aboutsummaryrefslogtreecommitdiff
path: root/gcc/errors.cc
blob: 766e12e6059d6db41e2de3b658cb6f1b29830265 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/* Basic error reporting routines.
   Copyright (C) 1999-2022 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* warning, error, and fatal.  These definitions are suitable for use
   in the generator programs; the compiler has a more elaborate suite
   of diagnostic printers, found in diagnostic.cc.  */

#ifdef HOST_GENERATOR_FILE
#include "config.h"
#define GENERATOR_FILE 1
#else
#include "bconfig.h"
#endif
#include "system.h"
#include "errors.h"

/* Set this to argv[0] at the beginning of main.  */

const char *progname;

/* Starts out 0, set to 1 if error is called.  */

int have_error = 0;

/* Print a warning message - output produced, but there may be problems.  */

void
warning (const char *format, ...)
{
  va_list ap;

  va_start (ap, format);
  fprintf (stderr, "%s: warning: ", progname);
  vfprintf (stderr, format, ap);
  va_end (ap);
  fputc ('\n', stderr);
}


/* Print an error message - we keep going but the output is unusable.  */

void
error (const char *format, ...)
{
  va_list ap;

  va_start (ap, format);
  fprintf (stderr, "%s: ", progname);
  vfprintf (stderr, format, ap);
  va_end (ap);
  fputc ('\n', stderr);

  have_error = 1;
}


/* Fatal error - terminate execution immediately.  Does not return.  */

void
fatal (const char *format, ...)
{
  va_list ap;

  va_start (ap, format);
  fprintf (stderr, "%s: ", progname);
  vfprintf (stderr, format, ap);
  va_end (ap);
  fputc ('\n', stderr);
  exit (FATAL_EXIT_CODE);
}

/* Similar, but say we got an internal error.  */

void
internal_error (const char *format, ...)
{
  va_list ap;

  va_start (ap, format);
  fprintf (stderr, "%s: Internal error: ", progname);
  vfprintf (stderr, format, ap);
  va_end (ap);
  fputc ('\n', stderr);
  exit (FATAL_EXIT_CODE);
}

/* Given a partial pathname as input, return another pathname that
   shares no directory elements with the pathname of __FILE__.  This
   is used by fancy_abort() to print `Internal compiler error in expr.cc'
   instead of `Internal compiler error in ../../GCC/gcc/expr.cc'.  This
   version is meant to be used for the gen* programs and therefor need not
   handle subdirectories.  */

const char *
trim_filename (const char *name)
{
  static const char this_file[] = __FILE__;
  const char *p = name, *q = this_file;

  /* Skip any parts the two filenames have in common.  */
  while (*p == *q && *p != 0 && *q != 0)
    p++, q++;

  /* Now go backwards until the previous directory separator.  */
  while (p > name && !IS_DIR_SEPARATOR (p[-1]))
    p--;

  return p;
}

/* "Fancy" abort.  Reports where in the compiler someone gave up.
   This file is used only by build programs, so we're not as polite as
   the version in diagnostic.cc.  */
void
fancy_abort (const char *file, int line, const char *func)
{
  internal_error ("abort in %s, at %s:%d", func, trim_filename (file), line);
}
href='#n473'>473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
/* Expands front end tree to back end RTL for GNU C-Compiler
   Copyright (C) 1987, 88, 89, 91-98, 1999 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */


/* This file handles the generation of rtl code from tree structure
   at the level of the function as a whole.
   It creates the rtl expressions for parameters and auto variables
   and has full responsibility for allocating stack slots.

   `expand_function_start' is called at the beginning of a function,
   before the function body is parsed, and `expand_function_end' is
   called after parsing the body.

   Call `assign_stack_local' to allocate a stack slot for a local variable.
   This is usually done during the RTL generation for the function body,
   but it can also be done in the reload pass when a pseudo-register does
   not get a hard register.

   Call `put_var_into_stack' when you learn, belatedly, that a variable
   previously given a pseudo-register must in fact go in the stack.
   This function changes the DECL_RTL to be a stack slot instead of a reg
   then scans all the RTL instructions so far generated to correct them.  */

#include "config.h"
#include "system.h"
#include "rtl.h"
#include "tree.h"
#include "flags.h"
#include "except.h"
#include "function.h"
#include "insn-flags.h"
#include "expr.h"
#include "insn-codes.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "recog.h"
#include "output.h"
#include "basic-block.h"
#include "obstack.h"
#include "toplev.h"

#if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
#define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
#endif

#ifndef TRAMPOLINE_ALIGNMENT
#define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
#endif

/* Some systems use __main in a way incompatible with its use in gcc, in these
   cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
   give the same symbol without quotes for an alternative entry point.  You
   must define both, or neither.  */
#ifndef NAME__MAIN
#define NAME__MAIN "__main"
#define SYMBOL__MAIN __main
#endif

/* Round a value to the lowest integer less than it that is a multiple of
   the required alignment.  Avoid using division in case the value is
   negative.  Assume the alignment is a power of two.  */
#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))

/* Similar, but round to the next highest integer that meets the
   alignment.  */
#define CEIL_ROUND(VALUE,ALIGN)	(((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))

/* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
   during rtl generation.  If they are different register numbers, this is
   always true.  It may also be true if
   FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
   generation.  See fix_lexical_addr for details.  */

#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
#define NEED_SEPARATE_AP
#endif

/* Number of bytes of args popped by function being compiled on its return.
   Zero if no bytes are to be popped.
   May affect compilation of return insn or of function epilogue.  */

int current_function_pops_args;

/* Nonzero if function being compiled needs to be given an address
   where the value should be stored.  */

int current_function_returns_struct;

/* Nonzero if function being compiled needs to
   return the address of where it has put a structure value.  */

int current_function_returns_pcc_struct;

/* Nonzero if function being compiled needs to be passed a static chain.  */

int current_function_needs_context;

/* Nonzero if function being compiled can call setjmp.  */

int current_function_calls_setjmp;

/* Nonzero if function being compiled can call longjmp.  */

int current_function_calls_longjmp;

/* Nonzero if function being compiled receives nonlocal gotos
   from nested functions.  */

int current_function_has_nonlocal_label;

/* Nonzero if function being compiled has nonlocal gotos to parent
   function.  */

int current_function_has_nonlocal_goto;

/* Nonzero if this function has a computed goto.

   It is computed during find_basic_blocks or during stupid life
   analysis.  */

int current_function_has_computed_jump;

/* Nonzero if function being compiled contains nested functions.  */

int current_function_contains_functions;

/* Nonzero if function being compiled doesn't modify the stack pointer
   (ignoring the prologue and epilogue).  This is only valid after
   life_analysis has run. */

int current_function_sp_is_unchanging;

/* Nonzero if the current function is a thunk (a lightweight function that
   just adjusts one of its arguments and forwards to another function), so
   we should try to cut corners where we can.  */
int current_function_is_thunk;

/* Nonzero if function being compiled can call alloca,
   either as a subroutine or builtin.  */

int current_function_calls_alloca;

/* Nonzero if the current function returns a pointer type */

int current_function_returns_pointer;

/* If some insns can be deferred to the delay slots of the epilogue, the
   delay list for them is recorded here.  */

rtx current_function_epilogue_delay_list;

/* If function's args have a fixed size, this is that size, in bytes.
   Otherwise, it is -1.
   May affect compilation of return insn or of function epilogue.  */

int current_function_args_size;

/* # bytes the prologue should push and pretend that the caller pushed them.
   The prologue must do this, but only if parms can be passed in registers.  */

int current_function_pretend_args_size;

/* # of bytes of outgoing arguments.  If ACCUMULATE_OUTGOING_ARGS is
   defined, the needed space is pushed by the prologue.  */

int current_function_outgoing_args_size;

/* This is the offset from the arg pointer to the place where the first
   anonymous arg can be found, if there is one.  */

rtx current_function_arg_offset_rtx;

/* Nonzero if current function uses varargs.h or equivalent.
   Zero for functions that use stdarg.h.  */

int current_function_varargs;

/* Nonzero if current function uses stdarg.h or equivalent.
   Zero for functions that use varargs.h.  */

int current_function_stdarg;

/* Quantities of various kinds of registers
   used for the current function's args.  */

CUMULATIVE_ARGS current_function_args_info;

/* Name of function now being compiled.  */

char *current_function_name;

/* If non-zero, an RTL expression for the location at which the current 
   function returns its result.  If the current function returns its
   result in a register, current_function_return_rtx will always be
   the hard register containing the result.  */

rtx current_function_return_rtx;

/* Nonzero if the current function uses the constant pool.  */

int current_function_uses_const_pool;

/* Nonzero if the current function uses pic_offset_table_rtx.  */
int current_function_uses_pic_offset_table;

/* The arg pointer hard register, or the pseudo into which it was copied.  */
rtx current_function_internal_arg_pointer;

/* Language-specific reason why the current function cannot be made inline.  */
char *current_function_cannot_inline;

/* Nonzero if instrumentation calls for function entry and exit should be
   generated.  */
int current_function_instrument_entry_exit;

/* Nonzero if memory access checking be enabled in the current function.  */
int current_function_check_memory_usage;

/* The FUNCTION_DECL for an inline function currently being expanded.  */
tree inline_function_decl;

/* Number of function calls seen so far in current function.  */

int function_call_count;

/* List (chain of TREE_LIST) of LABEL_DECLs for all nonlocal labels
   (labels to which there can be nonlocal gotos from nested functions)
   in this function.  */

tree nonlocal_labels;

/* List (chain of EXPR_LIST) of stack slots that hold the current handlers
   for nonlocal gotos.  There is one for every nonlocal label in the function;
   this list matches the one in nonlocal_labels.
   Zero when function does not have nonlocal labels.  */

rtx nonlocal_goto_handler_slots;

/* RTX for stack slot that holds the stack pointer value to restore
   for a nonlocal goto.
   Zero when function does not have nonlocal labels.  */

rtx nonlocal_goto_stack_level;

/* Label that will go on parm cleanup code, if any.
   Jumping to this label runs cleanup code for parameters, if
   such code must be run.  Following this code is the logical return label.  */

rtx cleanup_label;

/* Label that will go on function epilogue.
   Jumping to this label serves as a "return" instruction
   on machines which require execution of the epilogue on all returns.  */

rtx return_label;

/* List (chain of EXPR_LISTs) of pseudo-regs of SAVE_EXPRs.
   So we can mark them all live at the end of the function, if nonopt.  */
rtx save_expr_regs;

/* List (chain of EXPR_LISTs) of all stack slots in this function.
   Made for the sake of unshare_all_rtl.  */
rtx stack_slot_list;

/* Chain of all RTL_EXPRs that have insns in them.  */
tree rtl_expr_chain;

/* Label to jump back to for tail recursion, or 0 if we have
   not yet needed one for this function.  */
rtx tail_recursion_label;

/* Place after which to insert the tail_recursion_label if we need one.  */
rtx tail_recursion_reentry;

/* Location at which to save the argument pointer if it will need to be
   referenced.  There are two cases where this is done: if nonlocal gotos
   exist, or if vars stored at an offset from the argument pointer will be
   needed by inner routines.  */

rtx arg_pointer_save_area;

/* Offset to end of allocated area of stack frame.
   If stack grows down, this is the address of the last stack slot allocated.
   If stack grows up, this is the address for the next slot.  */
HOST_WIDE_INT frame_offset;

/* List (chain of TREE_LISTs) of static chains for containing functions.
   Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
   in an RTL_EXPR in the TREE_VALUE.  */
static tree context_display;

/* List (chain of TREE_LISTs) of trampolines for nested functions.
   The trampoline sets up the static chain and jumps to the function.
   We supply the trampoline's address when the function's address is requested.

   Each link has a FUNCTION_DECL in the TREE_PURPOSE and a reg rtx
   in an RTL_EXPR in the TREE_VALUE.  */
static tree trampoline_list;

/* Insn after which register parms and SAVE_EXPRs are born, if nonopt.  */
static rtx parm_birth_insn;

#if 0
/* Nonzero if a stack slot has been generated whose address is not
   actually valid.  It means that the generated rtl must all be scanned
   to detect and correct the invalid addresses where they occur.  */
static int invalid_stack_slot;
#endif

/* Last insn of those whose job was to put parms into their nominal homes.  */
static rtx last_parm_insn;

/* 1 + last pseudo register number possibly used for loading a copy
   of a parameter of this function. */
int max_parm_reg;

/* Vector indexed by REGNO, containing location on stack in which
   to put the parm which is nominally in pseudo register REGNO,
   if we discover that that parm must go in the stack.  The highest
   element in this vector is one less than MAX_PARM_REG, above.  */
rtx *parm_reg_stack_loc;

/* Nonzero once virtual register instantiation has been done.
   assign_stack_local uses frame_pointer_rtx when this is nonzero.  */
static int virtuals_instantiated;

/* These variables hold pointers to functions to
   save and restore machine-specific data,
   in push_function_context and pop_function_context.  */
void (*save_machine_status) PROTO((struct function *));
void (*restore_machine_status) PROTO((struct function *));

/* Nonzero if we need to distinguish between the return value of this function
   and the return value of a function called by this function.  This helps
   integrate.c  */

extern int rtx_equal_function_value_matters;
extern tree sequence_rtl_expr;

/* In order to evaluate some expressions, such as function calls returning
   structures in memory, we need to temporarily allocate stack locations.
   We record each allocated temporary in the following structure.

   Associated with each temporary slot is a nesting level.  When we pop up
   one level, all temporaries associated with the previous level are freed.
   Normally, all temporaries are freed after the execution of the statement
   in which they were created.  However, if we are inside a ({...}) grouping,
   the result may be in a temporary and hence must be preserved.  If the
   result could be in a temporary, we preserve it if we can determine which
   one it is in.  If we cannot determine which temporary may contain the
   result, all temporaries are preserved.  A temporary is preserved by
   pretending it was allocated at the previous nesting level.

   Automatic variables are also assigned temporary slots, at the nesting
   level where they are defined.  They are marked a "kept" so that
   free_temp_slots will not free them.  */

struct temp_slot
{
  /* Points to next temporary slot.  */
  struct temp_slot *next;
  /* The rtx to used to reference the slot.  */
  rtx slot;
  /* The rtx used to represent the address if not the address of the
     slot above.  May be an EXPR_LIST if multiple addresses exist.  */
  rtx address;
  /* The size, in units, of the slot.  */
  HOST_WIDE_INT size;
  /* The value of `sequence_rtl_expr' when this temporary is allocated.  */
  tree rtl_expr;
  /* Non-zero if this temporary is currently in use.  */
  char in_use;
  /* Non-zero if this temporary has its address taken.  */
  char addr_taken;
  /* Nesting level at which this slot is being used.  */
  int level;
  /* Non-zero if this should survive a call to free_temp_slots.  */
  int keep;
  /* The offset of the slot from the frame_pointer, including extra space
     for alignment.  This info is for combine_temp_slots.  */
  HOST_WIDE_INT base_offset;
  /* The size of the slot, including extra space for alignment.  This
     info is for combine_temp_slots.  */
  HOST_WIDE_INT full_size;
};

/* List of all temporaries allocated, both available and in use.  */

struct temp_slot *temp_slots;

/* Current nesting level for temporaries.  */

int temp_slot_level;

/* Current nesting level for variables in a block.  */

int var_temp_slot_level;

/* When temporaries are created by TARGET_EXPRs, they are created at
   this level of temp_slot_level, so that they can remain allocated
   until no longer needed.  CLEANUP_POINT_EXPRs define the lifetime
   of TARGET_EXPRs.  */
int target_temp_slot_level;

/* This structure is used to record MEMs or pseudos used to replace VAR, any
   SUBREGs of VAR, and any MEMs containing VAR as an address.  We need to
   maintain this list in case two operands of an insn were required to match;
   in that case we must ensure we use the same replacement.  */

struct fixup_replacement
{
  rtx old;
  rtx new;
  struct fixup_replacement *next;
};
   
/* Forward declarations.  */

static rtx assign_outer_stack_local PROTO ((enum machine_mode, HOST_WIDE_INT,
					    int, struct function *));
static struct temp_slot *find_temp_slot_from_address  PROTO((rtx));
static void put_reg_into_stack	PROTO((struct function *, rtx, tree,
				       enum machine_mode, enum machine_mode,
				       int, int, int));
static void fixup_var_refs	PROTO((rtx, enum machine_mode, int));
static struct fixup_replacement
  *find_fixup_replacement	PROTO((struct fixup_replacement **, rtx));
static void fixup_var_refs_insns PROTO((rtx, enum machine_mode, int,
					rtx, int));
static void fixup_var_refs_1	PROTO((rtx, enum machine_mode, rtx *, rtx,
				       struct fixup_replacement **));
static rtx fixup_memory_subreg	PROTO((rtx, rtx, int));
static rtx walk_fixup_memory_subreg  PROTO((rtx, rtx, int));
static rtx fixup_stack_1	PROTO((rtx, rtx));
static void optimize_bit_field	PROTO((rtx, rtx, rtx *));
static void instantiate_decls	PROTO((tree, int));
static void instantiate_decls_1	PROTO((tree, int));
static void instantiate_decl	PROTO((rtx, int, int));
static int instantiate_virtual_regs_1 PROTO((rtx *, rtx, int));
static void delete_handlers	PROTO((void));
static void pad_to_arg_alignment PROTO((struct args_size *, int));
#ifndef ARGS_GROW_DOWNWARD
static void pad_below		PROTO((struct args_size *, enum  machine_mode,
				       tree));
#endif
#ifdef ARGS_GROW_DOWNWARD
static tree round_down		PROTO((tree, int));
#endif
static rtx round_trampoline_addr PROTO((rtx));
static tree blocks_nreverse	PROTO((tree));
static int all_blocks		PROTO((tree, tree *));
#if defined (HAVE_prologue) || defined (HAVE_epilogue)
static int *record_insns	PROTO((rtx));
static int contains		PROTO((rtx, int *));
#endif /* HAVE_prologue || HAVE_epilogue */
static void put_addressof_into_stack PROTO((rtx));
static void purge_addressof_1	PROTO((rtx *, rtx, int, int));

/* Pointer to chain of `struct function' for containing functions.  */
struct function *outer_function_chain;

/* Given a function decl for a containing function,
   return the `struct function' for it.  */

struct function *
find_function_data (decl)
     tree decl;
{
  struct function *p;

  for (p = outer_function_chain; p; p = p->next)
    if (p->decl == decl)
      return p;

  abort ();
}

/* Save the current context for compilation of a nested function.
   This is called from language-specific code.
   The caller is responsible for saving any language-specific status,
   since this function knows only about language-independent variables.  */

void
push_function_context_to (context)
     tree context;
{
  struct function *p = (struct function *) xmalloc (sizeof (struct function));

  p->next = outer_function_chain;
  outer_function_chain = p;

  p->name = current_function_name;
  p->decl = current_function_decl;
  p->pops_args = current_function_pops_args;
  p->returns_struct = current_function_returns_struct;
  p->returns_pcc_struct = current_function_returns_pcc_struct;
  p->returns_pointer = current_function_returns_pointer;
  p->needs_context = current_function_needs_context;
  p->calls_setjmp = current_function_calls_setjmp;
  p->calls_longjmp = current_function_calls_longjmp;
  p->calls_alloca = current_function_calls_alloca;
  p->has_nonlocal_label = current_function_has_nonlocal_label;
  p->has_nonlocal_goto = current_function_has_nonlocal_goto;
  p->contains_functions = current_function_contains_functions;
  p->is_thunk = current_function_is_thunk;
  p->args_size = current_function_args_size;
  p->pretend_args_size = current_function_pretend_args_size;
  p->arg_offset_rtx = current_function_arg_offset_rtx;
  p->varargs = current_function_varargs;
  p->stdarg = current_function_stdarg;
  p->uses_const_pool = current_function_uses_const_pool;
  p->uses_pic_offset_table = current_function_uses_pic_offset_table;
  p->internal_arg_pointer = current_function_internal_arg_pointer;
  p->cannot_inline = current_function_cannot_inline;
  p->max_parm_reg = max_parm_reg;
  p->parm_reg_stack_loc = parm_reg_stack_loc;
  p->outgoing_args_size = current_function_outgoing_args_size;
  p->return_rtx = current_function_return_rtx;
  p->nonlocal_goto_handler_slots = nonlocal_goto_handler_slots;
  p->nonlocal_goto_stack_level = nonlocal_goto_stack_level;
  p->nonlocal_labels = nonlocal_labels;
  p->cleanup_label = cleanup_label;
  p->return_label = return_label;
  p->save_expr_regs = save_expr_regs;
  p->stack_slot_list = stack_slot_list;
  p->parm_birth_insn = parm_birth_insn;
  p->frame_offset = frame_offset;
  p->tail_recursion_label = tail_recursion_label;
  p->tail_recursion_reentry = tail_recursion_reentry;
  p->arg_pointer_save_area = arg_pointer_save_area;
  p->rtl_expr_chain = rtl_expr_chain;
  p->last_parm_insn = last_parm_insn;
  p->context_display = context_display;
  p->trampoline_list = trampoline_list;
  p->function_call_count = function_call_count;
  p->temp_slots = temp_slots;
  p->temp_slot_level = temp_slot_level;
  p->target_temp_slot_level = target_temp_slot_level;
  p->var_temp_slot_level = var_temp_slot_level;
  p->fixup_var_refs_queue = 0;
  p->epilogue_delay_list = current_function_epilogue_delay_list;
  p->args_info = current_function_args_info;
  p->check_memory_usage = current_function_check_memory_usage;
  p->instrument_entry_exit = current_function_instrument_entry_exit;

  save_tree_status (p, context);
  save_storage_status (p);
  save_emit_status (p);
  save_expr_status (p);
  save_stmt_status (p);
  save_varasm_status (p, context);
  if (save_machine_status)
    (*save_machine_status) (p);
}

void
push_function_context ()
{
  push_function_context_to (current_function_decl);
}

/* Restore the last saved context, at the end of a nested function.
   This function is called from language-specific code.  */

void
pop_function_context_from (context)
     tree context;
{
  struct function *p = outer_function_chain;
  struct var_refs_queue *queue;

  outer_function_chain = p->next;

  current_function_contains_functions
    = p->contains_functions || p->inline_obstacks
      || context == current_function_decl;
  current_function_name = p->name;
  current_function_decl = p->decl;
  current_function_pops_args = p->pops_args;
  current_function_returns_struct = p->returns_struct;
  current_function_returns_pcc_struct = p->returns_pcc_struct;
  current_function_returns_pointer = p->returns_pointer;
  current_function_needs_context = p->needs_context;
  current_function_calls_setjmp = p->calls_setjmp;
  current_function_calls_longjmp = p->calls_longjmp;
  current_function_calls_alloca = p->calls_alloca;
  current_function_has_nonlocal_label = p->has_nonlocal_label;
  current_function_has_nonlocal_goto = p->has_nonlocal_goto;
  current_function_is_thunk = p->is_thunk;
  current_function_args_size = p->args_size;
  current_function_pretend_args_size = p->pretend_args_size;
  current_function_arg_offset_rtx = p->arg_offset_rtx;
  current_function_varargs = p->varargs;
  current_function_stdarg = p->stdarg;
  current_function_uses_const_pool = p->uses_const_pool;
  current_function_uses_pic_offset_table = p->uses_pic_offset_table;
  current_function_internal_arg_pointer = p->internal_arg_pointer;
  current_function_cannot_inline = p->cannot_inline;
  max_parm_reg = p->max_parm_reg;
  parm_reg_stack_loc = p->parm_reg_stack_loc;
  current_function_outgoing_args_size = p->outgoing_args_size;
  current_function_return_rtx = p->return_rtx;
  nonlocal_goto_handler_slots = p->nonlocal_goto_handler_slots;
  nonlocal_goto_stack_level = p->nonlocal_goto_stack_level;
  nonlocal_labels = p->nonlocal_labels;
  cleanup_label = p->cleanup_label;
  return_label = p->return_label;
  save_expr_regs = p->save_expr_regs;
  stack_slot_list = p->stack_slot_list;
  parm_birth_insn = p->parm_birth_insn;
  frame_offset = p->frame_offset;
  tail_recursion_label = p->tail_recursion_label;
  tail_recursion_reentry = p->tail_recursion_reentry;
  arg_pointer_save_area = p->arg_pointer_save_area;
  rtl_expr_chain = p->rtl_expr_chain;
  last_parm_insn = p->last_parm_insn;
  context_display = p->context_display;
  trampoline_list = p->trampoline_list;
  function_call_count = p->function_call_count;
  temp_slots = p->temp_slots;
  temp_slot_level = p->temp_slot_level;
  target_temp_slot_level = p->target_temp_slot_level;
  var_temp_slot_level = p->var_temp_slot_level;
  current_function_epilogue_delay_list = p->epilogue_delay_list;
  reg_renumber = 0;
  current_function_args_info = p->args_info;
  current_function_check_memory_usage = p->check_memory_usage;
  current_function_instrument_entry_exit = p->instrument_entry_exit;

  restore_tree_status (p, context);
  restore_storage_status (p);
  restore_expr_status (p);
  restore_emit_status (p);
  restore_stmt_status (p);
  restore_varasm_status (p);

  if (restore_machine_status)
    (*restore_machine_status) (p);

  /* Finish doing put_var_into_stack for any of our variables
     which became addressable during the nested function.  */
  for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
    fixup_var_refs (queue->modified, queue->promoted_mode, queue->unsignedp);

  free (p);

  /* Reset variables that have known state during rtx generation.  */
  rtx_equal_function_value_matters = 1;
  virtuals_instantiated = 0;
}

void pop_function_context ()
{
  pop_function_context_from (current_function_decl);
}

/* Allocate fixed slots in the stack frame of the current function.  */

/* Return size needed for stack frame based on slots so far allocated.
   This size counts from zero.  It is not rounded to PREFERRED_STACK_BOUNDARY;
   the caller may have to do that.  */

HOST_WIDE_INT
get_frame_size ()
{
#ifdef FRAME_GROWS_DOWNWARD
  return -frame_offset;
#else
  return frame_offset;
#endif
}

/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
   with machine mode MODE.
   
   ALIGN controls the amount of alignment for the address of the slot:
   0 means according to MODE,
   -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
   positive specifies alignment boundary in bits.

   We do not round to stack_boundary here.  */

rtx
assign_stack_local (mode, size, align)
     enum machine_mode mode;
     HOST_WIDE_INT size;
     int align;
{
  register rtx x, addr;
  int bigend_correction = 0;
  int alignment;

  if (align == 0)
    {
      alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
      if (mode == BLKmode)
	alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
    }
  else if (align == -1)
    {
      alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
      size = CEIL_ROUND (size, alignment);
    }
  else
    alignment = align / BITS_PER_UNIT;

  /* Round frame offset to that alignment.
     We must be careful here, since FRAME_OFFSET might be negative and
     division with a negative dividend isn't as well defined as we might
     like.  So we instead assume that ALIGNMENT is a power of two and
     use logical operations which are unambiguous.  */
#ifdef FRAME_GROWS_DOWNWARD
  frame_offset = FLOOR_ROUND (frame_offset, alignment);
#else
  frame_offset = CEIL_ROUND (frame_offset, alignment);
#endif

  /* On a big-endian machine, if we are allocating more space than we will use,
     use the least significant bytes of those that are allocated.  */
  if (BYTES_BIG_ENDIAN && mode != BLKmode)
    bigend_correction = size - GET_MODE_SIZE (mode);

#ifdef FRAME_GROWS_DOWNWARD
  frame_offset -= size;
#endif

  /* If we have already instantiated virtual registers, return the actual
     address relative to the frame pointer.  */
  if (virtuals_instantiated)
    addr = plus_constant (frame_pointer_rtx,
			  (frame_offset + bigend_correction
			   + STARTING_FRAME_OFFSET));
  else
    addr = plus_constant (virtual_stack_vars_rtx,
			  frame_offset + bigend_correction);

#ifndef FRAME_GROWS_DOWNWARD
  frame_offset += size;
#endif

  x = gen_rtx_MEM (mode, addr);

  stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);

  return x;
}

/* Assign a stack slot in a containing function.
   First three arguments are same as in preceding function.
   The last argument specifies the function to allocate in.  */

static rtx
assign_outer_stack_local (mode, size, align, function)
     enum machine_mode mode;
     HOST_WIDE_INT size;
     int align;
     struct function *function;
{
  register rtx x, addr;
  int bigend_correction = 0;
  int alignment;

  /* Allocate in the memory associated with the function in whose frame
     we are assigning.  */
  push_obstacks (function->function_obstack,
		 function->function_maybepermanent_obstack);

  if (align == 0)
    {
      alignment = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
      if (mode == BLKmode)
	alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
    }
  else if (align == -1)
    {
      alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
      size = CEIL_ROUND (size, alignment);
    }
  else
    alignment = align / BITS_PER_UNIT;

  /* Round frame offset to that alignment.  */
#ifdef FRAME_GROWS_DOWNWARD
  function->frame_offset = FLOOR_ROUND (function->frame_offset, alignment);
#else
  function->frame_offset = CEIL_ROUND (function->frame_offset, alignment);
#endif

  /* On a big-endian machine, if we are allocating more space than we will use,
     use the least significant bytes of those that are allocated.  */
  if (BYTES_BIG_ENDIAN && mode != BLKmode)
    bigend_correction = size - GET_MODE_SIZE (mode);

#ifdef FRAME_GROWS_DOWNWARD
  function->frame_offset -= size;
#endif
  addr = plus_constant (virtual_stack_vars_rtx,
			function->frame_offset + bigend_correction);
#ifndef FRAME_GROWS_DOWNWARD
  function->frame_offset += size;
#endif

  x = gen_rtx_MEM (mode, addr);

  function->stack_slot_list
    = gen_rtx_EXPR_LIST (VOIDmode, x, function->stack_slot_list);

  pop_obstacks ();

  return x;
}

/* Allocate a temporary stack slot and record it for possible later
   reuse.

   MODE is the machine mode to be given to the returned rtx.

   SIZE is the size in units of the space required.  We do no rounding here
   since assign_stack_local will do any required rounding.

   KEEP is 1 if this slot is to be retained after a call to
   free_temp_slots.  Automatic variables for a block are allocated
   with this flag.  KEEP is 2 if we allocate a longer term temporary,
   whose lifetime is controlled by CLEANUP_POINT_EXPRs.  KEEP is 3
   if we are to allocate something at an inner level to be treated as
   a variable in the block (e.g., a SAVE_EXPR).  */

rtx
assign_stack_temp (mode, size, keep)
     enum machine_mode mode;
     HOST_WIDE_INT size;
     int keep;
{
  struct temp_slot *p, *best_p = 0;

  /* If SIZE is -1 it means that somebody tried to allocate a temporary
     of a variable size.  */
  if (size == -1)
    abort ();

  /* First try to find an available, already-allocated temporary that is the
     exact size we require.  */
  for (p = temp_slots; p; p = p->next)
    if (p->size == size && GET_MODE (p->slot) == mode && ! p->in_use)
      break;

  /* If we didn't find, one, try one that is larger than what we want.  We
     find the smallest such.  */
  if (p == 0)
    for (p = temp_slots; p; p = p->next)
      if (p->size > size && GET_MODE (p->slot) == mode && ! p->in_use
	  && (best_p == 0 || best_p->size > p->size))
	best_p = p;

  /* Make our best, if any, the one to use.  */
  if (best_p)
    {
      /* If there are enough aligned bytes left over, make them into a new
	 temp_slot so that the extra bytes don't get wasted.  Do this only
	 for BLKmode slots, so that we can be sure of the alignment.  */
      if (GET_MODE (best_p->slot) == BLKmode)
	{
	  int alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
	  HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);

	  if (best_p->size - rounded_size >= alignment)
	    {
	      p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));
	      p->in_use = p->addr_taken = 0;
	      p->size = best_p->size - rounded_size;
	      p->base_offset = best_p->base_offset + rounded_size;
	      p->full_size = best_p->full_size - rounded_size;
	      p->slot = gen_rtx_MEM (BLKmode,
				     plus_constant (XEXP (best_p->slot, 0),
						    rounded_size));
	      p->address = 0;
	      p->rtl_expr = 0;
	      p->next = temp_slots;
	      temp_slots = p;

	      stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
						   stack_slot_list);

	      best_p->size = rounded_size;
	      best_p->full_size = rounded_size;
	    }
	}

      p = best_p;
    }
	      
  /* If we still didn't find one, make a new temporary.  */
  if (p == 0)
    {
      HOST_WIDE_INT frame_offset_old = frame_offset;

      p = (struct temp_slot *) oballoc (sizeof (struct temp_slot));

      /* If the temp slot mode doesn't indicate the alignment,
	 use the largest possible, so no one will be disappointed.  */
      p->slot = assign_stack_local (mode, size, mode == BLKmode ? -1 : 0);

      /* The following slot size computation is necessary because we don't
	 know the actual size of the temporary slot until assign_stack_local
	 has performed all the frame alignment and size rounding for the
	 requested temporary.  Note that extra space added for alignment
	 can be either above or below this stack slot depending on which
	 way the frame grows.  We include the extra space if and only if it
	 is above this slot.  */
#ifdef FRAME_GROWS_DOWNWARD
      p->size = frame_offset_old - frame_offset;
#else
      p->size = size;
#endif

      /* Now define the fields used by combine_temp_slots.  */
#ifdef FRAME_GROWS_DOWNWARD
      p->base_offset = frame_offset;
      p->full_size = frame_offset_old - frame_offset;
#else
      p->base_offset = frame_offset_old;
      p->full_size = frame_offset - frame_offset_old;
#endif
      p->address = 0;
      p->next = temp_slots;
      temp_slots = p;
    }

  p->in_use = 1;
  p->addr_taken = 0;
  p->rtl_expr = sequence_rtl_expr;

  if (keep == 2)
    {
      p->level = target_temp_slot_level;
      p->keep = 0;
    }
  else if (keep == 3)
    {
      p->level = var_temp_slot_level;
      p->keep = 0;
    }
  else
    {
      p->level = temp_slot_level;
      p->keep = keep;
    }

  /* We may be reusing an old slot, so clear any MEM flags that may have been
     set from before.  */
  RTX_UNCHANGING_P (p->slot) = 0;
  MEM_IN_STRUCT_P (p->slot) = 0;
  MEM_SCALAR_P (p->slot) = 0;
  MEM_ALIAS_SET (p->slot) = 0;
  return p->slot;
}

/* Assign a temporary of given TYPE.
   KEEP is as for assign_stack_temp.
   MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
   it is 0 if a register is OK.
   DONT_PROMOTE is 1 if we should not promote values in register
   to wider modes.  */

rtx
assign_temp (type, keep, memory_required, dont_promote)
     tree type;
     int keep;
     int memory_required;
     int dont_promote;
{
  enum machine_mode mode = TYPE_MODE (type);
  int unsignedp = TREE_UNSIGNED (type);

  if (mode == BLKmode || memory_required)
    {
      HOST_WIDE_INT size = int_size_in_bytes (type);
      rtx tmp;

      /* Unfortunately, we don't yet know how to allocate variable-sized
	 temporaries.  However, sometimes we have a fixed upper limit on
	 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
	 instead.  This is the case for Chill variable-sized strings.  */
      if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
	  && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
	  && TREE_CODE (TYPE_ARRAY_MAX_SIZE (type)) == INTEGER_CST)
	size = TREE_INT_CST_LOW (TYPE_ARRAY_MAX_SIZE (type));

      tmp = assign_stack_temp (mode, size, keep);
      MEM_SET_IN_STRUCT_P (tmp, AGGREGATE_TYPE_P (type));
      return tmp;
    }

#ifndef PROMOTE_FOR_CALL_ONLY
  if (! dont_promote)
    mode = promote_mode (type, mode, &unsignedp, 0);
#endif

  return gen_reg_rtx (mode);
}

/* Combine temporary stack slots which are adjacent on the stack.

   This allows for better use of already allocated stack space.  This is only
   done for BLKmode slots because we can be sure that we won't have alignment
   problems in this case.  */

void
combine_temp_slots ()
{
  struct temp_slot *p, *q;
  struct temp_slot *prev_p, *prev_q;
  int num_slots;

  /* If there are a lot of temp slots, don't do anything unless 
     high levels of optimizaton.  */
  if (! flag_expensive_optimizations)
    for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
      if (num_slots > 100 || (num_slots > 10 && optimize == 0))
	return;

  for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
    {
      int delete_p = 0;

      if (! p->in_use && GET_MODE (p->slot) == BLKmode)
	for (q = p->next, prev_q = p; q; q = prev_q->next)
	  {
	    int delete_q = 0;
	    if (! q->in_use && GET_MODE (q->slot) == BLKmode)
	      {
		if (p->base_offset + p->full_size == q->base_offset)
		  {
		    /* Q comes after P; combine Q into P.  */
		    p->size += q->size;
		    p->full_size += q->full_size;
		    delete_q = 1;
		  }
		else if (q->base_offset + q->full_size == p->base_offset)
		  {
		    /* P comes after Q; combine P into Q.  */
		    q->size += p->size;
		    q->full_size += p->full_size;
		    delete_p = 1;
		    break;
		  }
	      }
	    /* Either delete Q or advance past it.  */
	    if (delete_q)
	      prev_q->next = q->next;
	    else
	      prev_q = q;
	  }
      /* Either delete P or advance past it.  */
      if (delete_p)
	{
	  if (prev_p)
	    prev_p->next = p->next;
	  else
	    temp_slots = p->next;
	}
      else
	prev_p = p;
    }
}

/* Find the temp slot corresponding to the object at address X.  */

static struct temp_slot *
find_temp_slot_from_address (x)
     rtx x;
{
  struct temp_slot *p;
  rtx next;

  for (p = temp_slots; p; p = p->next)
    {
      if (! p->in_use)
	continue;

      else if (XEXP (p->slot, 0) == x
	       || p->address == x
	       || (GET_CODE (x) == PLUS
		   && XEXP (x, 0) == virtual_stack_vars_rtx
		   && GET_CODE (XEXP (x, 1)) == CONST_INT
		   && INTVAL (XEXP (x, 1)) >= p->base_offset
		   && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
	return p;

      else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
	for (next = p->address; next; next = XEXP (next, 1))
	  if (XEXP (next, 0) == x)
	    return p;
    }

  return 0;
}
      
/* Indicate that NEW is an alternate way of referring to the temp slot
   that previously was known by OLD.  */

void
update_temp_slot_address (old, new)
     rtx old, new;
{
  struct temp_slot *p = find_temp_slot_from_address (old);

  /* If none, return.  Else add NEW as an alias.  */
  if (p == 0)
    return;
  else if (p->address == 0)
    p->address = new;
  else
    {
      if (GET_CODE (p->address) != EXPR_LIST)
	p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);

      p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
    }
}

/* If X could be a reference to a temporary slot, mark the fact that its
   address was taken.  */

void
mark_temp_addr_taken (x)
     rtx x;
{
  struct temp_slot *p;

  if (x == 0)
    return;

  /* If X is not in memory or is at a constant address, it cannot be in
     a temporary slot.  */
  if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
    return;

  p = find_temp_slot_from_address (XEXP (x, 0));
  if (p != 0)
    p->addr_taken = 1;
}

/* If X could be a reference to a temporary slot, mark that slot as
   belonging to the to one level higher than the current level.  If X
   matched one of our slots, just mark that one.  Otherwise, we can't
   easily predict which it is, so upgrade all of them.  Kept slots
   need not be touched.

   This is called when an ({...}) construct occurs and a statement
   returns a value in memory.  */

void
preserve_temp_slots (x)
     rtx x;
{
  struct temp_slot *p = 0;

  /* If there is no result, we still might have some objects whose address
     were taken, so we need to make sure they stay around.  */
  if (x == 0)
    {
      for (p = temp_slots; p; p = p->next)
	if (p->in_use && p->level == temp_slot_level && p->addr_taken)
	  p->level--;

      return;
    }

  /* If X is a register that is being used as a pointer, see if we have
     a temporary slot we know it points to.  To be consistent with
     the code below, we really should preserve all non-kept slots
     if we can't find a match, but that seems to be much too costly.  */
  if (GET_CODE (x) == REG && REGNO_POINTER_FLAG (REGNO (x)))
    p = find_temp_slot_from_address (x);

  /* If X is not in memory or is at a constant address, it cannot be in
     a temporary slot, but it can contain something whose address was
     taken.  */
  if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
    {
      for (p = temp_slots; p; p = p->next)
	if (p->in_use && p->level == temp_slot_level && p->addr_taken)
	  p->level--;

      return;
    }

  /* First see if we can find a match.  */
  if (p == 0)
    p = find_temp_slot_from_address (XEXP (x, 0));

  if (p != 0)
    {
      /* Move everything at our level whose address was taken to our new
	 level in case we used its address.  */
      struct temp_slot *q;

      if (p->level == temp_slot_level)
	{
	  for (q = temp_slots; q; q = q->next)
	    if (q != p && q->addr_taken && q->level == p->level)
	      q->level--;

	  p->level--;
	  p->addr_taken = 0;
	}
      return;
    }

  /* Otherwise, preserve all non-kept slots at this level.  */
  for (p = temp_slots; p; p = p->next)
    if (p->in_use && p->level == temp_slot_level && ! p->keep)
      p->level--;
}

/* X is the result of an RTL_EXPR.  If it is a temporary slot associated
   with that RTL_EXPR, promote it into a temporary slot at the present
   level so it will not be freed when we free slots made in the
   RTL_EXPR.  */

void
preserve_rtl_expr_result (x)
     rtx x;
{
  struct temp_slot *p;

  /* If X is not in memory or is at a constant address, it cannot be in
     a temporary slot.  */
  if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
    return;

  /* If we can find a match, move it to our level unless it is already at
     an upper level.  */
  p = find_temp_slot_from_address (XEXP (x, 0));
  if (p != 0)
    {
      p->level = MIN (p->level, temp_slot_level);
      p->rtl_expr = 0;
    }

  return;
}

/* Free all temporaries used so far.  This is normally called at the end
   of generating code for a statement.  Don't free any temporaries
   currently in use for an RTL_EXPR that hasn't yet been emitted.
   We could eventually do better than this since it can be reused while
   generating the same RTL_EXPR, but this is complex and probably not
   worthwhile.  */

void
free_temp_slots ()
{
  struct temp_slot *p;

  for (p = temp_slots; p; p = p->next)
    if (p->in_use && p->level == temp_slot_level && ! p->keep
	&& p->rtl_expr == 0)
      p->in_use = 0;

  combine_temp_slots ();
}

/* Free all temporary slots used in T, an RTL_EXPR node.  */

void
free_temps_for_rtl_expr (t)
     tree t;
{
  struct temp_slot *p;

  for (p = temp_slots; p; p = p->next)
    if (p->rtl_expr == t)
      p->in_use = 0;

  combine_temp_slots ();
}

/* Mark all temporaries ever allocated in this function as not suitable
   for reuse until the current level is exited.  */

void
mark_all_temps_used ()
{
  struct temp_slot *p;

  for (p = temp_slots; p; p = p->next)
    {
      p->in_use = p->keep = 1;
      p->level = MIN (p->level, temp_slot_level);
    }
}

/* Push deeper into the nesting level for stack temporaries.  */

void
push_temp_slots ()
{
  temp_slot_level++;
}

/* Likewise, but save the new level as the place to allocate variables
   for blocks.  */

void
push_temp_slots_for_block ()
{
  push_temp_slots ();

  var_temp_slot_level = temp_slot_level;
}

/* Likewise, but save the new level as the place to allocate temporaries
   for TARGET_EXPRs.  */

void
push_temp_slots_for_target ()
{
  push_temp_slots ();

  target_temp_slot_level = temp_slot_level;
}

/* Set and get the value of target_temp_slot_level.  The only
   permitted use of these functions is to save and restore this value.  */

int
get_target_temp_slot_level ()
{
  return target_temp_slot_level;
}

void
set_target_temp_slot_level (level)
     int level;
{
  target_temp_slot_level = level;
}

/* Pop a temporary nesting level.  All slots in use in the current level
   are freed.  */

void
pop_temp_slots ()
{
  struct temp_slot *p;

  for (p = temp_slots; p; p = p->next)
    if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
      p->in_use = 0;

  combine_temp_slots ();

  temp_slot_level--;
}

/* Initialize temporary slots.  */

void
init_temp_slots ()
{
  /* We have not allocated any temporaries yet.  */
  temp_slots = 0;
  temp_slot_level = 0;
  var_temp_slot_level = 0;
  target_temp_slot_level = 0;
}

/* Retroactively move an auto variable from a register to a stack slot.
   This is done when an address-reference to the variable is seen.  */

void
put_var_into_stack (decl)
     tree decl;
{
  register rtx reg;
  enum machine_mode promoted_mode, decl_mode;
  struct function *function = 0;
  tree context;
  int can_use_addressof;

  context = decl_function_context (decl);

  /* Get the current rtl used for this object and its original mode.  */
  reg = TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl) : DECL_RTL (decl);

  /* No need to do anything if decl has no rtx yet
     since in that case caller is setting TREE_ADDRESSABLE
     and a stack slot will be assigned when the rtl is made.  */
  if (reg == 0)
    return;

  /* Get the declared mode for this object.  */
  decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
	       : DECL_MODE (decl));
  /* Get the mode it's actually stored in.  */
  promoted_mode = GET_MODE (reg);

  /* If this variable comes from an outer function,
     find that function's saved context.  */
  if (context != current_function_decl && context != inline_function_decl)
    for (function = outer_function_chain; function; function = function->next)
      if (function->decl == context)
	break;

  /* If this is a variable-size object with a pseudo to address it,
     put that pseudo into the stack, if the var is nonlocal.  */
  if (DECL_NONLOCAL (decl)
      && GET_CODE (reg) == MEM
      && GET_CODE (XEXP (reg, 0)) == REG
      && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
    {
      reg = XEXP (reg, 0);
      decl_mode = promoted_mode = GET_MODE (reg);
    }

  can_use_addressof
    = (function == 0
       && optimize > 0
       /* FIXME make it work for promoted modes too */
       && decl_mode == promoted_mode
#ifdef NON_SAVING_SETJMP
       && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
#endif
       );

  /* If we can't use ADDRESSOF, make sure we see through one we already
     generated.  */
  if (! can_use_addressof && GET_CODE (reg) == MEM
      && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
    reg = XEXP (XEXP (reg, 0), 0);

  /* Now we should have a value that resides in one or more pseudo regs.  */

  if (GET_CODE (reg) == REG)
    {
      /* If this variable lives in the current function and we don't need
	 to put things in the stack for the sake of setjmp, try to keep it
	 in a register until we know we actually need the address.  */
      if (can_use_addressof)
	gen_mem_addressof (reg, decl);
      else
	put_reg_into_stack (function, reg, TREE_TYPE (decl),
			    promoted_mode, decl_mode,
			    TREE_SIDE_EFFECTS (decl), 0,
			    TREE_USED (decl)
			    || DECL_INITIAL (decl) != 0);
    }
  else if (GET_CODE (reg) == CONCAT)
    {
      /* A CONCAT contains two pseudos; put them both in the stack.
	 We do it so they end up consecutive.  */
      enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
      tree part_type = TREE_TYPE (TREE_TYPE (decl));
#ifdef FRAME_GROWS_DOWNWARD
      /* Since part 0 should have a lower address, do it second.  */
      put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
			  part_mode, TREE_SIDE_EFFECTS (decl), 0,
			  TREE_USED (decl) || DECL_INITIAL (decl) != 0);
      put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
			  part_mode, TREE_SIDE_EFFECTS (decl), 0,
			  TREE_USED (decl) || DECL_INITIAL (decl) != 0);
#else
      put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
			  part_mode, TREE_SIDE_EFFECTS (decl), 0,
			  TREE_USED (decl) || DECL_INITIAL (decl) != 0);
      put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
			  part_mode, TREE_SIDE_EFFECTS (decl), 0,
			  TREE_USED (decl) || DECL_INITIAL (decl) != 0);
#endif

      /* Change the CONCAT into a combined MEM for both parts.  */
      PUT_CODE (reg, MEM);
      MEM_VOLATILE_P (reg) = MEM_VOLATILE_P (XEXP (reg, 0));
      MEM_ALIAS_SET (reg) = get_alias_set (decl);

      /* The two parts are in memory order already.
	 Use the lower parts address as ours.  */
      XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
      /* Prevent sharing of rtl that might lose.  */
      if (GET_CODE (XEXP (reg, 0)) == PLUS)
	XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
    }
  else
    return;
  
  if (current_function_check_memory_usage)
    emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
		       XEXP (reg, 0), ptr_mode,
		       GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
		       TYPE_MODE (sizetype),
		       GEN_INT (MEMORY_USE_RW),
		       TYPE_MODE (integer_type_node));
}

/* Subroutine of put_var_into_stack.  This puts a single pseudo reg REG
   into the stack frame of FUNCTION (0 means the current function).
   DECL_MODE is the machine mode of the user-level data type.
   PROMOTED_MODE is the machine mode of the register.
   VOLATILE_P is nonzero if this is for a "volatile" decl.
   USED_P is nonzero if this reg might have already been used in an insn.  */

static void
put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
		    original_regno, used_p)
     struct function *function;
     rtx reg;
     tree type;
     enum machine_mode promoted_mode, decl_mode;
     int volatile_p;
     int original_regno;
     int used_p;
{
  rtx new = 0;
  int regno = original_regno;

  if (regno == 0)
    regno = REGNO (reg);

  if (function)
    {
      if (regno < function->max_parm_reg)
	new = function->parm_reg_stack_loc[regno];
      if (new == 0)
	new = assign_outer_stack_local (decl_mode, GET_MODE_SIZE (decl_mode),
					0, function);
    }
  else
    {
      if (regno < max_parm_reg)
	new = parm_reg_stack_loc[regno];
      if (new == 0)
	new = assign_stack_local (decl_mode, GET_MODE_SIZE (decl_mode), 0);
    }

  PUT_MODE (reg, decl_mode);
  XEXP (reg, 0) = XEXP (new, 0);
  /* `volatil' bit means one thing for MEMs, another entirely for REGs.  */
  MEM_VOLATILE_P (reg) = volatile_p;
  PUT_CODE (reg, MEM);

  /* If this is a memory ref that contains aggregate components,
     mark it as such for cse and loop optimize.  If we are reusing a
     previously generated stack slot, then we need to copy the bit in
     case it was set for other reasons.  For instance, it is set for
     __builtin_va_alist.  */
  MEM_SET_IN_STRUCT_P (reg,
		       AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
  MEM_ALIAS_SET (reg) = get_alias_set (type);

  /* Now make sure that all refs to the variable, previously made
     when it was a register, are fixed up to be valid again.  */

  if (used_p && function != 0)
    {
      struct var_refs_queue *temp;

      /* Variable is inherited; fix it up when we get back to its function.  */
      push_obstacks (function->function_obstack,
		     function->function_maybepermanent_obstack);

      /* See comment in restore_tree_status in tree.c for why this needs to be
	 on saveable obstack.  */
      temp
	= (struct var_refs_queue *) savealloc (sizeof (struct var_refs_queue));
      temp->modified = reg;
      temp->promoted_mode = promoted_mode;
      temp->unsignedp = TREE_UNSIGNED (type);
      temp->next = function->fixup_var_refs_queue;
      function->fixup_var_refs_queue = temp;
      pop_obstacks ();
    }
  else if (used_p)
    /* Variable is local; fix it up now.  */
    fixup_var_refs (reg, promoted_mode, TREE_UNSIGNED (type));
}

static void
fixup_var_refs (var, promoted_mode, unsignedp)
     rtx var;
     enum machine_mode promoted_mode;
     int unsignedp;
{
  tree pending;
  rtx first_insn = get_insns ();
  struct sequence_stack *stack = sequence_stack;
  tree rtl_exps = rtl_expr_chain;

  /* Must scan all insns for stack-refs that exceed the limit.  */
  fixup_var_refs_insns (var, promoted_mode, unsignedp, first_insn, stack == 0);

  /* Scan all pending sequences too.  */
  for (; stack; stack = stack->next)
    {
      push_to_sequence (stack->first);
      fixup_var_refs_insns (var, promoted_mode, unsignedp,
			    stack->first, stack->next != 0);
      /* Update remembered end of sequence
	 in case we added an insn at the end.  */
      stack->last = get_last_insn ();
      end_sequence ();
    }

  /* Scan all waiting RTL_EXPRs too.  */
  for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
    {
      rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
      if (seq != const0_rtx && seq != 0)
	{
	  push_to_sequence (seq);
	  fixup_var_refs_insns (var, promoted_mode, unsignedp, seq, 0);
	  end_sequence ();
	}
    }
}

/* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
   some part of an insn.  Return a struct fixup_replacement whose OLD
   value is equal to X.  Allocate a new structure if no such entry exists.  */

static struct fixup_replacement *
find_fixup_replacement (replacements, x)
     struct fixup_replacement **replacements;
     rtx x;
{
  struct fixup_replacement *p;

  /* See if we have already replaced this.  */
  for (p = *replacements; p && p->old != x; p = p->next)
    ;

  if (p == 0)
    {
      p = (struct fixup_replacement *) oballoc (sizeof (struct fixup_replacement));
      p->old = x;
      p->new = 0;
      p->next = *replacements;
      *replacements = p;
    }

  return p;
}

/* Scan the insn-chain starting with INSN for refs to VAR
   and fix them up.  TOPLEVEL is nonzero if this chain is the
   main chain of insns for the current function.  */

static void
fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel)
     rtx var;
     enum machine_mode promoted_mode;
     int unsignedp;
     rtx insn;
     int toplevel;
{
  rtx call_dest = 0;

  while (insn)
    {
      rtx next = NEXT_INSN (insn);
      rtx set, prev, prev_set;
      rtx note;

      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	{
	  /* If this is a CLOBBER of VAR, delete it.

	     If it has a REG_LIBCALL note, delete the REG_LIBCALL
	     and REG_RETVAL notes too.  */
 	  if (GET_CODE (PATTERN (insn)) == CLOBBER
	      && (XEXP (PATTERN (insn), 0) == var
		  || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
		      && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
			  || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
	    {
	      if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
		/* The REG_LIBCALL note will go away since we are going to
		   turn INSN into a NOTE, so just delete the
		   corresponding REG_RETVAL note.  */
		remove_note (XEXP (note, 0),
			     find_reg_note (XEXP (note, 0), REG_RETVAL,
					    NULL_RTX));

	      /* In unoptimized compilation, we shouldn't call delete_insn
		 except in jump.c doing warnings.  */
	      PUT_CODE (insn, NOTE);
	      NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
	      NOTE_SOURCE_FILE (insn) = 0;
	    }

	  /* The insn to load VAR from a home in the arglist
	     is now a no-op.  When we see it, just delete it.
	     Similarly if this is storing VAR from a register from which
	     it was loaded in the previous insn.  This will occur
	     when an ADDRESSOF was made for an arglist slot.  */
	  else if (toplevel
		   && (set = single_set (insn)) != 0
		   && SET_DEST (set) == var
		   /* If this represents the result of an insn group,
		      don't delete the insn.  */
		   && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
		   && (rtx_equal_p (SET_SRC (set), var)
		       || (GET_CODE (SET_SRC (set)) == REG
			   && (prev = prev_nonnote_insn (insn)) != 0
			   && (prev_set = single_set (prev)) != 0
			   && SET_DEST (prev_set) == SET_SRC (set)
			   && rtx_equal_p (SET_SRC (prev_set), var))))
	    {
	      /* In unoptimized compilation, we shouldn't call delete_insn
		 except in jump.c doing warnings.  */
	      PUT_CODE (insn, NOTE);
	      NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
	      NOTE_SOURCE_FILE (insn) = 0;
	      if (insn == last_parm_insn)
		last_parm_insn = PREV_INSN (next);
	    }
	  else
	    {
	      struct fixup_replacement *replacements = 0;
	      rtx next_insn = NEXT_INSN (insn);

	      if (SMALL_REGISTER_CLASSES)
		{
		  /* If the insn that copies the results of a CALL_INSN
		     into a pseudo now references VAR, we have to use an
		     intermediate pseudo since we want the life of the
		     return value register to be only a single insn.

		     If we don't use an intermediate pseudo, such things as
		     address computations to make the address of VAR valid
		     if it is not can be placed between the CALL_INSN and INSN.

		     To make sure this doesn't happen, we record the destination
		     of the CALL_INSN and see if the next insn uses both that
		     and VAR.  */

		  if (call_dest != 0 && GET_CODE (insn) == INSN
		      && reg_mentioned_p (var, PATTERN (insn))
		      && reg_mentioned_p (call_dest, PATTERN (insn)))
		    {
		      rtx temp = gen_reg_rtx (GET_MODE (call_dest));

		      emit_insn_before (gen_move_insn (temp, call_dest), insn);

		      PATTERN (insn) = replace_rtx (PATTERN (insn),
						    call_dest, temp);
		    }
	      
		  if (GET_CODE (insn) == CALL_INSN
		      && GET_CODE (PATTERN (insn)) == SET)
		    call_dest = SET_DEST (PATTERN (insn));
		  else if (GET_CODE (insn) == CALL_INSN
			   && GET_CODE (PATTERN (insn)) == PARALLEL
			   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
		    call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
		  else
		    call_dest = 0;
		}

	      /* See if we have to do anything to INSN now that VAR is in
		 memory.  If it needs to be loaded into a pseudo, use a single
		 pseudo for the entire insn in case there is a MATCH_DUP
		 between two operands.  We pass a pointer to the head of
		 a list of struct fixup_replacements.  If fixup_var_refs_1
		 needs to allocate pseudos or replacement MEMs (for SUBREGs),
		 it will record them in this list.
		 
		 If it allocated a pseudo for any replacement, we copy into
		 it here.  */

	      fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
				&replacements);

	      /* If this is last_parm_insn, and any instructions were output
		 after it to fix it up, then we must set last_parm_insn to
		 the last such instruction emitted.  */
	      if (insn == last_parm_insn)
		last_parm_insn = PREV_INSN (next_insn);

	      while (replacements)
		{
		  if (GET_CODE (replacements->new) == REG)
		    {
		      rtx insert_before;
		      rtx seq;

		      /* OLD might be a (subreg (mem)).  */
		      if (GET_CODE (replacements->old) == SUBREG)
			replacements->old
			  = fixup_memory_subreg (replacements->old, insn, 0);
		      else
			replacements->old
			  = fixup_stack_1 (replacements->old, insn);

		      insert_before = insn;

		      /* If we are changing the mode, do a conversion.
			 This might be wasteful, but combine.c will
			 eliminate much of the waste.  */

		      if (GET_MODE (replacements->new)
			  != GET_MODE (replacements->old))
			{
			  start_sequence ();
			  convert_move (replacements->new,
					replacements->old, unsignedp);
			  seq = gen_sequence ();
			  end_sequence ();
			}
		      else
			seq = gen_move_insn (replacements->new,
					     replacements->old);

		      emit_insn_before (seq, insert_before);
		    }

		  replacements = replacements->next;
		}
	    }

	  /* Also fix up any invalid exprs in the REG_NOTES of this insn.
	     But don't touch other insns referred to by reg-notes;
	     we will get them elsewhere.  */
	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	    if (GET_CODE (note) != INSN_LIST)
	      XEXP (note, 0)
		= walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
	}
      insn = next;
    }
}

/* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
   See if the rtx expression at *LOC in INSN needs to be changed.  

   REPLACEMENTS is a pointer to a list head that starts out zero, but may
   contain a list of original rtx's and replacements. If we find that we need
   to modify this insn by replacing a memory reference with a pseudo or by
   making a new MEM to implement a SUBREG, we consult that list to see if
   we have already chosen a replacement. If none has already been allocated,
   we allocate it and update the list.  fixup_var_refs_insns will copy VAR
   or the SUBREG, as appropriate, to the pseudo.  */

static void
fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
     register rtx var;
     enum machine_mode promoted_mode;
     register rtx *loc;
     rtx insn;
     struct fixup_replacement **replacements;
{
  register int i;
  register rtx x = *loc;
  RTX_CODE code = GET_CODE (x);
  register char *fmt;
  register rtx tem, tem1;
  struct fixup_replacement *replacement;

  switch (code)
    {
    case ADDRESSOF:
      if (XEXP (x, 0) == var)
	{
	  /* Prevent sharing of rtl that might lose.  */
	  rtx sub = copy_rtx (XEXP (var, 0));

	  start_sequence ();

	  if (! validate_change (insn, loc, sub, 0))
	    {
	      rtx y = force_operand (sub, NULL_RTX);

	      if (! validate_change (insn, loc, y, 0))
		*loc = copy_to_reg (y);
	    }

	  emit_insn_before (gen_sequence (), insn);
	  end_sequence ();
	}
      return;

    case MEM:
      if (var == x)
	{
	  /* If we already have a replacement, use it.  Otherwise, 
	     try to fix up this address in case it is invalid.  */

	  replacement = find_fixup_replacement (replacements, var);
	  if (replacement->new)
	    {
	      *loc = replacement->new;
	      return;
	    }

	  *loc = replacement->new = x = fixup_stack_1 (x, insn);

	  /* Unless we are forcing memory to register or we changed the mode,
	     we can leave things the way they are if the insn is valid.  */
	     
	  INSN_CODE (insn) = -1;
	  if (! flag_force_mem && GET_MODE (x) == promoted_mode
	      && recog_memoized (insn) >= 0)
	    return;

	  *loc = replacement->new = gen_reg_rtx (promoted_mode);
	  return;
	}

      /* If X contains VAR, we need to unshare it here so that we update
	 each occurrence separately.  But all identical MEMs in one insn
	 must be replaced with the same rtx because of the possibility of
	 MATCH_DUPs.  */

      if (reg_mentioned_p (var, x))
	{
	  replacement = find_fixup_replacement (replacements, x);
	  if (replacement->new == 0)
	    replacement->new = copy_most_rtx (x, var);

	  *loc = x = replacement->new;
	}
      break;

    case REG:
    case CC0:
    case PC:
    case CONST_INT:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST_DOUBLE:
      return;

    case SIGN_EXTRACT:
    case ZERO_EXTRACT:
      /* Note that in some cases those types of expressions are altered
	 by optimize_bit_field, and do not survive to get here.  */
      if (XEXP (x, 0) == var
	  || (GET_CODE (XEXP (x, 0)) == SUBREG
	      && SUBREG_REG (XEXP (x, 0)) == var))
	{
	  /* Get TEM as a valid MEM in the mode presently in the insn.

	     We don't worry about the possibility of MATCH_DUP here; it
	     is highly unlikely and would be tricky to handle.  */

	  tem = XEXP (x, 0);
	  if (GET_CODE (tem) == SUBREG)
	    {
	      if (GET_MODE_BITSIZE (GET_MODE (tem))
		  > GET_MODE_BITSIZE (GET_MODE (var)))
		{
		  replacement = find_fixup_replacement (replacements, var);
		  if (replacement->new == 0)
		    replacement->new = gen_reg_rtx (GET_MODE (var));
		  SUBREG_REG (tem) = replacement->new;
		}
	      else
		tem = fixup_memory_subreg (tem, insn, 0);
	    }
	  else
	    tem = fixup_stack_1 (tem, insn);

	  /* Unless we want to load from memory, get TEM into the proper mode
	     for an extract from memory.  This can only be done if the
	     extract is at a constant position and length.  */

	  if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
	      && GET_CODE (XEXP (x, 2)) == CONST_INT
	      && ! mode_dependent_address_p (XEXP (tem, 0))
	      && ! MEM_VOLATILE_P (tem))
	    {
	      enum machine_mode wanted_mode = VOIDmode;
	      enum machine_mode is_mode = GET_MODE (tem);
	      HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));

#ifdef HAVE_extzv
	      if (GET_CODE (x) == ZERO_EXTRACT)
		{
		  wanted_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
		  if (wanted_mode == VOIDmode)
		    wanted_mode = word_mode;
		}
#endif
#ifdef HAVE_extv
	      if (GET_CODE (x) == SIGN_EXTRACT)
		{
		  wanted_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
		  if (wanted_mode == VOIDmode)
		    wanted_mode = word_mode;
		}
#endif
	      /* If we have a narrower mode, we can do something.  */
	      if (wanted_mode != VOIDmode
		  && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
		{
		  HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
		  rtx old_pos = XEXP (x, 2);
		  rtx newmem;

		  /* If the bytes and bits are counted differently, we
		     must adjust the offset.  */
		  if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
		    offset = (GET_MODE_SIZE (is_mode)
			      - GET_MODE_SIZE (wanted_mode) - offset);

		  pos %= GET_MODE_BITSIZE (wanted_mode);

		  newmem = gen_rtx_MEM (wanted_mode,
					plus_constant (XEXP (tem, 0), offset));
		  RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
		  MEM_COPY_ATTRIBUTES (newmem, tem);

		  /* Make the change and see if the insn remains valid.  */
		  INSN_CODE (insn) = -1;
		  XEXP (x, 0) = newmem;
		  XEXP (x, 2) = GEN_INT (pos);

		  if (recog_memoized (insn) >= 0)
		    return;

		  /* Otherwise, restore old position.  XEXP (x, 0) will be
		     restored later.  */
		  XEXP (x, 2) = old_pos;
		}
	    }

	  /* If we get here, the bitfield extract insn can't accept a memory
	     reference.  Copy the input into a register.  */

	  tem1 = gen_reg_rtx (GET_MODE (tem));
	  emit_insn_before (gen_move_insn (tem1, tem), insn);
	  XEXP (x, 0) = tem1;
	  return;
	}
      break;
	      
    case SUBREG:
      if (SUBREG_REG (x) == var)
	{
	  /* If this is a special SUBREG made because VAR was promoted
	     from a wider mode, replace it with VAR and call ourself
	     recursively, this time saying that the object previously
	     had its current mode (by virtue of the SUBREG).  */

	  if (SUBREG_PROMOTED_VAR_P (x))
	    {
	      *loc = var;
	      fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
	      return;
	    }

	  /* If this SUBREG makes VAR wider, it has become a paradoxical
	     SUBREG with VAR in memory, but these aren't allowed at this 
	     stage of the compilation.  So load VAR into a pseudo and take
	     a SUBREG of that pseudo.  */
	  if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
	    {
	      replacement = find_fixup_replacement (replacements, var);
	      if (replacement->new == 0)
		replacement->new = gen_reg_rtx (GET_MODE (var));
	      SUBREG_REG (x) = replacement->new;
	      return;
	    }

	  /* See if we have already found a replacement for this SUBREG.
	     If so, use it.  Otherwise, make a MEM and see if the insn
	     is recognized.  If not, or if we should force MEM into a register,
	     make a pseudo for this SUBREG.  */
	  replacement = find_fixup_replacement (replacements, x);
	  if (replacement->new)
	    {
	      *loc = replacement->new;
	      return;
	    }
	  
	  replacement->new = *loc = fixup_memory_subreg (x, insn, 0);

	  INSN_CODE (insn) = -1;
	  if (! flag_force_mem && recog_memoized (insn) >= 0)
	    return;

	  *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
	  return;
	}
      break;

    case SET:
      /* First do special simplification of bit-field references.  */
      if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
	  || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
	optimize_bit_field (x, insn, 0);
      if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
	  || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
	optimize_bit_field (x, insn, NULL_PTR);

      /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
	 into a register and then store it back out.  */
      if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
	  && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
	  && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
	      > GET_MODE_SIZE (GET_MODE (var))))
	{
	  replacement = find_fixup_replacement (replacements, var);
	  if (replacement->new == 0)
	    replacement->new = gen_reg_rtx (GET_MODE (var));

	  SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
	  emit_insn_after (gen_move_insn (var, replacement->new), insn);
	}

      /* If SET_DEST is now a paradoxical SUBREG, put the result of this
	 insn into a pseudo and store the low part of the pseudo into VAR.  */
      if (GET_CODE (SET_DEST (x)) == SUBREG
	  && SUBREG_REG (SET_DEST (x)) == var
	  && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
	      > GET_MODE_SIZE (GET_MODE (var))))
	{
	  SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
	  emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
							    tem)),
			   insn);
	  break;
	}
	  
      {
	rtx dest = SET_DEST (x);
	rtx src = SET_SRC (x);
#ifdef HAVE_insv
	rtx outerdest = dest;
#endif

	while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
	       || GET_CODE (dest) == SIGN_EXTRACT
	       || GET_CODE (dest) == ZERO_EXTRACT)
	  dest = XEXP (dest, 0);

	if (GET_CODE (src) == SUBREG)
	  src = XEXP (src, 0);

	/* If VAR does not appear at the top level of the SET
	   just scan the lower levels of the tree.  */

        if (src != var && dest != var)
	  break;

	/* We will need to rerecognize this insn.  */
	INSN_CODE (insn) = -1;

#ifdef HAVE_insv
	if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
	  {
	    /* Since this case will return, ensure we fixup all the
	       operands here.  */
	    fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
			      insn, replacements);
	    fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
			      insn, replacements);
	    fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
			      insn, replacements);

	    tem = XEXP (outerdest, 0);

	    /* Clean up (SUBREG:SI (MEM:mode ...) 0)
	       that may appear inside a ZERO_EXTRACT.
	       This was legitimate when the MEM was a REG.  */
	    if (GET_CODE (tem) == SUBREG
		&& SUBREG_REG (tem) == var)
	      tem = fixup_memory_subreg (tem, insn, 0);
	    else
	      tem = fixup_stack_1 (tem, insn);

	    if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
		&& GET_CODE (XEXP (outerdest, 2)) == CONST_INT
		&& ! mode_dependent_address_p (XEXP (tem, 0))
		&& ! MEM_VOLATILE_P (tem))
	      {
		enum machine_mode wanted_mode;
		enum machine_mode is_mode = GET_MODE (tem);
		HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));

		wanted_mode = insn_operand_mode[(int) CODE_FOR_insv][0];
		if (wanted_mode == VOIDmode)
		  wanted_mode = word_mode;

		/* If we have a narrower mode, we can do something.  */
		if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
		  {
		    HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
		    rtx old_pos = XEXP (outerdest, 2);
		    rtx newmem;

		    if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
		      offset = (GET_MODE_SIZE (is_mode)
				- GET_MODE_SIZE (wanted_mode) - offset);

		    pos %= GET_MODE_BITSIZE (wanted_mode);

		    newmem = gen_rtx_MEM (wanted_mode,
					  plus_constant (XEXP (tem, 0), offset));
		    RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (tem);
		    MEM_COPY_ATTRIBUTES (newmem, tem);

		    /* Make the change and see if the insn remains valid.  */
		    INSN_CODE (insn) = -1;
		    XEXP (outerdest, 0) = newmem;
		    XEXP (outerdest, 2) = GEN_INT (pos);
		    
		    if (recog_memoized (insn) >= 0)
		      return;
		    
		    /* Otherwise, restore old position.  XEXP (x, 0) will be
		       restored later.  */
		    XEXP (outerdest, 2) = old_pos;
		  }
	      }

	    /* If we get here, the bit-field store doesn't allow memory
	       or isn't located at a constant position.  Load the value into
	       a register, do the store, and put it back into memory.  */

	    tem1 = gen_reg_rtx (GET_MODE (tem));
	    emit_insn_before (gen_move_insn (tem1, tem), insn);
	    emit_insn_after (gen_move_insn (tem, tem1), insn);
	    XEXP (outerdest, 0) = tem1;
	    return;
	  }
#endif

	/* STRICT_LOW_PART is a no-op on memory references
	   and it can cause combinations to be unrecognizable,
	   so eliminate it.  */

	if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
	  SET_DEST (x) = XEXP (SET_DEST (x), 0);

	/* A valid insn to copy VAR into or out of a register
	   must be left alone, to avoid an infinite loop here.
	   If the reference to VAR is by a subreg, fix that up,
	   since SUBREG is not valid for a memref.
	   Also fix up the address of the stack slot.

	   Note that we must not try to recognize the insn until
	   after we know that we have valid addresses and no
	   (subreg (mem ...) ...) constructs, since these interfere
	   with determining the validity of the insn.  */

	if ((SET_SRC (x) == var
	     || (GET_CODE (SET_SRC (x)) == SUBREG
		 && SUBREG_REG (SET_SRC (x)) == var))
	    && (GET_CODE (SET_DEST (x)) == REG
		|| (GET_CODE (SET_DEST (x)) == SUBREG
		    && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
	    && GET_MODE (var) == promoted_mode
	    && x == single_set (insn))
	  {
	    rtx pat;

	    replacement = find_fixup_replacement (replacements, SET_SRC (x));
	    if (replacement->new)
	      SET_SRC (x) = replacement->new;
	    else if (GET_CODE (SET_SRC (x)) == SUBREG)
	      SET_SRC (x) = replacement->new
		= fixup_memory_subreg (SET_SRC (x), insn, 0);
	    else
	      SET_SRC (x) = replacement->new
		= fixup_stack_1 (SET_SRC (x), insn);

	    if (recog_memoized (insn) >= 0)
	      return;

	    /* INSN is not valid, but we know that we want to
	       copy SET_SRC (x) to SET_DEST (x) in some way.  So
	       we generate the move and see whether it requires more
	       than one insn.  If it does, we emit those insns and
	       delete INSN.  Otherwise, we an just replace the pattern 
	       of INSN; we have already verified above that INSN has
	       no other function that to do X.  */

	    pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
	    if (GET_CODE (pat) == SEQUENCE)
	      {
		emit_insn_after (pat, insn);
		PUT_CODE (insn, NOTE);
		NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
		NOTE_SOURCE_FILE (insn) = 0;
	      }
	    else
	      PATTERN (insn) = pat;

	    return;
	  }

	if ((SET_DEST (x) == var
	     || (GET_CODE (SET_DEST (x)) == SUBREG
		 && SUBREG_REG (SET_DEST (x)) == var))
	    && (GET_CODE (SET_SRC (x)) == REG
		|| (GET_CODE (SET_SRC (x)) == SUBREG
		    && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
	    && GET_MODE (var) == promoted_mode
	    && x == single_set (insn))
	  {
	    rtx pat;

	    if (GET_CODE (SET_DEST (x)) == SUBREG)
	      SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
	    else
	      SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);

	    if (recog_memoized (insn) >= 0)
	      return;

	    pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
	    if (GET_CODE (pat) == SEQUENCE)
	      {
		emit_insn_after (pat, insn);
		PUT_CODE (insn, NOTE);
		NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
		NOTE_SOURCE_FILE (insn) = 0;
	      }
	    else
	      PATTERN (insn) = pat;

	    return;
	  }

	/* Otherwise, storing into VAR must be handled specially
	   by storing into a temporary and copying that into VAR
	   with a new insn after this one.  Note that this case
	   will be used when storing into a promoted scalar since
	   the insn will now have different modes on the input
	   and output and hence will be invalid (except for the case
	   of setting it to a constant, which does not need any
	   change if it is valid).  We generate extra code in that case,
	   but combine.c will eliminate it.  */

	if (dest == var)
	  {
	    rtx temp;
	    rtx fixeddest = SET_DEST (x);

	    /* STRICT_LOW_PART can be discarded, around a MEM.  */
	    if (GET_CODE (fixeddest) == STRICT_LOW_PART)
	      fixeddest = XEXP (fixeddest, 0);
	    /* Convert (SUBREG (MEM)) to a MEM in a changed mode.  */
	    if (GET_CODE (fixeddest) == SUBREG)
	      {
		fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
		promoted_mode = GET_MODE (fixeddest);
	      }
	    else
	      fixeddest = fixup_stack_1 (fixeddest, insn);

	    temp = gen_reg_rtx (promoted_mode);

	    emit_insn_after (gen_move_insn (fixeddest,
					    gen_lowpart (GET_MODE (fixeddest),
							 temp)),
			     insn);

	    SET_DEST (x) = temp;
	  }
      }

    default:
      break;
    }

  /* Nothing special about this RTX; fix its operands.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
      if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
			      insn, replacements);
	}
    }
}

/* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
   return an rtx (MEM:m1 newaddr) which is equivalent.
   If any insns must be emitted to compute NEWADDR, put them before INSN.

   UNCRITICAL nonzero means accept paradoxical subregs.
   This is used for subregs found inside REG_NOTES.  */

static rtx
fixup_memory_subreg (x, insn, uncritical)
     rtx x;
     rtx insn;
     int uncritical;
{
  int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
  rtx addr = XEXP (SUBREG_REG (x), 0);
  enum machine_mode mode = GET_MODE (x);
  rtx result;

  /* Paradoxical SUBREGs are usually invalid during RTL generation.  */
  if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
      && ! uncritical)
    abort ();

  if (BYTES_BIG_ENDIAN)
    offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
	       - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
  addr = plus_constant (addr, offset);
  if (!flag_force_addr && memory_address_p (mode, addr))
    /* Shortcut if no insns need be emitted.  */
    return change_address (SUBREG_REG (x), mode, addr);
  start_sequence ();
  result = change_address (SUBREG_REG (x), mode, addr);
  emit_insn_before (gen_sequence (), insn);
  end_sequence ();
  return result;
}

/* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
   Replace subexpressions of X in place.
   If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
   Otherwise return X, with its contents possibly altered.

   If any insns must be emitted to compute NEWADDR, put them before INSN. 

   UNCRITICAL is as in fixup_memory_subreg.  */

static rtx
walk_fixup_memory_subreg (x, insn, uncritical)
     register rtx x;
     rtx insn;
     int uncritical;
{
  register enum rtx_code code;
  register char *fmt;
  register int i;

  if (x == 0)
    return 0;

  code = GET_CODE (x);

  if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
    return fixup_memory_subreg (x, insn, uncritical);

  /* Nothing special about this RTX; fix its operands.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
      if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    XVECEXP (x, i, j)
	      = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
	}
    }
  return x;
}

/* For each memory ref within X, if it refers to a stack slot
   with an out of range displacement, put the address in a temp register
   (emitting new insns before INSN to load these registers)
   and alter the memory ref to use that register.
   Replace each such MEM rtx with a copy, to avoid clobberage.  */

static rtx
fixup_stack_1 (x, insn)
     rtx x;
     rtx insn;
{
  register int i;
  register RTX_CODE code = GET_CODE (x);
  register char *fmt;

  if (code == MEM)
    {
      register rtx ad = XEXP (x, 0);
      /* If we have address of a stack slot but it's not valid
	 (displacement is too large), compute the sum in a register.  */
      if (GET_CODE (ad) == PLUS
	  && GET_CODE (XEXP (ad, 0)) == REG
	  && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
	       && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
	      || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
	      || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
#endif
	      || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
	      || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
	      || XEXP (ad, 0) == current_function_internal_arg_pointer)
	  && GET_CODE (XEXP (ad, 1)) == CONST_INT)
	{
	  rtx temp, seq;
	  if (memory_address_p (GET_MODE (x), ad))
	    return x;

	  start_sequence ();
	  temp = copy_to_reg (ad);
	  seq = gen_sequence ();
	  end_sequence ();
	  emit_insn_before (seq, insn);
	  return change_address (x, VOIDmode, temp);
	}
      return x;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
      if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
	}
    }
  return x;
}

/* Optimization: a bit-field instruction whose field
   happens to be a byte or halfword in memory
   can be changed to a move instruction.

   We call here when INSN is an insn to examine or store into a bit-field.
   BODY is the SET-rtx to be altered.

   EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
   (Currently this is called only from function.c, and EQUIV_MEM
   is always 0.)  */

static void
optimize_bit_field (body, insn, equiv_mem)
     rtx body;
     rtx insn;
     rtx *equiv_mem;
{
  register rtx bitfield;
  int destflag;
  rtx seq = 0;
  enum machine_mode mode;

  if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
      || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
    bitfield = SET_DEST (body), destflag = 1;
  else
    bitfield = SET_SRC (body), destflag = 0;

  /* First check that the field being stored has constant size and position
     and is in fact a byte or halfword suitably aligned.  */

  if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
      && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
      && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
	  != BLKmode)
      && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
    {
      register rtx memref = 0;

      /* Now check that the containing word is memory, not a register,
	 and that it is safe to change the machine mode.  */

      if (GET_CODE (XEXP (bitfield, 0)) == MEM)
	memref = XEXP (bitfield, 0);
      else if (GET_CODE (XEXP (bitfield, 0)) == REG
	       && equiv_mem != 0)
	memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
      else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
	       && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
	memref = SUBREG_REG (XEXP (bitfield, 0));
      else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
	       && equiv_mem != 0
	       && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
	memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];

      if (memref
	  && ! mode_dependent_address_p (XEXP (memref, 0))
	  && ! MEM_VOLATILE_P (memref))
	{
	  /* Now adjust the address, first for any subreg'ing
	     that we are now getting rid of,
	     and then for which byte of the word is wanted.  */

	  HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
	  rtx insns;

	  /* Adjust OFFSET to count bits from low-address byte.  */
	  if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
	    offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
		      - offset - INTVAL (XEXP (bitfield, 1)));

	  /* Adjust OFFSET to count bytes from low-address byte.  */
	  offset /= BITS_PER_UNIT;
	  if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
	    {
	      offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
	      if (BYTES_BIG_ENDIAN)
		offset -= (MIN (UNITS_PER_WORD,
				GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
			   - MIN (UNITS_PER_WORD,
				  GET_MODE_SIZE (GET_MODE (memref))));
	    }

	  start_sequence ();
	  memref = change_address (memref, mode,
				   plus_constant (XEXP (memref, 0), offset));
	  insns = get_insns ();
	  end_sequence ();
	  emit_insns_before (insns, insn);

	  /* Store this memory reference where
	     we found the bit field reference.  */

	  if (destflag)
	    {
	      validate_change (insn, &SET_DEST (body), memref, 1);
	      if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
		{
		  rtx src = SET_SRC (body);
		  while (GET_CODE (src) == SUBREG
			 && SUBREG_WORD (src) == 0)
		    src = SUBREG_REG (src);
		  if (GET_MODE (src) != GET_MODE (memref))
		    src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
		  validate_change (insn, &SET_SRC (body), src, 1);
		}
	      else if (GET_MODE (SET_SRC (body)) != VOIDmode
		       && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
		/* This shouldn't happen because anything that didn't have
		   one of these modes should have got converted explicitly
		   and then referenced through a subreg.
		   This is so because the original bit-field was
		   handled by agg_mode and so its tree structure had
		   the same mode that memref now has.  */
		abort ();
	    }
	  else
	    {
	      rtx dest = SET_DEST (body);

	      while (GET_CODE (dest) == SUBREG
		     && SUBREG_WORD (dest) == 0
		     && (GET_MODE_CLASS (GET_MODE (dest))
			 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest)))))
		dest = SUBREG_REG (dest);

	      validate_change (insn, &SET_DEST (body), dest, 1);

	      if (GET_MODE (dest) == GET_MODE (memref))
		validate_change (insn, &SET_SRC (body), memref, 1);
	      else
		{
		  /* Convert the mem ref to the destination mode.  */
		  rtx newreg = gen_reg_rtx (GET_MODE (dest));

		  start_sequence ();
		  convert_move (newreg, memref,
				GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
		  seq = get_insns ();
		  end_sequence ();

		  validate_change (insn, &SET_SRC (body), newreg, 1);
		}
	    }

	  /* See if we can convert this extraction or insertion into
	     a simple move insn.  We might not be able to do so if this
	     was, for example, part of a PARALLEL.

	     If we succeed, write out any needed conversions.  If we fail,
	     it is hard to guess why we failed, so don't do anything
	     special; just let the optimization be suppressed.  */

	  if (apply_change_group () && seq)
	    emit_insns_before (seq, insn);
	}
    }
}

/* These routines are responsible for converting virtual register references
   to the actual hard register references once RTL generation is complete.

   The following four variables are used for communication between the
   routines.  They contain the offsets of the virtual registers from their
   respective hard registers.  */

static int in_arg_offset;
static int var_offset;
static int dynamic_offset;
static int out_arg_offset;
static int cfa_offset;

/* In most machines, the stack pointer register is equivalent to the bottom
   of the stack.  */

#ifndef STACK_POINTER_OFFSET
#define STACK_POINTER_OFFSET	0
#endif

/* If not defined, pick an appropriate default for the offset of dynamically
   allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
   REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE.  */

#ifndef STACK_DYNAMIC_OFFSET

#ifdef ACCUMULATE_OUTGOING_ARGS
/* The bottom of the stack points to the actual arguments.  If
   REG_PARM_STACK_SPACE is defined, this includes the space for the register
   parameters.  However, if OUTGOING_REG_PARM_STACK space is not defined,
   stack space for register parameters is not pushed by the caller, but 
   rather part of the fixed stack areas and hence not included in
   `current_function_outgoing_args_size'.  Nevertheless, we must allow
   for it when allocating stack dynamic objects.  */

#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
#define STACK_DYNAMIC_OFFSET(FNDECL)	\
(current_function_outgoing_args_size	\
 + REG_PARM_STACK_SPACE (FNDECL) + (STACK_POINTER_OFFSET))

#else
#define STACK_DYNAMIC_OFFSET(FNDECL)	\
(current_function_outgoing_args_size + (STACK_POINTER_OFFSET))
#endif

#else
#define STACK_DYNAMIC_OFFSET(FNDECL) STACK_POINTER_OFFSET
#endif
#endif

/* On a few machines, the CFA coincides with the arg pointer.  */

#ifndef ARG_POINTER_CFA_OFFSET
#define ARG_POINTER_CFA_OFFSET 0
#endif


/* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
   its address taken.  DECL is the decl for the object stored in the
   register, for later use if we do need to force REG into the stack.
   REG is overwritten by the MEM like in put_reg_into_stack.  */

rtx
gen_mem_addressof (reg, decl)
     rtx reg;
     tree decl;
{
  tree type = TREE_TYPE (decl);
  rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)), REGNO (reg));
  SET_ADDRESSOF_DECL (r, decl);
  /* If the original REG was a user-variable, then so is the REG whose
     address is being taken.  */
  REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);

  XEXP (reg, 0) = r;
  PUT_CODE (reg, MEM);
  PUT_MODE (reg, DECL_MODE (decl));
  MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
  MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
  MEM_ALIAS_SET (reg) = get_alias_set (decl);

  if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
    fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type));

  return reg;
}

/* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack.  */

void
flush_addressof (decl)
     tree decl;
{
  if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
      && DECL_RTL (decl) != 0
      && GET_CODE (DECL_RTL (decl)) == MEM
      && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
      && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
    put_addressof_into_stack (XEXP (DECL_RTL (decl), 0));
}

/* Force the register pointed to by R, an ADDRESSOF rtx, into the stack.  */

static void
put_addressof_into_stack (r)
     rtx r;
{
  tree decl = ADDRESSOF_DECL (r);
  rtx reg = XEXP (r, 0);

  if (GET_CODE (reg) != REG)
    abort ();

  put_reg_into_stack (0, reg, TREE_TYPE (decl), GET_MODE (reg),
		      DECL_MODE (decl), TREE_SIDE_EFFECTS (decl),
		      ADDRESSOF_REGNO (r),
		      TREE_USED (decl) || DECL_INITIAL (decl) != 0);
}

/* List of replacements made below in purge_addressof_1 when creating
   bitfield insertions.  */
static rtx purge_addressof_replacements;

/* Helper function for purge_addressof.  See if the rtx expression at *LOC
   in INSN needs to be changed.  If FORCE, always put any ADDRESSOFs into
   the stack.  */

static void
purge_addressof_1 (loc, insn, force, store)
     rtx *loc;
     rtx insn;
     int force, store;
{
  rtx x;
  RTX_CODE code;
  int i, j;
  char *fmt;

  /* Re-start here to avoid recursion in common cases.  */
 restart:

  x = *loc;
  if (x == 0)
    return;

  code = GET_CODE (x);

  if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
    {
      rtx insns;
      /* We must create a copy of the rtx because it was created by
	 overwriting a REG rtx which is always shared.  */
      rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));

      if (validate_change (insn, loc, sub, 0))
	return;

      start_sequence ();
      if (! validate_change (insn, loc,
			     force_operand (sub, NULL_RTX),
			     0))
	abort ();

      insns = gen_sequence ();
      end_sequence ();
      emit_insn_before (insns, insn);
      return;
    }
  else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
    {
      rtx sub = XEXP (XEXP (x, 0), 0);

      if (GET_CODE (sub) == MEM)
	sub = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));

      if (GET_CODE (sub) == REG
	  && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
	{
	  put_addressof_into_stack (XEXP (x, 0));
	  return;
	}
      else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
	{
	  int size_x, size_sub;

	  if (!insn)
	    {
	      /* When processing REG_NOTES look at the list of
		 replacements done on the insn to find the register that X
		 was replaced by.  */
	      rtx tem;

	      for (tem = purge_addressof_replacements; tem != NULL_RTX;
		   tem = XEXP (XEXP (tem, 1), 1))
		{
		  rtx y = XEXP (tem, 0);
		  if (GET_CODE (y) == MEM
		      && rtx_equal_p (XEXP (x, 0), XEXP (y, 0)))
		    {
		      /* It can happen that the note may speak of things in
			 a wider (or just different) mode than the code did. 
			 This is especially true of REG_RETVAL.  */

		      rtx z = XEXP (XEXP (tem, 1), 0);
		      if (GET_MODE (x) != GET_MODE (y))
			{
			  if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
			    z = SUBREG_REG (z);

			  /* ??? If we'd gotten into any of the really complex
			     cases below, I'm not sure we can do a proper
			     replacement.  Might we be able to delete the
			     note in some cases?  */
			  if (GET_MODE_SIZE (GET_MODE (x))
			      < GET_MODE_SIZE (GET_MODE (y)))
			    abort ();

			  z = gen_lowpart (GET_MODE (x), z);
			}

		      *loc = z;
		      return;
		    }
		}

	      /* There should always be such a replacement.  */
	      abort ();
	    }

	  size_x = GET_MODE_BITSIZE (GET_MODE (x));
	  size_sub = GET_MODE_BITSIZE (GET_MODE (sub));

	  /* Don't even consider working with paradoxical subregs,
	     or the moral equivalent seen here.  */
	  if (size_x <= size_sub
	      && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
	    {
	      /* Do a bitfield insertion to mirror what would happen
		 in memory.  */

	      rtx val, seq;

	      if (store)
		{
		  rtx p;

		  start_sequence ();
		  val = gen_reg_rtx (GET_MODE (x));
		  if (! validate_change (insn, loc, val, 0))
		    {
		      /* Discard the current sequence and put the
			 ADDRESSOF on stack.  */
		      end_sequence ();
		      goto give_up;
		    }
		  seq = gen_sequence ();
		  end_sequence ();
		  emit_insn_before (seq, insn);
	      
		  start_sequence ();
		  store_bit_field (sub, size_x, 0, GET_MODE (x),
				   val, GET_MODE_SIZE (GET_MODE (sub)),
				   GET_MODE_SIZE (GET_MODE (sub)));

		  /* Make sure to unshare any shared rtl that store_bit_field
		     might have created.  */
		  for (p = get_insns(); p; p = NEXT_INSN (p))
		    {
		      reset_used_flags (PATTERN (p));
		      reset_used_flags (REG_NOTES (p));
		      reset_used_flags (LOG_LINKS (p));
		    }
		  unshare_all_rtl (get_insns ());

		  seq = gen_sequence ();
		  end_sequence ();
		  emit_insn_after (seq, insn);
		}
	      else
		{
		  start_sequence ();
		  val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
					   GET_MODE (x), GET_MODE (x),
					   GET_MODE_SIZE (GET_MODE (sub)),
					   GET_MODE_SIZE (GET_MODE (sub)));

		  if (! validate_change (insn, loc, val, 0))
		    {
		      /* Discard the current sequence and put the
			 ADDRESSOF on stack.  */
		      end_sequence ();
		      goto give_up;
		    }

		  seq = gen_sequence ();
		  end_sequence ();
		  emit_insn_before (seq, insn);
		}

	      /* Remember the replacement so that the same one can be done
		 on the REG_NOTES.  */
	      purge_addressof_replacements
		= gen_rtx_EXPR_LIST (VOIDmode, x,
				     gen_rtx_EXPR_LIST (VOIDmode, val,
							purge_addressof_replacements));

	      /* We replaced with a reg -- all done.  */
	      return;
	    }
	}
      else if (validate_change (insn, loc, sub, 0))
	{
	  /* Remember the replacement so that the same one can be done
	     on the REG_NOTES.  */
	  purge_addressof_replacements
	    = gen_rtx_EXPR_LIST (VOIDmode, x,
				 gen_rtx_EXPR_LIST (VOIDmode, sub,
						    purge_addressof_replacements));
	  goto restart;
	}
    give_up:;
      /* else give up and put it into the stack */
    }
  else if (code == ADDRESSOF)
    {
      put_addressof_into_stack (x);
      return;
    }
  else if (code == SET)
    {
      purge_addressof_1 (&SET_DEST (x), insn, force, 1);
      purge_addressof_1 (&SET_SRC (x), insn, force, 0);
      return;
    }

  /* Scan all subexpressions. */
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    {
      if (*fmt == 'e')
	purge_addressof_1 (&XEXP (x, i), insn, force, 0);
      else if (*fmt == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0);
    }
}

/* Eliminate all occurrences of ADDRESSOF from INSNS.  Elide any remaining
   (MEM (ADDRESSOF)) patterns, and force any needed registers into the
   stack.  */

void
purge_addressof (insns)
     rtx insns;
{
  rtx insn;
  for (insn = insns; insn; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
	|| GET_CODE (insn) == CALL_INSN)
      {
	purge_addressof_1 (&PATTERN (insn), insn,
			   asm_noperands (PATTERN (insn)) > 0, 0);
	purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0);
      }
  purge_addressof_replacements = 0;
}

/* Pass through the INSNS of function FNDECL and convert virtual register
   references to hard register references.  */

void
instantiate_virtual_regs (fndecl, insns)
     tree fndecl;
     rtx insns;
{
  rtx insn;
  int i;

  /* Compute the offsets to use for this function.  */
  in_arg_offset = FIRST_PARM_OFFSET (fndecl);
  var_offset = STARTING_FRAME_OFFSET;
  dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
  out_arg_offset = STACK_POINTER_OFFSET;
  cfa_offset = ARG_POINTER_CFA_OFFSET;

  /* Scan all variables and parameters of this function.  For each that is
     in memory, instantiate all virtual registers if the result is a valid
     address.  If not, we do it later.  That will handle most uses of virtual
     regs on many machines.  */
  instantiate_decls (fndecl, 1);

  /* Initialize recognition, indicating that volatile is OK.  */
  init_recog ();

  /* Scan through all the insns, instantiating every virtual register still
     present.  */
  for (insn = insns; insn; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
	|| GET_CODE (insn) == CALL_INSN)
      {
	instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
	instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
      }

  /* Instantiate the stack slots for the parm registers, for later use in
     addressof elimination.  */
  for (i = 0; i < max_parm_reg; ++i)
    if (parm_reg_stack_loc[i])
      instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);

  /* Now instantiate the remaining register equivalences for debugging info.
     These will not be valid addresses.  */
  instantiate_decls (fndecl, 0);

  /* Indicate that, from now on, assign_stack_local should use
     frame_pointer_rtx.  */
  virtuals_instantiated = 1;
}

/* Scan all decls in FNDECL (both variables and parameters) and instantiate
   all virtual registers in their DECL_RTL's.

   If VALID_ONLY, do this only if the resulting address is still valid.
   Otherwise, always do it.  */

static void
instantiate_decls (fndecl, valid_only)
     tree fndecl;
     int valid_only;
{
  tree decl;

  if (DECL_SAVED_INSNS (fndecl))
    /* When compiling an inline function, the obstack used for
       rtl allocation is the maybepermanent_obstack.  Calling
       `resume_temporary_allocation' switches us back to that
       obstack while we process this function's parameters.  */
    resume_temporary_allocation ();

  /* Process all parameters of the function.  */
  for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
    {
      HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));

      instantiate_decl (DECL_RTL (decl), size, valid_only);	

      /* If the parameter was promoted, then the incoming RTL mode may be
	 larger than the declared type size.  We must use the larger of
	 the two sizes.  */
      size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
      instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
    }

  /* Now process all variables defined in the function or its subblocks.  */
  instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);

  if (DECL_INLINE (fndecl) || DECL_DEFER_OUTPUT (fndecl))
    {
      /* Save all rtl allocated for this function by raising the
	 high-water mark on the maybepermanent_obstack.  */
      preserve_data ();
      /* All further rtl allocation is now done in the current_obstack.  */
      rtl_in_current_obstack ();
    }
}

/* Subroutine of instantiate_decls: Process all decls in the given
   BLOCK node and all its subblocks.  */

static void
instantiate_decls_1 (let, valid_only)
     tree let;
     int valid_only;
{
  tree t;

  for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
    instantiate_decl (DECL_RTL (t), int_size_in_bytes (TREE_TYPE (t)),
		      valid_only);

  /* Process all subblocks.  */
  for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
    instantiate_decls_1 (t, valid_only);
}

/* Subroutine of the preceding procedures: Given RTL representing a
   decl and the size of the object, do any instantiation required.

   If VALID_ONLY is non-zero, it means that the RTL should only be
   changed if the new address is valid.  */

static void
instantiate_decl (x, size, valid_only)
     rtx x;
     int size;
     int valid_only;
{
  enum machine_mode mode;
  rtx addr;

  /* If this is not a MEM, no need to do anything.  Similarly if the
     address is a constant or a register that is not a virtual register.  */

  if (x == 0 || GET_CODE (x) != MEM)
    return;

  addr = XEXP (x, 0);
  if (CONSTANT_P (addr)
      || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
      || (GET_CODE (addr) == REG
	  && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
	      || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
    return;

  /* If we should only do this if the address is valid, copy the address.
     We need to do this so we can undo any changes that might make the
     address invalid.  This copy is unfortunate, but probably can't be
     avoided.  */

  if (valid_only)
    addr = copy_rtx (addr);

  instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);

  if (valid_only)
    {
      /* Now verify that the resulting address is valid for every integer or
	 floating-point mode up to and including SIZE bytes long.  We do this
	 since the object might be accessed in any mode and frame addresses
	 are shared.  */

      for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
	   mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
	   mode = GET_MODE_WIDER_MODE (mode))
	if (! memory_address_p (mode, addr))
	  return;

      for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
	   mode != VOIDmode && GET_MODE_SIZE (mode) <= size;
	   mode = GET_MODE_WIDER_MODE (mode))
	if (! memory_address_p (mode, addr))
	  return;
    }

  /* Put back the address now that we have updated it and we either know
     it is valid or we don't care whether it is valid.  */

  XEXP (x, 0) = addr;
}

/* Given a pointer to a piece of rtx and an optional pointer to the
   containing object, instantiate any virtual registers present in it.

   If EXTRA_INSNS, we always do the replacement and generate
   any extra insns before OBJECT.  If it zero, we do nothing if replacement
   is not valid.

   Return 1 if we either had nothing to do or if we were able to do the
   needed replacement.  Return 0 otherwise; we only return zero if 
   EXTRA_INSNS is zero.

   We first try some simple transformations to avoid the creation of extra
   pseudos.  */

static int
instantiate_virtual_regs_1 (loc, object, extra_insns)
     rtx *loc;
     rtx object;
     int extra_insns;
{
  rtx x;
  RTX_CODE code;
  rtx new = 0;
  HOST_WIDE_INT offset;
  rtx temp;
  rtx seq;
  int i, j;
  char *fmt;

  /* Re-start here to avoid recursion in common cases.  */
 restart:

  x = *loc;
  if (x == 0)
    return 1;

  code = GET_CODE (x);

  /* Check for some special cases.  */
  switch (code)
    {
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST:
    case SYMBOL_REF:
    case CODE_LABEL:
    case PC:
    case CC0:
    case ASM_INPUT:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case RETURN:
      return 1;

    case SET:
      /* We are allowed to set the virtual registers.  This means that
	 the actual register should receive the source minus the
	 appropriate offset.  This is used, for example, in the handling
	 of non-local gotos.  */
      if (SET_DEST (x) == virtual_incoming_args_rtx)
	new = arg_pointer_rtx, offset = - in_arg_offset;
      else if (SET_DEST (x) == virtual_stack_vars_rtx)
	new = frame_pointer_rtx, offset = - var_offset;
      else if (SET_DEST (x) == virtual_stack_dynamic_rtx)
	new = stack_pointer_rtx, offset = - dynamic_offset;
      else if (SET_DEST (x) == virtual_outgoing_args_rtx)
	new = stack_pointer_rtx, offset = - out_arg_offset;
      else if (SET_DEST (x) == virtual_cfa_rtx)
	new = arg_pointer_rtx, offset = - cfa_offset;

      if (new)
	{
	  /* The only valid sources here are PLUS or REG.  Just do
	     the simplest possible thing to handle them.  */
	  if (GET_CODE (SET_SRC (x)) != REG
	      && GET_CODE (SET_SRC (x)) != PLUS)
	    abort ();

	  start_sequence ();
	  if (GET_CODE (SET_SRC (x)) != REG)
	    temp = force_operand (SET_SRC (x), NULL_RTX);
	  else
	    temp = SET_SRC (x);
	  temp = force_operand (plus_constant (temp, offset), NULL_RTX);
	  seq = get_insns ();
	  end_sequence ();

	  emit_insns_before (seq, object);
	  SET_DEST (x) = new;

	  if (! validate_change (object, &SET_SRC (x), temp, 0)
	      || ! extra_insns)
	    abort ();

	  return 1;
	}

      instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
      loc = &SET_SRC (x);
      goto restart;

    case PLUS:
      /* Handle special case of virtual register plus constant.  */
      if (CONSTANT_P (XEXP (x, 1)))
	{
	  rtx old, new_offset;

	  /* Check for (plus (plus VIRT foo) (const_int)) first.  */
	  if (GET_CODE (XEXP (x, 0)) == PLUS)
	    {
	      rtx inner = XEXP (XEXP (x, 0), 0);

	      if (inner == virtual_incoming_args_rtx)
		new = arg_pointer_rtx, offset = in_arg_offset;
	      else if (inner == virtual_stack_vars_rtx)
		new = frame_pointer_rtx, offset = var_offset;
	      else if (inner == virtual_stack_dynamic_rtx)
		new = stack_pointer_rtx, offset = dynamic_offset;
	      else if (inner == virtual_outgoing_args_rtx)
		new = stack_pointer_rtx, offset = out_arg_offset;
	      else if (inner == virtual_cfa_rtx)
	        new = arg_pointer_rtx, offset = cfa_offset;
	      else
		{
		  loc = &XEXP (x, 0);
		  goto restart;
		}

	      instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
					  extra_insns);
	      new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
	    }

	  else if (XEXP (x, 0) == virtual_incoming_args_rtx)
	    new = arg_pointer_rtx, offset = in_arg_offset;
	  else if (XEXP (x, 0) == virtual_stack_vars_rtx)
	    new = frame_pointer_rtx, offset = var_offset;
	  else if (XEXP (x, 0) == virtual_stack_dynamic_rtx)
	    new = stack_pointer_rtx, offset = dynamic_offset;
	  else if (XEXP (x, 0) == virtual_outgoing_args_rtx)
	    new = stack_pointer_rtx, offset = out_arg_offset;
          else if (XEXP (x, 0) == virtual_cfa_rtx)
            new = arg_pointer_rtx, offset = cfa_offset;
	  else
	    {
	      /* We know the second operand is a constant.  Unless the
		 first operand is a REG (which has been already checked),
		 it needs to be checked.  */
	      if (GET_CODE (XEXP (x, 0)) != REG)
		{
		  loc = &XEXP (x, 0);
		  goto restart;
		}
	      return 1;
	    }

	  new_offset = plus_constant (XEXP (x, 1), offset);

	  /* If the new constant is zero, try to replace the sum with just
	     the register.  */
	  if (new_offset == const0_rtx
	      && validate_change (object, loc, new, 0))
	    return 1;

	  /* Next try to replace the register and new offset.
	     There are two changes to validate here and we can't assume that
	     in the case of old offset equals new just changing the register
	     will yield a valid insn.  In the interests of a little efficiency,
	     however, we only call validate change once (we don't queue up the
	     changes and then call apply_change_group).  */

	  old = XEXP (x, 0);
	  if (offset == 0
	      ? ! validate_change (object, &XEXP (x, 0), new, 0)
	      : (XEXP (x, 0) = new,
		 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
	    {
	      if (! extra_insns)
		{
		  XEXP (x, 0) = old;
		  return 0;
		}

	      /* Otherwise copy the new constant into a register and replace
		 constant with that register.  */
	      temp = gen_reg_rtx (Pmode);
	      XEXP (x, 0) = new;
	      if (validate_change (object, &XEXP (x, 1), temp, 0))
		emit_insn_before (gen_move_insn (temp, new_offset), object);
	      else
		{
		  /* If that didn't work, replace this expression with a
		     register containing the sum.  */

		  XEXP (x, 0) = old;
		  new = gen_rtx_PLUS (Pmode, new, new_offset);

		  start_sequence ();
		  temp = force_operand (new, NULL_RTX);
		  seq = get_insns ();
		  end_sequence ();

		  emit_insns_before (seq, object);
		  if (! validate_change (object, loc, temp, 0)
		      && ! validate_replace_rtx (x, temp, object))
		    abort ();
		}
	    }

	  return 1;
	}

      /* Fall through to generic two-operand expression case.  */
    case EXPR_LIST:
    case CALL:
    case COMPARE:
    case MINUS:
    case MULT:
    case DIV:      case UDIV:
    case MOD:      case UMOD:
    case AND:      case IOR:      case XOR:
    case ROTATERT: case ROTATE:
    case ASHIFTRT: case LSHIFTRT: case ASHIFT:
    case NE:       case EQ:
    case GE:       case GT:       case GEU:    case GTU:
    case LE:       case LT:       case LEU:    case LTU:
      if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
	instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
      loc = &XEXP (x, 0);
      goto restart;

    case MEM:
      /* Most cases of MEM that convert to valid addresses have already been
	 handled by our scan of decls.  The only special handling we
	 need here is to make a copy of the rtx to ensure it isn't being
	 shared if we have to change it to a pseudo. 

	 If the rtx is a simple reference to an address via a virtual register,
	 it can potentially be shared.  In such cases, first try to make it
	 a valid address, which can also be shared.  Otherwise, copy it and
	 proceed normally. 

	 First check for common cases that need no processing.  These are
	 usually due to instantiation already being done on a previous instance
	 of a shared rtx.  */

      temp = XEXP (x, 0);
      if (CONSTANT_ADDRESS_P (temp)
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
	  || temp == arg_pointer_rtx
#endif
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
	  || temp == hard_frame_pointer_rtx
#endif
	  || temp == frame_pointer_rtx)
	return 1;

      if (GET_CODE (temp) == PLUS
	  && CONSTANT_ADDRESS_P (XEXP (temp, 1))
	  && (XEXP (temp, 0) == frame_pointer_rtx
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
	      || XEXP (temp, 0) == hard_frame_pointer_rtx
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
	      || XEXP (temp, 0) == arg_pointer_rtx
#endif
	      ))
	return 1;

      if (temp == virtual_stack_vars_rtx
	  || temp == virtual_incoming_args_rtx
	  || (GET_CODE (temp) == PLUS
	      && CONSTANT_ADDRESS_P (XEXP (temp, 1))
	      && (XEXP (temp, 0) == virtual_stack_vars_rtx
		  || XEXP (temp, 0) == virtual_incoming_args_rtx)))
	{
	  /* This MEM may be shared.  If the substitution can be done without
	     the need to generate new pseudos, we want to do it in place
	     so all copies of the shared rtx benefit.  The call below will
	     only make substitutions if the resulting address is still
	     valid.

	     Note that we cannot pass X as the object in the recursive call
	     since the insn being processed may not allow all valid
	     addresses.  However, if we were not passed on object, we can
	     only modify X without copying it if X will have a valid
	     address.

	     ??? Also note that this can still lose if OBJECT is an insn that
	     has less restrictions on an address that some other insn.
	     In that case, we will modify the shared address.  This case
	     doesn't seem very likely, though.  One case where this could
	     happen is in the case of a USE or CLOBBER reference, but we
	     take care of that below.  */

	  if (instantiate_virtual_regs_1 (&XEXP (x, 0),
					  object ? object : x, 0))
	    return 1;

	  /* Otherwise make a copy and process that copy.  We copy the entire
	     RTL expression since it might be a PLUS which could also be
	     shared.  */
	  *loc = x = copy_rtx (x);
	}

      /* Fall through to generic unary operation case.  */
    case SUBREG:
    case STRICT_LOW_PART:
    case NEG:          case NOT:
    case PRE_DEC:      case PRE_INC:      case POST_DEC:    case POST_INC:
    case SIGN_EXTEND:  case ZERO_EXTEND:
    case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
    case FLOAT:        case FIX:
    case UNSIGNED_FIX: case UNSIGNED_FLOAT:
    case ABS:
    case SQRT:
    case FFS:
      /* These case either have just one operand or we know that we need not
	 check the rest of the operands.  */
      loc = &XEXP (x, 0);
      goto restart;

    case USE:
    case CLOBBER:
      /* If the operand is a MEM, see if the change is a valid MEM.  If not,
	 go ahead and make the invalid one, but do it to a copy.  For a REG,
	 just make the recursive call, since there's no chance of a problem. */

      if ((GET_CODE (XEXP (x, 0)) == MEM
	   && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
					  0))
	  || (GET_CODE (XEXP (x, 0)) == REG
	      && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
	return 1;

      XEXP (x, 0) = copy_rtx (XEXP (x, 0));
      loc = &XEXP (x, 0);
      goto restart;

    case REG:
      /* Try to replace with a PLUS.  If that doesn't work, compute the sum
	 in front of this insn and substitute the temporary.  */
      if (x == virtual_incoming_args_rtx)
	new = arg_pointer_rtx, offset = in_arg_offset;
      else if (x == virtual_stack_vars_rtx)
	new = frame_pointer_rtx, offset = var_offset;
      else if (x == virtual_stack_dynamic_rtx)
	new = stack_pointer_rtx, offset = dynamic_offset;
      else if (x == virtual_outgoing_args_rtx)
	new = stack_pointer_rtx, offset = out_arg_offset;
      else if (x == virtual_cfa_rtx)
        new = arg_pointer_rtx, offset = cfa_offset;

      if (new)
	{
	  temp = plus_constant (new, offset);
	  if (!validate_change (object, loc, temp, 0))
	    {
	      if (! extra_insns)
		return 0;

	      start_sequence ();
	      temp = force_operand (temp, NULL_RTX);
	      seq = get_insns ();
	      end_sequence ();

	      emit_insns_before (seq, object);
	      if (! validate_change (object, loc, temp, 0)
		  && ! validate_replace_rtx (x, temp, object))
		abort ();
	    }
	}

      return 1;

    case ADDRESSOF:
      if (GET_CODE (XEXP (x, 0)) == REG)
	return 1;

      else if (GET_CODE (XEXP (x, 0)) == MEM)
	{
	  /* If we have a (addressof (mem ..)), do any instantiation inside
	     since we know we'll be making the inside valid when we finally
	     remove the ADDRESSOF.  */
	  instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
	  return 1;
	}
      break;
      
    default:
      break;
    }

  /* Scan all subexpressions.  */
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    if (*fmt == 'e')
      {
	if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
	  return 0;
      }
    else if (*fmt == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
	if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
					  extra_insns))
	  return 0;

  return 1;
}

/* Optimization: assuming this function does not receive nonlocal gotos,
   delete the handlers for such, as well as the insns to establish
   and disestablish them.  */

static void
delete_handlers ()
{
  rtx insn;
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      /* Delete the handler by turning off the flag that would
	 prevent jump_optimize from deleting it.
	 Also permit deletion of the nonlocal labels themselves
	 if nothing local refers to them.  */
      if (GET_CODE (insn) == CODE_LABEL)
	{
	  tree t, last_t;

	  LABEL_PRESERVE_P (insn) = 0;

	  /* Remove it from the nonlocal_label list, to avoid confusing
	     flow.  */
	  for (t = nonlocal_labels, last_t = 0; t;
	       last_t = t, t = TREE_CHAIN (t))
	    if (DECL_RTL (TREE_VALUE (t)) == insn)
	      break;
	  if (t)
	    {
	      if (! last_t)
		nonlocal_labels = TREE_CHAIN (nonlocal_labels);
	      else
		TREE_CHAIN (last_t) = TREE_CHAIN (t);
	    }
	}
      if (GET_CODE (insn) == INSN)
	{
	  int can_delete = 0;
	  rtx t;
	  for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
	    if (reg_mentioned_p (t, PATTERN (insn)))
	      {
		can_delete = 1;
		break;
	      }
	  if (can_delete
	      || (nonlocal_goto_stack_level != 0
		  && reg_mentioned_p (nonlocal_goto_stack_level,
				      PATTERN (insn))))
	    delete_insn (insn);
	}
    }
}

/* Return a list (chain of EXPR_LIST nodes) for the nonlocal labels
   of the current function.  */

rtx
nonlocal_label_rtx_list ()
{
  tree t;
  rtx x = 0;

  for (t = nonlocal_labels; t; t = TREE_CHAIN (t))
    x = gen_rtx_EXPR_LIST (VOIDmode, label_rtx (TREE_VALUE (t)), x);

  return x;
}

/* Output a USE for any register use in RTL.
   This is used with -noreg to mark the extent of lifespan
   of any registers used in a user-visible variable's DECL_RTL.  */

void
use_variable (rtl)
     rtx rtl;
{
  if (GET_CODE (rtl) == REG)
    /* This is a register variable.  */
    emit_insn (gen_rtx_USE (VOIDmode, rtl));
  else if (GET_CODE (rtl) == MEM
	   && GET_CODE (XEXP (rtl, 0)) == REG
	   && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
	       || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
	   && XEXP (rtl, 0) != current_function_internal_arg_pointer)
    /* This is a variable-sized structure.  */
    emit_insn (gen_rtx_USE (VOIDmode, XEXP (rtl, 0)));
}

/* Like use_variable except that it outputs the USEs after INSN
   instead of at the end of the insn-chain.  */

void
use_variable_after (rtl, insn)
     rtx rtl, insn;
{
  if (GET_CODE (rtl) == REG)
    /* This is a register variable.  */
    emit_insn_after (gen_rtx_USE (VOIDmode, rtl), insn);
  else if (GET_CODE (rtl) == MEM
	   && GET_CODE (XEXP (rtl, 0)) == REG
	   && (REGNO (XEXP (rtl, 0)) < FIRST_VIRTUAL_REGISTER
	       || REGNO (XEXP (rtl, 0)) > LAST_VIRTUAL_REGISTER)
	   && XEXP (rtl, 0) != current_function_internal_arg_pointer)
    /* This is a variable-sized structure.  */
    emit_insn_after (gen_rtx_USE (VOIDmode, XEXP (rtl, 0)), insn);
}

int
max_parm_reg_num ()
{
  return max_parm_reg;
}

/* Return the first insn following those generated by `assign_parms'.  */

rtx
get_first_nonparm_insn ()
{
  if (last_parm_insn)
    return NEXT_INSN (last_parm_insn);
  return get_insns ();
}

/* Return the first NOTE_INSN_BLOCK_BEG note in the function.
   Crash if there is none.  */

rtx
get_first_block_beg ()
{
  register rtx searcher;
  register rtx insn = get_first_nonparm_insn ();

  for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
    if (GET_CODE (searcher) == NOTE
	&& NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
      return searcher;

  abort ();	/* Invalid call to this function.  (See comments above.)  */
  return NULL_RTX;
}

/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
   This means a type for which function calls must pass an address to the
   function or get an address back from the function.
   EXP may be a type node or an expression (whose type is tested).  */

int
aggregate_value_p (exp)
     tree exp;
{
  int i, regno, nregs;
  rtx reg;
  tree type;
  if (TREE_CODE_CLASS (TREE_CODE (exp)) == 't')
    type = exp;
  else
    type = TREE_TYPE (exp);

  if (RETURN_IN_MEMORY (type))
    return 1;
  /* Types that are TREE_ADDRESSABLE must be constructed in memory,
     and thus can't be returned in registers.  */
  if (TREE_ADDRESSABLE (type))
    return 1;
  if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
    return 1;
  /* Make sure we have suitable call-clobbered regs to return
     the value in; if not, we must return it in memory.  */
  reg = hard_function_value (type, 0);

  /* If we have something other than a REG (e.g. a PARALLEL), then assume
     it is OK.  */
  if (GET_CODE (reg) != REG)
    return 0;

  regno = REGNO (reg);
  nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
  for (i = 0; i < nregs; i++)
    if (! call_used_regs[regno + i])
      return 1;
  return 0;
}

/* Assign RTL expressions to the function's parameters.
   This may involve copying them into registers and using
   those registers as the RTL for them.

   If SECOND_TIME is non-zero it means that this function is being
   called a second time.  This is done by integrate.c when a function's
   compilation is deferred.  We need to come back here in case the
   FUNCTION_ARG macro computes items needed for the rest of the compilation
   (such as changing which registers are fixed or caller-saved).  But suppress
   writing any insns or setting DECL_RTL of anything in this case.  */

void
assign_parms (fndecl, second_time)
     tree fndecl;
     int second_time;
{
  register tree parm;
  register rtx entry_parm = 0;
  register rtx stack_parm = 0;
  CUMULATIVE_ARGS args_so_far;
  enum machine_mode promoted_mode, passed_mode;
  enum machine_mode nominal_mode, promoted_nominal_mode;
  int unsignedp;
  /* Total space needed so far for args on the stack,
     given as a constant and a tree-expression.  */
  struct args_size stack_args_size;
  tree fntype = TREE_TYPE (fndecl);
  tree fnargs = DECL_ARGUMENTS (fndecl);
  /* This is used for the arg pointer when referring to stack args.  */
  rtx internal_arg_pointer;
  /* This is a dummy PARM_DECL that we used for the function result if 
     the function returns a structure.  */
  tree function_result_decl = 0;
  int varargs_setup = 0;
  rtx conversion_insns = 0;

  /* Nonzero if the last arg is named `__builtin_va_alist',
     which is used on some machines for old-fashioned non-ANSI varargs.h;
     this should be stuck onto the stack as if it had arrived there.  */
  int hide_last_arg
    = (current_function_varargs
       && fnargs
       && (parm = tree_last (fnargs)) != 0
       && DECL_NAME (parm)
       && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
		     "__builtin_va_alist")));

  /* Nonzero if function takes extra anonymous args.
     This means the last named arg must be on the stack
     right before the anonymous ones.  */
  int stdarg
    = (TYPE_ARG_TYPES (fntype) != 0
       && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
	   != void_type_node));

  current_function_stdarg = stdarg;

  /* If the reg that the virtual arg pointer will be translated into is
     not a fixed reg or is the stack pointer, make a copy of the virtual
     arg pointer, and address parms via the copy.  The frame pointer is
     considered fixed even though it is not marked as such.

     The second time through, simply use ap to avoid generating rtx.  */

  if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
       || ! (fixed_regs[ARG_POINTER_REGNUM]
	     || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM))
      && ! second_time)
    internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
  else
    internal_arg_pointer = virtual_incoming_args_rtx;
  current_function_internal_arg_pointer = internal_arg_pointer;

  stack_args_size.constant = 0;
  stack_args_size.var = 0;

  /* If struct value address is treated as the first argument, make it so.  */
  if (aggregate_value_p (DECL_RESULT (fndecl))
      && ! current_function_returns_pcc_struct
      && struct_value_incoming_rtx == 0)
    {
      tree type = build_pointer_type (TREE_TYPE (fntype));

      function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);

      DECL_ARG_TYPE (function_result_decl) = type;
      TREE_CHAIN (function_result_decl) = fnargs;
      fnargs = function_result_decl;
    }
			       
  max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
  parm_reg_stack_loc = (rtx *) savealloc (max_parm_reg * sizeof (rtx));
  bzero ((char *) parm_reg_stack_loc, max_parm_reg * sizeof (rtx));

#ifdef INIT_CUMULATIVE_INCOMING_ARGS
  INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
#else
  INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
#endif

  /* We haven't yet found an argument that we must push and pretend the
     caller did.  */
  current_function_pretend_args_size = 0;

  for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
    {
      int aggregate = AGGREGATE_TYPE_P (TREE_TYPE (parm));
      struct args_size stack_offset;
      struct args_size arg_size;
      int passed_pointer = 0;
      int did_conversion = 0;
      tree passed_type = DECL_ARG_TYPE (parm);
      tree nominal_type = TREE_TYPE (parm);

      /* Set LAST_NAMED if this is last named arg before some
	 anonymous args.  */
      int last_named = ((TREE_CHAIN (parm) == 0
			 || DECL_NAME (TREE_CHAIN (parm)) == 0)
			&& (stdarg || current_function_varargs));
      /* Set NAMED_ARG if this arg should be treated as a named arg.  For
	 most machines, if this is a varargs/stdarg function, then we treat
	 the last named arg as if it were anonymous too.  */
      int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;

      if (TREE_TYPE (parm) == error_mark_node
	  /* This can happen after weird syntax errors
	     or if an enum type is defined among the parms.  */
	  || TREE_CODE (parm) != PARM_DECL
	  || passed_type == NULL)
	{
	  DECL_INCOMING_RTL (parm) = DECL_RTL (parm)
	    = gen_rtx_MEM (BLKmode, const0_rtx);
	  TREE_USED (parm) = 1;
	  continue;
	}

      /* For varargs.h function, save info about regs and stack space
	 used by the individual args, not including the va_alist arg.  */
      if (hide_last_arg && last_named)
	current_function_args_info = args_so_far;

      /* Find mode of arg as it is passed, and mode of arg
	 as it should be during execution of this function.  */
      passed_mode = TYPE_MODE (passed_type);
      nominal_mode = TYPE_MODE (nominal_type);

      /* If the parm's mode is VOID, its value doesn't matter,
	 and avoid the usual things like emit_move_insn that could crash.  */
      if (nominal_mode == VOIDmode)
	{
	  DECL_INCOMING_RTL (parm) = DECL_RTL (parm) = const0_rtx;
	  continue;
	}

      /* If the parm is to be passed as a transparent union, use the
	 type of the first field for the tests below.  We have already
	 verified that the modes are the same.  */
      if (DECL_TRANSPARENT_UNION (parm)
	  || TYPE_TRANSPARENT_UNION (passed_type))
	passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));

      /* See if this arg was passed by invisible reference.  It is if
	 it is an object whose size depends on the contents of the
	 object itself or if the machine requires these objects be passed
	 that way.  */

      if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
	   && contains_placeholder_p (TYPE_SIZE (passed_type)))
	  || TREE_ADDRESSABLE (passed_type)
#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
	  || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
					      passed_type, named_arg)
#endif
	  )
	{
	  passed_type = nominal_type = build_pointer_type (passed_type);
	  passed_pointer = 1;
	  passed_mode = nominal_mode = Pmode;
	}

      promoted_mode = passed_mode;

#ifdef PROMOTE_FUNCTION_ARGS
      /* Compute the mode in which the arg is actually extended to.  */
      unsignedp = TREE_UNSIGNED (passed_type);
      promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
#endif

      /* Let machine desc say which reg (if any) the parm arrives in.
	 0 means it arrives on the stack.  */
#ifdef FUNCTION_INCOMING_ARG
      entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
					  passed_type, named_arg);
#else
      entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
				 passed_type, named_arg);
#endif

      if (entry_parm == 0)
	promoted_mode = passed_mode;

#ifdef SETUP_INCOMING_VARARGS
      /* If this is the last named parameter, do any required setup for
	 varargs or stdargs.  We need to know about the case of this being an
	 addressable type, in which case we skip the registers it
	 would have arrived in.

	 For stdargs, LAST_NAMED will be set for two parameters, the one that
	 is actually the last named, and the dummy parameter.  We only
	 want to do this action once.

	 Also, indicate when RTL generation is to be suppressed.  */
      if (last_named && !varargs_setup)
	{
	  SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
				  current_function_pretend_args_size,
				  second_time);
	  varargs_setup = 1;
	}
#endif

      /* Determine parm's home in the stack,
	 in case it arrives in the stack or we should pretend it did.

	 Compute the stack position and rtx where the argument arrives
	 and its size.

	 There is one complexity here:  If this was a parameter that would
	 have been passed in registers, but wasn't only because it is
	 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
	 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
	 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
	 0 as it was the previous time.  */

      locate_and_pad_parm (promoted_mode, passed_type,
#ifdef STACK_PARMS_IN_REG_PARM_AREA
			   1,
#else
#ifdef FUNCTION_INCOMING_ARG
			   FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
						  passed_type,
						  (named_arg
						   || varargs_setup)) != 0,
#else
			   FUNCTION_ARG (args_so_far, promoted_mode,
					 passed_type,
					 named_arg || varargs_setup) != 0,
#endif
#endif
			   fndecl, &stack_args_size, &stack_offset, &arg_size);

      if (! second_time)
	{
	  rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);

	  if (offset_rtx == const0_rtx)
	    stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
	  else
	    stack_parm = gen_rtx_MEM (promoted_mode,
				      gen_rtx_PLUS (Pmode,
						    internal_arg_pointer,
						    offset_rtx));

	  /* If this is a memory ref that contains aggregate components,
	     mark it as such for cse and loop optimize.  Likewise if it
	     is readonly.  */
	  MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
	  RTX_UNCHANGING_P (stack_parm) = TREE_READONLY (parm);
	  MEM_ALIAS_SET (stack_parm) = get_alias_set (parm);
	}

      /* If this parameter was passed both in registers and in the stack,
	 use the copy on the stack.  */
      if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
	entry_parm = 0;

#ifdef FUNCTION_ARG_PARTIAL_NREGS
      /* If this parm was passed part in regs and part in memory,
	 pretend it arrived entirely in memory
	 by pushing the register-part onto the stack.

	 In the special case of a DImode or DFmode that is split,
	 we could put it together in a pseudoreg directly,
	 but for now that's not worth bothering with.  */

      if (entry_parm)
	{
	  int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
						  passed_type, named_arg);

	  if (nregs > 0)
	    {
	      current_function_pretend_args_size
		= (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
		   / (PARM_BOUNDARY / BITS_PER_UNIT)
		   * (PARM_BOUNDARY / BITS_PER_UNIT));

	      if (! second_time)
		{
		  /* Handle calls that pass values in multiple non-contiguous
		     locations.  The Irix 6 ABI has examples of this.  */
		  if (GET_CODE (entry_parm) == PARALLEL)
		    emit_group_store (validize_mem (stack_parm), entry_parm,
				      int_size_in_bytes (TREE_TYPE (parm)),
				      (TYPE_ALIGN (TREE_TYPE (parm))
				       / BITS_PER_UNIT));
		  else
		    move_block_from_reg (REGNO (entry_parm),
					 validize_mem (stack_parm), nregs,
					 int_size_in_bytes (TREE_TYPE (parm)));
		}
	      entry_parm = stack_parm;
	    }
	}
#endif

      /* If we didn't decide this parm came in a register,
	 by default it came on the stack.  */
      if (entry_parm == 0)
	entry_parm = stack_parm;

      /* Record permanently how this parm was passed.  */
      if (! second_time)
	DECL_INCOMING_RTL (parm) = entry_parm;

      /* If there is actually space on the stack for this parm,
	 count it in stack_args_size; otherwise set stack_parm to 0
	 to indicate there is no preallocated stack slot for the parm.  */

      if (entry_parm == stack_parm
#if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
	  /* On some machines, even if a parm value arrives in a register
	     there is still an (uninitialized) stack slot allocated for it.

	     ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
	     whether this parameter already has a stack slot allocated,
	     because an arg block exists only if current_function_args_size
	     is larger than some threshold, and we haven't calculated that
	     yet.  So, for now, we just assume that stack slots never exist
	     in this case.  */
	  || REG_PARM_STACK_SPACE (fndecl) > 0
#endif
	  )
	{
	  stack_args_size.constant += arg_size.constant;
	  if (arg_size.var)
	    ADD_PARM_SIZE (stack_args_size, arg_size.var);
	}
      else
	/* No stack slot was pushed for this parm.  */
	stack_parm = 0;

      /* Update info on where next arg arrives in registers.  */

      FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
			    passed_type, named_arg);

      /* If this is our second time through, we are done with this parm.  */
      if (second_time)
	continue;

      /* If we can't trust the parm stack slot to be aligned enough
	 for its ultimate type, don't use that slot after entry.
	 We'll make another stack slot, if we need one.  */
      {
	int thisparm_boundary
	  = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);

	if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
	  stack_parm = 0;
      }

      /* If parm was passed in memory, and we need to convert it on entry,
	 don't store it back in that same slot.  */
      if (entry_parm != 0
	  && nominal_mode != BLKmode && nominal_mode != passed_mode)
	stack_parm = 0;

#if 0
      /* Now adjust STACK_PARM to the mode and precise location
	 where this parameter should live during execution,
	 if we discover that it must live in the stack during execution.
	 To make debuggers happier on big-endian machines, we store
	 the value in the last bytes of the space available.  */

      if (nominal_mode != BLKmode && nominal_mode != passed_mode
	  && stack_parm != 0)
	{
	  rtx offset_rtx;

	  if (BYTES_BIG_ENDIAN
	      && GET_MODE_SIZE (nominal_mode) < UNITS_PER_WORD)
	    stack_offset.constant += (GET_MODE_SIZE (passed_mode)
				      - GET_MODE_SIZE (nominal_mode));

	  offset_rtx = ARGS_SIZE_RTX (stack_offset);
	  if (offset_rtx == const0_rtx)
	    stack_parm = gen_rtx_MEM (nominal_mode, internal_arg_pointer);
	  else
	    stack_parm = gen_rtx_MEM (nominal_mode,
				      gen_rtx_PLUS (Pmode,
						    internal_arg_pointer,
						    offset_rtx));

	  /* If this is a memory ref that contains aggregate components,
	     mark it as such for cse and loop optimize.  */
	  MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
	}
#endif /* 0 */

#ifdef STACK_REGS
      /* We need this "use" info, because the gcc-register->stack-register
	 converter in reg-stack.c needs to know which registers are active
	 at the start of the function call.  The actual parameter loading
	 instructions are not always available then anymore, since they might
	 have been optimised away.  */

      if (GET_CODE (entry_parm) == REG && !(hide_last_arg && last_named))
	  emit_insn (gen_rtx_USE (GET_MODE (entry_parm), entry_parm));
#endif

      /* ENTRY_PARM is an RTX for the parameter as it arrives,
	 in the mode in which it arrives.
	 STACK_PARM is an RTX for a stack slot where the parameter can live
	 during the function (in case we want to put it there).
	 STACK_PARM is 0 if no stack slot was pushed for it.

	 Now output code if necessary to convert ENTRY_PARM to
	 the type in which this function declares it,
	 and store that result in an appropriate place,
	 which may be a pseudo reg, may be STACK_PARM,
	 or may be a local stack slot if STACK_PARM is 0.

	 Set DECL_RTL to that place.  */

      if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
	{
	  /* If a BLKmode arrives in registers, copy it to a stack slot.
	     Handle calls that pass values in multiple non-contiguous
	     locations.  The Irix 6 ABI has examples of this.  */
	  if (GET_CODE (entry_parm) == REG
	      || GET_CODE (entry_parm) == PARALLEL)
	    {
	      int size_stored
		= CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
			      UNITS_PER_WORD);

	      /* Note that we will be storing an integral number of words.
		 So we have to be careful to ensure that we allocate an
		 integral number of words.  We do this below in the
		 assign_stack_local if space was not allocated in the argument
		 list.  If it was, this will not work if PARM_BOUNDARY is not
		 a multiple of BITS_PER_WORD.  It isn't clear how to fix this
		 if it becomes a problem.  */

	      if (stack_parm == 0)
		{
		  stack_parm
		    = assign_stack_local (GET_MODE (entry_parm),
					  size_stored, 0);

		  /* If this is a memory ref that contains aggregate
		     components, mark it as such for cse and loop optimize.  */
		  MEM_SET_IN_STRUCT_P (stack_parm, aggregate);
		}

	      else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
		abort ();

	      if (TREE_READONLY (parm))
		RTX_UNCHANGING_P (stack_parm) = 1;

	      /* Handle calls that pass values in multiple non-contiguous
		 locations.  The Irix 6 ABI has examples of this.  */
	      if (GET_CODE (entry_parm) == PARALLEL)
		emit_group_store (validize_mem (stack_parm), entry_parm,
				  int_size_in_bytes (TREE_TYPE (parm)),
				  (TYPE_ALIGN (TREE_TYPE (parm))
				   / BITS_PER_UNIT));
	      else
		move_block_from_reg (REGNO (entry_parm),
				     validize_mem (stack_parm),
				     size_stored / UNITS_PER_WORD,
				     int_size_in_bytes (TREE_TYPE (parm)));
	    }
	  DECL_RTL (parm) = stack_parm;
	}
      else if (! ((obey_regdecls && ! DECL_REGISTER (parm)
		   && ! DECL_INLINE (fndecl))
		  /* layout_decl may set this.  */
		  || TREE_ADDRESSABLE (parm)
		  || TREE_SIDE_EFFECTS (parm)
		  /* If -ffloat-store specified, don't put explicit
		     float variables into registers.  */
		  || (flag_float_store
		      && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
	       /* Always assign pseudo to structure return or item passed
		  by invisible reference.  */
	       || passed_pointer || parm == function_result_decl)
	{
	  /* Store the parm in a pseudoregister during the function, but we
	     may need to do it in a wider mode.  */

	  register rtx parmreg;
	  int regno, regnoi = 0, regnor = 0;

	  unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));

	  promoted_nominal_mode
	    = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);

	  parmreg = gen_reg_rtx (promoted_nominal_mode);
	  mark_user_reg (parmreg);

	  /* If this was an item that we received a pointer to, set DECL_RTL
	     appropriately.  */
	  if (passed_pointer)
	    {
	      DECL_RTL (parm)
		= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)), parmreg);
	      MEM_SET_IN_STRUCT_P (DECL_RTL (parm), aggregate);
	    }
	  else
	    DECL_RTL (parm) = parmreg;

	  /* Copy the value into the register.  */
	  if (nominal_mode != passed_mode
	      || promoted_nominal_mode != promoted_mode)
	    {
	      int save_tree_used;
	      /* ENTRY_PARM has been converted to PROMOTED_MODE, its
		 mode, by the caller.  We now have to convert it to 
		 NOMINAL_MODE, if different.  However, PARMREG may be in
		 a different mode than NOMINAL_MODE if it is being stored
		 promoted.

		 If ENTRY_PARM is a hard register, it might be in a register
		 not valid for operating in its mode (e.g., an odd-numbered
		 register for a DFmode).  In that case, moves are the only
		 thing valid, so we can't do a convert from there.  This
		 occurs when the calling sequence allow such misaligned
		 usages.

		 In addition, the conversion may involve a call, which could
		 clobber parameters which haven't been copied to pseudo
		 registers yet.  Therefore, we must first copy the parm to
		 a pseudo reg here, and save the conversion until after all
		 parameters have been moved.  */

	      rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));

	      emit_move_insn (tempreg, validize_mem (entry_parm));

	      push_to_sequence (conversion_insns);
	      tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);

	      /* TREE_USED gets set erroneously during expand_assignment.  */
	      save_tree_used = TREE_USED (parm);
	      expand_assignment (parm,
				 make_tree (nominal_type, tempreg), 0, 0);
	      TREE_USED (parm) = save_tree_used;
	      conversion_insns = get_insns ();
	      did_conversion = 1;
	      end_sequence ();
	    }
	  else
	    emit_move_insn (parmreg, validize_mem (entry_parm));

	  /* If we were passed a pointer but the actual value
	     can safely live in a register, put it in one.  */
	  if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
	      && ! ((obey_regdecls && ! DECL_REGISTER (parm)
		     && ! DECL_INLINE (fndecl))
		    /* layout_decl may set this.  */
		    || TREE_ADDRESSABLE (parm)
		    || TREE_SIDE_EFFECTS (parm)
		    /* If -ffloat-store specified, don't put explicit
		       float variables into registers.  */
		    || (flag_float_store
			&& TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
	    {
	      /* We can't use nominal_mode, because it will have been set to
		 Pmode above.  We must use the actual mode of the parm.  */
	      parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
	      mark_user_reg (parmreg);
	      emit_move_insn (parmreg, DECL_RTL (parm));
	      DECL_RTL (parm) = parmreg;
	      /* STACK_PARM is the pointer, not the parm, and PARMREG is
		 now the parm.  */
	      stack_parm = 0;
	    }
#ifdef FUNCTION_ARG_CALLEE_COPIES
	  /* If we are passed an arg by reference and it is our responsibility
	     to make a copy, do it now.
	     PASSED_TYPE and PASSED mode now refer to the pointer, not the
	     original argument, so we must recreate them in the call to
	     FUNCTION_ARG_CALLEE_COPIES.  */
	  /* ??? Later add code to handle the case that if the argument isn't
	     modified, don't do the copy.  */

	  else if (passed_pointer
		   && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
						  TYPE_MODE (DECL_ARG_TYPE (parm)),
						  DECL_ARG_TYPE (parm),
						  named_arg)
		   && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
	    {
	      rtx copy;
	      tree type = DECL_ARG_TYPE (parm);

	      /* This sequence may involve a library call perhaps clobbering
		 registers that haven't been copied to pseudos yet.  */

	      push_to_sequence (conversion_insns);

	      if (TYPE_SIZE (type) == 0
		  || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
		/* This is a variable sized object.  */
		copy = gen_rtx_MEM (BLKmode,
				    allocate_dynamic_stack_space
				    (expr_size (parm), NULL_RTX,
				     TYPE_ALIGN (type)));
	      else
		copy = assign_stack_temp (TYPE_MODE (type),
					  int_size_in_bytes (type), 1);
	      MEM_SET_IN_STRUCT_P (copy, AGGREGATE_TYPE_P (type));
	      RTX_UNCHANGING_P (copy) = TREE_READONLY (parm);

	      store_expr (parm, copy, 0);
	      emit_move_insn (parmreg, XEXP (copy, 0));
	      if (current_function_check_memory_usage)
		emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
				   XEXP (copy, 0), ptr_mode,
				   GEN_INT (int_size_in_bytes (type)),
				   TYPE_MODE (sizetype),
				   GEN_INT (MEMORY_USE_RW),
				   TYPE_MODE (integer_type_node));
	      conversion_insns = get_insns ();
	      did_conversion = 1;
	      end_sequence ();
	    }
#endif /* FUNCTION_ARG_CALLEE_COPIES */

	  /* In any case, record the parm's desired stack location
	     in case we later discover it must live in the stack. 

	     If it is a COMPLEX value, store the stack location for both
	     halves.  */

	  if (GET_CODE (parmreg) == CONCAT)
	    regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
	  else
	    regno = REGNO (parmreg);

	  if (regno >= max_parm_reg)
	    {
	      rtx *new;
	      int old_max_parm_reg = max_parm_reg;

	      /* It's slow to expand this one register at a time,
		 but it's also rare and we need max_parm_reg to be
		 precisely correct.  */
	      max_parm_reg = regno + 1;
	      new = (rtx *) savealloc (max_parm_reg * sizeof (rtx));
	      bcopy ((char *) parm_reg_stack_loc, (char *) new,
		     old_max_parm_reg * sizeof (rtx));
	      bzero ((char *) (new + old_max_parm_reg),
		     (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
	      parm_reg_stack_loc = new;
	    }

	  if (GET_CODE (parmreg) == CONCAT)
	    {
	      enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));

	      regnor = REGNO (gen_realpart (submode, parmreg));
	      regnoi = REGNO (gen_imagpart (submode, parmreg));

	      if (stack_parm != 0)
		{
		  parm_reg_stack_loc[regnor]
		    = gen_realpart (submode, stack_parm);
		  parm_reg_stack_loc[regnoi]
		    = gen_imagpart (submode, stack_parm);
		}
	      else
		{
		  parm_reg_stack_loc[regnor] = 0;
		  parm_reg_stack_loc[regnoi] = 0;
		}
	    }
	  else
	    parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;

	  /* Mark the register as eliminable if we did no conversion
	     and it was copied from memory at a fixed offset,
	     and the arg pointer was not copied to a pseudo-reg.
	     If the arg pointer is a pseudo reg or the offset formed
	     an invalid address, such memory-equivalences
	     as we make here would screw up life analysis for it.  */
	  if (nominal_mode == passed_mode
	      && ! did_conversion
	      && stack_parm != 0
	      && GET_CODE (stack_parm) == MEM
	      && stack_offset.var == 0
	      && reg_mentioned_p (virtual_incoming_args_rtx,
				  XEXP (stack_parm, 0)))
	    {
	      rtx linsn = get_last_insn ();
	      rtx sinsn, set;

	      /* Mark complex types separately.  */
	      if (GET_CODE (parmreg) == CONCAT)
		/* Scan backwards for the set of the real and
		   imaginary parts.  */
		for (sinsn = linsn; sinsn != 0;
		     sinsn = prev_nonnote_insn (sinsn))
		  {
		    set = single_set (sinsn);
		    if (set != 0
			&& SET_DEST (set) == regno_reg_rtx [regnoi])
		      REG_NOTES (sinsn)
			= gen_rtx_EXPR_LIST (REG_EQUIV,
					     parm_reg_stack_loc[regnoi],
					     REG_NOTES (sinsn));
		    else if (set != 0