1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
|
/* Target-dependent costs for expmed.c.
Copyright (C) 1987-2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef EXPMED_H
#define EXPMED_H 1
#include "insn-codes.h"
enum alg_code {
alg_unknown,
alg_zero,
alg_m, alg_shift,
alg_add_t_m2,
alg_sub_t_m2,
alg_add_factor,
alg_sub_factor,
alg_add_t2_m,
alg_sub_t2_m,
alg_impossible
};
/* Indicates the type of fixup needed after a constant multiplication.
BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
the result should be negated, and ADD_VARIANT means that the
multiplicand should be added to the result. */
enum mult_variant {basic_variant, negate_variant, add_variant};
bool choose_mult_variant (machine_mode, HOST_WIDE_INT,
struct algorithm *, enum mult_variant *, int);
/* This structure holds the "cost" of a multiply sequence. The
"cost" field holds the total rtx_cost of every operator in the
synthetic multiplication sequence, hence cost(a op b) is defined
as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
The "latency" field holds the minimum possible latency of the
synthetic multiply, on a hypothetical infinitely parallel CPU.
This is the critical path, or the maximum height, of the expression
tree which is the sum of rtx_costs on the most expensive path from
any leaf to the root. Hence latency(a op b) is defined as zero for
leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
struct mult_cost {
short cost; /* Total rtx_cost of the multiplication sequence. */
short latency; /* The latency of the multiplication sequence. */
};
/* This macro is used to compare a pointer to a mult_cost against an
single integer "rtx_cost" value. This is equivalent to the macro
CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
#define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
|| ((X)->cost == (Y) && (X)->latency < (Y)))
/* This macro is used to compare two pointers to mult_costs against
each other. The macro returns true if X is cheaper than Y.
Currently, the cheaper of two mult_costs is the one with the
lower "cost". If "cost"s are tied, the lower latency is cheaper. */
#define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
|| ((X)->cost == (Y)->cost \
&& (X)->latency < (Y)->latency))
/* This structure records a sequence of operations.
`ops' is the number of operations recorded.
`cost' is their total cost.
The operations are stored in `op' and the corresponding
logarithms of the integer coefficients in `log'.
These are the operations:
alg_zero total := 0;
alg_m total := multiplicand;
alg_shift total := total * coeff
alg_add_t_m2 total := total + multiplicand * coeff;
alg_sub_t_m2 total := total - multiplicand * coeff;
alg_add_factor total := total * coeff + total;
alg_sub_factor total := total * coeff - total;
alg_add_t2_m total := total * coeff + multiplicand;
alg_sub_t2_m total := total * coeff - multiplicand;
The first operand must be either alg_zero or alg_m. */
struct algorithm
{
struct mult_cost cost;
short ops;
/* The size of the OP and LOG fields are not directly related to the
word size, but the worst-case algorithms will be if we have few
consecutive ones or zeros, i.e., a multiplicand like 10101010101...
In that case we will generate shift-by-2, add, shift-by-2, add,...,
in total wordsize operations. */
enum alg_code op[MAX_BITS_PER_WORD];
char log[MAX_BITS_PER_WORD];
};
/* The entry for our multiplication cache/hash table. */
struct alg_hash_entry {
/* The number we are multiplying by. */
unsigned HOST_WIDE_INT t;
/* The mode in which we are multiplying something by T. */
machine_mode mode;
/* The best multiplication algorithm for t. */
enum alg_code alg;
/* The cost of multiplication if ALG_CODE is not alg_impossible.
Otherwise, the cost within which multiplication by T is
impossible. */
struct mult_cost cost;
/* Optimized for speed? */
bool speed;
};
/* The number of cache/hash entries. */
#if HOST_BITS_PER_WIDE_INT == 64
#define NUM_ALG_HASH_ENTRIES 1031
#else
#define NUM_ALG_HASH_ENTRIES 307
#endif
#define NUM_MODE_INT \
(MAX_MODE_INT - MIN_MODE_INT + 1)
#define NUM_MODE_PARTIAL_INT \
(MIN_MODE_PARTIAL_INT == E_VOIDmode ? 0 \
: MAX_MODE_PARTIAL_INT - MIN_MODE_PARTIAL_INT + 1)
#define NUM_MODE_VECTOR_INT \
(MIN_MODE_VECTOR_INT == E_VOIDmode ? 0 \
: MAX_MODE_VECTOR_INT - MIN_MODE_VECTOR_INT + 1)
#define NUM_MODE_IP_INT (NUM_MODE_INT + NUM_MODE_PARTIAL_INT)
#define NUM_MODE_IPV_INT (NUM_MODE_IP_INT + NUM_MODE_VECTOR_INT)
struct expmed_op_cheap {
bool cheap[2][NUM_MODE_IPV_INT];
};
struct expmed_op_costs {
int cost[2][NUM_MODE_IPV_INT];
};
/* Target-dependent globals. */
struct target_expmed {
/* Each entry of ALG_HASH caches alg_code for some integer. This is
actually a hash table. If we have a collision, that the older
entry is kicked out. */
struct alg_hash_entry x_alg_hash[NUM_ALG_HASH_ENTRIES];
/* True if x_alg_hash might already have been used. */
bool x_alg_hash_used_p;
/* Nonzero means divides or modulus operations are relatively cheap for
powers of two, so don't use branches; emit the operation instead.
Usually, this will mean that the MD file will emit non-branch
sequences. */
struct expmed_op_cheap x_sdiv_pow2_cheap;
struct expmed_op_cheap x_smod_pow2_cheap;
/* Cost of various pieces of RTL. Note that some of these are indexed by
shift count and some by mode. */
int x_zero_cost[2];
struct expmed_op_costs x_add_cost;
struct expmed_op_costs x_neg_cost;
struct expmed_op_costs x_shift_cost[MAX_BITS_PER_WORD];
struct expmed_op_costs x_shiftadd_cost[MAX_BITS_PER_WORD];
struct expmed_op_costs x_shiftsub0_cost[MAX_BITS_PER_WORD];
struct expmed_op_costs x_shiftsub1_cost[MAX_BITS_PER_WORD];
struct expmed_op_costs x_mul_cost;
struct expmed_op_costs x_sdiv_cost;
struct expmed_op_costs x_udiv_cost;
int x_mul_widen_cost[2][NUM_MODE_INT];
int x_mul_highpart_cost[2][NUM_MODE_INT];
/* Conversion costs are only defined between two scalar integer modes
of different sizes. The first machine mode is the destination mode,
and the second is the source mode. */
int x_convert_cost[2][NUM_MODE_IP_INT][NUM_MODE_IP_INT];
};
extern struct target_expmed default_target_expmed;
#if SWITCHABLE_TARGET
extern struct target_expmed *this_target_expmed;
#else
#define this_target_expmed (&default_target_expmed)
#endif
/* Return a pointer to the alg_hash_entry at IDX. */
static inline struct alg_hash_entry *
alg_hash_entry_ptr (int idx)
{
return &this_target_expmed->x_alg_hash[idx];
}
/* Return true if the x_alg_hash field might have been used. */
static inline bool
alg_hash_used_p (void)
{
return this_target_expmed->x_alg_hash_used_p;
}
/* Set whether the x_alg_hash field might have been used. */
static inline void
set_alg_hash_used_p (bool usedp)
{
this_target_expmed->x_alg_hash_used_p = usedp;
}
/* Compute an index into the cost arrays by mode class. */
static inline int
expmed_mode_index (machine_mode mode)
{
switch (GET_MODE_CLASS (mode))
{
case MODE_INT:
return mode - MIN_MODE_INT;
case MODE_PARTIAL_INT:
/* If there are no partial integer modes, help the compiler
to figure out this will never happen. See PR59934. */
if (MIN_MODE_PARTIAL_INT != VOIDmode)
return mode - MIN_MODE_PARTIAL_INT + NUM_MODE_INT;
break;
case MODE_VECTOR_INT:
/* If there are no vector integer modes, help the compiler
to figure out this will never happen. See PR59934. */
if (MIN_MODE_VECTOR_INT != VOIDmode)
return mode - MIN_MODE_VECTOR_INT + NUM_MODE_IP_INT;
break;
default:
break;
}
gcc_unreachable ();
}
/* Return a pointer to a boolean contained in EOC indicating whether
a particular operation performed in MODE is cheap when optimizing
for SPEED. */
static inline bool *
expmed_op_cheap_ptr (struct expmed_op_cheap *eoc, bool speed,
machine_mode mode)
{
int idx = expmed_mode_index (mode);
return &eoc->cheap[speed][idx];
}
/* Return a pointer to a cost contained in COSTS when a particular
operation is performed in MODE when optimizing for SPEED. */
static inline int *
expmed_op_cost_ptr (struct expmed_op_costs *costs, bool speed,
machine_mode mode)
{
int idx = expmed_mode_index (mode);
return &costs->cost[speed][idx];
}
/* Subroutine of {set_,}sdiv_pow2_cheap. Not to be used otherwise. */
static inline bool *
sdiv_pow2_cheap_ptr (bool speed, machine_mode mode)
{
return expmed_op_cheap_ptr (&this_target_expmed->x_sdiv_pow2_cheap,
speed, mode);
}
/* Set whether a signed division by a power of 2 is cheap in MODE
when optimizing for SPEED. */
static inline void
set_sdiv_pow2_cheap (bool speed, machine_mode mode, bool cheap_p)
{
*sdiv_pow2_cheap_ptr (speed, mode) = cheap_p;
}
/* Return whether a signed division by a power of 2 is cheap in MODE
when optimizing for SPEED. */
static inline bool
sdiv_pow2_cheap (bool speed, machine_mode mode)
{
return *sdiv_pow2_cheap_ptr (speed, mode);
}
/* Subroutine of {set_,}smod_pow2_cheap. Not to be used otherwise. */
static inline bool *
smod_pow2_cheap_ptr (bool speed, machine_mode mode)
{
return expmed_op_cheap_ptr (&this_target_expmed->x_smod_pow2_cheap,
speed, mode);
}
/* Set whether a signed modulo by a power of 2 is CHEAP in MODE when
optimizing for SPEED. */
static inline void
set_smod_pow2_cheap (bool speed, machine_mode mode, bool cheap)
{
*smod_pow2_cheap_ptr (speed, mode) = cheap;
}
/* Return whether a signed modulo by a power of 2 is cheap in MODE
when optimizing for SPEED. */
static inline bool
smod_pow2_cheap (bool speed, machine_mode mode)
{
return *smod_pow2_cheap_ptr (speed, mode);
}
/* Subroutine of {set_,}zero_cost. Not to be used otherwise. */
static inline int *
zero_cost_ptr (bool speed)
{
return &this_target_expmed->x_zero_cost[speed];
}
/* Set the COST of loading zero when optimizing for SPEED. */
static inline void
set_zero_cost (bool speed, int cost)
{
*zero_cost_ptr (speed) = cost;
}
/* Return the COST of loading zero when optimizing for SPEED. */
static inline int
zero_cost (bool speed)
{
return *zero_cost_ptr (speed);
}
/* Subroutine of {set_,}add_cost. Not to be used otherwise. */
static inline int *
add_cost_ptr (bool speed, machine_mode mode)
{
return expmed_op_cost_ptr (&this_target_expmed->x_add_cost, speed, mode);
}
/* Set the COST of computing an add in MODE when optimizing for SPEED. */
static inline void
set_add_cost (bool speed, machine_mode mode, int cost)
{
*add_cost_ptr (speed, mode) = cost;
}
/* Return the cost of computing an add in MODE when optimizing for SPEED. */
static inline int
add_cost (bool speed, machine_mode mode)
{
return *add_cost_ptr (speed, mode);
}
/* Subroutine of {set_,}neg_cost. Not to be used otherwise. */
static inline int *
neg_cost_ptr (bool speed, machine_mode mode)
{
return expmed_op_cost_ptr (&this_target_expmed->x_neg_cost, speed, mode);
}
/* Set the COST of computing a negation in MODE when optimizing for SPEED. */
static inline void
set_neg_cost (bool speed, machine_mode mode, int cost)
{
*neg_cost_ptr (speed, mode) = cost;
}
/* Return the cost of computing a negation in MODE when optimizing for
SPEED. */
static inline int
neg_cost (bool speed, machine_mode mode)
{
return *neg_cost_ptr (speed, mode);
}
/* Subroutine of {set_,}shift_cost. Not to be used otherwise. */
static inline int *
shift_cost_ptr (bool speed, machine_mode mode, int bits)
{
return expmed_op_cost_ptr (&this_target_expmed->x_shift_cost[bits],
speed, mode);
}
/* Set the COST of doing a shift in MODE by BITS when optimizing for SPEED. */
static inline void
set_shift_cost (bool speed, machine_mode mode, int bits, int cost)
{
*shift_cost_ptr (speed, mode, bits) = cost;
}
/* Return the cost of doing a shift in MODE by BITS when optimizing for
SPEED. */
static inline int
shift_cost (bool speed, machine_mode mode, int bits)
{
return *shift_cost_ptr (speed, mode, bits);
}
/* Subroutine of {set_,}shiftadd_cost. Not to be used otherwise. */
static inline int *
shiftadd_cost_ptr (bool speed, machine_mode mode, int bits)
{
return expmed_op_cost_ptr (&this_target_expmed->x_shiftadd_cost[bits],
speed, mode);
}
/* Set the COST of doing a shift in MODE by BITS followed by an add when
optimizing for SPEED. */
static inline void
set_shiftadd_cost (bool speed, machine_mode mode, int bits, int cost)
{
*shiftadd_cost_ptr (speed, mode, bits) = cost;
}
/* Return the cost of doing a shift in MODE by BITS followed by an add
when optimizing for SPEED. */
static inline int
shiftadd_cost (bool speed, machine_mode mode, int bits)
{
return *shiftadd_cost_ptr (speed, mode, bits);
}
/* Subroutine of {set_,}shiftsub0_cost. Not to be used otherwise. */
static inline int *
shiftsub0_cost_ptr (bool speed, machine_mode mode, int bits)
{
return expmed_op_cost_ptr (&this_target_expmed->x_shiftsub0_cost[bits],
speed, mode);
}
/* Set the COST of doing a shift in MODE by BITS and then subtracting a
value when optimizing for SPEED. */
static inline void
set_shiftsub0_cost (bool speed, machine_mode mode, int bits, int cost)
{
*shiftsub0_cost_ptr (speed, mode, bits) = cost;
}
/* Return the cost of doing a shift in MODE by BITS and then subtracting
a value when optimizing for SPEED. */
static inline int
shiftsub0_cost (bool speed, machine_mode mode, int bits)
{
return *shiftsub0_cost_ptr (speed, mode, bits);
}
/* Subroutine of {set_,}shiftsub1_cost. Not to be used otherwise. */
static inline int *
shiftsub1_cost_ptr (bool speed, machine_mode mode, int bits)
{
return expmed_op_cost_ptr (&this_target_expmed->x_shiftsub1_cost[bits],
speed, mode);
}
/* Set the COST of subtracting a shift in MODE by BITS from a value when
optimizing for SPEED. */
static inline void
set_shiftsub1_cost (bool speed, machine_mode mode, int bits, int cost)
{
*shiftsub1_cost_ptr (speed, mode, bits) = cost;
}
/* Return the cost of subtracting a shift in MODE by BITS from a value
when optimizing for SPEED. */
static inline int
shiftsub1_cost (bool speed, machine_mode mode, int bits)
{
return *shiftsub1_cost_ptr (speed, mode, bits);
}
/* Subroutine of {set_,}mul_cost. Not to be used otherwise. */
static inline int *
mul_cost_ptr (bool speed, machine_mode mode)
{
return expmed_op_cost_ptr (&this_target_expmed->x_mul_cost, speed, mode);
}
/* Set the COST of doing a multiplication in MODE when optimizing for
SPEED. */
static inline void
set_mul_cost (bool speed, machine_mode mode, int cost)
{
*mul_cost_ptr (speed, mode) = cost;
}
/* Return the cost of doing a multiplication in MODE when optimizing
for SPEED. */
static inline int
mul_cost (bool speed, machine_mode mode)
{
return *mul_cost_ptr (speed, mode);
}
/* Subroutine of {set_,}sdiv_cost. Not to be used otherwise. */
static inline int *
sdiv_cost_ptr (bool speed, machine_mode mode)
{
return expmed_op_cost_ptr (&this_target_expmed->x_sdiv_cost, speed, mode);
}
/* Set the COST of doing a signed division in MODE when optimizing
for SPEED. */
static inline void
set_sdiv_cost (bool speed, machine_mode mode, int cost)
{
*sdiv_cost_ptr (speed, mode) = cost;
}
/* Return the cost of doing a signed division in MODE when optimizing
for SPEED. */
static inline int
sdiv_cost (bool speed, machine_mode mode)
{
return *sdiv_cost_ptr (speed, mode);
}
/* Subroutine of {set_,}udiv_cost. Not to be used otherwise. */
static inline int *
udiv_cost_ptr (bool speed, machine_mode mode)
{
return expmed_op_cost_ptr (&this_target_expmed->x_udiv_cost, speed, mode);
}
/* Set the COST of doing an unsigned division in MODE when optimizing
for SPEED. */
static inline void
set_udiv_cost (bool speed, machine_mode mode, int cost)
{
*udiv_cost_ptr (speed, mode) = cost;
}
/* Return the cost of doing an unsigned division in MODE when
optimizing for SPEED. */
static inline int
udiv_cost (bool speed, machine_mode mode)
{
return *udiv_cost_ptr (speed, mode);
}
/* Subroutine of {set_,}mul_widen_cost. Not to be used otherwise. */
static inline int *
mul_widen_cost_ptr (bool speed, machine_mode mode)
{
gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
return &this_target_expmed->x_mul_widen_cost[speed][mode - MIN_MODE_INT];
}
/* Set the COST for computing a widening multiplication in MODE when
optimizing for SPEED. */
static inline void
set_mul_widen_cost (bool speed, machine_mode mode, int cost)
{
*mul_widen_cost_ptr (speed, mode) = cost;
}
/* Return the cost for computing a widening multiplication in MODE when
optimizing for SPEED. */
static inline int
mul_widen_cost (bool speed, machine_mode mode)
{
return *mul_widen_cost_ptr (speed, mode);
}
/* Subroutine of {set_,}mul_highpart_cost. Not to be used otherwise. */
static inline int *
mul_highpart_cost_ptr (bool speed, machine_mode mode)
{
gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
int m = mode - MIN_MODE_INT;
gcc_assert (m < NUM_MODE_INT);
return &this_target_expmed->x_mul_highpart_cost[speed][m];
}
/* Set the COST for computing the high part of a multiplication in MODE
when optimizing for SPEED. */
static inline void
set_mul_highpart_cost (bool speed, machine_mode mode, int cost)
{
*mul_highpart_cost_ptr (speed, mode) = cost;
}
/* Return the cost for computing the high part of a multiplication in MODE
when optimizing for SPEED. */
static inline int
mul_highpart_cost (bool speed, machine_mode mode)
{
return *mul_highpart_cost_ptr (speed, mode);
}
/* Subroutine of {set_,}convert_cost. Not to be used otherwise. */
static inline int *
convert_cost_ptr (machine_mode to_mode, machine_mode from_mode,
bool speed)
{
int to_idx = expmed_mode_index (to_mode);
int from_idx = expmed_mode_index (from_mode);
gcc_assert (IN_RANGE (to_idx, 0, NUM_MODE_IP_INT - 1));
gcc_assert (IN_RANGE (from_idx, 0, NUM_MODE_IP_INT - 1));
return &this_target_expmed->x_convert_cost[speed][to_idx][from_idx];
}
/* Set the COST for converting from FROM_MODE to TO_MODE when optimizing
for SPEED. */
static inline void
set_convert_cost (machine_mode to_mode, machine_mode from_mode,
bool speed, int cost)
{
*convert_cost_ptr (to_mode, from_mode, speed) = cost;
}
/* Return the cost for converting from FROM_MODE to TO_MODE when optimizing
for SPEED. */
static inline int
convert_cost (machine_mode to_mode, machine_mode from_mode,
bool speed)
{
return *convert_cost_ptr (to_mode, from_mode, speed);
}
extern int mult_by_coeff_cost (HOST_WIDE_INT, machine_mode, bool);
extern rtx emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
machine_mode mode, machine_mode compare_mode,
int unsignedp, rtx x, rtx y, int normalizep,
machine_mode target_mode);
/* Arguments MODE, RTX: return an rtx for the negation of that value.
May emit insns. */
extern rtx negate_rtx (machine_mode, rtx);
/* Arguments MODE, RTX: return an rtx for the flipping of that value.
May emit insns. */
extern rtx flip_storage_order (machine_mode, rtx);
/* Expand a logical AND operation. */
extern rtx expand_and (machine_mode, rtx, rtx, rtx);
/* Emit a store-flag operation. */
extern rtx emit_store_flag (rtx, enum rtx_code, rtx, rtx, machine_mode,
int, int);
/* Like emit_store_flag, but always succeeds. */
extern rtx emit_store_flag_force (rtx, enum rtx_code, rtx, rtx,
machine_mode, int, int);
/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
replace division by D, and put the least significant N bits of the result
in *MULTIPLIER_PTR and return the most significant bit. */
extern unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
int, unsigned HOST_WIDE_INT *,
int *, int *);
#ifdef TREE_CODE
extern rtx expand_variable_shift (enum tree_code, machine_mode,
rtx, tree, rtx, int);
extern rtx expand_shift (enum tree_code, machine_mode, rtx, poly_int64, rtx,
int);
extern rtx expand_divmod (int, enum tree_code, machine_mode, rtx, rtx,
rtx, int);
#endif
extern void store_bit_field (rtx, poly_uint64, poly_uint64,
poly_uint64, poly_uint64,
machine_mode, rtx, bool);
extern rtx extract_bit_field (rtx, poly_uint64, poly_uint64, int, rtx,
machine_mode, machine_mode, bool, rtx *);
extern rtx extract_low_bits (machine_mode, machine_mode, rtx);
extern rtx expand_mult (machine_mode, rtx, rtx, rtx, int, bool = false);
extern rtx expand_mult_highpart_adjust (scalar_int_mode, rtx, rtx, rtx,
rtx, int);
#endif // EXPMED_H
|