1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
|
/* RTL dead zero/sign extension (code) elimination.
Copyright (C) 2000-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "insn-config.h"
#include "emit-rtl.h"
#include "recog.h"
#include "cfganal.h"
#include "tree-pass.h"
#include "cfgrtl.h"
#include "rtl-iter.h"
#include "df.h"
#include "print-rtl.h"
#include "dbgcnt.h"
/* These should probably move into a C++ class. */
static vec<bitmap_head> livein;
static bitmap all_blocks;
static bitmap livenow;
static bitmap changed_pseudos;
static bool modify;
/* We consider four bit groups for liveness:
bit 0..7 (least significant byte)
bit 8..15 (second least significant byte)
bit 16..31
bit 32..BITS_PER_WORD-1 */
/* Note this pass could be used to narrow memory loads too. It's
not clear if that's profitable or not in general. */
#define UNSPEC_P(X) (GET_CODE (X) == UNSPEC || GET_CODE (X) == UNSPEC_VOLATILE)
/* If we know the destination of CODE only uses some low bits
(say just the QI bits of an SI operation), then return true
if we can propagate the need for just the subset of bits
from the destination to the sources.
FIXME: This is safe for operands 1 and 2 of an IF_THEN_ELSE, but not
operand 0. Thus is likely would need some special casing to handle. */
static bool
safe_for_live_propagation (rtx_code code)
{
/* First handle rtx classes which as a whole are known to
be either safe or unsafe. */
switch (GET_RTX_CLASS (code))
{
case RTX_OBJ:
return true;
case RTX_COMPARE:
case RTX_COMM_COMPARE:
case RTX_TERNARY:
return false;
default:
break;
}
/* What's left are specific codes. We only need to identify those
which are safe. */
switch (code)
{
/* These are trivially safe. */
case SUBREG:
case NOT:
case ZERO_EXTEND:
case SIGN_EXTEND:
case TRUNCATE:
case PLUS:
case MINUS:
case MULT:
case SMUL_HIGHPART:
case UMUL_HIGHPART:
case AND:
case IOR:
case XOR:
return true;
/* We can propagate for the shifted operand, but not the shift
count. The count is handled specially. */
case ASHIFT:
case LSHIFTRT:
case ASHIFTRT:
case SS_ASHIFT:
case US_ASHIFT:
return true;
/* There may be other safe codes. If so they can be added
individually when discovered. */
default:
return false;
}
}
/* Clear bits in LIVENOW and set bits in LIVE_TMP for objects
set/clobbered by OBJ contained in INSN.
Conceptually it is always safe to ignore a particular destination
here as that will result in more chunks of data being considered
live. That's what happens when we "continue" the main loop when
we see something we don't know how to handle such as a vector
mode destination.
The more accurate we are in identifying what objects (and chunks
within an object) are set by INSN, the more aggressive the
optimization phase during use handling will be. */
static void
ext_dce_process_sets (rtx_insn *insn, rtx obj, bitmap live_tmp)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, obj, NONCONST)
{
const_rtx x = *iter;
/* An EXPR_LIST (from call fusage) ends in NULL_RTX. */
if (x == NULL_RTX)
continue;
if (UNSPEC_P (x))
continue;
if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
{
unsigned bit = 0;
x = SET_DEST (x);
/* We don't support vector destinations or destinations
wider than DImode. */
scalar_int_mode outer_mode;
if (!is_a <scalar_int_mode> (GET_MODE (x), &outer_mode)
|| GET_MODE_BITSIZE (outer_mode) > 64)
{
/* Skip the subrtxs of this destination. There is
little value in iterating into the subobjects, so
just skip them for a bit of efficiency. */
iter.skip_subrtxes ();
continue;
}
/* We could have (strict_low_part (subreg ...)). We can not just
strip the STRICT_LOW_PART as that would result in clearing
some bits in LIVENOW that are still live. So process the
STRICT_LOW_PART specially. */
if (GET_CODE (x) == STRICT_LOW_PART)
{
x = XEXP (x, 0);
/* The only valid operand of a STRICT_LOW_PART is a non
paradoxical SUBREG. */
gcc_assert (SUBREG_P (x)
&& !paradoxical_subreg_p (x)
&& SUBREG_BYTE (x).is_constant ());
/* I think we should always see a REG here. But let's
be sure. */
gcc_assert (REG_P (SUBREG_REG (x)));
/* The inner mode might be larger, just punt for
that case. Remember, we can not just continue to process
the inner RTXs due to the STRICT_LOW_PART. */
if (!is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &outer_mode)
|| GET_MODE_BITSIZE (outer_mode) > 64)
{
/* Skip the subrtxs of the STRICT_LOW_PART. We can't
process them because it'll set objects as no longer
live when they are in fact still live. */
iter.skip_subrtxes ();
continue;
}
/* Transfer all the LIVENOW bits for X into LIVE_TMP. */
HOST_WIDE_INT rn = REGNO (SUBREG_REG (x));
for (HOST_WIDE_INT i = 4 * rn; i < 4 * rn + 4; i++)
if (bitmap_bit_p (livenow, i))
bitmap_set_bit (live_tmp, i);
/* The mode of the SUBREG tells us how many bits we can
clear. */
machine_mode mode = GET_MODE (x);
HOST_WIDE_INT size
= exact_log2 (GET_MODE_SIZE (mode).to_constant ()) + 1;
bitmap_clear_range (livenow, 4 * rn, size);
/* We have fully processed this destination. */
iter.skip_subrtxes ();
continue;
}
/* Phase one of destination handling. First remove any wrapper
such as SUBREG or ZERO_EXTRACT. */
unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (GET_MODE_INNER (GET_MODE (x)));
if (SUBREG_P (x))
{
/* If we have a SUBREG that is too wide, just continue the loop
and let the iterator go down into SUBREG_REG. */
if (!is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &outer_mode)
|| GET_MODE_BITSIZE (outer_mode) > 64)
continue;
/* We can safely strip a paradoxical subreg. The inner mode will
be narrower than the outer mode. We'll clear fewer bits in
LIVENOW than we'd like, but that's always safe. */
if (paradoxical_subreg_p (x))
x = XEXP (x, 0);
else if (SUBREG_BYTE (x).is_constant ())
{
bit = subreg_lsb (x).to_constant ();
mask = GET_MODE_MASK (GET_MODE (SUBREG_REG (x))) << bit;
gcc_assert (mask);
x = SUBREG_REG (x);
}
else
gcc_unreachable ();
}
if (GET_CODE (x) == ZERO_EXTRACT)
{
/* Unlike a SUBREG destination, a set of a ZERO_EXTRACT only
modifies the bits referenced in the ZERO_EXTRACT, the rest
remain the same. Thus we can not continue here, we must
either figure out what part of the destination is modified
or skip the sub-rtxs. */
iter.skip_subrtxes ();
continue;
}
/* BIT >= 64 indicates something went horribly wrong. */
gcc_assert (bit <= 63);
/* Now handle the actual object that was changed. */
if (REG_P (x))
{
/* Transfer the appropriate bits from LIVENOW into
LIVE_TMP. */
HOST_WIDE_INT rn = REGNO (x);
for (HOST_WIDE_INT i = 4 * rn; i < 4 * rn + 4; i++)
if (bitmap_bit_p (livenow, i))
bitmap_set_bit (live_tmp, i);
/* Now clear the bits known written by this instruction.
Note that BIT need not be a power of two, consider a
ZERO_EXTRACT destination. */
int start = (bit < 8 ? 0 : bit < 16 ? 1 : bit < 32 ? 2 : 3);
int end = ((mask & ~0xffffffffULL) ? 4
: (mask & 0xffff0000ULL) ? 3
: (mask & 0xff00) ? 2 : 1);
bitmap_clear_range (livenow, 4 * rn + start, end - start);
}
/* Some ports generate (clobber (const_int)). */
else if (CONST_INT_P (x))
continue;
else
gcc_assert (CALL_P (insn)
|| MEM_P (x)
|| x == pc_rtx
|| GET_CODE (x) == SCRATCH);
iter.skip_subrtxes ();
}
else if (GET_CODE (x) == COND_EXEC)
{
/* This isn't ideal, but may not be so bad in practice. */
iter.skip_subrtxes ();
}
}
}
/* INSN has a sign/zero extended source inside SET that we will
try to turn into a SUBREG. */
static void
ext_dce_try_optimize_insn (rtx_insn *insn, rtx set)
{
rtx src = SET_SRC (set);
rtx inner = XEXP (src, 0);
/* Avoid (subreg (mem)) and other constructs which may be valid RTL, but
not useful for this optimization. */
if (!(REG_P (inner) || (SUBREG_P (inner) && REG_P (SUBREG_REG (inner)))))
return;
rtx new_pattern;
if (dump_file)
{
fprintf (dump_file, "Processing insn:\n");
dump_insn_slim (dump_file, insn);
fprintf (dump_file, "Trying to simplify pattern:\n");
print_rtl_single (dump_file, SET_SRC (set));
}
/* We decided to turn do the optimization but allow it to be rejected for
bisection purposes. */
if (!dbg_cnt (::ext_dce))
{
if (dump_file)
fprintf (dump_file, "Rejected due to debug counter.\n");
return;
}
new_pattern = simplify_gen_subreg (GET_MODE (src), inner,
GET_MODE (inner), 0);
/* simplify_gen_subreg may fail in which case NEW_PATTERN will be NULL.
We must not pass that as a replacement pattern to validate_change. */
if (new_pattern)
{
int ok = validate_change (insn, &SET_SRC (set), new_pattern, false);
if (ok)
bitmap_set_bit (changed_pseudos, REGNO (SET_DEST (set)));
if (dump_file)
{
if (ok)
fprintf (dump_file, "Successfully transformed to:\n");
else
fprintf (dump_file, "Failed transformation to:\n");
print_rtl_single (dump_file, new_pattern);
fprintf (dump_file, "\n");
}
}
else
{
if (dump_file)
fprintf (dump_file, "Unable to generate valid SUBREG expression.\n");
}
}
/* Some operators imply that their second operand is fully live,
regardless of how many bits in the output are live. An example
would be the shift count on a target without SHIFT_COUNT_TRUNCATED
defined.
Return TRUE if CODE is such an operator. FALSE otherwise. */
static bool
binop_implies_op2_fully_live (rtx_code code)
{
switch (code)
{
case ASHIFT:
case LSHIFTRT:
case ASHIFTRT:
case ROTATE:
case ROTATERT:
case SS_ASHIFT:
case US_ASHIFT:
return !SHIFT_COUNT_TRUNCATED;
default:
return false;
}
}
/* X, with code CODE, is an operation for which safe_for_live_propagation
holds true, and bits set in MASK are live in the result. Compute a
mask of (potentially) live bits in the non-constant inputs. In case of
binop_implies_op2_fully_live (e.g. shifts), the computed mask may
exclusively pertain to the first operand. */
unsigned HOST_WIDE_INT
carry_backpropagate (unsigned HOST_WIDE_INT mask, enum rtx_code code, rtx x)
{
if (mask == 0)
return 0;
enum machine_mode mode = GET_MODE_INNER (GET_MODE (x));
unsigned HOST_WIDE_INT mmask = GET_MODE_MASK (mode);
switch (code)
{
case PLUS:
case MINUS:
case MULT:
return (2ULL << floor_log2 (mask)) - 1;
/* We propagate for the shifted operand, but not the shift
count. The count is handled specially. */
case ASHIFT:
if (CONSTANT_P (XEXP (x, 1))
&& known_lt (UINTVAL (XEXP (x, 1)), GET_MODE_BITSIZE (mode)))
return (HOST_WIDE_INT)mask >> INTVAL (XEXP (x, 1));
return (2ULL << floor_log2 (mask)) - 1;
/* We propagate for the shifted operand, but not the shift
count. The count is handled specially. */
case LSHIFTRT:
if (CONSTANT_P (XEXP (x, 1))
&& known_lt (UINTVAL (XEXP (x, 1)), GET_MODE_BITSIZE (mode)))
return mmask & (mask << INTVAL (XEXP (x, 1)));
return mmask;
/* We propagate for the shifted operand, but not the shift
count. The count is handled specially. */
case ASHIFTRT:
if (CONSTANT_P (XEXP (x, 1))
&& known_lt (UINTVAL (XEXP (x, 1)), GET_MODE_BITSIZE (mode)))
{
HOST_WIDE_INT sign = 0;
if (HOST_BITS_PER_WIDE_INT - clz_hwi (mask) + INTVAL (XEXP (x, 1))
> GET_MODE_BITSIZE (mode).to_constant ())
sign = 1ULL << (GET_MODE_BITSIZE (mode).to_constant () - 1);
return sign | (mmask & (mask << INTVAL (XEXP (x, 1))));
}
return mmask;
case SMUL_HIGHPART:
case UMUL_HIGHPART:
if (XEXP (x, 1) == const0_rtx)
return 0;
if (XEXP (x, 1) == const1_rtx)
return mmask;
if (CONSTANT_P (XEXP (x, 1)))
{
if (pow2p_hwi (INTVAL (XEXP (x, 1))))
return mmask & (mask << (GET_MODE_BITSIZE (mode).to_constant ()
- exact_log2 (INTVAL (XEXP (x, 1)))));
int bits = (HOST_BITS_PER_WIDE_INT
+ GET_MODE_BITSIZE (mode).to_constant ()
- clz_hwi (mask) - ctz_hwi (INTVAL (XEXP (x, 1))));
if (bits < GET_MODE_BITSIZE (mode).to_constant ())
return (1ULL << bits) - 1;
}
return mmask;
case SIGN_EXTEND:
if (mask & ~GET_MODE_MASK (GET_MODE_INNER (GET_MODE (XEXP (x, 0)))))
mask |= 1ULL << (GET_MODE_BITSIZE (mode).to_constant () - 1);
return mask;
/* We propagate for the shifted operand, but not the shift
count. The count is handled specially. */
case SS_ASHIFT:
case US_ASHIFT:
if (CONSTANT_P (XEXP (x, 1))
&& UINTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode).to_constant ())
{
return ((mmask & ~((unsigned HOST_WIDE_INT)mmask
>> (INTVAL (XEXP (x, 1))
+ (XEXP (x, 1) != const0_rtx
&& code == SS_ASHIFT))))
| (mask >> INTVAL (XEXP (x, 1))));
}
return mmask;
default:
return mask;
}
}
/* Process uses in INSN contained in OBJ. Set appropriate bits in LIVENOW
for any chunks of pseudos that become live, potentially filtering using
bits from LIVE_TMP.
If MODIFY is true, then optimize sign/zero extensions to SUBREGs when
the extended bits are never read and mark pseudos which had extensions
eliminated in CHANGED_PSEUDOS. */
static void
ext_dce_process_uses (rtx_insn *insn, rtx obj, bitmap live_tmp)
{
subrtx_var_iterator::array_type array_var;
FOR_EACH_SUBRTX_VAR (iter, array_var, obj, NONCONST)
{
/* An EXPR_LIST (from call fusage) ends in NULL_RTX. */
rtx x = *iter;
if (x == NULL_RTX)
continue;
/* So the basic idea in this FOR_EACH_SUBRTX_VAR loop is to
handle SETs explicitly, possibly propagating live information
into the uses.
We may continue the loop at various points which will cause
iteration into the next level of RTL. Breaking from the loop
is never safe as it can lead us to fail to process some of the
RTL and thus not make objects live when necessary. */
enum rtx_code xcode = GET_CODE (x);
if (xcode == SET)
{
const_rtx dst = SET_DEST (x);
rtx src = SET_SRC (x);
const_rtx y;
unsigned HOST_WIDE_INT bit = 0;
/* The code of the RHS of a SET. */
enum rtx_code code = GET_CODE (src);
/* ?!? How much of this should mirror SET handling, potentially
being shared? */
if (SUBREG_P (dst) && SUBREG_BYTE (dst).is_constant ())
{
bit = subreg_lsb (dst).to_constant ();
if (bit >= HOST_BITS_PER_WIDE_INT)
bit = HOST_BITS_PER_WIDE_INT - 1;
dst = SUBREG_REG (dst);
}
else if (GET_CODE (dst) == STRICT_LOW_PART)
dst = XEXP (dst, 0);
/* Main processing of the uses. Two major goals here.
First, we want to try and propagate liveness (or the lack
thereof) from the destination register to the source
register(s).
Second, if the source is an extension, try to optimize
it into a SUBREG. The SUBREG form indicates we don't
care about the upper bits and will usually be copy
propagated away.
If we fail to handle something in here, the expectation
is the iterator will dive into the sub-components and
mark all the chunks in any found REGs as live. */
if (REG_P (dst) && safe_for_live_propagation (code))
{
/* Create a mask representing the bits of this output
operand that are live after this insn. We can use
this information to refine the live in state of
inputs to this insn in many cases.
We have to do this on a per SET basis, we might have
an INSN with multiple SETS, some of which can narrow
the source operand liveness, some of which may not. */
unsigned HOST_WIDE_INT dst_mask = 0;
HOST_WIDE_INT rn = REGNO (dst);
unsigned HOST_WIDE_INT mask_array[]
= { 0xff, 0xff00, 0xffff0000ULL, -0x100000000ULL };
for (int i = 0; i < 4; i++)
if (bitmap_bit_p (live_tmp, 4 * rn + i))
dst_mask |= mask_array[i];
dst_mask >>= bit;
/* ??? Could also handle ZERO_EXTRACT / SIGN_EXTRACT
of the source specially to improve optimization. */
if (code == SIGN_EXTEND || code == ZERO_EXTEND)
{
rtx inner = XEXP (src, 0);
unsigned HOST_WIDE_INT src_mask
= GET_MODE_MASK (GET_MODE_INNER (GET_MODE (inner)));
/* DST_MASK could be zero if we had something in the SET
that we couldn't handle. */
if (modify && dst_mask && (dst_mask & ~src_mask) == 0)
ext_dce_try_optimize_insn (insn, x);
dst_mask &= src_mask;
src = XEXP (src, 0);
code = GET_CODE (src);
}
/* Optimization is done at this point. We just want to make
sure everything that should get marked as live is marked
from here onward. */
dst_mask = carry_backpropagate (dst_mask, code, src);
/* We will handle the other operand of a binary operator
at the bottom of the loop by resetting Y. */
if (BINARY_P (src))
y = XEXP (src, 0);
else
y = src;
/* We're inside a SET and want to process the source operands
making things live. Breaking from this loop will cause
the iterator to work on sub-rtxs, so it is safe to break
if we see something we don't know how to handle. */
unsigned HOST_WIDE_INT save_mask = dst_mask;
for (;;)
{
dst_mask = save_mask;
/* Strip an outer paradoxical subreg. The bits outside
the inner mode are don't cares. So we can just strip
and process the inner object. */
if (paradoxical_subreg_p (y))
y = XEXP (y, 0);
else if (SUBREG_P (y) && SUBREG_BYTE (y).is_constant ())
{
/* For anything but (subreg (reg)), break the inner loop
and process normally (conservatively). */
if (!REG_P (SUBREG_REG (y)))
break;
bit = subreg_lsb (y).to_constant ();
if (dst_mask)
{
dst_mask <<= bit;
if (!dst_mask)
dst_mask = -0x100000000ULL;
}
y = SUBREG_REG (y);
}
if (REG_P (y))
{
/* We have found the use of a register. We need to mark
the appropriate chunks of the register live. The mode
of the REG is a starting point. We may refine that
based on what chunks in the output were live. */
rn = 4 * REGNO (y);
unsigned HOST_WIDE_INT tmp_mask = dst_mask;
/* If the RTX code for the SET_SRC is not one we can
propagate destination liveness through, then just
set the mask to the mode's mask. */
if (!safe_for_live_propagation (code))
tmp_mask
= GET_MODE_MASK (GET_MODE_INNER (GET_MODE (y)));
if (tmp_mask & 0xff)
bitmap_set_bit (livenow, rn);
if (tmp_mask & 0xff00)
bitmap_set_bit (livenow, rn + 1);
if (tmp_mask & 0xffff0000ULL)
bitmap_set_bit (livenow, rn + 2);
if (tmp_mask & -0x100000000ULL)
bitmap_set_bit (livenow, rn + 3);
}
else if (!CONSTANT_P (y))
break;
/* We might have (ashift (const_int 1) (reg...))
By setting dst_mask we can continue iterating on the
the next operand and it will be considered fully live. */
if (binop_implies_op2_fully_live (GET_CODE (src)))
dst_mask = -1;
/* If this was anything but a binary operand, break the inner
loop. This is conservatively correct as it will cause the
iterator to look at the sub-rtxs outside the SET context. */
if (!BINARY_P (src))
break;
/* We processed the first operand of a binary operator. Now
handle the second. */
y = XEXP (src, 1), src = pc_rtx;
}
/* These are leaf nodes, no need to iterate down into them. */
if (REG_P (y) || CONSTANT_P (y))
iter.skip_subrtxes ();
}
}
/* If we are reading the low part of a SUBREG, then we can
refine liveness of the input register, otherwise let the
iterator continue into SUBREG_REG. */
else if (SUBREG_P (x)
&& REG_P (SUBREG_REG (x))
&& !paradoxical_subreg_p (x)
&& subreg_lowpart_p (x)
&& GET_MODE_BITSIZE (GET_MODE (x)).is_constant ()
&& GET_MODE_BITSIZE (GET_MODE (x)).to_constant () <= 32)
{
HOST_WIDE_INT size = GET_MODE_BITSIZE (GET_MODE (x)).to_constant ();
HOST_WIDE_INT rn = 4 * REGNO (SUBREG_REG (x));
bitmap_set_bit (livenow, rn);
if (size > 8)
bitmap_set_bit (livenow, rn + 1);
if (size > 16)
bitmap_set_bit (livenow, rn + 2);
if (size == 32)
bitmap_set_bit (livenow, rn + 3);
iter.skip_subrtxes ();
}
/* If we have a register reference that is not otherwise handled,
just assume all the chunks are live. */
else if (REG_P (x))
bitmap_set_range (livenow, REGNO (x) * 4, 4);
}
}
/* Process a single basic block BB with current liveness information
in LIVENOW, returning updated liveness information.
If MODIFY is true, then this is the last pass and unnecessary
extensions should be eliminated when possible. If an extension
is removed, the source pseudo is marked in CHANGED_PSEUDOS. */
static void
ext_dce_process_bb (basic_block bb)
{
rtx_insn *insn;
FOR_BB_INSNS_REVERSE (bb, insn)
{
if (!NONDEBUG_INSN_P (insn))
continue;
/* Live-out state of the destination of this insn. We can
use this to refine the live-in state of the sources of
this insn in many cases. */
bitmap live_tmp = BITMAP_ALLOC (NULL);
/* First process any sets/clobbers in INSN. */
ext_dce_process_sets (insn, PATTERN (insn), live_tmp);
/* CALL_INSNs need processing their fusage data. */
if (CALL_P (insn))
ext_dce_process_sets (insn, CALL_INSN_FUNCTION_USAGE (insn), live_tmp);
/* And now uses, optimizing away SIGN/ZERO extensions as we go. */
ext_dce_process_uses (insn, PATTERN (insn), live_tmp);
/* A nonlocal goto implicitly uses the frame pointer. */
if (JUMP_P (insn) && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
{
bitmap_set_range (livenow, FRAME_POINTER_REGNUM * 4, 4);
if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
bitmap_set_range (livenow, HARD_FRAME_POINTER_REGNUM * 4, 4);
}
/* And process fusage data for the use as well. */
if (CALL_P (insn))
{
if (!FAKE_CALL_P (insn))
bitmap_set_range (livenow, STACK_POINTER_REGNUM * 4, 4);
/* If this is not a call to a const fucntion, then assume it
can read any global register. */
if (!RTL_CONST_CALL_P (insn))
for (unsigned i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (global_regs[i])
bitmap_set_range (livenow, i * 4, 4);
ext_dce_process_uses (insn, CALL_INSN_FUNCTION_USAGE (insn), live_tmp);
}
BITMAP_FREE (live_tmp);
}
}
/* We optimize away sign/zero extensions in this pass and replace
them with SUBREGs indicating certain bits are don't cares.
This changes the SUBREG_PROMOTED_VAR_P state of the object.
It is fairly painful to fix this on the fly, so we have
recorded which pseudos are affected and we look for SUBREGs
of those pseudos and fix them up. */
static void
reset_subreg_promoted_p (void)
{
/* If we removed an extension, that changed the promoted state
of the destination of that extension. Thus we need to go
find any SUBREGs that reference that pseudo and adjust their
SUBREG_PROMOTED_P state. */
for (rtx_insn *insn = get_insns(); insn; insn = NEXT_INSN (insn))
{
if (!NONDEBUG_INSN_P (insn))
continue;
rtx pat = PATTERN (insn);
subrtx_var_iterator::array_type array;
FOR_EACH_SUBRTX_VAR (iter, array, pat, NONCONST)
{
rtx sub = *iter;
/* We only care about SUBREGs. */
if (GET_CODE (sub) != SUBREG)
continue;
const_rtx x = SUBREG_REG (sub);
/* We only care if the inner object is a REG. */
if (!REG_P (x))
continue;
/* And only if the SUBREG is a promoted var. */
if (!SUBREG_PROMOTED_VAR_P (sub))
continue;
if (bitmap_bit_p (changed_pseudos, REGNO (x)))
SUBREG_PROMOTED_VAR_P (sub) = 0;
}
}
}
/* Initialization of the ext-dce pass. Primarily this means
setting up the various bitmaps we utilize. */
static void
ext_dce_init (void)
{
livein.create (last_basic_block_for_fn (cfun));
livein.quick_grow_cleared (last_basic_block_for_fn (cfun));
for (int i = 0; i < last_basic_block_for_fn (cfun); i++)
bitmap_initialize (&livein[i], &bitmap_default_obstack);
auto_bitmap refs (&bitmap_default_obstack);
df_get_exit_block_use_set (refs);
unsigned i;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (refs, 0, i, bi)
{
for (int j = 0; j < 4; j++)
bitmap_set_bit (&livein[EXIT_BLOCK], i * 4 + j);
}
livenow = BITMAP_ALLOC (NULL);
all_blocks = BITMAP_ALLOC (NULL);
changed_pseudos = BITMAP_ALLOC (NULL);
for (int i = 0; i < n_basic_blocks_for_fn (cfun); i++)
if (i != ENTRY_BLOCK && i != EXIT_BLOCK)
bitmap_set_bit (all_blocks, i);
modify = false;
}
/* Finalization of the ext-dce pass. Primarily this means
releasing up the various bitmaps we utilize. */
static void
ext_dce_finish (void)
{
for (unsigned i = 0; i < livein.length (); i++)
bitmap_clear (&livein[i]);
livein.release ();
BITMAP_FREE (livenow);
BITMAP_FREE (changed_pseudos);
BITMAP_FREE (all_blocks);
}
/* Process block number BB_INDEX as part of the backward
simple dataflow analysis. Return TRUE if something in
this block changed or FALSE otherwise. */
static bool
ext_dce_rd_transfer_n (int bb_index)
{
/* The ENTRY/EXIT blocks never change. */
if (bb_index == ENTRY_BLOCK || bb_index == EXIT_BLOCK)
return false;
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
/* Make everything live that's live in the successors. */
bitmap_clear (livenow);
edge_iterator ei;
edge e;
FOR_EACH_EDGE (e, ei, bb->succs)
bitmap_ior_into (livenow, &livein[e->dest->index]);
ext_dce_process_bb (bb);
/* We may have narrowed the set of live objects at the start
of this block. If so, update the bitmaps and indicate to
the generic dataflow code that something changed. */
if (!bitmap_equal_p (&livein[bb_index], livenow))
{
gcc_assert (!bitmap_intersect_compl_p (&livein[bb_index], livenow));
bitmap_copy (&livein[bb_index], livenow);
return true;
}
return false;
}
/* Dummy function for the df_simple_dataflow API. */
static bool ext_dce_rd_confluence_n (edge) { return true; }
/* Use lifetime analyis to identify extensions that set bits that
are never read. Turn such extensions into SUBREGs instead which
can often be propagated away. */
void
ext_dce_execute (void)
{
df_analyze ();
ext_dce_init ();
do
{
df_simple_dataflow (DF_BACKWARD, NULL, NULL,
ext_dce_rd_confluence_n, ext_dce_rd_transfer_n,
all_blocks, df_get_postorder (DF_BACKWARD),
df_get_n_blocks (DF_BACKWARD));
modify = !modify;
}
while (modify);
reset_subreg_promoted_p ();
ext_dce_finish ();
}
namespace {
const pass_data pass_data_ext_dce =
{
RTL_PASS, /* type */
"ext_dce", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_cfglayout, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_df_finish, /* todo_flags_finish */
};
class pass_ext_dce : public rtl_opt_pass
{
public:
pass_ext_dce (gcc::context *ctxt)
: rtl_opt_pass (pass_data_ext_dce, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return flag_ext_dce && optimize > 0; }
virtual unsigned int execute (function *)
{
ext_dce_execute ();
return 0;
}
}; // class pass_combine
} // anon namespace
rtl_opt_pass *
make_pass_ext_dce (gcc::context *ctxt)
{
return new pass_ext_dce (ctxt);
}
|