aboutsummaryrefslogtreecommitdiff
path: root/gcc/fortran/f95-lang.c
blob: 9d0bf446babbec3eddc6a32659207133d3560483 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
/* gfortran backend interface
   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
   Free Software Foundation, Inc.
   Contributed by Paul Brook.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* f95-lang.c-- GCC backend interface stuff */

/* declare required prototypes: */

#include "config.h"
#include "system.h"
#include "ansidecl.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "gimple.h"
#include "flags.h"
#include "langhooks.h"
#include "langhooks-def.h"
#include "timevar.h"
#include "tm.h"
#include "function.h"
#include "ggc.h"
#include "toplev.h"
#include "target.h"
#include "debug.h"
#include "diagnostic.h"
#include "tree-dump.h"
#include "cgraph.h"
#include "gfortran.h"
#include "cpp.h"
#include "trans.h"
#include "trans-types.h"
#include "trans-const.h"

/* Language-dependent contents of an identifier.  */

struct GTY(())
lang_identifier {
  struct tree_identifier common;
};

/* The resulting tree type.  */

union GTY((desc ("TREE_CODE (&%h.generic) == IDENTIFIER_NODE"),
     chain_next ("(union lang_tree_node *)TREE_CHAIN (&%h.generic)")))

lang_tree_node {
  union tree_node GTY((tag ("0"),
		       desc ("tree_node_structure (&%h)"))) generic;
  struct lang_identifier GTY((tag ("1"))) identifier;
};

/* Save and restore the variables in this file and elsewhere
   that keep track of the progress of compilation of the current function.
   Used for nested functions.  */

struct GTY(())
language_function {
  /* struct gfc_language_function base; */
  struct binding_level *binding_level;
};

/* We don't have a lex/yacc lexer/parser, but toplev expects these to
   exist anyway.  */
void yyerror (const char *str);
int yylex (void);

static void gfc_init_decl_processing (void);
static void gfc_init_builtin_functions (void);

/* Each front end provides its own.  */
static bool gfc_init (void);
static void gfc_finish (void);
static void gfc_write_global_declarations (void);
static void gfc_print_identifier (FILE *, tree, int);
void do_function_end (void);
int global_bindings_p (void);
static void clear_binding_stack (void);
static void gfc_be_parse_file (int);
static alias_set_type gfc_get_alias_set (tree);
static void gfc_init_ts (void);

#undef LANG_HOOKS_NAME
#undef LANG_HOOKS_INIT
#undef LANG_HOOKS_FINISH
#undef LANG_HOOKS_WRITE_GLOBALS
#undef LANG_HOOKS_INIT_OPTIONS
#undef LANG_HOOKS_HANDLE_OPTION
#undef LANG_HOOKS_POST_OPTIONS
#undef LANG_HOOKS_PRINT_IDENTIFIER
#undef LANG_HOOKS_PARSE_FILE
#undef LANG_HOOKS_MARK_ADDRESSABLE
#undef LANG_HOOKS_TYPE_FOR_MODE
#undef LANG_HOOKS_TYPE_FOR_SIZE
#undef LANG_HOOKS_GET_ALIAS_SET
#undef LANG_HOOKS_INIT_TS
#undef LANG_HOOKS_OMP_PRIVATIZE_BY_REFERENCE
#undef LANG_HOOKS_OMP_PREDETERMINED_SHARING
#undef LANG_HOOKS_OMP_REPORT_DECL
#undef LANG_HOOKS_OMP_CLAUSE_DEFAULT_CTOR
#undef LANG_HOOKS_OMP_CLAUSE_COPY_CTOR
#undef LANG_HOOKS_OMP_CLAUSE_ASSIGN_OP
#undef LANG_HOOKS_OMP_CLAUSE_DTOR
#undef LANG_HOOKS_OMP_DISREGARD_VALUE_EXPR
#undef LANG_HOOKS_OMP_PRIVATE_DEBUG_CLAUSE
#undef LANG_HOOKS_OMP_PRIVATE_OUTER_REF
#undef LANG_HOOKS_OMP_FIRSTPRIVATIZE_TYPE_SIZES
#undef LANG_HOOKS_BUILTIN_FUNCTION
#undef LANG_HOOKS_GET_ARRAY_DESCR_INFO

/* Define lang hooks.  */
#define LANG_HOOKS_NAME                 "GNU Fortran"
#define LANG_HOOKS_INIT                 gfc_init
#define LANG_HOOKS_FINISH               gfc_finish
#define LANG_HOOKS_WRITE_GLOBALS	gfc_write_global_declarations
#define LANG_HOOKS_INIT_OPTIONS         gfc_init_options
#define LANG_HOOKS_HANDLE_OPTION        gfc_handle_option
#define LANG_HOOKS_POST_OPTIONS		gfc_post_options
#define LANG_HOOKS_PRINT_IDENTIFIER     gfc_print_identifier
#define LANG_HOOKS_PARSE_FILE           gfc_be_parse_file
#define LANG_HOOKS_TYPE_FOR_MODE	gfc_type_for_mode
#define LANG_HOOKS_TYPE_FOR_SIZE	gfc_type_for_size
#define LANG_HOOKS_GET_ALIAS_SET	gfc_get_alias_set
#define LANG_HOOKS_INIT_TS		gfc_init_ts
#define LANG_HOOKS_OMP_PRIVATIZE_BY_REFERENCE	gfc_omp_privatize_by_reference
#define LANG_HOOKS_OMP_PREDETERMINED_SHARING	gfc_omp_predetermined_sharing
#define LANG_HOOKS_OMP_REPORT_DECL		gfc_omp_report_decl
#define LANG_HOOKS_OMP_CLAUSE_DEFAULT_CTOR	gfc_omp_clause_default_ctor
#define LANG_HOOKS_OMP_CLAUSE_COPY_CTOR		gfc_omp_clause_copy_ctor
#define LANG_HOOKS_OMP_CLAUSE_ASSIGN_OP		gfc_omp_clause_assign_op
#define LANG_HOOKS_OMP_CLAUSE_DTOR		gfc_omp_clause_dtor
#define LANG_HOOKS_OMP_DISREGARD_VALUE_EXPR	gfc_omp_disregard_value_expr
#define LANG_HOOKS_OMP_PRIVATE_DEBUG_CLAUSE	gfc_omp_private_debug_clause
#define LANG_HOOKS_OMP_PRIVATE_OUTER_REF	gfc_omp_private_outer_ref
#define LANG_HOOKS_OMP_FIRSTPRIVATIZE_TYPE_SIZES \
  gfc_omp_firstprivatize_type_sizes
#define LANG_HOOKS_BUILTIN_FUNCTION          gfc_builtin_function
#define LANG_HOOKS_GET_ARRAY_DESCR_INFO	     gfc_get_array_descr_info

struct lang_hooks lang_hooks = LANG_HOOKS_INITIALIZER;

#define NULL_BINDING_LEVEL (struct binding_level *) NULL

/* A chain of binding_level structures awaiting reuse.  */

static GTY(()) struct binding_level *free_binding_level;

/* The elements of `ridpointers' are identifier nodes
   for the reserved type names and storage classes.
   It is indexed by a RID_... value.  */
tree *ridpointers = NULL;

/* True means we've initialized exception handling.  */
bool gfc_eh_initialized_p;


/* Prepare expr to be an argument of a TRUTH_NOT_EXPR,
   or validate its data type for an `if' or `while' statement or ?..: exp.

   This preparation consists of taking the ordinary
   representation of an expression expr and producing a valid tree
   boolean expression describing whether expr is nonzero.  We could
   simply always do build_binary_op (NE_EXPR, expr, boolean_false_node, 1),
   but we optimize comparisons, &&, ||, and !.

   The resulting type should always be `boolean_type_node'.
   This is much simpler than the corresponding C version because we have a
   distinct boolean type.  */

tree
gfc_truthvalue_conversion (tree expr)
{
  switch (TREE_CODE (TREE_TYPE (expr)))
    {
    case BOOLEAN_TYPE:
      if (TREE_TYPE (expr) == boolean_type_node)
	return expr;
      else if (COMPARISON_CLASS_P (expr))
	{
	  TREE_TYPE (expr) = boolean_type_node;
	  return expr;
	}
      else if (TREE_CODE (expr) == NOP_EXPR)
        return fold_build1 (NOP_EXPR,
			    boolean_type_node, TREE_OPERAND (expr, 0));
      else
        return fold_build1 (NOP_EXPR, boolean_type_node, expr);

    case INTEGER_TYPE:
      if (TREE_CODE (expr) == INTEGER_CST)
	return integer_zerop (expr) ? boolean_false_node : boolean_true_node;
      else
        return fold_build2 (NE_EXPR, boolean_type_node, expr,
			    build_int_cst (TREE_TYPE (expr), 0));

    default:
      internal_error ("Unexpected type in truthvalue_conversion");
    }
}


static void
gfc_create_decls (void)
{
  /* GCC builtins.  */
  gfc_init_builtin_functions ();

  /* Runtime/IO library functions.  */
  gfc_build_builtin_function_decls ();

  gfc_init_constants ();
}


static void
gfc_be_parse_file (int set_yydebug ATTRIBUTE_UNUSED)
{
  int errors;
  int warnings;

  gfc_create_decls ();
  gfc_parse_file ();
  gfc_generate_constructors ();

  /* Tell the frontend about any errors.  */
  gfc_get_errors (&warnings, &errors);
  errorcount += errors;
  warningcount += warnings;

  clear_binding_stack ();
}


/* Initialize everything.  */

static bool
gfc_init (void)
{
  if (!gfc_cpp_enabled ())
    {
      linemap_add (line_table, LC_ENTER, false, gfc_source_file, 1);
      linemap_add (line_table, LC_RENAME, false, "<built-in>", 0);
    }
  else
    gfc_cpp_init_0 ();

  gfc_init_decl_processing ();
  gfc_static_ctors = NULL_TREE;

  if (gfc_cpp_enabled ())
    gfc_cpp_init ();

  gfc_init_1 ();

  if (gfc_new_file () != SUCCESS)
    fatal_error ("can't open input file: %s", gfc_source_file);

  return true;
}


static void
gfc_finish (void)
{
  gfc_cpp_done ();
  gfc_done_1 ();
  gfc_release_include_path ();
  return;
}

/* ??? This is something of a hack.

   Emulated tls lowering needs to see all TLS variables before we call
   cgraph_finalize_compilation_unit.  The C/C++ front ends manage this
   by calling decl_rest_of_compilation on each global and static variable
   as they are seen.  The Fortran front end waits until this hook.

   A Correct solution is for cgraph_finalize_compilation_unit not to be
   called during the WRITE_GLOBALS langhook, and have that hook only do what
   its name suggests and write out globals.  But the C++ and Java front ends
   have (unspecified) problems with aliases that gets in the way.  It has
   been suggested that these problems would be solved by completing the
   conversion to cgraph-based aliases.  */

static void
gfc_write_global_declarations (void)
{
  tree decl;

  /* Finalize all of the globals.  */
  for (decl = getdecls(); decl ; decl = DECL_CHAIN (decl))
    rest_of_decl_compilation (decl, true, true);

  write_global_declarations ();
}


static void
gfc_print_identifier (FILE * file ATTRIBUTE_UNUSED,
		      tree node ATTRIBUTE_UNUSED,
		      int indent ATTRIBUTE_UNUSED)
{
  return;
}


/* These functions and variables deal with binding contours.  We only
   need these functions for the list of PARM_DECLs, but we leave the
   functions more general; these are a simplified version of the
   functions from GNAT.  */

/* For each binding contour we allocate a binding_level structure which
   records the entities defined or declared in that contour.  Contours
   include:

        the global one
        one for each subprogram definition
        one for each compound statement (declare block)

   Binding contours are used to create GCC tree BLOCK nodes.  */

struct GTY(())
binding_level {
  /* A chain of ..._DECL nodes for all variables, constants, functions,
     parameters and type declarations.  These ..._DECL nodes are chained
     through the DECL_CHAIN field. Note that these ..._DECL nodes are stored
     in the reverse of the order supplied to be compatible with the
     back-end.  */
  tree names;
  /* For each level (except the global one), a chain of BLOCK nodes for all
     the levels that were entered and exited one level down from this one.  */
  tree blocks;
  /* The binding level containing this one (the enclosing binding level).  */
  struct binding_level *level_chain;
};

/* The binding level currently in effect.  */
static GTY(()) struct binding_level *current_binding_level = NULL;

/* The outermost binding level. This binding level is created when the
   compiler is started and it will exist through the entire compilation.  */
static GTY(()) struct binding_level *global_binding_level;

/* Binding level structures are initialized by copying this one.  */
static struct binding_level clear_binding_level = { NULL, NULL, NULL };


/* Return nonzero if we are currently in the global binding level.  */

int
global_bindings_p (void)
{
  return current_binding_level == global_binding_level ? -1 : 0;
}

tree
getdecls (void)
{
  return current_binding_level->names;
}

/* Enter a new binding level. The input parameter is ignored, but has to be
   specified for back-end compatibility.  */

void
pushlevel (int ignore ATTRIBUTE_UNUSED)
{
  struct binding_level *newlevel = ggc_alloc_binding_level ();

  *newlevel = clear_binding_level;

  /* Add this level to the front of the chain (stack) of levels that are
     active.  */
  newlevel->level_chain = current_binding_level;
  current_binding_level = newlevel;
}

/* Exit a binding level.
   Pop the level off, and restore the state of the identifier-decl mappings
   that were in effect when this level was entered.

   If KEEP is nonzero, this level had explicit declarations, so
   and create a "block" (a BLOCK node) for the level
   to record its declarations and subblocks for symbol table output.

   If FUNCTIONBODY is nonzero, this level is the body of a function,
   so create a block as if KEEP were set and also clear out all
   label names.

   If REVERSE is nonzero, reverse the order of decls before putting
   them into the BLOCK.  */

tree
poplevel (int keep, int reverse, int functionbody)
{
  /* Points to a BLOCK tree node. This is the BLOCK node constructed for the
     binding level that we are about to exit and which is returned by this
     routine.  */
  tree block_node = NULL_TREE;
  tree decl_chain;
  tree subblock_chain = current_binding_level->blocks;
  tree subblock_node;

  /* Reverse the list of XXXX_DECL nodes if desired.  Note that the ..._DECL
     nodes chained through the `names' field of current_binding_level are in
     reverse order except for PARM_DECL node, which are explicitly stored in
     the right order.  */
  decl_chain = (reverse) ? nreverse (current_binding_level->names)
			 : current_binding_level->names;

  /* If there were any declarations in the current binding level, or if this
     binding level is a function body, or if there are any nested blocks then
     create a BLOCK node to record them for the life of this function.  */
  if (keep || functionbody)
    block_node = build_block (keep ? decl_chain : 0, subblock_chain, 0, 0);

  /* Record the BLOCK node just built as the subblock its enclosing scope.  */
  for (subblock_node = subblock_chain; subblock_node;
       subblock_node = TREE_CHAIN (subblock_node))
    BLOCK_SUPERCONTEXT (subblock_node) = block_node;

  /* Clear out the meanings of the local variables of this level.  */

  for (subblock_node = decl_chain; subblock_node;
       subblock_node = DECL_CHAIN (subblock_node))
    if (DECL_NAME (subblock_node) != 0)
      /* If the identifier was used or addressed via a local extern decl,
         don't forget that fact.  */
      if (DECL_EXTERNAL (subblock_node))
	{
	  if (TREE_USED (subblock_node))
	    TREE_USED (DECL_NAME (subblock_node)) = 1;
	  if (TREE_ADDRESSABLE (subblock_node))
	    TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (subblock_node)) = 1;
	}

  /* Pop the current level.  */
  current_binding_level = current_binding_level->level_chain;

  if (functionbody)
    /* This is the top level block of a function. */
    DECL_INITIAL (current_function_decl) = block_node;
  else if (current_binding_level == global_binding_level)
    /* When using gfc_start_block/gfc_finish_block from middle-end hooks,
       don't add newly created BLOCKs as subblocks of global_binding_level.  */
    ;
  else if (block_node)
    {
      current_binding_level->blocks
	= chainon (current_binding_level->blocks, block_node);
    }

  /* If we did not make a block for the level just exited, any blocks made for
     inner levels (since they cannot be recorded as subblocks in that level)
     must be carried forward so they will later become subblocks of something
     else.  */
  else if (subblock_chain)
    current_binding_level->blocks
      = chainon (current_binding_level->blocks, subblock_chain);
  if (block_node)
    TREE_USED (block_node) = 1;

  return block_node;
}


/* Records a ..._DECL node DECL as belonging to the current lexical scope.
   Returns the ..._DECL node.  */

tree
pushdecl (tree decl)
{
  /* External objects aren't nested, other objects may be.  */
  if ((DECL_EXTERNAL (decl)) || (decl == current_function_decl))
    DECL_CONTEXT (decl) = 0;
  else
    DECL_CONTEXT (decl) = current_function_decl;

  /* Put the declaration on the list.  The list of declarations is in reverse
     order. The list will be reversed later if necessary.  This needs to be
     this way for compatibility with the back-end.  */

  DECL_CHAIN (decl) = current_binding_level->names;
  current_binding_level->names = decl;

  /* For the declaration of a type, set its name if it is not already set.  */

  if (TREE_CODE (decl) == TYPE_DECL && TYPE_NAME (TREE_TYPE (decl)) == 0)
    {
      if (DECL_SOURCE_LINE (decl) == 0)
	TYPE_NAME (TREE_TYPE (decl)) = decl;
      else
	TYPE_NAME (TREE_TYPE (decl)) = DECL_NAME (decl);
    }

  return decl;
}


/* Like pushdecl, only it places X in GLOBAL_BINDING_LEVEL.  */

tree
pushdecl_top_level (tree x)
{
  tree t;
  struct binding_level *b = current_binding_level;

  current_binding_level = global_binding_level;
  t = pushdecl (x);
  current_binding_level = b;
  return t;
}


/* Clear the binding stack.  */
static void
clear_binding_stack (void)
{
  while (!global_bindings_p ())
    poplevel (0, 0, 0);
}


#ifndef CHAR_TYPE_SIZE
#define CHAR_TYPE_SIZE BITS_PER_UNIT
#endif

#ifndef INT_TYPE_SIZE
#define INT_TYPE_SIZE BITS_PER_WORD
#endif

#undef SIZE_TYPE
#define SIZE_TYPE "long unsigned int"

/* Create tree nodes for the basic scalar types of Fortran 95,
   and some nodes representing standard constants (0, 1, (void *) 0).
   Initialize the global binding level.
   Make definitions for built-in primitive functions.  */
static void
gfc_init_decl_processing (void)
{
  current_function_decl = NULL;
  current_binding_level = NULL_BINDING_LEVEL;
  free_binding_level = NULL_BINDING_LEVEL;

  /* Make the binding_level structure for global names. We move all
     variables that are in a COMMON block to this binding level.  */
  pushlevel (0);
  global_binding_level = current_binding_level;

  /* Build common tree nodes. char_type_node is unsigned because we
     only use it for actual characters, not for INTEGER(1). Also, we
     want double_type_node to actually have double precision.  */
  build_common_tree_nodes (false);
  /* x86_64 mingw32 has a sizetype of "unsigned long long", most other hosts
     have a sizetype of "unsigned long". Therefore choose the correct size
     in mostly target independent way.  */
  if (TYPE_MODE (long_unsigned_type_node) == ptr_mode)
    set_sizetype (long_unsigned_type_node);
  else if (TYPE_MODE (long_long_unsigned_type_node) == ptr_mode)
    set_sizetype (long_long_unsigned_type_node);
  else
    set_sizetype (long_unsigned_type_node);
  build_common_tree_nodes_2 (0);
  void_list_node = build_tree_list (NULL_TREE, void_type_node);

  /* Set up F95 type nodes.  */
  gfc_init_kinds ();
  gfc_init_types ();
}


/* Return the typed-based alias set for T, which may be an expression
   or a type.  Return -1 if we don't do anything special.  */

static alias_set_type
gfc_get_alias_set (tree t)
{
  tree u;

  /* Permit type-punning when accessing an EQUIVALENCEd variable or
     mixed type entry master's return value.  */
  for (u = t; handled_component_p (u); u = TREE_OPERAND (u, 0))
    if (TREE_CODE (u) == COMPONENT_REF
	&& TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
      return 0;

  return -1;
}


/* press the big red button - garbage (ggc) collection is on */

int ggc_p = 1;

/* Builtin function initialization.  */

tree
gfc_builtin_function (tree decl)
{
  make_decl_rtl (decl);
  pushdecl (decl);
  return decl;
}


static void
gfc_define_builtin (const char *name,
		    tree type,
		    int code,
		    const char *library_name,
		    bool const_p)
{
  tree decl;

  decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
			       library_name, NULL_TREE);
  if (const_p)
    TREE_READONLY (decl) = 1;
  TREE_NOTHROW (decl) = 1;

  built_in_decls[code] = decl;
  implicit_built_in_decls[code] = decl;
}


#define DO_DEFINE_MATH_BUILTIN(code, name, argtype, tbase) \
    gfc_define_builtin ("__builtin_" name "l", tbase##longdouble[argtype], \
                       BUILT_IN_ ## code ## L, name "l", true); \
    gfc_define_builtin ("__builtin_" name, tbase##double[argtype], \
			BUILT_IN_ ## code, name, true); \
    gfc_define_builtin ("__builtin_" name "f", tbase##float[argtype], \
			BUILT_IN_ ## code ## F, name "f", true);

#define DEFINE_MATH_BUILTIN(code, name, argtype) \
    DO_DEFINE_MATH_BUILTIN (code, name, argtype, mfunc_)

#define DEFINE_MATH_BUILTIN_C(code, name, argtype) \
    DO_DEFINE_MATH_BUILTIN (code, name, argtype, mfunc_) \
    DO_DEFINE_MATH_BUILTIN (C##code, "c" name, argtype, mfunc_c)


/* Create function types for builtin functions.  */

static void
build_builtin_fntypes (tree *fntype, tree type)
{
  /* type (*) (type) */
  fntype[0] = build_function_type_list (type, type, NULL_TREE);
  /* type (*) (type, type) */
  fntype[1] = build_function_type_list (type, type, type, NULL_TREE);
  /* type (*) (type, int) */
  fntype[2] = build_function_type_list (type,
                                        type, integer_type_node, NULL_TREE);
  /* type (*) (void) */
  fntype[3] = build_function_type_list (type, NULL_TREE);
  /* type (*) (&int, type) */
  fntype[4] = build_function_type_list (type,
                                        build_pointer_type (integer_type_node),
                                        type,
                                        NULL_TREE);
  /* type (*) (int, type) */
  fntype[5] = build_function_type_list (type,
                                        integer_type_node, type, NULL_TREE);
}


static tree
builtin_type_for_size (int size, bool unsignedp)
{
  tree type = lang_hooks.types.type_for_size (size, unsignedp);
  return type ? type : error_mark_node;
}

/* Initialization of builtin function nodes.  */

static void
gfc_init_builtin_functions (void)
{
  enum builtin_type
  {
#define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME,
#define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME,
#define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME,
#define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME,
#define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
#define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
#define DEF_FUNCTION_TYPE_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) NAME,
#define DEF_FUNCTION_TYPE_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6) NAME,
#define DEF_FUNCTION_TYPE_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7) NAME,
#define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME,
#define DEF_POINTER_TYPE(NAME, TYPE) NAME,
#include "types.def"
#undef DEF_PRIMITIVE_TYPE
#undef DEF_FUNCTION_TYPE_0
#undef DEF_FUNCTION_TYPE_1
#undef DEF_FUNCTION_TYPE_2
#undef DEF_FUNCTION_TYPE_3
#undef DEF_FUNCTION_TYPE_4
#undef DEF_FUNCTION_TYPE_5
#undef DEF_FUNCTION_TYPE_6
#undef DEF_FUNCTION_TYPE_7
#undef DEF_FUNCTION_TYPE_VAR_0
#undef DEF_POINTER_TYPE
    BT_LAST
  };
  typedef enum builtin_type builtin_type;
  enum
  {
    /* So far we need just these 2 attribute types.  */
    ATTR_NOTHROW_LIST,
    ATTR_CONST_NOTHROW_LIST
  };

  tree mfunc_float[6];
  tree mfunc_double[6];
  tree mfunc_longdouble[6];
  tree mfunc_cfloat[6];
  tree mfunc_cdouble[6];
  tree mfunc_clongdouble[6];
  tree func_cfloat_float, func_float_cfloat;
  tree func_cdouble_double, func_double_cdouble;
  tree func_clongdouble_longdouble, func_longdouble_clongdouble;
  tree func_float_floatp_floatp;
  tree func_double_doublep_doublep;
  tree func_longdouble_longdoublep_longdoublep;
  tree ftype, ptype;
  tree builtin_types[(int) BT_LAST + 1];

  build_builtin_fntypes (mfunc_float, float_type_node);
  build_builtin_fntypes (mfunc_double, double_type_node);
  build_builtin_fntypes (mfunc_longdouble, long_double_type_node);
  build_builtin_fntypes (mfunc_cfloat, complex_float_type_node);
  build_builtin_fntypes (mfunc_cdouble, complex_double_type_node);
  build_builtin_fntypes (mfunc_clongdouble, complex_long_double_type_node);

  func_cfloat_float = build_function_type_list (float_type_node,
                                                complex_float_type_node,
                                                NULL_TREE);

  func_float_cfloat = build_function_type_list (complex_float_type_node,
                                                float_type_node, NULL_TREE);

  func_cdouble_double = build_function_type_list (double_type_node,
                                                  complex_double_type_node,
                                                  NULL_TREE);

  func_double_cdouble = build_function_type_list (complex_double_type_node,
                                                  double_type_node, NULL_TREE);

  func_clongdouble_longdouble =
    build_function_type_list (long_double_type_node,
                              complex_long_double_type_node, NULL_TREE);

  func_longdouble_clongdouble =
    build_function_type_list (complex_long_double_type_node,
                              long_double_type_node, NULL_TREE);

  ptype = build_pointer_type (float_type_node);
  func_float_floatp_floatp =
    build_function_type_list (void_type_node, ptype, ptype, NULL_TREE);

  ptype = build_pointer_type (double_type_node);
  func_double_doublep_doublep =
    build_function_type_list (void_type_node, ptype, ptype, NULL_TREE);

  ptype = build_pointer_type (long_double_type_node);
  func_longdouble_longdoublep_longdoublep =
    build_function_type_list (void_type_node, ptype, ptype, NULL_TREE);

/* Non-math builtins are defined manually, so they're not included here.  */
#define OTHER_BUILTIN(ID,NAME,TYPE)

#include "mathbuiltins.def"

  gfc_define_builtin ("__builtin_roundl", mfunc_longdouble[0], 
		      BUILT_IN_ROUNDL, "roundl", true);
  gfc_define_builtin ("__builtin_round", mfunc_double[0], 
		      BUILT_IN_ROUND, "round", true);
  gfc_define_builtin ("__builtin_roundf", mfunc_float[0], 
		      BUILT_IN_ROUNDF, "roundf", true);

  gfc_define_builtin ("__builtin_truncl", mfunc_longdouble[0],
		      BUILT_IN_TRUNCL, "truncl", true);
  gfc_define_builtin ("__builtin_trunc", mfunc_double[0],
                      BUILT_IN_TRUNC, "trunc", true);
  gfc_define_builtin ("__builtin_truncf", mfunc_float[0],
                      BUILT_IN_TRUNCF, "truncf", true);

  gfc_define_builtin ("__builtin_cabsl", func_clongdouble_longdouble, 
		      BUILT_IN_CABSL, "cabsl", true);
  gfc_define_builtin ("__builtin_cabs", func_cdouble_double, 
		      BUILT_IN_CABS, "cabs", true);
  gfc_define_builtin ("__builtin_cabsf", func_cfloat_float, 
		      BUILT_IN_CABSF, "cabsf", true);
 
  gfc_define_builtin ("__builtin_copysignl", mfunc_longdouble[1], 
		      BUILT_IN_COPYSIGNL, "copysignl", true);
  gfc_define_builtin ("__builtin_copysign", mfunc_double[1], 
		      BUILT_IN_COPYSIGN, "copysign", true);
  gfc_define_builtin ("__builtin_copysignf", mfunc_float[1], 
		      BUILT_IN_COPYSIGNF, "copysignf", true);
 
  gfc_define_builtin ("__builtin_nextafterl", mfunc_longdouble[1], 
		      BUILT_IN_NEXTAFTERL, "nextafterl", true);
  gfc_define_builtin ("__builtin_nextafter", mfunc_double[1], 
		      BUILT_IN_NEXTAFTER, "nextafter", true);
  gfc_define_builtin ("__builtin_nextafterf", mfunc_float[1], 
		      BUILT_IN_NEXTAFTERF, "nextafterf", true);
 
  gfc_define_builtin ("__builtin_frexpl", mfunc_longdouble[4], 
		      BUILT_IN_FREXPL, "frexpl", false);
  gfc_define_builtin ("__builtin_frexp", mfunc_double[4], 
		      BUILT_IN_FREXP, "frexp", false);
  gfc_define_builtin ("__builtin_frexpf", mfunc_float[4], 
		      BUILT_IN_FREXPF, "frexpf", false);
 
  gfc_define_builtin ("__builtin_fabsl", mfunc_longdouble[0], 
		      BUILT_IN_FABSL, "fabsl", true);
  gfc_define_builtin ("__builtin_fabs", mfunc_double[0], 
		      BUILT_IN_FABS, "fabs", true);
  gfc_define_builtin ("__builtin_fabsf", mfunc_float[0], 
		      BUILT_IN_FABSF, "fabsf", true);
 
  gfc_define_builtin ("__builtin_scalbnl", mfunc_longdouble[5], 
		      BUILT_IN_SCALBNL, "scalbnl", true);
  gfc_define_builtin ("__builtin_scalbn", mfunc_double[5], 
		      BUILT_IN_SCALBN, "scalbn", true);
  gfc_define_builtin ("__builtin_scalbnf", mfunc_float[5], 
		      BUILT_IN_SCALBNF, "scalbnf", true);
 
  gfc_define_builtin ("__builtin_fmodl", mfunc_longdouble[1], 
		      BUILT_IN_FMODL, "fmodl", true);
  gfc_define_builtin ("__builtin_fmod", mfunc_double[1], 
		      BUILT_IN_FMOD, "fmod", true);
  gfc_define_builtin ("__builtin_fmodf", mfunc_float[1], 
		      BUILT_IN_FMODF, "fmodf", true);

  gfc_define_builtin ("__builtin_huge_vall", mfunc_longdouble[3], 
		      BUILT_IN_HUGE_VALL, "__builtin_huge_vall", true);
  gfc_define_builtin ("__builtin_huge_val", mfunc_double[3], 
		      BUILT_IN_HUGE_VAL, "__builtin_huge_val", true);
  gfc_define_builtin ("__builtin_huge_valf", mfunc_float[3], 
		      BUILT_IN_HUGE_VALF, "__builtin_huge_valf", true);

  /* lround{f,,l} and llround{f,,l} */
  ftype = build_function_type_list (long_integer_type_node,
                                    float_type_node, NULL_TREE); 
  gfc_define_builtin ("__builtin_lroundf", ftype, BUILT_IN_LROUNDF,
		      "lroundf", true);
  ftype = build_function_type_list (long_long_integer_type_node,
                                    float_type_node, NULL_TREE); 
  gfc_define_builtin ("__builtin_llroundf", ftype, BUILT_IN_LLROUNDF,
		      "llroundf", true);

  ftype = build_function_type_list (long_integer_type_node,
                                    double_type_node, NULL_TREE); 
  gfc_define_builtin ("__builtin_lround", ftype, BUILT_IN_LROUND,
		      "lround", true);
  ftype = build_function_type_list (long_long_integer_type_node,
                                    double_type_node, NULL_TREE); 
  gfc_define_builtin ("__builtin_llround", ftype, BUILT_IN_LLROUND,
		      "llround", true);

  ftype = build_function_type_list (long_integer_type_node,
                                    long_double_type_node, NULL_TREE); 
  gfc_define_builtin ("__builtin_lroundl", ftype, BUILT_IN_LROUNDL,
		      "lroundl", true);
  ftype = build_function_type_list (long_long_integer_type_node,
                                    long_double_type_node, NULL_TREE); 
  gfc_define_builtin ("__builtin_llroundl", ftype, BUILT_IN_LLROUNDL,
		      "llroundl", true);

  /* These are used to implement the ** operator.  */
  gfc_define_builtin ("__builtin_powl", mfunc_longdouble[1], 
		      BUILT_IN_POWL, "powl", true);
  gfc_define_builtin ("__builtin_pow", mfunc_double[1], 
		      BUILT_IN_POW, "pow", true);
  gfc_define_builtin ("__builtin_powf", mfunc_float[1], 
		      BUILT_IN_POWF, "powf", true);
  gfc_define_builtin ("__builtin_cpowl", mfunc_clongdouble[1], 
		      BUILT_IN_CPOWL, "cpowl", true);
  gfc_define_builtin ("__builtin_cpow", mfunc_cdouble[1], 
		      BUILT_IN_CPOW, "cpow", true);
  gfc_define_builtin ("__builtin_cpowf", mfunc_cfloat[1], 
		      BUILT_IN_CPOWF, "cpowf", true);
  gfc_define_builtin ("__builtin_powil", mfunc_longdouble[2], 
		      BUILT_IN_POWIL, "powil", true);
  gfc_define_builtin ("__builtin_powi", mfunc_double[2], 
		      BUILT_IN_POWI, "powi", true);
  gfc_define_builtin ("__builtin_powif", mfunc_float[2], 
		      BUILT_IN_POWIF, "powif", true);


  if (TARGET_C99_FUNCTIONS)
    {
      gfc_define_builtin ("__builtin_cbrtl", mfunc_longdouble[0],
			  BUILT_IN_CBRTL, "cbrtl", true);
      gfc_define_builtin ("__builtin_cbrt", mfunc_double[0],
			  BUILT_IN_CBRT, "cbrt", true);
      gfc_define_builtin ("__builtin_cbrtf", mfunc_float[0],
			  BUILT_IN_CBRTF, "cbrtf", true);
      gfc_define_builtin ("__builtin_cexpil", func_longdouble_clongdouble, 
		          BUILT_IN_CEXPIL, "cexpil", true);
      gfc_define_builtin ("__builtin_cexpi", func_double_cdouble,
		          BUILT_IN_CEXPI, "cexpi", true);
      gfc_define_builtin ("__builtin_cexpif", func_float_cfloat,
		          BUILT_IN_CEXPIF, "cexpif", true);
    }

  if (TARGET_HAS_SINCOS)
    {
      gfc_define_builtin ("__builtin_sincosl",
			  func_longdouble_longdoublep_longdoublep,
		          BUILT_IN_SINCOSL, "sincosl", false);
      gfc_define_builtin ("__builtin_sincos", func_double_doublep_doublep,
		          BUILT_IN_SINCOS, "sincos", false);
      gfc_define_builtin ("__builtin_sincosf", func_float_floatp_floatp,
		          BUILT_IN_SINCOSF, "sincosf", false);
    }

  /* For LEADZ / TRAILZ.  */
  ftype = build_function_type_list (integer_type_node,
                                    unsigned_type_node, NULL_TREE);
  gfc_define_builtin ("__builtin_clz", ftype, BUILT_IN_CLZ,
		      "__builtin_clz", true);
  gfc_define_builtin ("__builtin_ctz", ftype, BUILT_IN_CTZ,
		      "__builtin_ctz", true);

  ftype = build_function_type_list (integer_type_node,
                                    long_unsigned_type_node, NULL_TREE);
  gfc_define_builtin ("__builtin_clzl", ftype, BUILT_IN_CLZL,
		      "__builtin_clzl", true);
  gfc_define_builtin ("__builtin_ctzl", ftype, BUILT_IN_CTZL,
		      "__builtin_ctzl", true);

  ftype = build_function_type_list (integer_type_node,
                                    long_long_unsigned_type_node, NULL_TREE);
  gfc_define_builtin ("__builtin_clzll", ftype, BUILT_IN_CLZLL,
		      "__builtin_clzll", true);
  gfc_define_builtin ("__builtin_ctzll", ftype, BUILT_IN_CTZLL,
		      "__builtin_ctzll", true);

  /* Other builtin functions we use.  */

  ftype = build_function_type_list (long_integer_type_node,
                                    long_integer_type_node,
                                    long_integer_type_node, NULL_TREE);
  gfc_define_builtin ("__builtin_expect", ftype, BUILT_IN_EXPECT,
		      "__builtin_expect", true);

  ftype = build_function_type_list (void_type_node,
                                    pvoid_type_node, NULL_TREE);
  gfc_define_builtin ("__builtin_free", ftype, BUILT_IN_FREE,
		      "free", false);

  ftype = build_function_type_list (pvoid_type_node,
                                    size_type_node, NULL_TREE);
  gfc_define_builtin ("__builtin_malloc", ftype, BUILT_IN_MALLOC,
		      "malloc", false);
  DECL_IS_MALLOC (built_in_decls[BUILT_IN_MALLOC]) = 1;

  ftype = build_function_type_list (pvoid_type_node,
                                    size_type_node, pvoid_type_node,
                                    NULL_TREE);
  gfc_define_builtin ("__builtin_realloc", ftype, BUILT_IN_REALLOC,
		      "realloc", false);

  ftype = build_function_type_list (integer_type_node,
                                    void_type_node, NULL_TREE);
  gfc_define_builtin ("__builtin_isnan", ftype, BUILT_IN_ISNAN,
		      "__builtin_isnan", true);

#define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \
  builtin_types[(int) ENUM] = VALUE;
#define DEF_FUNCTION_TYPE_0(ENUM, RETURN)                       \
  builtin_types[(int) ENUM]                                     \
    = build_function_type_list (builtin_types[(int) RETURN],	\
                                NULL_TREE);
#define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1)				\
  builtin_types[(int) ENUM]						\
    = build_function_type_list (builtin_types[(int) RETURN],            \
                                builtin_types[(int) ARG1],              \
                                NULL_TREE);
#define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2)           \
  builtin_types[(int) ENUM]                                     \
    = build_function_type_list (builtin_types[(int) RETURN],    \
                                builtin_types[(int) ARG1],      \
                                builtin_types[(int) ARG2],      \
                                NULL_TREE);
#define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3)             \
  builtin_types[(int) ENUM]                                             \
    = build_function_type_list (builtin_types[(int) RETURN],            \
                                builtin_types[(int) ARG1],              \
                                builtin_types[(int) ARG2],              \
                                builtin_types[(int) ARG3],              \
                                NULL_TREE);
#define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4)	\
  builtin_types[(int) ENUM]						\
    = build_function_type_list (builtin_types[(int) RETURN],            \
                                builtin_types[(int) ARG1],              \
                                builtin_types[(int) ARG2],              \
                                builtin_types[(int) ARG3],		\
                                builtin_types[(int) ARG4],              \
                                NULL_TREE);
#define DEF_FUNCTION_TYPE_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5)	\
  builtin_types[(int) ENUM]						\
    = build_function_type_list (builtin_types[(int) RETURN],            \
                                builtin_types[(int) ARG1],              \
                                builtin_types[(int) ARG2],              \
                                builtin_types[(int) ARG3],		\
                                builtin_types[(int) ARG4],              \
                                builtin_types[(int) ARG5],              \
                                NULL_TREE);
#define DEF_FUNCTION_TYPE_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			    ARG6)					\
  builtin_types[(int) ENUM]						\
    = build_function_type_list (builtin_types[(int) RETURN],            \
                                builtin_types[(int) ARG1],              \
                                builtin_types[(int) ARG2],              \
                                builtin_types[(int) ARG3],		\
                                builtin_types[(int) ARG4],		\
                                builtin_types[(int) ARG5],              \
                                builtin_types[(int) ARG6],              \
                                NULL_TREE);
#define DEF_FUNCTION_TYPE_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			    ARG6, ARG7)					\
  builtin_types[(int) ENUM]						\
    = build_function_type_list (builtin_types[(int) RETURN],            \
                                builtin_types[(int) ARG1],              \
                                builtin_types[(int) ARG2],              \
                                builtin_types[(int) ARG3],		\
                                builtin_types[(int) ARG4],		\
                                builtin_types[(int) ARG5],              \
                                builtin_types[(int) ARG6],              \
                                builtin_types[(int) ARG7],              \
                                NULL_TREE);
#define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN)				\
  builtin_types[(int) ENUM]						\
    = build_varargs_function_type_list (builtin_types[(int) RETURN],    \
                                        NULL_TREE);
#define DEF_POINTER_TYPE(ENUM, TYPE)			\
  builtin_types[(int) ENUM]				\
    = build_pointer_type (builtin_types[(int) TYPE]);
#include "types.def"
#undef DEF_PRIMITIVE_TYPE
#undef DEF_FUNCTION_TYPE_1
#undef DEF_FUNCTION_TYPE_2
#undef DEF_FUNCTION_TYPE_3
#undef DEF_FUNCTION_TYPE_4
#undef DEF_FUNCTION_TYPE_5
#undef DEF_FUNCTION_TYPE_6
#undef DEF_FUNCTION_TYPE_VAR_0
#undef DEF_POINTER_TYPE
  builtin_types[(int) BT_LAST] = NULL_TREE;

  /* Initialize synchronization builtins.  */
#undef DEF_SYNC_BUILTIN
#define DEF_SYNC_BUILTIN(code, name, type, attr) \
    gfc_define_builtin (name, builtin_types[type], code, name, \
			attr == ATTR_CONST_NOTHROW_LIST);
#include "../sync-builtins.def"
#undef DEF_SYNC_BUILTIN

  if (gfc_option.flag_openmp || flag_tree_parallelize_loops)
    {
#undef DEF_GOMP_BUILTIN
#define DEF_GOMP_BUILTIN(code, name, type, attr) \
      gfc_define_builtin ("__builtin_" name, builtin_types[type], \
			  code, name, attr == ATTR_CONST_NOTHROW_LIST);
#include "../omp-builtins.def"
#undef DEF_GOMP_BUILTIN
    }

  gfc_define_builtin ("__builtin_trap", builtin_types[BT_FN_VOID],
		      BUILT_IN_TRAP, NULL, false);
  TREE_THIS_VOLATILE (built_in_decls[BUILT_IN_TRAP]) = 1;

  gfc_define_builtin ("__emutls_get_address",
		      builtin_types[BT_FN_PTR_PTR], BUILT_IN_EMUTLS_GET_ADDRESS,
		      "__emutls_get_address", true);
  gfc_define_builtin ("__emutls_register_common",
		      builtin_types[BT_FN_VOID_PTR_WORD_WORD_PTR],
		      BUILT_IN_EMUTLS_REGISTER_COMMON,
		      "__emutls_register_common", false);

  build_common_builtin_nodes ();
  targetm.init_builtins ();
}

#undef DEFINE_MATH_BUILTIN_C
#undef DEFINE_MATH_BUILTIN

static void
gfc_init_ts (void)
{
  tree_contains_struct[NAMESPACE_DECL][TS_DECL_NON_COMMON] = 1;
  tree_contains_struct[NAMESPACE_DECL][TS_DECL_WITH_VIS] = 1;
  tree_contains_struct[NAMESPACE_DECL][TS_DECL_WRTL] = 1;
  tree_contains_struct[NAMESPACE_DECL][TS_DECL_COMMON] = 1;
  tree_contains_struct[NAMESPACE_DECL][TS_DECL_MINIMAL] = 1;
}

void
gfc_maybe_initialize_eh (void)
{
  if (!flag_exceptions || gfc_eh_initialized_p)
    return;

  gfc_eh_initialized_p = true;
  using_eh_for_cleanups ();
}


#include "gt-fortran-f95-lang.h"
#include "gtype-fortran.h"
an> Nameless interfaces: Nameless interfaces create symbols with explicit interfaces within the current namespace. They are otherwise unlinked. Generic interfaces: The generic name points to a linked list of symbols. Each symbol has an explicit interface. Each explicit interface has its own namespace containing the arguments. Module procedures are symbols in which the interface is added later when the module procedure is parsed. User operators: User-defined operators are stored in a their own set of symtrees separate from regular symbols. The symtrees point to gfc_user_op structures which in turn head up a list of relevant interfaces. Extended intrinsics and assignment: The head of these interface lists are stored in the containing namespace. Implicit interfaces: An implicit interface is represented as a singly linked list of formal argument list structures that don't point to any symbol nodes -- they just contain types. When a subprogram is defined, the program unit's name points to an interface as usual, but the link to the namespace is NULL and the formal argument list points to symbols within the same namespace as the program unit name. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "gfortran.h" #include "match.h" #include "arith.h" /* The current_interface structure holds information about the interface currently being parsed. This structure is saved and restored during recursive interfaces. */ gfc_interface_info current_interface; /* Free a singly linked list of gfc_interface structures. */ void gfc_free_interface (gfc_interface *intr) { gfc_interface *next; for (; intr; intr = next) { next = intr->next; free (intr); } } /* Change the operators unary plus and minus into binary plus and minus respectively, leaving the rest unchanged. */ static gfc_intrinsic_op fold_unary_intrinsic (gfc_intrinsic_op op) { switch (op) { case INTRINSIC_UPLUS: op = INTRINSIC_PLUS; break; case INTRINSIC_UMINUS: op = INTRINSIC_MINUS; break; default: break; } return op; } /* Match a generic specification. Depending on which type of interface is found, the 'name' or 'op' pointers may be set. This subroutine doesn't return MATCH_NO. */ match gfc_match_generic_spec (interface_type *type, char *name, gfc_intrinsic_op *op) { char buffer[GFC_MAX_SYMBOL_LEN + 1]; match m; gfc_intrinsic_op i; if (gfc_match (" assignment ( = )") == MATCH_YES) { *type = INTERFACE_INTRINSIC_OP; *op = INTRINSIC_ASSIGN; return MATCH_YES; } if (gfc_match (" operator ( %o )", &i) == MATCH_YES) { /* Operator i/f */ *type = INTERFACE_INTRINSIC_OP; *op = fold_unary_intrinsic (i); return MATCH_YES; } *op = INTRINSIC_NONE; if (gfc_match (" operator ( ") == MATCH_YES) { m = gfc_match_defined_op_name (buffer, 1); if (m == MATCH_NO) goto syntax; if (m != MATCH_YES) return MATCH_ERROR; m = gfc_match_char (')'); if (m == MATCH_NO) goto syntax; if (m != MATCH_YES) return MATCH_ERROR; strcpy (name, buffer); *type = INTERFACE_USER_OP; return MATCH_YES; } if (gfc_match_name (buffer) == MATCH_YES) { strcpy (name, buffer); *type = INTERFACE_GENERIC; return MATCH_YES; } *type = INTERFACE_NAMELESS; return MATCH_YES; syntax: gfc_error ("Syntax error in generic specification at %C"); return MATCH_ERROR; } /* Match one of the five F95 forms of an interface statement. The matcher for the abstract interface follows. */ match gfc_match_interface (void) { char name[GFC_MAX_SYMBOL_LEN + 1]; interface_type type; gfc_symbol *sym; gfc_intrinsic_op op; match m; m = gfc_match_space (); if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR) return MATCH_ERROR; /* If we're not looking at the end of the statement now, or if this is not a nameless interface but we did not see a space, punt. */ if (gfc_match_eos () != MATCH_YES || (type != INTERFACE_NAMELESS && m != MATCH_YES)) { gfc_error ("Syntax error: Trailing garbage in INTERFACE statement " "at %C"); return MATCH_ERROR; } current_interface.type = type; switch (type) { case INTERFACE_GENERIC: if (gfc_get_symbol (name, NULL, &sym)) return MATCH_ERROR; if (!sym->attr.generic && gfc_add_generic (&sym->attr, sym->name, NULL) == FAILURE) return MATCH_ERROR; if (sym->attr.dummy) { gfc_error ("Dummy procedure '%s' at %C cannot have a " "generic interface", sym->name); return MATCH_ERROR; } current_interface.sym = gfc_new_block = sym; break; case INTERFACE_USER_OP: current_interface.uop = gfc_get_uop (name); break; case INTERFACE_INTRINSIC_OP: current_interface.op = op; break; case INTERFACE_NAMELESS: case INTERFACE_ABSTRACT: break; } return MATCH_YES; } /* Match a F2003 abstract interface. */ match gfc_match_abstract_interface (void) { match m; if (gfc_notify_std (GFC_STD_F2003, "ABSTRACT INTERFACE at %C") == FAILURE) return MATCH_ERROR; m = gfc_match_eos (); if (m != MATCH_YES) { gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C"); return MATCH_ERROR; } current_interface.type = INTERFACE_ABSTRACT; return m; } /* Match the different sort of generic-specs that can be present after the END INTERFACE itself. */ match gfc_match_end_interface (void) { char name[GFC_MAX_SYMBOL_LEN + 1]; interface_type type; gfc_intrinsic_op op; match m; m = gfc_match_space (); if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR) return MATCH_ERROR; /* If we're not looking at the end of the statement now, or if this is not a nameless interface but we did not see a space, punt. */ if (gfc_match_eos () != MATCH_YES || (type != INTERFACE_NAMELESS && m != MATCH_YES)) { gfc_error ("Syntax error: Trailing garbage in END INTERFACE " "statement at %C"); return MATCH_ERROR; } m = MATCH_YES; switch (current_interface.type) { case INTERFACE_NAMELESS: case INTERFACE_ABSTRACT: if (type != INTERFACE_NAMELESS) { gfc_error ("Expected a nameless interface at %C"); m = MATCH_ERROR; } break; case INTERFACE_INTRINSIC_OP: if (type != current_interface.type || op != current_interface.op) { if (current_interface.op == INTRINSIC_ASSIGN) { m = MATCH_ERROR; gfc_error ("Expected 'END INTERFACE ASSIGNMENT (=)' at %C"); } else { const char *s1, *s2; s1 = gfc_op2string (current_interface.op); s2 = gfc_op2string (op); /* The following if-statements are used to enforce C1202 from F2003. */ if ((strcmp(s1, "==") == 0 && strcmp(s2, ".eq.") == 0) || (strcmp(s1, ".eq.") == 0 && strcmp(s2, "==") == 0)) break; if ((strcmp(s1, "/=") == 0 && strcmp(s2, ".ne.") == 0) || (strcmp(s1, ".ne.") == 0 && strcmp(s2, "/=") == 0)) break; if ((strcmp(s1, "<=") == 0 && strcmp(s2, ".le.") == 0) || (strcmp(s1, ".le.") == 0 && strcmp(s2, "<=") == 0)) break; if ((strcmp(s1, "<") == 0 && strcmp(s2, ".lt.") == 0) || (strcmp(s1, ".lt.") == 0 && strcmp(s2, "<") == 0)) break; if ((strcmp(s1, ">=") == 0 && strcmp(s2, ".ge.") == 0) || (strcmp(s1, ".ge.") == 0 && strcmp(s2, ">=") == 0)) break; if ((strcmp(s1, ">") == 0 && strcmp(s2, ".gt.") == 0) || (strcmp(s1, ".gt.") == 0 && strcmp(s2, ">") == 0)) break; m = MATCH_ERROR; gfc_error ("Expecting 'END INTERFACE OPERATOR (%s)' at %C, " "but got %s", s1, s2); } } break; case INTERFACE_USER_OP: /* Comparing the symbol node names is OK because only use-associated symbols can be renamed. */ if (type != current_interface.type || strcmp (current_interface.uop->name, name) != 0) { gfc_error ("Expecting 'END INTERFACE OPERATOR (.%s.)' at %C", current_interface.uop->name); m = MATCH_ERROR; } break; case INTERFACE_GENERIC: if (type != current_interface.type || strcmp (current_interface.sym->name, name) != 0) { gfc_error ("Expecting 'END INTERFACE %s' at %C", current_interface.sym->name); m = MATCH_ERROR; } break; } return m; } /* Compare two derived types using the criteria in 4.4.2 of the standard, recursing through gfc_compare_types for the components. */ int gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2) { gfc_component *dt1, *dt2; if (derived1 == derived2) return 1; gcc_assert (derived1 && derived2); /* Special case for comparing derived types across namespaces. If the true names and module names are the same and the module name is nonnull, then they are equal. */ if (strcmp (derived1->name, derived2->name) == 0 && derived1->module != NULL && derived2->module != NULL && strcmp (derived1->module, derived2->module) == 0) return 1; /* Compare type via the rules of the standard. Both types must have the SEQUENCE or BIND(C) attribute to be equal. */ if (strcmp (derived1->name, derived2->name)) return 0; if (derived1->component_access == ACCESS_PRIVATE || derived2->component_access == ACCESS_PRIVATE) return 0; if (!(derived1->attr.sequence && derived2->attr.sequence) && !(derived1->attr.is_bind_c && derived2->attr.is_bind_c)) return 0; dt1 = derived1->components; dt2 = derived2->components; /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a simple test can speed things up. Otherwise, lots of things have to match. */ for (;;) { if (strcmp (dt1->name, dt2->name) != 0) return 0; if (dt1->attr.access != dt2->attr.access) return 0; if (dt1->attr.pointer != dt2->attr.pointer) return 0; if (dt1->attr.dimension != dt2->attr.dimension) return 0; if (dt1->attr.allocatable != dt2->attr.allocatable) return 0; if (dt1->attr.dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0) return 0; /* Make sure that link lists do not put this function into an endless recursive loop! */ if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived) && !(dt2->ts.type == BT_DERIVED && derived2 == dt2->ts.u.derived) && gfc_compare_types (&dt1->ts, &dt2->ts) == 0) return 0; else if ((dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived) && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)) return 0; else if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived) && (dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)) return 0; dt1 = dt1->next; dt2 = dt2->next; if (dt1 == NULL && dt2 == NULL) break; if (dt1 == NULL || dt2 == NULL) return 0; } return 1; } /* Compare two typespecs, recursively if necessary. */ int gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2) { /* See if one of the typespecs is a BT_VOID, which is what is being used to allow the funcs like c_f_pointer to accept any pointer type. TODO: Possibly should narrow this to just the one typespec coming in that is for the formal arg, but oh well. */ if (ts1->type == BT_VOID || ts2->type == BT_VOID) return 1; if (ts1->type != ts2->type && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS) || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS))) return 0; if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS) return (ts1->kind == ts2->kind); /* Compare derived types. */ if (gfc_type_compatible (ts1, ts2)) return 1; return gfc_compare_derived_types (ts1->u.derived ,ts2->u.derived); } /* Given two symbols that are formal arguments, compare their ranks and types. Returns nonzero if they have the same rank and type, zero otherwise. */ static int compare_type_rank (gfc_symbol *s1, gfc_symbol *s2) { gfc_array_spec *as1, *as2; int r1, r2; as1 = (s1->ts.type == BT_CLASS) ? CLASS_DATA (s1)->as : s1->as; as2 = (s2->ts.type == BT_CLASS) ? CLASS_DATA (s2)->as : s2->as; r1 = as1 ? as1->rank : 0; r2 = as2 ? as2->rank : 0; if (r1 != r2 && (!as1 || as1->type != AS_ASSUMED_RANK) && (!as2 || as2->type != AS_ASSUMED_RANK)) return 0; /* Ranks differ. */ return gfc_compare_types (&s1->ts, &s2->ts) || s1->ts.type == BT_ASSUMED || s2->ts.type == BT_ASSUMED; } /* Given two symbols that are formal arguments, compare their types and rank and their formal interfaces if they are both dummy procedures. Returns nonzero if the same, zero if different. */ static int compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2) { if (s1 == NULL || s2 == NULL) return s1 == s2 ? 1 : 0; if (s1 == s2) return 1; if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE) return compare_type_rank (s1, s2); if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE) return 0; /* At this point, both symbols are procedures. It can happen that external procedures are compared, where one is identified by usage to be a function or subroutine but the other is not. Check TKR nonetheless for these cases. */ if (s1->attr.function == 0 && s1->attr.subroutine == 0) return s1->attr.external == 1 ? compare_type_rank (s1, s2) : 0; if (s2->attr.function == 0 && s2->attr.subroutine == 0) return s2->attr.external == 1 ? compare_type_rank (s1, s2) : 0; /* Now the type of procedure has been identified. */ if (s1->attr.function != s2->attr.function || s1->attr.subroutine != s2->attr.subroutine) return 0; if (s1->attr.function && compare_type_rank (s1, s2) == 0) return 0; /* Originally, gfortran recursed here to check the interfaces of passed procedures. This is explicitly not required by the standard. */ return 1; } /* Given a formal argument list and a keyword name, search the list for that keyword. Returns the correct symbol node if found, NULL if not found. */ static gfc_symbol * find_keyword_arg (const char *name, gfc_formal_arglist *f) { for (; f; f = f->next) if (strcmp (f->sym->name, name) == 0) return f->sym; return NULL; } /******** Interface checking subroutines **********/ /* Given an operator interface and the operator, make sure that all interfaces for that operator are legal. */ bool gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op, locus opwhere) { gfc_formal_arglist *formal; sym_intent i1, i2; bt t1, t2; int args, r1, r2, k1, k2; gcc_assert (sym); args = 0; t1 = t2 = BT_UNKNOWN; i1 = i2 = INTENT_UNKNOWN; r1 = r2 = -1; k1 = k2 = -1; for (formal = sym->formal; formal; formal = formal->next) { gfc_symbol *fsym = formal->sym; if (fsym == NULL) { gfc_error ("Alternate return cannot appear in operator " "interface at %L", &sym->declared_at); return false; } if (args == 0) { t1 = fsym->ts.type; i1 = fsym->attr.intent; r1 = (fsym->as != NULL) ? fsym->as->rank : 0; k1 = fsym->ts.kind; } if (args == 1) { t2 = fsym->ts.type; i2 = fsym->attr.intent; r2 = (fsym->as != NULL) ? fsym->as->rank : 0; k2 = fsym->ts.kind; } args++; } /* Only +, - and .not. can be unary operators. .not. cannot be a binary operator. */ if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS && op != INTRINSIC_MINUS && op != INTRINSIC_NOT) || (args == 2 && op == INTRINSIC_NOT)) { if (op == INTRINSIC_ASSIGN) gfc_error ("Assignment operator interface at %L must have " "two arguments", &sym->declared_at); else gfc_error ("Operator interface at %L has the wrong number of arguments", &sym->declared_at); return false; } /* Check that intrinsics are mapped to functions, except INTRINSIC_ASSIGN which should map to a subroutine. */ if (op == INTRINSIC_ASSIGN) { if (!sym->attr.subroutine) { gfc_error ("Assignment operator interface at %L must be " "a SUBROUTINE", &sym->declared_at); return false; } /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments): - First argument an array with different rank than second, - First argument is a scalar and second an array, - Types and kinds do not conform, or - First argument is of derived type. */ if (sym->formal->sym->ts.type != BT_DERIVED && sym->formal->sym->ts.type != BT_CLASS && (r2 == 0 || r1 == r2) && (sym->formal->sym->ts.type == sym->formal->next->sym->ts.type || (gfc_numeric_ts (&sym->formal->sym->ts) && gfc_numeric_ts (&sym->formal->next->sym->ts)))) { gfc_error ("Assignment operator interface at %L must not redefine " "an INTRINSIC type assignment", &sym->declared_at); return false; } } else { if (!sym->attr.function) { gfc_error ("Intrinsic operator interface at %L must be a FUNCTION", &sym->declared_at); return false; } } /* Check intents on operator interfaces. */ if (op == INTRINSIC_ASSIGN) { if (i1 != INTENT_OUT && i1 != INTENT_INOUT) { gfc_error ("First argument of defined assignment at %L must be " "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at); return false; } if (i2 != INTENT_IN) { gfc_error ("Second argument of defined assignment at %L must be " "INTENT(IN)", &sym->declared_at); return false; } } else { if (i1 != INTENT_IN) { gfc_error ("First argument of operator interface at %L must be " "INTENT(IN)", &sym->declared_at); return false; } if (args == 2 && i2 != INTENT_IN) { gfc_error ("Second argument of operator interface at %L must be " "INTENT(IN)", &sym->declared_at); return false; } } /* From now on, all we have to do is check that the operator definition doesn't conflict with an intrinsic operator. The rules for this game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards, as well as 12.3.2.1.1 of Fortran 2003: "If the operator is an intrinsic-operator (R310), the number of function arguments shall be consistent with the intrinsic uses of that operator, and the types, kind type parameters, or ranks of the dummy arguments shall differ from those required for the intrinsic operation (7.1.2)." */ #define IS_NUMERIC_TYPE(t) \ ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX) /* Unary ops are easy, do them first. */ if (op == INTRINSIC_NOT) { if (t1 == BT_LOGICAL) goto bad_repl; else return true; } if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS)) { if (IS_NUMERIC_TYPE (t1)) goto bad_repl; else return true; } /* Character intrinsic operators have same character kind, thus operator definitions with operands of different character kinds are always safe. */ if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2) return true; /* Intrinsic operators always perform on arguments of same rank, so different ranks is also always safe. (rank == 0) is an exception to that, because all intrinsic operators are elemental. */ if (r1 != r2 && r1 != 0 && r2 != 0) return true; switch (op) { case INTRINSIC_EQ: case INTRINSIC_EQ_OS: case INTRINSIC_NE: case INTRINSIC_NE_OS: if (t1 == BT_CHARACTER && t2 == BT_CHARACTER) goto bad_repl; /* Fall through. */ case INTRINSIC_PLUS: case INTRINSIC_MINUS: case INTRINSIC_TIMES: case INTRINSIC_DIVIDE: case INTRINSIC_POWER: if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2)) goto bad_repl; break; case INTRINSIC_GT: case INTRINSIC_GT_OS: case INTRINSIC_GE: case INTRINSIC_GE_OS: case INTRINSIC_LT: case INTRINSIC_LT_OS: case INTRINSIC_LE: case INTRINSIC_LE_OS: if (t1 == BT_CHARACTER && t2 == BT_CHARACTER) goto bad_repl; if ((t1 == BT_INTEGER || t1 == BT_REAL) && (t2 == BT_INTEGER || t2 == BT_REAL)) goto bad_repl; break; case INTRINSIC_CONCAT: if (t1 == BT_CHARACTER && t2 == BT_CHARACTER) goto bad_repl; break; case INTRINSIC_AND: case INTRINSIC_OR: case INTRINSIC_EQV: case INTRINSIC_NEQV: if (t1 == BT_LOGICAL && t2 == BT_LOGICAL) goto bad_repl; break; default: break; } return true; #undef IS_NUMERIC_TYPE bad_repl: gfc_error ("Operator interface at %L conflicts with intrinsic interface", &opwhere); return false; } /* Given a pair of formal argument lists, we see if the two lists can be distinguished by counting the number of nonoptional arguments of a given type/rank in f1 and seeing if there are less then that number of those arguments in f2 (including optional arguments). Since this test is asymmetric, it has to be called twice to make it symmetric. Returns nonzero if the argument lists are incompatible by this test. This subroutine implements rule 1 of section F03:16.2.3. 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */ static int count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2, const char *p1, const char *p2) { int rc, ac1, ac2, i, j, k, n1; gfc_formal_arglist *f; typedef struct { int flag; gfc_symbol *sym; } arginfo; arginfo *arg; n1 = 0; for (f = f1; f; f = f->next) n1++; /* Build an array of integers that gives the same integer to arguments of the same type/rank. */ arg = XCNEWVEC (arginfo, n1); f = f1; for (i = 0; i < n1; i++, f = f->next) { arg[i].flag = -1; arg[i].sym = f->sym; } k = 0; for (i = 0; i < n1; i++) { if (arg[i].flag != -1) continue; if (arg[i].sym && (arg[i].sym->attr.optional || (p1 && strcmp (arg[i].sym->name, p1) == 0))) continue; /* Skip OPTIONAL and PASS arguments. */ arg[i].flag = k; /* Find other non-optional, non-pass arguments of the same type/rank. */ for (j = i + 1; j < n1; j++) if ((arg[j].sym == NULL || !(arg[j].sym->attr.optional || (p1 && strcmp (arg[j].sym->name, p1) == 0))) && (compare_type_rank_if (arg[i].sym, arg[j].sym) || compare_type_rank_if (arg[j].sym, arg[i].sym))) arg[j].flag = k; k++; } /* Now loop over each distinct type found in f1. */ k = 0; rc = 0; for (i = 0; i < n1; i++) { if (arg[i].flag != k) continue; ac1 = 1; for (j = i + 1; j < n1; j++) if (arg[j].flag == k) ac1++; /* Count the number of non-pass arguments in f2 with that type, including those that are optional. */ ac2 = 0; for (f = f2; f; f = f->next) if ((!p2 || strcmp (f->sym->name, p2) != 0) && (compare_type_rank_if (arg[i].sym, f->sym) || compare_type_rank_if (f->sym, arg[i].sym))) ac2++; if (ac1 > ac2) { rc = 1; break; } k++; } free (arg); return rc; } /* Perform the correspondence test in rule (3) of F08:C1215. Returns zero if no argument is found that satisfies this rule, nonzero otherwise. 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). This test is also not symmetric in f1 and f2 and must be called twice. This test finds problems caused by sorting the actual argument list with keywords. For example: INTERFACE FOO SUBROUTINE F1(A, B) INTEGER :: A ; REAL :: B END SUBROUTINE F1 SUBROUTINE F2(B, A) INTEGER :: A ; REAL :: B END SUBROUTINE F1 END INTERFACE FOO At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */ static int generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2, const char *p1, const char *p2) { gfc_formal_arglist *f2_save, *g; gfc_symbol *sym; f2_save = f2; while (f1) { if (f1->sym->attr.optional) goto next; if (p1 && strcmp (f1->sym->name, p1) == 0) f1 = f1->next; if (f2 && p2 && strcmp (f2->sym->name, p2) == 0) f2 = f2->next; if (f2 != NULL && (compare_type_rank (f1->sym, f2->sym) || compare_type_rank (f2->sym, f1->sym)) && !((gfc_option.allow_std & GFC_STD_F2008) && ((f1->sym->attr.allocatable && f2->sym->attr.pointer) || (f2->sym->attr.allocatable && f1->sym->attr.pointer)))) goto next; /* Now search for a disambiguating keyword argument starting at the current non-match. */ for (g = f1; g; g = g->next) { if (g->sym->attr.optional || (p1 && strcmp (g->sym->name, p1) == 0)) continue; sym = find_keyword_arg (g->sym->name, f2_save); if (sym == NULL || !compare_type_rank (g->sym, sym) || ((gfc_option.allow_std & GFC_STD_F2008) && ((sym->attr.allocatable && g->sym->attr.pointer) || (sym->attr.pointer && g->sym->attr.allocatable)))) return 1; } next: if (f1 != NULL) f1 = f1->next; if (f2 != NULL) f2 = f2->next; } return 0; } /* Check if the characteristics of two dummy arguments match, cf. F08:12.3.2. */ static gfc_try check_dummy_characteristics (gfc_symbol *s1, gfc_symbol *s2, bool type_must_agree, char *errmsg, int err_len) { /* Check type and rank. */ if (type_must_agree && !compare_type_rank (s2, s1)) { snprintf (errmsg, err_len, "Type/rank mismatch in argument '%s'", s1->name); return FAILURE; } /* Check INTENT. */ if (s1->attr.intent != s2->attr.intent) { snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'", s1->name); return FAILURE; } /* Check OPTIONAL attribute. */ if (s1->attr.optional != s2->attr.optional) { snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'", s1->name); return FAILURE; } /* Check ALLOCATABLE attribute. */ if (s1->attr.allocatable != s2->attr.allocatable) { snprintf (errmsg, err_len, "ALLOCATABLE mismatch in argument '%s'", s1->name); return FAILURE; } /* Check POINTER attribute. */ if (s1->attr.pointer != s2->attr.pointer) { snprintf (errmsg, err_len, "POINTER mismatch in argument '%s'", s1->name); return FAILURE; } /* Check TARGET attribute. */ if (s1->attr.target != s2->attr.target) { snprintf (errmsg, err_len, "TARGET mismatch in argument '%s'", s1->name); return FAILURE; } /* FIXME: Do more comprehensive testing of attributes, like e.g. ASYNCHRONOUS, CONTIGUOUS, VALUE, VOLATILE, etc. */ /* Check interface of dummy procedures. */ if (s1->attr.flavor == FL_PROCEDURE) { char err[200]; if (!gfc_compare_interfaces (s1, s2, s2->name, 0, 1, err, sizeof(err), NULL, NULL)) { snprintf (errmsg, err_len, "Interface mismatch in dummy procedure " "'%s': %s", s1->name, err); return FAILURE; } } /* Check string length. */ if (s1->ts.type == BT_CHARACTER && s1->ts.u.cl && s1->ts.u.cl->length && s2->ts.u.cl && s2->ts.u.cl->length) { int compval = gfc_dep_compare_expr (s1->ts.u.cl->length, s2->ts.u.cl->length); switch (compval) { case -1: case 1: case -3: snprintf (errmsg, err_len, "Character length mismatch " "in argument '%s'", s1->name); return FAILURE; case -2: /* FIXME: Implement a warning for this case. gfc_warning ("Possible character length mismatch in argument '%s'", s1->name);*/ break; case 0: break; default: gfc_internal_error ("check_dummy_characteristics: Unexpected result " "%i of gfc_dep_compare_expr", compval); break; } } /* Check array shape. */ if (s1->as && s2->as) { int i, compval; gfc_expr *shape1, *shape2; if (s1->as->type != s2->as->type) { snprintf (errmsg, err_len, "Shape mismatch in argument '%s'", s1->name); return FAILURE; } if (s1->as->type == AS_EXPLICIT) for (i = 0; i < s1->as->rank + s1->as->corank; i++) { shape1 = gfc_subtract (gfc_copy_expr (s1->as->upper[i]), gfc_copy_expr (s1->as->lower[i])); shape2 = gfc_subtract (gfc_copy_expr (s2->as->upper[i]), gfc_copy_expr (s2->as->lower[i])); compval = gfc_dep_compare_expr (shape1, shape2); gfc_free_expr (shape1); gfc_free_expr (shape2); switch (compval) { case -1: case 1: case -3: snprintf (errmsg, err_len, "Shape mismatch in dimension %i of " "argument '%s'", i + 1, s1->name); return FAILURE; case -2: /* FIXME: Implement a warning for this case. gfc_warning ("Possible shape mismatch in argument '%s'", s1->name);*/ break; case 0: break; default: gfc_internal_error ("check_dummy_characteristics: Unexpected " "result %i of gfc_dep_compare_expr", compval); break; } } } return SUCCESS; } /* Check if the characteristics of two function results match, cf. F08:12.3.3. */ static gfc_try check_result_characteristics (gfc_symbol *s1, gfc_symbol *s2, char *errmsg, int err_len) { gfc_symbol *r1, *r2; r1 = s1->result ? s1->result : s1; r2 = s2->result ? s2->result : s2; if (r1->ts.type == BT_UNKNOWN) return SUCCESS; /* Check type and rank. */ if (!compare_type_rank (r1, r2)) { snprintf (errmsg, err_len, "Type/rank mismatch in function result"); return FAILURE; } /* Check ALLOCATABLE attribute. */ if (r1->attr.allocatable != r2->attr.allocatable) { snprintf (errmsg, err_len, "ALLOCATABLE attribute mismatch in " "function result"); return FAILURE; } /* Check POINTER attribute. */ if (r1->attr.pointer != r2->attr.pointer) { snprintf (errmsg, err_len, "POINTER attribute mismatch in " "function result"); return FAILURE; } /* Check CONTIGUOUS attribute. */ if (r1->attr.contiguous != r2->attr.contiguous) { snprintf (errmsg, err_len, "CONTIGUOUS attribute mismatch in " "function result"); return FAILURE; } /* Check PROCEDURE POINTER attribute. */ if (r1 != s1 && r1->attr.proc_pointer != r2->attr.proc_pointer) { snprintf (errmsg, err_len, "PROCEDURE POINTER mismatch in " "function result"); return FAILURE; } /* Check string length. */ if (r1->ts.type == BT_CHARACTER && r1->ts.u.cl && r2->ts.u.cl) { if (r1->ts.deferred != r2->ts.deferred) { snprintf (errmsg, err_len, "Character length mismatch " "in function result"); return FAILURE; } if (r1->ts.u.cl->length) { int compval = gfc_dep_compare_expr (r1->ts.u.cl->length, r2->ts.u.cl->length); switch (compval) { case -1: case 1: case -3: snprintf (errmsg, err_len, "Character length mismatch " "in function result"); return FAILURE; case -2: /* FIXME: Implement a warning for this case. snprintf (errmsg, err_len, "Possible character length mismatch " "in function result");*/ break; case 0: break; default: gfc_internal_error ("check_result_characteristics (1): Unexpected " "result %i of gfc_dep_compare_expr", compval); break; } } } /* Check array shape. */ if (!r1->attr.allocatable && !r1->attr.pointer && r1->as && r2->as) { int i, compval; gfc_expr *shape1, *shape2; if (r1->as->type != r2->as->type) { snprintf (errmsg, err_len, "Shape mismatch in function result"); return FAILURE; } if (r1->as->type == AS_EXPLICIT) for (i = 0; i < r1->as->rank + r1->as->corank; i++) { shape1 = gfc_subtract (gfc_copy_expr (r1->as->upper[i]), gfc_copy_expr (r1->as->lower[i])); shape2 = gfc_subtract (gfc_copy_expr (r2->as->upper[i]), gfc_copy_expr (r2->as->lower[i])); compval = gfc_dep_compare_expr (shape1, shape2); gfc_free_expr (shape1); gfc_free_expr (shape2); switch (compval) { case -1: case 1: case -3: snprintf (errmsg, err_len, "Shape mismatch in dimension %i of " "function result", i + 1); return FAILURE; case -2: /* FIXME: Implement a warning for this case. gfc_warning ("Possible shape mismatch in return value");*/ break; case 0: break; default: gfc_internal_error ("check_result_characteristics (2): " "Unexpected result %i of " "gfc_dep_compare_expr", compval); break; } } } return SUCCESS; } /* 'Compare' two formal interfaces associated with a pair of symbols. We return nonzero if there exists an actual argument list that would be ambiguous between the two interfaces, zero otherwise. 'strict_flag' specifies whether all the characteristics are required to match, which is not the case for ambiguity checks. 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */ int gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2, int generic_flag, int strict_flag, char *errmsg, int err_len, const char *p1, const char *p2) { gfc_formal_arglist *f1, *f2; gcc_assert (name2 != NULL); if (s1->attr.function && (s2->attr.subroutine || (!s2->attr.function && s2->ts.type == BT_UNKNOWN && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN))) { if (errmsg != NULL) snprintf (errmsg, err_len, "'%s' is not a function", name2); return 0; } if (s1->attr.subroutine && s2->attr.function) { if (errmsg != NULL) snprintf (errmsg, err_len, "'%s' is not a subroutine", name2); return 0; } /* Do strict checks on all characteristics (for dummy procedures and procedure pointer assignments). */ if (!generic_flag && strict_flag) { if (s1->attr.function && s2->attr.function) { /* If both are functions, check result characteristics. */ if (check_result_characteristics (s1, s2, errmsg, err_len) == FAILURE) return 0; } if (s1->attr.pure && !s2->attr.pure) { snprintf (errmsg, err_len, "Mismatch in PURE attribute"); return 0; } if (s1->attr.elemental && !s2->attr.elemental) { snprintf (errmsg, err_len, "Mismatch in ELEMENTAL attribute"); return 0; } } if (s1->attr.if_source == IFSRC_UNKNOWN || s2->attr.if_source == IFSRC_UNKNOWN) return 1; f1 = s1->formal; f2 = s2->formal; if (f1 == NULL && f2 == NULL) return 1; /* Special case: No arguments. */ if (generic_flag) { if (count_types_test (f1, f2, p1, p2) || count_types_test (f2, f1, p2, p1)) return 0; if (generic_correspondence (f1, f2, p1, p2) || generic_correspondence (f2, f1, p2, p1)) return 0; } else /* Perform the abbreviated correspondence test for operators (the arguments cannot be optional and are always ordered correctly). This is also done when comparing interfaces for dummy procedures and in procedure pointer assignments. */ for (;;) { /* Check existence. */ if (f1 == NULL && f2 == NULL) break; if (f1 == NULL || f2 == NULL) { if (errmsg != NULL) snprintf (errmsg, err_len, "'%s' has the wrong number of " "arguments", name2); return 0; } if (strict_flag) { /* Check all characteristics. */ if (check_dummy_characteristics (f1->sym, f2->sym, true, errmsg, err_len) == FAILURE) return 0; } else if (!compare_type_rank (f2->sym, f1->sym)) { /* Only check type and rank. */ if (errmsg != NULL) snprintf (errmsg, err_len, "Type/rank mismatch in argument '%s'", f1->sym->name); return 0; } f1 = f1->next; f2 = f2->next; } return 1; } /* Given a pointer to an interface pointer, remove duplicate interfaces and make sure that all symbols are either functions or subroutines, and all of the same kind. Returns nonzero if something goes wrong. */ static int check_interface0 (gfc_interface *p, const char *interface_name) { gfc_interface *psave, *q, *qlast; psave = p; for (; p; p = p->next) { /* Make sure all symbols in the interface have been defined as functions or subroutines. */ if (((!p->sym->attr.function && !p->sym->attr.subroutine) || !p->sym->attr.if_source) && p->sym->attr.flavor != FL_DERIVED) { if (p->sym->attr.external) gfc_error ("Procedure '%s' in %s at %L has no explicit interface", p->sym->name, interface_name, &p->sym->declared_at); else gfc_error ("Procedure '%s' in %s at %L is neither function nor " "subroutine", p->sym->name, interface_name, &p->sym->declared_at); return 1; } /* Verify that procedures are either all SUBROUTINEs or all FUNCTIONs. */ if ((psave->sym->attr.function && !p->sym->attr.function && p->sym->attr.flavor != FL_DERIVED) || (psave->sym->attr.subroutine && !p->sym->attr.subroutine)) { if (p->sym->attr.flavor != FL_DERIVED) gfc_error ("In %s at %L procedures must be either all SUBROUTINEs" " or all FUNCTIONs", interface_name, &p->sym->declared_at); else gfc_error ("In %s at %L procedures must be all FUNCTIONs as the " "generic name is also the name of a derived type", interface_name, &p->sym->declared_at); return 1; } /* F2003, C1207. F2008, C1207. */ if (p->sym->attr.proc == PROC_INTERNAL && gfc_notify_std (GFC_STD_F2008, "Internal procedure " "'%s' in %s at %L", p->sym->name, interface_name, &p->sym->declared_at) == FAILURE) return 1; } p = psave; /* Remove duplicate interfaces in this interface list. */ for (; p; p = p->next) { qlast = p; for (q = p->next; q;) { if (p->sym != q->sym) { qlast = q; q = q->next; } else { /* Duplicate interface. */ qlast->next = q->next; free (q); q = qlast->next; } } } return 0; } /* Check lists of interfaces to make sure that no two interfaces are ambiguous. Duplicate interfaces (from the same symbol) are OK here. */ static int check_interface1 (gfc_interface *p, gfc_interface *q0, int generic_flag, const char *interface_name, bool referenced) { gfc_interface *q; for (; p; p = p->next) for (q = q0; q; q = q->next) { if (p->sym == q->sym) continue; /* Duplicates OK here. */ if (p->sym->name == q->sym->name && p->sym->module == q->sym->module) continue; if (p->sym->attr.flavor != FL_DERIVED && q->sym->attr.flavor != FL_DERIVED && gfc_compare_interfaces (p->sym, q->sym, q->sym->name, generic_flag, 0, NULL, 0, NULL, NULL)) { if (referenced) gfc_error ("Ambiguous interfaces '%s' and '%s' in %s at %L", p->sym->name, q->sym->name, interface_name, &p->where); else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc) gfc_warning ("Ambiguous interfaces '%s' and '%s' in %s at %L", p->sym->name, q->sym->name, interface_name, &p->where); else gfc_warning ("Although not referenced, '%s' has ambiguous " "interfaces at %L", interface_name, &p->where); return 1; } } return 0; } /* Check the generic and operator interfaces of symbols to make sure that none of the interfaces conflict. The check has to be done after all of the symbols are actually loaded. */ static void check_sym_interfaces (gfc_symbol *sym) { char interface_name[100]; gfc_interface *p; if (sym->ns != gfc_current_ns) return; if (sym->generic != NULL) { sprintf (interface_name, "generic interface '%s'", sym->name); if (check_interface0 (sym->generic, interface_name)) return; for (p = sym->generic; p; p = p->next) { if (sym->attr.access != ACCESS_PRIVATE) p->sym->attr.public_used = 1; if (p->sym->attr.mod_proc && (p->sym->attr.if_source != IFSRC_DECL || p->sym->attr.procedure)) { gfc_error ("'%s' at %L is not a module procedure", p->sym->name, &p->where); return; } } /* Originally, this test was applied to host interfaces too; this is incorrect since host associated symbols, from any source, cannot be ambiguous with local symbols. */ check_interface1 (sym->generic, sym->generic, 1, interface_name, sym->attr.referenced || !sym->attr.use_assoc); } } static void check_uop_interfaces (gfc_user_op *uop) { char interface_name[100]; gfc_user_op *uop2; gfc_namespace *ns; gfc_interface *p; sprintf (interface_name, "operator interface '%s'", uop->name); if (check_interface0 (uop->op, interface_name)) return; if (uop->access != ACCESS_PRIVATE) for (p = uop->op; p; p = p->next) p->sym->attr.public_used = 1; for (ns = gfc_current_ns; ns; ns = ns->parent) { uop2 = gfc_find_uop (uop->name, ns); if (uop2 == NULL) continue; check_interface1 (uop->op, uop2->op, 0, interface_name, true); } } /* Given an intrinsic op, return an equivalent op if one exists, or INTRINSIC_NONE otherwise. */ gfc_intrinsic_op gfc_equivalent_op (gfc_intrinsic_op op) { switch(op) { case INTRINSIC_EQ: return INTRINSIC_EQ_OS; case INTRINSIC_EQ_OS: return INTRINSIC_EQ; case INTRINSIC_NE: return INTRINSIC_NE_OS; case INTRINSIC_NE_OS: return INTRINSIC_NE; case INTRINSIC_GT: return INTRINSIC_GT_OS; case INTRINSIC_GT_OS: return INTRINSIC_GT; case INTRINSIC_GE: return INTRINSIC_GE_OS; case INTRINSIC_GE_OS: return INTRINSIC_GE; case INTRINSIC_LT: return INTRINSIC_LT_OS; case INTRINSIC_LT_OS: return INTRINSIC_LT; case INTRINSIC_LE: return INTRINSIC_LE_OS; case INTRINSIC_LE_OS: return INTRINSIC_LE; default: return INTRINSIC_NONE; } } /* For the namespace, check generic, user operator and intrinsic operator interfaces for consistency and to remove duplicate interfaces. We traverse the whole namespace, counting on the fact that most symbols will not have generic or operator interfaces. */ void gfc_check_interfaces (gfc_namespace *ns) { gfc_namespace *old_ns, *ns2; gfc_interface *p; char interface_name[100]; int i; old_ns = gfc_current_ns; gfc_current_ns = ns; gfc_traverse_ns (ns, check_sym_interfaces); gfc_traverse_user_op (ns, check_uop_interfaces); for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++) { if (i == INTRINSIC_USER) continue; if (i == INTRINSIC_ASSIGN) strcpy (interface_name, "intrinsic assignment operator"); else sprintf (interface_name, "intrinsic '%s' operator", gfc_op2string ((gfc_intrinsic_op) i)); if (check_interface0 (ns->op[i], interface_name)) continue; for (p = ns->op[i]; p; p = p->next) p->sym->attr.public_used = 1; if (ns->op[i]) gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i, ns->op[i]->where); for (ns2 = ns; ns2; ns2 = ns2->parent) { gfc_intrinsic_op other_op; if (check_interface1 (ns->op[i], ns2->op[i], 0, interface_name, true)) goto done; /* i should be gfc_intrinsic_op, but has to be int with this cast here for stupid C++ compatibility rules. */ other_op = gfc_equivalent_op ((gfc_intrinsic_op) i); if (other_op != INTRINSIC_NONE && check_interface1 (ns->op[i], ns2->op[other_op], 0, interface_name, true)) goto done; } } done: gfc_current_ns = old_ns; } static int symbol_rank (gfc_symbol *sym) { if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as) return CLASS_DATA (sym)->as->rank; return (sym->as == NULL) ? 0 : sym->as->rank; } /* Given a symbol of a formal argument list and an expression, if the formal argument is allocatable, check that the actual argument is allocatable. Returns nonzero if compatible, zero if not compatible. */ static int compare_allocatable (gfc_symbol *formal, gfc_expr *actual) { symbol_attribute attr; if (formal->attr.allocatable || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.allocatable)) { attr = gfc_expr_attr (actual); if (!attr.allocatable) return 0; } return 1; } /* Given a symbol of a formal argument list and an expression, if the formal argument is a pointer, see if the actual argument is a pointer. Returns nonzero if compatible, zero if not compatible. */ static int compare_pointer (gfc_symbol *formal, gfc_expr *actual) { symbol_attribute attr; if (formal->attr.pointer || (formal->ts.type == BT_CLASS && CLASS_DATA (formal) && CLASS_DATA (formal)->attr.class_pointer)) { attr = gfc_expr_attr (actual); /* Fortran 2008 allows non-pointer actual arguments. */ if (!attr.pointer && attr.target && formal->attr.intent == INTENT_IN) return 2; if (!attr.pointer) return 0; } return 1; } /* Emit clear error messages for rank mismatch. */ static void argument_rank_mismatch (const char *name, locus *where, int rank1, int rank2) { /* TS 29113, C407b. */ if (rank2 == -1) { gfc_error ("The assumed-rank array at %L requires that the dummy argument" " '%s' has assumed-rank", where, name); } else if (rank1 == 0) { gfc_error ("Rank mismatch in argument '%s' at %L " "(scalar and rank-%d)", name, where, rank2); } else if (rank2 == 0) { gfc_error ("Rank mismatch in argument '%s' at %L " "(rank-%d and scalar)", name, where, rank1); } else { gfc_error ("Rank mismatch in argument '%s' at %L " "(rank-%d and rank-%d)", name, where, rank1, rank2); } } /* Given a symbol of a formal argument list and an expression, see if the two are compatible as arguments. Returns nonzero if compatible, zero if not compatible. */ static int compare_parameter (gfc_symbol *formal, gfc_expr *actual, int ranks_must_agree, int is_elemental, locus *where) { gfc_ref *ref; bool rank_check, is_pointer; /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding procs c_f_pointer or c_f_procpointer, and we need to accept most pointers the user could give us. This should allow that. */ if (formal->ts.type == BT_VOID) return 1; if (formal->ts.type == BT_DERIVED && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c && actual->ts.type == BT_DERIVED && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c) return 1; if (formal->ts.type == BT_CLASS && actual->ts.type == BT_DERIVED) /* Make sure the vtab symbol is present when the module variables are generated. */ gfc_find_derived_vtab (actual->ts.u.derived); if (actual->ts.type == BT_PROCEDURE) { char err[200]; gfc_symbol *act_sym = actual->symtree->n.sym; if (formal->attr.flavor != FL_PROCEDURE) { if (where) gfc_error ("Invalid procedure argument at %L", &actual->where); return 0; } if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err, sizeof(err), NULL, NULL)) { if (where) gfc_error ("Interface mismatch in dummy procedure '%s' at %L: %s", formal->name, &actual->where, err); return 0; } if (formal->attr.function && !act_sym->attr.function) { gfc_add_function (&act_sym->attr, act_sym->name, &act_sym->declared_at); if (act_sym->ts.type == BT_UNKNOWN && gfc_set_default_type (act_sym, 1, act_sym->ns) == FAILURE) return 0; } else if (formal->attr.subroutine && !act_sym->attr.subroutine) gfc_add_subroutine (&act_sym->attr, act_sym->name, &act_sym->declared_at); return 1; } /* F2008, C1241. */ if (formal->attr.pointer && formal->attr.contiguous && !gfc_is_simply_contiguous (actual, true)) { if (where) gfc_error ("Actual argument to contiguous pointer dummy '%s' at %L " "must be simply contiguous", formal->name, &actual->where); return 0; } if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN) && actual->ts.type != BT_HOLLERITH && formal->ts.type != BT_ASSUMED && !gfc_compare_types (&formal->ts, &actual->ts) && !(formal->ts.type == BT_DERIVED && actual->ts.type == BT_CLASS && gfc_compare_derived_types (formal->ts.u.derived, CLASS_DATA (actual)->ts.u.derived))) { if (where) gfc_error ("Type mismatch in argument '%s' at %L; passed %s to %s", formal->name, &actual->where, gfc_typename (&actual->ts), gfc_typename (&formal->ts)); return 0; } /* F2008, 12.5.2.5; IR F08/0073. */ if (formal->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL && ((CLASS_DATA (formal)->attr.class_pointer && !formal->attr.intent == INTENT_IN) || CLASS_DATA (formal)->attr.allocatable)) { if (actual->ts.type != BT_CLASS) { if (where) gfc_error ("Actual argument to '%s' at %L must be polymorphic", formal->name, &actual->where); return 0; } if (!gfc_compare_derived_types (CLASS_DATA (actual)->ts.u.derived, CLASS_DATA (formal)->ts.u.derived)) { if (where) gfc_error ("Actual argument to '%s' at %L must have the same " "declared type", formal->name, &actual->where); return 0; } } if (formal->attr.codimension && !gfc_is_coarray (actual)) { if (where) gfc_error ("Actual argument to '%s' at %L must be a coarray", formal->name, &actual->where); return 0; } if (formal->attr.codimension && formal->attr.allocatable) { gfc_ref *last = NULL; for (ref = actual->ref; ref; ref = ref->next) if (ref->type == REF_COMPONENT) last = ref; /* F2008, 12.5.2.6. */ if ((last && last->u.c.component->as->corank != formal->as->corank) || (!last && actual->symtree->n.sym->as->corank != formal->as->corank)) { if (where) gfc_error ("Corank mismatch in argument '%s' at %L (%d and %d)", formal->name, &actual->where, formal->as->corank,