW (epilogue, 0); VARRAY_GROW (sibcall_epilogue, 0); } /* Indicate that the current function uses extra args not explicitly mentioned in the argument list in any fashion. */ void mark_varargs () { current_function_varargs = 1; } /* Expand a call to __main at the beginning of a possible main function. */ #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main) #undef HAS_INIT_SECTION #define HAS_INIT_SECTION #endif void expand_main_function () { #if !defined (HAS_INIT_SECTION) emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0, VOIDmode, 0); #endif /* not HAS_INIT_SECTION */ } extern struct obstack permanent_obstack; /* Start the RTL for a new function, and set variables used for emitting RTL. SUBR is the FUNCTION_DECL node. PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with the function's parameters, which must be run at any return statement. */ void expand_function_start (subr, parms_have_cleanups) tree subr; int parms_have_cleanups; { tree tem; rtx last_ptr = NULL_RTX; /* Make sure volatile mem refs aren't considered valid operands of arithmetic insns. */ init_recog_no_volatile (); /* Set this before generating any memory accesses. */ current_function_check_memory_usage = (flag_check_memory_usage && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl)); current_function_instrument_entry_exit = (flag_instrument_function_entry_exit && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr)); current_function_limit_stack = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr)); /* If function gets a static chain arg, store it in the stack frame. Do this first, so it gets the first stack slot offset. */ if (current_function_needs_context) { last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); /* Delay copying static chain if it is not a register to avoid conflicts with regs used for parameters. */ if (! SMALL_REGISTER_CLASSES || GET_CODE (static_chain_incoming_rtx) == REG) emit_move_insn (last_ptr, static_chain_incoming_rtx); } /* If the parameters of this function need cleaning up, get a label for the beginning of the code which executes those cleanups. This must be done before doing anything with return_label. */ if (parms_have_cleanups) cleanup_label = gen_label_rtx (); else cleanup_label = 0; /* Make the label for return statements to jump to, if this machine does not have a one-instruction return and uses an epilogue, or if it returns a structure, or if it has parm cleanups. */ #ifdef HAVE_return if (cleanup_label == 0 && HAVE_return && ! current_function_instrument_entry_exit && ! current_function_returns_pcc_struct && ! (current_function_returns_struct && ! optimize)) return_label = 0; else return_label = gen_label_rtx (); #else return_label = gen_label_rtx (); #endif /* Initialize rtx used to return the value. */ /* Do this before assign_parms so that we copy the struct value address before any library calls that assign parms might generate. */ /* Decide whether to return the value in memory or in a register. */ if (aggregate_value_p (DECL_RESULT (subr))) { /* Returning something that won't go in a register. */ register rtx value_address = 0; #ifdef PCC_STATIC_STRUCT_RETURN if (current_function_returns_pcc_struct) { int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr))); value_address = assemble_static_space (size); } else #endif { /* Expect to be passed the address of a place to store the value. If it is passed as an argument, assign_parms will take care of it. */ if (struct_value_incoming_rtx) { value_address = gen_reg_rtx (Pmode); emit_move_insn (value_address, struct_value_incoming_rtx); } } if (value_address) { DECL_RTL (DECL_RESULT (subr)) = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address); set_mem_attributes (DECL_RTL (DECL_RESULT (subr)), DECL_RESULT (subr), 1); } } else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode) /* If return mode is void, this decl rtl should not be used. */ DECL_RTL (DECL_RESULT (subr)) = 0; else if (parms_have_cleanups || current_function_instrument_entry_exit) { /* If function will end with cleanup code for parms, compute the return values into a pseudo reg, which we will copy into the true return register after the cleanups are done. */ enum machine_mode mode = DECL_MODE (DECL_RESULT (subr)); #ifdef PROMOTE_FUNCTION_RETURN tree type = TREE_TYPE (DECL_RESULT (subr)); int unsignedp = TREE_UNSIGNED (type); mode = promote_mode (type, mode, &unsignedp, 1); #endif DECL_RTL (DECL_RESULT (subr)) = gen_reg_rtx (mode); } else /* Scalar, returned in a register. */ { DECL_RTL (DECL_RESULT (subr)) = hard_function_value (TREE_TYPE (DECL_RESULT (subr)), subr, 1); /* Mark this reg as the function's return value. */ if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG) { REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1; /* Needed because we may need to move this to memory in case it's a named return value whose address is taken. */ DECL_REGISTER (DECL_RESULT (subr)) = 1; } } /* Initialize rtx for parameters and local variables. In some cases this requires emitting insns. */ assign_parms (subr); /* Copy the static chain now if it wasn't a register. The delay is to avoid conflicts with the parameter passing registers. */ if (SMALL_REGISTER_CLASSES && current_function_needs_context) if (GET_CODE (static_chain_incoming_rtx) != REG) emit_move_insn (last_ptr, static_chain_incoming_rtx); /* The following was moved from init_function_start. The move is supposed to make sdb output more accurate. */ /* Indicate the beginning of the function body, as opposed to parm setup. */ emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG); if (GET_CODE (get_last_insn ()) != NOTE) emit_note (NULL_PTR, NOTE_INSN_DELETED); parm_birth_insn = get_last_insn (); context_display = 0; if (current_function_needs_context) { /* Fetch static chain values for containing functions. */ tem = decl_function_context (current_function_decl); /* Copy the static chain pointer into a pseudo. If we have small register classes, copy the value from memory if static_chain_incoming_rtx is a REG. */ if (tem) { /* If the static chain originally came in a register, put it back there, then move it out in the next insn. The reason for this peculiar code is to satisfy function integration. */ if (SMALL_REGISTER_CLASSES && GET_CODE (static_chain_incoming_rtx) == REG) emit_move_insn (static_chain_incoming_rtx, last_ptr); last_ptr = copy_to_reg (static_chain_incoming_rtx); } while (tem) { tree rtlexp = make_node (RTL_EXPR); RTL_EXPR_RTL (rtlexp) = last_ptr; context_display = tree_cons (tem, rtlexp, context_display); tem = decl_function_context (tem); if (tem == 0) break; /* Chain thru stack frames, assuming pointer to next lexical frame is found at the place we always store it. */ #ifdef FRAME_GROWS_DOWNWARD last_ptr = plus_constant (last_ptr, -GET_MODE_SIZE (Pmode)); #endif last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr)); MEM_ALIAS_SET (last_ptr) = get_frame_alias_set (); last_ptr = copy_to_reg (last_ptr); /* If we are not optimizing, ensure that we know that this piece of context is live over the entire function. */ if (! optimize) save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr, save_expr_regs); } } if (current_function_instrument_entry_exit) { rtx fun = DECL_RTL (current_function_decl); if (GET_CODE (fun) == MEM) fun = XEXP (fun, 0); else abort (); emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2, fun, Pmode, expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS, 0, hard_frame_pointer_rtx), Pmode); } /* After the display initializations is where the tail-recursion label should go, if we end up needing one. Ensure we have a NOTE here since some things (like trampolines) get placed before this. */ tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED); /* Evaluate now the sizes of any types declared among the arguments. */ for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem)) { expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, EXPAND_MEMORY_USE_BAD); /* Flush the queue in case this parameter declaration has side-effects. */ emit_queue (); } /* Make sure there is a line number after the function entry setup code. */ force_next_line_note (); } /* Undo the effects of init_dummy_function_start. */ void expand_dummy_function_end () { /* End any sequences that failed to be closed due to syntax errors. */ while (in_sequence_p ()) end_sequence (); /* Outside function body, can't compute type's actual size until next function's body starts. */ free_after_parsing (cfun); free_after_compilation (cfun); free (cfun); cfun = 0; } /* Call DOIT for each hard register used as a return value from the current function. */ void diddle_return_value (doit, arg) void (*doit) PARAMS ((rtx, void *)); void *arg; { rtx outgoing = current_function_return_rtx; int pcc; if (! outgoing) return; pcc = (current_function_returns_struct || current_function_returns_pcc_struct); if ((GET_CODE (outgoing) == REG && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER) || pcc) { tree type = TREE_TYPE (DECL_RESULT (current_function_decl)); /* A PCC-style return returns a pointer to the memory in which the structure is stored. */ if (pcc) type = build_pointer_type (type); #ifdef FUNCTION_OUTGOING_VALUE outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl); #else outgoing = FUNCTION_VALUE (type, current_function_decl); #endif /* If this is a BLKmode structure being returned in registers, then use the mode computed in expand_return. */ if (GET_MODE (outgoing) == BLKmode) PUT_MODE (outgoing, GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl)))); REG_FUNCTION_VALUE_P (outgoing) = 1; } if (GET_CODE (outgoing) == REG) (*doit) (outgoing, arg); else if (GET_CODE (outgoing) == PARALLEL) { int i; for (i = 0; i < XVECLEN (outgoing, 0); i++) { rtx x = XEXP (XVECEXP (outgoing, 0, i), 0); if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER) (*doit) (x, arg); } } } static void do_clobber_return_reg (reg, arg) rtx reg; void *arg ATTRIBUTE_UNUSED; { emit_insn (gen_rtx_CLOBBER (VOIDmode, reg)); } void clobber_return_register () { diddle_return_value (do_clobber_return_reg, NULL); } static void do_use_return_reg (reg, arg) rtx reg; void *arg ATTRIBUTE_UNUSED; { emit_insn (gen_rtx_USE (VOIDmode, reg)); } void use_return_register () { diddle_return_value (do_use_return_reg, NULL); } /* Generate RTL for the end of the current function. FILENAME and LINE are the current position in the source file. It is up to language-specific callers to do cleanups for parameters-- or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */ void expand_function_end (filename, line, end_bindings) const char *filename; int line; int end_bindings; { tree link; #ifdef TRAMPOLINE_TEMPLATE static rtx initial_trampoline; #endif finish_expr_for_function (); #ifdef NON_SAVING_SETJMP /* Don't put any variables in registers if we call setjmp on a machine that fails to restore the registers. */ if (NON_SAVING_SETJMP && current_function_calls_setjmp) { if (DECL_INITIAL (current_function_decl) != error_mark_node) setjmp_protect (DECL_INITIAL (current_function_decl)); setjmp_protect_args (); } #endif /* Save the argument pointer if a save area was made for it. */ if (arg_pointer_save_area) { /* arg_pointer_save_area may not be a valid memory address, so we have to check it and fix it if necessary. */ rtx seq; start_sequence (); emit_move_insn (validize_mem (arg_pointer_save_area), virtual_incoming_args_rtx); seq = gen_sequence (); end_sequence (); emit_insn_before (seq, tail_recursion_reentry); } /* Initialize any trampolines required by this function. */ for (link = trampoline_list; link; link = TREE_CHAIN (link)) { tree function = TREE_PURPOSE (link); rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function); rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link)); #ifdef TRAMPOLINE_TEMPLATE rtx blktramp; #endif rtx seq; #ifdef TRAMPOLINE_TEMPLATE /* First make sure this compilation has a template for initializing trampolines. */ if (initial_trampoline == 0) { end_temporary_allocation (); initial_trampoline = gen_rtx_MEM (BLKmode, assemble_trampoline_template ()); resume_temporary_allocation (); ggc_add_rtx_root (&initial_trampoline, 1); } #endif /* Generate insns to initialize the trampoline. */ start_sequence (); tramp = round_trampoline_addr (XEXP (tramp, 0)); #ifdef TRAMPOLINE_TEMPLATE blktramp = change_address (initial_trampoline, BLKmode, tramp); emit_block_move (blktramp, initial_trampoline, GEN_INT (TRAMPOLINE_SIZE), TRAMPOLINE_ALIGNMENT); #endif INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context); seq = get_insns (); end_sequence (); /* Put those insns at entry to the containing function (this one). */ emit_insns_before (seq, tail_recursion_reentry); } /* If we are doing stack checking and this function makes calls, do a stack probe at the start of the function to ensure we have enough space for another stack frame. */ if (flag_stack_check && ! STACK_CHECK_BUILTIN) { rtx insn, seq; for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == CALL_INSN) { start_sequence (); probe_stack_range (STACK_CHECK_PROTECT, GEN_INT (STACK_CHECK_MAX_FRAME_SIZE)); seq = get_insns (); end_sequence (); emit_insns_before (seq, tail_recursion_reentry); break; } } /* Warn about unused parms if extra warnings were specified. */ /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this warning. WARN_UNUSED_PARAMETER is negative when set by -Wunused. */ if (warn_unused_parameter > 0 || (warn_unused_parameter < 0 && extra_warnings)) { tree decl; for (decl = DECL_ARGUMENTS (current_function_decl); decl; decl = TREE_CHAIN (decl)) if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl)) warning_with_decl (decl, "unused parameter `%s'"); } /* Delete handlers for nonlocal gotos if nothing uses them. */ if (nonlocal_goto_handler_slots != 0 && ! current_function_has_nonlocal_label) delete_handlers (); /* End any sequences that failed to be closed due to syntax errors. */ while (in_sequence_p ()) end_sequence (); /* Outside function body, can't compute type's actual size until next function's body starts. */ immediate_size_expand--; clear_pending_stack_adjust (); do_pending_stack_adjust (); /* Mark the end of the function body. If control reaches this insn, the function can drop through without returning a value. */ emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END); /* Must mark the last line number note in the function, so that the test coverage code can avoid counting the last line twice. This just tells the code to ignore the immediately following line note, since there already exists a copy of this note somewhere above. This line number note is still needed for debugging though, so we can't delete it. */ if (flag_test_coverage) emit_note (NULL_PTR, NOTE_INSN_REPEATED_LINE_NUMBER); /* Output a linenumber for the end of the function. SDB depends on this. */ emit_line_note_force (filename, line); /* Output the label for the actual return from the function, if one is expected. This happens either because a function epilogue is used instead of a return instruction, or because a return was done with a goto in order to run local cleanups, or because of pcc-style structure returning. */ if (return_label) { /* Before the return label, clobber the return registers so that they are not propogated live to the rest of the function. This can only happen with functions that drop through; if there had been a return statement, there would have either been a return rtx, or a jump to the return label. */ clobber_return_register (); emit_label (return_label); } /* C++ uses this. */ if (end_bindings) expand_end_bindings (0, 0, 0); /* Now handle any leftover exception regions that may have been created for the parameters. */ { rtx last = get_last_insn (); rtx label; expand_leftover_cleanups (); /* If there are any catch_clauses remaining, output them now. */ emit_insns (catch_clauses); catch_clauses = catch_clauses_last = NULL_RTX; /* If the above emitted any code, may sure we jump around it. */ if (last != get_last_insn ()) { label = gen_label_rtx (); last = emit_jump_insn_after (gen_jump (label), last); last = emit_barrier_after (last); emit_label (label); } } if (current_function_instrument_entry_exit) { rtx fun = DECL_RTL (current_function_decl); if (GET_CODE (fun) == MEM) fun = XEXP (fun, 0); else abort (); emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2, fun, Pmode, expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS, 0, hard_frame_pointer_rtx), Pmode); } /* If we had calls to alloca, and this machine needs an accurate stack pointer to exit the function, insert some code to save and restore the stack pointer. */ #ifdef EXIT_IGNORE_STACK if (! EXIT_IGNORE_STACK) #endif if (current_function_calls_alloca) { rtx tem = 0; emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn); emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX); } /* If scalar return value was computed in a pseudo-reg, copy that to the hard return register. */ if (DECL_RTL (DECL_RESULT (current_function_decl)) != 0 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG && (REGNO (DECL_RTL (DECL_RESULT (current_function_decl))) >= FIRST_PSEUDO_REGISTER)) { rtx real_decl_result; #ifdef FUNCTION_OUTGOING_VALUE real_decl_result = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)), current_function_decl); #else real_decl_result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (current_function_decl)), current_function_decl); #endif REG_FUNCTION_VALUE_P (real_decl_result) = 1; /* If this is a BLKmode structure being returned in registers, then use the mode computed in expand_return. */ if (GET_MODE (real_decl_result) == BLKmode) PUT_MODE (real_decl_result, GET_MODE (DECL_RTL (DECL_RESULT (current_function_decl)))); emit_move_insn (real_decl_result, DECL_RTL (DECL_RESULT (current_function_decl))); /* The delay slot scheduler assumes that current_function_return_rtx holds the hard register containing the return value, not a temporary pseudo. */ current_function_return_rtx = real_decl_result; } /* If returning a structure, arrange to return the address of the value in a place where debuggers expect to find it. If returning a structure PCC style, the caller also depends on this value. And current_function_returns_pcc_struct is not necessarily set. */ if (current_function_returns_struct || current_function_returns_pcc_struct) { rtx value_address = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0); tree type = TREE_TYPE (DECL_RESULT (current_function_decl)); #ifdef FUNCTION_OUTGOING_VALUE rtx outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type), current_function_decl); #else rtx outgoing = FUNCTION_VALUE (build_pointer_type (type), current_function_decl); #endif /* Mark this as a function return value so integrate will delete the assignment and USE below when inlining this function. */ REG_FUNCTION_VALUE_P (outgoing) = 1; emit_move_insn (outgoing, value_address); } /* ??? This should no longer be necessary since stupid is no longer with us, but there are some parts of the compiler (eg reload_combine, and sh mach_dep_reorg) that still try and compute their own lifetime info instead of using the general framework. */ use_return_register (); /* If this is an implementation of __throw, do what's necessary to communicate between __builtin_eh_return and the epilogue. */ expand_eh_return (); /* Output a return insn if we are using one. Otherwise, let the rtl chain end here, to drop through into the epilogue. */ #ifdef HAVE_return if (HAVE_return) { emit_jump_insn (gen_return ()); emit_barrier (); } #endif /* Fix up any gotos that jumped out to the outermost binding level of the function. Must follow emitting RETURN_LABEL. */ /* If you have any cleanups to do at this point, and they need to create temporary variables, then you will lose. */ expand_fixups (get_insns ()); } /* Extend a vector that records the INSN_UIDs of INSNS (either a sequence or a single insn). */ static void record_insns (insns, vecp) rtx insns; varray_type *vecp; { if (GET_CODE (insns) == SEQUENCE) { int len = XVECLEN (insns, 0); int i = VARRAY_SIZE (*vecp); VARRAY_GROW (*vecp, i + len); while (--len >= 0) { VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len)); ++i; } } else { int i = VARRAY_SIZE (*vecp); VARRAY_GROW (*vecp, i + 1); VARRAY_INT (*vecp, i) = INSN_UID (insns); } } /* Determine how many INSN_UIDs in VEC are part of INSN. */ static int contains (insn, vec) rtx insn; varray_type vec; { register int i, j; if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE) { int count = 0; for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--) for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j) if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j)) count++; return count; } else { for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j) if (INSN_UID (insn) == VARRAY_INT (vec, j)) return 1; } return 0; } int prologue_epilogue_contains (insn) rtx insn; { if (contains (insn, prologue)) return 1; if (contains (insn, epilogue)) return 1; return 0; } int sibcall_epilogue_contains (insn) rtx insn; { if (sibcall_epilogue) return contains (insn, sibcall_epilogue); return 0; } #ifdef HAVE_return /* Insert gen_return at the end of block BB. This also means updating block_for_insn appropriately. */ static void emit_return_into_block (bb, line_note) basic_block bb; rtx line_note; { rtx p, end; p = NEXT_INSN (bb->end); end = emit_jump_insn_after (gen_return (), bb->end); if (line_note) emit_line_note_after (NOTE_SOURCE_FILE (line_note), NOTE_LINE_NUMBER (line_note), bb->end); while (1) { set_block_for_insn (p, bb); if (p == bb->end) break; p = PREV_INSN (p); } bb->end = end; } #endif /* HAVE_return */ #ifdef HAVE_epilogue /* Modify SEQ, a SEQUENCE that is part of the epilogue, to no modifications to the stack pointer. */ static void keep_stack_depressed (seq) rtx seq; { int i; rtx sp_from_reg = 0; int sp_modified_unknown = 0; /* If the epilogue is just a single instruction, it's OK as is */ if (GET_CODE (seq) != SEQUENCE) return; /* Scan all insns in SEQ looking for ones that modified the stack pointer. Record if it modified the stack pointer by copying it from the frame pointer or if it modified it in some other way. Then modify any subsequent stack pointer references to take that into account. We start by only allowing SP to be copied from a register (presumably FP) and then be subsequently referenced. */ for (i = 0; i < XVECLEN (seq, 0); i++) { rtx insn = XVECEXP (seq, 0, i); if (GET_RTX_CLASS (GET_CODE (insn)) != 'i') continue; if (reg_set_p (stack_pointer_rtx, insn)) { rtx set = single_set (insn); /* If SP is set as a side-effect, we can't support this. */ if (set == 0) abort (); if (GET_CODE (SET_SRC (set)) == REG) sp_from_reg = SET_SRC (set); else sp_modified_unknown = 1; /* Don't allow the SP modification to happen. */ PUT_CODE (insn, NOTE); NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (insn) = 0; } else if (reg_referenced_p (stack_pointer_rtx, PATTERN (insn))) { if (sp_modified_unknown) abort (); else if (sp_from_reg != 0) PATTERN (insn) = replace_rtx (PATTERN (insn), stack_pointer_rtx, sp_from_reg); } } } #endif /* Generate the prologue and epilogue RTL if the machine supports it. Thread this into place with notes indicating where the prologue ends and where the epilogue begins. Update the basic block information when possible. */ void thread_prologue_and_epilogue_insns (f) rtx f ATTRIBUTE_UNUSED; { int inserted = 0; edge e; rtx seq; #ifdef HAVE_prologue rtx prologue_end = NULL_RTX; #endif #if defined (HAVE_epilogue) || defined(HAVE_return) rtx epilogue_end = NULL_RTX; #endif #ifdef HAVE_prologue if (HAVE_prologue) { start_sequence (); seq = gen_prologue (); emit_insn (seq); /* Retain a map of the prologue insns. */ if (GET_CODE (seq) != SEQUENCE) seq = get_insns (); record_insns (seq, &prologue); prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END); seq = gen_sequence (); end_sequence (); /* If optimization is off, and perhaps in an empty function, the entry block will have no successors. */ if (ENTRY_BLOCK_PTR->succ) { /* Can't deal with multiple successsors of the entry block. */ if (ENTRY_BLOCK_PTR->succ->succ_next) abort (); insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ); inserted = 1; } else emit_insn_after (seq, f); } #endif /* If the exit block has no non-fake predecessors, we don't need an epilogue. */ for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next) if ((e->flags & EDGE_FAKE) == 0) break; if (e == NULL) goto epilogue_done; #ifdef HAVE_return if (optimize && HAVE_return) { /* If we're allowed to generate a simple return instruction, then by definition we don't need a full epilogue. Examine the block that falls through to EXIT. If it does not contain any code, examine its predecessors and try to emit (conditional) return instructions. */ basic_block last; edge e_next; rtx label; for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next) if (e->flags & EDGE_FALLTHRU) break; if (e == NULL) goto epilogue_done; last = e->src; /* Verify that there are no active instructions in the last block. */ label = last->end; while (label && GET_CODE (label) != CODE_LABEL) { if (active_insn_p (label)) break; label = PREV_INSN (label); } if (last->head == label && GET_CODE (label) == CODE_LABEL) { rtx epilogue_line_note = NULL_RTX; /* Locate the line number associated with the closing brace, if we can find one. */ for (seq = get_last_insn (); seq && ! active_insn_p (seq); seq = PREV_INSN (seq)) if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0) { epilogue_line_note = seq; break; } for (e = last->pred; e; e = e_next) { basic_block bb = e->src; rtx jump; e_next = e->pred_next; if (bb == ENTRY_BLOCK_PTR) continue; jump = bb->end; if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label) continue; /* If we have an unconditional jump, we can replace that with a simple return instruction. */ if (simplejump_p (jump)) { emit_return_into_block (bb, epilogue_line_note); flow_delete_insn (jump); } /* If we have a conditional jump, we can try to replace that with a conditional return instruction. */ else if (condjump_p (jump)) { rtx ret, *loc; ret = SET_SRC (PATTERN (jump)); if (GET_CODE (XEXP (ret, 1)) == LABEL_REF) loc = &XEXP (ret, 1); else loc = &XEXP (ret, 2); ret = gen_rtx_RETURN (VOIDmode); if (! validate_change (jump, loc, ret, 0)) continue; if (JUMP_LABEL (jump)) LABEL_NUSES (JUMP_LABEL (jump))--; /* If this block has only one successor, it both jumps and falls through to the fallthru block, so we can't delete the edge. */ if (bb->succ->succ_next == NULL) continue; } else continue; /* Fix up the CFG for the successful change we just made. */ redirect_edge_succ (e, EXIT_BLOCK_PTR); } /* Emit a return insn for the exit fallthru block. Whether this is still reachable will be determined later. */ emit_barrier_after (last->end); emit_return_into_block (last, epilogue_line_note); epilogue_end = last->end; goto epilogue_done; } } #endif #ifdef HAVE_epilogue if (HAVE_epilogue) { /* Find the edge that falls through to EXIT. Other edges may exist due to RETURN instructions, but those don't need epilogues. There really shouldn't be a mixture -- either all should have been converted or none, however... */ for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next) if (e->flags & EDGE_FALLTHRU) break; if (e == NULL) goto epilogue_done; start_sequence (); epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG); seq = gen_epilogue (); /* If this function returns with the stack depressed, massage the epilogue to actually do that. */ if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl))) keep_stack_depressed (seq); emit_jump_insn (seq); /* Retain a map of the epilogue insns. */ if (GET_CODE (seq) != SEQUENCE) seq = get_insns (); record_insns (seq, &epilogue); seq = gen_sequence (); end_sequence (); insert_insn_on_edge (seq, e); inserted = 1; } #endif epilogue_done: if (inserted) commit_edge_insertions (); #ifdef HAVE_sibcall_epilogue /* Emit sibling epilogues before any sibling call sites. */ for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next) { basic_block bb = e->src; rtx insn = bb->end; rtx i; rtx newinsn; if (GET_CODE (insn) != CALL_INSN || ! SIBLING_CALL_P (insn)) continue; start_sequence (); seq = gen_sibcall_epilogue (); end_sequence (); i = PREV_INSN (insn); newinsn = emit_insn_before (seq, insn); /* Update the UID to basic block map. */ for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i)) set_block_for_insn (i, bb); /* Retain a map of the epilogue insns. Used in life analysis to avoid getting rid of sibcall epilogue insns. */ record_insns (GET_CODE (seq) == SEQUENCE ? seq : newinsn, &sibcall_epilogue); } #endif #ifdef HAVE_prologue if (prologue_end) { rtx insn, prev; /* GDB handles `break f' by setting a breakpoint on the first line note after the prologue. Which means (1) that if there are line number notes before where we inserted the prologue we should move them, and (2) we should generate a note before the end of the first basic block, if there isn't one already there. */ for (insn = prologue_end; insn; insn = prev) { prev = PREV_INSN (insn); if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0) { /* Note that we cannot reorder the first insn in the chain, since rest_of_compilation relies on that remaining constant. */ if (prev == NULL) break; reorder_insns (insn, insn, prologue_end); } } /* Find the last line number note in the first block. */ for (insn = BASIC_BLOCK (0)->end; insn != prologue_end; insn = PREV_INSN (insn)) if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0) break; /* If we didn't find one, make a copy of the first line number we run across. */ if (! insn) { for (insn = next_active_insn (prologue_end); insn; insn = PREV_INSN (insn)) if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0) { emit_line_note_after (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn), prologue_end); break; } } } #endif #ifdef HAVE_epilogue if (epilogue_end) { rtx insn, next; /* Similarly, move any line notes that appear after the epilogue. There is no need, however, to be quite so anal about the existance of such a note. */ for (insn = epilogue_end; insn; insn = next) { next = NEXT_INSN (insn); if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0) reorder_insns (insn, insn, PREV_INSN (epilogue_end)); } } #endif } /* Reposition the prologue-end and epilogue-begin notes after instruction scheduling and delayed branch scheduling. */ void reposition_prologue_and_epilogue_notes (f) rtx f ATTRIBUTE_UNUSED; { #if defined (HAVE_prologue) || defined (HAVE_epilogue) int len; if ((len = VARRAY_SIZE (prologue)) > 0) { register rtx insn, note = 0; /* Scan from the beginning until we reach the last prologue insn. We apparently can't depend on basic_block_{head,end} after reorg has run. */ for (insn = f; len && insn; insn = NEXT_INSN (insn)) { if (GET_CODE (insn) == NOTE) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END) note = insn; } else if ((len -= contains (insn, prologue)) == 0) { rtx next; /* Find the prologue-end note if we haven't already, and move it to just after the last prologue insn. */ if (note == 0) { for (note = insn; (note = NEXT_INSN (note));) if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END) break; } next = NEXT_INSN (note); /* Whether or not we can depend on BLOCK_HEAD, attempt to keep it up-to-date. */ if (BLOCK_HEAD (0) == note) BLOCK_HEAD (0) = next; remove_insn (note); add_insn_after (note, insn); } } } if ((len = VARRAY_SIZE (epilogue)) > 0) { register rtx insn, note = 0; /* Scan from the end until we reach the first epilogue insn. We apparently can't depend on basic_block_{head,end} after reorg has run. */ for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn)) { if (GET_CODE (insn) == NOTE) { if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG) note = insn; } else if ((len -= contains (insn, epilogue)) == 0) { /* Find the epilogue-begin note if we haven't already, and move it to just before the first epilogue insn. */ if (note == 0) { for (note = insn; (note = PREV_INSN (note));) if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG) break; } /* Whether or not we can depend on BLOCK_HEAD, attempt to keep it up-to-date. */ if (n_basic_blocks && BLOCK_HEAD (n_basic_blocks-1) == insn) BLOCK_HEAD (n_basic_blocks-1) = note; remove_insn (note); add_insn_before (note, insn); } } } #endif /* HAVE_prologue or HAVE_epilogue */ } /* Mark T for GC. */ static void mark_temp_slot (t) struct temp_slot *t; { while (t) { ggc_mark_rtx (t->slot); ggc_mark_rtx (t->address); ggc_mark_tree (t->rtl_expr); t = t->next; } } /* Mark P for GC. */ static void mark_function_status (p) struct function *p; { int i; rtx *r; if (p == 0) return; ggc_mark_rtx (p->arg_offset_rtx); if (p->x_parm_reg_stack_loc) for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc; i > 0; --i, ++r) ggc_mark_rtx (*r); ggc_mark_rtx (p->return_rtx); ggc_mark_rtx (p->x_cleanup_label); ggc_mark_rtx (p->x_return_label); ggc_mark_rtx (p->x_save_expr_regs); ggc_mark_rtx (p->x_stack_slot_list); ggc_mark_rtx (p->x_parm_birth_insn); ggc_mark_rtx (p->x_tail_recursion_label); ggc_mark_rtx (p->x_tail_recursion_reentry); ggc_mark_rtx (p->internal_arg_pointer); ggc_mark_rtx (p->x_arg_pointer_save_area); ggc_mark_tree (p->x_rtl_expr_chain); ggc_mark_rtx (p->x_last_parm_insn); ggc_mark_tree (p->x_context_display); ggc_mark_tree (p->x_trampoline_list); ggc_mark_rtx (p->epilogue_delay_list); mark_temp_slot (p->x_temp_slots); { struct var_refs_queue *q = p->fixup_var_refs_queue; while (q) { ggc_mark_rtx (q->modified); q = q->next; } } ggc_mark_rtx (p->x_nonlocal_goto_handler_slots); ggc_mark_rtx (p->x_nonlocal_goto_handler_labels); ggc_mark_rtx (p->x_nonlocal_goto_stack_level); ggc_mark_tree (p->x_nonlocal_labels); } /* Mark the function chain ARG (which is really a struct function **) for GC. */ static void mark_function_chain (arg) void *arg; { struct function *f = *(struct function **) arg; for (; f; f = f->next_global) { ggc_mark_tree (f->decl); mark_function_status (f); mark_eh_status (f->eh); mark_stmt_status (f->stmt); mark_expr_status (f->expr); mark_emit_status (f->emit); mark_varasm_status (f->varasm); if (mark_machine_status) (*mark_machine_status) (f); if (mark_lang_status) (*mark_lang_status) (f); if (f->original_arg_vector) ggc_mark_rtvec ((rtvec) f->original_arg_vector); if (f->original_decl_initial) ggc_mark_tree (f->original_decl_initial); } } /* Called once, at initialization, to initialize function.c. */ void init_function_once () { ggc_add_root (&all_functions, 1, sizeof all_functions, mark_function_chain); VARRAY_INT_INIT (prologue, 0, "prologue"); VARRAY_INT_INIT (epilogue, 0, "epilogue"); VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue"); }