aboutsummaryrefslogtreecommitdiff
path: root/gcc/f/target.c
blob: b52e37f50021cbdeaa0ba9539b310231f19022a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
/* target.c -- Implementation File (module.c template V1.0)
   Copyright (C) 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
   Contributed by James Craig Burley.

This file is part of GNU Fortran.

GNU Fortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Fortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Fortran; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

   Related Modules:
      None

   Description:
      Implements conversion of lexer tokens to machine-dependent numerical
      form and accordingly issues diagnostic messages when necessary.

      Also, this module, especially its .h file, provides nearly all of the
      information on the target machine's data type, kind type, and length
      type capabilities.  The idea is that by carefully going through
      target.h and changing things properly, one can accomplish much
      towards the porting of the FFE to a new machine.	There are limits
      to how much this can accomplish towards that end, however.  For one
      thing, the ffeexpr_collapse_convert function doesn't contain all the
      conversion cases necessary, because the text file would be
      enormous (even though most of the function would be cut during the
      cpp phase because of the absence of the types), so when adding to
      the number of supported kind types for a given type, one must look
      to see if ffeexpr_collapse_convert needs modification in this area,
      in addition to providing the appropriate macros and functions in
      ffetarget.  Note that if combinatorial explosion actually becomes a
      problem for a given machine, one might have to modify the way conversion
      expressions are built so that instead of just one conversion expr, a
      series of conversion exprs are built to make a path from one type to
      another that is not a "near neighbor".  For now, however, with a handful
      of each of the numeric types and only one character type, things appear
      manageable.

      A nonobvious change to ffetarget would be if the target machine was
      not a 2's-complement machine.  Any item with the word "magical" (case-
      insensitive) in the FFE's source code (at least) indicates an assumption
      that a 2's-complement machine is the target, and thus that there exists
      a magnitude that can be represented as a negative number but not as
      a positive number.  It is possible that this situation can be dealt
      with by changing only ffetarget, for example, on a 1's-complement
      machine, perhaps #defineing ffetarget_constant_is_magical to simply
      FALSE along with making the appropriate changes in ffetarget's number
      parsing functions would be sufficient to effectively "comment out" code
      in places like ffeexpr that do certain magical checks.  But it is
      possible there are other 2's-complement dependencies lurking in the
      FFE (as possibly is true of any large program); if you find any, please
      report them so we can replace them with dependencies on ffetarget
      instead.

   Modifications:
*/

/* Include files. */

#include "proj.h"
#include "glimits.h"
#include "target.h"
#include "bad.h"
#include "info.h"
#include "lex.h"
#include "malloc.h"

/* Externals defined here. */

char ffetarget_string_[40];	/* Temp for ascii-to-double (atof). */
HOST_WIDE_INT ffetarget_long_val_;
HOST_WIDE_INT ffetarget_long_junk_;

/* Simple definitions and enumerations. */


/* Internal typedefs. */


/* Private include files. */


/* Internal structure definitions. */


/* Static objects accessed by functions in this module. */


/* Static functions (internal). */

static void ffetarget_print_char_ (FILE *f, unsigned char c);

/* Internal macros. */

#ifdef REAL_VALUE_ATOF
#define FFETARGET_ATOF_(p,m) REAL_VALUE_ATOF ((p),(m))
#else
#define FFETARGET_ATOF_(p,m) atof ((p))
#endif


/* ffetarget_print_char_ -- Print a single character (in apostrophe context)

   See prototype.

   Outputs char so it prints or is escaped C style.  */

static void
ffetarget_print_char_ (FILE *f, unsigned char c)
{
  switch (c)
    {
    case '\\':
      fputs ("\\\\", f);
      break;

    case '\'':
      fputs ("\\\'", f);
      break;

    default:
      if (ISPRINT (c))
	fputc (c, f);
      else
	fprintf (f, "\\%03o", (unsigned int) c);
      break;
    }
}

/* ffetarget_aggregate_info -- Determine type for aggregate storage area

   See prototype.

   If aggregate type is distinct, just return it.  Else return a type
   representing a common denominator for the nondistinct type (for now,
   just return default character, since that'll work on almost all target
   machines).

   The rules for abt/akt are (as implemented by ffestorag_update):

   abt == FFEINFO_basictypeANY (akt == FFEINFO_kindtypeANY also, by
   definition): CHARACTER and non-CHARACTER types mixed.

   abt == FFEINFO_basictypeNONE (akt == FFEINFO_kindtypeNONE also, by
   definition): More than one non-CHARACTER type mixed, but no CHARACTER
   types mixed in.

   abt some other value, akt == FFEINFO_kindtypeNONE: abt indicates the
   only basic type mixed in, but more than one kind type is mixed in.

   abt some other value, akt some other value: abt and akt indicate the
   only type represented in the aggregation.  */

void
ffetarget_aggregate_info (ffeinfoBasictype *ebt, ffeinfoKindtype *ekt,
			  ffetargetAlign *units, ffeinfoBasictype abt,
			  ffeinfoKindtype akt)
{
  ffetype type;

  if ((abt == FFEINFO_basictypeNONE) || (abt == FFEINFO_basictypeANY)
      || (akt == FFEINFO_kindtypeNONE))
    {
      *ebt = FFEINFO_basictypeCHARACTER;
      *ekt = FFEINFO_kindtypeCHARACTERDEFAULT;
    }
  else
    {
      *ebt = abt;
      *ekt = akt;
    }

  type = ffeinfo_type (*ebt, *ekt);
  assert (type != NULL);

  *units = ffetype_size (type);
}

/* ffetarget_align -- Align one storage area to superordinate, update super

   See prototype.

   updated_alignment/updated_modulo contain the already existing
   alignment requirements for the storage area at whose offset the
   object with alignment requirements alignment/modulo is to be placed.
   Find the smallest pad such that the requirements are maintained and
   return it, but only after updating the updated_alignment/_modulo
   requirements as necessary to indicate the placement of the new object.  */

ffetargetAlign
ffetarget_align (ffetargetAlign *updated_alignment,
		 ffetargetAlign *updated_modulo, ffetargetOffset offset,
		 ffetargetAlign alignment, ffetargetAlign modulo)
{
  ffetargetAlign pad;
  ffetargetAlign min_pad;	/* Minimum amount of padding needed. */
  ffetargetAlign min_m = 0;	/* Minimum-padding m. */
  ffetargetAlign ua;		/* Updated alignment. */
  ffetargetAlign um;		/* Updated modulo. */
  ffetargetAlign ucnt;		/* Multiplier applied to ua. */
  ffetargetAlign m;		/* Copy of modulo. */
  ffetargetAlign cnt;		/* Multiplier applied to alignment. */
  ffetargetAlign i;
  ffetargetAlign j;

  assert (alignment > 0);
  assert (*updated_alignment > 0);
  
  assert (*updated_modulo < *updated_alignment);
  assert (modulo < alignment);

  /* The easy case: similar alignment requirements.  */
  if (*updated_alignment == alignment)
    {
      if (modulo > *updated_modulo)
	pad = alignment - (modulo - *updated_modulo);
      else
	pad = *updated_modulo - modulo;
      if (offset < 0)
	/* De-negatize offset, since % wouldn't do the expected thing.  */
	offset = alignment - ((- offset) % alignment);
      pad = (offset + pad) % alignment;
      if (pad != 0)
	pad = alignment - pad;
      return pad;
    }

  /* Sigh, find LCM (Least Common Multiple) for the two alignment factors. */

  for (ua = *updated_alignment, ucnt = 1;
       ua % alignment != 0;
       ua += *updated_alignment)
    ++ucnt;

  cnt = ua / alignment;

  if (offset < 0)
    /* De-negatize offset, since % wouldn't do the expected thing.  */
    offset = ua - ((- offset) % ua);

  /* Set to largest value.  */
  min_pad = ~(ffetargetAlign) 0;

  /* Find all combinations of modulo values the two alignment requirements
     have; pick the combination that results in the smallest padding
     requirement.  Of course, if a zero-pad requirement is encountered, just
     use that one. */

  for (um = *updated_modulo, i = 0; i < ucnt; um += *updated_alignment, ++i)
    {
      for (m = modulo, j = 0; j < cnt; m += alignment, ++j)
	{
	  /* This code is similar to the "easy case" code above. */
	  if (m > um)
	    pad = ua - (m - um);
	  else
	    pad = um - m;
	  pad = (offset + pad) % ua;
	  if (pad == 0)
	    {
	      /* A zero pad means we've got something useful.  */
	      *updated_alignment = ua;
	      *updated_modulo = um;
	      return 0;
	    }
	  pad = ua - pad;
	  if (pad < min_pad)
	    {			/* New minimum padding value. */
	      min_pad = pad;
	      min_m = um;
	    }
	}
    }

  *updated_alignment = ua;
  *updated_modulo = min_m;
  return min_pad;
}

/* Always append a null byte to the end, in case this is wanted in
   a special case such as passing a string as a FORMAT or %REF.
   Done to save a bit of hassle, nothing more, but it's a kludge anyway,
   because it isn't a "feature" that is self-documenting.  Use the
   string "FFETARGET-NULL-KLUDGE" to flag anyplace you use this feature
   in the code.  */

#if FFETARGET_okCHARACTER1
bool
ffetarget_character1 (ffetargetCharacter1 *val, ffelexToken character,
		      mallocPool pool)
{
  val->length = ffelex_token_length (character);
  if (val->length == 0)
    val->text = NULL;
  else
    {
      val->text = malloc_new_kp (pool, "ffetargetCharacter1", val->length + 1);
      memcpy (val->text, ffelex_token_text (character), val->length);
      val->text[val->length] = '\0';
    }

  return TRUE;
}

#endif
/* Produce orderable comparison between two constants

   Compare lengths, if equal then use memcmp.  */

#if FFETARGET_okCHARACTER1
int
ffetarget_cmp_character1 (ffetargetCharacter1 l, ffetargetCharacter1 r)
{
  if (l.length < r.length)
    return -1;
  if (l.length > r.length)
    return 1;
  if (l.length == 0)
    return 0;
  return memcmp (l.text, r.text, l.length);
}

#endif
/* ffetarget_concatenate_character1 -- Perform CONCAT op on two constants

   Always append a null byte to the end, in case this is wanted in
   a special case such as passing a string as a FORMAT or %REF.
   Done to save a bit of hassle, nothing more, but it's a kludge anyway,
   because it isn't a "feature" that is self-documenting.  Use the
   string "FFETARGET-NULL-KLUDGE" to flag anyplace you use this feature
   in the code.  */

#if FFETARGET_okCHARACTER1
ffebad
ffetarget_concatenate_character1 (ffetargetCharacter1 *res,
	      ffetargetCharacter1 l, ffetargetCharacter1 r, mallocPool pool,
				  ffetargetCharacterSize *len)
{
  res->length = *len = l.length + r.length;
  if (*len == 0)
    res->text = NULL;
  else
    {
      res->text = malloc_new_kp (pool, "ffetargetCharacter1(CONCAT)", *len + 1);
      if (l.length != 0)
	memcpy (res->text, l.text, l.length);
      if (r.length != 0)
	memcpy (res->text + l.length, r.text, r.length);
      res->text[*len] = '\0';
    }

  return FFEBAD;
}

#endif
/* ffetarget_eq_character1 -- Perform relational comparison on char constants

   Compare lengths, if equal then use memcmp.  */

#if FFETARGET_okCHARACTER1
ffebad
ffetarget_eq_character1 (bool *res, ffetargetCharacter1 l,
			 ffetargetCharacter1 r)
{
  assert (l.length == r.length);
  *res = (memcmp (l.text, r.text, l.length) == 0);
  return FFEBAD;
}

#endif
/* ffetarget_le_character1 -- Perform relational comparison on char constants

   Compare lengths, if equal then use memcmp.  */

#if FFETARGET_okCHARACTER1
ffebad
ffetarget_le_character1 (bool *res, ffetargetCharacter1 l,
			 ffetargetCharacter1 r)
{
  assert (l.length == r.length);
  *res = (memcmp (l.text, r.text, l.length) <= 0);
  return FFEBAD;
}

#endif
/* ffetarget_lt_character1 -- Perform relational comparison on char constants

   Compare lengths, if equal then use memcmp.  */

#if FFETARGET_okCHARACTER1
ffebad
ffetarget_lt_character1 (bool *res, ffetargetCharacter1 l,
			 ffetargetCharacter1 r)
{
  assert (l.length == r.length);
  *res = (memcmp (l.text, r.text, l.length) < 0);
  return FFEBAD;
}

#endif
/* ffetarget_ge_character1 -- Perform relational comparison on char constants

   Compare lengths, if equal then use memcmp.  */

#if FFETARGET_okCHARACTER1
ffebad
ffetarget_ge_character1 (bool *res, ffetargetCharacter1 l,
			 ffetargetCharacter1 r)
{
  assert (l.length == r.length);
  *res = (memcmp (l.text, r.text, l.length) >= 0);
  return FFEBAD;
}

#endif
/* ffetarget_gt_character1 -- Perform relational comparison on char constants

   Compare lengths, if equal then use memcmp.  */

#if FFETARGET_okCHARACTER1
ffebad
ffetarget_gt_character1 (bool *res, ffetargetCharacter1 l,
			 ffetargetCharacter1 r)
{
  assert (l.length == r.length);
  *res = (memcmp (l.text, r.text, l.length) > 0);
  return FFEBAD;
}
#endif

#if FFETARGET_okCHARACTER1
bool
ffetarget_iszero_character1 (ffetargetCharacter1 constant)
{
  ffetargetCharacterSize i;

  for (i = 0; i < constant.length; ++i)
    if (constant.text[i] != 0)
      return FALSE;
  return TRUE;
}
#endif

bool
ffetarget_iszero_hollerith (ffetargetHollerith constant)
{
  ffetargetHollerithSize i;

  for (i = 0; i < constant.length; ++i)
    if (constant.text[i] != 0)
      return FALSE;
  return TRUE;
}

/* ffetarget_layout -- Do storage requirement analysis for entity

   Return the alignment/modulo requirements along with the size, given the
   data type info and the number of elements an array (1 for a scalar).	 */

void
ffetarget_layout (const char *error_text UNUSED, ffetargetAlign *alignment,
		  ffetargetAlign *modulo, ffetargetOffset *size,
		  ffeinfoBasictype bt, ffeinfoKindtype kt,
		  ffetargetCharacterSize charsize,
		  ffetargetIntegerDefault num_elements)
{
  bool ok;			/* For character type. */
  ffetargetOffset numele;	/* Converted from num_elements. */
  ffetype type;

  type = ffeinfo_type (bt, kt);
  assert (type != NULL);

  *alignment = ffetype_alignment (type);
  *modulo = ffetype_modulo (type);
  if (bt == FFEINFO_basictypeCHARACTER)
    {
      ok = ffetarget_offset_charsize (size, charsize, ffetype_size (type));
#ifdef ffetarget_offset_overflow
      if (!ok)
	ffetarget_offset_overflow (error_text);
#endif
    }
  else
    *size = ffetype_size (type);

  if ((num_elements < 0)
      || !ffetarget_offset (&numele, num_elements)
      || !ffetarget_offset_multiply (size, *size, numele))
    {
      ffetarget_offset_overflow (error_text);
      *alignment = 1;
      *modulo = 0;
      *size = 0;
    }
}

/* ffetarget_ne_character1 -- Perform relational comparison on char constants

   Compare lengths, if equal then use memcmp.  */

#if FFETARGET_okCHARACTER1
ffebad
ffetarget_ne_character1 (bool *res, ffetargetCharacter1 l,
			 ffetargetCharacter1 r)
{
  assert (l.length == r.length);
  *res = (memcmp (l.text, r.text, l.length) != 0);
  return FFEBAD;
}

#endif
/* ffetarget_substr_character1 -- Perform SUBSTR op on three constants

   Always append a null byte to the end, in case this is wanted in
   a special case such as passing a string as a FORMAT or %REF.
   Done to save a bit of hassle, nothing more, but it's a kludge anyway,
   because it isn't a "feature" that is self-documenting.  Use the
   string "FFETARGET-NULL-KLUDGE" to flag anyplace you use this feature
   in the code.  */

#if FFETARGET_okCHARACTER1
ffebad
ffetarget_substr_character1 (ffetargetCharacter1 *res,
			     ffetargetCharacter1 l,
			     ffetargetCharacterSize first,
			     ffetargetCharacterSize last, mallocPool pool,
			     ffetargetCharacterSize *len)
{
  if (last < first)
    {
      res->length = *len = 0;
      res->text = NULL;
    }
  else
    {
      res->length = *len = last - first + 1;
      res->text = malloc_new_kp (pool, "ffetargetCharacter1(SUBSTR)", *len + 1);
      memcpy (res->text, l.text + first - 1, *len);
      res->text[*len] = '\0';
    }

  return FFEBAD;
}

#endif
/* ffetarget_cmp_hollerith -- Produce orderable comparison between two
   constants

   Compare lengths, if equal then use memcmp.  */

int
ffetarget_cmp_hollerith (ffetargetHollerith l, ffetargetHollerith r)
{
  if (l.length < r.length)
    return -1;
  if (l.length > r.length)
    return 1;
  return memcmp (l.text, r.text, l.length);
}

ffebad
ffetarget_convert_any_character1_ (char *res, size_t size,
				   ffetargetCharacter1 l)
{
  if (size <= (size_t) l.length)
    {
      char *p;
      ffetargetCharacterSize i;

      memcpy (res, l.text, size);
      for (p = &l.text[0] + size, i = l.length - size;
	   i > 0;
	   ++p, --i)
	if (*p != ' ')
	  return FFEBAD_TRUNCATING_CHARACTER;
    }
  else
    {
      memcpy (res, l.text, size);
      memset (res + l.length, ' ', size - l.length);
    }

  return FFEBAD;
}

ffebad
ffetarget_convert_any_hollerith_ (char *res, size_t size,
				  ffetargetHollerith l)
{
  if (size <= (size_t) l.length)
    {
      char *p;
      ffetargetCharacterSize i;

      memcpy (res, l.text, size);
      for (p = &l.text[0] + size, i = l.length - size;
	   i > 0;
	   ++p, --i)
	if (*p != ' ')
	  return FFEBAD_TRUNCATING_HOLLERITH;
    }
  else
    {
      memcpy (res, l.text, size);
      memset (res + l.length, ' ', size - l.length);
    }

  return FFEBAD;
}

ffebad
ffetarget_convert_any_typeless_ (char *res, size_t size,
				 ffetargetTypeless l)
{
  unsigned long long int l1;
  unsigned long int l2;
  unsigned int l3;
  unsigned short int l4;
  unsigned char l5;
  size_t size_of;
  char *p;

  if (size >= sizeof (l1))
    {
      l1 = l;
      p = (char *) &l1;
      size_of = sizeof (l1);
    }
  else if (size >= sizeof (l2))
    {
      l2 = l;
      p = (char *) &l2;
      size_of = sizeof (l2);
      l1 = l2;
    }
  else if (size >= sizeof (l3))
    {
      l3 = l;
      p = (char *) &l3;
      size_of = sizeof (l3);
      l1 = l3;
    }
  else if (size >= sizeof (l4))
    {
      l4 = l;
      p = (char *) &l4;
      size_of = sizeof (l4);
      l1 = l4;
    }
  else if (size >= sizeof (l5))
    {
      l5 = l;
      p = (char *) &l5;
      size_of = sizeof (l5);
      l1 = l5;
    }
  else
    {
      assert ("stumped by conversion from typeless!" == NULL);
      abort ();
    }

  if (size <= size_of)
    {
      int i = size_of - size;

      memcpy (res, p + i, size);
      for (; i > 0; ++p, --i)
	if (*p != '\0')
	  return FFEBAD_TRUNCATING_TYPELESS;
    }
  else
    {
      int i = size - size_of;

      memset (res, 0, i);
      memcpy (res + i, p, size_of);
    }

  if (l1 != l)
    return FFEBAD_TRUNCATING_TYPELESS;
  return FFEBAD;
}

/* Always append a null byte to the end, in case this is wanted in
   a special case such as passing a string as a FORMAT or %REF.
   Done to save a bit of hassle, nothing more, but it's a kludge anyway,
   because it isn't a "feature" that is self-documenting.  Use the
   string "FFETARGET-NULL-KLUDGE" to flag anyplace you use this feature
   in the code.  */

#if FFETARGET_okCHARACTER1
ffebad
ffetarget_convert_character1_character1 (ffetargetCharacter1 *res,
					 ffetargetCharacterSize size,
					 ffetargetCharacter1 l,
					 mallocPool pool)
{
  res->length = size;
  if (size == 0)
    res->text = NULL;
  else
    {
      res->text = malloc_new_kp (pool, "FFETARGET cvt char1", size + 1);
      if (size <= l.length)
	memcpy (res->text, l.text, size);
      else
	{
	  memcpy (res->text, l.text, l.length);
	  memset (res->text + l.length, ' ', size - l.length);
	}
      res->text[size] = '\0';
    }

  return FFEBAD;
}

#endif

/* Always append a null byte to the end, in case this is wanted in
   a special case such as passing a string as a FORMAT or %REF.
   Done to save a bit of hassle, nothing more, but it's a kludge anyway,
   because it isn't a "feature" that is self-documenting.  Use the
   string "FFETARGET-NULL-KLUDGE" to flag anyplace you use this feature
   in the code.  */

#if FFETARGET_okCHARACTER1
ffebad
ffetarget_convert_character1_hollerith (ffetargetCharacter1 *res,
					ffetargetCharacterSize size,
					ffetargetHollerith l, mallocPool pool)
{
  res->length = size;
  if (size == 0)
    res->text = NULL;
  else
    {
      res->text = malloc_new_kp (pool, "FFETARGET cvt char1", size + 1);
      res->text[size] = '\0';
      if (size <= l.length)
	{
	  char *p;
	  ffetargetCharacterSize i;

	  memcpy (res->text, l.text, size);
	  for (p = &l.text[0] + size, i = l.length - size;
	       i > 0;
	       ++p, --i)
	    if (*p != ' ')
	      return FFEBAD_TRUNCATING_HOLLERITH;
	}
      else
	{
	  memcpy (res->text, l.text, l.length);
	  memset (res->text + l.length, ' ', size - l.length);
	}
    }

  return FFEBAD;
}

#endif
/* ffetarget_convert_character1_integer4 -- Raw conversion.

   Always append a null byte to the end, in case this is wanted in
   a special case such as passing a string as a FORMAT or %REF.
   Done to save a bit of hassle, nothing more, but it's a kludge anyway,
   because it isn't a "feature" that is self-documenting.  Use the
   string "FFETARGET-NULL-KLUDGE" to flag anyplace you use this feature
   in the code.  */

#if FFETARGET_okCHARACTER1
ffebad
ffetarget_convert_character1_integer4 (ffetargetCharacter1 *res,
				       ffetargetCharacterSize size,
				       ffetargetInteger4 l, mallocPool pool)
{
  long long int l1;
  long int l2;
  int l3;
  short int l4;
  char l5;
  size_t size_of;
  char *p;

  if (((size_t) size) >= sizeof (l1))
    {
      l1 = l;
      p = (char *) &l1;
      size_of = sizeof (l1);
    }
  else if (((size_t) size) >= sizeof (l2))
    {
      l2 = l;
      p = (char *) &l2;
      size_of = sizeof (l2);
      l1 = l2;
    }
  else if (((size_t) size) >= sizeof (l3))
    {
      l3 = l;
      p = (char *) &l3;
      size_of = sizeof (l3);
      l1 = l3;
    }
  else if (((size_t) size) >= sizeof (l4))
    {
      l4 = l;
      p = (char *) &l4;
      size_of = sizeof (l4);
      l1 = l4;
    }
  else if (((size_t) size) >= sizeof (l5))
    {
      l5 = l;
      p = (char *) &l5;
      size_of = sizeof (l5);
      l1 = l5;
    }
  else
    {
      assert ("stumped by conversion from integer1!" == NULL);
      abort ();
    }

  res->length = size;
  if (size == 0)
    res->text = NULL;
  else
    {
      res->text = malloc_new_kp (pool, "FFETARGET cvt char1", size + 1);
      res->text[size] = '\0';
      if (((size_t) size) <= size_of)
	{
	  int i = size_of - size;

	  memcpy (res->text, p + i, size);
	  for (; i > 0; ++p, --i)
	    if (*p != 0)
	      return FFEBAD_TRUNCATING_NUMERIC;
	}
      else
	{
	  int i = size - size_of;

	  memset (res->text, 0, i);
	  memcpy (res->text + i, p, size_of);
	}
    }

  if (l1 != l)
    return FFEBAD_TRUNCATING_NUMERIC;
  return FFEBAD;
}

#endif
/* ffetarget_convert_character1_logical4 -- Raw conversion.

   Always append a null byte to the end, in case this is wanted in
   a special case such as passing a string as a FORMAT or %REF.
   Done to save a bit of hassle, nothing more, but it's a kludge anyway,
   because it isn't a "feature" that is self-documenting.  Use the
   string "FFETARGET-NULL-KLUDGE" to flag anyplace you use this feature
   in the code.  */

#if FFETARGET_okCHARACTER1
ffebad
ffetarget_convert_character1_logical4 (ffetargetCharacter1 *res,
				       ffetargetCharacterSize size,
				       ffetargetLogical4 l, mallocPool pool)
{
  long long int l1;
  long int l2;
  int l3;
  short int l4;
  char l5;
  size_t size_of;
  char *p;

  if (((size_t) size) >= sizeof (l1))
    {
      l1 = l;
      p = (char *) &l1;
      size_of = sizeof (l1);
    }
  else if (((size_t) size) >= sizeof (l2))
    {
      l2 = l;
      p = (char *) &l2;
      size_of = sizeof (l2);
      l1 = l2;
    }
  else if (((size_t) size) >= sizeof (l3))
    {
      l3 = l;
      p = (char *) &l3;
      size_of = sizeof (l3);
      l1 = l3;
    }
  else if (((size_t) size) >= sizeof (l4))
    {
      l4 = l;
      p = (char *) &l4;
      size_of = sizeof (l4);
      l1 = l4;
    }
  else if (((size_t) size) >= sizeof (l5))
    {
      l5 = l;
      p = (char *) &l5;
      size_of = sizeof (l5);
      l1 = l5;
    }
  else
    {
      assert ("stumped by conversion from logical1!" == NULL);
      abort ();
    }

  res->length = size;
  if (size == 0)
    res->text = NULL;
  else
    {
      res->text = malloc_new_kp (pool, "FFETARGET cvt char1", size + 1);
      res->text[size] = '\0';
      if (((size_t) size) <= size_of)
	{
	  int i = size_of - size;

	  memcpy (res->text, p + i, size);
	  for (; i > 0; ++p, --i)
	    if (*p != 0)
	      return FFEBAD_TRUNCATING_NUMERIC;
	}
      else
	{
	  int i = size - size_of;

	  memset (res->text, 0, i);
	  memcpy (res->text + i, p, size_of);
	}
    }

  if (l1 != l)
    return FFEBAD_TRUNCATING_NUMERIC;
  return FFEBAD;
}

#endif
/* ffetarget_convert_character1_typeless -- Raw conversion.

   Always append a null byte to the end, in case this is wanted in
   a special case such as passing a string as a FORMAT or %REF.
   Done to save a bit of hassle, nothing more, but it's a kludge anyway,
   because it isn't a "feature" that is self-documenting.  Use the
   string "FFETARGET-NULL-KLUDGE" to flag anyplace you use this feature
   in the code.  */

#if FFETARGET_okCHARACTER1
ffebad
ffetarget_convert_character1_typeless (ffetargetCharacter1 *res,
				       ffetargetCharacterSize size,
				       ffetargetTypeless l, mallocPool pool)
{
  unsigned long long int l1;
  unsigned long int l2;
  unsigned int l3;
  unsigned short int l4;
  unsigned char l5;
  size_t size_of;
  char *p;

  if (((size_t) size) >= sizeof (l1))
    {
      l1 = l;
      p = (char *) &l1;
      size_of = sizeof (l1);
    }
  else if (((size_t) size) >= sizeof (l2))
    {
      l2 = l;
      p = (char *) &l2;
      size_of = sizeof (l2);
      l1 = l2;
    }
  else if (((size_t) size) >= sizeof (l3))
    {
      l3 = l;
      p = (char *) &l3;
      size_of = sizeof (l3);
      l1 = l3;
    }
  else if (((size_t) size) >= sizeof (l4))
    {
      l4 = l;
      p = (char *) &l4;
      size_of = sizeof (l4);
      l1 = l4;
    }
  else if (((size_t) size) >= sizeof (l5))
    {
      l5 = l;
      p = (char *) &l5;
      size_of = sizeof (l5);
      l1 = l5;
    }
  else
    {
      assert ("stumped by conversion from typeless!" == NULL);
      abort ();
    }

  res->length = size;
  if (size == 0)
    res->text = NULL;
  else
    {
      res->text = malloc_new_kp (pool, "FFETARGET cvt char1", size + 1);
      res->text[size] = '\0';
      if (((size_t) size) <= size_of)
	{
	  int i = size_of - size;

	  memcpy (res->text, p + i, size);
	  for (; i > 0; ++p, --i)
	    if (*p != 0)
	      return FFEBAD_TRUNCATING_TYPELESS;
	}
      else
	{
	  int i = size - size_of;

	  memset (res->text, 0, i);
	  memcpy (res->text + i, p, size_of);
	}
    }

  if (l1 != l)
    return FFEBAD_TRUNCATING_TYPELESS;
  return FFEBAD;
}

#endif
/* ffetarget_divide_complex1 -- Divide function

   See prototype.  */

#if FFETARGET_okCOMPLEX1
ffebad
ffetarget_divide_complex1 (ffetargetComplex1 *res, ffetargetComplex1 l,
			   ffetargetComplex1 r)
{
  ffebad bad;
  ffetargetReal1 tmp1, tmp2, tmp3, tmp4;

  bad = ffetarget_multiply_real1 (&tmp1, r.real, r.real);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_multiply_real1 (&tmp2, r.imaginary, r.imaginary);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_add_real1 (&tmp3, tmp1, tmp2);
  if (bad != FFEBAD)
    return bad;

  if (ffetarget_iszero_real1 (tmp3))
    {
      ffetarget_real1_zero (&(res)->real);
      ffetarget_real1_zero (&(res)->imaginary);
      return FFEBAD_DIV_BY_ZERO;
    }

  bad = ffetarget_multiply_real1 (&tmp1, l.real, r.real);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_multiply_real1 (&tmp2, l.imaginary, r.imaginary);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_add_real1 (&tmp4, tmp1, tmp2);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_divide_real1 (&res->real, tmp4, tmp3);
  if (bad != FFEBAD)
    return bad;

  bad = ffetarget_multiply_real1 (&tmp1, r.real, l.imaginary);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_multiply_real1 (&tmp2, l.real, r.imaginary);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_subtract_real1 (&tmp4, tmp1, tmp2);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_divide_real1 (&res->imaginary, tmp4, tmp3);

  return FFEBAD;
}

#endif
/* ffetarget_divide_complex2 -- Divide function

   See prototype.  */

#if FFETARGET_okCOMPLEX2
ffebad
ffetarget_divide_complex2 (ffetargetComplex2 *res, ffetargetComplex2 l,
			   ffetargetComplex2 r)
{
  ffebad bad;
  ffetargetReal2 tmp1, tmp2, tmp3, tmp4;

  bad = ffetarget_multiply_real2 (&tmp1, r.real, r.real);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_multiply_real2 (&tmp2, r.imaginary, r.imaginary);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_add_real2 (&tmp3, tmp1, tmp2);
  if (bad != FFEBAD)
    return bad;

  if (ffetarget_iszero_real2 (tmp3))
    {
      ffetarget_real2_zero (&(res)->real);
      ffetarget_real2_zero (&(res)->imaginary);
      return FFEBAD_DIV_BY_ZERO;
    }

  bad = ffetarget_multiply_real2 (&tmp1, l.real, r.real);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_multiply_real2 (&tmp2, l.imaginary, r.imaginary);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_add_real2 (&tmp4, tmp1, tmp2);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_divide_real2 (&res->real, tmp4, tmp3);
  if (bad != FFEBAD)
    return bad;

  bad = ffetarget_multiply_real2 (&tmp1, r.real, l.imaginary);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_multiply_real2 (&tmp2, l.real, r.imaginary);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_subtract_real2 (&tmp4, tmp1, tmp2);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_divide_real2 (&res->imaginary, tmp4, tmp3);

  return FFEBAD;
}

#endif
/* ffetarget_hollerith -- Convert token to a hollerith constant

   Always append a null byte to the end, in case this is wanted in
   a special case such as passing a string as a FORMAT or %REF.
   Done to save a bit of hassle, nothing more, but it's a kludge anyway,
   because it isn't a "feature" that is self-documenting.  Use the
   string "FFETARGET-NULL-KLUDGE" to flag anyplace you use this feature
   in the code.  */

bool
ffetarget_hollerith (ffetargetHollerith *val, ffelexToken integer,
		     mallocPool pool)
{
  val->length = ffelex_token_length (integer);
  val->text = malloc_new_kp (pool, "ffetargetHollerith", val->length + 1);
  memcpy (val->text, ffelex_token_text (integer), val->length);
  val->text[val->length] = '\0';

  return TRUE;
}

/* ffetarget_integer_bad_magical -- Complain about a magical number

   Just calls ffebad with the arguments.  */

void
ffetarget_integer_bad_magical (ffelexToken t)
{
  ffebad_start (FFEBAD_BAD_MAGICAL);
  ffebad_here (0, ffelex_token_where_line (t), ffelex_token_where_column (t));
  ffebad_finish ();
}

/* ffetarget_integer_bad_magical_binary -- Complain about a magical number

   Just calls ffebad with the arguments.  */

void
ffetarget_integer_bad_magical_binary (ffelexToken integer,
				      ffelexToken minus)
{
  ffebad_start (FFEBAD_BAD_MAGICAL_BINARY);
  ffebad_here (0, ffelex_token_where_line (integer),
	       ffelex_token_where_column (integer));
  ffebad_here (1, ffelex_token_where_line (minus),
	       ffelex_token_where_column (minus));
  ffebad_finish ();
}

/* ffetarget_integer_bad_magical_precedence -- Complain about a magical
						   number

   Just calls ffebad with the arguments.  */

void
ffetarget_integer_bad_magical_precedence (ffelexToken integer,
					  ffelexToken uminus,
					  ffelexToken higher_op)
{
  ffebad_start (FFEBAD_BAD_MAGICAL_PRECEDENCE);
  ffebad_here (0, ffelex_token_where_line (integer),
	       ffelex_token_where_column (integer));
  ffebad_here (1, ffelex_token_where_line (uminus),
	       ffelex_token_where_column (uminus));
  ffebad_here (2, ffelex_token_where_line (higher_op),
	       ffelex_token_where_column (higher_op));
  ffebad_finish ();
}

/* ffetarget_integer_bad_magical_precedence_binary -- Complain...

   Just calls ffebad with the arguments.  */

void
ffetarget_integer_bad_magical_precedence_binary (ffelexToken integer,
						 ffelexToken minus,
						 ffelexToken higher_op)
{
  ffebad_start (FFEBAD_BAD_MAGICAL_PRECEDENCE_BINARY);
  ffebad_here (0, ffelex_token_where_line (integer),
	       ffelex_token_where_column (integer));
  ffebad_here (1, ffelex_token_where_line (minus),
	       ffelex_token_where_column (minus));
  ffebad_here (2, ffelex_token_where_line (higher_op),
	       ffelex_token_where_column (higher_op));
  ffebad_finish ();
}

/* ffetarget_integer1 -- Convert token to an integer

   See prototype.

   Token use count not affected overall.  */

#if FFETARGET_okINTEGER1
bool
ffetarget_integer1 (ffetargetInteger1 *val, ffelexToken integer)
{
  ffetargetInteger1 x;
  char *p;
  char c;

  assert (ffelex_token_type (integer) == FFELEX_typeNUMBER);

  p = ffelex_token_text (integer);
  x = 0;

  /* Skip past leading zeros. */

  while (((c = *p) != '\0') && (c == '0'))
    ++p;

  /* Interpret rest of number. */

  while (c != '\0')
    {
      if ((x == FFETARGET_integerALMOST_BIG_MAGICAL)
	  && (c == '0' + FFETARGET_integerFINISH_BIG_MAGICAL)
	  && (*(p + 1) == '\0'))
	{
	  *val = (ffetargetInteger1) FFETARGET_integerBIG_MAGICAL;
	  return TRUE;
	}
      else if (x == FFETARGET_integerALMOST_BIG_MAGICAL)
	{
	  if ((c > '0' + FFETARGET_integerFINISH_BIG_MAGICAL)
	      || (*(p + 1) != '\0'))
	    {
	      ffebad_start (FFEBAD_INTEGER_TOO_LARGE);
	      ffebad_here (0, ffelex_token_where_line (integer),
			   ffelex_token_where_column (integer));
	      ffebad_finish ();
	      *val = 0;
	      return FALSE;
	    }
	}
      else if (x > FFETARGET_integerALMOST_BIG_MAGICAL)
	{
	  ffebad_start (FFEBAD_INTEGER_TOO_LARGE);
	  ffebad_here (0, ffelex_token_where_line (integer),
		       ffelex_token_where_column (integer));
	  ffebad_finish ();
	  *val = 0;
	  return FALSE;
	}
      x = x * 10 + c - '0';
      c = *(++p);
    };

  *val = x;
  return TRUE;
}

#endif
/* ffetarget_integerbinary -- Convert token to a binary integer

   ffetarget_integerbinary x;
   if (ffetarget_integerdefault_8(&x,integer_token))
       // conversion ok.

   Token use count not affected overall.  */

bool
ffetarget_integerbinary (ffetargetIntegerDefault *val, ffelexToken integer)
{
  ffetargetIntegerDefault x;
  char *p;
  char c;
  bool bad_digit;

  assert ((ffelex_token_type (integer) == FFELEX_typeNAME)
	  || (ffelex_token_type (integer) == FFELEX_typeNUMBER));

  p = ffelex_token_text (integer);
  x = 0;

  /* Skip past leading zeros. */

  while (((c = *p) != '\0') && (c == '0'))
    ++p;

  /* Interpret rest of number. */

  bad_digit = FALSE;
  while (c != '\0')
    {
      if ((c >= '0') && (c <= '1'))
	c -= '0';
      else
	{
	  bad_digit = TRUE;
	  c = 0;
	}

#if 0				/* Don't complain about signed overflow; just
				   unsigned overflow. */
      if ((x == FFETARGET_integerALMOST_BIG_OVERFLOW_BINARY)
	  && (c == FFETARGET_integerFINISH_BIG_OVERFLOW_BINARY)
	  && (*(p + 1) == '\0'))
	{
	  *val = FFETARGET_integerBIG_OVERFLOW_BINARY;
	  return TRUE;
	}
      else
#endif
#if FFETARGET_integerFINISH_BIG_OVERFLOW_BINARY == 0
      if ((x & FFETARGET_integerALMOST_BIG_OVERFLOW_BINARY) != 0)
#else
      if (x == FFETARGET_integerALMOST_BIG_OVERFLOW_BINARY)
	{
	  if ((c > FFETARGET_integerFINISH_BIG_OVERFLOW_BINARY)
	      || (*(p + 1) != '\0'))
	    {
	      ffebad_start (FFEBAD_INTEGER_TOO_LARGE);
	      ffebad_here (0, ffelex_token_where_line (integer),
			   ffelex_token_where_column (integer));
	      ffebad_finish ();
	      *val = 0;
	      return FALSE;
	    }
	}
      else if (x > FFETARGET_integerALMOST_BIG_OVERFLOW_BINARY)
#endif
	{
	  ffebad_start (FFEBAD_INTEGER_TOO_LARGE);
	  ffebad_here (0, ffelex_token_where_line (integer),
		       ffelex_token_where_column (integer));
	  ffebad_finish ();
	  *val = 0;
	  return FALSE;
	}
      x = (x << 1) + c;
      c = *(++p);
    };

  if (bad_digit)
    {
      ffebad_start (FFEBAD_INVALID_BINARY_DIGIT);
      ffebad_here (0, ffelex_token_where_line (integer),
		   ffelex_token_where_column (integer));
      ffebad_finish ();
    }

  *val = x;
  return !bad_digit;
}

/* ffetarget_integerhex -- Convert token to a hex integer

   ffetarget_integerhex x;
   if (ffetarget_integerdefault_8(&x,integer_token))
       // conversion ok.

   Token use count not affected overall.  */

bool
ffetarget_integerhex (ffetargetIntegerDefault *val, ffelexToken integer)
{
  ffetargetIntegerDefault x;
  char *p;
  char c;
  bool bad_digit;

  assert ((ffelex_token_type (integer) == FFELEX_typeNAME)
	  || (ffelex_token_type (integer) == FFELEX_typeNUMBER));

  p = ffelex_token_text (integer);
  x = 0;

  /* Skip past leading zeros. */

  while (((c = *p) != '\0') && (c == '0'))
    ++p;

  /* Interpret rest of number. */

  bad_digit = FALSE;
  while (c != '\0')
    {
      if ((c >= 'A') && (c <= 'F'))
	c = c - 'A' + 10;
      else if ((c >= 'a') && (c <= 'f'))
	c = c - 'a' + 10;
      else if ((c >= '0') && (c <= '9'))
	c -= '0';
      else
	{
	  bad_digit = TRUE;
	  c = 0;
	}

#if 0				/* Don't complain about signed overflow; just
				   unsigned overflow. */
      if ((x == FFETARGET_integerALMOST_BIG_OVERFLOW_HEX)
	  && (c == FFETARGET_integerFINISH_BIG_OVERFLOW_HEX)
	  && (*(p + 1) == '\0'))
	{
	  *val = FFETARGET_integerBIG_OVERFLOW_HEX;
	  return TRUE;
	}
      else
#endif
#if FFETARGET_integerFINISH_BIG_OVERFLOW_HEX == 0
      if (x >= FFETARGET_integerALMOST_BIG_OVERFLOW_HEX)
#else
      if (x == FFETARGET_integerALMOST_BIG_OVERFLOW_HEX)
	{
	  if ((c > FFETARGET_integerFINISH_BIG_OVERFLOW_HEX)
	      || (*(p + 1) != '\0'))
	    {
	      ffebad_start (FFEBAD_INTEGER_TOO_LARGE);
	      ffebad_here (0, ffelex_token_where_line (integer),
			   ffelex_token_where_column (integer));
	      ffebad_finish ();
	      *val = 0;
	      return FALSE;
	    }
	}
      else if (x > FFETARGET_integerALMOST_BIG_OVERFLOW_HEX)
#endif
	{
	  ffebad_start (FFEBAD_INTEGER_TOO_LARGE);
	  ffebad_here (0, ffelex_token_where_line (integer),
		       ffelex_token_where_column (integer));
	  ffebad_finish ();
	  *val = 0;
	  return FALSE;
	}
      x = (x << 4) + c;
      c = *(++p);
    };

  if (bad_digit)
    {
      ffebad_start (FFEBAD_INVALID_HEX_DIGIT);
      ffebad_here (0, ffelex_token_where_line (integer),
		   ffelex_token_where_column (integer));
      ffebad_finish ();
    }

  *val = x;
  return !bad_digit;
}

/* ffetarget_integeroctal -- Convert token to an octal integer

   ffetarget_integeroctal x;
   if (ffetarget_integerdefault_8(&x,integer_token))
       // conversion ok.

   Token use count not affected overall.  */

bool
ffetarget_integeroctal (ffetargetIntegerDefault *val, ffelexToken integer)
{
  ffetargetIntegerDefault x;
  char *p;
  char c;
  bool bad_digit;

  assert ((ffelex_token_type (integer) == FFELEX_typeNAME)
	  || (ffelex_token_type (integer) == FFELEX_typeNUMBER));

  p = ffelex_token_text (integer);
  x = 0;

  /* Skip past leading zeros. */

  while (((c = *p) != '\0') && (c == '0'))
    ++p;

  /* Interpret rest of number. */

  bad_digit = FALSE;
  while (c != '\0')
    {
      if ((c >= '0') && (c <= '7'))
	c -= '0';
      else
	{
	  bad_digit = TRUE;
	  c = 0;
	}

#if 0				/* Don't complain about signed overflow; just
				   unsigned overflow. */
      if ((x == FFETARGET_integerALMOST_BIG_OVERFLOW_OCTAL)
	  && (c == FFETARGET_integerFINISH_BIG_OVERFLOW_OCTAL)
	  && (*(p + 1) == '\0'))
	{
	  *val = FFETARGET_integerBIG_OVERFLOW_OCTAL;
	  return TRUE;
	}
      else
#endif
#if FFETARGET_integerFINISH_BIG_OVERFLOW_OCTAL == 0
      if (x >= FFETARGET_integerALMOST_BIG_OVERFLOW_OCTAL)
#else
      if (x == FFETARGET_integerALMOST_BIG_OVERFLOW_OCTAL)
	{
	  if ((c > FFETARGET_integerFINISH_BIG_OVERFLOW_OCTAL)
	      || (*(p + 1) != '\0'))
	    {
	      ffebad_start (FFEBAD_INTEGER_TOO_LARGE);
	      ffebad_here (0, ffelex_token_where_line (integer),
			   ffelex_token_where_column (integer));
	      ffebad_finish ();
	      *val = 0;
	      return FALSE;
	    }
	}
      else if (x > FFETARGET_integerALMOST_BIG_OVERFLOW_OCTAL)
#endif
	{
	  ffebad_start (FFEBAD_INTEGER_TOO_LARGE);
	  ffebad_here (0, ffelex_token_where_line (integer),
		       ffelex_token_where_column (integer));
	  ffebad_finish ();
	  *val = 0;
	  return FALSE;
	}
      x = (x << 3) + c;
      c = *(++p);
    };

  if (bad_digit)
    {
      ffebad_start (FFEBAD_INVALID_OCTAL_DIGIT);
      ffebad_here (0, ffelex_token_where_line (integer),
		   ffelex_token_where_column (integer));
      ffebad_finish ();
    }

  *val = x;
  return !bad_digit;
}

/* ffetarget_multiply_complex1 -- Multiply function

   See prototype.  */

#if FFETARGET_okCOMPLEX1
ffebad
ffetarget_multiply_complex1 (ffetargetComplex1 *res, ffetargetComplex1 l,
			     ffetargetComplex1 r)
{
  ffebad bad;
  ffetargetReal1 tmp1, tmp2;

  bad = ffetarget_multiply_real1 (&tmp1, l.real, r.real);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_multiply_real1 (&tmp2, l.imaginary, r.imaginary);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_subtract_real1 (&res->real, tmp1, tmp2);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_multiply_real1 (&tmp1, l.imaginary, r.real);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_multiply_real1 (&tmp2, l.real, r.imaginary);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_add_real1 (&res->imaginary, tmp1, tmp2);

  return bad;
}

#endif
/* ffetarget_multiply_complex2 -- Multiply function

   See prototype.  */

#if FFETARGET_okCOMPLEX2
ffebad
ffetarget_multiply_complex2 (ffetargetComplex2 *res, ffetargetComplex2 l,
			     ffetargetComplex2 r)
{
  ffebad bad;
  ffetargetReal2 tmp1, tmp2;

  bad = ffetarget_multiply_real2 (&tmp1, l.real, r.real);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_multiply_real2 (&tmp2, l.imaginary, r.imaginary);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_subtract_real2 (&res->real, tmp1, tmp2);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_multiply_real2 (&tmp1, l.imaginary, r.real);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_multiply_real2 (&tmp2, l.real, r.imaginary);
  if (bad != FFEBAD)
    return bad;
  bad = ffetarget_add_real2 (&res->imaginary, tmp1, tmp2);

  return bad;
}

#endif
/* ffetarget_power_complexdefault_integerdefault -- Power function

   See prototype.  */

ffebad
ffetarget_power_complexdefault_integerdefault (ffetargetComplexDefault *res,
					       ffetargetComplexDefault l,
					       ffetargetIntegerDefault r)
{
  ffebad bad;
  ffetargetRealDefault tmp;
  ffetargetRealDefault tmp1;
  ffetargetRealDefault tmp2;
  ffetargetRealDefault two;

  if (ffetarget_iszero_real1 (l.real)
      && ffetarget_iszero_real1 (l.imaginary))
    {
      ffetarget_real1_zero (&res->real);
      ffetarget_real1_zero (&res->imaginary);
      return FFEBAD;
    }

  if (r == 0)
    {
      ffetarget_real1_one (&res->real);
      ffetarget_real1_zero (&res->imaginary);
      return FFEBAD;
    }

  if (r < 0)
    {
      r = -r;
      bad = ffetarget_multiply_real1 (&tmp1, l.real, l.real);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_multiply_real1 (&tmp2, l.imaginary, l.imaginary);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_add_real1 (&tmp, tmp1, tmp2);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_divide_real1 (&l.real, l.real, tmp);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_divide_real1 (&l.imaginary, l.imaginary, tmp);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_uminus_real1 (&l.imaginary, l.imaginary);
      if (bad != FFEBAD)
	return bad;
    }

  ffetarget_real1_two (&two);

  while ((r & 1) == 0)
    {
      bad = ffetarget_multiply_real1 (&tmp1, l.real, l.real);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_multiply_real1 (&tmp2, l.imaginary, l.imaginary);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_subtract_real1 (&tmp, tmp1, tmp2);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_multiply_real1 (&l.imaginary, l.real, l.imaginary);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_multiply_real1 (&l.imaginary, l.imaginary, two);
      if (bad != FFEBAD)
	return bad;
      l.real = tmp;
      r >>= 1;
    }

  *res = l;
  r >>= 1;

  while (r != 0)
    {
      bad = ffetarget_multiply_real1 (&tmp1, l.real, l.real);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_multiply_real1 (&tmp2, l.imaginary, l.imaginary);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_subtract_real1 (&tmp, tmp1, tmp2);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_multiply_real1 (&l.imaginary, l.real, l.imaginary);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_multiply_real1 (&l.imaginary, l.imaginary, two);
      if (bad != FFEBAD)
	return bad;
      l.real = tmp;
      if ((r & 1) == 1)
	{
	  bad = ffetarget_multiply_real1 (&tmp1, res->real, l.real);
	  if (bad != FFEBAD)
	    return bad;
	  bad = ffetarget_multiply_real1 (&tmp2, res->imaginary,
					  l.imaginary);
	  if (bad != FFEBAD)
	    return bad;
	  bad = ffetarget_subtract_real1 (&tmp, tmp1, tmp2);
	  if (bad != FFEBAD)
	    return bad;
	  bad = ffetarget_multiply_real1 (&tmp1, res->imaginary, l.real);
	  if (bad != FFEBAD)
	    return bad;
	  bad = ffetarget_multiply_real1 (&tmp2, res->real, l.imaginary);
	  if (bad != FFEBAD)
	    return bad;
	  bad = ffetarget_add_real1 (&res->imaginary, tmp1, tmp2);
	  if (bad != FFEBAD)
	    return bad;
	  res->real = tmp;
	}
      r >>= 1;
    }

  return FFEBAD;
}

/* ffetarget_power_complexdouble_integerdefault -- Power function

   See prototype.  */

#if FFETARGET_okCOMPLEXDOUBLE
ffebad
ffetarget_power_complexdouble_integerdefault (ffetargetComplexDouble *res,
			ffetargetComplexDouble l, ffetargetIntegerDefault r)
{
  ffebad bad;
  ffetargetRealDouble tmp;
  ffetargetRealDouble tmp1;
  ffetargetRealDouble tmp2;
  ffetargetRealDouble two;

  if (ffetarget_iszero_real2 (l.real)
      && ffetarget_iszero_real2 (l.imaginary))
    {
      ffetarget_real2_zero (&res->real);
      ffetarget_real2_zero (&res->imaginary);
      return FFEBAD;
    }

  if (r == 0)
    {
      ffetarget_real2_one (&res->real);
      ffetarget_real2_zero (&res->imaginary);
      return FFEBAD;
    }

  if (r < 0)
    {
      r = -r;
      bad = ffetarget_multiply_real2 (&tmp1, l.real, l.real);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_multiply_real2 (&tmp2, l.imaginary, l.imaginary);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_add_real2 (&tmp, tmp1, tmp2);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_divide_real2 (&l.real, l.real, tmp);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_divide_real2 (&l.imaginary, l.imaginary, tmp);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_uminus_real2 (&l.imaginary, l.imaginary);
      if (bad != FFEBAD)
	return bad;
    }

  ffetarget_real2_two (&two);

  while ((r & 1) == 0)
    {
      bad = ffetarget_multiply_real2 (&tmp1, l.real, l.real);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_multiply_real2 (&tmp2, l.imaginary, l.imaginary);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_subtract_real2 (&tmp, tmp1, tmp2);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_multiply_real2 (&l.imaginary, l.real, l.imaginary);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_multiply_real2 (&l.imaginary, l.imaginary, two);
      if (bad != FFEBAD)
	return bad;
      l.real = tmp;
      r >>= 1;
    }

  *res = l;
  r >>= 1;

  while (r != 0)
    {
      bad = ffetarget_multiply_real2 (&tmp1, l.real, l.real);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_multiply_real2 (&tmp2, l.imaginary, l.imaginary);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_subtract_real2 (&tmp, tmp1, tmp2);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_multiply_real2 (&l.imaginary, l.real, l.imaginary);
      if (bad != FFEBAD)
	return bad;
      bad = ffetarget_multiply_real2 (&l.imaginary, l.imaginary, two);
      if (bad != FFEBAD)
	return bad;
      l.real = tmp;
      if ((r & 1) == 1)
	{
	  bad = ffetarget_multiply_real2 (&tmp1, res->real, l.real);
	  if (bad != FFEBAD)
	    return bad;
	  bad = ffetarget_multiply_real2 (&tmp2, res->imaginary,
					  l.imaginary);
	  if (bad != FFEBAD)
	    return bad;
	  bad = ffetarget_subtract_real2 (&tmp, tmp1, tmp2);
	  if (bad != FFEBAD)
	    return bad;
	  bad = ffetarget_multiply_real2 (&tmp1, res->imaginary, l.real);
	  if (bad != FFEBAD)
	    return bad;
	  bad = ffetarget_multiply_real2 (&tmp2, res->real, l.imaginary);
	  if (bad != FFEBAD)
	    return bad;
	  bad = ffetarget_add_real2 (&res->imaginary, tmp1, tmp2);
	  if (bad != FFEBAD)
	    return bad;
	  res->real = tmp;
	}
      r >>= 1;
    }

  return FFEBAD;
}

#endif
/* ffetarget_power_integerdefault_integerdefault -- Power function

   See prototype.  */

ffebad
ffetarget_power_integerdefault_integerdefault (ffetargetIntegerDefault *res,
		       ffetargetIntegerDefault l, ffetargetIntegerDefault r)
{
  if (l == 0)
    {
      *res = 0;
      return FFEBAD;
    }

  if (r == 0)
    {
      *res = 1;
      return FFEBAD;
    }

  if (r < 0)
    {
      if (l == 1)
	*res = 1;
      else if (l == 0)
	*res = 1;
      else if (l == -1)
	*res = ((-r) & 1) == 0 ? 1 : -1;
      else
	*res = 0;
      return FFEBAD;
    }

  while ((r & 1) == 0)
    {
      l *= l;
      r >>= 1;
    }

  *res = l;
  r >>= 1;

  while (r != 0)
    {
      l *= l;
      if ((r & 1) == 1)
	*res *= l;
      r >>= 1;
    }

  return FFEBAD;
}

/* ffetarget_power_realdefault_integerdefault -- Power function

   See prototype.  */

ffebad
ffetarget_power_realdefault_integerdefault (ffetargetRealDefault *res,
			  ffetargetRealDefault l, ffetargetIntegerDefault r)
{
  ffebad bad;

  if (ffetarget_iszero_real1 (l))
    {
      ffetarget_real1_zero (res);
      return FFEBAD;
    }

  if (r == 0)
    {
      ffetarget_real1_one (res);
      return FFEBAD;
    }

  if (r < 0)
    {
      ffetargetRealDefault one;

      ffetarget_real1_one (&one);
      r = -r;
      bad = ffetarget_divide_real1 (&l, one, l);
      if (bad != FFEBAD)
	return bad;
    }

  while ((r & 1) == 0)
    {
      bad = ffetarget_multiply_real1 (&l, l, l);
      if (bad != FFEBAD)
	return bad;
      r >>= 1;
    }

  *res = l;
  r >>= 1;

  while (r != 0)
    {
      bad = ffetarget_multiply_real1 (&l, l, l);
      if (bad != FFEBAD)
	return bad;
      if ((r & 1) == 1)
	{
	  bad = ffetarget_multiply_real1 (res, *res, l);
	  if (bad != FFEBAD)
	    return bad;
	}
      r >>= 1;
    }

  return FFEBAD;
}

/* ffetarget_power_realdouble_integerdefault -- Power function

   See prototype.  */

ffebad
ffetarget_power_realdouble_integerdefault (ffetargetRealDouble *res,
					   ffetargetRealDouble l,
					   ffetargetIntegerDefault r)
{
  ffebad bad;

  if (ffetarget_iszero_real2 (l))
    {
      ffetarget_real2_zero (res);
      return FFEBAD;
    }

  if (r == 0)
    {
      ffetarget_real2_one (res);
      return FFEBAD;
    }

  if (r < 0)
    {
      ffetargetRealDouble one;

      ffetarget_real2_one (&one);
      r = -r;
      bad = ffetarget_divide_real2 (&l, one, l);
      if (bad != FFEBAD)
	return bad;
    }

  while ((r & 1) == 0)
    {
      bad = ffetarget_multiply_real2 (&l, l, l);
      if (bad != FFEBAD)
	return bad;
      r >>= 1;
    }

  *res = l;
  r >>= 1;

  while (r != 0)
    {
      bad = ffetarget_multiply_real2 (&l, l, l);
      if (bad != FFEBAD)
	return bad;
      if ((r & 1) == 1)
	{
	  bad = ffetarget_multiply_real2 (res, *res, l);
	  if (bad != FFEBAD)
	    return bad;
	}
      r >>= 1;
    }

  return FFEBAD;
}

/* ffetarget_print_binary -- Output typeless binary integer

   ffetargetTypeless val;
   ffetarget_typeless_binary(dmpout,val);  */

void
ffetarget_print_binary (FILE *f, ffetargetTypeless value)
{
  char *p;
  char digits[sizeof (value) * CHAR_BIT + 1];

  if (f == NULL)
    f = dmpout;

  p = &digits[ARRAY_SIZE (digits) - 1];
  *p = '\0';
  do
    {
      *--p = (value & 1) + '0';
      value >>= 1;
    } while (value == 0);

  fputs (p, f);
}

/* ffetarget_print_character1 -- Output character string

   ffetargetCharacter1 val;
   ffetarget_print_character1(dmpout,val);  */

void
ffetarget_print_character1 (FILE *f, ffetargetCharacter1 value)
{
  unsigned char *p;
  ffetargetCharacterSize i;

  fputc ('\'', dmpout);
  for (i = 0, p = value.text; i < value.length; ++i, ++p)
    ffetarget_print_char_ (f, *p);
  fputc ('\'', dmpout);
}

/* ffetarget_print_hollerith -- Output hollerith string

   ffetargetHollerith val;
   ffetarget_print_hollerith(dmpout,val);  */

void
ffetarget_print_hollerith (FILE *f, ffetargetHollerith value)
{
  unsigned char *p;
  ffetargetHollerithSize i;

  fputc ('\'', dmpout);
  for (i = 0, p = value.text; i < value.length; ++i, ++p)
    ffetarget_print_char_ (f, *p);
  fputc ('\'', dmpout);
}

/* ffetarget_print_octal -- Output typeless octal integer

   ffetargetTypeless val;
   ffetarget_print_octal(dmpout,val);  */

void
ffetarget_print_octal (FILE *f, ffetargetTypeless value)
{
  char *p;
  char digits[sizeof (value) * CHAR_BIT / 3 + 1];

  if (f == NULL)
    f = dmpout;

  p = &digits[ARRAY_SIZE (digits) - 3];
  *p = '\0';
  do
    {
      *--p = (value & 3) + '0';
      value >>= 3;
    } while (value == 0);

  fputs (p, f);
}

/* ffetarget_print_hex -- Output typeless hex integer

   ffetargetTypeless val;
   ffetarget_print_hex(dmpout,val);  */

void
ffetarget_print_hex (FILE *f, ffetargetTypeless value)
{
  char *p;
  char digits[sizeof (value) * CHAR_BIT / 4 + 1];
  static char hexdigits[16] = "0123456789ABCDEF";

  if (f == NULL)
    f = dmpout;

  p = &digits[ARRAY_SIZE (digits) - 3];
  *p = '\0';
  do
    {
      *--p = hexdigits[value & 4];
      value >>= 4;
    } while (value == 0);

  fputs (p, f);
}

/* ffetarget_real1 -- Convert token to a single-precision real number

   See prototype.

   Pass NULL for any token not provided by the user, but a valid Fortran
   real number must be provided somehow.  For example, it is ok for
   exponent_sign_token and exponent_digits_token to be NULL as long as
   exponent_token not only starts with "E" or "e" but also contains at least
   one digit following it.  Token use counts not affected overall.  */

#if FFETARGET_okREAL1
bool
ffetarget_real1 (ffetargetReal1 *value, ffelexToken integer,
		 ffelexToken decimal, ffelexToken fraction,
		 ffelexToken exponent, ffelexToken exponent_sign,
		 ffelexToken exponent_digits)
{
  size_t sz = 1;		/* Allow room for '\0' byte at end. */
  char *ptr = &ffetarget_string_[0];
  char *p = ptr;
  char *q;

#define dotok(x) if (x != NULL) ++sz;
#define dotoktxt(x) if (x != NULL) sz += ffelex_token_length(x)

  dotoktxt (integer);
  dotok (decimal);
  dotoktxt (fraction);
  dotoktxt (exponent);
  dotok (exponent_sign);
  dotoktxt (exponent_digits);

#undef dotok
#undef dotoktxt

  if (sz > ARRAY_SIZE (ffetarget_string_))
    p = ptr = (char *) malloc_new_ks (malloc_pool_image (), "ffetarget_real1",
				      sz);

#define dotoktxt(x) if (x != NULL)				   \
		  {						   \
		  for (q = ffelex_token_text(x); *q != '\0'; ++q)  \
		    *p++ = *q;					   \
		  }

  dotoktxt (integer);

  if (decimal != NULL)
    *p++ = '.';

  dotoktxt (fraction);
  dotoktxt (exponent);

  if (exponent_sign != NULL)
    {
      if (ffelex_token_type (exponent_sign) == FFELEX_typePLUS)
	*p++ = '+';
      else
	{
	  assert (ffelex_token_type (exponent_sign) == FFELEX_typeMINUS);
	  *p++ = '-';
	}
    }

  dotoktxt (exponent_digits);

#undef dotoktxt

  *p = '\0';

  ffetarget_make_real1 (value,
			FFETARGET_ATOF_ (ptr,
					 SFmode));

  if (sz > ARRAY_SIZE (ffetarget_string_))
    malloc_kill_ks (malloc_pool_image (), ptr, sz);

  return TRUE;
}

#endif
/* ffetarget_real2 -- Convert token to a single-precision real number

   See prototype.

   Pass NULL for any token not provided by the user, but a valid Fortran
   real number must be provided somehow.  For example, it is ok for
   exponent_sign_token and exponent_digits_token to be NULL as long as
   exponent_token not only starts with "E" or "e" but also contains at least
   one digit following it.  Token use counts not affected overall.  */

#if FFETARGET_okREAL2
bool
ffetarget_real2 (ffetargetReal2 *value, ffelexToken integer,
		 ffelexToken decimal, ffelexToken fraction,
		 ffelexToken exponent, ffelexToken exponent_sign,
		 ffelexToken exponent_digits)
{
  size_t sz = 1;		/* Allow room for '\0' byte at end. */
  char *ptr = &ffetarget_string_[0];
  char *p = ptr;
  char *q;

#define dotok(x) if (x != NULL) ++sz;
#define dotoktxt(x) if (x != NULL) sz += ffelex_token_length(x)

  dotoktxt (integer);
  dotok (decimal);
  dotoktxt (fraction);
  dotoktxt (exponent);
  dotok (exponent_sign);
  dotoktxt (exponent_digits);

#undef dotok
#undef dotoktxt

  if (sz > ARRAY_SIZE (ffetarget_string_))
    p = ptr = (char *) malloc_new_ks (malloc_pool_image (), "ffetarget_real1", sz);

#define dotoktxt(x) if (x != NULL)				   \
		  {						   \
		  for (q = ffelex_token_text(x); *q != '\0'; ++q)  \
		    *p++ = *q;					   \
		  }
#define dotoktxtexp(x) if (x != NULL)				       \
		  {						       \
		  *p++ = 'E';					       \
		  for (q = ffelex_token_text(x) + 1; *q != '\0'; ++q)  \
		    *p++ = *q;					       \
		  }

  dotoktxt (integer);

  if (decimal != NULL)
    *p++ = '.';

  dotoktxt (fraction);
  dotoktxtexp (exponent);

  if (exponent_sign != NULL)
    {
      if (ffelex_token_type (exponent_sign) == FFELEX_typePLUS)
	*p++ = '+';
      else
	{
	  assert (ffelex_token_type (exponent_sign) == FFELEX_typeMINUS);
	  *p++ = '-';
	}
    }

  dotoktxt (exponent_digits);

#undef dotoktxt

  *p = '\0';

  ffetarget_make_real2 (value,
			FFETARGET_ATOF_ (ptr,
					 DFmode));

  if (sz > ARRAY_SIZE (ffetarget_string_))
    malloc_kill_ks (malloc_pool_image (), ptr, sz);

  return TRUE;
}

#endif
bool
ffetarget_typeless_binary (ffetargetTypeless *xvalue, ffelexToken token)
{
  char *p;
  char c;
  ffetargetTypeless value = 0;
  ffetargetTypeless new_value = 0;
  bool bad_digit = FALSE;
  bool overflow = FALSE;

  p = ffelex_token_text (token);

  for (c = *p; c != '\0'; c = *++p)
    {
      new_value <<= 1;
      if ((new_value >> 1) != value)
	overflow = TRUE;
      if (ISDIGIT (c))
	new_value += c - '0';
      else
	bad_digit = TRUE;
      value = new_value;
    }

  if (bad_digit)
    {
      ffebad_start (FFEBAD_INVALID_TYPELESS_BINARY_DIGIT);
      ffebad_here (0, ffelex_token_where_line (token),
		   ffelex_token_where_column (token));
      ffebad_finish ();
    }
  else if (overflow)
    {
      ffebad_start (FFEBAD_TYPELESS_OVERFLOW);
      ffebad_here (0, ffelex_token_where_line (token),
		   ffelex_token_where_column (token));
      ffebad_finish ();
    }

  *xvalue = value;

  return !bad_digit && !overflow;
}

bool
ffetarget_typeless_octal (ffetargetTypeless *xvalue, ffelexToken token)
{
  char *p;
  char c;
  ffetargetTypeless value = 0;
  ffetargetTypeless new_value = 0;
  bool bad_digit = FALSE;
  bool overflow = FALSE;

  p = ffelex_token_text (token);

  for (c = *p; c != '\0'; c = *++p)
    {
      new_value <<= 3;
      if ((new_value >> 3) != value)
	overflow = TRUE;
      if (ISDIGIT (c))
	new_value += c - '0';
      else
	bad_digit = TRUE;
      value = new_value;
    }

  if (bad_digit)
    {
      ffebad_start (FFEBAD_INVALID_TYPELESS_OCTAL_DIGIT);
      ffebad_here (0, ffelex_token_where_line (token),
		   ffelex_token_where_column (token));
      ffebad_finish ();
    }
  else if (overflow)
    {
      ffebad_start (FFEBAD_TYPELESS_OVERFLOW);
      ffebad_here (0, ffelex_token_where_line (token),
		   ffelex_token_where_column (token));
      ffebad_finish ();
    }

  *xvalue = value;

  return !bad_digit && !overflow;
}

bool
ffetarget_typeless_hex (ffetargetTypeless *xvalue, ffelexToken token)
{
  char *p;
  char c;
  ffetargetTypeless value = 0;
  ffetargetTypeless new_value = 0;
  bool bad_digit = FALSE;
  bool overflow = FALSE;

  p = ffelex_token_text (token);

  for (c = *p; c != '\0'; c = *++p)
    {
      new_value <<= 4;
      if ((new_value >> 4) != value)
	overflow = TRUE;
      if (ISDIGIT (c))
	new_value += c - '0';
      else if ((c >= 'A') && (c <= 'F'))
	new_value += c - 'A' + 10;
      else if ((c >= 'a') && (c <= 'f'))
	new_value += c - 'a' + 10;
      else
	bad_digit = TRUE;
      value = new_value;
    }

  if (bad_digit)
    {
      ffebad_start (FFEBAD_INVALID_TYPELESS_HEX_DIGIT);
      ffebad_here (0, ffelex_token_where_line (token),
		   ffelex_token_where_column (token));
      ffebad_finish ();
    }
  else if (overflow)
    {
      ffebad_start (FFEBAD_TYPELESS_OVERFLOW);
      ffebad_here (0, ffelex_token_where_line (token),
		   ffelex_token_where_column (token));
      ffebad_finish ();
    }

  *xvalue = value;

  return !bad_digit && !overflow;
}

void
ffetarget_verify_character1 (mallocPool pool, ffetargetCharacter1 val)
{
  if (val.length != 0)
    malloc_verify_kp (pool, val.text, val.length);
}

/* This is like memcpy.	 It is needed because some systems' header files
   don't declare memcpy as a function but instead
   "#define memcpy(to,from,len) something".  */

void *
ffetarget_memcpy_ (void *dst, void *src, size_t len)
{
  return (void *) memcpy (dst, src, len);
}

/* ffetarget_num_digits_ -- Determine number of non-space characters in token

   ffetarget_num_digits_(token);

   All non-spaces are assumed to be binary, octal, or hex digits.  */

int
ffetarget_num_digits_ (ffelexToken token)
{
  int i;
  char *c;

  switch (ffelex_token_type (token))
    {
    case FFELEX_typeNAME:
    case FFELEX_typeNUMBER:
      return ffelex_token_length (token);

    case FFELEX_typeCHARACTER:
      i = 0;
      for (c = ffelex_token_text (token); *c != '\0'; ++c)
	{
	  if (*c != ' ')
	    ++i;
	}
      return i;

    default:
      assert ("weird token" == NULL);
      return 1;
    }
}
pan>to < graph->size && from < graph->size); if (to != from && graph->rep[from] != to) { graph->rep[from] = to; return true; } return false; } /* Create a new constraint consisting of LHS and RHS expressions. */ static constraint_t new_constraint (const struct constraint_expr lhs, const struct constraint_expr rhs) { constraint_t ret = constraint_pool.allocate (); ret->lhs = lhs; ret->rhs = rhs; return ret; } /* Print out constraint C to FILE. */ static void dump_constraint (FILE *file, constraint_t c) { if (c->lhs.type == ADDRESSOF) fprintf (file, "&"); else if (c->lhs.type == DEREF) fprintf (file, "*"); fprintf (file, "%s", get_varinfo (c->lhs.var)->name); if (c->lhs.offset == UNKNOWN_OFFSET) fprintf (file, " + UNKNOWN"); else if (c->lhs.offset != 0) fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset); fprintf (file, " = "); if (c->rhs.type == ADDRESSOF) fprintf (file, "&"); else if (c->rhs.type == DEREF) fprintf (file, "*"); fprintf (file, "%s", get_varinfo (c->rhs.var)->name); if (c->rhs.offset == UNKNOWN_OFFSET) fprintf (file, " + UNKNOWN"); else if (c->rhs.offset != 0) fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset); } void debug_constraint (constraint_t); void debug_constraints (void); void debug_constraint_graph (void); void debug_solution_for_var (unsigned int); void debug_sa_points_to_info (void); /* Print out constraint C to stderr. */ DEBUG_FUNCTION void debug_constraint (constraint_t c) { dump_constraint (stderr, c); fprintf (stderr, "\n"); } /* Print out all constraints to FILE */ static void dump_constraints (FILE *file, int from) { int i; constraint_t c; for (i = from; constraints.iterate (i, &c); i++) if (c) { dump_constraint (file, c); fprintf (file, "\n"); } } /* Print out all constraints to stderr. */ DEBUG_FUNCTION void debug_constraints (void) { dump_constraints (stderr, 0); } /* Print the constraint graph in dot format. */ static void dump_constraint_graph (FILE *file) { unsigned int i; /* Only print the graph if it has already been initialized: */ if (!graph) return; /* Prints the header of the dot file: */ fprintf (file, "strict digraph {\n"); fprintf (file, " node [\n shape = box\n ]\n"); fprintf (file, " edge [\n fontsize = \"12\"\n ]\n"); fprintf (file, "\n // List of nodes and complex constraints in " "the constraint graph:\n"); /* The next lines print the nodes in the graph together with the complex constraints attached to them. */ for (i = 1; i < graph->size; i++) { if (i == FIRST_REF_NODE) continue; if (find (i) != i) continue; if (i < FIRST_REF_NODE) fprintf (file, "\"%s\"", get_varinfo (i)->name); else fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name); if (graph->complex[i].exists ()) { unsigned j; constraint_t c; fprintf (file, " [label=\"\\N\\n"); for (j = 0; graph->complex[i].iterate (j, &c); ++j) { dump_constraint (file, c); fprintf (file, "\\l"); } fprintf (file, "\"]"); } fprintf (file, ";\n"); } /* Go over the edges. */ fprintf (file, "\n // Edges in the constraint graph:\n"); for (i = 1; i < graph->size; i++) { unsigned j; bitmap_iterator bi; if (find (i) != i) continue; EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i], 0, j, bi) { unsigned to = find (j); if (i == to) continue; if (i < FIRST_REF_NODE) fprintf (file, "\"%s\"", get_varinfo (i)->name); else fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name); fprintf (file, " -> "); if (to < FIRST_REF_NODE) fprintf (file, "\"%s\"", get_varinfo (to)->name); else fprintf (file, "\"*%s\"", get_varinfo (to - FIRST_REF_NODE)->name); fprintf (file, ";\n"); } } /* Prints the tail of the dot file. */ fprintf (file, "}\n"); } /* Print out the constraint graph to stderr. */ DEBUG_FUNCTION void debug_constraint_graph (void) { dump_constraint_graph (stderr); } /* SOLVER FUNCTIONS The solver is a simple worklist solver, that works on the following algorithm: sbitmap changed_nodes = all zeroes; changed_count = 0; For each node that is not already collapsed: changed_count++; set bit in changed nodes while (changed_count > 0) { compute topological ordering for constraint graph find and collapse cycles in the constraint graph (updating changed if necessary) for each node (n) in the graph in topological order: changed_count--; Process each complex constraint associated with the node, updating changed if necessary. For each outgoing edge from n, propagate the solution from n to the destination of the edge, updating changed as necessary. } */ /* Return true if two constraint expressions A and B are equal. */ static bool constraint_expr_equal (struct constraint_expr a, struct constraint_expr b) { return a.type == b.type && a.var == b.var && a.offset == b.offset; } /* Return true if constraint expression A is less than constraint expression B. This is just arbitrary, but consistent, in order to give them an ordering. */ static bool constraint_expr_less (struct constraint_expr a, struct constraint_expr b) { if (a.type == b.type) { if (a.var == b.var) return a.offset < b.offset; else return a.var < b.var; } else return a.type < b.type; } /* Return true if constraint A is less than constraint B. This is just arbitrary, but consistent, in order to give them an ordering. */ static bool constraint_less (const constraint_t &a, const constraint_t &b) { if (constraint_expr_less (a->lhs, b->lhs)) return true; else if (constraint_expr_less (b->lhs, a->lhs)) return false; else return constraint_expr_less (a->rhs, b->rhs); } /* Return true if two constraints A and B are equal. */ static bool constraint_equal (struct constraint a, struct constraint b) { return constraint_expr_equal (a.lhs, b.lhs) && constraint_expr_equal (a.rhs, b.rhs); } /* Find a constraint LOOKFOR in the sorted constraint vector VEC */ static constraint_t constraint_vec_find (vec<constraint_t> vec, struct constraint lookfor) { unsigned int place; constraint_t found; if (!vec.exists ()) return NULL; place = vec.lower_bound (&lookfor, constraint_less); if (place >= vec.length ()) return NULL; found = vec[place]; if (!constraint_equal (*found, lookfor)) return NULL; return found; } /* Union two constraint vectors, TO and FROM. Put the result in TO. Returns true of TO set is changed. */ static bool constraint_set_union (vec<constraint_t> *to, vec<constraint_t> *from) { int i; constraint_t c; bool any_change = false; FOR_EACH_VEC_ELT (*from, i, c) { if (constraint_vec_find (*to, *c) == NULL) { unsigned int place = to->lower_bound (c, constraint_less); to->safe_insert (place, c); any_change = true; } } return any_change; } /* Expands the solution in SET to all sub-fields of variables included. */ static bitmap solution_set_expand (bitmap set, bitmap *expanded) { bitmap_iterator bi; unsigned j; if (*expanded) return *expanded; *expanded = BITMAP_ALLOC (&iteration_obstack); /* In a first pass expand to the head of the variables we need to add all sub-fields off. This avoids quadratic behavior. */ EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi) { varinfo_t v = get_varinfo (j); if (v->is_artificial_var || v->is_full_var) continue; bitmap_set_bit (*expanded, v->head); } /* In the second pass now expand all head variables with subfields. */ EXECUTE_IF_SET_IN_BITMAP (*expanded, 0, j, bi) { varinfo_t v = get_varinfo (j); if (v->head != j) continue; for (v = vi_next (v); v != NULL; v = vi_next (v)) bitmap_set_bit (*expanded, v->id); } /* And finally set the rest of the bits from SET. */ bitmap_ior_into (*expanded, set); return *expanded; } /* Union solution sets TO and DELTA, and add INC to each member of DELTA in the process. */ static bool set_union_with_increment (bitmap to, bitmap delta, HOST_WIDE_INT inc, bitmap *expanded_delta) { bool changed = false; bitmap_iterator bi; unsigned int i; /* If the solution of DELTA contains anything it is good enough to transfer this to TO. */ if (bitmap_bit_p (delta, anything_id)) return bitmap_set_bit (to, anything_id); /* If the offset is unknown we have to expand the solution to all subfields. */ if (inc == UNKNOWN_OFFSET) { delta = solution_set_expand (delta, expanded_delta); changed |= bitmap_ior_into (to, delta); return changed; } /* For non-zero offset union the offsetted solution into the destination. */ EXECUTE_IF_SET_IN_BITMAP (delta, 0, i, bi) { varinfo_t vi = get_varinfo (i); /* If this is a variable with just one field just set its bit in the result. */ if (vi->is_artificial_var || vi->is_unknown_size_var || vi->is_full_var) changed |= bitmap_set_bit (to, i); else { HOST_WIDE_INT fieldoffset = vi->offset + inc; unsigned HOST_WIDE_INT size = vi->size; /* If the offset makes the pointer point to before the variable use offset zero for the field lookup. */ if (fieldoffset < 0) vi = get_varinfo (vi->head); else vi = first_or_preceding_vi_for_offset (vi, fieldoffset); do { changed |= bitmap_set_bit (to, vi->id); if (vi->is_full_var || vi->next == 0) break; /* We have to include all fields that overlap the current field shifted by inc. */ vi = vi_next (vi); } while (vi->offset < fieldoffset + size); } } return changed; } /* Insert constraint C into the list of complex constraints for graph node VAR. */ static void insert_into_complex (constraint_graph_t graph, unsigned int var, constraint_t c) { vec<constraint_t> complex = graph->complex[var]; unsigned int place = complex.lower_bound (c, constraint_less); /* Only insert constraints that do not already exist. */ if (place >= complex.length () || !constraint_equal (*c, *complex[place])) graph->complex[var].safe_insert (place, c); } /* Condense two variable nodes into a single variable node, by moving all associated info from FROM to TO. Returns true if TO node's constraint set changes after the merge. */ static bool merge_node_constraints (constraint_graph_t graph, unsigned int to, unsigned int from) { unsigned int i; constraint_t c; bool any_change = false; gcc_checking_assert (find (from) == to); /* Move all complex constraints from src node into to node */ FOR_EACH_VEC_ELT (graph->complex[from], i, c) { /* In complex constraints for node FROM, we may have either a = *FROM, and *FROM = a, or an offseted constraint which are always added to the rhs node's constraints. */ if (c->rhs.type == DEREF) c->rhs.var = to; else if (c->lhs.type == DEREF) c->lhs.var = to; else c->rhs.var = to; } any_change = constraint_set_union (&graph->complex[to], &graph->complex[from]); graph->complex[from].release (); return any_change; } /* Remove edges involving NODE from GRAPH. */ static void clear_edges_for_node (constraint_graph_t graph, unsigned int node) { if (graph->succs[node]) BITMAP_FREE (graph->succs[node]); } /* Merge GRAPH nodes FROM and TO into node TO. */ static void merge_graph_nodes (constraint_graph_t graph, unsigned int to, unsigned int from) { if (graph->indirect_cycles[from] != -1) { /* If we have indirect cycles with the from node, and we have none on the to node, the to node has indirect cycles from the from node now that they are unified. If indirect cycles exist on both, unify the nodes that they are in a cycle with, since we know they are in a cycle with each other. */ if (graph->indirect_cycles[to] == -1) graph->indirect_cycles[to] = graph->indirect_cycles[from]; } /* Merge all the successor edges. */ if (graph->succs[from]) { if (!graph->succs[to]) graph->succs[to] = BITMAP_ALLOC (&pta_obstack); bitmap_ior_into (graph->succs[to], graph->succs[from]); } clear_edges_for_node (graph, from); } /* Add an indirect graph edge to GRAPH, going from TO to FROM if it doesn't exist in the graph already. */ static void add_implicit_graph_edge (constraint_graph_t graph, unsigned int to, unsigned int from) { if (to == from) return; if (!graph->implicit_preds[to]) graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack); if (bitmap_set_bit (graph->implicit_preds[to], from)) stats.num_implicit_edges++; } /* Add a predecessor graph edge to GRAPH, going from TO to FROM if it doesn't exist in the graph already. Return false if the edge already existed, true otherwise. */ static void add_pred_graph_edge (constraint_graph_t graph, unsigned int to, unsigned int from) { if (!graph->preds[to]) graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack); bitmap_set_bit (graph->preds[to], from); } /* Add a graph edge to GRAPH, going from FROM to TO if it doesn't exist in the graph already. Return false if the edge already existed, true otherwise. */ static bool add_graph_edge (constraint_graph_t graph, unsigned int to, unsigned int from) { if (to == from) { return false; } else { bool r = false; if (!graph->succs[from]) graph->succs[from] = BITMAP_ALLOC (&pta_obstack); if (bitmap_set_bit (graph->succs[from], to)) { r = true; if (to < FIRST_REF_NODE && from < FIRST_REF_NODE) stats.num_edges++; } return r; } } /* Initialize the constraint graph structure to contain SIZE nodes. */ static void init_graph (unsigned int size) { unsigned int j; graph = XCNEW (struct constraint_graph); graph->size = size; graph->succs = XCNEWVEC (bitmap, graph->size); graph->indirect_cycles = XNEWVEC (int, graph->size); graph->rep = XNEWVEC (unsigned int, graph->size); /* ??? Macros do not support template types with multiple arguments, so we use a typedef to work around it. */ typedef vec<constraint_t> vec_constraint_t_heap; graph->complex = XCNEWVEC (vec_constraint_t_heap, size); graph->pe = XCNEWVEC (unsigned int, graph->size); graph->pe_rep = XNEWVEC (int, graph->size); for (j = 0; j < graph->size; j++) { graph->rep[j] = j; graph->pe_rep[j] = -1; graph->indirect_cycles[j] = -1; } } /* Build the constraint graph, adding only predecessor edges right now. */ static void build_pred_graph (void) { int i; constraint_t c; unsigned int j; graph->implicit_preds = XCNEWVEC (bitmap, graph->size); graph->preds = XCNEWVEC (bitmap, graph->size); graph->pointer_label = XCNEWVEC (unsigned int, graph->size); graph->loc_label = XCNEWVEC (unsigned int, graph->size); graph->pointed_by = XCNEWVEC (bitmap, graph->size); graph->points_to = XCNEWVEC (bitmap, graph->size); graph->eq_rep = XNEWVEC (int, graph->size); graph->direct_nodes = sbitmap_alloc (graph->size); graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack); bitmap_clear (graph->direct_nodes); for (j = 1; j < FIRST_REF_NODE; j++) { if (!get_varinfo (j)->is_special_var) bitmap_set_bit (graph->direct_nodes, j); } for (j = 0; j < graph->size; j++) graph->eq_rep[j] = -1; for (j = 0; j < varmap.length (); j++) graph->indirect_cycles[j] = -1; FOR_EACH_VEC_ELT (constraints, i, c) { struct constraint_expr lhs = c->lhs; struct constraint_expr rhs = c->rhs; unsigned int lhsvar = lhs.var; unsigned int rhsvar = rhs.var; if (lhs.type == DEREF) { /* *x = y. */ if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR) add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar); } else if (rhs.type == DEREF) { /* x = *y */ if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR) add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar); else bitmap_clear_bit (graph->direct_nodes, lhsvar); } else if (rhs.type == ADDRESSOF) { varinfo_t v; /* x = &y */ if (graph->points_to[lhsvar] == NULL) graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack); bitmap_set_bit (graph->points_to[lhsvar], rhsvar); if (graph->pointed_by[rhsvar] == NULL) graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack); bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar); /* Implicitly, *x = y */ add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar); /* All related variables are no longer direct nodes. */ bitmap_clear_bit (graph->direct_nodes, rhsvar); v = get_varinfo (rhsvar); if (!v->is_full_var) { v = get_varinfo (v->head); do { bitmap_clear_bit (graph->direct_nodes, v->id); v = vi_next (v); } while (v != NULL); } bitmap_set_bit (graph->address_taken, rhsvar); } else if (lhsvar > anything_id && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0) { /* x = y */ add_pred_graph_edge (graph, lhsvar, rhsvar); /* Implicitly, *x = *y */ add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, FIRST_REF_NODE + rhsvar); } else if (lhs.offset != 0 || rhs.offset != 0) { if (rhs.offset != 0) bitmap_clear_bit (graph->direct_nodes, lhs.var); else if (lhs.offset != 0) bitmap_clear_bit (graph->direct_nodes, rhs.var); } } } /* Build the constraint graph, adding successor edges. */ static void build_succ_graph (void) { unsigned i, t; constraint_t c; FOR_EACH_VEC_ELT (constraints, i, c) { struct constraint_expr lhs; struct constraint_expr rhs; unsigned int lhsvar; unsigned int rhsvar; if (!c) continue; lhs = c->lhs; rhs = c->rhs; lhsvar = find (lhs.var); rhsvar = find (rhs.var); if (lhs.type == DEREF) { if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR) add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar); } else if (rhs.type == DEREF) { if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR) add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar); } else if (rhs.type == ADDRESSOF) { /* x = &y */ gcc_checking_assert (find (rhs.var) == rhs.var); bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar); } else if (lhsvar > anything_id && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0) { add_graph_edge (graph, lhsvar, rhsvar); } } /* Add edges from STOREDANYTHING to all non-direct nodes that can receive pointers. */ t = find (storedanything_id); for (i = integer_id + 1; i < FIRST_REF_NODE; ++i) { if (!bitmap_bit_p (graph->direct_nodes, i) && get_varinfo (i)->may_have_pointers) add_graph_edge (graph, find (i), t); } /* Everything stored to ANYTHING also potentially escapes. */ add_graph_edge (graph, find (escaped_id), t); } /* Changed variables on the last iteration. */ static bitmap changed; /* Strongly Connected Component visitation info. */ struct scc_info { sbitmap visited; sbitmap deleted; unsigned int *dfs; unsigned int *node_mapping; int current_index; vec<unsigned> scc_stack; }; /* Recursive routine to find strongly connected components in GRAPH. SI is the SCC info to store the information in, and N is the id of current graph node we are processing. This is Tarjan's strongly connected component finding algorithm, as modified by Nuutila to keep only non-root nodes on the stack. The algorithm can be found in "On finding the strongly connected connected components in a directed graph" by Esko Nuutila and Eljas Soisalon-Soininen, in Information Processing Letters volume 49, number 1, pages 9-14. */ static void scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n) { unsigned int i; bitmap_iterator bi; unsigned int my_dfs; bitmap_set_bit (si->visited, n); si->dfs[n] = si->current_index ++; my_dfs = si->dfs[n]; /* Visit all the successors. */ EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi) { unsigned int w; if (i > LAST_REF_NODE) break; w = find (i); if (bitmap_bit_p (si->deleted, w)) continue; if (!bitmap_bit_p (si->visited, w)) scc_visit (graph, si, w); unsigned int t = find (w); gcc_checking_assert (find (n) == n); if (si->dfs[t] < si->dfs[n]) si->dfs[n] = si->dfs[t]; } /* See if any components have been identified. */ if (si->dfs[n] == my_dfs) { if (si->scc_stack.length () > 0 && si->dfs[si->scc_stack.last ()] >= my_dfs) { bitmap scc = BITMAP_ALLOC (NULL); unsigned int lowest_node; bitmap_iterator bi; bitmap_set_bit (scc, n); while (si->scc_stack.length () != 0 && si->dfs[si->scc_stack.last ()] >= my_dfs) { unsigned int w = si->scc_stack.pop (); bitmap_set_bit (scc, w); } lowest_node = bitmap_first_set_bit (scc); gcc_assert (lowest_node < FIRST_REF_NODE); /* Collapse the SCC nodes into a single node, and mark the indirect cycles. */ EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi) { if (i < FIRST_REF_NODE) { if (unite (lowest_node, i)) unify_nodes (graph, lowest_node, i, false); } else { unite (lowest_node, i); graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node; } } } bitmap_set_bit (si->deleted, n); } else si->scc_stack.safe_push (n); } /* Unify node FROM into node TO, updating the changed count if necessary when UPDATE_CHANGED is true. */ static void unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from, bool update_changed) { gcc_checking_assert (to != from && find (to) == to); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Unifying %s to %s\n", get_varinfo (from)->name, get_varinfo (to)->name); if (update_changed) stats.unified_vars_dynamic++; else stats.unified_vars_static++; merge_graph_nodes (graph, to, from); if (merge_node_constraints (graph, to, from)) { if (update_changed) bitmap_set_bit (changed, to); } /* Mark TO as changed if FROM was changed. If TO was already marked as changed, decrease the changed count. */ if (update_changed && bitmap_clear_bit (changed, from)) bitmap_set_bit (changed, to); varinfo_t fromvi = get_varinfo (from); if (fromvi->solution) { /* If the solution changes because of the merging, we need to mark the variable as changed. */ varinfo_t tovi = get_varinfo (to); if (bitmap_ior_into (tovi->solution, fromvi->solution)) { if (update_changed) bitmap_set_bit (changed, to); } BITMAP_FREE (fromvi->solution); if (fromvi->oldsolution) BITMAP_FREE (fromvi->oldsolution); if (stats.iterations > 0 && tovi->oldsolution) BITMAP_FREE (tovi->oldsolution); } if (graph->succs[to]) bitmap_clear_bit (graph->succs[to], to); } /* Information needed to compute the topological ordering of a graph. */ struct topo_info { /* sbitmap of visited nodes. */ sbitmap visited; /* Array that stores the topological order of the graph, *in reverse*. */ vec<unsigned> topo_order; }; /* Initialize and return a topological info structure. */ static struct topo_info * init_topo_info (void) { size_t size = graph->size; struct topo_info *ti = XNEW (struct topo_info); ti->visited = sbitmap_alloc (size); bitmap_clear (ti->visited); ti->topo_order.create (1); return ti; } /* Free the topological sort info pointed to by TI. */ static void free_topo_info (struct topo_info *ti) { sbitmap_free (ti->visited); ti->topo_order.release (); free (ti); } /* Visit the graph in topological order, and store the order in the topo_info structure. */ static void topo_visit (constraint_graph_t graph, struct topo_info *ti, unsigned int n) { bitmap_iterator bi; unsigned int j; bitmap_set_bit (ti->visited, n); if (graph->succs[n]) EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi) { if (!bitmap_bit_p (ti->visited, j)) topo_visit (graph, ti, j); } ti->topo_order.safe_push (n); } /* Process a constraint C that represents x = *(y + off), using DELTA as the starting solution for y. */ static void do_sd_constraint (constraint_graph_t graph, constraint_t c, bitmap delta, bitmap *expanded_delta) { unsigned int lhs = c->lhs.var; bool flag = false; bitmap sol = get_varinfo (lhs)->solution; unsigned int j; bitmap_iterator bi; HOST_WIDE_INT roffset = c->rhs.offset; /* Our IL does not allow this. */ gcc_checking_assert (c->lhs.offset == 0); /* If the solution of Y contains anything it is good enough to transfer this to the LHS. */ if (bitmap_bit_p (delta, anything_id)) { flag |= bitmap_set_bit (sol, anything_id); goto done; } /* If we do not know at with offset the rhs is dereferenced compute the reachability set of DELTA, conservatively assuming it is dereferenced at all valid offsets. */ if (roffset == UNKNOWN_OFFSET) { delta = solution_set_expand (delta, expanded_delta); /* No further offset processing is necessary. */ roffset = 0; } /* For each variable j in delta (Sol(y)), add an edge in the graph from j to x, and union Sol(j) into Sol(x). */ EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi) { varinfo_t v = get_varinfo (j); HOST_WIDE_INT fieldoffset = v->offset + roffset; unsigned HOST_WIDE_INT size = v->size; unsigned int t; if (v->is_full_var) ; else if (roffset != 0) { if (fieldoffset < 0) v = get_varinfo (v->head); else v = first_or_preceding_vi_for_offset (v, fieldoffset); } /* We have to include all fields that overlap the current field shifted by roffset. */ do { t = find (v->id); /* Adding edges from the special vars is pointless. They don't have sets that can change. */ if (get_varinfo (t)->is_special_var) flag |= bitmap_ior_into (sol, get_varinfo (t)->solution); /* Merging the solution from ESCAPED needlessly increases the set. Use ESCAPED as representative instead. */ else if (v->id == escaped_id) flag |= bitmap_set_bit (sol, escaped_id); else if (v->may_have_pointers && add_graph_edge (graph, lhs, t)) flag |= bitmap_ior_into (sol, get_varinfo (t)->solution); if (v->is_full_var || v->next == 0) break; v = vi_next (v); } while (v->offset < fieldoffset + size); } done: /* If the LHS solution changed, mark the var as changed. */ if (flag) { get_varinfo (lhs)->solution = sol; bitmap_set_bit (changed, lhs); } } /* Process a constraint C that represents *(x + off) = y using DELTA as the starting solution for x. */ static void do_ds_constraint (constraint_t c, bitmap delta, bitmap *expanded_delta) { unsigned int rhs = c->rhs.var; bitmap sol = get_varinfo (rhs)->solution; unsigned int j; bitmap_iterator bi; HOST_WIDE_INT loff = c->lhs.offset; bool escaped_p = false; /* Our IL does not allow this. */ gcc_checking_assert (c->rhs.offset == 0); /* If the solution of y contains ANYTHING simply use the ANYTHING solution. This avoids needlessly increasing the points-to sets. */ if (bitmap_bit_p (sol, anything_id)) sol = get_varinfo (find (anything_id))->solution; /* If the solution for x contains ANYTHING we have to merge the solution of y into all pointer variables which we do via STOREDANYTHING. */ if (bitmap_bit_p (delta, anything_id)) { unsigned t = find (storedanything_id); if (add_graph_edge (graph, t, rhs)) { if (bitmap_ior_into (get_varinfo (t)->solution, sol)) bitmap_set_bit (changed, t); } return; } /* If we do not know at with offset the rhs is dereferenced compute the reachability set of DELTA, conservatively assuming it is dereferenced at all valid offsets. */ if (loff == UNKNOWN_OFFSET) { delta = solution_set_expand (delta, expanded_delta); loff = 0; } /* For each member j of delta (Sol(x)), add an edge from y to j and union Sol(y) into Sol(j) */ EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi) { varinfo_t v = get_varinfo (j); unsigned int t; HOST_WIDE_INT fieldoffset = v->offset + loff; unsigned HOST_WIDE_INT size = v->size; if (v->is_full_var) ; else if (loff != 0) { if (fieldoffset < 0) v = get_varinfo (v->head); else v = first_or_preceding_vi_for_offset (v, fieldoffset); } /* We have to include all fields that overlap the current field shifted by loff. */ do { if (v->may_have_pointers) { /* If v is a global variable then this is an escape point. */ if (v->is_global_var && !escaped_p) { t = find (escaped_id); if (add_graph_edge (graph, t, rhs) && bitmap_ior_into (get_varinfo (t)->solution, sol)) bitmap_set_bit (changed, t); /* Enough to let rhs escape once. */ escaped_p = true; } if (v->is_special_var) break; t = find (v->id); if (add_graph_edge (graph, t, rhs) && bitmap_ior_into (get_varinfo (t)->solution, sol)) bitmap_set_bit (changed, t); } if (v->is_full_var || v->next == 0) break; v = vi_next (v); } while (v->offset < fieldoffset + size); } } /* Handle a non-simple (simple meaning requires no iteration), constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */ static void do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta, bitmap *expanded_delta) { if (c->lhs.type == DEREF) { if (c->rhs.type == ADDRESSOF) { gcc_unreachable (); } else { /* *x = y */ do_ds_constraint (c, delta, expanded_delta); } } else if (c->rhs.type == DEREF) { /* x = *y */ if (!(get_varinfo (c->lhs.var)->is_special_var)) do_sd_constraint (graph, c, delta, expanded_delta); } else { bitmap tmp; bool flag = false; gcc_checking_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR && c->rhs.offset != 0 && c->lhs.offset == 0); tmp = get_varinfo (c->lhs.var)->solution; flag = set_union_with_increment (tmp, delta, c->rhs.offset, expanded_delta); if (flag) bitmap_set_bit (changed, c->lhs.var); } } /* Initialize and return a new SCC info structure. */ static struct scc_info * init_scc_info (size_t size) { struct scc_info *si = XNEW (struct scc_info); size_t i; si->current_index = 0; si->visited = sbitmap_alloc (size); bitmap_clear (si->visited); si->deleted = sbitmap_alloc (size); bitmap_clear (si->deleted); si->node_mapping = XNEWVEC (unsigned int, size); si->dfs = XCNEWVEC (unsigned int, size); for (i = 0; i < size; i++) si->node_mapping[i] = i; si->scc_stack.create (1); return si; } /* Free an SCC info structure pointed to by SI */ static void free_scc_info (struct scc_info *si) { sbitmap_free (si->visited); sbitmap_free (si->deleted); free (si->node_mapping); free (si->dfs); si->scc_stack.release (); free (si); } /* Find indirect cycles in GRAPH that occur, using strongly connected components, and note them in the indirect cycles map. This technique comes from Ben Hardekopf and Calvin Lin, "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of Lines of Code", submitted to PLDI 2007. */ static void find_indirect_cycles (constraint_graph_t graph) { unsigned int i; unsigned int size = graph->size; struct scc_info *si = init_scc_info (size); for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ ) if (!bitmap_bit_p (si->visited, i) && find (i) == i) scc_visit (graph, si, i); free_scc_info (si); } /* Compute a topological ordering for GRAPH, and store the result in the topo_info structure TI. */ static void compute_topo_order (constraint_graph_t graph, struct topo_info *ti) { unsigned int i; unsigned int size = graph->size; for (i = 0; i != size; ++i) if (!bitmap_bit_p (ti->visited, i) && find (i) == i) topo_visit (graph, ti, i); } /* Structure used to for hash value numbering of pointer equivalence classes. */ typedef struct equiv_class_label { hashval_t hashcode; unsigned int equivalence_class; bitmap labels; } *equiv_class_label_t; typedef const struct equiv_class_label *const_equiv_class_label_t; /* Equiv_class_label hashtable helpers. */ struct equiv_class_hasher : free_ptr_hash <equiv_class_label> { static inline hashval_t hash (const equiv_class_label *); static inline bool equal (const equiv_class_label *, const equiv_class_label *); }; /* Hash function for a equiv_class_label_t */ inline hashval_t equiv_class_hasher::hash (const equiv_class_label *ecl) { return ecl->hashcode; } /* Equality function for two equiv_class_label_t's. */ inline bool equiv_class_hasher::equal (const equiv_class_label *eql1, const equiv_class_label *eql2) { return (eql1->hashcode == eql2->hashcode && bitmap_equal_p (eql1->labels, eql2->labels)); } /* A hashtable for mapping a bitmap of labels->pointer equivalence classes. */ static hash_table<equiv_class_hasher> *pointer_equiv_class_table; /* A hashtable for mapping a bitmap of labels->location equivalence classes. */ static hash_table<equiv_class_hasher> *location_equiv_class_table; /* Lookup a equivalence class in TABLE by the bitmap of LABELS with hash HAS it contains. Sets *REF_LABELS to the bitmap LABELS is equivalent to. */ static equiv_class_label * equiv_class_lookup_or_add (hash_table<equiv_class_hasher> *table, bitmap labels) { equiv_class_label **slot; equiv_class_label ecl; ecl.labels = labels; ecl.hashcode = bitmap_hash (labels); slot = table->find_slot (&ecl, INSERT); if (!*slot) { *slot = XNEW (struct equiv_class_label); (*slot)->labels = labels; (*slot)->hashcode = ecl.hashcode; (*slot)->equivalence_class = 0; } return *slot; } /* Perform offline variable substitution. This is a worst case quadratic time way of identifying variables that must have equivalent points-to sets, including those caused by static cycles, and single entry subgraphs, in the constraint graph. The technique is described in "Exploiting Pointer and Location Equivalence to Optimize Pointer Analysis. In the 14th International Static Analysis Symposium (SAS), August 2007." It is known as the "HU" algorithm, and is equivalent to value numbering the collapsed constraint graph including evaluating unions. The general method of finding equivalence classes is as follows: Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints. Initialize all non-REF nodes to be direct nodes. For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh variable} For each constraint containing the dereference, we also do the same thing. We then compute SCC's in the graph and unify nodes in the same SCC, including pts sets. For each non-collapsed node x: Visit all unvisited explicit incoming edges. Ignoring all non-pointers, set pts(x) = Union of pts(a) for y where y->x. Lookup the equivalence class for pts(x). If we found one, equivalence_class(x) = found class. Otherwise, equivalence_class(x) = new class, and new_class is added to the lookup table. All direct nodes with the same equivalence class can be replaced with a single representative node. All unlabeled nodes (label == 0) are not pointers and all edges involving them can be eliminated. We perform these optimizations during rewrite_constraints In addition to pointer equivalence class finding, we also perform location equivalence class finding. This is the set of variables that always appear together in points-to sets. We use this to compress the size of the points-to sets. */ /* Current maximum pointer equivalence class id. */ static int pointer_equiv_class; /* Current maximum location equivalence class id. */ static int location_equiv_class; /* Recursive routine to find strongly connected components in GRAPH, and label it's nodes with DFS numbers. */ static void condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n) { unsigned int i; bitmap_iterator bi; unsigned int my_dfs; gcc_checking_assert (si->node_mapping[n] == n); bitmap_set_bit (si->visited, n); si->dfs[n] = si->current_index ++; my_dfs = si->dfs[n]; /* Visit all the successors. */ EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi) { unsigned int w = si->node_mapping[i]; if (bitmap_bit_p (si->deleted, w)) continue; if (!bitmap_bit_p (si->visited, w)) condense_visit (graph, si, w); unsigned int t = si->node_mapping[w]; gcc_checking_assert (si->node_mapping[n] == n); if (si->dfs[t] < si->dfs[n]) si->dfs[n] = si->dfs[t]; } /* Visit all the implicit predecessors. */ EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi) { unsigned int w = si->node_mapping[i]; if (bitmap_bit_p (si->deleted, w)) continue; if (!bitmap_bit_p (si->visited, w)) condense_visit (graph, si, w); unsigned int t = si->node_mapping[w]; gcc_assert (si->node_mapping[n] == n); if (si->dfs[t] < si->dfs[n]) si->dfs[n] = si->dfs[t]; } /* See if any components have been identified. */ if (si->dfs[n] == my_dfs) { while (si->scc_stack.length () != 0 && si->dfs[si->scc_stack.last ()] >= my_dfs) { unsigned int w = si->scc_stack.pop (); si->node_mapping[w] = n; if (!bitmap_bit_p (graph->direct_nodes, w)) bitmap_clear_bit (graph->direct_nodes, n); /* Unify our nodes. */ if (graph->preds[w]) { if (!graph->preds[n]) graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack); bitmap_ior_into (graph->preds[n], graph->preds[w]); } if (graph->implicit_preds[w]) { if (!graph->implicit_preds[n]) graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack); bitmap_ior_into (graph->implicit_preds[n], graph->implicit_preds[w]); } if (graph->points_to[w]) { if (!graph->points_to[n]) graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack); bitmap_ior_into (graph->points_to[n], graph->points_to[w]); } } bitmap_set_bit (si->deleted, n); } else si->scc_stack.safe_push (n); } /* Label pointer equivalences. This performs a value numbering of the constraint graph to discover which variables will always have the same points-to sets under the current set of constraints. The way it value numbers is to store the set of points-to bits generated by the constraints and graph edges. This is just used as a hash and equality comparison. The *actual set of points-to bits* is completely irrelevant, in that we don't care about being able to extract them later. The equality values (currently bitmaps) just have to satisfy a few constraints, the main ones being: 1. The combining operation must be order independent. 2. The end result of a given set of operations must be unique iff the combination of input values is unique 3. Hashable. */ static void label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n) { unsigned int i, first_pred; bitmap_iterator bi; bitmap_set_bit (si->visited, n); /* Label and union our incoming edges's points to sets. */ first_pred = -1U; EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi) { unsigned int w = si->node_mapping[i]; if (!bitmap_bit_p (si->visited, w)) label_visit (graph, si, w); /* Skip unused edges */ if (w == n || graph->pointer_label[w] == 0) continue; if (graph->points_to[w]) { if (!graph->points_to[n]) { if (first_pred == -1U) first_pred = w; else { graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack); bitmap_ior (graph->points_to[n], graph->points_to[first_pred], graph->points_to[w]); } } else bitmap_ior_into (graph->points_to[n], graph->points_to[w]); } } /* Indirect nodes get fresh variables and a new pointer equiv class. */ if (!bitmap_bit_p (graph->direct_nodes, n)) { if (!graph->points_to[n]) { graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack); if (first_pred != -1U) bitmap_copy (graph->points_to[n], graph->points_to[first_pred]); } bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n); graph->pointer_label[n] = pointer_equiv_class++; equiv_class_label_t ecl; ecl = equiv_class_lookup_or_add (pointer_equiv_class_table, graph->points_to[n]); ecl->equivalence_class = graph->pointer_label[n]; return; } /* If there was only a single non-empty predecessor the pointer equiv class is the same. */ if (!graph->points_to[n]) { if (first_pred != -1U) { graph->pointer_label[n] = graph->pointer_label[first_pred]; graph->points_to[n] = graph->points_to[first_pred]; } return; } if (!bitmap_empty_p (graph->points_to[n])) { equiv_class_label_t ecl; ecl = equiv_class_lookup_or_add (pointer_equiv_class_table, graph->points_to[n]); if (ecl->equivalence_class == 0) ecl->equivalence_class = pointer_equiv_class++; else { BITMAP_FREE (graph->points_to[n]); graph->points_to[n] = ecl->labels; } graph->pointer_label[n] = ecl->equivalence_class; } } /* Print the pred graph in dot format. */ static void dump_pred_graph (struct scc_info *si, FILE *file) { unsigned int i; /* Only print the graph if it has already been initialized: */ if (!graph) return; /* Prints the header of the dot file: */ fprintf (file, "strict digraph {\n"); fprintf (file, " node [\n shape = box\n ]\n"); fprintf (file, " edge [\n fontsize = \"12\"\n ]\n"); fprintf (file, "\n // List of nodes and complex constraints in " "the constraint graph:\n"); /* The next lines print the nodes in the graph together with the complex constraints attached to them. */ for (i = 1; i < graph->size; i++) { if (i == FIRST_REF_NODE) continue; if (si->node_mapping[i] != i) continue; if (i < FIRST_REF_NODE) fprintf (file, "\"%s\"", get_varinfo (i)->name); else fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name); if (graph->points_to[i] && !bitmap_empty_p (graph->points_to[i])) { fprintf (file, "[label=\"%s = {", get_varinfo (i)->name); unsigned j; bitmap_iterator bi; EXECUTE_IF_SET_IN_BITMAP (graph->points_to[i], 0, j, bi) fprintf (file, " %d", j); fprintf (file, " }\"]"); } fprintf (file, ";\n"); } /* Go over the edges. */ fprintf (file, "\n // Edges in the constraint graph:\n"); for (i = 1; i < graph->size; i++) { unsigned j; bitmap_iterator bi; if (si->node_mapping[i] != i) continue; EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[i], 0, j, bi) { unsigned from = si->node_mapping[j]; if (from < FIRST_REF_NODE) fprintf (file, "\"%s\"", get_varinfo (from)->name); else fprintf (file, "\"*%s\"", get_varinfo (from - FIRST_REF_NODE)->name); fprintf (file, " -> "); if (i < FIRST_REF_NODE) fprintf (file, "\"%s\"", get_varinfo (i)->name); else fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name); fprintf (file, ";\n"); } } /* Prints the tail of the dot file. */ fprintf (file, "}\n"); } /* Perform offline variable substitution, discovering equivalence classes, and eliminating non-pointer variables. */ static struct scc_info * perform_var_substitution (constraint_graph_t graph) { unsigned int i; unsigned int size = graph->size; struct scc_info *si = init_scc_info (size); bitmap_obstack_initialize (&iteration_obstack); pointer_equiv_class_table = new hash_table<equiv_class_hasher> (511); location_equiv_class_table = new hash_table<equiv_class_hasher> (511); pointer_equiv_class = 1; location_equiv_class = 1; /* Condense the nodes, which means to find SCC's, count incoming predecessors, and unite nodes in SCC's. */ for (i = 1; i < FIRST_REF_NODE; i++) if (!bitmap_bit_p (si->visited, si->node_mapping[i])) condense_visit (graph, si, si->node_mapping[i]); if (dump_file && (dump_flags & TDF_GRAPH)) { fprintf (dump_file, "\n\n// The constraint graph before var-substitution " "in dot format:\n"); dump_pred_graph (si, dump_file); fprintf (dump_file, "\n\n"); } bitmap_clear (si->visited); /* Actually the label the nodes for pointer equivalences */ for (i = 1; i < FIRST_REF_NODE; i++) if (!bitmap_bit_p (si->visited, si->node_mapping[i])) label_visit (graph, si, si->node_mapping[i]); /* Calculate location equivalence labels. */ for (i = 1; i < FIRST_REF_NODE; i++) { bitmap pointed_by; bitmap_iterator bi; unsigned int j; if (!graph->pointed_by[i]) continue; pointed_by = BITMAP_ALLOC (&iteration_obstack); /* Translate the pointed-by mapping for pointer equivalence labels. */ EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi) { bitmap_set_bit (pointed_by, graph->pointer_label[si->node_mapping[j]]); } /* The original pointed_by is now dead. */ BITMAP_FREE (graph->pointed_by[i]); /* Look up the location equivalence label if one exists, or make one otherwise. */ equiv_class_label_t ecl; ecl = equiv_class_lookup_or_add (location_equiv_class_table, pointed_by); if (ecl->equivalence_class == 0) ecl->equivalence_class = location_equiv_class++; else { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Found location equivalence for node %s\n", get_varinfo (i)->name); BITMAP_FREE (pointed_by); } graph->loc_label[i] = ecl->equivalence_class; } if (dump_file && (dump_flags & TDF_DETAILS)) for (i = 1; i < FIRST_REF_NODE; i++) { unsigned j = si->node_mapping[i]; if (j != i) { fprintf (dump_file, "%s node id %d ", bitmap_bit_p (graph->direct_nodes, i) ? "Direct" : "Indirect", i); if (i < FIRST_REF_NODE) fprintf (dump_file, "\"%s\"", get_varinfo (i)->name); else fprintf (dump_file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name); fprintf (dump_file, " mapped to SCC leader node id %d ", j); if (j < FIRST_REF_NODE) fprintf (dump_file, "\"%s\"\n", get_varinfo (j)->name); else fprintf (dump_file, "\"*%s\"\n", get_varinfo (j - FIRST_REF_NODE)->name); } else { fprintf (dump_file, "Equivalence classes for %s node id %d ", bitmap_bit_p (graph->direct_nodes, i) ? "direct" : "indirect", i); if (i < FIRST_REF_NODE) fprintf (dump_file, "\"%s\"", get_varinfo (i)->name); else fprintf (dump_file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name); fprintf (dump_file, ": pointer %d, location %d\n", graph->pointer_label[i], graph->loc_label[i]); } } /* Quickly eliminate our non-pointer variables. */ for (i = 1; i < FIRST_REF_NODE; i++) { unsigned int node = si->node_mapping[i]; if (graph->pointer_label[node] == 0) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "%s is a non-pointer variable, eliminating edges.\n", get_varinfo (node)->name); stats.nonpointer_vars++; clear_edges_for_node (graph, node); } } return si; } /* Free information that was only necessary for variable substitution. */ static void free_var_substitution_info (struct scc_info *si) { free_scc_info (si); free (graph->pointer_label); free (graph->loc_label); free (graph->pointed_by); free (graph->points_to); free (graph->eq_rep); sbitmap_free (graph->direct_nodes); delete pointer_equiv_class_table; pointer_equiv_class_table = NULL; delete location_equiv_class_table; location_equiv_class_table = NULL; bitmap_obstack_release (&iteration_obstack); } /* Return an existing node that is equivalent to NODE, which has equivalence class LABEL, if one exists. Return NODE otherwise. */ static unsigned int find_equivalent_node (constraint_graph_t graph, unsigned int node, unsigned int label) { /* If the address version of this variable is unused, we can substitute it for anything else with the same label. Otherwise, we know the pointers are equivalent, but not the locations, and we can unite them later. */ if (!bitmap_bit_p (graph->address_taken, node)) { gcc_checking_assert (label < graph->size); if (graph->eq_rep[label] != -1) { /* Unify the two variables since we know they are equivalent. */ if (unite (graph->eq_rep[label], node)) unify_nodes (graph, graph->eq_rep[label], node, false); return graph->eq_rep[label]; } else { graph->eq_rep[label] = node; graph->pe_rep[label] = node; } } else { gcc_checking_assert (label < graph->size); graph->pe[node] = label; if (graph->pe_rep[label] == -1) graph->pe_rep[label] = node; } return node; } /* Unite pointer equivalent but not location equivalent nodes in GRAPH. This may only be performed once variable substitution is finished. */ static void unite_pointer_equivalences (constraint_graph_t graph) { unsigned int i; /* Go through the pointer equivalences and unite them to their representative, if they aren't already. */ for (i = 1; i < FIRST_REF_NODE; i++) { unsigned int label = graph->pe[i]; if (label) { int label_rep = graph->pe_rep[label]; if (label_rep == -1) continue; label_rep = find (label_rep); if (label_rep >= 0 && unite (label_rep, find (i))) unify_nodes (graph, label_rep, i, false); } } } /* Move complex constraints to the GRAPH nodes they belong to. */ static void move_complex_constraints (constraint_graph_t graph) { int i; constraint_t c; FOR_EACH_VEC_ELT (constraints, i, c) { if (c) { struct constraint_expr lhs = c->lhs; struct constraint_expr rhs = c->rhs; if (lhs.type == DEREF) { insert_into_complex (graph, lhs.var, c); } else if (rhs.type == DEREF) { if (!(get_varinfo (lhs.var)->is_special_var)) insert_into_complex (graph, rhs.var, c); } else if (rhs.type != ADDRESSOF && lhs.var > anything_id && (lhs.offset != 0 || rhs.offset != 0)) { insert_into_complex (graph, rhs.var, c); } } } } /* Optimize and rewrite complex constraints while performing collapsing of equivalent nodes. SI is the SCC_INFO that is the result of perform_variable_substitution. */ static void rewrite_constraints (constraint_graph_t graph, struct scc_info *si) { int i; constraint_t c; if (flag_checking) { for (unsigned int j = 0; j < graph->size; j++) gcc_assert (find (j) == j); } FOR_EACH_VEC_ELT (constraints, i, c) { struct constraint_expr lhs = c->lhs; struct constraint_expr rhs = c->rhs; unsigned int lhsvar = find (lhs.var); unsigned int rhsvar = find (rhs.var); unsigned int lhsnode, rhsnode; unsigned int lhslabel, rhslabel; lhsnode = si->node_mapping[lhsvar]; rhsnode = si->node_mapping[rhsvar]; lhslabel = graph->pointer_label[lhsnode]; rhslabel = graph->pointer_label[rhsnode]; /* See if it is really a non-pointer variable, and if so, ignore the constraint. */ if (lhslabel == 0) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "%s is a non-pointer variable," "ignoring constraint:", get_varinfo (lhs.var)->name); dump_constraint (dump_file, c); fprintf (dump_file, "\n"); } constraints[i] = NULL; continue; } if (rhslabel == 0) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "%s is a non-pointer variable," "ignoring constraint:", get_varinfo (rhs.var)->name); dump_constraint (dump_file, c); fprintf (dump_file, "\n"); } constraints[i] = NULL; continue; } lhsvar = find_equivalent_node (graph, lhsvar, lhslabel); rhsvar = find_equivalent_node (graph, rhsvar, rhslabel); c->lhs.var = lhsvar; c->rhs.var = rhsvar; } } /* Eliminate indirect cycles involving NODE. Return true if NODE was part of an SCC, false otherwise. */ static bool eliminate_indirect_cycles (unsigned int node) { if (graph->indirect_cycles[node] != -1 && !bitmap_empty_p (get_varinfo (node)->solution)) { unsigned int i; auto_vec<unsigned> queue; int queuepos; unsigned int to = find (graph->indirect_cycles[node]); bitmap_iterator bi; /* We can't touch the solution set and call unify_nodes at the same time, because unify_nodes is going to do bitmap unions into it. */ EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi) { if (find (i) == i && i != to) { if (unite (to, i)) queue.safe_push (i); } } for (queuepos = 0; queue.iterate (queuepos, &i); queuepos++) { unify_nodes (graph, to, i, true); } return true; } return false; } /* Solve the constraint graph GRAPH using our worklist solver. This is based on the PW* family of solvers from the "Efficient Field Sensitive Pointer Analysis for C" paper. It works by iterating over all the graph nodes, processing the complex constraints and propagating the copy constraints, until everything stops changed. This corresponds to steps 6-8 in the solving list given above. */ static void solve_graph (constraint_graph_t graph) { unsigned int size = graph->size; unsigned int i; bitmap pts; changed = BITMAP_ALLOC (NULL); /* Mark all initial non-collapsed nodes as changed. */ for (i = 1; i < size; i++) { varinfo_t ivi = get_varinfo (i); if (find (i) == i && !bitmap_empty_p (ivi->solution) && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i])) || graph->complex[i].length () > 0)) bitmap_set_bit (changed, i); } /* Allocate a bitmap to be used to store the changed bits. */ pts = BITMAP_ALLOC (&pta_obstack); while (!bitmap_empty_p (changed)) { unsigned int i; struct topo_info *ti = init_topo_info (); stats.iterations++; bitmap_obstack_initialize (&iteration_obstack); compute_topo_order (graph, ti); while (ti->topo_order.length () != 0) { i = ti->topo_order.pop (); /* If this variable is not a representative, skip it. */ if (find (i) != i) continue; /* In certain indirect cycle cases, we may merge this variable to another. */ if (eliminate_indirect_cycles (i) && find (i) != i) continue; /* If the node has changed, we need to process the complex constraints and outgoing edges again. */ if (bitmap_clear_bit (changed, i)) { unsigned int j; constraint_t c; bitmap solution; vec<constraint_t> complex = graph->complex[i]; varinfo_t vi = get_varinfo (i); bool solution_empty; /* Compute the changed set of solution bits. If anything is in the solution just propagate that. */ if (bitmap_bit_p (vi->solution, anything_id)) { /* If anything is also in the old solution there is nothing to do. ??? But we shouldn't ended up with "changed" set ... */ if (vi->oldsolution && bitmap_bit_p (vi->oldsolution, anything_id)) continue; bitmap_copy (pts, get_varinfo (find (anything_id))->solution); } else if (vi->oldsolution) bitmap_and_compl (pts, vi->solution, vi->oldsolution); else bitmap_copy (pts, vi->solution); if (bitmap_empty_p (pts)) continue; if (vi->oldsolution) bitmap_ior_into (vi->oldsolution, pts); else { vi->oldsolution = BITMAP_ALLOC (&oldpta_obstack); bitmap_copy (vi->oldsolution, pts); } solution = vi->solution; solution_empty = bitmap_empty_p (solution); /* Process the complex constraints */ bitmap expanded_pts = NULL; FOR_EACH_VEC_ELT (complex, j, c) { /* XXX: This is going to unsort the constraints in some cases, which will occasionally add duplicate constraints during unification. This does not affect correctness. */ c->lhs.var = find (c->lhs.var); c->rhs.var = find (c->rhs.var); /* The only complex constraint that can change our solution to non-empty, given an empty solution, is a constraint where the lhs side is receiving some set from elsewhere. */ if (!solution_empty || c->lhs.type != DEREF) do_complex_constraint (graph, c, pts, &expanded_pts); } BITMAP_FREE (expanded_pts); solution_empty = bitmap_empty_p (solution); if (!solution_empty) { bitmap_iterator bi; unsigned eff_escaped_id = find (escaped_id); /* Propagate solution to all successors. */ EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i], 0, j, bi) { bitmap tmp; bool flag; unsigned int to = find (j); tmp = get_varinfo (to)->solution; flag = false; /* Don't try to propagate to ourselves. */ if (to == i) continue; /* If we propagate from ESCAPED use ESCAPED as placeholder. */ if (i == eff_escaped_id) flag = bitmap_set_bit (tmp, escaped_id); else flag = bitmap_ior_into (tmp, pts); if (flag) bitmap_set_bit (changed, to); } } } } free_topo_info (ti); bitmap_obstack_release (&iteration_obstack); } BITMAP_FREE (pts); BITMAP_FREE (changed); bitmap_obstack_release (&oldpta_obstack); } /* Map from trees to variable infos. */ static hash_map<tree, varinfo_t> *vi_for_tree; /* Insert ID as the variable id for tree T in the vi_for_tree map. */ static void insert_vi_for_tree (tree t, varinfo_t vi) { gcc_assert (vi); gcc_assert (!vi_for_tree->put (t, vi)); } /* Find the variable info for tree T in VI_FOR_TREE. If T does not exist in the map, return NULL, otherwise, return the varinfo we found. */ static varinfo_t lookup_vi_for_tree (tree t) { varinfo_t *slot = vi_for_tree->get (t); if (slot == NULL) return NULL; return *slot; } /* Return a printable name for DECL */ static const char * alias_get_name (tree decl) { const char *res = NULL; char *temp; int num_printed = 0; if (!dump_file) return "NULL"; if (TREE_CODE (decl) == SSA_NAME) { res = get_name (decl); if (res) num_printed = asprintf (&temp, "%s_%u", res, SSA_NAME_VERSION (decl)); else num_printed = asprintf (&temp, "_%u", SSA_NAME_VERSION (decl)); if (num_printed > 0) { res = ggc_strdup (temp); free (temp); } } else if (DECL_P (decl)) { if (DECL_ASSEMBLER_NAME_SET_P (decl)) res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); else { res = get_name (decl); if (!res) { num_printed = asprintf (&temp, "D.%u", DECL_UID (decl)); if (num_printed > 0) { res = ggc_strdup (temp); free (temp); } } } } if (res != NULL) return res; return "NULL"; } /* Find the variable id for tree T in the map. If T doesn't exist in the map, create an entry for it and return it. */ static varinfo_t get_vi_for_tree (tree t) { varinfo_t *slot = vi_for_tree->get (t); if (slot == NULL) { unsigned int id = create_variable_info_for (t, alias_get_name (t), false); return get_varinfo (id); } return *slot; } /* Get a scalar constraint expression for a new temporary variable. */ static struct constraint_expr new_scalar_tmp_constraint_exp (const char *name, bool add_id) { struct constraint_expr tmp; varinfo_t vi; vi = new_var_info (NULL_TREE, name, add_id); vi->offset = 0; vi->size = -1; vi->fullsize = -1; vi->is_full_var = 1; tmp.var = vi->id; tmp.type = SCALAR; tmp.offset = 0; return tmp; } /* Get a constraint expression vector from an SSA_VAR_P node. If address_p is true, the result will be taken its address of. */ static void get_constraint_for_ssa_var (tree t, vec<ce_s> *results, bool address_p) { struct constraint_expr cexpr; varinfo_t vi; /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */ gcc_assert (TREE_CODE (t) == SSA_NAME || DECL_P (t)); /* For parameters, get at the points-to set for the actual parm decl. */ if (TREE_CODE (t) == SSA_NAME && SSA_NAME_IS_DEFAULT_DEF (t) && (TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL || TREE_CODE (SSA_NAME_VAR (t)) == RESULT_DECL)) { get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p); return; } /* For global variables resort to the alias target. */ if (TREE_CODE (t) == VAR_DECL && (TREE_STATIC (t) || DECL_EXTERNAL (t))) { varpool_node *node = varpool_node::get (t); if (node && node->alias && node->analyzed) { node = node->ultimate_alias_target (); t = node->decl; } } vi = get_vi_for_tree (t); cexpr.var = vi->id; cexpr.type = SCALAR; cexpr.offset = 0; /* If we are not taking the address of the constraint expr, add all sub-fiels of the variable as well. */ if (!address_p && !vi->is_full_var) { for (; vi; vi = vi_next (vi)) { cexpr.var = vi->id; results->safe_push (cexpr); } return; } results->safe_push (cexpr); } /* Process constraint T, performing various simplifications and then adding it to our list of overall constraints. */ static void process_constraint (constraint_t t) { struct constraint_expr rhs = t->rhs; struct constraint_expr lhs = t->lhs; gcc_assert (rhs.var < varmap.length ()); gcc_assert (lhs.var < varmap.length ()); /* If we didn't get any useful constraint from the lhs we get &ANYTHING as fallback from get_constraint_for. Deal with it here by turning it into *ANYTHING. */ if (lhs.type == ADDRESSOF && lhs.var == anything_id) lhs.type = DEREF; /* ADDRESSOF on the lhs is invalid. */ gcc_assert (lhs.type != ADDRESSOF); /* We shouldn't add constraints from things that cannot have pointers. It's not completely trivial to avoid in the callers, so do it here. */ if (rhs.type != ADDRESSOF && !get_varinfo (rhs.var)->may_have_pointers) return; /* Likewise adding to the solution of a non-pointer var isn't useful. */ if (!get_varinfo (lhs.var)->may_have_pointers) return; /* This can happen in our IR with things like n->a = *p */ if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id) { /* Split into tmp = *rhs, *lhs = tmp */ struct constraint_expr tmplhs; tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp", true); process_constraint (new_constraint (tmplhs, rhs)); process_constraint (new_constraint (lhs, tmplhs)); } else if (rhs.type == ADDRESSOF && lhs.type == DEREF) { /* Split into tmp = &rhs, *lhs = tmp */ struct constraint_expr tmplhs; tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp", true); process_constraint (new_constraint (tmplhs, rhs)); process_constraint (new_constraint (lhs, tmplhs)); } else { gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0); constraints.safe_push (t); } } /* Return the position, in bits, of FIELD_DECL from the beginning of its structure. */ static HOST_WIDE_INT bitpos_of_field (const tree fdecl) { if (!tree_fits_shwi_p (DECL_FIELD_OFFSET (fdecl)) || !tree_fits_shwi_p (DECL_FIELD_BIT_OFFSET (fdecl))) return -1; return (tree_to_shwi (DECL_FIELD_OFFSET (fdecl)) * BITS_PER_UNIT + tree_to_shwi (DECL_FIELD_BIT_OFFSET (fdecl))); } /* Get constraint expressions for offsetting PTR by OFFSET. Stores the resulting constraint expressions in *RESULTS. */ static void get_constraint_for_ptr_offset (tree ptr, tree offset, vec<ce_s> *results) { struct constraint_expr c; unsigned int j, n; HOST_WIDE_INT rhsoffset; /* If we do not do field-sensitive PTA adding offsets to pointers does not change the points-to solution. */ if (!use_field_sensitive) { get_constraint_for_rhs (ptr, results); return; } /* If the offset is not a non-negative integer constant that fits in a HOST_WIDE_INT, we have to fall back to a conservative solution which includes all sub-fields of all pointed-to variables of ptr. */ if (offset == NULL_TREE || TREE_CODE (offset) != INTEGER_CST) rhsoffset = UNKNOWN_OFFSET; else { /* Sign-extend the offset. */ offset_int soffset = offset_int::from (offset, SIGNED); if (!wi::fits_shwi_p (soffset)) rhsoffset = UNKNOWN_OFFSET; else { /* Make sure the bit-offset also fits. */ HOST_WIDE_INT rhsunitoffset = soffset.to_shwi (); rhsoffset = rhsunitoffset * BITS_PER_UNIT; if (rhsunitoffset != rhsoffset / BITS_PER_UNIT) rhsoffset = UNKNOWN_OFFSET; } } get_constraint_for_rhs (ptr, results); if (rhsoffset == 0) return; /* As we are eventually appending to the solution do not use vec::iterate here. */ n = results->length (); for (j = 0; j < n; j++) { varinfo_t curr; c = (*results)[j]; curr = get_varinfo (c.var); if (c.type == ADDRESSOF /* If this varinfo represents a full variable just use it. */ && curr->is_full_var) ; else if (c.type == ADDRESSOF /* If we do not know the offset add all subfields. */ && rhsoffset == UNKNOWN_OFFSET) { varinfo_t temp = get_varinfo (curr->head); do { struct constraint_expr c2; c2.var = temp->id; c2.type = ADDRESSOF; c2.offset = 0; if (c2.var != c.var) results->safe_push (c2); temp = vi_next (temp); } while (temp); } else if (c.type == ADDRESSOF) { varinfo_t temp; unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset; /* If curr->offset + rhsoffset is less than zero adjust it. */ if (rhsoffset < 0 && curr->offset < offset) offset = 0; /* We have to include all fields that overlap the current field shifted by rhsoffset. And we include at least the last or the first field of the variable to represent reachability of off-bound addresses, in particular &object + 1, conservatively correct. */ temp = first_or_preceding_vi_for_offset (curr, offset); c.var = temp->id; c.offset = 0; temp = vi_next (temp); while (temp && temp->offset < offset + curr->size) { struct constraint_expr c2; c2.var = temp->id; c2.type = ADDRESSOF; c2.offset = 0; results->safe_push (c2); temp = vi_next (temp); } } else if (c.type == SCALAR) { gcc_assert (c.offset == 0); c.offset = rhsoffset; } else /* We shouldn't get any DEREFs here. */ gcc_unreachable (); (*results)[j] = c; } } /* Given a COMPONENT_REF T, return the constraint_expr vector for it. If address_p is true the result will be taken its address of. If lhs_p is true then the constraint expression is assumed to be used as the lhs. */ static void get_constraint_for_component_ref (tree t, vec<ce_s> *results, bool address_p, bool lhs_p) { tree orig_t = t; HOST_WIDE_INT bitsize = -1; HOST_WIDE_INT bitmaxsize = -1; HOST_WIDE_INT bitpos; bool reverse; tree forzero; /* Some people like to do cute things like take the address of &0->a.b */ forzero = t; while (handled_component_p (forzero) || INDIRECT_REF_P (forzero) || TREE_CODE (forzero) == MEM_REF) forzero = TREE_OPERAND (forzero, 0); if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero)) { struct constraint_expr temp; temp.offset = 0; temp.var = integer_id; temp.type = SCALAR; results->safe_push (temp); return; } t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize, &reverse); /* Pretend to take the address of the base, we'll take care of adding the required subset of sub-fields below. */ get_constraint_for_1 (t, results, true, lhs_p); gcc_assert (results->length () == 1); struct constraint_expr &result = results->last (); if (result.type == SCALAR && get_varinfo (result.var)->is_full_var) /* For single-field vars do not bother about the offset. */ result.offset = 0; else if (result.type == SCALAR) { /* In languages like C, you can access one past the end of an array. You aren't allowed to dereference it, so we can ignore this constraint. When we handle pointer subtraction, we may have to do something cute here. */ if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result.var)->fullsize && bitmaxsize != 0) { /* It's also not true that the constraint will actually start at the right offset, it may start in some padding. We only care about setting the constraint to the first actual field it touches, so walk to find it. */ struct constraint_expr cexpr = result; varinfo_t curr; results->pop (); cexpr.offset = 0; for (curr = get_varinfo (cexpr.var); curr; curr = vi_next (curr)) { if (ranges_overlap_p (curr->offset, curr->size, bitpos, bitmaxsize)) { cexpr.var = curr->id; results->safe_push (cexpr); if (address_p) break; } } /* If we are going to take the address of this field then to be able to compute reachability correctly add at least the last field of the variable. */ if (address_p && results->length () == 0) { curr = get_varinfo (cexpr.var); while (curr->next != 0) curr = vi_next (curr); cexpr.var = curr->id; results->safe_push (cexpr); } else if (results->length () == 0) /* Assert that we found *some* field there. The user couldn't be accessing *only* padding. */ /* Still the user could access one past the end of an array embedded in a struct resulting in accessing *only* padding. */ /* Or accessing only padding via type-punning to a type that has a filed just in padding space. */ { cexpr.type = SCALAR; cexpr.var = anything_id; cexpr.offset = 0; results->safe_push (cexpr); } } else if (bitmaxsize == 0) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Access to zero-sized part of variable," "ignoring\n"); } else if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Access to past the end of variable, ignoring\n"); } else if (result.type == DEREF) { /* If we do not know exactly where the access goes say so. Note that only for non-structure accesses we know that we access at most one subfiled of any variable. */ if (bitpos == -1 || bitsize != bitmaxsize || AGGREGATE_TYPE_P (TREE_TYPE (orig_t)) || result.offset == UNKNOWN_OFFSET) result.offset = UNKNOWN_OFFSET; else result.offset += bitpos; } else if (result.type == ADDRESSOF) { /* We can end up here for component references on a VIEW_CONVERT_EXPR <>(&foobar). */ result.type = SCALAR; result.var = anything_id; result.offset = 0; } else gcc_unreachable (); } /* Dereference the constraint expression CONS, and return the result. DEREF (ADDRESSOF) = SCALAR DEREF (SCALAR) = DEREF DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp)) This is needed so that we can handle dereferencing DEREF constraints. */ static void do_deref (vec<ce_s> *constraints) { struct constraint_expr *c; unsigned int i = 0; FOR_EACH_VEC_ELT (*constraints, i, c) { if (c->type == SCALAR) c->type = DEREF; else if (c->type == ADDRESSOF) c->type = SCALAR; else if (c->type == DEREF) { struct constraint_expr tmplhs; tmplhs = new_scalar_tmp_constraint_exp ("dereftmp", true); process_constraint (new_constraint (tmplhs, *c)); c->var = tmplhs.var; } else gcc_unreachable (); } } /* Given a tree T, return the constraint expression for taking the address of it. */ static void get_constraint_for_address_of (tree t, vec<ce_s> *results) { struct constraint_expr *c; unsigned int i; get_constraint_for_1 (t, results, true, true); FOR_EACH_VEC_ELT (*results, i, c) { if (c->type == DEREF) c->type = SCALAR; else c->type = ADDRESSOF; } } /* Given a tree T, return the constraint expression for it. */ static void get_constraint_for_1 (tree t, vec<ce_s> *results, bool address_p, bool lhs_p) { struct constraint_expr temp; /* x = integer is all glommed to a single variable, which doesn't point to anything by itself. That is, of course, unless it is an integer constant being treated as a pointer, in which case, we will return that this is really the addressof anything. This happens below, since it will fall into the default case. The only case we know something about an integer treated like a pointer is when it is the NULL pointer, and then we just say it points to NULL. Do not do that if -fno-delete-null-pointer-checks though, because in that case *NULL does not fail, so it _should_ alias *anything. It is not worth adding a new option or renaming the existing one, since this case is relatively obscure. */ if ((TREE_CODE (t) == INTEGER_CST && integer_zerop (t)) /* The only valid CONSTRUCTORs in gimple with pointer typed elements are zero-initializer. But in IPA mode we also process global initializers, so verify at least. */ || (TREE_CODE (t) == CONSTRUCTOR && CONSTRUCTOR_NELTS (t) == 0)) { if (flag_delete_null_pointer_checks) temp.var = nothing_id; else temp.var = nonlocal_id; temp.type = ADDRESSOF; temp.offset = 0; results->safe_push (temp); return; } /* String constants are read-only, ideally we'd have a CONST_DECL for those. */ if (TREE_CODE (t) == STRING_CST) { temp.var = string_id; temp.type = SCALAR; temp.offset = 0; results->safe_push (temp); return; } switch (TREE_CODE_CLASS (TREE_CODE (t))) { case tcc_expression: { switch (TREE_CODE (t)) { case ADDR_EXPR: get_constraint_for_address_of (TREE_OPERAND (t, 0), results); return; default:; } break; } case tcc_reference: { switch (TREE_CODE (t)) { case MEM_REF: { struct constraint_expr cs; varinfo_t vi, curr; get_constraint_for_ptr_offset (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1), results); do_deref (results); /* If we are not taking the address then make sure to process all subvariables we might access. */ if (address_p) return; cs = results->last (); if (cs.type == DEREF && type_can_have_subvars (TREE_TYPE (t))) { /* For dereferences this means we have to defer it to solving time. */ results->last ().offset = UNKNOWN_OFFSET; return; } if (cs.type != SCALAR) return; vi = get_varinfo (cs.var); curr = vi_next (vi); if (!vi->is_full_var && curr) { unsigned HOST_WIDE_INT size; if (tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (t)))) size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t))); else size = -1; for (; curr; curr = vi_next (curr)) { if (curr->offset - vi->offset < size) { cs.var = curr->id; results->safe_push (cs); } else break; } } return; } case ARRAY_REF: case ARRAY_RANGE_REF: case COMPONENT_REF: case IMAGPART_EXPR: case REALPART_EXPR: case BIT_FIELD_REF: get_constraint_for_component_ref (t, results, address_p, lhs_p); return; case VIEW_CONVERT_EXPR: get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p, lhs_p); return; /* We are missing handling for TARGET_MEM_REF here. */ default:; } break; } case tcc_exceptional: { switch (TREE_CODE (t)) { case SSA_NAME: { get_constraint_for_ssa_var (t, results, address_p); return; } case CONSTRUCTOR: { unsigned int i; tree val; auto_vec<ce_s> tmp; FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val) { struct constraint_expr *rhsp; unsigned j; get_constraint_for_1 (val, &tmp, address_p, lhs_p); FOR_EACH_VEC_ELT (tmp, j, rhsp) results->safe_push (*rhsp); tmp.truncate (0); } /* We do not know whether the constructor was complete, so technically we have to add &NOTHING or &ANYTHING like we do for an empty constructor as well. */ return; } default:; } break; } case tcc_declaration: { get_constraint_for_ssa_var (t, results, address_p); return; } case tcc_constant: { /* We cannot refer to automatic variables through constants. */ temp.type = ADDRESSOF; temp.var = nonlocal_id; temp.offset = 0; results->safe_push (temp); return; } default:; } /* The default fallback is a constraint from anything. */ temp.type = ADDRESSOF; temp.var = anything_id; temp.offset = 0; results->safe_push (temp); } /* Given a gimple tree T, return the constraint expression vector for it. */ static void get_constraint_for (tree t, vec<ce_s> *results) { gcc_assert (results->length () == 0); get_constraint_for_1 (t, results, false, true); } /* Given a gimple tree T, return the constraint expression vector for it to be used as the rhs of a constraint. */ static void get_constraint_for_rhs (tree t, vec<ce_s> *results) { gcc_assert (results->length () == 0); get_constraint_for_1 (t, results, false, false); } /* Efficiently generates constraints from all entries in *RHSC to all entries in *LHSC. */ static void process_all_all_constraints (vec<ce_s> lhsc, vec<ce_s> rhsc) { struct constraint_expr *lhsp, *rhsp; unsigned i, j; if (lhsc.length () <= 1 || rhsc.length () <= 1) { FOR_EACH_VEC_ELT (lhsc, i, lhsp) FOR_EACH_VEC_ELT (rhsc, j, rhsp) process_constraint (new_constraint (*lhsp, *rhsp)); } else { struct constraint_expr tmp; tmp = new_scalar_tmp_constraint_exp ("allalltmp", true); FOR_EACH_VEC_ELT (rhsc, i, rhsp) process_constraint (new_constraint (tmp, *rhsp)); FOR_EACH_VEC_ELT (lhsc, i, lhsp) process_constraint (new_constraint (*lhsp, tmp)); } } /* Handle aggregate copies by expanding into copies of the respective fields of the structures. */ static void do_structure_copy (tree lhsop, tree rhsop) { struct constraint_expr *lhsp, *rhsp; auto_vec<ce_s> lhsc; auto_vec<ce_s> rhsc; unsigned j; get_constraint_for (lhsop, &lhsc); get_constraint_for_rhs (rhsop, &rhsc); lhsp = &lhsc[0]; rhsp = &rhsc[0]; if (lhsp->type == DEREF || (lhsp->type == ADDRESSOF && lhsp->var == anything_id) || rhsp->type == DEREF) { if (lhsp->type == DEREF) { gcc_assert (lhsc.length () == 1); lhsp->offset = UNKNOWN_OFFSET; } if (rhsp->type == DEREF) { gcc_assert (rhsc.length () == 1); rhsp->offset = UNKNOWN_OFFSET; } process_all_all_constraints (lhsc, rhsc); } else if (lhsp->type == SCALAR && (rhsp->type == SCALAR || rhsp->type == ADDRESSOF)) { HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset; HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset; bool reverse; unsigned k = 0; get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize, &reverse); get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize, &reverse); for (j = 0; lhsc.iterate (j, &lhsp);) { varinfo_t lhsv, rhsv; rhsp = &rhsc[k]; lhsv = get_varinfo (lhsp->var); rhsv = get_varinfo (rhsp->var); if (lhsv->may_have_pointers && (lhsv->is_full_var || rhsv->is_full_var || ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size, rhsv->offset + lhsoffset, rhsv->size))) process_constraint (new_constraint (*lhsp, *rhsp)); if (!rhsv->is_full_var && (lhsv->is_full_var || (lhsv->offset + rhsoffset + lhsv->size > rhsv->offset + lhsoffset + rhsv->size))) { ++k; if (k >= rhsc.length ()) break; } else ++j; } } else gcc_unreachable (); } /* Create constraints ID = { rhsc }. */ static void make_constraints_to (unsigned id, vec<ce_s> rhsc) { struct constraint_expr *c; struct constraint_expr includes; unsigned int j; includes.var = id; includes.offset = 0; includes.type = SCALAR; FOR_EACH_VEC_ELT (rhsc, j, c) process_constraint (new_constraint (includes, *c)); } /* Create a constraint ID = OP. */ static void make_constraint_to (unsigned id, tree op) { auto_vec<ce_s> rhsc; get_constraint_for_rhs (op, &rhsc); make_constraints_to (id, rhsc); } /* Create a constraint ID = &FROM. */ static void make_constraint_from (varinfo_t vi, int from) { struct constraint_expr lhs, rhs; lhs.var = vi->id; lhs.offset = 0; lhs.type = SCALAR; rhs.var = from; rhs.offset = 0; rhs.type = ADDRESSOF; process_constraint (new_constraint (lhs, rhs)); } /* Create a constraint ID = FROM. */ static void make_copy_constraint (varinfo_t vi, int from) { struct constraint_expr lhs, rhs; lhs.var = vi->id; lhs.offset = 0; lhs.type = SCALAR; rhs.var = from; rhs.offset = 0; rhs.type = SCALAR; process_constraint (new_constraint (lhs, rhs)); } /* Make constraints necessary to make OP escape. */ static void make_escape_constraint (tree op) { make_constraint_to (escaped_id, op); } /* Add constraints to that the solution of VI is transitively closed. */ static void make_transitive_closure_constraints (varinfo_t vi) { struct constraint_expr lhs, rhs; /* VAR = *VAR; */ lhs.type = SCALAR; lhs.var = vi->id; lhs.offset = 0; rhs.type = DEREF; rhs.var = vi->id; rhs.offset = UNKNOWN_OFFSET; process_constraint (new_constraint (lhs, rhs)); } /* Temporary storage for fake var decls. */ struct obstack fake_var_decl_obstack; /* Build a fake VAR_DECL acting as referrer to a DECL_UID. */ static tree build_fake_var_decl (tree type) { tree decl = (tree) XOBNEW (&fake_var_decl_obstack, struct tree_var_decl); memset (decl, 0, sizeof (struct tree_var_decl)); TREE_SET_CODE (decl, VAR_DECL); TREE_TYPE (decl) = type; DECL_UID (decl) = allocate_decl_uid (); SET_DECL_PT_UID (decl, -1); layout_decl (decl, 0); return decl; } /* Create a new artificial heap variable with NAME. Return the created variable. */ static varinfo_t make_heapvar (const char *name, bool add_id) { varinfo_t vi; tree heapvar; heapvar = build_fake_var_decl (ptr_type_node); DECL_EXTERNAL (heapvar) = 1; vi = new_var_info (heapvar, name, add_id); vi->is_artificial_var = true; vi->is_heap_var = true; vi->is_unknown_size_var = true; vi->offset = 0; vi->fullsize = ~0; vi->size = ~0; vi->is_full_var = true; insert_vi_for_tree (heapvar, vi); return vi; } /* Create a new artificial heap variable with NAME and make a constraint from it to LHS. Set flags according to a tag used for tracking restrict pointers. */ static varinfo_t make_constraint_from_restrict (varinfo_t lhs, const char *name, bool add_id) { varinfo_t vi = make_heapvar (name, add_id); vi->is_restrict_var = 1; vi->is_global_var = 1; vi->may_have_pointers = 1; make_constraint_from (lhs, vi->id); return vi; } /* Create a new artificial heap variable with NAME and make a constraint from it to LHS. Set flags according to a tag used for tracking restrict pointers and make the artificial heap point to global memory. */ static varinfo_t make_constraint_from_global_restrict (varinfo_t lhs, const char *name, bool add_id) { varinfo_t vi = make_constraint_from_restrict (lhs, name, add_id); make_copy_constraint (vi, nonlocal_id); return vi; } /* In IPA mode there are varinfos for different aspects of reach function designator. One for the points-to set of the return value, one for the variables that are clobbered by the function, one for its uses and one for each parameter (including a single glob for remaining variadic arguments). */ enum { fi_clobbers = 1, fi_uses = 2, fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 }; /* Get a constraint for the requested part of a function designator FI when operating in IPA mode. */ static struct constraint_expr get_function_part_constraint (varinfo_t fi, unsigned part) { struct constraint_expr c; gcc_assert (in_ipa_mode); if (fi->id == anything_id) { /* ??? We probably should have a ANYFN special variable. */ c.var = anything_id; c.offset = 0; c.type = SCALAR; } else if (TREE_CODE (fi->decl) == FUNCTION_DECL) { varinfo_t ai = first_vi_for_offset (fi, part); if (ai) c.var = ai->id; else c.var = anything_id; c.offset = 0; c.type = SCALAR; } else { c.var = fi->id; c.offset = part; c.type = DEREF; } return c; } /* For non-IPA mode, generate constraints necessary for a call on the RHS. */ static void handle_rhs_call (gcall *stmt, vec<ce_s> *results) { struct constraint_expr rhsc; unsigned i; bool returns_uses = false; for (i = 0; i < gimple_call_num_args (stmt); ++i) { tree arg = gimple_call_arg (stmt, i); int flags = gimple_call_arg_flags (stmt, i); /* If the argument is not used we can ignore it. */ if (flags & EAF_UNUSED) continue; /* As we compute ESCAPED context-insensitive we do not gain any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE set. The argument would still get clobbered through the escape solution. */ if ((flags & EAF_NOCLOBBER) && (flags & EAF_NOESCAPE)) { varinfo_t uses = get_call_use_vi (stmt); if (!(flags & EAF_DIRECT)) { varinfo_t tem = new_var_info (NULL_TREE, "callarg", true); make_constraint_to (tem->id, arg); make_transitive_closure_constraints (tem); make_copy_constraint (uses, tem->id); } else make_constraint_to (uses->id, arg); returns_uses = true; } else if (flags & EAF_NOESCAPE) { struct constraint_expr lhs, rhs; varinfo_t uses = get_call_use_vi (stmt); varinfo_t clobbers = get_call_clobber_vi (stmt); varinfo_t tem = new_var_info (NULL_TREE, "callarg", true); make_constraint_to (tem->id, arg); if (!(flags & EAF_DIRECT)) make_transitive_closure_constraints (tem); make_copy_constraint (uses, tem->id); make_copy_constraint (clobbers, tem->id); /* Add *tem = nonlocal, do not add *tem = callused as EAF_NOESCAPE parameters do not escape to other parameters and all other uses appear in NONLOCAL as well. */ lhs.type = DEREF; lhs.var = tem->id; lhs.offset = 0; rhs.type = SCALAR; rhs.var = nonlocal_id; rhs.offset = 0; process_constraint (new_constraint (lhs, rhs)); returns_uses = true; } else make_escape_constraint (arg); } /* If we added to the calls uses solution make sure we account for pointers to it to be returned. */ if (returns_uses) { rhsc.var = get_call_use_vi (stmt)->id; rhsc.offset = 0; rhsc.type = SCALAR; results->safe_push (rhsc); } /* The static chain escapes as well. */ if (gimple_call_chain (stmt)) make_escape_constraint (gimple_call_chain (stmt)); /* And if we applied NRV the address of the return slot escapes as well. */ if (gimple_call_return_slot_opt_p (stmt) && gimple_call_lhs (stmt) != NULL_TREE && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt)))) { auto_vec<ce_s> tmpc; struct constraint_expr lhsc, *c; get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc); lhsc.var = escaped_id; lhsc.offset = 0; lhsc.type = SCALAR; FOR_EACH_VEC_ELT (tmpc, i, c) process_constraint (new_constraint (lhsc, *c)); } /* Regular functions return nonlocal memory. */ rhsc.var = nonlocal_id; rhsc.offset = 0; rhsc.type = SCALAR; results->safe_push (rhsc); } /* For non-IPA mode, generate constraints necessary for a call that returns a pointer and assigns it to LHS. This simply makes the LHS point to global and escaped variables. */ static void handle_lhs_call (gcall *stmt, tree lhs, int flags, vec<ce_s> rhsc, tree fndecl) { auto_vec<ce_s> lhsc; get_constraint_for (lhs, &lhsc); /* If the store is to a global decl make sure to add proper escape constraints. */ lhs = get_base_address (lhs); if (lhs && DECL_P (lhs) && is_global_var (lhs)) { struct constraint_expr tmpc; tmpc.var = escaped_id; tmpc.offset = 0; tmpc.type = SCALAR; lhsc.safe_push (tmpc); } /* If the call returns an argument unmodified override the rhs constraints. */ if (flags & ERF_RETURNS_ARG && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt)) { tree arg; rhsc.create (0); arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK); get_constraint_for (arg, &rhsc); process_all_all_constraints (lhsc, rhsc); rhsc.release (); } else if (flags & ERF_NOALIAS) { varinfo_t vi; struct constraint_expr tmpc; rhsc.create (0); vi = make_heapvar ("HEAP", true); /* We are marking allocated storage local, we deal with it becoming global by escaping and setting of vars_contains_escaped_heap. */ DECL_EXTERNAL (vi->decl) = 0; vi->is_global_var = 0; /* If this is not a real malloc call assume the memory was initialized and thus may point to global memory. All builtin functions with the malloc attribute behave in a sane way. */ if (!fndecl || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL) make_constraint_from (vi, nonlocal_id); tmpc.var = vi->id; tmpc.offset = 0; tmpc.type = ADDRESSOF; rhsc.safe_push (tmpc); process_all_all_constraints (lhsc, rhsc); rhsc.release (); } else process_all_all_constraints (lhsc, rhsc); } /* For non-IPA mode, generate constraints necessary for a call of a const function that returns a pointer in the statement STMT. */ static void handle_const_call (gcall *stmt, vec<ce_s> *results) { struct constraint_expr rhsc; unsigned int k; /* Treat nested const functions the same as pure functions as far as the static chain is concerned. */ if (gimple_call_chain (stmt)) { varinfo_t uses = get_call_use_vi (stmt); make_transitive_closure_constraints (uses); make_constraint_to (uses->id, gimple_call_chain (stmt)); rhsc.var = uses->id; rhsc.offset = 0; rhsc.type = SCALAR; results->safe_push (rhsc); } /* May return arguments. */ for (k = 0; k < gimple_call_num_args (stmt); ++k) { tree arg = gimple_call_arg (stmt, k); auto_vec<ce_s> argc; unsigned i; struct constraint_expr *argp; get_constraint_for_rhs (arg, &argc); FOR_EACH_VEC_ELT (argc, i, argp) results->safe_push (*argp); } /* May return addresses of globals. */ rhsc.var = nonlocal_id; rhsc.offset = 0; rhsc.type = ADDRESSOF; results->safe_push (rhsc); } /* For non-IPA mode, generate constraints necessary for a call to a pure function in statement STMT. */ static void handle_pure_call (gcall *stmt, vec<ce_s> *results) { struct constraint_expr rhsc; unsigned i; varinfo_t uses = NULL; /* Memory reached from pointer arguments is call-used. */ for (i = 0; i < gimple_call_num_args (stmt); ++i) { tree arg = gimple_call_arg (stmt, i); if (!uses) { uses = get_call_use_vi (stmt); make_transitive_closure_constraints (uses); } make_constraint_to (uses->id, arg); } /* The static chain is used as well. */ if (gimple_call_chain (stmt)) { if (!uses) { uses = get_call_use_vi (stmt); make_transitive_closure_constraints (uses); } make_constraint_to (uses->id, gimple_call_chain (stmt)); } /* Pure functions may return call-used and nonlocal memory. */ if (uses) { rhsc.var = uses->id; rhsc.offset = 0; rhsc.type = SCALAR; results->safe_push (rhsc); } rhsc.var = nonlocal_id; rhsc.offset = 0; rhsc.type = SCALAR; results->safe_push (rhsc); } /* Return the varinfo for the callee of CALL. */ static varinfo_t get_fi_for_callee (gcall *call) { tree decl, fn = gimple_call_fn (call); if (fn && TREE_CODE (fn) == OBJ_TYPE_REF) fn = OBJ_TYPE_REF_EXPR (fn); /* If we can directly resolve the function being called, do so. Otherwise, it must be some sort of indirect expression that we should still be able to handle. */ decl = gimple_call_addr_fndecl (fn); if (decl) return get_vi_for_tree (decl); /* If the function is anything other than a SSA name pointer we have no clue and should be getting ANYFN (well, ANYTHING for now). */ if (!fn || TREE_CODE (fn) != SSA_NAME) return get_varinfo (anything_id); if (SSA_NAME_IS_DEFAULT_DEF (fn) && (TREE_CODE (SSA_NAME_VAR (fn)) == PARM_DECL || TREE_CODE (SSA_NAME_VAR (fn)) == RESULT_DECL)) fn = SSA_NAME_VAR (fn); return get_vi_for_tree (fn); } /* Create constraints for assigning call argument ARG to the incoming parameter INDEX of function FI. */ static void find_func_aliases_for_call_arg (varinfo_t fi, unsigned index, tree arg) { struct constraint_expr lhs; lhs = get_function_part_constraint (fi, fi_parm_base + index); auto_vec<ce_s, 2> rhsc; get_constraint_for_rhs (arg, &rhsc); unsigned j; struct constraint_expr *rhsp; FOR_EACH_VEC_ELT (rhsc, j, rhsp) process_constraint (new_constraint (lhs, *rhsp)); } /* Create constraints for the builtin call T. Return true if the call was handled, otherwise false. */ static bool find_func_aliases_for_builtin_call (struct function *fn, gcall *t) { tree fndecl = gimple_call_fndecl (t); auto_vec<ce_s, 2> lhsc; auto_vec<ce_s, 4> rhsc; varinfo_t fi; if (gimple_call_builtin_p (t, BUILT_IN_NORMAL)) /* ??? All builtins that are handled here need to be handled in the alias-oracle query functions explicitly! */ switch (DECL_FUNCTION_CODE (fndecl)) { /* All the following functions return a pointer to the same object as their first argument points to. The functions do not add to the ESCAPED solution. The functions make the first argument pointed to memory point to what the second argument pointed to memory points to. */ case BUILT_IN_STRCPY: case BUILT_IN_STRNCPY: case BUILT_IN_BCOPY: case BUILT_IN_MEMCPY: case BUILT_IN_MEMMOVE: case BUILT_IN_MEMPCPY: case BUILT_IN_STPCPY: case BUILT_IN_STPNCPY: case BUILT_IN_STRCAT: case BUILT_IN_STRNCAT: case BUILT_IN_STRCPY_CHK: case BUILT_IN_STRNCPY_CHK: case BUILT_IN_MEMCPY_CHK: case BUILT_IN_MEMMOVE_CHK: case BUILT_IN_MEMPCPY_CHK: case BUILT_IN_STPCPY_CHK: case BUILT_IN_STPNCPY_CHK: case BUILT_IN_STRCAT_CHK: case BUILT_IN_STRNCAT_CHK: case BUILT_IN_TM_MEMCPY: case BUILT_IN_TM_MEMMOVE: { tree res = gimple_call_lhs (t); tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_BCOPY ? 1 : 0)); tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_BCOPY ? 0 : 1)); if (res != NULL_TREE) { get_constraint_for (res, &lhsc); if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY_CHK || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY_CHK || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY_CHK) get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc); else get_constraint_for (dest, &rhsc); process_all_all_constraints (lhsc, rhsc); lhsc.truncate (0); rhsc.truncate (0); } get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc); get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc); do_deref (&lhsc); do_deref (&rhsc); process_all_all_constraints (lhsc, rhsc); return true; } case BUILT_IN_MEMSET: case BUILT_IN_MEMSET_CHK: case BUILT_IN_TM_MEMSET: { tree res = gimple_call_lhs (t); tree dest = gimple_call_arg (t, 0); unsigned i; ce_s *lhsp; struct constraint_expr ac; if (res != NULL_TREE) { get_constraint_for (res, &lhsc); get_constraint_for (dest, &rhsc); process_all_all_constraints (lhsc, rhsc); lhsc.truncate (0); } get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc); do_deref (&lhsc); if (flag_delete_null_pointer_checks && integer_zerop (gimple_call_arg (t, 1))) { ac.type = ADDRESSOF; ac.var = nothing_id; } else { ac.type = SCALAR; ac.var = integer_id; } ac.offset = 0; FOR_EACH_VEC_ELT (lhsc, i, lhsp) process_constraint (new_constraint (*lhsp, ac)); return true; } case BUILT_IN_POSIX_MEMALIGN: { tree ptrptr = gimple_call_arg (t, 0); get_constraint_for (ptrptr, &lhsc); do_deref (&lhsc); varinfo_t vi = make_heapvar ("HEAP", true); /* We are marking allocated storage local, we deal with it becoming global by escaping and setting of vars_contains_escaped_heap. */ DECL_EXTERNAL (vi->decl) = 0; vi->is_global_var = 0; struct constraint_expr tmpc; tmpc.var = vi->id; tmpc.offset = 0; tmpc.type = ADDRESSOF; rhsc.safe_push (tmpc); process_all_all_constraints (lhsc, rhsc); return true; } case BUILT_IN_ASSUME_ALIGNED: { tree res = gimple_call_lhs (t); tree dest = gimple_call_arg (t, 0); if (res != NULL_TREE) { get_constraint_for (res, &lhsc); get_constraint_for (dest, &rhsc); process_all_all_constraints (lhsc, rhsc); } return true; } /* All the following functions do not return pointers, do not modify the points-to sets of memory reachable from their arguments and do not add to the ESCAPED solution. */ case BUILT_IN_SINCOS: case BUILT_IN_SINCOSF: case BUILT_IN_SINCOSL: case BUILT_IN_FREXP: case BUILT_IN_FREXPF: case BUILT_IN_FREXPL: case BUILT_IN_GAMMA_R: case BUILT_IN_GAMMAF_R: case BUILT_IN_GAMMAL_R: case BUILT_IN_LGAMMA_R: case BUILT_IN_LGAMMAF_R: case BUILT_IN_LGAMMAL_R: case BUILT_IN_MODF: case BUILT_IN_MODFF: case BUILT_IN_MODFL: case BUILT_IN_REMQUO: case BUILT_IN_REMQUOF: case BUILT_IN_REMQUOL: case BUILT_IN_FREE: return true; case BUILT_IN_STRDUP: case BUILT_IN_STRNDUP: case BUILT_IN_REALLOC: if (gimple_call_lhs (t)) { handle_lhs_call (t, gimple_call_lhs (t), gimple_call_return_flags (t) | ERF_NOALIAS, vNULL, fndecl); get_constraint_for_ptr_offset (gimple_call_lhs (t), NULL_TREE, &lhsc); get_constraint_for_ptr_offset (gimple_call_arg (t, 0), NULL_TREE, &rhsc); do_deref (&lhsc); do_deref (&rhsc); process_all_all_constraints (lhsc, rhsc); lhsc.truncate (0); rhsc.truncate (0); /* For realloc the resulting pointer can be equal to the argument as well. But only doing this wouldn't be correct because with ptr == 0 realloc behaves like malloc. */ if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_REALLOC) { get_constraint_for (gimple_call_lhs (t), &lhsc); get_constraint_for (gimple_call_arg (t, 0), &rhsc); process_all_all_constraints (lhsc, rhsc); } return true; } break; /* String / character search functions return a pointer into the source string or NULL. */ case BUILT_IN_INDEX: case BUILT_IN_STRCHR: case BUILT_IN_STRRCHR: case BUILT_IN_MEMCHR: case BUILT_IN_STRSTR: case BUILT_IN_STRPBRK: if (gimple_call_lhs (t)) { tree src = gimple_call_arg (t, 0); get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc); constraint_expr nul; nul.var = nothing_id; nul.offset = 0; nul.type = ADDRESSOF; rhsc.safe_push (nul); get_constraint_for (gimple_call_lhs (t), &lhsc); process_all_all_constraints (lhsc, rhsc); } return true; /* Trampolines are special - they set up passing the static frame. */ case BUILT_IN_INIT_TRAMPOLINE: { tree tramp = gimple_call_arg (t, 0); tree nfunc = gimple_call_arg (t, 1); tree frame = gimple_call_arg (t, 2); unsigned i; struct constraint_expr lhs, *rhsp; if (in_ipa_mode) { varinfo_t nfi = NULL; gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR); nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0)); if (nfi) { lhs = get_function_part_constraint (nfi, fi_static_chain); get_constraint_for (frame, &rhsc); FOR_EACH_VEC_ELT (rhsc, i, rhsp) process_constraint (new_constraint (lhs, *rhsp)); rhsc.truncate (0); /* Make the frame point to the function for the trampoline adjustment call. */ get_constraint_for (tramp, &lhsc); do_deref (&lhsc); get_constraint_for (nfunc, &rhsc); process_all_all_constraints (lhsc, rhsc); return true; } } /* Else fallthru to generic handling which will let the frame escape. */ break; } case BUILT_IN_ADJUST_TRAMPOLINE: { tree tramp = gimple_call_arg (t, 0); tree res = gimple_call_lhs (t); if (in_ipa_mode && res) { get_constraint_for (res, &lhsc); get_constraint_for (tramp, &rhsc); do_deref (&rhsc); process_all_all_constraints (lhsc, rhsc); } return true; } CASE_BUILT_IN_TM_STORE (1): CASE_BUILT_IN_TM_STORE (2): CASE_BUILT_IN_TM_STORE (4): CASE_BUILT_IN_TM_STORE (8): CASE_BUILT_IN_TM_STORE (FLOAT): CASE_BUILT_IN_TM_STORE (DOUBLE): CASE_BUILT_IN_TM_STORE (LDOUBLE): CASE_BUILT_IN_TM_STORE (M64): CASE_BUILT_IN_TM_STORE (M128): CASE_BUILT_IN_TM_STORE (M256): { tree addr = gimple_call_arg (t, 0); tree src = gimple_call_arg (t, 1); get_constraint_for (addr, &lhsc); do_deref (&lhsc); get_constraint_for (src, &rhsc); process_all_all_constraints (lhsc, rhsc); return true; } CASE_BUILT_IN_TM_LOAD (1): CASE_BUILT_IN_TM_LOAD (2): CASE_BUILT_IN_TM_LOAD (4): CASE_BUILT_IN_TM_LOAD (8): CASE_BUILT_IN_TM_LOAD (FLOAT): CASE_BUILT_IN_TM_LOAD (DOUBLE): CASE_BUILT_IN_TM_LOAD (LDOUBLE): CASE_BUILT_IN_TM_LOAD (M64): CASE_BUILT_IN_TM_LOAD (M128): CASE_BUILT_IN_TM_LOAD (M256): { tree dest = gimple_call_lhs (t); tree addr = gimple_call_arg (t, 0); get_constraint_for (dest, &lhsc); get_constraint_for (addr, &rhsc); do_deref (&rhsc); process_all_all_constraints (lhsc, rhsc); return true; } /* Variadic argument handling needs to be handled in IPA mode as well. */ case BUILT_IN_VA_START: { tree valist = gimple_call_arg (t, 0); struct constraint_expr rhs, *lhsp; unsigned i; get_constraint_for (valist, &lhsc); do_deref (&lhsc); /* The va_list gets access to pointers in variadic arguments. Which we know in the case of IPA analysis and otherwise are just all nonlocal variables. */ if (in_ipa_mode) { fi = lookup_vi_for_tree (fn->decl); rhs = get_function_part_constraint (fi, ~0); rhs.type = ADDRESSOF; } else { rhs.var = nonlocal_id; rhs.type = ADDRESSOF; rhs.offset = 0; } FOR_EACH_VEC_ELT (lhsc, i, lhsp) process_constraint (new_constraint (*lhsp, rhs)); /* va_list is clobbered. */ make_constraint_to (get_call_clobber_vi (t)->id, valist); return true; } /* va_end doesn't have any effect that matters. */ case BUILT_IN_VA_END: return true; /* Alternate return. Simply give up for now. */ case BUILT_IN_RETURN: { fi = NULL; if (!in_ipa_mode || !(fi = get_vi_for_tree (fn->decl))) make_constraint_from (get_varinfo (escaped_id), anything_id); else if (in_ipa_mode && fi != NULL) { struct constraint_expr lhs, rhs; lhs = get_function_part_constraint (fi, fi_result); rhs.var = anything_id; rhs.offset = 0; rhs.type = SCALAR; process_constraint (new_constraint (lhs, rhs)); } return true; } case BUILT_IN_GOMP_PARALLEL: case BUILT_IN_GOACC_PARALLEL: { if (in_ipa_mode) { unsigned int fnpos, argpos; switch (DECL_FUNCTION_CODE (fndecl)) { case BUILT_IN_GOMP_PARALLEL: /* __builtin_GOMP_parallel (fn, data, num_threads, flags). */ fnpos = 0; argpos = 1; break; case BUILT_IN_GOACC_PARALLEL: /* __builtin_GOACC_parallel (device, fn, mapnum, hostaddrs, sizes, kinds, ...). */ fnpos = 1; argpos = 3; break; default: gcc_unreachable (); } tree fnarg = gimple_call_arg (t, fnpos); gcc_assert (TREE_CODE (fnarg) == ADDR_EXPR); tree fndecl = TREE_OPERAND (fnarg, 0); tree arg = gimple_call_arg (t, argpos); varinfo_t fi = get_vi_for_tree (fndecl); find_func_aliases_for_call_arg (fi, 0, arg); return true; } /* Else fallthru to generic call handling. */ break; } /* printf-style functions may have hooks to set pointers to point to somewhere into the generated string. Leave them for a later exercise... */ default: /* Fallthru to general call handling. */; } return false; } /* Create constraints for the call T. */ static void find_func_aliases_for_call (struct function *fn, gcall *t) { tree fndecl = gimple_call_fndecl (t); varinfo_t fi; if (fndecl != NULL_TREE && DECL_BUILT_IN (fndecl) && find_func_aliases_for_builtin_call (fn, t)) return; fi = get_fi_for_callee (t); if (!in_ipa_mode || (fndecl && !fi->is_fn_info)) { auto_vec<ce_s, 16> rhsc; int flags = gimple_call_flags (t); /* Const functions can return their arguments and addresses of global memory but not of escaped memory. */ if (flags & (ECF_CONST|ECF_NOVOPS)) { if (gimple_call_lhs (t)) handle_const_call (t, &rhsc); } /* Pure functions can return addresses in and of memory reachable from their arguments, but they are not an escape point for reachable memory of their arguments. */ else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE)) handle_pure_call (t, &rhsc); else handle_rhs_call (t, &rhsc); if (gimple_call_lhs (t)) handle_lhs_call (t, gimple_call_lhs (t), gimple_call_return_flags (t), rhsc, fndecl); } else { auto_vec<ce_s, 2> rhsc; tree lhsop; unsigned j; /* Assign all the passed arguments to the appropriate incoming parameters of the function. */ for (j = 0; j < gimple_call_num_args (t); j++) { tree arg = gimple_call_arg (t, j);