1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
30300
30301
30302
30303
30304
30305
30306
30307
30308
30309
30310
30311
30312
30313
30314
30315
30316
30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
30370
30371
30372
30373
30374
30375
30376
30377
30378
30379
30380
30381
30382
30383
30384
30385
30386
30387
30388
30389
30390
30391
30392
30393
30394
30395
30396
30397
30398
30399
30400
30401
30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
30461
30462
30463
30464
30465
30466
30467
30468
30469
30470
30471
30472
30473
30474
30475
30476
30477
30478
30479
30480
30481
30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
30497
30498
30499
30500
30501
30502
30503
30504
30505
30506
30507
30508
30509
30510
30511
30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529
30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
30571
30572
30573
30574
30575
30576
30577
30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
30630
30631
30632
30633
30634
30635
30636
30637
30638
30639
30640
30641
30642
30643
30644
30645
30646
30647
30648
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
30669
30670
30671
30672
30673
30674
30675
30676
30677
30678
30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693
30694
30695
30696
30697
30698
30699
30700
30701
30702
30703
30704
30705
30706
30707
30708
30709
30710
30711
30712
30713
30714
30715
30716
30717
30718
30719
30720
30721
30722
30723
30724
30725
30726
30727
30728
30729
30730
30731
30732
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
30778
30779
30780
30781
30782
30783
30784
30785
30786
30787
30788
30789
30790
30791
30792
30793
30794
30795
30796
30797
30798
30799
30800
30801
30802
30803
30804
30805
30806
30807
30808
30809
30810
30811
30812
30813
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
30829
30830
30831
30832
30833
30834
30835
30836
30837
30838
30839
30840
30841
30842
30843
30844
30845
30846
30847
30848
30849
30850
30851
30852
30853
30854
30855
30856
30857
30858
30859
30860
30861
30862
30863
30864
30865
30866
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
30883
30884
30885
30886
30887
30888
30889
30890
30891
30892
30893
30894
30895
30896
30897
30898
30899
30900
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
30916
30917
30918
30919
30920
30921
30922
30923
30924
30925
30926
30927
30928
30929
30930
30931
30932
30933
30934
30935
30936
30937
30938
30939
30940
30941
30942
30943
30944
30945
30946
30947
30948
30949
30950
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
30966
30967
30968
30969
30970
30971
30972
30973
30974
30975
30976
30977
30978
30979
30980
30981
30982
30983
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997
30998
30999
31000
31001
31002
31003
31004
31005
31006
31007
31008
31009
31010
31011
31012
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
31040
31041
31042
31043
31044
31045
31046
31047
31048
31049
31050
31051
31052
31053
31054
31055
31056
31057
31058
31059
31060
31061
31062
31063
31064
31065
31066
31067
31068
31069
31070
31071
31072
31073
31074
31075
31076
31077
31078
31079
31080
31081
31082
31083
31084
31085
31086
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
31122
31123
31124
31125
31126
31127
31128
31129
31130
31131
31132
31133
31134
31135
31136
31137
31138
31139
31140
31141
31142
31143
31144
31145
31146
31147
31148
31149
31150
31151
31152
31153
31154
31155
31156
31157
31158
31159
31160
31161
31162
31163
31164
31165
31166
31167
31168
31169
31170
31171
31172
31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
31188
31189
31190
31191
31192
31193
31194
31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
31245
31246
31247
31248
31249
31250
31251
31252
31253
31254
31255
31256
31257
31258
31259
31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
31284
31285
31286
31287
31288
31289
31290
31291
31292
31293
31294
31295
31296
31297
31298
31299
31300
31301
31302
31303
31304
31305
31306
31307
31308
31309
31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353
31354
31355
31356
31357
31358
31359
31360
31361
31362
31363
31364
31365
31366
31367
31368
31369
31370
31371
31372
31373
31374
31375
31376
31377
31378
31379
31380
31381
31382
31383
31384
31385
31386
31387
31388
31389
31390
31391
31392
31393
31394
31395
31396
31397
31398
31399
31400
31401
31402
31403
31404
31405
31406
31407
31408
31409
31410
31411
31412
31413
31414
31415
31416
31417
31418
31419
31420
31421
31422
31423
31424
31425
31426
31427
31428
31429
31430
31431
31432
31433
31434
31435
31436
31437
31438
31439
31440
31441
31442
31443
31444
31445
31446
31447
31448
31449
31450
31451
31452
31453
31454
31455
31456
31457
31458
31459
31460
31461
31462
31463
31464
31465
31466
31467
31468
31469
31470
31471
31472
31473
31474
31475
31476
31477
31478
31479
31480
31481
31482
31483
31484
31485
31486
31487
31488
31489
31490
31491
31492
31493
31494
31495
31496
31497
31498
31499
31500
31501
31502
31503
31504
31505
31506
31507
31508
31509
31510
31511
31512
31513
31514
31515
31516
31517
31518
31519
31520
31521
31522
31523
31524
31525
31526
31527
31528
31529
31530
31531
31532
31533
31534
31535
31536
31537
31538
31539
31540
31541
31542
31543
31544
31545
31546
31547
31548
31549
31550
31551
31552
31553
31554
31555
31556
31557
31558
31559
31560
31561
31562
31563
31564
31565
31566
31567
31568
31569
31570
31571
31572
31573
31574
31575
31576
31577
31578
31579
31580
31581
31582
31583
31584
31585
31586
31587
31588
31589
31590
31591
31592
31593
31594
31595
31596
31597
31598
31599
31600
31601
31602
31603
31604
31605
31606
31607
31608
31609
31610
31611
31612
31613
31614
31615
31616
31617
31618
31619
31620
31621
31622
31623
31624
31625
31626
31627
31628
31629
31630
31631
31632
31633
31634
31635
31636
31637
31638
31639
31640
31641
31642
31643
31644
31645
31646
31647
31648
31649
31650
31651
31652
31653
31654
31655
31656
31657
31658
31659
31660
31661
31662
31663
31664
31665
31666
31667
31668
31669
31670
31671
31672
31673
31674
31675
31676
31677
31678
31679
31680
31681
31682
31683
31684
31685
31686
31687
31688
31689
31690
31691
31692
31693
31694
31695
31696
31697
31698
31699
31700
31701
31702
31703
31704
31705
31706
31707
31708
31709
31710
31711
31712
31713
31714
31715
31716
31717
31718
31719
31720
31721
31722
31723
31724
31725
31726
31727
31728
31729
31730
31731
31732
31733
31734
31735
31736
31737
31738
31739
31740
31741
31742
31743
31744
31745
31746
31747
31748
31749
31750
31751
31752
31753
31754
31755
31756
31757
31758
31759
31760
31761
31762
31763
31764
31765
31766
31767
31768
31769
31770
31771
31772
31773
31774
31775
31776
31777
31778
31779
31780
31781
31782
31783
31784
31785
31786
31787
31788
31789
31790
31791
31792
31793
31794
31795
31796
31797
31798
31799
31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
31844
31845
31846
31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
31860
31861
31862
31863
31864
31865
31866
31867
31868
31869
31870
31871
31872
31873
31874
31875
31876
31877
31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
31893
31894
31895
31896
31897
31898
31899
31900
31901
31902
31903
31904
31905
31906
31907
31908
31909
31910
31911
31912
31913
31914
31915
31916
31917
31918
31919
31920
31921
31922
31923
31924
31925
31926
31927
31928
31929
31930
31931
31932
31933
31934
31935
31936
31937
31938
31939
31940
31941
31942
31943
31944
31945
31946
31947
31948
31949
31950
31951
31952
31953
31954
31955
31956
31957
31958
31959
31960
31961
31962
31963
31964
31965
31966
31967
31968
31969
31970
31971
31972
31973
31974
31975
31976
31977
31978
31979
31980
31981
31982
31983
31984
31985
31986
31987
31988
31989
31990
31991
31992
31993
31994
31995
31996
31997
31998
31999
32000
32001
32002
32003
32004
32005
32006
32007
32008
32009
32010
32011
32012
32013
32014
32015
32016
32017
32018
32019
32020
32021
32022
32023
32024
32025
32026
32027
32028
32029
32030
32031
32032
32033
32034
32035
32036
32037
32038
32039
32040
32041
32042
32043
32044
32045
32046
32047
32048
32049
32050
32051
32052
32053
32054
32055
32056
32057
32058
32059
32060
32061
32062
32063
32064
32065
32066
32067
32068
32069
32070
32071
32072
32073
32074
32075
32076
32077
32078
32079
32080
32081
32082
32083
32084
32085
32086
32087
32088
32089
32090
32091
32092
32093
32094
32095
32096
32097
32098
32099
32100
32101
32102
32103
32104
32105
32106
32107
32108
32109
32110
32111
32112
32113
32114
32115
32116
32117
32118
32119
32120
32121
32122
32123
32124
32125
32126
32127
32128
32129
32130
32131
32132
32133
32134
32135
32136
32137
32138
32139
32140
32141
32142
32143
32144
32145
32146
32147
32148
32149
32150
32151
32152
32153
32154
32155
32156
32157
32158
32159
32160
32161
32162
32163
32164
32165
32166
32167
32168
32169
32170
32171
32172
32173
32174
32175
32176
32177
32178
32179
32180
32181
32182
32183
32184
32185
32186
32187
32188
32189
32190
32191
32192
32193
32194
32195
32196
32197
32198
32199
32200
32201
32202
32203
32204
32205
32206
32207
32208
32209
32210
32211
32212
32213
32214
32215
32216
32217
32218
32219
32220
32221
32222
32223
32224
32225
32226
32227
32228
32229
32230
32231
32232
32233
32234
32235
32236
32237
32238
32239
32240
32241
32242
32243
32244
32245
32246
32247
32248
32249
32250
32251
32252
32253
32254
32255
32256
32257
32258
32259
32260
32261
32262
32263
32264
32265
32266
32267
32268
32269
32270
32271
32272
32273
32274
32275
32276
32277
32278
32279
32280
32281
32282
32283
32284
32285
32286
32287
32288
32289
32290
32291
32292
32293
32294
32295
32296
32297
32298
32299
32300
32301
32302
32303
32304
32305
32306
32307
32308
32309
32310
32311
32312
32313
32314
32315
32316
32317
32318
32319
32320
32321
32322
32323
32324
32325
32326
32327
32328
32329
32330
32331
32332
32333
32334
32335
32336
32337
32338
32339
32340
32341
32342
32343
32344
32345
32346
32347
32348
32349
32350
32351
32352
32353
32354
32355
32356
32357
32358
32359
32360
32361
32362
32363
32364
32365
32366
32367
32368
32369
32370
32371
32372
32373
32374
32375
32376
32377
32378
32379
32380
32381
32382
32383
32384
32385
32386
32387
32388
32389
32390
32391
32392
32393
32394
32395
32396
32397
32398
32399
32400
32401
32402
32403
32404
32405
32406
32407
32408
32409
32410
32411
32412
32413
32414
32415
32416
32417
32418
32419
32420
32421
32422
32423
32424
32425
32426
32427
32428
32429
32430
32431
32432
32433
32434
32435
32436
32437
32438
32439
32440
32441
32442
32443
32444
32445
32446
32447
32448
32449
32450
32451
32452
32453
32454
32455
32456
32457
32458
32459
32460
32461
32462
32463
32464
32465
32466
32467
32468
32469
32470
32471
32472
32473
32474
32475
32476
32477
32478
32479
32480
32481
32482
32483
32484
32485
32486
32487
32488
32489
32490
32491
32492
32493
32494
32495
32496
32497
32498
32499
32500
32501
32502
32503
32504
32505
32506
32507
32508
32509
32510
32511
32512
32513
32514
32515
32516
32517
32518
32519
32520
32521
32522
32523
32524
32525
32526
32527
32528
32529
32530
32531
32532
32533
32534
32535
32536
32537
32538
32539
32540
32541
32542
32543
32544
32545
32546
32547
32548
32549
32550
32551
32552
32553
32554
32555
32556
32557
32558
32559
32560
32561
32562
32563
32564
32565
32566
32567
32568
32569
32570
32571
32572
32573
32574
32575
32576
32577
32578
32579
32580
32581
32582
32583
32584
32585
32586
32587
32588
32589
32590
32591
32592
32593
32594
32595
32596
32597
32598
32599
32600
32601
32602
32603
32604
32605
32606
32607
32608
32609
32610
32611
32612
32613
32614
32615
32616
32617
32618
32619
32620
32621
32622
32623
32624
32625
32626
32627
32628
32629
32630
32631
32632
32633
32634
32635
32636
32637
32638
32639
32640
32641
32642
32643
32644
32645
32646
32647
32648
32649
32650
32651
32652
32653
32654
32655
32656
32657
32658
32659
32660
32661
32662
32663
32664
32665
32666
32667
32668
32669
32670
32671
32672
32673
32674
32675
32676
32677
32678
32679
32680
32681
32682
32683
32684
32685
32686
32687
32688
32689
32690
32691
32692
32693
32694
32695
32696
32697
32698
32699
32700
32701
32702
32703
32704
32705
32706
32707
32708
32709
32710
32711
32712
32713
32714
32715
32716
32717
32718
32719
32720
32721
32722
32723
32724
32725
32726
32727
32728
32729
32730
32731
32732
32733
32734
32735
32736
32737
32738
32739
32740
32741
32742
32743
32744
32745
32746
32747
32748
32749
32750
32751
32752
32753
32754
32755
32756
32757
32758
32759
32760
32761
32762
32763
32764
32765
32766
32767
32768
32769
32770
32771
32772
32773
32774
32775
32776
32777
32778
32779
32780
32781
32782
32783
32784
32785
32786
32787
32788
32789
32790
32791
32792
32793
32794
32795
32796
32797
32798
32799
32800
32801
32802
32803
32804
32805
32806
32807
32808
32809
32810
32811
32812
32813
32814
32815
32816
32817
32818
32819
32820
32821
32822
32823
32824
32825
32826
32827
32828
32829
32830
32831
32832
32833
32834
32835
32836
32837
32838
32839
32840
32841
32842
32843
32844
32845
32846
32847
32848
32849
32850
32851
32852
32853
32854
32855
32856
32857
32858
32859
32860
32861
32862
32863
32864
32865
32866
32867
32868
32869
32870
32871
32872
32873
32874
32875
32876
32877
32878
32879
32880
32881
32882
32883
32884
32885
32886
32887
32888
32889
32890
32891
32892
32893
32894
32895
32896
32897
32898
32899
32900
32901
32902
32903
32904
32905
32906
32907
32908
32909
32910
32911
32912
32913
32914
32915
32916
32917
32918
32919
32920
32921
32922
32923
32924
32925
32926
32927
32928
32929
32930
32931
32932
32933
32934
32935
32936
32937
32938
32939
32940
32941
32942
32943
32944
32945
32946
32947
32948
32949
32950
32951
32952
32953
32954
32955
32956
32957
32958
32959
32960
32961
32962
32963
32964
32965
32966
32967
32968
32969
32970
32971
32972
32973
32974
32975
32976
32977
32978
32979
32980
32981
32982
32983
32984
32985
32986
32987
32988
32989
32990
32991
32992
32993
32994
32995
32996
32997
32998
32999
33000
33001
33002
33003
33004
33005
33006
33007
33008
33009
33010
33011
33012
33013
33014
33015
33016
33017
33018
33019
33020
33021
33022
33023
33024
33025
33026
33027
33028
33029
33030
33031
33032
33033
33034
33035
33036
33037
33038
33039
33040
33041
33042
33043
33044
33045
33046
33047
33048
33049
33050
33051
33052
33053
33054
33055
33056
33057
33058
33059
33060
33061
33062
33063
33064
33065
33066
33067
33068
33069
33070
33071
33072
33073
33074
33075
33076
33077
33078
33079
33080
33081
33082
33083
33084
33085
33086
33087
33088
33089
33090
33091
33092
33093
33094
33095
33096
33097
33098
33099
33100
33101
33102
33103
33104
33105
33106
33107
33108
33109
33110
33111
33112
33113
33114
33115
33116
33117
33118
33119
33120
33121
33122
33123
33124
33125
33126
33127
33128
33129
33130
33131
33132
33133
33134
33135
33136
33137
33138
33139
33140
33141
33142
33143
33144
33145
33146
33147
33148
33149
33150
33151
33152
33153
33154
33155
33156
33157
33158
33159
33160
33161
33162
33163
33164
33165
33166
33167
33168
33169
33170
33171
33172
33173
33174
33175
33176
33177
33178
33179
33180
33181
33182
33183
33184
33185
33186
33187
33188
33189
33190
33191
33192
33193
33194
33195
33196
33197
33198
33199
33200
33201
33202
33203
33204
33205
33206
33207
33208
33209
33210
33211
33212
33213
33214
33215
33216
33217
33218
33219
33220
33221
33222
33223
33224
33225
33226
33227
33228
33229
33230
33231
33232
33233
33234
33235
33236
33237
33238
33239
33240
33241
33242
33243
33244
33245
33246
33247
33248
33249
33250
33251
33252
33253
33254
33255
33256
33257
33258
33259
33260
33261
33262
33263
33264
33265
33266
33267
33268
33269
33270
33271
33272
33273
33274
33275
33276
33277
33278
33279
33280
33281
33282
33283
33284
33285
33286
33287
33288
33289
33290
33291
33292
33293
33294
33295
33296
33297
33298
33299
33300
33301
33302
33303
33304
33305
33306
33307
33308
33309
33310
33311
33312
33313
33314
33315
33316
33317
33318
33319
33320
33321
33322
33323
33324
33325
33326
33327
33328
33329
33330
33331
33332
33333
33334
33335
33336
33337
33338
33339
33340
33341
33342
33343
33344
33345
33346
33347
33348
33349
33350
33351
33352
33353
33354
33355
33356
33357
33358
33359
33360
33361
33362
33363
33364
33365
33366
33367
33368
33369
33370
33371
33372
33373
33374
33375
33376
33377
33378
33379
33380
33381
33382
33383
33384
33385
33386
33387
33388
33389
33390
33391
33392
33393
33394
33395
33396
33397
33398
33399
33400
33401
33402
33403
33404
33405
33406
33407
33408
33409
33410
33411
33412
33413
33414
33415
33416
33417
33418
33419
33420
33421
33422
33423
33424
33425
33426
33427
33428
33429
33430
33431
33432
33433
33434
33435
33436
33437
33438
33439
33440
33441
33442
33443
33444
33445
33446
33447
33448
33449
33450
33451
33452
33453
33454
33455
33456
33457
33458
33459
33460
33461
33462
33463
33464
33465
33466
33467
33468
33469
33470
33471
33472
33473
33474
33475
33476
33477
33478
33479
33480
33481
33482
33483
33484
33485
33486
33487
33488
33489
33490
33491
33492
33493
33494
33495
33496
33497
33498
33499
33500
33501
33502
33503
33504
33505
33506
33507
33508
33509
33510
33511
33512
33513
33514
33515
33516
33517
33518
33519
33520
33521
33522
33523
33524
33525
33526
33527
33528
33529
33530
33531
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
33547
33548
33549
33550
33551
33552
33553
33554
33555
33556
33557
33558
33559
33560
33561
33562
33563
33564
33565
33566
33567
33568
33569
33570
33571
33572
33573
33574
33575
33576
33577
33578
33579
33580
33581
33582
33583
33584
33585
33586
33587
33588
33589
33590
33591
33592
33593
33594
33595
33596
33597
33598
33599
33600
33601
33602
33603
33604
33605
33606
33607
33608
33609
33610
33611
33612
33613
33614
33615
33616
33617
33618
33619
33620
33621
33622
33623
33624
33625
33626
33627
33628
33629
33630
33631
33632
33633
33634
33635
33636
33637
33638
33639
33640
33641
33642
33643
33644
33645
33646
33647
33648
33649
33650
33651
33652
33653
33654
33655
33656
33657
33658
33659
33660
33661
33662
33663
33664
33665
33666
33667
33668
33669
33670
33671
33672
33673
33674
33675
33676
33677
33678
33679
33680
33681
33682
33683
33684
33685
33686
33687
33688
33689
33690
33691
33692
33693
33694
33695
33696
33697
33698
33699
33700
33701
33702
33703
33704
33705
33706
33707
33708
33709
33710
33711
33712
33713
33714
33715
33716
33717
33718
33719
33720
33721
33722
33723
33724
33725
33726
33727
33728
33729
33730
33731
33732
33733
33734
33735
33736
33737
33738
33739
33740
33741
33742
33743
33744
33745
33746
33747
33748
33749
33750
33751
33752
33753
33754
33755
33756
33757
33758
33759
33760
33761
33762
33763
33764
33765
33766
33767
33768
33769
33770
33771
33772
33773
33774
33775
33776
33777
33778
33779
33780
33781
33782
33783
33784
33785
33786
33787
33788
33789
33790
33791
33792
33793
33794
33795
33796
33797
33798
33799
33800
33801
33802
33803
33804
33805
33806
33807
33808
33809
33810
33811
33812
33813
33814
33815
33816
33817
33818
33819
33820
33821
33822
33823
33824
33825
33826
33827
33828
33829
33830
33831
33832
33833
33834
33835
33836
33837
33838
33839
33840
33841
33842
33843
33844
33845
33846
33847
33848
33849
33850
33851
33852
33853
33854
33855
33856
33857
33858
33859
33860
33861
33862
33863
33864
33865
33866
33867
33868
33869
33870
33871
33872
33873
33874
33875
33876
33877
33878
33879
33880
33881
33882
33883
33884
33885
33886
33887
33888
33889
33890
33891
33892
33893
33894
33895
33896
33897
33898
33899
33900
33901
33902
33903
33904
33905
33906
33907
33908
33909
33910
33911
33912
33913
33914
33915
33916
33917
33918
33919
33920
33921
33922
33923
33924
33925
33926
33927
33928
33929
33930
33931
33932
33933
33934
33935
33936
33937
33938
33939
33940
33941
33942
33943
33944
33945
33946
33947
33948
33949
33950
33951
33952
33953
33954
33955
33956
33957
33958
33959
33960
33961
33962
33963
33964
33965
33966
33967
33968
33969
33970
33971
33972
33973
33974
33975
33976
33977
33978
33979
33980
33981
33982
33983
33984
33985
33986
33987
33988
33989
33990
33991
33992
33993
33994
33995
33996
33997
33998
33999
34000
34001
34002
34003
34004
34005
34006
34007
34008
34009
34010
34011
34012
34013
34014
34015
34016
34017
34018
34019
34020
34021
34022
34023
34024
34025
34026
34027
34028
34029
34030
34031
34032
34033
34034
34035
34036
34037
34038
34039
34040
34041
34042
34043
34044
34045
34046
34047
34048
34049
34050
34051
34052
34053
34054
34055
34056
34057
34058
34059
34060
34061
34062
34063
34064
34065
34066
34067
34068
34069
34070
34071
34072
34073
34074
34075
34076
34077
34078
34079
34080
34081
34082
34083
34084
34085
34086
34087
34088
34089
34090
34091
34092
34093
34094
34095
34096
34097
34098
34099
34100
34101
34102
34103
34104
34105
34106
34107
34108
34109
34110
34111
34112
34113
34114
34115
34116
34117
34118
34119
34120
34121
34122
34123
34124
34125
34126
34127
34128
34129
34130
34131
34132
34133
34134
34135
34136
34137
34138
34139
34140
34141
34142
34143
34144
34145
34146
34147
34148
34149
34150
34151
34152
34153
34154
34155
34156
34157
34158
34159
34160
34161
34162
34163
34164
34165
34166
34167
34168
34169
34170
34171
34172
34173
34174
34175
34176
34177
34178
34179
34180
34181
34182
34183
34184
34185
34186
34187
34188
34189
34190
34191
34192
34193
34194
34195
34196
34197
34198
34199
34200
34201
34202
34203
34204
34205
34206
34207
34208
34209
34210
34211
34212
34213
34214
34215
34216
34217
34218
34219
34220
34221
34222
34223
34224
34225
34226
34227
34228
34229
34230
34231
34232
34233
34234
34235
34236
34237
34238
34239
34240
34241
34242
34243
34244
34245
34246
34247
34248
34249
34250
34251
34252
34253
34254
34255
34256
34257
34258
34259
34260
34261
34262
34263
34264
34265
34266
34267
34268
34269
34270
34271
34272
34273
34274
34275
34276
34277
34278
34279
34280
34281
34282
34283
34284
34285
34286
34287
34288
34289
34290
34291
34292
34293
34294
34295
34296
34297
34298
34299
34300
34301
34302
34303
34304
34305
34306
34307
34308
34309
34310
34311
34312
34313
34314
34315
34316
34317
34318
34319
34320
34321
34322
34323
34324
34325
34326
34327
34328
34329
34330
34331
34332
34333
34334
34335
34336
34337
34338
34339
34340
34341
34342
34343
34344
34345
34346
34347
34348
34349
34350
34351
34352
34353
34354
34355
34356
34357
34358
34359
34360
34361
34362
34363
34364
34365
34366
34367
34368
34369
34370
34371
34372
34373
34374
34375
34376
34377
34378
34379
34380
34381
34382
34383
34384
34385
34386
34387
34388
34389
34390
34391
34392
34393
34394
34395
34396
34397
34398
34399
34400
34401
34402
34403
34404
34405
34406
34407
34408
34409
34410
34411
34412
34413
34414
34415
34416
34417
34418
34419
34420
34421
34422
34423
34424
34425
34426
34427
34428
34429
34430
34431
34432
34433
34434
34435
34436
34437
34438
34439
34440
34441
34442
34443
34444
34445
34446
34447
34448
34449
34450
34451
34452
34453
34454
34455
34456
34457
34458
34459
34460
34461
34462
34463
34464
34465
34466
34467
34468
34469
34470
34471
34472
34473
34474
34475
34476
34477
34478
34479
34480
34481
34482
34483
34484
34485
34486
34487
34488
34489
34490
34491
34492
34493
34494
34495
34496
34497
34498
34499
34500
34501
34502
34503
34504
34505
34506
34507
34508
34509
34510
34511
34512
34513
34514
34515
34516
34517
34518
34519
34520
34521
34522
34523
34524
34525
34526
34527
34528
34529
34530
34531
34532
34533
34534
34535
34536
34537
34538
34539
34540
34541
34542
34543
34544
34545
34546
34547
34548
34549
34550
34551
34552
34553
34554
34555
34556
34557
34558
34559
34560
34561
34562
34563
34564
34565
34566
34567
34568
34569
34570
34571
34572
34573
34574
34575
34576
34577
34578
34579
34580
34581
34582
34583
34584
34585
34586
34587
34588
34589
34590
34591
34592
34593
34594
34595
34596
34597
34598
34599
34600
34601
34602
34603
34604
34605
34606
34607
34608
34609
34610
34611
34612
34613
34614
34615
34616
34617
34618
34619
34620
34621
34622
34623
34624
34625
34626
34627
34628
34629
34630
34631
34632
34633
34634
34635
34636
34637
34638
34639
34640
34641
34642
34643
34644
34645
34646
34647
34648
34649
34650
34651
34652
34653
34654
34655
34656
34657
34658
34659
34660
34661
34662
34663
34664
34665
34666
34667
34668
34669
34670
34671
34672
34673
34674
34675
34676
34677
34678
34679
34680
34681
34682
34683
34684
34685
34686
34687
34688
34689
34690
34691
34692
34693
34694
34695
34696
34697
34698
34699
34700
34701
34702
34703
34704
34705
34706
34707
34708
34709
34710
34711
34712
34713
34714
34715
34716
34717
34718
34719
34720
34721
34722
34723
34724
34725
34726
34727
34728
34729
34730
34731
34732
34733
34734
34735
34736
34737
34738
34739
34740
34741
34742
34743
34744
34745
34746
34747
34748
34749
34750
34751
34752
34753
34754
34755
34756
34757
34758
34759
34760
34761
34762
34763
34764
34765
34766
34767
34768
34769
34770
34771
34772
34773
34774
34775
34776
34777
34778
34779
34780
34781
34782
34783
34784
34785
34786
34787
34788
34789
34790
34791
34792
34793
34794
34795
34796
34797
34798
34799
34800
34801
34802
34803
34804
34805
34806
34807
34808
34809
34810
34811
34812
34813
34814
34815
34816
34817
34818
34819
34820
34821
34822
34823
34824
34825
34826
34827
34828
34829
34830
34831
34832
34833
34834
34835
34836
34837
34838
34839
34840
34841
34842
34843
34844
34845
34846
34847
34848
34849
34850
34851
34852
34853
34854
34855
34856
34857
34858
34859
34860
34861
34862
34863
34864
34865
34866
34867
34868
34869
34870
34871
34872
34873
34874
34875
34876
34877
34878
34879
34880
34881
34882
34883
34884
34885
34886
34887
34888
34889
34890
34891
34892
34893
34894
34895
34896
34897
34898
34899
34900
34901
34902
34903
34904
34905
34906
34907
34908
34909
34910
34911
34912
34913
34914
34915
34916
34917
34918
34919
34920
34921
34922
34923
34924
34925
34926
34927
34928
34929
34930
34931
34932
34933
34934
34935
34936
34937
34938
34939
34940
34941
34942
34943
34944
34945
34946
34947
34948
34949
34950
34951
34952
34953
34954
34955
34956
34957
34958
34959
34960
34961
34962
34963
34964
34965
34966
34967
34968
34969
34970
34971
34972
34973
34974
34975
34976
34977
34978
34979
34980
34981
34982
34983
34984
34985
34986
34987
34988
34989
34990
34991
34992
34993
34994
34995
34996
34997
34998
34999
35000
35001
35002
35003
35004
35005
35006
35007
35008
35009
35010
35011
35012
35013
35014
35015
35016
35017
35018
35019
35020
35021
35022
35023
35024
35025
35026
35027
35028
35029
35030
35031
35032
35033
35034
35035
35036
35037
35038
35039
35040
35041
35042
35043
35044
35045
35046
35047
35048
35049
35050
35051
35052
35053
35054
35055
35056
35057
35058
35059
35060
35061
35062
35063
35064
35065
35066
35067
35068
35069
35070
35071
35072
35073
35074
35075
35076
35077
35078
35079
35080
35081
35082
35083
35084
35085
35086
35087
35088
35089
35090
35091
35092
35093
35094
35095
35096
35097
35098
35099
35100
35101
35102
35103
35104
35105
35106
35107
35108
35109
35110
35111
35112
35113
35114
35115
35116
35117
35118
35119
35120
35121
35122
35123
35124
35125
35126
35127
35128
35129
35130
35131
35132
35133
35134
35135
35136
35137
35138
35139
35140
35141
35142
35143
35144
35145
35146
35147
35148
35149
35150
35151
35152
35153
35154
35155
35156
35157
35158
35159
35160
35161
35162
35163
35164
35165
35166
35167
35168
35169
35170
35171
35172
35173
35174
35175
35176
35177
35178
35179
35180
35181
35182
35183
35184
35185
35186
35187
35188
35189
35190
35191
35192
35193
35194
35195
35196
35197
35198
35199
35200
35201
35202
35203
35204
35205
35206
35207
35208
35209
35210
35211
35212
35213
35214
35215
35216
35217
35218
35219
35220
35221
35222
35223
35224
35225
35226
35227
35228
35229
35230
35231
35232
35233
35234
35235
35236
35237
35238
35239
35240
35241
35242
35243
35244
35245
35246
35247
35248
35249
35250
35251
35252
35253
35254
35255
35256
35257
35258
35259
35260
35261
35262
35263
35264
35265
35266
35267
35268
35269
35270
35271
35272
35273
35274
35275
35276
35277
35278
35279
35280
35281
35282
35283
35284
35285
35286
35287
35288
35289
35290
35291
35292
35293
35294
35295
35296
35297
35298
35299
35300
35301
35302
35303
35304
35305
35306
35307
35308
35309
35310
35311
35312
35313
35314
35315
35316
35317
35318
35319
35320
35321
35322
35323
35324
35325
35326
35327
35328
35329
35330
35331
35332
35333
35334
35335
35336
35337
35338
35339
35340
35341
35342
35343
35344
35345
35346
35347
35348
35349
35350
35351
35352
35353
35354
35355
35356
35357
35358
35359
35360
35361
35362
35363
35364
35365
35366
35367
35368
35369
35370
35371
35372
35373
35374
35375
35376
35377
35378
35379
35380
35381
35382
35383
35384
35385
35386
35387
35388
35389
35390
35391
35392
35393
35394
35395
35396
35397
35398
35399
35400
35401
35402
35403
35404
35405
35406
35407
35408
35409
35410
35411
35412
35413
35414
35415
35416
35417
35418
35419
35420
35421
35422
35423
35424
35425
35426
35427
35428
35429
35430
35431
35432
35433
35434
35435
35436
35437
35438
35439
35440
35441
35442
35443
35444
35445
35446
35447
35448
35449
35450
35451
35452
35453
35454
35455
35456
35457
35458
35459
35460
35461
35462
35463
35464
35465
35466
35467
35468
35469
35470
35471
35472
35473
35474
35475
35476
35477
35478
35479
35480
35481
35482
35483
35484
35485
35486
35487
35488
35489
35490
35491
35492
35493
35494
35495
35496
35497
35498
35499
35500
35501
35502
35503
35504
35505
35506
35507
35508
35509
35510
35511
35512
35513
35514
35515
35516
35517
35518
35519
35520
35521
35522
35523
35524
35525
35526
35527
35528
35529
35530
35531
35532
35533
35534
35535
35536
35537
35538
35539
35540
35541
35542
35543
35544
35545
35546
35547
35548
35549
35550
35551
35552
35553
35554
35555
35556
35557
35558
35559
35560
35561
35562
35563
35564
35565
35566
35567
35568
35569
35570
35571
35572
35573
35574
35575
35576
35577
35578
35579
35580
35581
35582
35583
35584
35585
35586
35587
35588
35589
35590
35591
35592
35593
35594
35595
35596
35597
35598
35599
35600
35601
35602
35603
35604
35605
35606
35607
35608
35609
35610
35611
35612
35613
35614
35615
35616
35617
35618
35619
35620
35621
35622
35623
35624
35625
35626
35627
35628
35629
35630
35631
35632
35633
35634
35635
35636
35637
35638
35639
35640
35641
35642
35643
35644
35645
35646
35647
35648
35649
35650
35651
35652
35653
35654
35655
35656
35657
35658
35659
35660
35661
35662
35663
35664
35665
35666
35667
35668
35669
35670
35671
35672
35673
35674
35675
35676
35677
35678
35679
35680
35681
35682
35683
35684
35685
35686
35687
35688
35689
35690
35691
35692
35693
35694
35695
35696
35697
35698
35699
35700
35701
35702
35703
35704
35705
35706
35707
35708
35709
35710
35711
35712
35713
35714
35715
35716
35717
35718
35719
35720
35721
35722
35723
35724
35725
35726
35727
35728
35729
35730
35731
35732
35733
35734
35735
35736
35737
35738
35739
35740
35741
35742
35743
35744
35745
35746
35747
35748
35749
35750
35751
35752
35753
35754
35755
35756
35757
35758
35759
35760
35761
35762
35763
35764
35765
35766
35767
35768
35769
35770
35771
35772
35773
35774
35775
35776
35777
35778
35779
35780
35781
35782
35783
35784
35785
35786
35787
35788
35789
35790
35791
35792
35793
35794
35795
35796
35797
35798
35799
35800
35801
35802
35803
35804
35805
35806
35807
35808
35809
35810
35811
35812
35813
35814
35815
35816
35817
35818
35819
35820
35821
35822
35823
35824
35825
35826
35827
35828
35829
35830
35831
35832
35833
35834
35835
35836
35837
35838
35839
35840
35841
35842
35843
35844
35845
35846
35847
35848
35849
35850
35851
35852
35853
35854
35855
35856
35857
35858
35859
35860
35861
35862
35863
35864
35865
35866
35867
35868
35869
35870
35871
35872
35873
35874
35875
35876
35877
35878
35879
35880
35881
35882
35883
35884
35885
35886
35887
35888
35889
35890
35891
35892
35893
35894
35895
35896
35897
35898
35899
35900
35901
35902
35903
35904
35905
35906
35907
35908
35909
35910
35911
35912
35913
35914
35915
35916
35917
35918
35919
35920
35921
35922
35923
35924
35925
35926
35927
35928
35929
35930
35931
35932
35933
35934
35935
35936
35937
35938
35939
35940
35941
35942
35943
35944
35945
35946
35947
35948
35949
35950
35951
35952
35953
35954
35955
35956
35957
35958
35959
35960
35961
35962
35963
35964
35965
35966
35967
35968
35969
35970
35971
35972
35973
35974
35975
35976
35977
35978
35979
35980
35981
35982
35983
35984
35985
35986
35987
35988
35989
35990
35991
35992
35993
35994
35995
35996
35997
35998
35999
36000
36001
36002
36003
36004
36005
36006
36007
36008
36009
36010
36011
36012
36013
36014
36015
36016
36017
36018
36019
36020
36021
36022
36023
36024
36025
36026
36027
36028
36029
36030
36031
36032
36033
36034
36035
36036
36037
36038
36039
36040
36041
36042
36043
36044
36045
36046
36047
36048
36049
36050
36051
36052
36053
36054
36055
36056
36057
36058
36059
36060
36061
36062
36063
36064
36065
36066
36067
36068
36069
36070
36071
36072
36073
36074
36075
36076
36077
36078
36079
36080
36081
36082
36083
36084
36085
36086
36087
36088
36089
36090
36091
36092
36093
36094
36095
36096
36097
36098
36099
36100
36101
36102
36103
36104
36105
36106
36107
36108
36109
36110
36111
36112
36113
36114
36115
36116
36117
36118
36119
36120
36121
36122
36123
36124
36125
36126
36127
36128
36129
36130
36131
36132
36133
36134
36135
36136
36137
36138
36139
36140
36141
36142
36143
36144
36145
36146
36147
36148
36149
36150
36151
36152
36153
36154
36155
36156
36157
36158
36159
36160
36161
36162
36163
36164
36165
36166
36167
36168
36169
36170
36171
36172
36173
36174
36175
36176
36177
36178
36179
36180
36181
36182
36183
36184
36185
36186
36187
36188
36189
36190
36191
36192
36193
36194
36195
36196
36197
36198
36199
36200
36201
36202
36203
36204
36205
36206
36207
36208
36209
36210
36211
36212
36213
36214
36215
36216
36217
36218
36219
36220
36221
36222
36223
36224
36225
36226
36227
36228
36229
36230
36231
36232
36233
36234
36235
36236
36237
36238
36239
36240
36241
36242
36243
36244
36245
36246
36247
36248
36249
36250
36251
36252
36253
36254
36255
36256
36257
36258
36259
36260
36261
36262
36263
36264
36265
36266
36267
36268
36269
36270
36271
36272
36273
36274
36275
36276
36277
36278
36279
36280
36281
36282
36283
36284
36285
36286
36287
36288
36289
36290
36291
36292
36293
36294
36295
36296
36297
36298
36299
36300
36301
36302
36303
36304
36305
36306
36307
36308
36309
36310
36311
36312
36313
36314
36315
36316
36317
36318
36319
36320
36321
36322
36323
36324
36325
36326
36327
36328
36329
36330
36331
36332
36333
36334
36335
36336
36337
36338
36339
36340
36341
36342
36343
36344
36345
36346
36347
36348
36349
36350
36351
36352
36353
36354
36355
36356
36357
36358
36359
36360
36361
36362
36363
36364
36365
36366
36367
36368
36369
36370
36371
36372
36373
36374
36375
36376
36377
36378
36379
36380
36381
36382
36383
36384
36385
36386
36387
36388
36389
36390
36391
36392
36393
36394
36395
36396
36397
36398
36399
36400
36401
36402
36403
36404
36405
36406
36407
36408
36409
36410
36411
36412
36413
36414
36415
36416
36417
36418
36419
36420
36421
36422
36423
36424
36425
36426
36427
36428
36429
36430
36431
36432
36433
36434
36435
36436
36437
36438
36439
36440
36441
36442
36443
36444
36445
36446
36447
36448
36449
36450
36451
36452
36453
36454
36455
36456
36457
36458
36459
36460
36461
36462
36463
36464
36465
36466
36467
36468
36469
36470
36471
36472
36473
36474
36475
36476
36477
36478
36479
36480
36481
36482
36483
36484
36485
36486
36487
36488
36489
36490
36491
36492
36493
36494
36495
36496
36497
36498
36499
36500
36501
36502
36503
36504
36505
36506
36507
36508
36509
36510
36511
36512
36513
36514
36515
36516
36517
36518
36519
36520
36521
36522
36523
36524
36525
36526
36527
36528
36529
36530
36531
36532
36533
36534
36535
36536
36537
36538
36539
36540
36541
36542
36543
36544
36545
36546
36547
36548
36549
36550
36551
36552
36553
36554
36555
36556
36557
36558
36559
36560
36561
36562
36563
36564
36565
36566
36567
36568
36569
36570
36571
36572
36573
36574
36575
36576
36577
36578
36579
36580
36581
36582
36583
36584
36585
36586
36587
36588
36589
36590
36591
36592
36593
36594
36595
36596
36597
36598
36599
36600
36601
36602
36603
36604
36605
36606
36607
36608
36609
36610
36611
36612
36613
36614
36615
36616
36617
36618
36619
36620
36621
36622
36623
36624
36625
36626
36627
36628
36629
36630
36631
36632
36633
36634
36635
36636
36637
36638
36639
36640
36641
36642
36643
36644
36645
36646
36647
36648
36649
36650
36651
36652
36653
36654
36655
36656
36657
36658
36659
36660
36661
36662
36663
36664
36665
36666
36667
36668
36669
36670
36671
36672
36673
36674
36675
36676
36677
36678
36679
36680
36681
36682
36683
36684
36685
36686
36687
36688
36689
36690
36691
36692
36693
36694
36695
36696
36697
36698
36699
36700
36701
36702
36703
36704
36705
36706
36707
36708
36709
36710
36711
36712
36713
36714
36715
36716
36717
36718
36719
36720
36721
36722
36723
36724
36725
36726
36727
36728
36729
36730
36731
36732
36733
36734
36735
36736
36737
36738
36739
36740
36741
36742
36743
36744
36745
36746
36747
36748
36749
36750
36751
36752
36753
36754
36755
36756
36757
36758
36759
36760
36761
36762
36763
36764
36765
36766
36767
36768
36769
36770
36771
36772
36773
36774
36775
36776
36777
36778
36779
36780
36781
36782
36783
36784
36785
36786
36787
36788
36789
36790
36791
36792
36793
36794
36795
36796
36797
36798
36799
36800
36801
36802
36803
36804
36805
36806
36807
36808
36809
36810
36811
36812
36813
36814
36815
36816
36817
36818
36819
36820
36821
36822
36823
36824
36825
36826
36827
36828
36829
36830
36831
36832
36833
36834
36835
36836
36837
36838
36839
36840
36841
36842
36843
36844
36845
36846
36847
36848
36849
36850
36851
36852
36853
36854
36855
36856
36857
36858
36859
36860
36861
36862
36863
36864
36865
36866
36867
36868
36869
36870
36871
36872
36873
36874
36875
36876
36877
36878
36879
36880
36881
36882
36883
36884
36885
36886
36887
36888
36889
36890
36891
36892
36893
36894
36895
36896
36897
36898
36899
36900
36901
36902
36903
36904
36905
36906
36907
36908
36909
36910
36911
36912
36913
36914
36915
36916
36917
36918
36919
36920
36921
36922
36923
36924
36925
36926
36927
36928
36929
36930
36931
36932
36933
36934
36935
36936
36937
36938
36939
36940
36941
36942
36943
36944
36945
36946
36947
36948
36949
36950
36951
36952
36953
36954
36955
36956
36957
36958
36959
36960
36961
36962
36963
36964
36965
36966
36967
36968
36969
36970
36971
36972
36973
36974
36975
36976
36977
36978
36979
36980
36981
36982
36983
36984
36985
36986
36987
36988
36989
36990
36991
36992
36993
36994
36995
36996
36997
36998
36999
37000
37001
37002
37003
37004
37005
37006
37007
37008
37009
37010
37011
37012
37013
37014
37015
37016
37017
37018
37019
37020
37021
37022
37023
37024
37025
37026
37027
37028
37029
37030
37031
37032
37033
37034
37035
37036
37037
37038
37039
37040
37041
37042
37043
37044
37045
37046
37047
37048
37049
37050
37051
37052
37053
37054
37055
37056
37057
37058
37059
37060
37061
37062
37063
37064
37065
37066
37067
37068
37069
37070
37071
37072
37073
37074
37075
37076
37077
37078
37079
37080
37081
37082
37083
37084
37085
37086
37087
37088
37089
37090
37091
37092
37093
37094
37095
37096
37097
37098
37099
37100
37101
37102
37103
37104
37105
37106
37107
37108
37109
37110
37111
37112
37113
37114
37115
37116
37117
37118
37119
37120
37121
37122
37123
37124
37125
37126
37127
37128
37129
37130
37131
37132
37133
37134
37135
37136
37137
37138
37139
37140
37141
37142
37143
37144
37145
37146
37147
37148
37149
37150
37151
37152
37153
37154
37155
37156
37157
37158
37159
37160
37161
37162
37163
37164
37165
37166
37167
37168
37169
37170
37171
37172
37173
37174
37175
37176
37177
37178
37179
37180
37181
37182
37183
37184
37185
37186
37187
37188
37189
37190
37191
37192
37193
37194
37195
37196
37197
37198
37199
37200
37201
37202
37203
37204
37205
37206
37207
37208
37209
37210
37211
37212
37213
37214
37215
37216
37217
37218
37219
37220
37221
37222
37223
37224
37225
37226
37227
37228
37229
37230
37231
37232
37233
37234
37235
37236
37237
37238
37239
37240
37241
37242
37243
37244
37245
37246
37247
37248
37249
37250
37251
37252
37253
37254
37255
37256
37257
37258
37259
37260
37261
37262
37263
37264
37265
37266
37267
37268
37269
37270
37271
37272
37273
37274
37275
37276
37277
37278
37279
37280
37281
37282
37283
37284
37285
37286
37287
37288
37289
37290
37291
37292
37293
37294
37295
37296
37297
37298
37299
37300
37301
37302
37303
37304
37305
37306
37307
37308
37309
37310
37311
37312
37313
37314
37315
37316
37317
37318
37319
37320
37321
37322
37323
37324
37325
37326
37327
37328
37329
37330
37331
37332
37333
37334
37335
37336
37337
37338
37339
37340
37341
37342
37343
37344
37345
37346
37347
37348
37349
37350
37351
37352
37353
37354
37355
37356
37357
37358
37359
37360
37361
37362
37363
37364
37365
37366
37367
37368
37369
37370
37371
37372
37373
37374
37375
37376
37377
37378
37379
37380
37381
37382
37383
37384
37385
37386
37387
37388
37389
37390
37391
37392
37393
37394
37395
37396
37397
37398
37399
37400
37401
37402
37403
37404
37405
37406
37407
37408
37409
37410
37411
37412
37413
37414
37415
37416
37417
37418
37419
37420
37421
37422
37423
37424
37425
37426
37427
37428
37429
37430
37431
37432
37433
37434
37435
37436
37437
37438
37439
37440
37441
37442
37443
37444
37445
37446
37447
37448
37449
37450
37451
37452
37453
37454
37455
37456
37457
37458
37459
37460
37461
37462
37463
37464
37465
37466
37467
37468
37469
37470
37471
37472
37473
37474
37475
37476
37477
37478
37479
37480
37481
37482
37483
37484
37485
37486
37487
37488
37489
37490
37491
37492
37493
37494
37495
37496
37497
37498
37499
37500
37501
37502
37503
37504
37505
37506
37507
37508
37509
37510
37511
37512
37513
37514
37515
37516
37517
37518
37519
37520
37521
37522
37523
37524
37525
37526
37527
37528
37529
37530
37531
37532
37533
37534
37535
37536
37537
37538
37539
37540
37541
37542
37543
37544
37545
37546
37547
37548
37549
37550
37551
37552
37553
37554
37555
37556
37557
37558
37559
37560
37561
37562
37563
37564
37565
37566
37567
37568
37569
37570
37571
37572
37573
37574
37575
37576
37577
37578
37579
37580
37581
37582
37583
37584
37585
37586
37587
37588
37589
37590
37591
37592
37593
37594
37595
37596
37597
37598
37599
37600
37601
37602
37603
37604
37605
37606
37607
37608
37609
37610
37611
37612
37613
37614
37615
37616
37617
37618
37619
37620
37621
37622
37623
37624
37625
37626
37627
37628
37629
37630
37631
37632
37633
37634
37635
37636
37637
37638
37639
37640
37641
37642
37643
37644
37645
37646
37647
37648
37649
37650
37651
37652
37653
37654
37655
37656
37657
37658
37659
37660
37661
37662
37663
37664
37665
37666
37667
37668
37669
37670
37671
37672
37673
37674
37675
37676
37677
37678
37679
37680
37681
37682
37683
37684
37685
37686
37687
37688
37689
37690
37691
37692
37693
37694
37695
37696
37697
37698
37699
37700
37701
37702
37703
37704
37705
37706
37707
37708
37709
37710
37711
37712
37713
37714
37715
37716
37717
37718
37719
37720
37721
37722
37723
37724
37725
37726
37727
37728
37729
37730
37731
37732
37733
37734
37735
37736
37737
37738
37739
37740
37741
37742
37743
37744
37745
37746
37747
37748
37749
37750
37751
37752
37753
37754
37755
37756
37757
37758
37759
37760
37761
37762
37763
37764
37765
37766
37767
37768
37769
37770
37771
37772
37773
37774
37775
37776
37777
37778
37779
37780
37781
37782
37783
37784
37785
37786
37787
37788
37789
37790
37791
37792
37793
37794
37795
37796
37797
37798
37799
37800
37801
37802
37803
37804
37805
37806
37807
37808
37809
37810
37811
37812
37813
37814
37815
37816
37817
37818
37819
37820
37821
37822
37823
37824
37825
37826
37827
37828
37829
37830
37831
37832
37833
37834
37835
37836
37837
37838
37839
37840
37841
37842
37843
37844
37845
37846
37847
37848
37849
37850
37851
37852
37853
37854
37855
37856
37857
37858
37859
37860
37861
37862
37863
37864
37865
37866
37867
37868
37869
37870
37871
37872
37873
37874
37875
37876
37877
37878
37879
37880
37881
37882
37883
37884
37885
37886
37887
37888
37889
37890
37891
37892
37893
37894
37895
37896
37897
37898
37899
37900
37901
37902
37903
37904
37905
37906
37907
37908
37909
37910
37911
37912
37913
37914
37915
37916
37917
37918
37919
37920
37921
37922
37923
37924
37925
37926
37927
37928
37929
37930
37931
37932
37933
37934
37935
37936
37937
37938
37939
37940
37941
37942
37943
37944
37945
37946
37947
37948
37949
37950
37951
37952
37953
37954
37955
37956
37957
37958
37959
37960
37961
37962
37963
37964
37965
37966
37967
37968
37969
37970
37971
37972
37973
37974
37975
37976
37977
37978
37979
37980
37981
37982
37983
37984
37985
37986
37987
37988
37989
37990
37991
37992
37993
37994
37995
37996
37997
37998
37999
38000
38001
38002
38003
38004
38005
38006
38007
38008
38009
38010
38011
38012
38013
38014
38015
38016
38017
38018
38019
38020
38021
38022
38023
38024
38025
38026
38027
38028
38029
38030
38031
38032
38033
38034
38035
38036
38037
38038
38039
38040
38041
38042
38043
38044
38045
38046
38047
38048
38049
38050
38051
38052
38053
38054
38055
38056
38057
38058
38059
38060
38061
38062
38063
38064
38065
38066
38067
38068
38069
38070
38071
38072
38073
38074
38075
38076
38077
38078
38079
38080
38081
38082
38083
38084
38085
38086
38087
38088
38089
38090
38091
38092
38093
38094
38095
38096
38097
38098
38099
38100
38101
38102
38103
38104
38105
38106
38107
38108
38109
38110
38111
38112
38113
38114
38115
38116
38117
38118
38119
38120
38121
38122
38123
38124
38125
38126
38127
38128
38129
38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
38147
38148
38149
38150
38151
38152
38153
38154
38155
38156
38157
38158
38159
38160
38161
38162
38163
38164
38165
38166
38167
38168
38169
38170
38171
38172
38173
38174
38175
38176
38177
38178
38179
38180
38181
38182
38183
38184
38185
|
@c Copyright (C) 1988-2024 Free Software Foundation, Inc.
@c This is part of the GCC manual.
@c For copying conditions, see the file gcc.texi.
@ignore
@c man begin INCLUDE
@include gcc-vers.texi
@c man end
@c man begin COPYRIGHT
Copyright @copyright{} 1988-2024 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Funding
Free Software'', the Front-Cover texts being (a) (see below), and with
the Back-Cover Texts being (b) (see below). A copy of the license is
included in the gfdl(7) man page.
(a) The FSF's Front-Cover Text is:
A GNU Manual
(b) The FSF's Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.
@c man end
@c Set file name and title for the man page.
@setfilename gcc
@settitle GNU project C and C++ compiler
@c man begin SYNOPSIS
gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
[@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
[@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
[@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
[@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
[@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
[@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
Only the most useful options are listed here; see below for the
remainder. @command{g++} accepts mostly the same options as @command{gcc}.
@c man end
@c man begin SEEALSO
gpl(7), gfdl(7), fsf-funding(7),
cpp(1), gcov(1), as(1), ld(1), gdb(1)
and the Info entries for @file{gcc}, @file{cpp}, @file{as},
@file{ld}, @file{binutils} and @file{gdb}.
@c man end
@c man begin BUGS
For instructions on reporting bugs, see
@w{@value{BUGURL}}.
@c man end
@c man begin AUTHOR
See the Info entry for @command{gcc}, or
@w{@uref{https://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
for contributors to GCC@.
@c man end
@end ignore
@node Invoking GCC
@chapter GCC Command Options
@cindex GCC command options
@cindex command options
@cindex options, GCC command
@c man begin DESCRIPTION
When you invoke GCC, it normally does preprocessing, compilation,
assembly and linking. The ``overall options'' allow you to stop this
process at an intermediate stage. For example, the @option{-c} option
says not to run the linker. Then the output consists of object files
output by the assembler.
@xref{Overall Options,,Options Controlling the Kind of Output}.
Other options are passed on to one or more stages of processing. Some options
control the preprocessor and others the compiler itself. Yet other
options control the assembler and linker; most of these are not
documented here, since you rarely need to use any of them.
@cindex C compilation options
Most of the command-line options that you can use with GCC are useful
for C programs; when an option is only useful with another language
(usually C++), the explanation says so explicitly. If the description
for a particular option does not mention a source language, you can use
that option with all supported languages.
@cindex cross compiling
@cindex specifying machine version
@cindex specifying compiler version and target machine
@cindex compiler version, specifying
@cindex target machine, specifying
The usual way to run GCC is to run the executable called @command{gcc}, or
@command{@var{machine}-gcc} when cross-compiling, or
@command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
When you compile C++ programs, you should invoke GCC as @command{g++}
instead. @xref{Invoking G++,,Compiling C++ Programs},
for information about the differences in behavior between @command{gcc}
and @command{g++} when compiling C++ programs.
@cindex grouping options
@cindex options, grouping
The @command{gcc} program accepts options and file names as operands. Many
options have multi-letter names; therefore multiple single-letter options
may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
-v}}.
@cindex order of options
@cindex options, order
You can mix options and other arguments. For the most part, the order
you use doesn't matter. Order does matter when you use several
options of the same kind; for example, if you specify @option{-L} more
than once, the directories are searched in the order specified. Also,
the placement of the @option{-l} option is significant.
Many options have long names starting with @samp{-f} or with
@samp{-W}---for example,
@option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
these have both positive and negative forms; the negative form of
@option{-ffoo} is @option{-fno-foo}. This manual documents
only one of these two forms, whichever one is not the default.
Some options take one or more arguments typically separated either
by a space or by the equals sign (@samp{=}) from the option name.
Unless documented otherwise, an argument can be either numeric or
a string. Numeric arguments must typically be small unsigned decimal
or hexadecimal integers. Hexadecimal arguments must begin with
the @samp{0x} prefix. Arguments to options that specify a size
threshold of some sort may be arbitrarily large decimal or hexadecimal
integers followed by a byte size suffix designating a multiple of bytes
such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
@code{MB} and @code{MiB} for megabyte and mebibyte, @code{GB} and
@code{GiB} for gigabyte and gigibyte, and so on. Such arguments are
designated by @var{byte-size} in the following text. Refer to the NIST,
IEC, and other relevant national and international standards for the full
listing and explanation of the binary and decimal byte size prefixes.
@c man end
@xref{Option Index}, for an index to GCC's options.
@menu
* Option Summary:: Brief list of all options, without explanations.
* Overall Options:: Controlling the kind of output:
an executable, object files, assembler files,
or preprocessed source.
* Invoking G++:: Compiling C++ programs.
* C Dialect Options:: Controlling the variant of C language compiled.
* C++ Dialect Options:: Variations on C++.
* Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
and Objective-C++.
* Diagnostic Message Formatting Options:: Controlling how diagnostics should
be formatted.
* Warning Options:: How picky should the compiler be?
* Static Analyzer Options:: More expensive warnings.
* Debugging Options:: Producing debuggable code.
* Optimize Options:: How much optimization?
* Instrumentation Options:: Enabling profiling and extra run-time error checking.
* Preprocessor Options:: Controlling header files and macro definitions.
Also, getting dependency information for Make.
* Assembler Options:: Passing options to the assembler.
* Link Options:: Specifying libraries and so on.
* Directory Options:: Where to find header files and libraries.
Where to find the compiler executable files.
* Code Gen Options:: Specifying conventions for function calls, data layout
and register usage.
* Developer Options:: Printing GCC configuration info, statistics, and
debugging dumps.
* Submodel Options:: Target-specific options, such as compiling for a
specific processor variant.
* Spec Files:: How to pass switches to sub-processes.
* Environment Variables:: Env vars that affect GCC.
* Precompiled Headers:: Compiling a header once, and using it many times.
* C++ Modules:: Experimental C++20 module system.
@end menu
@c man begin OPTIONS
@node Option Summary
@section Option Summary
Here is a summary of all the options, grouped by type. Explanations are
in the following sections.
@table @emph
@item Overall Options
@xref{Overall Options,,Options Controlling the Kind of Output}.
@gccoptlist{-c -S -E -o @var{file}
-dumpbase @var{dumpbase} -dumpbase-ext @var{auxdropsuf}
-dumpdir @var{dumppfx} -x @var{language}
-v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help --version
-pass-exit-codes -pipe -specs=@var{file} -wrapper
@@@var{file} -ffile-prefix-map=@var{old}=@var{new} -fcanon-prefix-map
-fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg}
-fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
@item C Language Options
@xref{C Dialect Options,,Options Controlling C Dialect}.
@gccoptlist{-ansi -std=@var{standard} -aux-info @var{filename}
-fno-asm
-fno-builtin -fno-builtin-@var{function} -fcond-mismatch
-ffreestanding -fgimple -fgnu-tm -fgnu89-inline -fhosted
-flax-vector-conversions -fms-extensions
-foffload=@var{arg} -foffload-options=@var{arg}
-fopenacc -fopenacc-dim=@var{geom}
-fopenmp -fopenmp-simd -fopenmp-target-simd-clone@r{[}=@var{device-type}@r{]}
-fpermitted-flt-eval-methods=@var{standard}
-fplan9-extensions -fsigned-bitfields -funsigned-bitfields
-fsigned-char -funsigned-char -fstrict-flex-arrays[=@var{n}]
-fsso-struct=@var{endianness}}
@item C++ Language Options
@xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
@gccoptlist{-fabi-version=@var{n} -fno-access-control
-faligned-new=@var{n} -fargs-in-order=@var{n} -fchar8_t -fcheck-new
-fconstexpr-depth=@var{n} -fconstexpr-cache-depth=@var{n}
-fconstexpr-loop-limit=@var{n} -fconstexpr-ops-limit=@var{n}
-fno-elide-constructors
-fno-enforce-eh-specs
-fno-gnu-keywords
-fno-immediate-escalation
-fno-implicit-templates
-fno-implicit-inline-templates
-fno-implement-inlines
-fmodule-header@r{[}=@var{kind}@r{]} -fmodule-only -fmodules-ts
-fmodule-implicit-inline
-fno-module-lazy
-fmodule-mapper=@var{specification}
-fmodule-version-ignore
-fms-extensions
-fnew-inheriting-ctors
-fnew-ttp-matching
-fno-nonansi-builtins -fnothrow-opt -fno-operator-names
-fno-optional-diags
-fno-pretty-templates
-fno-rtti -fsized-deallocation
-ftemplate-backtrace-limit=@var{n}
-ftemplate-depth=@var{n}
-fno-threadsafe-statics -fuse-cxa-atexit
-fno-weak -nostdinc++
-fvisibility-inlines-hidden
-fvisibility-ms-compat
-fext-numeric-literals
-flang-info-include-translate@r{[}=@var{header}@r{]}
-flang-info-include-translate-not
-flang-info-module-cmi@r{[}=@var{module}@r{]}
-stdlib=@var{libstdc++,libc++}
-Wabi-tag -Wcatch-value -Wcatch-value=@var{n}
-Wno-class-conversion -Wclass-memaccess
-Wcomma-subscript -Wconditionally-supported
-Wno-conversion-null -Wctad-maybe-unsupported
-Wctor-dtor-privacy -Wdangling-reference
-Wno-delete-incomplete
-Wdelete-non-virtual-dtor -Wno-deprecated-array-compare
-Wdeprecated-copy -Wdeprecated-copy-dtor
-Wno-deprecated-enum-enum-conversion -Wno-deprecated-enum-float-conversion
-Weffc++ -Wno-elaborated-enum-base
-Wno-exceptions -Wextra-semi -Wno-global-module -Wno-inaccessible-base
-Wno-inherited-variadic-ctor -Wno-init-list-lifetime
-Winvalid-constexpr -Winvalid-imported-macros
-Wno-invalid-offsetof -Wno-literal-suffix
-Wmismatched-new-delete -Wmismatched-tags
-Wmultiple-inheritance -Wnamespaces -Wnarrowing
-Wnoexcept -Wnoexcept-type -Wnon-virtual-dtor
-Wpessimizing-move -Wno-placement-new -Wplacement-new=@var{n}
-Wrange-loop-construct -Wredundant-move -Wredundant-tags
-Wreorder -Wregister
-Wstrict-null-sentinel -Wno-subobject-linkage -Wtemplates
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions -Wself-move -Wsign-promo
-Wsized-deallocation -Wsuggest-final-methods
-Wsuggest-final-types -Wsuggest-override -Wno-template-id-cdtor
-Wno-terminate -Wno-vexing-parse -Wvirtual-inheritance
-Wno-virtual-move-assign -Wvolatile -Wzero-as-null-pointer-constant}
@item Objective-C and Objective-C++ Language Options
@xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
Objective-C and Objective-C++ Dialects}.
@gccoptlist{-fconstant-string-class=@var{class-name}
-fgnu-runtime -fnext-runtime
-fno-nil-receivers
-fobjc-abi-version=@var{n}
-fobjc-call-cxx-cdtors
-fobjc-direct-dispatch
-fobjc-exceptions
-fobjc-gc
-fobjc-nilcheck
-fobjc-std=objc1
-fno-local-ivars
-fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
-freplace-objc-classes
-fzero-link
-gen-decls
-Wassign-intercept -Wno-property-assign-default
-Wno-protocol -Wobjc-root-class -Wselector
-Wstrict-selector-match
-Wundeclared-selector}
@item Diagnostic Message Formatting Options
@xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
@gccoptlist{-fmessage-length=@var{n}
-fdiagnostics-plain-output
-fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]}
-fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]}
-fdiagnostics-urls=@r{[}auto@r{|}never@r{|}always@r{]}
-fdiagnostics-format=@r{[}text@r{|}sarif-stderr@r{|}sarif-file@r{|}json@r{|}json-stderr@r{|}json-file@r{]}
-fno-diagnostics-json-formatting
-fno-diagnostics-show-option -fno-diagnostics-show-caret
-fno-diagnostics-show-event-links
-fno-diagnostics-show-labels -fno-diagnostics-show-line-numbers
-fno-diagnostics-show-cwe
-fno-diagnostics-show-rules
-fno-diagnostics-show-highlight-colors
-fdiagnostics-minimum-margin-width=@var{width}
-fdiagnostics-parseable-fixits -fdiagnostics-generate-patch
-fdiagnostics-show-template-tree -fno-elide-type
-fdiagnostics-path-format=@r{[}none@r{|}separate-events@r{|}inline-events@r{]}
-fdiagnostics-show-path-depths
-fno-show-column
-fdiagnostics-column-unit=@r{[}display@r{|}byte@r{]}
-fdiagnostics-column-origin=@var{origin}
-fdiagnostics-escape-format=@r{[}unicode@r{|}bytes@r{]}
-fdiagnostics-text-art-charset=@r{[}none@r{|}ascii@r{|}unicode@r{|}emoji@r{]}}
@item Warning Options
@xref{Warning Options,,Options to Request or Suppress Warnings}.
@gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic
-pedantic-errors -fpermissive
-w -Wextra -Wall -Wabi=@var{n}
-Waddress -Wno-address-of-packed-member -Waggregate-return
-Walloc-size -Walloc-size-larger-than=@var{byte-size} -Walloc-zero
-Walloca -Walloca-larger-than=@var{byte-size}
-Wno-aggressive-loop-optimizations
-Warith-conversion
-Warray-bounds -Warray-bounds=@var{n} -Warray-compare
-Warray-parameter -Warray-parameter=@var{n}
-Wno-attributes -Wattribute-alias=@var{n} -Wno-attribute-alias
-Wno-attribute-warning
-Wbidi-chars=@r{[}none@r{|}unpaired@r{|}any@r{|}ucn@r{]}
-Wbool-compare -Wbool-operation
-Wno-builtin-declaration-mismatch
-Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-c11-compat
-Wc11-c23-compat -Wc23-c2y-compat
-Wc++-compat -Wc++11-compat -Wc++14-compat -Wc++17-compat
-Wc++20-compat
-Wno-c++11-extensions -Wno-c++14-extensions -Wno-c++17-extensions
-Wno-c++20-extensions -Wno-c++23-extensions
-Wcalloc-transposed-args
-Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual
-Wchar-subscripts
-Wclobbered -Wcomment
-Wcompare-distinct-pointer-types
-Wno-complain-wrong-lang
-Wconversion -Wno-coverage-mismatch -Wno-cpp
-Wdangling-else -Wdangling-pointer -Wdangling-pointer=@var{n}
-Wdate-time
-Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init
-Wdisabled-optimization
-Wno-discarded-array-qualifiers -Wno-discarded-qualifiers
-Wno-div-by-zero -Wdouble-promotion
-Wduplicated-branches -Wduplicated-cond
-Wempty-body -Wno-endif-labels -Wenum-compare -Wenum-conversion
-Wenum-int-mismatch
-Werror -Werror=* -Wexpansion-to-defined -Wfatal-errors
-Wflex-array-member-not-at-end
-Wfloat-conversion -Wfloat-equal -Wformat -Wformat=2
-Wno-format-contains-nul -Wno-format-extra-args
-Wformat-nonliteral -Wformat-overflow=@var{n}
-Wformat-security -Wformat-signedness -Wformat-truncation=@var{n}
-Wformat-y2k -Wframe-address
-Wframe-larger-than=@var{byte-size} -Wno-free-nonheap-object
-Wno-if-not-aligned -Wno-ignored-attributes
-Wignored-qualifiers -Wno-incompatible-pointer-types -Whardened
-Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=@var{n}
-Wno-implicit-function-declaration -Wno-implicit-int
-Winfinite-recursion
-Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context
-Wno-int-to-pointer-cast -Wno-invalid-memory-model
-Winvalid-pch -Winvalid-utf8 -Wno-unicode -Wjump-misses-init
-Wlarger-than=@var{byte-size} -Wlogical-not-parentheses -Wlogical-op
-Wlong-long -Wno-lto-type-mismatch -Wmain -Wmaybe-uninitialized
-Wmemset-elt-size -Wmemset-transposed-args
-Wmisleading-indentation -Wmissing-attributes -Wmissing-braces
-Wmissing-field-initializers -Wmissing-format-attribute
-Wmissing-include-dirs -Wmissing-noreturn -Wno-missing-profile
-Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare
-Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
-Wnull-dereference -Wno-odr
-Wopenacc-parallelism
-Wopenmp -Wopenmp-simd
-Wno-overflow -Woverlength-strings -Wno-override-init-side-effects
-Wpacked -Wno-packed-bitfield-compat -Wpacked-not-aligned -Wpadded
-Wparentheses -Wno-pedantic-ms-format
-Wpointer-arith -Wno-pointer-compare -Wno-pointer-to-int-cast
-Wno-pragmas -Wno-prio-ctor-dtor -Wredundant-decls
-Wrestrict -Wno-return-local-addr -Wreturn-type
-Wno-scalar-storage-order -Wsequence-point
-Wshadow -Wshadow=global -Wshadow=local -Wshadow=compatible-local
-Wno-shadow-ivar
-Wno-shift-count-negative -Wno-shift-count-overflow -Wshift-negative-value
-Wno-shift-overflow -Wshift-overflow=@var{n}
-Wsign-compare -Wsign-conversion
-Wno-sizeof-array-argument
-Wsizeof-array-div
-Wsizeof-pointer-div -Wsizeof-pointer-memaccess
-Wstack-protector -Wstack-usage=@var{byte-size} -Wstrict-aliasing
-Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n}
-Wstring-compare
-Wno-stringop-overflow -Wno-stringop-overread
-Wno-stringop-truncation -Wstrict-flex-arrays
-Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}malloc@r{]}
-Wswitch -Wno-switch-bool -Wswitch-default -Wswitch-enum
-Wno-switch-outside-range -Wno-switch-unreachable -Wsync-nand
-Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs
-Wtrivial-auto-var-init -Wno-tsan -Wtype-limits -Wundef
-Wuninitialized -Wunknown-pragmas
-Wunsuffixed-float-constants
-Wunterminated-string-initialization
-Wunused
-Wunused-but-set-parameter -Wunused-but-set-variable
-Wunused-const-variable -Wunused-const-variable=@var{n}
-Wunused-function -Wunused-label -Wunused-local-typedefs
-Wunused-macros
-Wunused-parameter -Wno-unused-result
-Wunused-value -Wunused-variable
-Wuse-after-free -Wuse-after-free=@var{n} -Wuseless-cast
-Wno-varargs -Wvariadic-macros
-Wvector-operation-performance
-Wvla -Wvla-larger-than=@var{byte-size} -Wno-vla-larger-than
-Wvolatile-register-var -Wwrite-strings
-Wno-xor-used-as-pow
-Wzero-length-bounds}
@item Static Analyzer Options
@gccoptlist{
-fanalyzer
-fanalyzer-call-summaries
-fanalyzer-checker=@var{name}
-fno-analyzer-feasibility
-fanalyzer-fine-grained
-fanalyzer-show-events-in-system-headers
-fno-analyzer-state-merge
-fno-analyzer-state-purge
-fno-analyzer-suppress-followups
-fanalyzer-transitivity
-fno-analyzer-undo-inlining
-fanalyzer-verbose-edges
-fanalyzer-verbose-state-changes
-fanalyzer-verbosity=@var{level}
-fdump-analyzer
-fdump-analyzer-callgraph
-fdump-analyzer-exploded-graph
-fdump-analyzer-exploded-nodes
-fdump-analyzer-exploded-nodes-2
-fdump-analyzer-exploded-nodes-3
-fdump-analyzer-exploded-paths
-fdump-analyzer-feasibility
-fdump-analyzer-infinite-loop
-fdump-analyzer-json
-fdump-analyzer-state-purge
-fdump-analyzer-stderr
-fdump-analyzer-supergraph
-fdump-analyzer-untracked
-Wno-analyzer-double-fclose
-Wno-analyzer-double-free
-Wno-analyzer-exposure-through-output-file
-Wno-analyzer-exposure-through-uninit-copy
-Wno-analyzer-fd-access-mode-mismatch
-Wno-analyzer-fd-double-close
-Wno-analyzer-fd-leak
-Wno-analyzer-fd-phase-mismatch
-Wno-analyzer-fd-type-mismatch
-Wno-analyzer-fd-use-after-close
-Wno-analyzer-fd-use-without-check
-Wno-analyzer-file-leak
-Wno-analyzer-free-of-non-heap
-Wno-analyzer-imprecise-fp-arithmetic
-Wno-analyzer-infinite-loop
-Wno-analyzer-infinite-recursion
-Wno-analyzer-jump-through-null
-Wno-analyzer-malloc-leak
-Wno-analyzer-mismatching-deallocation
-Wno-analyzer-null-argument
-Wno-analyzer-null-dereference
-Wno-analyzer-out-of-bounds
-Wno-analyzer-overlapping-buffers
-Wno-analyzer-possible-null-argument
-Wno-analyzer-possible-null-dereference
-Wno-analyzer-putenv-of-auto-var
-Wno-analyzer-shift-count-negative
-Wno-analyzer-shift-count-overflow
-Wno-analyzer-stale-setjmp-buffer
-Wno-analyzer-tainted-allocation-size
-Wno-analyzer-tainted-assertion
-Wno-analyzer-tainted-array-index
-Wno-analyzer-tainted-divisor
-Wno-analyzer-tainted-offset
-Wno-analyzer-tainted-size
-Wanalyzer-symbol-too-complex
-Wanalyzer-too-complex
-Wno-analyzer-undefined-behavior-ptrdiff
-Wno-analyzer-undefined-behavior-strtok
-Wno-analyzer-unsafe-call-within-signal-handler
-Wno-analyzer-use-after-free
-Wno-analyzer-use-of-pointer-in-stale-stack-frame
-Wno-analyzer-use-of-uninitialized-value
-Wno-analyzer-va-arg-type-mismatch
-Wno-analyzer-va-list-exhausted
-Wno-analyzer-va-list-leak
-Wno-analyzer-va-list-use-after-va-end
-Wno-analyzer-write-to-const
-Wno-analyzer-write-to-string-literal
}
@item C and Objective-C-only Warning Options
@gccoptlist{-Wbad-function-cast -Wmissing-declarations
-Wmissing-parameter-type -Wdeclaration-missing-parameter-type
-Wmissing-prototypes -Wmissing-variable-declarations
-Wnested-externs -Wold-style-declaration -Wold-style-definition
-Wstrict-prototypes -Wtraditional -Wtraditional-conversion
-Wdeclaration-after-statement -Wpointer-sign}
@item Debugging Options
@xref{Debugging Options,,Options for Debugging Your Program}.
@gccoptlist{-g -g@var{level} -gdwarf -gdwarf-@var{version}
-gbtf -gctf -gctf@var{level}
-gprune-btf -gno-prune-btf
-ggdb -grecord-gcc-switches -gno-record-gcc-switches
-gstrict-dwarf -gno-strict-dwarf
-gas-loc-support -gno-as-loc-support
-gas-locview-support -gno-as-locview-support
-gcodeview
-gcolumn-info -gno-column-info -gdwarf32 -gdwarf64
-gstatement-frontiers -gno-statement-frontiers
-gvariable-location-views -gno-variable-location-views
-ginternal-reset-location-views -gno-internal-reset-location-views
-ginline-points -gno-inline-points
-gvms -gz@r{[}=@var{type}@r{]}
-gsplit-dwarf -gdescribe-dies -gno-describe-dies
-fdebug-prefix-map=@var{old}=@var{new} -fdebug-types-section
-fno-eliminate-unused-debug-types
-femit-struct-debug-baseonly -femit-struct-debug-reduced
-femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
-fno-eliminate-unused-debug-symbols -femit-class-debug-always
-fno-merge-debug-strings -fno-dwarf2-cfi-asm
-fvar-tracking -fvar-tracking-assignments}
@item Optimization Options
@xref{Optimize Options,,Options that Control Optimization}.
@gccoptlist{-faggressive-loop-optimizations
-falign-functions[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]]
-falign-jumps[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]]
-falign-labels[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]]
-falign-loops[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]]
-fmin-function-alignment=[@var{n}]
-fno-allocation-dce -fallow-store-data-races
-fassociative-math -fauto-profile -fauto-profile[=@var{path}]
-fauto-inc-dec -fbranch-probabilities
-fcaller-saves
-fcombine-stack-adjustments -fconserve-stack
-ffold-mem-offsets
-fcompare-elim -fcprop-registers -fcrossjumping
-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules
-fcx-limited-range
-fdata-sections -fdce -fdelayed-branch
-fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively
-fdevirtualize-at-ltrans -fdse
-fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects
-ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style}
-ffinite-loops
-fforward-propagate -ffp-contract=@var{style} -ffunction-sections
-fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity
-fgcse-sm -fhoist-adjacent-loads -fif-conversion
-fif-conversion2 -findirect-inlining
-finline-stringops[=@var{fn}]
-finline-functions -finline-functions-called-once -finline-limit=@var{n}
-finline-small-functions -fipa-modref -fipa-cp -fipa-cp-clone
-fipa-bit-cp -fipa-vrp -fipa-pta -fipa-profile -fipa-pure-const
-fipa-reference -fipa-reference-addressable
-fipa-stack-alignment -fipa-icf -fira-algorithm=@var{algorithm}
-flate-combine-instructions -flive-patching=@var{level}
-fira-region=@var{region} -fira-hoist-pressure
-fira-loop-pressure -fno-ira-share-save-slots
-fno-ira-share-spill-slots
-fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute
-fivopts -fkeep-inline-functions -fkeep-static-functions
-fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage
-floop-block -floop-interchange -floop-strip-mine
-floop-unroll-and-jam -floop-nest-optimize
-floop-parallelize-all -flra-remat -flto -flto-compression-level
-flto-partition=@var{alg} -fmerge-all-constants
-fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves
-fmove-loop-invariants -fmove-loop-stores -fno-branch-count-reg
-fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse
-fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole
-fno-peephole2 -fno-printf-return-value -fno-sched-interblock
-fno-sched-spec -fno-signed-zeros
-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-sibling-calls
-fpartial-inlining -fpeel-loops -fpredictive-commoning
-fprefetch-loop-arrays
-fprofile-correction
-fprofile-use -fprofile-use=@var{path} -fprofile-partial-training
-fprofile-values -fprofile-reorder-functions
-freciprocal-math -free -frename-registers -freorder-blocks
-freorder-blocks-algorithm=@var{algorithm}
-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop -freschedule-modulo-scheduled-loops
-frounding-math -fsave-optimization-record
-fsched2-use-superblocks -fsched-pressure
-fsched-spec-load -fsched-spec-load-dangerous
-fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}]
-fsched-group-heuristic -fsched-critical-path-heuristic
-fsched-spec-insn-heuristic -fsched-rank-heuristic
-fsched-last-insn-heuristic -fsched-dep-count-heuristic
-fschedule-fusion
-fschedule-insns -fschedule-insns2 -fsection-anchors
-fselective-scheduling -fselective-scheduling2
-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops
-fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate
-fsignaling-nans
-fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops
-fsplit-paths
-fsplit-wide-types -fsplit-wide-types-early -fssa-backprop -fssa-phiopt
-fstdarg-opt -fstore-merging -fstrict-aliasing -fipa-strict-aliasing
-fthread-jumps -ftracer -ftree-bit-ccp
-ftree-builtin-call-dce -ftree-ccp -ftree-ch
-ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts
-ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting
-ftree-loop-if-convert -ftree-loop-im
-ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns
-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize
-ftree-loop-vectorize
-ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta
-ftree-reassoc -ftree-scev-cprop -ftree-sink -ftree-slsr -ftree-sra
-ftree-switch-conversion -ftree-tail-merge
-ftree-ter -ftree-vectorize -ftree-vrp -ftrivial-auto-var-init
-funconstrained-commons -funit-at-a-time -funroll-all-loops
-funroll-loops -funsafe-math-optimizations -funswitch-loops
-fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt
-fweb -fwhole-program -fwpa -fuse-linker-plugin -fzero-call-used-regs
--param @var{name}=@var{value}
-O -O0 -O1 -O2 -O3 -Os -Ofast -Og -Oz}
@item Program Instrumentation Options
@xref{Instrumentation Options,,Program Instrumentation Options}.
@gccoptlist{-p -pg -fprofile-arcs --coverage -ftest-coverage
-fcondition-coverage
-fprofile-abs-path
-fprofile-dir=@var{path} -fprofile-generate -fprofile-generate=@var{path}
-fprofile-info-section -fprofile-info-section=@var{name}
-fprofile-note=@var{path} -fprofile-prefix-path=@var{path}
-fprofile-update=@var{method} -fprofile-filter-files=@var{regex}
-fprofile-exclude-files=@var{regex}
-fprofile-reproducible=@r{[}multithreaded@r{|}parallel-runs@r{|}serial@r{]}
-fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style}
-fsanitize-trap -fsanitize-trap=@var{style}
-fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},...
-fsanitize-undefined-trap-on-error -fbounds-check
-fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{|}check@r{]}
-fharden-compares -fharden-conditional-branches -fhardened
-fharden-control-flow-redundancy -fhardcfr-skip-leaf
-fhardcfr-check-exceptions -fhardcfr-check-returning-calls
-fhardcfr-check-noreturn-calls=@r{[}always@r{|}no-xthrow@r{|}nothrow@r{|}never@r{]}
-fstack-protector -fstack-protector-all -fstack-protector-strong
-fstack-protector-explicit -fstack-check
-fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym}
-fno-stack-limit -fsplit-stack
-fstrub=disable -fstrub=strict -fstrub=relaxed
-fstrub=all -fstrub=at-calls -fstrub=internal
-fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
-fvtv-counts -fvtv-debug
-finstrument-functions -finstrument-functions-once
-finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
-finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
-fprofile-prefix-map=@var{old}=@var{new}
-fpatchable-function-entry=@var{N}@r{[},@var{M}@r{]}}
@item Preprocessor Options
@xref{Preprocessor Options,,Options Controlling the Preprocessor}.
@gccoptlist{-A@var{question}=@var{answer}
-A-@var{question}@r{[}=@var{answer}@r{]}
-C -CC -D@var{macro}@r{[}=@var{defn}@r{]}
-dD -dI -dM -dN -dU
-fdebug-cpp -fdirectives-only -fdollars-in-identifiers
-fexec-charset=@var{charset} -fextended-identifiers
-finput-charset=@var{charset} -flarge-source-files
-fmacro-prefix-map=@var{old}=@var{new} -fmax-include-depth=@var{depth}
-fno-canonical-system-headers -fpch-deps -fpch-preprocess
-fpreprocessed -ftabstop=@var{width} -ftrack-macro-expansion
-fwide-exec-charset=@var{charset} -fworking-directory
-H -imacros @var{file} -include @var{file}
-M -MD -MF -MG -MM -MMD -MP -MQ -MT -Mno-modules
-no-integrated-cpp -P -pthread -remap
-traditional -traditional-cpp -trigraphs
-U@var{macro} -undef
-Wp,@var{option} -Xpreprocessor @var{option}}
@item Assembler Options
@xref{Assembler Options,,Passing Options to the Assembler}.
@gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
@item Linker Options
@xref{Link Options,,Options for Linking}.
@gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library}
-nostartfiles -nodefaultlibs -nolibc -nostdlib -nostdlib++
-e @var{entry} --entry=@var{entry}
-pie -pthread -r -rdynamic
-s -static -static-pie -static-libgcc -static-libstdc++
-static-libasan -static-libtsan -static-liblsan -static-libubsan
-shared -shared-libgcc -symbolic
-T @var{script} -Wl,@var{option} -Xlinker @var{option}
-u @var{symbol} -z @var{keyword}}
@item Directory Options
@xref{Directory Options,,Options for Directory Search}.
@gccoptlist{-B@var{prefix} -I@var{dir} -I-
-idirafter @var{dir}
-imacros @var{file} -imultilib @var{dir}
-iplugindir=@var{dir} -iprefix @var{file}
-iquote @var{dir} -isysroot @var{dir} -isystem @var{dir}
-iwithprefix @var{dir} -iwithprefixbefore @var{dir}
-L@var{dir} -no-canonical-prefixes --no-sysroot-suffix
-nostdinc -nostdinc++ --sysroot=@var{dir}}
@item Code Generation Options
@xref{Code Gen Options,,Options for Code Generation Conventions}.
@gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg}
-ffixed-@var{reg} -fexceptions
-fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables
-fasynchronous-unwind-tables
-fno-gnu-unique
-finhibit-size-directive -fcommon -fno-ident
-fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt
-fno-jump-tables -fno-bit-tests
-frecord-gcc-switches
-freg-struct-return -fshort-enums -fshort-wchar
-fverbose-asm -fpack-struct[=@var{n}]
-fleading-underscore -ftls-model=@var{model}
-fstack-reuse=@var{reuse_level}
-ftrampolines -ftrampoline-impl=@r{[}stack@r{|}heap@r{]}
-ftrapv -fwrapv
-fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
-fstrict-volatile-bitfields -fsync-libcalls}
@item Developer Options
@xref{Developer Options,,GCC Developer Options}.
@gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion
-dumpfullversion -fcallgraph-info@r{[}=su,da@r{]}
-fchecking -fchecking=@var{n}
-fdbg-cnt-list -fdbg-cnt=@var{counter-value-list}
-fdisable-ipa-@var{pass_name}
-fdisable-rtl-@var{pass_name}
-fdisable-rtl-@var{pass-name}=@var{range-list}
-fdisable-tree-@var{pass_name}
-fdisable-tree-@var{pass-name}=@var{range-list}
-fdump-debug -fdump-earlydebug
-fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links
-fdump-final-insns@r{[}=@var{file}@r{]}
-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline
-fdump-lang-all
-fdump-lang-@var{switch}
-fdump-lang-@var{switch}-@var{options}
-fdump-lang-@var{switch}-@var{options}=@var{filename}
-fdump-passes
-fdump-rtl-@var{pass} -fdump-rtl-@var{pass}=@var{filename}
-fdump-statistics
-fdump-tree-all
-fdump-tree-@var{switch}
-fdump-tree-@var{switch}-@var{options}
-fdump-tree-@var{switch}-@var{options}=@var{filename}
-fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second
-fenable-@var{kind}-@var{pass}
-fenable-@var{kind}-@var{pass}=@var{range-list}
-fira-verbose=@var{n}
-flto-report -flto-report-wpa -fmem-report-wpa
-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report
-fopt-info -fopt-info-@var{options}@r{[}=@var{file}@r{]}
-fmultiflags -fprofile-report
-frandom-seed=@var{string} -fsched-verbose=@var{n}
-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose
-fstats -fstack-usage -ftime-report -ftime-report-details
-fvar-tracking-assignments-toggle -gtoggle
-print-file-name=@var{library} -print-libgcc-file-name
-print-multi-directory -print-multi-lib -print-multi-os-directory
-print-prog-name=@var{program} -print-search-dirs -Q
-print-sysroot -print-sysroot-headers-suffix
-save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
@item Machine-Dependent Options
@xref{Submodel Options,,Machine-Dependent Options}.
@c This list is ordered alphanumerically by subsection name.
@c Try and put the significant identifier (CPU or system) first,
@c so users have a clue at guessing where the ones they want will be.
@emph{AArch64 Options}
@gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian
-mgeneral-regs-only
-mcmodel=tiny -mcmodel=small -mcmodel=large
-mstrict-align -mno-strict-align
-momit-leaf-frame-pointer
-mtls-dialect=desc -mtls-dialect=traditional
-mtls-size=@var{size}
-mfix-cortex-a53-835769 -mfix-cortex-a53-843419
-mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div
-mpc-relative-literal-loads
-msign-return-address=@var{scope}
-mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}
+@var{b-key}]|@var{bti}
-mharden-sls=@var{opts}
-march=@var{name} -mcpu=@var{name} -mtune=@var{name}
-moverride=@var{string} -mverbose-cost-dump
-mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{sysreg}
-mstack-protector-guard-offset=@var{offset} -mtrack-speculation
-moutline-atomics -mearly-ldp-fusion -mlate-ldp-fusion}
@emph{Adapteva Epiphany Options}
@gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs
-mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf
-msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num}
-mround-nearest -mlong-calls -mshort-calls -msmall16
-mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num}
-msplit-vecmove-early -m1reg-@var{reg}}
@emph{AMD GCN Options}
@gccoptlist{-march=@var{gpu} -mtune=@var{gpu} -mstack-size=@var{bytes}}
@emph{ARC Options}
@gccoptlist{-mbarrel-shifter -mjli-always
-mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700
-mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr
-mea -mno-mpy -mmul32x16 -mmul64 -matomic
-mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap
-mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape
-mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof
-mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved
-mrgf-banked-regs -mlpc-width=@var{width} -G @var{num}
-mvolatile-cache -mtp-regno=@var{regno}
-malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc
-mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi
-mexpand-adddi -mindexed-loads -mlra -mlra-priority-none
-mlra-priority-compact -mlra-priority-noncompact -mmillicode
-mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level}
-mtune=@var{cpu} -mmultcost=@var{num} -mcode-density-frame
-munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo}
-mdiv-rem -mcode-density -mll64 -mfpu=@var{fpu} -mrf16 -mbranch-index}
@emph{ARM Options}
@gccoptlist{-mapcs-frame -mno-apcs-frame
-mabi=@var{name}
-mapcs-stack-check -mno-apcs-stack-check
-mapcs-reentrant -mno-apcs-reentrant
-mgeneral-regs-only
-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian
-mbe8 -mbe32
-mfloat-abi=@var{name}
-mfp16-format=@var{name}
-mthumb-interwork -mno-thumb-interwork
-mcpu=@var{name} -march=@var{name} -mfpu=@var{name}
-mtune=@var{name} -mprint-tune-info
-mstructure-size-boundary=@var{n}
-mabort-on-noreturn
-mlong-calls -mno-long-calls
-msingle-pic-base -mno-single-pic-base
-mpic-register=@var{reg}
-mnop-fun-dllimport
-mpoke-function-name
-mthumb -marm -mflip-thumb
-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking
-mtp=@var{name} -mtls-dialect=@var{dialect}
-mword-relocations
-mfix-cortex-m3-ldrd
-mfix-cortex-a57-aes-1742098
-mfix-cortex-a72-aes-1655431
-munaligned-access
-mneon-for-64bits
-mslow-flash-data
-masm-syntax-unified
-mrestrict-it
-mverbose-cost-dump
-mpure-code
-mcmse
-mfix-cmse-cve-2021-35465
-mstack-protector-guard=@var{guard} -mstack-protector-guard-offset=@var{offset}
-mfdpic
-mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}]
[+@var{bti}]|@var{bti}[+@var{pac-ret}[+@var{leaf}]]}
@emph{AVR Options}
@gccoptlist{-mmcu=@var{mcu} -mabsdata -maccumulate-args
-mbranch-cost=@var{cost} -mfuse-add=@var{level}
-mcall-prologues -mgas-isr-prologues -mint8 -mflmap
-mdouble=@var{bits} -mlong-double=@var{bits}
-mn_flash=@var{size} -mno-interrupts
-mmain-is-OS_task -mrelax -mrmw -mstrict-X -mtiny-stack
-mrodata-in-ram -mfract-convert-truncate
-mshort-calls -mskip-bug -nodevicelib -nodevicespecs
-Waddr-space-convert -Wmisspelled-isr}
@emph{Blackfin Options}
@gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
-msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
-mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library
-mno-id-shared-library -mshared-library-id=@var{n}
-mleaf-id-shared-library -mno-leaf-id-shared-library
-msep-data -mno-sep-data -mlong-calls -mno-long-calls
-mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram
-micplb}
@emph{C6X Options}
@gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu}
-msim -msdata=@var{sdata-type}}
@emph{CRIS Options}
@gccoptlist{-mcpu=@var{cpu} -march=@var{cpu}
-mtune=@var{cpu} -mmax-stack-frame=@var{n}
-metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align
-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue
-melf -maout -sim -sim2
-mmul-bug-workaround -mno-mul-bug-workaround}
@emph{C-SKY Options}
@gccoptlist{-march=@var{arch} -mcpu=@var{cpu}
-mbig-endian -EB -mlittle-endian -EL
-mhard-float -msoft-float -mfpu=@var{fpu} -mdouble-float -mfdivdu
-mfloat-abi=@var{name}
-melrw -mistack -mmp -mcp -mcache -msecurity -mtrust
-mdsp -medsp -mvdsp
-mdiv -msmart -mhigh-registers -manchor
-mpushpop -mmultiple-stld -mconstpool -mstack-size -mccrt
-mbranch-cost=@var{n} -mcse-cc -msched-prolog -msim}
@emph{Darwin Options}
@gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal
-arch_only -bind_at_load -bundle -bundle_loader
-client_name -compatibility_version -current_version
-dead_strip
-dependency-file -dylib_file -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list
-filelist -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -headerpad_max_install_names
-iframework
-image_base -init -install_name -keep_private_externs
-multi_module -multiply_defined -multiply_defined_unused
-noall_load -no_dead_strip_inits_and_terms -nodefaultrpaths
-nofixprebinding -nomultidefs -noprebind -noseglinkedit
-pagezero_size -prebind -prebind_all_twolevel_modules
-private_bundle -read_only_relocs -sectalign
-sectobjectsymbols -whyload -seg1addr
-sectcreate -sectobjectsymbols -sectorder
-segaddr -segs_read_only_addr -segs_read_write_addr
-seg_addr_table -seg_addr_table_filename -seglinkedit
-segprot -segs_read_only_addr -segs_read_write_addr
-single_module -static -sub_library -sub_umbrella
-twolevel_namespace -umbrella -undefined
-unexported_symbols_list -weak_reference_mismatches
-whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version}
-mkernel -mone-byte-bool}
@emph{DEC Alpha Options}
@gccoptlist{-mno-fp-regs -msoft-float
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode}
-mtrap-precision=@var{mode} -mbuild-constants
-mcpu=@var{cpu-type} -mtune=@var{cpu-type}
-mbwx -mmax -mfix -mcix
-mfloat-vax -mfloat-ieee
-mexplicit-relocs -msmall-data -mlarge-data
-msmall-text -mlarge-text
-mmemory-latency=@var{time}}
@emph{eBPF Options}
@gccoptlist{-mbig-endian -mlittle-endian
-mframe-limit=@var{bytes} -mxbpf -mco-re -mno-co-re -mjmpext
-mjmp32 -malu32 -mv3-atomics -mbswap -msdiv -msmov -mcpu=@var{version}
-masm=@var{dialect} -minline-memops-threshold=@var{bytes}}
@emph{FR30 Options}
@gccoptlist{-msmall-model -mno-lsim}
@emph{FT32 Options}
@gccoptlist{-msim -mlra -mnodiv -mft32b -mcompress -mnopm}
@emph{FRV Options}
@gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
-mhard-float -msoft-float
-malloc-cc -mfixed-cc -mdword -mno-dword
-mdouble -mno-double
-mmedia -mno-media -mmuladd -mno-muladd
-mfdpic -minline-plt -mgprel-ro -multilib-library-pic
-mlinked-fp -mlong-calls -malign-labels
-mlibrary-pic -macc-4 -macc-8
-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
-moptimize-membar -mno-optimize-membar
-mscc -mno-scc -mcond-exec -mno-cond-exec
-mvliw-branch -mno-vliw-branch
-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats
-mTLS -mtls
-mcpu=@var{cpu}}
@emph{GNU/Linux Options}
@gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid
-tno-android-cc -tno-android-ld}
@emph{H8/300 Options}
@gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
@emph{HPPA Options}
@gccoptlist{-march=@var{architecture-type}
-matomic-libcalls -mbig-switch
-mcaller-copies -mdisable-fpregs -mdisable-indexing
-mordered -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld
-mfixed-range=@var{register-range}
-mcoherent-ldcw -mjump-in-delay -mlinker-opt -mlong-calls
-mlong-load-store -mno-atomic-libcalls -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float
-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=@var{cpu-type} -mspace-regs -msoft-mult -msio -mwsio
-munix=@var{unix-std} -nolibdld -static -threads}
@emph{IA-64 Options}
@gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mregister-names -msdata -mno-sdata
-mconstant-gp -mauto-pic -mfused-madd
-minline-float-divide-min-latency
-minline-float-divide-max-throughput
-mno-inline-float-divide
-minline-int-divide-min-latency
-minline-int-divide-max-throughput
-mno-inline-int-divide
-minline-sqrt-min-latency -minline-sqrt-max-throughput
-mno-inline-sqrt
-mdwarf2-asm -mearly-stop-bits
-mfixed-range=@var{register-range} -mtls-size=@var{tls-size}
-mtune=@var{cpu-type} -milp32 -mlp64
-msched-br-data-spec -msched-ar-data-spec -msched-control-spec
-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec
-msched-spec-ldc -msched-spec-control-ldc
-msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns
-msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path
-msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost
-msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
@emph{LM32 Options}
@gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled
-msign-extend-enabled -muser-enabled}
@emph{LoongArch Options}
@gccoptlist{-march=@var{arch-type} -mtune=@var{tune-type} -mabi=@var{base-abi-type}
-mfpu=@var{fpu-type} -msimd=@var{simd-type}
-msoft-float -msingle-float -mdouble-float -mlsx -mno-lsx -mlasx -mno-lasx
-mbranch-cost=@var{n} -mcheck-zero-division -mno-check-zero-division
-mcond-move-int -mno-cond-move-int
-mcond-move-float -mno-cond-move-float
-memcpy -mno-memcpy -mstrict-align -mno-strict-align
-mmax-inline-memcpy-size=@var{n}
-mexplicit-relocs=@var{style} -mexplicit-relocs -mno-explicit-relocs
-mdirect-extern-access -mno-direct-extern-access
-mcmodel=@var{code-model} -mrelax -mpass-mrelax-to-as
-mrecip -mrecip=@var{opt} -mfrecipe -mno-frecipe -mdiv32 -mno-div32
-mlam-bh -mno-lam-bh -mlamcas -mno-lamcas -mld-seq-sa -mno-ld-seq-sa
-mtls-dialect=@var{opt}}
@emph{M32R/D Options}
@gccoptlist{-m32r2 -m32rx -m32r
-mdebug
-malign-loops -mno-align-loops
-missue-rate=@var{number}
-mbranch-cost=@var{number}
-mmodel=@var{code-size-model-type}
-msdata=@var{sdata-type}
-mno-flush-func -mflush-func=@var{name}
-mno-flush-trap -mflush-trap=@var{number}
-G @var{num}}
@emph{M32C Options}
@gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
@emph{M680x0 Options}
@gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune}
-m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040
-m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407
-mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020
-mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort
-mno-short -mhard-float -m68881 -msoft-float -mpcrel
-malign-int -mstrict-align -msep-data -mno-sep-data
-mshared-library-id=n -mid-shared-library -mno-id-shared-library
-mxgot -mno-xgot -mlong-jump-table-offsets}
@emph{MCore Options}
@gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields
-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
@emph{MicroBlaze Options}
@gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu}
-mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift
-mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss
-mxl-multiply-high -mxl-float-convert -mxl-float-sqrt
-mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}
-mpic-data-is-text-relative}
@emph{MIPS Options}
@gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch}
-mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5
-mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6
-mips16 -mno-mips16 -mflip-mips16
-minterlink-compressed -mno-interlink-compressed
-minterlink-mips16 -mno-interlink-mips16
-mabi=@var{abi} -mabicalls -mno-abicalls
-mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot
-mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float
-mno-float -msingle-float -mdouble-float
-modd-spreg -mno-odd-spreg
-mabs=@var{mode} -mnan=@var{encoding}
-mdsp -mno-dsp -mdspr2 -mno-dspr2
-mmcu -mmno-mcu
-meva -mno-eva
-mvirt -mno-virt
-mxpa -mno-xpa
-mcrc -mno-crc
-mginv -mno-ginv
-mmicromips -mno-micromips
-mmsa -mno-msa
-mloongson-mmi -mno-loongson-mmi
-mloongson-ext -mno-loongson-ext
-mloongson-ext2 -mno-loongson-ext2
-mfpu=@var{fpu-type}
-msmartmips -mno-smartmips
-mpaired-single -mno-paired-single -mdmx -mno-mdmx
-mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc
-mlong64 -mlong32 -msym32 -mno-sym32
-G@var{num} -mlocal-sdata -mno-local-sdata
-mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt
-membedded-data -mno-embedded-data
-muninit-const-in-rodata -mno-uninit-const-in-rodata
-mcode-readable=@var{setting}
-msplit-addresses -mno-split-addresses
-mexplicit-relocs -mno-explicit-relocs
-mexplicit-relocs=@var{release}
-mcheck-zero-division -mno-check-zero-division
-mdivide-traps -mdivide-breaks
-mload-store-pairs -mno-load-store-pairs
-mstrict-align -mno-strict-align
-mno-unaligned-access -munaligned-access
-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls
-mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp
-mfix-24k -mno-fix-24k
-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
-mfix-r5900 -mno-fix-r5900
-mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000
-mfix-vr4120 -mno-fix-vr4120
-mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1
-mflush-func=@var{func} -mno-flush-func
-mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely
-mcompact-branches=@var{policy}
-mfp-exceptions -mno-fp-exceptions
-mvr4130-align -mno-vr4130-align -msynci -mno-synci
-mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4
-mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address
-mframe-header-opt -mno-frame-header-opt}
@emph{MMIX Options}
@gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses -msingle-exit -mno-single-exit}
@emph{MN10300 Options}
@gccoptlist{-mmult-bug -mno-mult-bug
-mno-am33 -mam33 -mam33-2 -mam34
-mtune=@var{cpu-type}
-mreturn-pointer-on-d0
-mno-crt0 -mrelax -mliw -msetlb}
@emph{Moxie Options}
@gccoptlist{-meb -mel -mmul.x -mno-crt0}
@emph{MSP430 Options}
@gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax
-mwarn-mcu
-mcode-region= -mdata-region=
-msilicon-errata= -msilicon-errata-warn=
-mhwmult= -minrt -mtiny-printf -mmax-inline-shift=}
@emph{NDS32 Options}
@gccoptlist{-mbig-endian -mlittle-endian
-mreduced-regs -mfull-regs
-mcmov -mno-cmov
-mext-perf -mno-ext-perf
-mext-perf2 -mno-ext-perf2
-mext-string -mno-ext-string
-mv3push -mno-v3push
-m16bit -mno-16bit
-misr-vector-size=@var{num}
-mcache-block-size=@var{num}
-march=@var{arch}
-mcmodel=@var{code-model}
-mctor-dtor -mrelax}
@emph{Nios II Options}
@gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt
-mgprel-sec=@var{regexp} -mr0rel-sec=@var{regexp}
-mel -meb
-mno-bypass-cache -mbypass-cache
-mno-cache-volatile -mcache-volatile
-mno-fast-sw-div -mfast-sw-div
-mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div
-mcustom-@var{insn}=@var{N} -mno-custom-@var{insn}
-mcustom-fpu-cfg=@var{name}
-mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name}
-march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
@emph{Nvidia PTX Options}
@gccoptlist{-m64 -mmainkernel -moptimize}
@emph{OpenRISC Options}
@gccoptlist{-mboard=@var{name} -mnewlib -mhard-mul -mhard-div
-msoft-mul -msoft-div
-msoft-float -mhard-float -mdouble-float -munordered-float
-mcmov -mror -mrori -msext -msfimm -mshftimm
-mcmodel=@var{code-model}}
@emph{PDP-11 Options}
@gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10
-mint32 -mno-int16 -mint16 -mno-int32
-msplit -munix-asm -mdec-asm -mgnu-asm -mlra}
@emph{PowerPC Options}
See RS/6000 and PowerPC Options.
@emph{PRU Options}
@gccoptlist{-mmcu=@var{mcu} -minrt -mno-relax -mloop
-mabi=@var{variant}}
@emph{RISC-V Options}
@gccoptlist{-mbranch-cost=@var{N-instruction}
-mplt -mno-plt
-mabi=@var{ABI-string}
-mfdiv -mno-fdiv
-mfence-tso -mno-fence-tso
-mdiv -mno-div
-misa-spec=@var{ISA-spec-string}
-march=@var{ISA-string}
-mtune=@var{processor-string}
-mpreferred-stack-boundary=@var{num}
-msmall-data-limit=@var{N-bytes}
-msave-restore -mno-save-restore
-mshorten-memrefs -mno-shorten-memrefs
-mstrict-align -mno-strict-align
-mcmodel=medlow -mcmodel=medany -mcmodel=large
-mexplicit-relocs -mno-explicit-relocs
-mrelax -mno-relax
-mriscv-attribute -mno-riscv-attribute
-malign-data=@var{type}
-mbig-endian -mlittle-endian
-mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg}
-mstack-protector-guard-offset=@var{offset}
-mcsr-check -mno-csr-check
-mmovcc -mno-movcc
-minline-atomics -mno-inline-atomics
-minline-strlen -mno-inline-strlen
-minline-strcmp -mno-inline-strcmp
-minline-strncmp -mno-inline-strncmp
-mtls-dialect=desc -mtls-dialect=trad}
@emph{RL78 Options}
@gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs
-mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14
-m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts}
@emph{RS/6000 and PowerPC Options}
@gccoptlist{-mcpu=@var{cpu-type}
-mtune=@var{cpu-type}
-mcmodel=@var{code-model}
-mpowerpc64
-maltivec -mno-altivec
-mpowerpc-gpopt -mno-powerpc-gpopt
-mpowerpc-gfxopt -mno-powerpc-gfxopt
-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd
-mfprnd -mno-fprnd
-mcmpb -mno-cmpb -mhard-dfp -mno-hard-dfp
-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
-m64 -m32 -mxl-compat -mno-xl-compat -mpe
-malign-power -malign-natural
-msoft-float -mhard-float -mmultiple -mno-multiple
-mupdate -mno-update
-mavoid-indexed-addresses -mno-avoid-indexed-addresses
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-lib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic -mswdiv -msingle-pic-base
-mprioritize-restricted-insns=@var{priority}
-msched-costly-dep=@var{dependence_type}
-minsert-sched-nops=@var{scheme}
-mcall-aixdesc -mcall-eabi -mcall-freebsd
-mcall-linux -mcall-netbsd -mcall-openbsd
-mcall-sysv -mcall-sysv-eabi -mcall-sysv-noeabi
-mtraceback=@var{traceback_type}
-maix-struct-return -msvr4-struct-return
-mabi=@var{abi-type} -msecure-plt -mbss-plt
-mlongcall -mno-longcall -mpltseq -mno-pltseq
-mblock-move-inline-limit=@var{num}
-mblock-compare-inline-limit=@var{num}
-mblock-compare-inline-loop-limit=@var{num}
-mno-block-ops-unaligned-vsx
-mstring-compare-inline-limit=@var{num}
-misel -mno-isel
-mvrsave -mno-vrsave
-mmulhw -mno-mulhw
-mdlmzb -mno-dlmzb
-mprototype -mno-prototype
-msim -mmvme -mads -myellowknife -memb -msdata
-msdata=@var{opt} -mreadonly-in-sdata -mvxworks -G @var{num}
-mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision
-mno-recip-precision
-mveclibabi=@var{type} -mfriz -mno-friz
-mpointers-to-nested-functions -mno-pointers-to-nested-functions
-msave-toc-indirect -mno-save-toc-indirect
-mpower8-fusion -mno-mpower8-fusion
-mcrypto -mno-crypto -mhtm -mno-htm
-mquad-memory -mno-quad-memory
-mquad-memory-atomic -mno-quad-memory-atomic
-mcompat-align-parm -mno-compat-align-parm
-mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware
-mgnu-attribute -mno-gnu-attribute
-mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg}
-mstack-protector-guard-offset=@var{offset} -mprefixed -mno-prefixed
-mpcrel -mno-pcrel -mmma -mno-mmma -mrop-protect -mno-rop-protect
-mprivileged -mno-privileged}
@emph{RX Options}
@gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu
-mcpu=
-mbig-endian-data -mlittle-endian-data
-msmall-data
-msim -mno-sim
-mas100-syntax -mno-as100-syntax
-mrelax
-mmax-constant-size=
-mint-register=
-mpid
-mallow-string-insns -mno-allow-string-insns
-mjsr
-mno-warn-multiple-fast-interrupts
-msave-acc-in-interrupts}
@emph{S/390 and zSeries Options}
@gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type}
-mhard-float -msoft-float -mhard-dfp -mno-hard-dfp
-mlong-double-64 -mlong-double-128
-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack
-msmall-exec -mno-small-exec -mmvcle -mno-mvcle
-m64 -m31 -mdebug -mno-debug -mesa -mzarch
-mhtm -mvx -mzvector
-mtpf-trace -mno-tpf-trace -mtpf-trace-skip -mno-tpf-trace-skip
-mfused-madd -mno-fused-madd
-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard
-mhotpatch=@var{halfwords},@var{halfwords}}
@emph{SH Options}
@gccoptlist{-m1 -m2 -m2e
-m2a-nofpu -m2a-single-only -m2a-single -m2a
-m3 -m3e
-m4-nofpu -m4-single-only -m4-single -m4
-m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al
-mb -ml -mdalign -mrelax
-mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave
-mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct
-mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy}
-mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range}
-maccumulate-outgoing-args
-matomic-model=@var{atomic-model}
-mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch
-mcbranch-force-delay-slot
-mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra
-mpretend-cmove -mtas}
@emph{Solaris 2 Options}
@gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text
-pthreads}
@emph{SPARC Options}
@gccoptlist{-mcpu=@var{cpu-type}
-mtune=@var{cpu-type}
-mcmodel=@var{code-model}
-mmemory-model=@var{mem-model}
-m32 -m64 -mapp-regs -mno-app-regs
-mfaster-structs -mno-faster-structs -mflat -mno-flat
-mfpu -mno-fpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mstack-bias -mno-stack-bias
-mstd-struct-return -mno-std-struct-return
-munaligned-doubles -mno-unaligned-doubles
-muser-mode -mno-user-mode
-mv8plus -mno-v8plus -mvis -mno-vis
-mvis2 -mno-vis2 -mvis3 -mno-vis3
-mvis4 -mno-vis4 -mvis4b -mno-vis4b
-mcbcond -mno-cbcond -mfmaf -mno-fmaf -mfsmuld -mno-fsmuld
-mpopc -mno-popc -msubxc -mno-subxc
-mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr712rc
-mlra -mno-lra}
@emph{System V Options}
@gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
@emph{V850 Options}
@gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=@var{n} -msda=@var{n} -mzda=@var{n}
-mapp-regs -mno-app-regs
-mdisable-callt -mno-disable-callt
-mv850e2v3 -mv850e2 -mv850e1 -mv850es
-mv850e -mv850 -mv850e3v5
-mloop
-mrelax
-mlong-jumps
-msoft-float
-mhard-float
-mgcc-abi
-mrh850-abi
-mbig-switch}
@emph{VAX Options}
@gccoptlist{-munix -mgnu -md -md-float -mg -mg-float -mlra}
@emph{Visium Options}
@gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float
-mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
@emph{VMS Options}
@gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64
-mpointer-size=@var{size}}
@emph{VxWorks Options}
@gccoptlist{-mrtp -msmp -non-static -Bstatic -Bdynamic
-Xbind-lazy -Xbind-now}
@emph{x86 Options}
@gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type}
-mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default
-mfpmath=@var{unit}
-masm=@var{dialect} -mno-fancy-math-387
-mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float
-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=@var{num}
-mincoming-stack-boundary=@var{num}
-mcld -mcx16 -msahf -mmovbe -mcrc32 -mmwait
-mrecip -mrecip=@var{opt}
-mvzeroupper -mprefer-avx128 -mprefer-vector-width=@var{opt}
-mpartial-vector-fp-math
-mmove-max=@var{bits} -mstore-max=@var{bits}
-mnoreturn-no-callee-saved-registers
-mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx
-mavx2 -mavx512f -mavx512cd -mavx512vl
-mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes
-mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mpconfig -mwbnoinvd
-mptwrite -mclflushopt -mclwb -mxsavec -mxsaves
-msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop
-madx -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mhle -mlwp
-mmwaitx -mclzero -mpku -mthreads -mgfni -mvaes -mwaitpkg
-mshstk -mmanual-endbr -mcet-switch -mforce-indirect-call
-mavx512vbmi2 -mavx512bf16 -menqcmd
-mvpclmulqdq -mavx512bitalg -mmovdiri -mmovdir64b -mavx512vpopcntdq
-mavx512vnni -mprfchw -mrdpid
-mrdseed -msgx -mavx512vp2intersect -mserialize -mtsxldtrk
-mamx-tile -mamx-int8 -mamx-bf16 -muintr -mhreset -mavxvnni
-mavx512fp16 -mavxifma -mavxvnniint8 -mavxneconvert -mcmpccxadd -mamx-fp16
-mprefetchi -mraoint -mamx-complex -mavxvnniint16 -msm3 -msha512 -msm4 -mapxf
-musermsr -mavx10.1 -mavx10.1-256 -mavx10.1-512 -mevex512
-mcldemote -mms-bitfields -mno-align-stringops -minline-all-stringops
-minline-stringops-dynamically -mstringop-strategy=@var{alg}
-mkl -mwidekl
-mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy}
-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128
-mregparm=@var{num} -msseregparm
-mveclibabi=@var{type} -mvect8-ret-in-mem
-mpc32 -mpc64 -mpc80 -mdaz-ftz -mstackrealign
-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs
-mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode}
-m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num}
-msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv
-minstrument-return=@var{type} -mfentry-name=@var{name} -mfentry-section=@var{name}
-mavx256-split-unaligned-load -mavx256-split-unaligned-store
-malign-data=@var{type} -mstack-protector-guard=@var{guard}
-mstack-protector-guard-reg=@var{reg}
-mstack-protector-guard-offset=@var{offset}
-mstack-protector-guard-symbol=@var{symbol}
-mgeneral-regs-only -mcall-ms2sysv-xlogues -mrelax-cmpxchg-loop
-mindirect-branch=@var{choice} -mfunction-return=@var{choice}
-mindirect-branch-register -mharden-sls=@var{choice}
-mindirect-branch-cs-prefix -mneeded -mno-direct-extern-access
-munroll-only-small-loops -mlam=@var{choice}}
@emph{x86 Windows Options}
@emph{Cygwin and MinGW Options}
@gccoptlist{-mconsole -mcrtdll=@var{library} -mdll
-mnop-fun-dllimport -mthread
-municode -mwin32 -mwindows -fno-set-stack-executable}
@emph{Xstormy16 Options}
@gccoptlist{-msim}
@emph{Xtensa Options}
@gccoptlist{-mconst16 -mno-const16
-mfused-madd -mno-fused-madd
-mforce-no-pic
-mserialize-volatile -mno-serialize-volatile
-mtext-section-literals -mno-text-section-literals
-mauto-litpools -mno-auto-litpools
-mtarget-align -mno-target-align
-mlongcalls -mno-longcalls
-mabi=@var{abi-type}
-mextra-l32r-costs=@var{cycles}
-mstrict-align -mno-strict-align}
@emph{zSeries Options}
See S/390 and zSeries Options.
@end table
@node Overall Options
@section Options Controlling the Kind of Output
Compilation can involve up to four stages: preprocessing, compilation
proper, assembly and linking, always in that order. GCC is capable of
preprocessing and compiling several files either into several
assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all
the object files (those newly compiled, and those specified as input)
into an executable file.
@cindex file name suffix
For any given input file, the file name suffix determines what kind of
compilation is done:
@table @gcctabopt
@item @var{file}.c
C source code that must be preprocessed.
@item @var{file}.i
C source code that should not be preprocessed.
@item @var{file}.ii
C++ source code that should not be preprocessed.
@item @var{file}.m
Objective-C source code. Note that you must link with the @file{libobjc}
library to make an Objective-C program work.
@item @var{file}.mi
Objective-C source code that should not be preprocessed.
@item @var{file}.mm
@itemx @var{file}.M
Objective-C++ source code. Note that you must link with the @file{libobjc}
library to make an Objective-C++ program work. Note that @samp{.M} refers
to a literal capital M@.
@item @var{file}.mii
Objective-C++ source code that should not be preprocessed.
@item @var{file}.h
C, C++, Objective-C or Objective-C++ header file to be turned into a
precompiled header (default), or C, C++ header file to be turned into an
Ada spec (via the @option{-fdump-ada-spec} switch).
@item @var{file}.cc
@itemx @var{file}.cp
@itemx @var{file}.cxx
@itemx @var{file}.cpp
@itemx @var{file}.CPP
@itemx @var{file}.c++
@itemx @var{file}.C
C++ source code that must be preprocessed. Note that in @samp{.cxx},
the last two letters must both be literally @samp{x}. Likewise,
@samp{.C} refers to a literal capital C@.
@item @var{file}.mm
@itemx @var{file}.M
Objective-C++ source code that must be preprocessed.
@item @var{file}.mii
Objective-C++ source code that should not be preprocessed.
@item @var{file}.hh
@itemx @var{file}.H
@itemx @var{file}.hp
@itemx @var{file}.hxx
@itemx @var{file}.hpp
@itemx @var{file}.HPP
@itemx @var{file}.h++
@itemx @var{file}.tcc
C++ header file to be turned into a precompiled header or Ada spec.
@item @var{file}.f
@itemx @var{file}.for
@itemx @var{file}.ftn
@itemx @var{file}.fi
Fixed form Fortran source code that should not be preprocessed.
@item @var{file}.F
@itemx @var{file}.FOR
@itemx @var{file}.fpp
@itemx @var{file}.FPP
@itemx @var{file}.FTN
Fixed form Fortran source code that must be preprocessed (with the traditional
preprocessor).
@item @var{file}.f90
@itemx @var{file}.f95
@itemx @var{file}.f03
@itemx @var{file}.f08
@itemx @var{file}.fii
Free form Fortran source code that should not be preprocessed.
@item @var{file}.F90
@itemx @var{file}.F95
@itemx @var{file}.F03
@itemx @var{file}.F08
Free form Fortran source code that must be preprocessed (with the
traditional preprocessor).
@item @var{file}.go
Go source code.
@item @var{file}.d
D source code.
@item @var{file}.di
D interface file.
@item @var{file}.dd
D documentation code (Ddoc).
@item @var{file}.ads
Ada source code file that contains a library unit declaration (a
declaration of a package, subprogram, or generic, or a generic
instantiation), or a library unit renaming declaration (a package,
generic, or subprogram renaming declaration). Such files are also
called @dfn{specs}.
@item @var{file}.adb
Ada source code file containing a library unit body (a subprogram or
package body). Such files are also called @dfn{bodies}.
@c GCC also knows about some suffixes for languages not yet included:
@c Ratfor:
@c @var{file}.r
@item @var{file}.s
Assembler code.
@item @var{file}.S
@itemx @var{file}.sx
Assembler code that must be preprocessed.
@item @var{other}
An object file to be fed straight into linking.
Any file name with no recognized suffix is treated this way.
@end table
@opindex x
You can specify the input language explicitly with the @option{-x} option:
@table @gcctabopt
@item -x @var{language}
Specify explicitly the @var{language} for the following input files
(rather than letting the compiler choose a default based on the file
name suffix). This option applies to all following input files until
the next @option{-x} option. Possible values for @var{language} are:
@smallexample
c c-header cpp-output
c++ c++-header c++-system-header c++-user-header c++-cpp-output
objective-c objective-c-header objective-c-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
assembler assembler-with-cpp
ada
d
f77 f77-cpp-input f95 f95-cpp-input
go
@end smallexample
@item -x none
Turn off any specification of a language, so that subsequent files are
handled according to their file name suffixes (as they are if @option{-x}
has not been used at all).
@end table
If you only want some of the stages of compilation, you can use
@option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
one of the options @option{-c}, @option{-S}, or @option{-E} to say where
@command{gcc} is to stop. Note that some combinations (for example,
@samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
@table @gcctabopt
@opindex c
@item -c
Compile or assemble the source files, but do not link. The linking
stage simply is not done. The ultimate output is in the form of an
object file for each source file.
By default, the object file name for a source file is made by replacing
the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
Unrecognized input files, not requiring compilation or assembly, are
ignored.
@opindex S
@item -S
Stop after the stage of compilation proper; do not assemble. The output
is in the form of an assembler code file for each non-assembler input
file specified.
By default, the assembler file name for a source file is made by
replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
Input files that don't require compilation are ignored.
@opindex E
@item -E
Stop after the preprocessing stage; do not run the compiler proper. The
output is in the form of preprocessed source code, which is sent to the
standard output.
Input files that don't require preprocessing are ignored.
@cindex output file option
@opindex o
@item -o @var{file}
Place the primary output in file @var{file}. This applies to whatever
sort of output is being produced, whether it be an executable file, an
object file, an assembler file or preprocessed C code.
If @option{-o} is not specified, the default is to put an executable
file in @file{a.out}, the object file for
@file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
assembler file in @file{@var{source}.s}, a precompiled header file in
@file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
standard output.
Though @option{-o} names only the primary output, it also affects the
naming of auxiliary and dump outputs. See the examples below. Unless
overridden, both auxiliary outputs and dump outputs are placed in the
same directory as the primary output. In auxiliary outputs, the suffix
of the input file is replaced with that of the auxiliary output file
type; in dump outputs, the suffix of the dump file is appended to the
input file suffix. In compilation commands, the base name of both
auxiliary and dump outputs is that of the primary output; in compile and
link commands, the primary output name, minus the executable suffix, is
combined with the input file name. If both share the same base name,
disregarding the suffix, the result of the combination is that base
name, otherwise, they are concatenated, separated by a dash.
@smallexample
gcc -c foo.c ...
@end smallexample
will use @file{foo.o} as the primary output, and place aux outputs and
dumps next to it, e.g., aux file @file{foo.dwo} for
@option{-gsplit-dwarf}, and dump file @file{foo.c.???r.final} for
@option{-fdump-rtl-final}.
If a non-linker output file is explicitly specified, aux and dump files
by default take the same base name:
@smallexample
gcc -c foo.c -o dir/foobar.o ...
@end smallexample
will name aux outputs @file{dir/foobar.*} and dump outputs
@file{dir/foobar.c.*}.
A linker output will instead prefix aux and dump outputs:
@smallexample
gcc foo.c bar.c -o dir/foobar ...
@end smallexample
will generally name aux outputs @file{dir/foobar-foo.*} and
@file{dir/foobar-bar.*}, and dump outputs @file{dir/foobar-foo.c.*} and
@file{dir/foobar-bar.c.*}.
The one exception to the above is when the executable shares the base
name with the single input:
@smallexample
gcc foo.c -o dir/foo ...
@end smallexample
in which case aux outputs are named @file{dir/foo.*} and dump outputs
named @file{dir/foo.c.*}.
The location and the names of auxiliary and dump outputs can be adjusted
by the options @option{-dumpbase}, @option{-dumpbase-ext},
@option{-dumpdir}, @option{-save-temps=cwd}, and
@option{-save-temps=obj}.
@opindex dumpbase
@item -dumpbase @var{dumpbase}
This option sets the base name for auxiliary and dump output files. It
does not affect the name of the primary output file. Intermediate
outputs, when preserved, are not regarded as primary outputs, but as
auxiliary outputs:
@smallexample
gcc -save-temps -S foo.c
@end smallexample
saves the (no longer) temporary preprocessed file in @file{foo.i}, and
then compiles to the (implied) output file @file{foo.s}, whereas:
@smallexample
gcc -save-temps -dumpbase save-foo -c foo.c
@end smallexample
preprocesses to in @file{save-foo.i}, compiles to @file{save-foo.s} (now
an intermediate, thus auxiliary output), and then assembles to the
(implied) output file @file{foo.o}.
Absent this option, dump and aux files take their names from the input
file, or from the (non-linker) output file, if one is explicitly
specified: dump output files (e.g. those requested by @option{-fdump-*}
options) with the input name suffix, and aux output files (those
requested by other non-dump options, e.g. @code{-save-temps},
@code{-gsplit-dwarf}, @code{-fcallgraph-info}) without it.
Similar suffix differentiation of dump and aux outputs can be attained
for explicitly-given @option{-dumpbase basename.suf} by also specifying
@option{-dumpbase-ext .suf}.
If @var{dumpbase} is explicitly specified with any directory component,
any @var{dumppfx} specification (e.g. @option{-dumpdir} or
@option{-save-temps=*}) is ignored, and instead of appending to it,
@var{dumpbase} fully overrides it:
@smallexample
gcc foo.c -c -o dir/foo.o -dumpbase alt/foo \
-dumpdir pfx- -save-temps=cwd ...
@end smallexample
creates auxiliary and dump outputs named @file{alt/foo.*}, disregarding
@file{dir/} in @option{-o}, the @file{./} prefix implied by
@option{-save-temps=cwd}, and @file{pfx-} in @option{-dumpdir}.
When @option{-dumpbase} is specified in a command that compiles multiple
inputs, or that compiles and then links, it may be combined with
@var{dumppfx}, as specified under @option{-dumpdir}. Then, each input
file is compiled using the combined @var{dumppfx}, and default values
for @var{dumpbase} and @var{auxdropsuf} are computed for each input
file:
@smallexample
gcc foo.c bar.c -c -dumpbase main ...
@end smallexample
creates @file{foo.o} and @file{bar.o} as primary outputs, and avoids
overwriting the auxiliary and dump outputs by using the @var{dumpbase}
as a prefix, creating auxiliary and dump outputs named @file{main-foo.*}
and @file{main-bar.*}.
An empty string specified as @var{dumpbase} avoids the influence of the
output basename in the naming of auxiliary and dump outputs during
compilation, computing default values :
@smallexample
gcc -c foo.c -o dir/foobar.o -dumpbase '' ...
@end smallexample
will name aux outputs @file{dir/foo.*} and dump outputs
@file{dir/foo.c.*}. Note how their basenames are taken from the input
name, but the directory still defaults to that of the output.
The empty-string dumpbase does not prevent the use of the output
basename for outputs during linking:
@smallexample
gcc foo.c bar.c -o dir/foobar -dumpbase '' -flto ...
@end smallexample
The compilation of the source files will name auxiliary outputs
@file{dir/foo.*} and @file{dir/bar.*}, and dump outputs
@file{dir/foo.c.*} and @file{dir/bar.c.*}. LTO recompilation during
linking will use @file{dir/foobar.} as the prefix for dumps and
auxiliary files.
@opindex dumpbase-ext
@item -dumpbase-ext @var{auxdropsuf}
When forming the name of an auxiliary (but not a dump) output file, drop
trailing @var{auxdropsuf} from @var{dumpbase} before appending any
suffixes. If not specified, this option defaults to the suffix of a
default @var{dumpbase}, i.e., the suffix of the input file when
@option{-dumpbase} is not present in the command line, or @var{dumpbase}
is combined with @var{dumppfx}.
@smallexample
gcc foo.c -c -o dir/foo.o -dumpbase x-foo.c -dumpbase-ext .c ...
@end smallexample
creates @file{dir/foo.o} as the main output, and generates auxiliary
outputs in @file{dir/x-foo.*}, taking the location of the primary
output, and dropping the @file{.c} suffix from the @var{dumpbase}. Dump
outputs retain the suffix: @file{dir/x-foo.c.*}.
This option is disregarded if it does not match the suffix of a
specified @var{dumpbase}, except as an alternative to the executable
suffix when appending the linker output base name to @var{dumppfx}, as
specified below:
@smallexample
gcc foo.c bar.c -o main.out -dumpbase-ext .out ...
@end smallexample
creates @file{main.out} as the primary output, and avoids overwriting
the auxiliary and dump outputs by using the executable name minus
@var{auxdropsuf} as a prefix, creating auxiliary outputs named
@file{main-foo.*} and @file{main-bar.*} and dump outputs named
@file{main-foo.c.*} and @file{main-bar.c.*}.
@opindex dumpdir
@item -dumpdir @var{dumppfx}
When forming the name of an auxiliary or dump output file, use
@var{dumppfx} as a prefix:
@smallexample
gcc -dumpdir pfx- -c foo.c ...
@end smallexample
creates @file{foo.o} as the primary output, and auxiliary outputs named
@file{pfx-foo.*}, combining the given @var{dumppfx} with the default
@var{dumpbase} derived from the default primary output, derived in turn
from the input name. Dump outputs also take the input name suffix:
@file{pfx-foo.c.*}.
If @var{dumppfx} is to be used as a directory name, it must end with a
directory separator:
@smallexample
gcc -dumpdir dir/ -c foo.c -o obj/bar.o ...
@end smallexample
creates @file{obj/bar.o} as the primary output, and auxiliary outputs
named @file{dir/bar.*}, combining the given @var{dumppfx} with the
default @var{dumpbase} derived from the primary output name. Dump
outputs also take the input name suffix: @file{dir/bar.c.*}.
It defaults to the location of the output file, unless the output
file is a special file like @code{/dev/null}. Options
@option{-save-temps=cwd} and @option{-save-temps=obj} override this
default, just like an explicit @option{-dumpdir} option. In case
multiple such options are given, the last one prevails:
@smallexample
gcc -dumpdir pfx- -c foo.c -save-temps=obj ...
@end smallexample
outputs @file{foo.o}, with auxiliary outputs named @file{foo.*} because
@option{-save-temps=*} overrides the @var{dumppfx} given by the earlier
@option{-dumpdir} option. It does not matter that @option{=obj} is the
default for @option{-save-temps}, nor that the output directory is
implicitly the current directory. Dump outputs are named
@file{foo.c.*}.
When compiling from multiple input files, if @option{-dumpbase} is
specified, @var{dumpbase}, minus a @var{auxdropsuf} suffix, and a dash
are appended to (or override, if containing any directory components) an
explicit or defaulted @var{dumppfx}, so that each of the multiple
compilations gets differently-named aux and dump outputs.
@smallexample
gcc foo.c bar.c -c -dumpdir dir/pfx- -dumpbase main ...
@end smallexample
outputs auxiliary dumps to @file{dir/pfx-main-foo.*} and
@file{dir/pfx-main-bar.*}, appending @var{dumpbase}- to @var{dumppfx}.
Dump outputs retain the input file suffix: @file{dir/pfx-main-foo.c.*}
and @file{dir/pfx-main-bar.c.*}, respectively. Contrast with the
single-input compilation:
@smallexample
gcc foo.c -c -dumpdir dir/pfx- -dumpbase main ...
@end smallexample
that, applying @option{-dumpbase} to a single source, does not compute
and append a separate @var{dumpbase} per input file. Its auxiliary and
dump outputs go in @file{dir/pfx-main.*}.
When compiling and then linking from multiple input files, a defaulted
or explicitly specified @var{dumppfx} also undergoes the @var{dumpbase}-
transformation above (e.g. the compilation of @file{foo.c} and
@file{bar.c} above, but without @option{-c}). If neither
@option{-dumpdir} nor @option{-dumpbase} are given, the linker output
base name, minus @var{auxdropsuf}, if specified, or the executable
suffix otherwise, plus a dash is appended to the default @var{dumppfx}
instead. Note, however, that unlike earlier cases of linking:
@smallexample
gcc foo.c bar.c -dumpdir dir/pfx- -o main ...
@end smallexample
does not append the output name @file{main} to @var{dumppfx}, because
@option{-dumpdir} is explicitly specified. The goal is that the
explicitly-specified @var{dumppfx} may contain the specified output name
as part of the prefix, if desired; only an explicitly-specified
@option{-dumpbase} would be combined with it, in order to avoid simply
discarding a meaningful option.
When compiling and then linking from a single input file, the linker
output base name will only be appended to the default @var{dumppfx} as
above if it does not share the base name with the single input file
name. This has been covered in single-input linking cases above, but
not with an explicit @option{-dumpdir} that inhibits the combination,
even if overridden by @option{-save-temps=*}:
@smallexample
gcc foo.c -dumpdir alt/pfx- -o dir/main.exe -save-temps=cwd ...
@end smallexample
Auxiliary outputs are named @file{foo.*}, and dump outputs
@file{foo.c.*}, in the current working directory as ultimately requested
by @option{-save-temps=cwd}.
Summing it all up for an intuitive though slightly imprecise data flow:
the primary output name is broken into a directory part and a basename
part; @var{dumppfx} is set to the former, unless overridden by
@option{-dumpdir} or @option{-save-temps=*}, and @var{dumpbase} is set
to the latter, unless overriden by @option{-dumpbase}. If there are
multiple inputs or linking, this @var{dumpbase} may be combined with
@var{dumppfx} and taken from each input file. Auxiliary output names
for each input are formed by combining @var{dumppfx}, @var{dumpbase}
minus suffix, and the auxiliary output suffix; dump output names are
only different in that the suffix from @var{dumpbase} is retained.
When it comes to auxiliary and dump outputs created during LTO
recompilation, a combination of @var{dumppfx} and @var{dumpbase}, as
given or as derived from the linker output name but not from inputs,
even in cases in which this combination would not otherwise be used as
such, is passed down with a trailing period replacing the compiler-added
dash, if any, as a @option{-dumpdir} option to @command{lto-wrapper};
being involved in linking, this program does not normally get any
@option{-dumpbase} and @option{-dumpbase-ext}, and it ignores them.
When running sub-compilers, @command{lto-wrapper} appends LTO stage
names to the received @var{dumppfx}, ensures it contains a directory
component so that it overrides any @option{-dumpdir}, and passes that as
@option{-dumpbase} to sub-compilers.
@opindex v
@item -v
Print (on standard error output) the commands executed to run the stages
of compilation. Also print the version number of the compiler driver
program and of the preprocessor and the compiler proper.
@opindex ###
@item -###
Like @option{-v} except the commands are not executed and arguments
are quoted unless they contain only alphanumeric characters or @code{./-_}.
This is useful for shell scripts to capture the driver-generated command lines.
@opindex help
@item --help
Print (on the standard output) a description of the command-line options
understood by @command{gcc}. If the @option{-v} option is also specified
then @option{--help} is also passed on to the various processes
invoked by @command{gcc}, so that they can display the command-line options
they accept. If the @option{-Wextra} option has also been specified
(prior to the @option{--help} option), then command-line options that
have no documentation associated with them are also displayed.
@opindex target-help
@item --target-help
Print (on the standard output) a description of target-specific command-line
options for each tool. For some targets extra target-specific
information may also be printed.
@item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
Print (on the standard output) a description of the command-line
options understood by the compiler that fit into all specified classes
and qualifiers. These are the supported classes:
@table @asis
@item @samp{optimizers}
Display all of the optimization options supported by the
compiler.
@item @samp{warnings}
Display all of the options controlling warning messages
produced by the compiler.
@item @samp{target}
Display target-specific options. Unlike the
@option{--target-help} option however, target-specific options of the
linker and assembler are not displayed. This is because those
tools do not currently support the extended @option{--help=} syntax.
@item @samp{params}
Display the values recognized by the @option{--param}
option.
@item @var{language}
Display the options supported for @var{language}, where
@var{language} is the name of one of the languages supported in this
version of GCC@. If an option is supported by all languages, one needs
to select @samp{common} class.
@item @samp{common}
Display the options that are common to all languages.
@end table
These are the supported qualifiers:
@table @asis
@item @samp{undocumented}
Display only those options that are undocumented.
@item @samp{joined}
Display options taking an argument that appears after an equal
sign in the same continuous piece of text, such as:
@samp{--help=target}.
@item @samp{separate}
Display options taking an argument that appears as a separate word
following the original option, such as: @samp{-o output-file}.
@end table
Thus for example to display all the undocumented target-specific
switches supported by the compiler, use:
@smallexample
--help=target,undocumented
@end smallexample
The sense of a qualifier can be inverted by prefixing it with the
@samp{^} character, so for example to display all binary warning
options (i.e., ones that are either on or off and that do not take an
argument) that have a description, use:
@smallexample
--help=warnings,^joined,^undocumented
@end smallexample
The argument to @option{--help=} should not consist solely of inverted
qualifiers.
Combining several classes is possible, although this usually
restricts the output so much that there is nothing to display. One
case where it does work, however, is when one of the classes is
@var{target}. For example, to display all the target-specific
optimization options, use:
@smallexample
--help=target,optimizers
@end smallexample
The @option{--help=} option can be repeated on the command line. Each
successive use displays its requested class of options, skipping
those that have already been displayed. If @option{--help} is also
specified anywhere on the command line then this takes precedence
over any @option{--help=} option.
If the @option{-Q} option appears on the command line before the
@option{--help=} option, then the descriptive text displayed by
@option{--help=} is changed. Instead of describing the displayed
options, an indication is given as to whether the option is enabled,
disabled or set to a specific value (assuming that the compiler
knows this at the point where the @option{--help=} option is used).
Here is a truncated example from the ARM port of @command{gcc}:
@smallexample
% gcc -Q -mabi=2 --help=target -c
The following options are target specific:
-mabi= 2
-mabort-on-noreturn [disabled]
-mapcs [disabled]
@end smallexample
The output is sensitive to the effects of previous command-line
options, so for example it is possible to find out which optimizations
are enabled at @option{-O2} by using:
@smallexample
-Q -O2 --help=optimizers
@end smallexample
Alternatively you can discover which binary optimizations are enabled
by @option{-O3} by using:
@smallexample
gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
diff /tmp/O2-opts /tmp/O3-opts | grep enabled
@end smallexample
@opindex version
@item --version
Display the version number and copyrights of the invoked GCC@.
@opindex pass-exit-codes
@item -pass-exit-codes
Normally the @command{gcc} program exits with the code of 1 if any
phase of the compiler returns a non-success return code. If you specify
@option{-pass-exit-codes}, the @command{gcc} program instead returns with
the numerically highest error produced by any phase returning an error
indication. The C, C++, and Fortran front ends return 4 if an internal
compiler error is encountered.
@opindex pipe
@item -pipe
Use pipes rather than temporary files for communication between the
various stages of compilation. This fails to work on some systems where
the assembler is unable to read from a pipe; but the GNU assembler has
no trouble.
@opindex specs
@item -specs=@var{file}
Process @var{file} after the compiler reads in the standard @file{specs}
file, in order to override the defaults which the @command{gcc} driver
program uses when determining what switches to pass to @command{cc1},
@command{cc1plus}, @command{as}, @command{ld}, etc. More than one
@option{-specs=@var{file}} can be specified on the command line, and they
are processed in order, from left to right. @xref{Spec Files}, for
information about the format of the @var{file}.
@opindex wrapper
@item -wrapper
Invoke all subcommands under a wrapper program. The name of the
wrapper program and its parameters are passed as a comma separated
list.
@smallexample
gcc -c t.c -wrapper gdb,--args
@end smallexample
@noindent
This invokes all subprograms of @command{gcc} under
@samp{gdb --args}, thus the invocation of @command{cc1} is
@samp{gdb --args cc1 @dots{}}.
@opindex ffile-prefix-map
@item -ffile-prefix-map=@var{old}=@var{new}
When compiling files residing in directory @file{@var{old}}, record
any references to them in the result of the compilation as if the
files resided in directory @file{@var{new}} instead. Specifying this
option is equivalent to specifying all the individual
@option{-f*-prefix-map} options. This can be used to make reproducible
builds that are location independent. Directories referenced by
directives are not affected by these options. See also
@option{-fmacro-prefix-map}, @option{-fdebug-prefix-map},
@option{-fprofile-prefix-map} and @option{-fcanon-prefix-map}.
@opindex fcanon-prefix-map
@item -fcanon-prefix-map
For the @option{-f*-prefix-map} options normally comparison
of @file{@var{old}} prefix against the filename that would be normally
referenced in the result of the compilation is done using textual
comparison of the prefixes, or ignoring character case for case insensitive
filesystems and considering slashes and backslashes as equal on DOS based
filesystems. The @option{-fcanon-prefix-map} causes such comparisons
to be done on canonicalized paths of @file{@var{old}}
and the referenced filename.
@opindex fplugin
@item -fplugin=@var{name}.so
Load the plugin code in file @var{name}.so, assumed to be a
shared object to be dlopen'd by the compiler. The base name of
the shared object file is used to identify the plugin for the
purposes of argument parsing (See
@option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
Each plugin should define the callback functions specified in the
Plugins API.
@opindex fplugin-arg
@item -fplugin-arg-@var{name}-@var{key}=@var{value}
Define an argument called @var{key} with a value of @var{value}
for the plugin called @var{name}.
@opindex fdump-ada-spec
@item -fdump-ada-spec@r{[}-slim@r{]}
For C and C++ source and include files, generate corresponding Ada specs.
@xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
GNAT User's Guide}, which provides detailed documentation on this feature.
@opindex fada-spec-parent
@item -fada-spec-parent=@var{unit}
In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
Ada specs as child units of parent @var{unit}.
@opindex fdump-go-spec
@item -fdump-go-spec=@var{file}
For input files in any language, generate corresponding Go
declarations in @var{file}. This generates Go @code{const},
@code{type}, @code{var}, and @code{func} declarations which may be a
useful way to start writing a Go interface to code written in some
other language.
@include @value{srcdir}/../libiberty/at-file.texi
@end table
@node Invoking G++
@section Compiling C++ Programs
@cindex suffixes for C++ source
@cindex C++ source file suffixes
C++ source files conventionally use one of the suffixes @samp{.C},
@samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
@samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
@samp{.H}, or (for shared template code) @samp{.tcc};
preprocessed C++ files use the suffix @samp{.ii}; and C++20 module interface
units sometimes use @samp{.ixx}, @samp{.cppm}, @samp{.cxxm}, @samp{.c++m},
or @samp{.ccm}.
GCC recognizes files with these names and compiles them as C++ programs even if you
call the compiler the same way as for compiling C programs (usually
with the name @command{gcc}).
@findex g++
@findex c++
However, the use of @command{gcc} does not add the C++ library.
@command{g++} is a program that calls GCC and automatically specifies linking
against the C++ library. It treats @samp{.c},
@samp{.h} and @samp{.i} files as C++ source files instead of C source
files unless @option{-x} is used. This program is also useful when
precompiling a C header file with a @samp{.h} extension for use in C++
compilations. On many systems, @command{g++} is also installed with
the name @command{c++}.
@cindex invoking @command{g++}
When you compile C++ programs, you may specify many of the same
command-line options that you use for compiling programs in any
language; or command-line options meaningful for C and related
languages; or options that are meaningful only for C++ programs.
@xref{C Dialect Options,,Options Controlling C Dialect}, for
explanations of options for languages related to C@.
@xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
explanations of options that are meaningful only for C++ programs.
@node C Dialect Options
@section Options Controlling C Dialect
@cindex dialect options
@cindex language dialect options
@cindex options, dialect
The following options control the dialect of C (or languages derived
from C, such as C++, Objective-C and Objective-C++) that the compiler
accepts:
@table @gcctabopt
@cindex ANSI support
@cindex ISO support
@opindex ansi
@item -ansi
In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
equivalent to @option{-std=c++98}.
This turns off certain features of GCC that are incompatible with ISO
C90 (when compiling C code), or of standard C++ (when compiling C++ code),
such as the @code{asm} and @code{typeof} keywords, and
predefined macros such as @code{unix} and @code{vax} that identify the
type of system you are using. It also enables the undesirable and
rarely used ISO trigraph feature. For the C compiler,
it disables recognition of C++ style @samp{//} comments as well as
the @code{inline} keyword.
The alternate keywords @code{__asm__}, @code{__extension__},
@code{__inline__} and @code{__typeof__} continue to work despite
@option{-ansi}. You would not want to use them in an ISO C program, of
course, but it is useful to put them in header files that might be included
in compilations done with @option{-ansi}. Alternate predefined macros
such as @code{__unix__} and @code{__vax__} are also available, with or
without @option{-ansi}.
The @option{-ansi} option does not cause non-ISO programs to be
rejected gratuitously. For that, @option{-Wpedantic} is required in
addition to @option{-ansi}. @xref{Warning Options}.
The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
option is used. Some header files may notice this macro and refrain
from declaring certain functions or defining certain macros that the
ISO standard doesn't call for; this is to avoid interfering with any
programs that might use these names for other things.
Functions that are normally built in but do not have semantics
defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
functions when @option{-ansi} is used. @xref{Other Builtins,,Other
built-in functions provided by GCC}, for details of the functions
affected.
@opindex std
@item -std=
Determine the language standard. @xref{Standards,,Language Standards
Supported by GCC}, for details of these standard versions. This option
is currently only supported when compiling C or C++.
The compiler can accept several base standards, such as @samp{c90} or
@samp{c++98}, and GNU dialects of those standards, such as
@samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
compiler accepts all programs following that standard plus those
using GNU extensions that do not contradict it. For example,
@option{-std=c90} turns off certain features of GCC that are
incompatible with ISO C90, such as the @code{asm} and @code{typeof}
keywords, but not other GNU extensions that do not have a meaning in
ISO C90, such as omitting the middle term of a @code{?:}
expression. On the other hand, when a GNU dialect of a standard is
specified, all features supported by the compiler are enabled, even when
those features change the meaning of the base standard. As a result, some
strict-conforming programs may be rejected. The particular standard
is used by @option{-Wpedantic} to identify which features are GNU
extensions given that version of the standard. For example
@option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
comments, while @option{-std=gnu99 -Wpedantic} does not.
A value for this option must be provided; possible values are
@table @samp
@item c90
@itemx c89
@itemx iso9899:1990
Support all ISO C90 programs (certain GNU extensions that conflict
with ISO C90 are disabled). Same as @option{-ansi} for C code.
@item iso9899:199409
ISO C90 as modified in amendment 1.
@item c99
@itemx c9x
@itemx iso9899:1999
@itemx iso9899:199x
ISO C99. This standard is substantially completely supported, modulo
bugs and floating-point issues
(mainly but not entirely relating to optional C99 features from
Annexes F and G). See
@w{@uref{https://gcc.gnu.org/c99status.html}} for more information. The
names @samp{c9x} and @samp{iso9899:199x} are deprecated.
@item c11
@itemx c1x
@itemx iso9899:2011
ISO C11, the 2011 revision of the ISO C standard. This standard is
substantially completely supported, modulo bugs, floating-point issues
(mainly but not entirely relating to optional C11 features from
Annexes F and G) and the optional Annexes K (Bounds-checking
interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
@item c17
@itemx c18
@itemx iso9899:2017
@itemx iso9899:2018
ISO C17, the 2017 revision of the ISO C standard
(published in 2018). This standard is
same as C11 except for corrections of defects (all of which are also
applied with @option{-std=c11}) and a new value of
@code{__STDC_VERSION__}, and so is supported to the same extent as C11.
@item c23
@itemx c2x
@itemx iso9899:2024
ISO C23, the 2023 revision of the ISO C standard (expected to be
published in 2024). The support for this version is experimental and
incomplete. The name @samp{c2x} is deprecated.
@item c2y
The next version of the ISO C standard, still under development. The
support for this version is experimental and incomplete.
@item gnu90
@itemx gnu89
GNU dialect of ISO C90 (including some C99 features).
@item gnu99
@itemx gnu9x
GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
@item gnu11
@itemx gnu1x
GNU dialect of ISO C11.
The name @samp{gnu1x} is deprecated.
@item gnu17
@itemx gnu18
GNU dialect of ISO C17. This is the default for C code.
@item gnu23
@itemx gnu2x
GNU dialect of ISO C23. The support for this version is experimental
and incomplete. The name @samp{gnu2x} is deprecated.
@item gnu2y
The next version of the ISO C standard, still under development, plus
GNU extensions. The support for this version is experimental and
incomplete. The name @samp{gnu2x} is deprecated.
@item c++98
@itemx c++03
The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
additional defect reports. Same as @option{-ansi} for C++ code.
@item gnu++98
@itemx gnu++03
GNU dialect of @option{-std=c++98}.
@item c++11
@itemx c++0x
The 2011 ISO C++ standard plus amendments.
The name @samp{c++0x} is deprecated.
@item gnu++11
@itemx gnu++0x
GNU dialect of @option{-std=c++11}.
The name @samp{gnu++0x} is deprecated.
@item c++14
@itemx c++1y
The 2014 ISO C++ standard plus amendments.
The name @samp{c++1y} is deprecated.
@item gnu++14
@itemx gnu++1y
GNU dialect of @option{-std=c++14}.
The name @samp{gnu++1y} is deprecated.
@item c++17
@itemx c++1z
The 2017 ISO C++ standard plus amendments.
The name @samp{c++1z} is deprecated.
@item gnu++17
@itemx gnu++1z
GNU dialect of @option{-std=c++17}.
This is the default for C++ code.
The name @samp{gnu++1z} is deprecated.
@item c++20
@itemx c++2a
The 2020 ISO C++ standard plus amendments.
Support is experimental, and could change in incompatible ways in
future releases.
The name @samp{c++2a} is deprecated.
@item gnu++20
@itemx gnu++2a
GNU dialect of @option{-std=c++20}.
Support is experimental, and could change in incompatible ways in
future releases.
The name @samp{gnu++2a} is deprecated.
@item c++2b
@itemx c++23
The next revision of the ISO C++ standard, planned for
2023. Support is highly experimental, and will almost certainly
change in incompatible ways in future releases.
@item gnu++2b
@itemx gnu++23
GNU dialect of @option{-std=c++2b}. Support is highly experimental,
and will almost certainly change in incompatible ways in future
releases.
@item c++2c
@itemx c++26
The next revision of the ISO C++ standard, planned for
2026. Support is highly experimental, and will almost certainly
change in incompatible ways in future releases.
@item gnu++2c
@itemx gnu++26
GNU dialect of @option{-std=c++2c}. Support is highly experimental,
and will almost certainly change in incompatible ways in future
releases.
@end table
@opindex aux-info
@item -aux-info @var{filename}
Output to the given filename prototyped declarations for all functions
declared and/or defined in a translation unit, including those in header
files. This option is silently ignored in any language other than C@.
Besides declarations, the file indicates, in comments, the origin of
each declaration (source file and line), whether the declaration was
implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
@samp{O} for old, respectively, in the first character after the line
number and the colon), and whether it came from a declaration or a
definition (@samp{C} or @samp{F}, respectively, in the following
character). In the case of function definitions, a K&R-style list of
arguments followed by their declarations is also provided, inside
comments, after the declaration.
@opindex fno-asm
@opindex fasm
@item -fno-asm
Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
keyword, so that code can use these words as identifiers. You can use
the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
instead. In C, @option{-ansi} implies @option{-fno-asm}.
In C++, @code{inline} is a standard keyword and is not affected by
this switch. You may want to use the @option{-fno-gnu-keywords} flag
instead, which disables @code{typeof} but not @code{asm} and
@code{inline}. In C99 mode (@option{-std=c99} or @option{-std=gnu99}),
this switch only affects the @code{asm} and @code{typeof} keywords,
since @code{inline} is a standard keyword in ISO C99. In C23 mode
(@option{-std=c23} or @option{-std=gnu23}), this switch only affects
the @code{asm} keyword, since @code{typeof} is a standard keyword in
ISO C23.
@opindex fno-builtin
@opindex fbuiltin
@cindex built-in functions
@item -fno-builtin
@itemx -fno-builtin-@var{function}
Don't recognize built-in functions that do not begin with
@samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
functions provided by GCC}, for details of the functions affected,
including those which are not built-in functions when @option{-ansi} or
@option{-std} options for strict ISO C conformance are used because they
do not have an ISO standard meaning.
GCC normally generates special code to handle certain built-in functions
more efficiently; for instance, calls to @code{alloca} may become single
instructions which adjust the stack directly, and calls to @code{memcpy}
may become inline copy loops. The resulting code is often both smaller
and faster, but since the function calls no longer appear as such, you
cannot set a breakpoint on those calls, nor can you change the behavior
of the functions by linking with a different library. In addition,
when a function is recognized as a built-in function, GCC may use
information about that function to warn about problems with calls to
that function, or to generate more efficient code, even if the
resulting code still contains calls to that function. For example,
warnings are given with @option{-Wformat} for bad calls to
@code{printf} when @code{printf} is built in and @code{strlen} is
known not to modify global memory.
With the @option{-fno-builtin-@var{function}} option
only the built-in function @var{function} is
disabled. @var{function} must not begin with @samp{__builtin_}. If a
function is named that is not built-in in this version of GCC, this
option is ignored. There is no corresponding
@option{-fbuiltin-@var{function}} option; if you wish to enable
built-in functions selectively when using @option{-fno-builtin} or
@option{-ffreestanding}, you may define macros such as:
@smallexample
#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))
@end smallexample
@opindex fcond-mismatch
@item -fcond-mismatch
Allow conditional expressions with mismatched types in the second and
third arguments. The value of such an expression is void. This option
is not supported for C++.
@opindex ffreestanding
@cindex hosted environment
@item -ffreestanding
Assert that compilation targets a freestanding environment. This
implies @option{-fno-builtin}. A freestanding environment
is one in which the standard library may not exist, and program startup may
not necessarily be at @code{main}. The most obvious example is an OS kernel.
This is equivalent to @option{-fno-hosted}.
@xref{Standards,,Language Standards Supported by GCC}, for details of
freestanding and hosted environments.
@opindex fgimple
@item -fgimple
Enable parsing of function definitions marked with @code{__GIMPLE}.
This is an experimental feature that allows unit testing of GIMPLE
passes.
@opindex fgnu-tm
@item -fgnu-tm
When the option @option{-fgnu-tm} is specified, the compiler
generates code for the Linux variant of Intel's current Transactional
Memory ABI specification document (Revision 1.1, May 6 2009). This is
an experimental feature whose interface may change in future versions
of GCC, as the official specification changes. Please note that not
all architectures are supported for this feature.
For more information on GCC's support for transactional memory,
@xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
Transactional Memory Library}.
Note that the transactional memory feature is not supported with
non-call exceptions (@option{-fnon-call-exceptions}).
@opindex fgnu89-inline
@item -fgnu89-inline
The option @option{-fgnu89-inline} tells GCC to use the traditional
GNU semantics for @code{inline} functions when in C99 mode.
@xref{Inline,,An Inline Function is As Fast As a Macro}.
Using this option is roughly equivalent to adding the
@code{gnu_inline} function attribute to all inline functions
(@pxref{Function Attributes}).
The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
specifies the default behavior).
This option is not supported in @option{-std=c90} or
@option{-std=gnu90} mode.
The preprocessor macros @code{__GNUC_GNU_INLINE__} and
@code{__GNUC_STDC_INLINE__} may be used to check which semantics are
in effect for @code{inline} functions. @xref{Common Predefined
Macros,,,cpp,The C Preprocessor}.
@opindex fhosted
@cindex hosted environment
@item -fhosted
Assert that compilation targets a hosted environment. This implies
@option{-fbuiltin}. A hosted environment is one in which the
entire standard library is available, and in which @code{main} has a return
type of @code{int}. Examples are nearly everything except a kernel.
This is equivalent to @option{-fno-freestanding}.
@opindex flax-vector-conversions
@item -flax-vector-conversions
Allow implicit conversions between vectors with differing numbers of
elements and/or incompatible element types. This option should not be
used for new code.
@opindex fms-extensions
@item -fms-extensions
Accept some non-standard constructs used in Microsoft header files.
In C++ code, this allows member names in structures to be similar
to previous types declarations.
@smallexample
typedef int UOW;
struct ABC @{
UOW UOW;
@};
@end smallexample
Some cases of unnamed fields in structures and unions are only
accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
fields within structs/unions}, for details.
Note that this option is off for all targets except for x86
targets using ms-abi.
@opindex foffload
@cindex Offloading targets
@cindex OpenACC offloading targets
@cindex OpenMP offloading targets
@item -foffload=disable
@itemx -foffload=default
@itemx -foffload=@var{target-list}
Specify for which OpenMP and OpenACC offload targets code should be generated.
The default behavior, equivalent to @option{-foffload=default}, is to generate
code for all supported offload targets. The @option{-foffload=disable} form
generates code only for the host fallback, while
@option{-foffload=@var{target-list}} generates code only for the specified
comma-separated list of offload targets.
Offload targets are specified in GCC's internal target-triplet format. You can
run the compiler with @option{-v} to show the list of configured offload targets
under @code{OFFLOAD_TARGET_NAMES}.
@opindex foffload-options
@cindex Offloading options
@cindex OpenACC offloading options
@cindex OpenMP offloading options
@item -foffload-options=@var{options}
@itemx -foffload-options=@var{target-triplet-list}=@var{options}
With @option{-foffload-options=@var{options}}, GCC passes the specified
@var{options} to the compilers for all enabled offloading targets. You can
specify options that apply only to a specific target or targets by using
the @option{-foffload-options=@var{target-list}=@var{options}} form. The
@var{target-list} is a comma-separated list in the same format as for the
@option{-foffload=} option.
Typical command lines are
@smallexample
-foffload-options='-fno-math-errno -ffinite-math-only' -foffload-options=nvptx-none=-latomic
-foffload-options=amdgcn-amdhsa=-march=gfx906
@end smallexample
@opindex fopenacc
@cindex OpenACC accelerator programming
@item -fopenacc
Enable handling of OpenACC directives @samp{#pragma acc} in C/C++ and
@samp{!$acc} in free-form Fortran and @samp{!$acc}, @samp{c$acc} and
@samp{*$acc} in fixed-form Fortran. When @option{-fopenacc} is specified,
the compiler generates accelerated code according to the OpenACC Application
Programming Interface v2.6 @w{@uref{https://www.openacc.org}}. This option
implies @option{-pthread}, and thus is only supported on targets that
have support for @option{-pthread}.
@opindex fopenacc-dim
@cindex OpenACC accelerator programming
@item -fopenacc-dim=@var{geom}
Specify default compute dimensions for parallel offload regions that do
not explicitly specify. The @var{geom} value is a triple of
':'-separated sizes, in order 'gang', 'worker' and, 'vector'. A size
can be omitted, to use a target-specific default value.
@opindex fopenmp
@cindex OpenMP parallel
@item -fopenmp
Enable handling of OpenMP directives @samp{#pragma omp},
@samp{[[omp::directive(...)]]}, @samp{[[omp::sequence(...)]]} and
@samp{[[omp::decl(...)]]} in C/C++ and @samp{!$omp} in Fortran. It
additionally enables the conditional compilation sentinel @samp{!$} in
Fortran. In fixed source form Fortran, the sentinels can also start with
@samp{c} or @samp{*}. When @option{-fopenmp} is specified, the
compiler generates parallel code according to the OpenMP Application
Program Interface v4.5 @w{@uref{https://www.openmp.org}}. This option
implies @option{-pthread}, and thus is only supported on targets that
have support for @option{-pthread}. @option{-fopenmp} implies
@option{-fopenmp-simd}.
@opindex fopenmp-simd
@cindex OpenMP SIMD
@cindex SIMD
@item -fopenmp-simd
Enable handling of OpenMP's @code{simd}, @code{declare simd},
@code{declare reduction}, @code{assume}, @code{ordered}, @code{scan}
and @code{loop} directive, and of combined or composite directives with
@code{simd} as constituent with @code{#pragma omp},
@code{[[omp::directive(...)]]}, @code{[[omp::sequence(...)]]} and
@code{[[omp::decl(...)]]} in C/C++ and @code{!$omp} in Fortran. It
additionally enables the conditional compilation sentinel @samp{!$} in
Fortran. In fixed source form Fortran, the sentinels can also start with
@samp{c} or @samp{*}. Other OpenMP directives are ignored. Unless
@option{-fopenmp} is additionally specified, the @code{loop} region binds
to the current task region, independent of the specified @code{bind} clause.
@opindex fopenmp-target-simd-clone
@cindex OpenMP target SIMD clone
@item -fopenmp-target-simd-clone
@item -fopenmp-target-simd-clone=@var{device-type}
In addition to generating SIMD clones for functions marked with the
@code{declare simd} directive, GCC also generates clones
for functions marked with the OpenMP @code{declare target} directive
that are suitable for vectorization when this option is in effect. The
@var{device-type} may be one of @code{none}, @code{host}, @code{nohost},
and @code{any}, which correspond to keywords for the @code{device_type}
clause of the @code{declare target} directive; clones are generated for
the intersection of devices specified.
@option{-fopenmp-target-simd-clone} is equivalent to
@option{-fopenmp-target-simd-clone=any} and
@option{-fno-openmp-target-simd-clone} is equivalent to
@option{-fopenmp-target-simd-clone=none}.
At @option{-O2} and higher (but not @option{-Os} or @option{-Og}) this
optimization defaults to @option{-fopenmp-target-simd-clone=nohost}; otherwise
it is disabled by default.
@opindex fpermitted-flt-eval-methods
@opindex fpermitted-flt-eval-methods=c11
@opindex fpermitted-flt-eval-methods=ts-18661-3
@item -fpermitted-flt-eval-methods=@var{style}
ISO/IEC TS 18661-3 defines new permissible values for
@code{FLT_EVAL_METHOD} that indicate that operations and constants with
a semantic type that is an interchange or extended format should be
evaluated to the precision and range of that type. These new values are
a superset of those permitted under C99/C11, which does not specify the
meaning of other positive values of @code{FLT_EVAL_METHOD}. As such, code
conforming to C11 may not have been written expecting the possibility of
the new values.
@option{-fpermitted-flt-eval-methods} specifies whether the compiler
should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
or the extended set of values specified in ISO/IEC TS 18661-3.
@var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
The default when in a standards compliant mode (@option{-std=c11} or similar)
is @option{-fpermitted-flt-eval-methods=c11}. The default when in a GNU
dialect (@option{-std=gnu11} or similar) is
@option{-fpermitted-flt-eval-methods=ts-18661-3}.
@opindex fdeps-
The @samp{-fdeps-*} options are used to extract structured dependency
information for a source. This involves determining what resources provided by
other source files will be required to compile the source as well as what
resources are provided by the source. This information can be used to add
required dependencies between compilation rules of dependent sources based on
their contents rather than requiring such information be reflected within the
build tools as well.
@opindex fdeps-file
@item -fdeps-file=@var{file}
Where to write structured dependency information.
@opindex fdeps-format
@item -fdeps-format=@var{format}
The format to use for structured dependency information. @samp{p1689r5} is the
only supported format right now. Note that when this argument is specified, the
output of @samp{-MF} is stripped of some information (namely C++ modules) so
that it does not use extended makefile syntax not understood by most tools.
@opindex fdeps-target
@item -fdeps-target=@var{file}
Analogous to @option{-MT} but for structured dependency information. This
indicates the target which will ultimately need any required resources and
provide any resources extracted from the source that may be required by other
sources.
@opindex fplan9-extensions
@item -fplan9-extensions
Accept some non-standard constructs used in Plan 9 code.
This enables @option{-fms-extensions}, permits passing pointers to
structures with anonymous fields to functions that expect pointers to
elements of the type of the field, and permits referring to anonymous
fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
struct/union fields within structs/unions}, for details. This is only
supported for C, not C++.
@opindex fsigned-bitfields
@opindex funsigned-bitfields
@opindex fno-signed-bitfields
@opindex fno-unsigned-bitfields
@item -fsigned-bitfields
@itemx -funsigned-bitfields
@itemx -fno-signed-bitfields
@itemx -fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the
declaration does not use either @code{signed} or @code{unsigned}. By
default, such a bit-field is signed, because this is consistent: the
basic integer types such as @code{int} are signed types.
@opindex fsigned-char
@item -fsigned-char
Let the type @code{char} be signed, like @code{signed char}.
Note that this is equivalent to @option{-fno-unsigned-char}, which is
the negative form of @option{-funsigned-char}. Likewise, the option
@option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
@opindex funsigned-char
@item -funsigned-char
Let the type @code{char} be unsigned, like @code{unsigned char}.
Each kind of machine has a default for what @code{char} should
be. It is either like @code{unsigned char} by default or like
@code{signed char} by default.
Ideally, a portable program should always use @code{signed char} or
@code{unsigned char} when it depends on the signedness of an object.
But many programs have been written to use plain @code{char} and
expect it to be signed, or expect it to be unsigned, depending on the
machines they were written for. This option, and its inverse, let you
make such a program work with the opposite default.
The type @code{char} is always a distinct type from each of
@code{signed char} or @code{unsigned char}, even though its behavior
is always just like one of those two.
@opindex fstrict-flex-arrays
@opindex fno-strict-flex-arrays
@opindex fstrict-flex-arrays=@var{level}
@item -fstrict-flex-arrays @r{(C and C++ only)}
@itemx -fstrict-flex-arrays=@var{level} @r{(C and C++ only)}
Control when to treat the trailing array of a structure as a flexible array
member for the purpose of accessing the elements of such an array. The value
of @var{level} controls the level of strictness.
@option{-fstrict-flex-arrays} is equivalent to
@option{-fstrict-flex-arrays=3}, which is the strictest; all
trailing arrays of structures are treated as flexible array members.
The negative form @option{-fno-strict-flex-arrays} is equivalent to
@option{-fstrict-flex-arrays=0}, which is the least strict. In this
case a trailing array is treated as a flexible array member only when
it is declared as a flexible array member per C99 standard onwards.
The possible values of @var{level} are the same as for the
@code{strict_flex_array} attribute (@pxref{Variable Attributes}).
You can control this behavior for a specific trailing array field of a
structure by using the variable attribute @code{strict_flex_array} attribute
(@pxref{Variable Attributes}).
The @option{-fstrict_flex_arrays} option interacts with the
@option{-Wstrict-flex-arrays} option. @xref{Warning Options}, for more
information.
@opindex fsso-struct
@item -fsso-struct=@var{endianness}
Set the default scalar storage order of structures and unions to the
specified endianness. The accepted values are @samp{big-endian},
@samp{little-endian} and @samp{native} for the native endianness of
the target (the default). This option is not supported for C++.
@strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
code that is not binary compatible with code generated without it if the
specified endianness is not the native endianness of the target.
@end table
@node C++ Dialect Options
@section Options Controlling C++ Dialect
@cindex compiler options, C++
@cindex C++ options, command-line
@cindex options, C++
This section describes the command-line options that are only meaningful
for C++ programs. You can also use most of the GNU compiler options
regardless of what language your program is in. For example, you
might compile a file @file{firstClass.C} like this:
@smallexample
g++ -g -fstrict-enums -O -c firstClass.C
@end smallexample
@noindent
In this example, only @option{-fstrict-enums} is an option meant
only for C++ programs; you can use the other options with any
language supported by GCC@.
Some options for compiling C programs, such as @option{-std}, are also
relevant for C++ programs.
@xref{C Dialect Options,,Options Controlling C Dialect}.
Here is a list of options that are @emph{only} for compiling C++ programs:
@table @gcctabopt
@opindex fabi-version
@item -fabi-version=@var{n}
Use version @var{n} of the C++ ABI@. The default is version 0.
Version 0 refers to the version conforming most closely to
the C++ ABI specification. Therefore, the ABI obtained using version 0
will change in different versions of G++ as ABI bugs are fixed.
Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
Version 2 is the version of the C++ ABI that first appeared in G++
3.4, and was the default through G++ 4.9.
Version 3 corrects an error in mangling a constant address as a
template argument.
Version 4, which first appeared in G++ 4.5, implements a standard
mangling for vector types.
Version 5, which first appeared in G++ 4.6, corrects the mangling of
attribute const/volatile on function pointer types, decltype of a
plain decl, and use of a function parameter in the declaration of
another parameter.
Version 6, which first appeared in G++ 4.7, corrects the promotion
behavior of C++11 scoped enums and the mangling of template argument
packs, const/static_cast, prefix ++ and --, and a class scope function
used as a template argument.
Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
builtin type and corrects the mangling of lambdas in default argument
scope.
Version 8, which first appeared in G++ 4.9, corrects the substitution
behavior of function types with function-cv-qualifiers.
Version 9, which first appeared in G++ 5.2, corrects the alignment of
@code{nullptr_t}.
Version 10, which first appeared in G++ 6.1, adds mangling of
attributes that affect type identity, such as ia32 calling convention
attributes (e.g.@: @samp{stdcall}).
Version 11, which first appeared in G++ 7, corrects the mangling of
sizeof... expressions and operator names. For multiple entities with
the same name within a function, that are declared in different scopes,
the mangling now changes starting with the twelfth occurrence. It also
implies @option{-fnew-inheriting-ctors}.
Version 12, which first appeared in G++ 8, corrects the calling
conventions for empty classes on the x86_64 target and for classes
with only deleted copy/move constructors. It accidentally changes the
calling convention for classes with a deleted copy constructor and a
trivial move constructor.
Version 13, which first appeared in G++ 8.2, fixes the accidental
change in version 12.
Version 14, which first appeared in G++ 10, corrects the mangling of
the nullptr expression.
Version 15, which first appeared in G++ 10.3, corrects G++ 10 ABI
tag regression.
Version 16, which first appeared in G++ 11, changes the mangling of
@code{__alignof__} to be distinct from that of @code{alignof}, and
dependent operator names.
Version 17, which first appeared in G++ 12, fixes layout of classes
that inherit from aggregate classes with default member initializers
in C++14 and up.
Version 18, which first appeard in G++ 13, fixes manglings of lambdas
that have additional context.
Version 19, which first appeard in G++ 14, fixes manglings of structured
bindings to include ABI tags.
See also @option{-Wabi}.
@opindex fabi-compat-version
@item -fabi-compat-version=@var{n}
On targets that support strong aliases, G++
works around mangling changes by creating an alias with the correct
mangled name when defining a symbol with an incorrect mangled name.
This switch specifies which ABI version to use for the alias.
With @option{-fabi-version=0} (the default), this defaults to 13 (GCC 8.2
compatibility). If another ABI version is explicitly selected, this
defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
use @option{-fabi-compat-version=2}.
If this option is not provided but @option{-Wabi=@var{n}} is, that
version is used for compatibility aliases. If this option is provided
along with @option{-Wabi} (without the version), the version from this
option is used for the warning.
@opindex fno-access-control
@opindex faccess-control
@item -fno-access-control
Turn off all access checking. This switch is mainly useful for working
around bugs in the access control code.
@opindex faligned-new
@item -faligned-new
Enable support for C++17 @code{new} of types that require more
alignment than @code{void* ::operator new(std::size_t)} provides. A
numeric argument such as @code{-faligned-new=32} can be used to
specify how much alignment (in bytes) is provided by that function,
but few users will need to override the default of
@code{alignof(std::max_align_t)}.
This flag is enabled by default for @option{-std=c++17}.
@opindex fchar8_t
@opindex fno-char8_t
@item -fchar8_t
@itemx -fno-char8_t
Enable support for @code{char8_t} as adopted for C++20. This includes
the addition of a new @code{char8_t} fundamental type, changes to the
types of UTF-8 string and character literals, new signatures for
user-defined literals, associated standard library updates, and new
@code{__cpp_char8_t} and @code{__cpp_lib_char8_t} feature test macros.
This option enables functions to be overloaded for ordinary and UTF-8
strings:
@smallexample
int f(const char *); // #1
int f(const char8_t *); // #2
int v1 = f("text"); // Calls #1
int v2 = f(u8"text"); // Calls #2
@end smallexample
@noindent
and introduces new signatures for user-defined literals:
@smallexample
int operator""_udl1(char8_t);
int v3 = u8'x'_udl1;
int operator""_udl2(const char8_t*, std::size_t);
int v4 = u8"text"_udl2;
template<typename T, T...> int operator""_udl3();
int v5 = u8"text"_udl3;
@end smallexample
@noindent
The change to the types of UTF-8 string and character literals introduces
incompatibilities with ISO C++11 and later standards. For example, the
following code is well-formed under ISO C++11, but is ill-formed when
@option{-fchar8_t} is specified.
@smallexample
const char *cp = u8"xx";// error: invalid conversion from
// `const char8_t*' to `const char*'
int f(const char*);
auto v = f(u8"xx"); // error: invalid conversion from
// `const char8_t*' to `const char*'
std::string s@{u8"xx"@}; // error: no matching function for call to
// `std::basic_string<char>::basic_string()'
using namespace std::literals;
s = u8"xx"s; // error: conversion from
// `basic_string<char8_t>' to non-scalar
// type `basic_string<char>' requested
@end smallexample
@opindex fcheck-new
@item -fcheck-new
Check that the pointer returned by @code{operator new} is non-null
before attempting to modify the storage allocated. This check is
normally unnecessary because the C++ standard specifies that
@code{operator new} only returns @code{0} if it is declared
@code{throw()}, in which case the compiler always checks the
return value even without this option. In all other cases, when
@code{operator new} has a non-empty exception specification, memory
exhaustion is signalled by throwing @code{std::bad_alloc}. See also
@samp{new (nothrow)}.
@opindex fconcepts
@item -fconcepts
Enable support for the C++ Concepts feature for constraining template
arguments. With @option{-std=c++20} and above, Concepts are part of
the language standard, so @option{-fconcepts} defaults to on.
Some constructs that were allowed by the earlier C++ Extensions for
Concepts Technical Specification, ISO 19217 (2015), but didn't make it
into the standard, could additionally be enabled by
@option{-fconcepts-ts}. The option @option{-fconcepts-ts} was deprecated
in GCC 14 and removed in GCC 15; users are expected to convert their code
to C++20 concepts.
@opindex fconstexpr-depth
@item -fconstexpr-depth=@var{n}
Set the maximum nested evaluation depth for C++11 constexpr functions
to @var{n}. A limit is needed to detect endless recursion during
constant expression evaluation. The minimum specified by the standard
is 512.
@opindex fconstexpr-cache-depth
@item -fconstexpr-cache-depth=@var{n}
Set the maximum level of nested evaluation depth for C++11 constexpr
functions that will be cached to @var{n}. This is a heuristic that
trades off compilation speed (when the cache avoids repeated
calculations) against memory consumption (when the cache grows very
large from highly recursive evaluations). The default is 8. Very few
users are likely to want to adjust it, but if your code does heavy
constexpr calculations you might want to experiment to find which
value works best for you.
@opindex fconstexpr-fp-except
@item -fconstexpr-fp-except
Annex F of the C standard specifies that IEC559 floating point
exceptions encountered at compile time should not stop compilation.
C++ compilers have historically not followed this guidance, instead
treating floating point division by zero as non-constant even though
it has a well defined value. This flag tells the compiler to give
Annex F priority over other rules saying that a particular operation
is undefined.
@smallexample
constexpr float inf = 1./0.; // OK with -fconstexpr-fp-except
@end smallexample
@opindex fconstexpr-loop-limit
@item -fconstexpr-loop-limit=@var{n}
Set the maximum number of iterations for a loop in C++14 constexpr functions
to @var{n}. A limit is needed to detect infinite loops during
constant expression evaluation. The default is 262144 (1<<18).
@opindex fconstexpr-ops-limit
@item -fconstexpr-ops-limit=@var{n}
Set the maximum number of operations during a single constexpr evaluation.
Even when number of iterations of a single loop is limited with the above limit,
if there are several nested loops and each of them has many iterations but still
smaller than the above limit, or if in a body of some loop or even outside
of a loop too many expressions need to be evaluated, the resulting constexpr
evaluation might take too long.
The default is 33554432 (1<<25).
@opindex fcontracts
@item -fcontracts
Enable experimental support for the C++ Contracts feature, as briefly
added to and then removed from the C++20 working paper (N4820). The
implementation also includes proposed enhancements from papers P1290,
P1332, and P1429. This functionality is intended mostly for those
interested in experimentation towards refining the feature to get it
into shape for a future C++ standard.
On violation of a checked contract, the violation handler is called.
Users can replace the violation handler by defining
@smallexample
void
handle_contract_violation (const std::experimental::contract_violation&);
@end smallexample
There are different sets of additional flags that can be used together
to specify which contracts will be checked and how, for N4820
contracts, P1332 contracts, or P1429 contracts; these sets cannot be
used together.
@table @gcctabopt
@opindex fcontract-mode
@item -fcontract-mode=[on|off]
Control whether any contracts have any semantics at all. Defaults to on.
@opindex fcontract-assumption-mode
@item -fcontract-assumption-mode=[on|off]
[N4820] Control whether contracts with level @samp{axiom}
should have the assume semantic. Defaults to on.
@opindex fcontract-build-level
@item -fcontract-build-level=[off|default|audit]
[N4820] Specify which level of contracts to generate checks
for. Defaults to @samp{default}.
@opindex fcontract-continuation-mode
@item -fcontract-continuation-mode=[on|off]
[N4820] Control whether to allow the program to continue executing
after a contract violation. That is, do checked contracts have the
@samp{maybe} semantic described below rather than the @samp{never}
semantic. Defaults to off.
@opindex fcontract-role
@item -fcontract-role=<name>:<default>,<audit>,<axiom>
[P1332] Specify the concrete semantics for each contract level
of a particular contract role.
@item -fcontract-semantic=[default|audit|axiom]:<semantic>
[P1429] Specify the concrete semantic for a particular
contract level.
@opindex fcontract-strict-declarations
@item -fcontract-strict-declarations=[on|off]
Control whether to reject adding contracts to a function after its
first declaration. Defaults to off.
@end table
The possible concrete semantics for that can be specified with
@samp{-fcontract-role} or @samp{-fcontract-semantic} are:
@table @code
@item ignore
This contract has no effect.
@item assume
This contract is treated like C++23 @code{[[assume]]}.
@item check_never_continue
@itemx never
@itemx abort
This contract is checked. If it fails, the violation handler is
called. If the handler returns, @code{std::terminate} is called.
@item check_maybe_continue
@itemx maybe
This contract is checked. If it fails, the violation handler is
called. If the handler returns, execution continues normally.
@end table
@opindex fcoroutines
@item -fcoroutines
Enable support for the C++ coroutines extension (experimental).
@opindex fdiagnostics-all-candidates
@item -fdiagnostics-all-candidates
Permit the C++ front end to note all candidates during overload resolution
failure, including when a deleted function is selected.
@opindex fno-elide-constructors
@opindex felide-constructors
@item -fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary
that is only used to initialize another object of the same type.
Specifying this option disables that optimization, and forces G++ to
call the copy constructor in all cases. This option also causes G++
to call trivial member functions which otherwise would be expanded inline.
In C++17, the compiler is required to omit these temporaries, but this
option still affects trivial member functions.
@opindex fno-enforce-eh-specs
@opindex fenforce-eh-specs
@item -fno-enforce-eh-specs
Don't generate code to check for violation of exception specifications
at run time. This option violates the C++ standard, but may be useful
for reducing code size in production builds, much like defining
@code{NDEBUG}. This does not give user code permission to throw
exceptions in violation of the exception specifications; the compiler
still optimizes based on the specifications, so throwing an
unexpected exception results in undefined behavior at run time.
@opindex fextern-tls-init
@opindex fno-extern-tls-init
@item -fextern-tls-init
@itemx -fno-extern-tls-init
The C++11 and OpenMP standards allow @code{thread_local} and
@code{threadprivate} variables to have dynamic (runtime)
initialization. To support this, any use of such a variable goes
through a wrapper function that performs any necessary initialization.
When the use and definition of the variable are in the same
translation unit, this overhead can be optimized away, but when the
use is in a different translation unit there is significant overhead
even if the variable doesn't actually need dynamic initialization. If
the programmer can be sure that no use of the variable in a
non-defining TU needs to trigger dynamic initialization (either
because the variable is statically initialized, or a use of the
variable in the defining TU will be executed before any uses in
another TU), they can avoid this overhead with the
@option{-fno-extern-tls-init} option.
On targets that support symbol aliases, the default is
@option{-fextern-tls-init}. On targets that do not support symbol
aliases, the default is @option{-fno-extern-tls-init}.
@opindex ffold-simple-inlines
@opindex fno-fold-simple-inlines
@item -ffold-simple-inlines
@itemx -fno-fold-simple-inlines
Permit the C++ frontend to fold calls to @code{std::move}, @code{std::forward},
@code{std::addressof} and @code{std::as_const}. In contrast to inlining, this
means no debug information will be generated for such calls. Since these
functions are rarely interesting to debug, this flag is enabled by default
unless @option{-fno-inline} is active.
@opindex fno-gnu-keywords
@opindex fgnu-keywords
@item -fno-gnu-keywords
Do not recognize @code{typeof} as a keyword, so that code can use this
word as an identifier. You can use the keyword @code{__typeof__} instead.
This option is implied by the strict ISO C++ dialects: @option{-ansi},
@option{-std=c++98}, @option{-std=c++11}, etc.
@opindex fno-immediate-escalation
@opindex fimmediate-escalation
@item -fno-immediate-escalation
Do not enable immediate function escalation whereby certain functions
can be promoted to consteval, as specified in P2564R3. For example:
@example
consteval int id(int i) @{ return i; @}
constexpr int f(auto t)
@{
return t + id(t); // id causes f<int> to be promoted to consteval
@}
void g(int i)
@{
f (3);
@}
@end example
compiles in C++20: @code{f} is an immediate-escalating function (due to
the @code{auto} it is a function template and is declared @code{constexpr})
and @code{id(t)} is an immediate-escalating expression, so @code{f} is
promoted to @code{consteval}. Consequently, the call to @code{id(t)}
is in an immediate context, so doesn't have to produce a constant (that
is the mechanism allowing consteval function composition). However,
with @option{-fno-immediate-escalation}, @code{f} is not promoted to
@code{consteval}, and since the call to consteval function @code{id(t)}
is not a constant expression, the compiler rejects the code.
This option is turned on by default; it is only effective in C++20 mode
or later.
@opindex fimplicit-constexpr
@item -fimplicit-constexpr
Make inline functions implicitly constexpr, if they satisfy the
requirements for a constexpr function. This option can be used in
C++14 mode or later. This can result in initialization changing from
dynamic to static and other optimizations.
@opindex fno-implicit-templates
@opindex fimplicit-templates
@item -fno-implicit-templates
Never emit code for non-inline templates that are instantiated
implicitly (i.e.@: by use); only emit code for explicit instantiations.
If you use this option, you must take care to structure your code to
include all the necessary explicit instantiations to avoid getting
undefined symbols at link time.
@xref{Template Instantiation}, for more information.
@opindex fno-implicit-inline-templates
@opindex fimplicit-inline-templates
@item -fno-implicit-inline-templates
Don't emit code for implicit instantiations of inline templates, either.
The default is to handle inlines differently so that compiles with and
without optimization need the same set of explicit instantiations.
@opindex fno-implement-inlines
@opindex fimplement-inlines
@item -fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions
controlled by @code{#pragma implementation}. This causes linker
errors if these functions are not inlined everywhere they are called.
@opindex fmodules-ts
@opindex fno-modules-ts
@item -fmodules-ts
@itemx -fno-modules-ts
Enable support for C++20 modules (@pxref{C++ Modules}). The
@option{-fno-modules-ts} is usually not needed, as that is the
default. Even though this is a C++20 feature, it is not currently
implicitly enabled by selecting that standard version.
@opindex fmodule-header
@item -fmodule-header
@itemx -fmodule-header=user
@itemx -fmodule-header=system
Compile a header file to create an importable header unit.
@opindex fmodule-implicit-inline
@item -fmodule-implicit-inline
Member functions defined in their class definitions are not implicitly
inline for modular code. This is different to traditional C++
behavior, for good reasons. However, it may result in a difficulty
during code porting. This option makes such function definitions
implicitly inline. It does however generate an ABI incompatibility,
so you must use it everywhere or nowhere. (Such definitions outside
of a named module remain implicitly inline, regardless.)
@opindex fno-module-lazy
@opindex fmodule-lazy
@item -fno-module-lazy
Disable lazy module importing and module mapper creation.
@vindex CXX_MODULE_MAPPER @r{environment variable}
@opindex fmodule-mapper
@item -fmodule-mapper=@r{[}@var{hostname}@r{]}:@var{port}@r{[}?@var{ident}@r{]}
@itemx -fmodule-mapper=|@var{program}@r{[}?@var{ident}@r{]} @var{args...}
@itemx -fmodule-mapper==@var{socket}@r{[}?@var{ident}@r{]}
@itemx -fmodule-mapper=<>@r{[}@var{inout}@r{]}@r{[}?@var{ident}@r{]}
@itemx -fmodule-mapper=<@var{in}>@var{out}@r{[}?@var{ident}@r{]}
@itemx -fmodule-mapper=@var{file}@r{[}?@var{ident}@r{]}
An oracle to query for module name to filename mappings. If
unspecified the @env{CXX_MODULE_MAPPER} environment variable is used,
and if that is unset, an in-process default is provided.
@opindex fmodule-only
@item -fmodule-only
Only emit the Compiled Module Interface, inhibiting any object file.
@opindex fms-extensions
@item -fms-extensions
Disable Wpedantic warnings about constructs used in MFC, such as implicit
int and getting a pointer to member function via non-standard syntax.
@opindex fnew-inheriting-ctors
@item -fnew-inheriting-ctors
Enable the P0136 adjustment to the semantics of C++11 constructor
inheritance. This is part of C++17 but also considered to be a Defect
Report against C++11 and C++14. This flag is enabled by default
unless @option{-fabi-version=10} or lower is specified.
@opindex fnew-ttp-matching
@item -fnew-ttp-matching
Enable the P0522 resolution to Core issue 150, template template
parameters and default arguments: this allows a template with default
template arguments as an argument for a template template parameter
with fewer template parameters. This flag is enabled by default for
@option{-std=c++17}.
@opindex fno-nonansi-builtins
@opindex fnonansi-builtins
@item -fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by
ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
@code{index}, @code{bzero}, @code{conjf}, and other related functions.
@opindex fnothrow-opt
@item -fnothrow-opt
Treat a @code{throw()} exception specification as if it were a
@code{noexcept} specification to reduce or eliminate the text size
overhead relative to a function with no exception specification. If
the function has local variables of types with non-trivial
destructors, the exception specification actually makes the
function smaller because the EH cleanups for those variables can be
optimized away. The semantic effect is that an exception thrown out of
a function with such an exception specification results in a call
to @code{terminate} rather than @code{unexpected}.
@opindex fno-operator-names
@opindex foperator-names
@item -fno-operator-names
Do not treat the operator name keywords @code{and}, @code{bitand},
@code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
synonyms as keywords.
@opindex fno-optional-diags
@opindex foptional-diags
@item -fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to
issue. Currently, the only such diagnostic issued by G++ is the one for
a name having multiple meanings within a class.
@opindex fno-pretty-templates
@opindex fpretty-templates
@item -fno-pretty-templates
When an error message refers to a specialization of a function
template, the compiler normally prints the signature of the
template followed by the template arguments and any typedefs or
typenames in the signature (e.g.@: @code{void f(T) [with T = int]}
rather than @code{void f(int)}) so that it's clear which template is
involved. When an error message refers to a specialization of a class
template, the compiler omits any template arguments that match
the default template arguments for that template. If either of these
behaviors make it harder to understand the error message rather than
easier, you can use @option{-fno-pretty-templates} to disable them.
@opindex fno-rtti
@opindex frtti
@item -fno-rtti
Disable generation of information about every class with virtual
functions for use by the C++ run-time type identification features
(@code{dynamic_cast} and @code{typeid}). If you don't use those parts
of the language, you can save some space by using this flag. Note that
exception handling uses the same information, but G++ generates it as
needed. The @code{dynamic_cast} operator can still be used for casts that
do not require run-time type information, i.e.@: casts to @code{void *} or to
unambiguous base classes.
Mixing code compiled with @option{-frtti} with that compiled with
@option{-fno-rtti} may not work. For example, programs may
fail to link if a class compiled with @option{-fno-rtti} is used as a base
for a class compiled with @option{-frtti}.
@opindex fsized-deallocation
@item -fsized-deallocation
Enable the built-in global declarations
@smallexample
void operator delete (void *, std::size_t) noexcept;
void operator delete[] (void *, std::size_t) noexcept;
@end smallexample
as introduced in C++14. This is useful for user-defined replacement
deallocation functions that, for example, use the size of the object
to make deallocation faster. Enabled by default under
@option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
warns about places that might want to add a definition.
@opindex fstrict-enums
@item -fstrict-enums
Allow the compiler to optimize using the assumption that a value of
enumerated type can only be one of the values of the enumeration (as
defined in the C++ standard; basically, a value that can be
represented in the minimum number of bits needed to represent all the
enumerators). This assumption may not be valid if the program uses a
cast to convert an arbitrary integer value to the enumerated type.
This option has no effect for an enumeration type with a fixed underlying
type.
@opindex fstrong-eval-order
@item -fstrong-eval-order
Evaluate member access, array subscripting, and shift expressions in
left-to-right order, and evaluate assignment in right-to-left order,
as adopted for C++17. Enabled by default with @option{-std=c++17}.
@option{-fstrong-eval-order=some} enables just the ordering of member
access and shift expressions, and is the default without
@option{-std=c++17}.
@opindex ftemplate-backtrace-limit
@item -ftemplate-backtrace-limit=@var{n}
Set the maximum number of template instantiation notes for a single
warning or error to @var{n}. The default value is 10.
@opindex ftemplate-depth
@item -ftemplate-depth=@var{n}
Set the maximum instantiation depth for template classes to @var{n}.
A limit on the template instantiation depth is needed to detect
endless recursions during template class instantiation. ANSI/ISO C++
conforming programs must not rely on a maximum depth greater than 17
(changed to 1024 in C++11). The default value is 900, as the compiler
can run out of stack space before hitting 1024 in some situations.
@opindex fno-threadsafe-statics
@opindex fthreadsafe-statics
@item -fno-threadsafe-statics
Do not emit the extra code to use the routines specified in the C++
ABI for thread-safe initialization of local statics. You can use this
option to reduce code size slightly in code that doesn't need to be
thread-safe.
@opindex fuse-cxa-atexit
@item -fuse-cxa-atexit
Register destructors for objects with static storage duration with the
@code{__cxa_atexit} function rather than the @code{atexit} function.
This option is required for fully standards-compliant handling of static
destructors, but only works if your C library supports
@code{__cxa_atexit}.
@opindex fno-use-cxa-get-exception-ptr
@opindex fuse-cxa-get-exception-ptr
@item -fno-use-cxa-get-exception-ptr
Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
causes @code{std::uncaught_exception} to be incorrect, but is necessary
if the runtime routine is not available.
@opindex fvisibility-inlines-hidden
@item -fvisibility-inlines-hidden
This switch declares that the user does not attempt to compare
pointers to inline functions or methods where the addresses of the two functions
are taken in different shared objects.
The effect of this is that GCC may, effectively, mark inline methods with
@code{__attribute__ ((visibility ("hidden")))} so that they do not
appear in the export table of a DSO and do not require a PLT indirection
when used within the DSO@. Enabling this option can have a dramatic effect
on load and link times of a DSO as it massively reduces the size of the
dynamic export table when the library makes heavy use of templates.
The behavior of this switch is not quite the same as marking the
methods as hidden directly, because it does not affect static variables
local to the function or cause the compiler to deduce that
the function is defined in only one shared object.
You may mark a method as having a visibility explicitly to negate the
effect of the switch for that method. For example, if you do want to
compare pointers to a particular inline method, you might mark it as
having default visibility. Marking the enclosing class with explicit
visibility has no effect.
Explicitly instantiated inline methods are unaffected by this option
as their linkage might otherwise cross a shared library boundary.
@xref{Template Instantiation}.
@opindex fvisibility-ms-compat
@item -fvisibility-ms-compat
This flag attempts to use visibility settings to make GCC's C++
linkage model compatible with that of Microsoft Visual Studio.
The flag makes these changes to GCC's linkage model:
@enumerate
@item
It sets the default visibility to @code{hidden}, like
@option{-fvisibility=hidden}.
@item
Types, but not their members, are not hidden by default.
@item
The One Definition Rule is relaxed for types without explicit
visibility specifications that are defined in more than one
shared object: those declarations are permitted if they are
permitted when this option is not used.
@end enumerate
In new code it is better to use @option{-fvisibility=hidden} and
export those classes that are intended to be externally visible.
Unfortunately it is possible for code to rely, perhaps accidentally,
on the Visual Studio behavior.
Among the consequences of these changes are that static data members
of the same type with the same name but defined in different shared
objects are different, so changing one does not change the other;
and that pointers to function members defined in different shared
objects may not compare equal. When this flag is given, it is a
violation of the ODR to define types with the same name differently.
@opindex fno-weak
@opindex fweak
@item -fno-weak
Do not use weak symbol support, even if it is provided by the linker.
By default, G++ uses weak symbols if they are available. This
option exists only for testing, and should not be used by end-users;
it results in inferior code and has no benefits. This option may
be removed in a future release of G++.
@opindex fext-numeric-literals
@opindex fno-ext-numeric-literals
@item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
Accept imaginary, fixed-point, or machine-defined
literal number suffixes as GNU extensions.
When this option is turned off these suffixes are treated
as C++11 user-defined literal numeric suffixes.
This is on by default for all pre-C++11 dialects and all GNU dialects:
@option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
@option{-std=gnu++14}.
This option is off by default
for ISO C++11 onwards (@option{-std=c++11}, ...).
@opindex nostdinc++
@item -nostdinc++
Do not search for header files in the standard directories specific to
C++, but do still search the other standard directories. (This option
is used when building the C++ library.)
@opindex flang-info-include-translate
@opindex flang-info-include-translate-not
@item -flang-info-include-translate
@itemx -flang-info-include-translate-not
@itemx -flang-info-include-translate=@var{header}
Inform of include translation events. The first will note accepted
include translations, the second will note declined include
translations. The @var{header} form will inform of include
translations relating to that specific header. If @var{header} is of
the form @code{"user"} or @code{<system>} it will be resolved to a
specific user or system header using the include path.
@opindex flang-info-module-cmi
@item -flang-info-module-cmi
@itemx -flang-info-module-cmi=@var{module}
Inform of Compiled Module Interface pathnames. The first will note
all read CMI pathnames. The @var{module} form will not reading a
specific module's CMI. @var{module} may be a named module or a
header-unit (the latter indicated by either being a pathname containing
directory separators or enclosed in @code{<>} or @code{""}).
@opindex stdlib
@item -stdlib=@var{libstdc++,libc++}
When G++ is configured to support this option, it allows specification of
alternate C++ runtime libraries. Two options are available: @var{libstdc++}
(the default, native C++ runtime for G++) and @var{libc++} which is the
C++ runtime installed on some operating systems (e.g. Darwin versions from
Darwin11 onwards). The option switches G++ to use the headers from the
specified library and to emit @code{-lstdc++} or @code{-lc++} respectively,
when a C++ runtime is required for linking.
@end table
In addition, these warning options have meanings only for C++ programs:
@table @gcctabopt
@opindex Wabi-tag
@item -Wabi-tag @r{(C++ and Objective-C++ only)}
Warn when a type with an ABI tag is used in a context that does not
have that ABI tag. See @ref{C++ Attributes} for more information
about ABI tags.
@opindex Wcomma-subscript
@opindex Wno-comma-subscript
@item -Wcomma-subscript @r{(C++ and Objective-C++ only)}
Warn about uses of a comma expression within a subscripting expression.
This usage was deprecated in C++20 and is going to be removed in C++23.
However, a comma expression wrapped in @code{( )} is not deprecated. Example:
@smallexample
@group
void f(int *a, int b, int c) @{
a[b,c]; // deprecated in C++20, invalid in C++23
a[(b,c)]; // OK
@}
@end group
@end smallexample
In C++23 it is valid to have comma separated expressions in a subscript
when an overloaded subscript operator is found and supports the right
number and types of arguments. G++ will accept the formerly valid syntax
for code that is not valid in C++23 but used to be valid but deprecated
in C++20 with a pedantic warning that can be disabled with
@option{-Wno-comma-subscript}.
Enabled by default with @option{-std=c++20} unless @option{-Wno-deprecated},
and with @option{-std=c++23} regardless of @option{-Wno-deprecated}.
This warning is upgraded to an error by @option{-pedantic-errors} in
C++23 mode or later.
@opindex Wctad-maybe-unsupported
@opindex Wno-ctad-maybe-unsupported
@item -Wctad-maybe-unsupported @r{(C++ and Objective-C++ only)}
Warn when performing class template argument deduction (CTAD) on a type with
no explicitly written deduction guides. This warning will point out cases
where CTAD succeeded only because the compiler synthesized the implicit
deduction guides, which might not be what the programmer intended. Certain
style guides allow CTAD only on types that specifically "opt-in"; i.e., on
types that are designed to support CTAD. This warning can be suppressed with
the following pattern:
@smallexample
struct allow_ctad_t; // any name works
template <typename T> struct S @{
S(T) @{ @}
@};
// Guide with incomplete parameter type will never be considered.
S(allow_ctad_t) -> S<void>;
@end smallexample
@opindex Wctor-dtor-privacy
@opindex Wno-ctor-dtor-privacy
@item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
Warn when a class seems unusable because all the constructors or
destructors in that class are private, and it has neither friends nor
public static member functions. Also warn if there are no non-private
methods, and there's at least one private member function that isn't
a constructor or destructor.
@opindex Wdangling-reference
@opindex Wno-dangling-reference
@item -Wdangling-reference @r{(C++ and Objective-C++ only)}
Warn when a reference is bound to a temporary whose lifetime has ended.
For example:
@smallexample
int n = 1;
const int& r = std::max(n - 1, n + 1); // r is dangling
@end smallexample
In the example above, two temporaries are created, one for each
argument, and a reference to one of the temporaries is returned.
However, both temporaries are destroyed at the end of the full
expression, so the reference @code{r} is dangling. This warning
also detects dangling references in member initializer lists:
@smallexample
const int& f(const int& i) @{ return i; @}
struct S @{
const int &r; // r is dangling
S() : r(f(10)) @{ @}
@};
@end smallexample
Member functions are checked as well, but only their object argument:
@smallexample
struct S @{
const S& self () @{ return *this; @}
@};
const S& s = S().self(); // s is dangling
@end smallexample
Certain functions are safe in this respect, for example @code{std::use_facet}:
they take and return a reference, but they don't return one of its arguments,
which can fool the warning. Such functions can be excluded from the warning
by wrapping them in a @code{#pragma}:
@smallexample
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdangling-reference"
const T& foo (const T&) @{ @dots{} @}
#pragma GCC diagnostic pop
@end smallexample
The @code{#pragma} can also surround the class; in that case, the warning
will be disabled for all the member functions.
@option{-Wdangling-reference} also warns about code like
@smallexample
auto p = std::minmax(1, 2);
@end smallexample
where @code{std::minmax} returns @code{std::pair<const int&, const int&>}, and
both references dangle after the end of the full expression that contains
the call to @code{std::minmax}.
The warning does not warn for @code{std::span}-like classes. We consider
classes of the form:
@smallexample
template<typename T>
struct Span @{
T* data_;
std::size len_;
@};
@end smallexample
as @code{std::span}-like; that is, the class is a non-union class
that has a pointer data member and a trivial destructor.
The warning can be disabled by using the @code{gnu::no_dangling} attribute
(@pxref{C++ Attributes}).
This warning is enabled by @option{-Wall}.
@opindex Wdelete-non-virtual-dtor
@opindex Wno-delete-non-virtual-dtor
@item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
Warn when @code{delete} is used to destroy an instance of a class that
has virtual functions and non-virtual destructor. It is unsafe to delete
an instance of a derived class through a pointer to a base class if the
base class does not have a virtual destructor. This warning is enabled
by @option{-Wall}.
@opindex Wdeprecated-copy
@opindex Wno-deprecated-copy
@item -Wdeprecated-copy @r{(C++ and Objective-C++ only)}
Warn that the implicit declaration of a copy constructor or copy
assignment operator is deprecated if the class has a user-provided
copy constructor or copy assignment operator, in C++11 and up. This
warning is enabled by @option{-Wextra}. With
@option{-Wdeprecated-copy-dtor}, also deprecate if the class has a
user-provided destructor.
@opindex Wdeprecated-enum-enum-conversion
@opindex Wno-deprecated-enum-enum-conversion
@item -Wno-deprecated-enum-enum-conversion @r{(C++ and Objective-C++ only)}
Disable the warning about the case when the usual arithmetic conversions
are applied on operands where one is of enumeration type and the other is
of a different enumeration type. This conversion was deprecated in C++20.
For example:
@smallexample
enum E1 @{ e @};
enum E2 @{ f @};
int k = f - e;
@end smallexample
@option{-Wdeprecated-enum-enum-conversion} is enabled by default with
@option{-std=c++20}. In pre-C++20 dialects, this warning can be enabled
by @option{-Wenum-conversion}.
@opindex Wdeprecated-enum-float-conversion
@opindex Wno-deprecated-enum-float-conversion
@item -Wno-deprecated-enum-float-conversion @r{(C++ and Objective-C++ only)}
Disable the warning about the case when the usual arithmetic conversions
are applied on operands where one is of enumeration type and the other is
of a floating-point type. This conversion was deprecated in C++20. For
example:
@smallexample
enum E1 @{ e @};
enum E2 @{ f @};
bool b = e <= 3.7;
@end smallexample
@option{-Wdeprecated-enum-float-conversion} is enabled by default with
@option{-std=c++20}. In pre-C++20 dialects, this warning can be enabled
by @option{-Wenum-conversion}.
@opindex Welaborated-enum-base
@opindex Wno-elaborated-enum-base
@item -Wno-elaborated-enum-base
For C++11 and above, warn if an (invalid) additional enum-base is used
in an elaborated-type-specifier. That is, if an enum with given
underlying type and no enumerator list is used in a declaration other
than just a standalone declaration of the enum. Enabled by default. This
warning is upgraded to an error with -pedantic-errors.
@opindex Winit-list-lifetime
@opindex Wno-init-list-lifetime
@item -Wno-init-list-lifetime @r{(C++ and Objective-C++ only)}
Do not warn about uses of @code{std::initializer_list} that are likely
to result in dangling pointers. Since the underlying array for an
@code{initializer_list} is handled like a normal C++ temporary object,
it is easy to inadvertently keep a pointer to the array past the end
of the array's lifetime. For example:
@itemize @bullet
@item
If a function returns a temporary @code{initializer_list}, or a local
@code{initializer_list} variable, the array's lifetime ends at the end
of the return statement, so the value returned has a dangling pointer.
@item
If a new-expression creates an @code{initializer_list}, the array only
lives until the end of the enclosing full-expression, so the
@code{initializer_list} in the heap has a dangling pointer.
@item
When an @code{initializer_list} variable is assigned from a
brace-enclosed initializer list, the temporary array created for the
right side of the assignment only lives until the end of the
full-expression, so at the next statement the @code{initializer_list}
variable has a dangling pointer.
@smallexample
// li's initial underlying array lives as long as li
std::initializer_list<int> li = @{ 1,2,3 @};
// assignment changes li to point to a temporary array
li = @{ 4, 5 @};
// now the temporary is gone and li has a dangling pointer
int i = li.begin()[0] // undefined behavior
@end smallexample
@item
When a list constructor stores the @code{begin} pointer from the
@code{initializer_list} argument, this doesn't extend the lifetime of
the array, so if a class variable is constructed from a temporary
@code{initializer_list}, the pointer is left dangling by the end of
the variable declaration statement.
@end itemize
@opindex Winvalid-constexpr
@opindex Wno-invalid-constexpr
@item -Winvalid-constexpr
Warn when a function never produces a constant expression. In C++20
and earlier, for every @code{constexpr} function and function template,
there must be at least one set of function arguments in at least one
instantiation such that an invocation of the function or constructor
could be an evaluated subexpression of a core constant expression.
C++23 removed this restriction, so it's possible to have a function
or a function template marked @code{constexpr} for which no invocation
satisfies the requirements of a core constant expression.
This warning is enabled as a pedantic warning by default in C++20 and
earlier. In C++23, @option{-Winvalid-constexpr} can be turned on, in
which case it will be an ordinary warning. For example:
@smallexample
void f (int& i);
constexpr void
g (int& i)
@{
// Warns by default in C++20, in C++23 only with -Winvalid-constexpr.
f(i);
@}
@end smallexample
@opindex Winvalid-imported-macros
@opindex Wno-invalid-imported-macros
@item -Winvalid-imported-macros
Verify all imported macro definitions are valid at the end of
compilation. This is not enabled by default, as it requires
additional processing to determine. It may be useful when preparing
sets of header-units to ensure consistent macros.
@opindex Wliteral-suffix
@opindex Wno-literal-suffix
@item -Wno-literal-suffix @r{(C++ and Objective-C++ only)}
Do not warn when a string or character literal is followed by a
ud-suffix which does not begin with an underscore. As a conforming
extension, GCC treats such suffixes as separate preprocessing tokens
in order to maintain backwards compatibility with code that uses
formatting macros from @code{<inttypes.h>}. For example:
@smallexample
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <stdio.h>
int main() @{
int64_t i64 = 123;
printf("My int64: %" PRId64"\n", i64);
@}
@end smallexample
In this case, @code{PRId64} is treated as a separate preprocessing token.
This option also controls warnings when a user-defined literal
operator is declared with a literal suffix identifier that doesn't
begin with an underscore. Literal suffix identifiers that don't begin
with an underscore are reserved for future standardization.
These warnings are enabled by default.
@opindex Wnarrowing
@opindex Wno-narrowing
@item -Wno-narrowing @r{(C++ and Objective-C++ only)}
For C++11 and later standards, narrowing conversions are diagnosed by default,
as required by the standard. A narrowing conversion from a constant produces
an error, and a narrowing conversion from a non-constant produces a warning,
but @option{-Wno-narrowing} suppresses the diagnostic.
Note that this does not affect the meaning of well-formed code;
narrowing conversions are still considered ill-formed in SFINAE contexts.
With @option{-Wnarrowing} in C++98, warn when a narrowing
conversion prohibited by C++11 occurs within
@samp{@{ @}}, e.g.
@smallexample
int i = @{ 2.2 @}; // error: narrowing from double to int
@end smallexample
This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
@opindex Wnoexcept
@opindex Wno-noexcept
@item -Wnoexcept @r{(C++ and Objective-C++ only)}
Warn when a noexcept-expression evaluates to false because of a call
to a function that does not have a non-throwing exception
specification (i.e. @code{throw()} or @code{noexcept}) but is known by
the compiler to never throw an exception.
@opindex Wnoexcept-type
@opindex Wno-noexcept-type
@item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
Warn if the C++17 feature making @code{noexcept} part of a function
type changes the mangled name of a symbol relative to C++14. Enabled
by @option{-Wabi} and @option{-Wc++17-compat}.
As an example:
@smallexample
template <class T> void f(T t) @{ t(); @};
void g() noexcept;
void h() @{ f(g); @}
@end smallexample
@noindent
In C++14, @code{f} calls @code{f<void(*)()>}, but in
C++17 it calls @code{f<void(*)()noexcept>}.
@opindex Wclass-memaccess
@opindex Wno-class-memaccess
@item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
Warn when the destination of a call to a raw memory function such as
@code{memset} or @code{memcpy} is an object of class type, and when writing
into such an object might bypass the class non-trivial or deleted constructor
or copy assignment, violate const-correctness or encapsulation, or corrupt
virtual table pointers. Modifying the representation of such objects may
violate invariants maintained by member functions of the class. For example,
the call to @code{memset} below is undefined because it modifies a non-trivial
class object and is, therefore, diagnosed. The safe way to either initialize
or clear the storage of objects of such types is by using the appropriate
constructor or assignment operator, if one is available.
@smallexample
std::string str = "abc";
memset (&str, 0, sizeof str);
@end smallexample
The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
Explicitly casting the pointer to the class object to @code{void *} or
to a type that can be safely accessed by the raw memory function suppresses
the warning.
@opindex Wnon-virtual-dtor
@opindex Wno-non-virtual-dtor
@item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
Warn when a class has virtual functions and an accessible non-virtual
destructor itself or in an accessible polymorphic base class, in which
case it is possible but unsafe to delete an instance of a derived
class through a pointer to the class itself or base class. This
warning is automatically enabled if @option{-Weffc++} is specified.
The @option{-Wdelete-non-virtual-dtor} option (enabled by @option{-Wall})
should be preferred because it warns about the unsafe cases without false
positives.
@opindex Wregister
@opindex Wno-register
@item -Wregister @r{(C++ and Objective-C++ only)}
Warn on uses of the @code{register} storage class specifier, except
when it is part of the GNU @ref{Explicit Register Variables} extension.
The use of the @code{register} keyword as storage class specifier has
been deprecated in C++11 and removed in C++17.
Enabled by default with @option{-std=c++17}.
@opindex Wreorder
@opindex Wno-reorder
@cindex reordering, warning
@cindex warning for reordering of member initializers
@item -Wreorder @r{(C++ and Objective-C++ only)}
Warn when the order of member initializers given in the code does not
match the order in which they must be executed. For instance:
@smallexample
struct A @{
int i;
int j;
A(): j (0), i (1) @{ @}
@};
@end smallexample
@noindent
The compiler rearranges the member initializers for @code{i}
and @code{j} to match the declaration order of the members, emitting
a warning to that effect. This warning is enabled by @option{-Wall}.
@opindex Wpessimizing-move
@opindex Wno-pessimizing-move
@item -Wno-pessimizing-move @r{(C++ and Objective-C++ only)}
This warning warns when a call to @code{std::move} prevents copy
elision. A typical scenario when copy elision can occur is when returning in
a function with a class return type, when the expression being returned is the
name of a non-volatile automatic object, and is not a function parameter, and
has the same type as the function return type.
@smallexample
struct T @{
@dots{}
@};
T fn()
@{
T t;
@dots{}
return std::move (t);
@}
@end smallexample
But in this example, the @code{std::move} call prevents copy elision.
This warning is enabled by @option{-Wall}.
@opindex Wredundant-move
@opindex Wno-redundant-move
@item -Wno-redundant-move @r{(C++ and Objective-C++ only)}
This warning warns about redundant calls to @code{std::move}; that is, when
a move operation would have been performed even without the @code{std::move}
call. This happens because the compiler is forced to treat the object as if
it were an rvalue in certain situations such as returning a local variable,
where copy elision isn't applicable. Consider:
@smallexample
struct T @{
@dots{}
@};
T fn(T t)
@{
@dots{}
return std::move (t);
@}
@end smallexample
Here, the @code{std::move} call is redundant. Because G++ implements Core
Issue 1579, another example is:
@smallexample
struct T @{ // convertible to U
@dots{}
@};
struct U @{
@dots{}
@};
U fn()
@{
T t;
@dots{}
return std::move (t);
@}
@end smallexample
In this example, copy elision isn't applicable because the type of the
expression being returned and the function return type differ, yet G++
treats the return value as if it were designated by an rvalue.
This warning is enabled by @option{-Wextra}.
@opindex Wrange-loop-construct
@opindex Wno-range-loop-construct
@item -Wrange-loop-construct @r{(C++ and Objective-C++ only)}
This warning warns when a C++ range-based for-loop is creating an unnecessary
copy. This can happen when the range declaration is not a reference, but
probably should be. For example:
@smallexample
struct S @{ char arr[128]; @};
void fn () @{
S arr[5];
for (const auto x : arr) @{ @dots{} @}
@}
@end smallexample
It does not warn when the type being copied is a trivially-copyable type whose
size is less than 64 bytes.
This warning also warns when a loop variable in a range-based for-loop is
initialized with a value of a different type resulting in a copy. For example:
@smallexample
void fn() @{
int arr[10];
for (const double &x : arr) @{ @dots{} @}
@}
@end smallexample
In the example above, in every iteration of the loop a temporary value of
type @code{double} is created and destroyed, to which the reference
@code{const double &} is bound.
This warning is enabled by @option{-Wall}.
@opindex Wredundant-tags
@opindex Wno-redundant-tags
@item -Wredundant-tags @r{(C++ and Objective-C++ only)}
Warn about redundant class-key and enum-key in references to class types
and enumerated types in contexts where the key can be eliminated without
causing an ambiguity. For example:
@smallexample
struct foo;
struct foo *p; // warn that keyword struct can be eliminated
@end smallexample
@noindent
On the other hand, in this example there is no warning:
@smallexample
struct foo;
void foo (); // "hides" struct foo
void bar (struct foo&); // no warning, keyword struct is necessary
@end smallexample
@opindex Wsubobject-linkage
@opindex Wno-subobject-linkage
@item -Wno-subobject-linkage @r{(C++ and Objective-C++ only)}
Do not warn
if a class type has a base or a field whose type uses the anonymous
namespace or depends on a type with no linkage. If a type A depends on
a type B with no or internal linkage, defining it in multiple
translation units would be an ODR violation because the meaning of B
is different in each translation unit. If A only appears in a single
translation unit, the best way to silence the warning is to give it
internal linkage by putting it in an anonymous namespace as well. The
compiler doesn't give this warning for types defined in the main .C
file, as those are unlikely to have multiple definitions.
@option{-Wsubobject-linkage} is enabled by default.
@opindex Weffc++
@opindex Wno-effc++
@item -Weffc++ @r{(C++ and Objective-C++ only)}
Warn about violations of the following style guidelines from Scott Meyers'
@cite{Effective C++} series of books:
@itemize @bullet
@item
Define a copy constructor and an assignment operator for classes
with dynamically-allocated memory.
@item
Prefer initialization to assignment in constructors.
@item
Have @code{operator=} return a reference to @code{*this}.
@item
Don't try to return a reference when you must return an object.
@item
Distinguish between prefix and postfix forms of increment and
decrement operators.
@item
Never overload @code{&&}, @code{||}, or @code{,}.
@end itemize
This option also enables @option{-Wnon-virtual-dtor}, which is also
one of the effective C++ recommendations. However, the check is
extended to warn about the lack of virtual destructor in accessible
non-polymorphic bases classes too.
When selecting this option, be aware that the standard library
headers do not obey all of these guidelines; use @samp{grep -v}
to filter out those warnings.
@opindex Wexceptions
@opindex Wno-exceptions
@item -Wno-exceptions @r{(C++ and Objective-C++ only)}
Disable the warning about the case when an exception handler is shadowed by
another handler, which can point out a wrong ordering of exception handlers.
@opindex Wstrict-null-sentinel
@opindex Wno-strict-null-sentinel
@item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
Warn about the use of an uncasted @code{NULL} as sentinel. When
compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
to @code{__null}. Although it is a null pointer constant rather than a
null pointer, it is guaranteed to be of the same size as a pointer.
But this use is not portable across different compilers.
@opindex Wno-non-template-friend
@opindex Wnon-template-friend
@item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
Disable warnings when non-template friend functions are declared
within a template. In very old versions of GCC that predate implementation
of the ISO standard, declarations such as
@samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
could be interpreted as a particular specialization of a template
function; the warning exists to diagnose compatibility problems,
and is enabled by default.
@opindex Wold-style-cast
@opindex Wno-old-style-cast
@item -Wold-style-cast @r{(C++ and Objective-C++ only)}
Warn if an old-style (C-style) cast to a non-void type is used within
a C++ program. The new-style casts (@code{dynamic_cast},
@code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
less vulnerable to unintended effects and much easier to search for.
@opindex Woverloaded-virtual
@opindex Wno-overloaded-virtual
@cindex overloaded virtual function, warning
@cindex warning for overloaded virtual function
@item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
@itemx -Woverloaded-virtual=@var{n}
Warn when a function declaration hides virtual functions from a
base class. For example, in:
@smallexample
struct A @{
virtual void f();
@};
struct B: public A @{
void f(int); // does not override
@};
@end smallexample
the @code{A} class version of @code{f} is hidden in @code{B}, and code
like:
@smallexample
B* b;
b->f();
@end smallexample
@noindent
fails to compile.
In cases where the different signatures are not an accident, the
simplest solution is to add a using-declaration to the derived class
to un-hide the base function, e.g. add @code{using A::f;} to @code{B}.
The optional level suffix controls the behavior when all the
declarations in the derived class override virtual functions in the
base class, even if not all of the base functions are overridden:
@smallexample
struct C @{
virtual void f();
virtual void f(int);
@};
struct D: public C @{
void f(int); // does override
@}
@end smallexample
This pattern is less likely to be a mistake; if D is only used
virtually, the user might have decided that the base class semantics
for some of the overloads are fine.
At level 1, this case does not warn; at level 2, it does.
@option{-Woverloaded-virtual} by itself selects level 2. Level 1 is
included in @option{-Wall}.
@opindex Wno-pmf-conversions
@opindex Wpmf-conversions
@item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
Disable the diagnostic for converting a bound pointer to member function
to a plain pointer.
@opindex Wsign-promo
@opindex Wno-sign-promo
@item -Wsign-promo @r{(C++ and Objective-C++ only)}
Warn when overload resolution chooses a promotion from unsigned or
enumerated type to a signed type, over a conversion to an unsigned type of
the same size. Previous versions of G++ tried to preserve
unsignedness, but the standard mandates the current behavior.
@opindex Wtemplates
@opindex Wno-templates
@item -Wtemplates @r{(C++ and Objective-C++ only)}
Warn when a primary template declaration is encountered. Some coding
rules disallow templates, and this may be used to enforce that rule.
The warning is inactive inside a system header file, such as the STL, so
one can still use the STL. One may also instantiate or specialize
templates.
@opindex Wmismatched-new-delete
@opindex Wno-mismatched-new-delete
@item -Wmismatched-new-delete @r{(C++ and Objective-C++ only)}
Warn for mismatches between calls to @code{operator new} or @code{operator
delete} and the corresponding call to the allocation or deallocation function.
This includes invocations of C++ @code{operator delete} with pointers
returned from either mismatched forms of @code{operator new}, or from other
functions that allocate objects for which the @code{operator delete} isn't
a suitable deallocator, as well as calls to other deallocation functions
with pointers returned from @code{operator new} for which the deallocation
function isn't suitable.
For example, the @code{delete} expression in the function below is diagnosed
because it doesn't match the array form of the @code{new} expression
the pointer argument was returned from. Similarly, the call to @code{free}
is also diagnosed.
@smallexample
void f ()
@{
int *a = new int[n];
delete a; // warning: mismatch in array forms of expressions
char *p = new char[n];
free (p); // warning: mismatch between new and free
@}
@end smallexample
The related option @option{-Wmismatched-dealloc} diagnoses mismatches
involving allocation and deallocation functions other than @code{operator
new} and @code{operator delete}.
@option{-Wmismatched-new-delete} is included in @option{-Wall}.
@opindex Wmismatched-tags
@opindex Wno-mismatched-tags
@item -Wmismatched-tags @r{(C++ and Objective-C++ only)}
Warn for declarations of structs, classes, and class templates and their
specializations with a class-key that does not match either the definition
or the first declaration if no definition is provided.
For example, the declaration of @code{struct Object} in the argument list
of @code{draw} triggers the warning. To avoid it, either remove the redundant
class-key @code{struct} or replace it with @code{class} to match its definition.
@smallexample
class Object @{
public:
virtual ~Object () = 0;
@};
void draw (struct Object*);
@end smallexample
It is not wrong to declare a class with the class-key @code{struct} as
the example above shows. The @option{-Wmismatched-tags} option is intended
to help achieve a consistent style of class declarations. In code that is
intended to be portable to Windows-based compilers the warning helps prevent
unresolved references due to the difference in the mangling of symbols
declared with different class-keys. The option can be used either on its
own or in conjunction with @option{-Wredundant-tags}.
@opindex Wmultiple-inheritance
@opindex Wno-multiple-inheritance
@item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
Warn when a class is defined with multiple direct base classes. Some
coding rules disallow multiple inheritance, and this may be used to
enforce that rule. The warning is inactive inside a system header file,
such as the STL, so one can still use the STL. One may also define
classes that indirectly use multiple inheritance.
@opindex Wvirtual-inheritance
@opindex Wno-virtual-inheritance
@item -Wvirtual-inheritance
Warn when a class is defined with a virtual direct base class. Some
coding rules disallow multiple inheritance, and this may be used to
enforce that rule. The warning is inactive inside a system header file,
such as the STL, so one can still use the STL. One may also define
classes that indirectly use virtual inheritance.
@opindex Wvirtual-move-assign
@opindex Wno-virtual-move-assign
@item -Wno-virtual-move-assign
Suppress warnings about inheriting from a virtual base with a
non-trivial C++11 move assignment operator. This is dangerous because
if the virtual base is reachable along more than one path, it is
moved multiple times, which can mean both objects end up in the
moved-from state. If the move assignment operator is written to avoid
moving from a moved-from object, this warning can be disabled.
@opindex Wnamespaces
@opindex Wno-namespaces
@item -Wnamespaces
Warn when a namespace definition is opened. Some coding rules disallow
namespaces, and this may be used to enforce that rule. The warning is
inactive inside a system header file, such as the STL, so one can still
use the STL. One may also use using directives and qualified names.
@opindex Wtemplate-id-cdtor
@opindex Wno-template-id-cdtor
@item -Wno-template-id-cdtor @r{(C++ and Objective-C++ only)}
Disable the warning about the use of simple-template-id as the declarator-id
of a constructor or destructor, which became invalid in C++20 via DR 2237.
For example:
@smallexample
template<typename T> struct S @{
S<T>(); // should be S();
~S<T>(); // should be ~S();
@};
@end smallexample
@option{-Wtemplate-id-cdtor} is enabled by default with
@option{-std=c++20}; it is also enabled by @option{-Wc++20-compat}.
@opindex Wterminate
@opindex Wno-terminate
@item -Wno-terminate @r{(C++ and Objective-C++ only)}
Disable the warning about a throw-expression that will immediately
result in a call to @code{terminate}.
@opindex Wvexing-parse
@opindex Wno-vexing-parse
@item -Wno-vexing-parse @r{(C++ and Objective-C++ only)}
Warn about the most vexing parse syntactic ambiguity. This warns about
the cases when a declaration looks like a variable definition, but the
C++ language requires it to be interpreted as a function declaration.
For instance:
@smallexample
void f(double a) @{
int i(); // extern int i (void);
int n(int(a)); // extern int n (int);
@}
@end smallexample
Another example:
@smallexample
struct S @{ S(int); @};
void f(double a) @{
S x(int(a)); // extern struct S x (int);
S y(int()); // extern struct S y (int (*) (void));
S z(); // extern struct S z (void);
@}
@end smallexample
The warning will suggest options how to deal with such an ambiguity; e.g.,
it can suggest removing the parentheses or using braces instead.
This warning is enabled by default.
@opindex Wno-class-conversion
@opindex Wclass-conversion
@item -Wno-class-conversion @r{(C++ and Objective-C++ only)}
Do not warn when a conversion function converts an
object to the same type, to a base class of that type, or to void; such
a conversion function will never be called.
@opindex Wvolatile
@opindex Wno-volatile
@item -Wvolatile @r{(C++ and Objective-C++ only)}
Warn about deprecated uses of the @code{volatile} qualifier. This includes
postfix and prefix @code{++} and @code{--} expressions of
@code{volatile}-qualified types, using simple assignments where the left
operand is a @code{volatile}-qualified non-class type for their value,
compound assignments where the left operand is a @code{volatile}-qualified
non-class type, @code{volatile}-qualified function return type,
@code{volatile}-qualified parameter type, and structured bindings of a
@code{volatile}-qualified type. This usage was deprecated in C++20.
Enabled by default with @option{-std=c++20}.
@opindex Wzero-as-null-pointer-constant
@opindex Wno-zero-as-null-pointer-constant
@item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
Warn when a literal @samp{0} is used as null pointer constant. This can
be useful to facilitate the conversion to @code{nullptr} in C++11.
@opindex Waligned-new
@opindex Wno-aligned-new
@item -Waligned-new
Warn about a new-expression of a type that requires greater alignment
than the @code{alignof(std::max_align_t)} but uses an allocation
function without an explicit alignment parameter. This option is
enabled by @option{-Wall}.
Normally this only warns about global allocation functions, but
@option{-Waligned-new=all} also warns about class member allocation
functions.
@opindex Wplacement-new
@opindex Wno-placement-new
@item -Wno-placement-new
@itemx -Wplacement-new=@var{n}
Warn about placement new expressions with undefined behavior, such as
constructing an object in a buffer that is smaller than the type of
the object. For example, the placement new expression below is diagnosed
because it attempts to construct an array of 64 integers in a buffer only
64 bytes large.
@smallexample
char buf [64];
new (buf) int[64];
@end smallexample
This warning is enabled by default.
@table @gcctabopt
@item -Wplacement-new=1
This is the default warning level of @option{-Wplacement-new}. At this
level the warning is not issued for some strictly undefined constructs that
GCC allows as extensions for compatibility with legacy code. For example,
the following @code{new} expression is not diagnosed at this level even
though it has undefined behavior according to the C++ standard because
it writes past the end of the one-element array.
@smallexample
struct S @{ int n, a[1]; @};
S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
new (s->a)int [32]();
@end smallexample
@item -Wplacement-new=2
At this level, in addition to diagnosing all the same constructs as at level
1, a diagnostic is also issued for placement new expressions that construct
an object in the last member of structure whose type is an array of a single
element and whose size is less than the size of the object being constructed.
While the previous example would be diagnosed, the following construct makes
use of the flexible member array extension to avoid the warning at level 2.
@smallexample
struct S @{ int n, a[]; @};
S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
new (s->a)int [32]();
@end smallexample
@end table
@opindex Wcatch-value
@opindex Wno-catch-value
@item -Wcatch-value
@itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
Warn about catch handlers that do not catch via reference.
With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
warn about polymorphic class types that are caught by value.
With @option{-Wcatch-value=2} warn about all class types that are caught
by value. With @option{-Wcatch-value=3} warn about all types that are
not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
@opindex Wconditionally-supported
@opindex Wno-conditionally-supported
@item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
Warn for conditionally-supported (C++11 [intro.defs]) constructs.
@opindex Wdelete-incomplete
@opindex Wno-delete-incomplete
@item -Wno-delete-incomplete @r{(C++ and Objective-C++ only)}
Do not warn when deleting a pointer to incomplete type, which may cause
undefined behavior at runtime. This warning is enabled by default.
@opindex Wextra-semi
@opindex Wno-extra-semi
@item -Wextra-semi @r{(C++, Objective-C++ only)}
Warn about redundant semicolons. There are various contexts in which an extra
semicolon can occur. One is a semicolon after in-class function definitions,
which is valid in all C++ dialects (and is never a pedwarn):
@smallexample
struct S @{
void foo () @{@};
@};
@end smallexample
Another is an extra semicolon at namespace scope, which has been allowed
since C++11 (therefore is a pedwarn in C++98):
@smallexample
struct S @{
@};
;
@end smallexample
And yet another is an extra semicolon in class definitions, which has been
allowed since C++11 (therefore is a pedwarn in C++98):
@smallexample
struct S @{
int a;
;
@};
@end smallexample
@opindex Wno-global-module
@opindex Wglobal-module
@item -Wno-global-module @r{(C++ and Objective-C++ only)}
Disable the diagnostic for when the global module fragment of a module
unit does not consist only of preprocessor directives.
@opindex Winaccessible-base
@opindex Wno-inaccessible-base
@item -Wno-inaccessible-base @r{(C++, Objective-C++ only)}
This option controls warnings
when a base class is inaccessible in a class derived from it due to
ambiguity. The warning is enabled by default.
Note that the warning for ambiguous virtual
bases is enabled by the @option{-Wextra} option.
@smallexample
@group
struct A @{ int a; @};
struct B : A @{ @};
struct C : B, A @{ @};
@end group
@end smallexample
@opindex Winherited-variadic-ctor
@opindex Wno-inherited-variadic-ctor
@item -Wno-inherited-variadic-ctor
Suppress warnings about use of C++11 inheriting constructors when the
base class inherited from has a C variadic constructor; the warning is
on by default because the ellipsis is not inherited.
@opindex Wno-invalid-offsetof
@opindex Winvalid-offsetof
@item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
Suppress warnings from applying the @code{offsetof} macro to a non-POD
type. According to the 2014 ISO C++ standard, applying @code{offsetof}
to a non-standard-layout type is undefined. In existing C++ implementations,
however, @code{offsetof} typically gives meaningful results.
This flag is for users who are aware that they are
writing nonportable code and who have deliberately chosen to ignore the
warning about it.
The restrictions on @code{offsetof} may be relaxed in a future version
of the C++ standard.
@opindex Wsized-deallocation
@opindex Wno-sized-deallocation
@item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
Warn about a definition of an unsized deallocation function
@smallexample
void operator delete (void *) noexcept;
void operator delete[] (void *) noexcept;
@end smallexample
without a definition of the corresponding sized deallocation function
@smallexample
void operator delete (void *, std::size_t) noexcept;
void operator delete[] (void *, std::size_t) noexcept;
@end smallexample
or vice versa. Enabled by @option{-Wextra} along with
@option{-fsized-deallocation}.
@opindex Wno-suggest-final-types
@opindex Wsuggest-final-types
@item -Wsuggest-final-types
Warn about types with virtual methods where code quality would be improved
if the type were declared with the C++11 @code{final} specifier,
or, if possible,
declared in an anonymous namespace. This allows GCC to more aggressively
devirtualize the polymorphic calls. This warning is more effective with
link-time optimization,
where the information about the class hierarchy graph is
more complete.
@opindex Wno-suggest-final-methods
@opindex Wsuggest-final-methods
@item -Wsuggest-final-methods
Warn about virtual methods where code quality would be improved if the method
were declared with the C++11 @code{final} specifier,
or, if possible, its type were
declared in an anonymous namespace or with the @code{final} specifier.
This warning is
more effective with link-time optimization, where the information about the
class hierarchy graph is more complete. It is recommended to first consider
suggestions of @option{-Wsuggest-final-types} and then rebuild with new
annotations.
@opindex Wsuggest-override
@opindex Wno-suggest-override
@item -Wsuggest-override
Warn about overriding virtual functions that are not marked with the
@code{override} keyword.
@opindex Wconversion-null
@opindex Wno-conversion-null
@item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
Do not warn for conversions between @code{NULL} and non-pointer
types. @option{-Wconversion-null} is enabled by default.
@end table
@node Objective-C and Objective-C++ Dialect Options
@section Options Controlling Objective-C and Objective-C++ Dialects
@cindex compiler options, Objective-C and Objective-C++
@cindex Objective-C and Objective-C++ options, command-line
@cindex options, Objective-C and Objective-C++
(NOTE: This manual does not describe the Objective-C and Objective-C++
languages themselves. @xref{Standards,,Language Standards
Supported by GCC}, for references.)
This section describes the command-line options that are only meaningful
for Objective-C and Objective-C++ programs. You can also use most of
the language-independent GNU compiler options.
For example, you might compile a file @file{some_class.m} like this:
@smallexample
gcc -g -fgnu-runtime -O -c some_class.m
@end smallexample
@noindent
In this example, @option{-fgnu-runtime} is an option meant only for
Objective-C and Objective-C++ programs; you can use the other options with
any language supported by GCC@.
Note that since Objective-C is an extension of the C language, Objective-C
compilations may also use options specific to the C front-end (e.g.,
@option{-Wtraditional}). Similarly, Objective-C++ compilations may use
C++-specific options (e.g., @option{-Wabi}).
Here is a list of options that are @emph{only} for compiling Objective-C
and Objective-C++ programs:
@table @gcctabopt
@opindex fconstant-string-class
@item -fconstant-string-class=@var{class-name}
Use @var{class-name} as the name of the class to instantiate for each
literal string specified with the syntax @code{@@"@dots{}"}. The default
class name is @code{NXConstantString} if the GNU runtime is being used, and
@code{NSConstantString} if the NeXT runtime is being used (see below). On
Darwin / macOS platforms, the @option{-fconstant-cfstrings} option, if
also present, overrides the @option{-fconstant-string-class} setting and cause
@code{@@"@dots{}"} literals to be laid out as constant CoreFoundation strings.
Note that @option{-fconstant-cfstrings} is an alias for the target-specific
@option{-mconstant-cfstrings} equivalent.
@opindex fgnu-runtime
@item -fgnu-runtime
Generate object code compatible with the standard GNU Objective-C
runtime. This is the default for most types of systems.
@opindex fnext-runtime
@item -fnext-runtime
Generate output compatible with the NeXT runtime. This is the default
for NeXT-based systems, including Darwin / macOS. The macro
@code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
used.
@opindex fno-nil-receivers
@opindex fnil-receivers
@item -fno-nil-receivers
Assume that all Objective-C message dispatches (@code{[receiver
message:arg]}) in this translation unit ensure that the receiver is
not @code{nil}. This allows for more efficient entry points in the
runtime to be used. This option is only available in conjunction with
the NeXT runtime and ABI version 0 or 1.
@opindex fobjc-abi-version
@item -fobjc-abi-version=@var{n}
Use version @var{n} of the Objective-C ABI for the selected runtime.
This option is currently supported only for the NeXT runtime. In that
case, Version 0 is the traditional (32-bit) ABI without support for
properties and other Objective-C 2.0 additions. Version 1 is the
traditional (32-bit) ABI with support for properties and other
Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
nothing is specified, the default is Version 0 on 32-bit target
machines, and Version 2 on 64-bit target machines.
@opindex fobjc-call-cxx-cdtors
@item -fobjc-call-cxx-cdtors
For each Objective-C class, check if any of its instance variables is a
C++ object with a non-trivial default constructor. If so, synthesize a
special @code{- (id) .cxx_construct} instance method which runs
non-trivial default constructors on any such instance variables, in order,
and then return @code{self}. Similarly, check if any instance variable
is a C++ object with a non-trivial destructor, and if so, synthesize a
special @code{- (void) .cxx_destruct} method which runs
all such default destructors, in reverse order.
The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
methods thusly generated only operate on instance variables
declared in the current Objective-C class, and not those inherited
from superclasses. It is the responsibility of the Objective-C
runtime to invoke all such methods in an object's inheritance
hierarchy. The @code{- (id) .cxx_construct} methods are invoked
by the runtime immediately after a new object instance is allocated;
the @code{- (void) .cxx_destruct} methods are invoked immediately
before the runtime deallocates an object instance.
As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
support for invoking the @code{- (id) .cxx_construct} and
@code{- (void) .cxx_destruct} methods.
@opindex fobjc-direct-dispatch
@item -fobjc-direct-dispatch
Allow fast jumps to the message dispatcher. On Darwin this is
accomplished via the comm page.
@opindex fobjc-exceptions
@item -fobjc-exceptions
Enable syntactic support for structured exception handling in
Objective-C, similar to what is offered by C++. This option
is required to use the Objective-C keywords @code{@@try},
@code{@@throw}, @code{@@catch}, @code{@@finally} and
@code{@@synchronized}. This option is available with both the GNU
runtime and the NeXT runtime (but not available in conjunction with
the NeXT runtime on Mac OS X 10.2 and earlier).
@opindex fobjc-gc
@item -fobjc-gc
Enable garbage collection (GC) in Objective-C and Objective-C++
programs. This option is only available with the NeXT runtime; the
GNU runtime has a different garbage collection implementation that
does not require special compiler flags.
@opindex fobjc-nilcheck
@item -fobjc-nilcheck
For the NeXT runtime with version 2 of the ABI, check for a nil
receiver in method invocations before doing the actual method call.
This is the default and can be disabled using
@option{-fno-objc-nilcheck}. Class methods and super calls are never
checked for nil in this way no matter what this flag is set to.
Currently this flag does nothing when the GNU runtime, or an older
version of the NeXT runtime ABI, is used.
@opindex fobjc-std
@item -fobjc-std=objc1
Conform to the language syntax of Objective-C 1.0, the language
recognized by GCC 4.0. This only affects the Objective-C additions to
the C/C++ language; it does not affect conformance to C/C++ standards,
which is controlled by the separate C/C++ dialect option flags. When
this option is used with the Objective-C or Objective-C++ compiler,
any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
This is useful if you need to make sure that your Objective-C code can
be compiled with older versions of GCC@.
@opindex freplace-objc-classes
@item -freplace-objc-classes
Emit a special marker instructing @command{ld(1)} not to statically link in
the resulting object file, and allow @command{dyld(1)} to load it in at
run time instead. This is used in conjunction with the Fix-and-Continue
debugging mode, where the object file in question may be recompiled and
dynamically reloaded in the course of program execution, without the need
to restart the program itself. Currently, Fix-and-Continue functionality
is only available in conjunction with the NeXT runtime on Mac OS X 10.3
and later.
@opindex fzero-link
@item -fzero-link
When compiling for the NeXT runtime, the compiler ordinarily replaces calls
to @code{objc_getClass("@dots{}")} (when the name of the class is known at
compile time) with static class references that get initialized at load time,
which improves run-time performance. Specifying the @option{-fzero-link} flag
suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
to be retained. This is useful in Zero-Link debugging mode, since it allows
for individual class implementations to be modified during program execution.
The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
regardless of command-line options.
@opindex fno-local-ivars
@opindex flocal-ivars
@item -fno-local-ivars
By default instance variables in Objective-C can be accessed as if
they were local variables from within the methods of the class they're
declared in. This can lead to shadowing between instance variables
and other variables declared either locally inside a class method or
globally with the same name. Specifying the @option{-fno-local-ivars}
flag disables this behavior thus avoiding variable shadowing issues.
@opindex fivar-visibility
@item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
Set the default instance variable visibility to the specified option
so that instance variables declared outside the scope of any access
modifier directives default to the specified visibility.
@opindex gen-decls
@item -gen-decls
Dump interface declarations for all classes seen in the source file to a
file named @file{@var{sourcename}.decl}.
@opindex Wassign-intercept
@opindex Wno-assign-intercept
@item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
Warn whenever an Objective-C assignment is being intercepted by the
garbage collector.
@opindex Wproperty-assign-default
@opindex Wno-property-assign-default
@item -Wno-property-assign-default @r{(Objective-C and Objective-C++ only)}
Do not warn if a property for an Objective-C object has no assign
semantics specified.
@opindex Wno-protocol
@opindex Wprotocol
@item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
If a class is declared to implement a protocol, a warning is issued for
every method in the protocol that is not implemented by the class. The
default behavior is to issue a warning for every method not explicitly
implemented in the class, even if a method implementation is inherited
from the superclass. If you use the @option{-Wno-protocol} option, then
methods inherited from the superclass are considered to be implemented,
and no warning is issued for them.
@opindex Wobjc-root-class
@item -Wobjc-root-class @r{(Objective-C and Objective-C++ only)}
Warn if a class interface lacks a superclass. Most classes will inherit
from @code{NSObject} (or @code{Object}) for example. When declaring
classes intended to be root classes, the warning can be suppressed by
marking their interfaces with @code{__attribute__((objc_root_class))}.
@opindex Wselector
@opindex Wno-selector
@item -Wselector @r{(Objective-C and Objective-C++ only)}
Warn if multiple methods of different types for the same selector are
found during compilation. The check is performed on the list of methods
in the final stage of compilation. Additionally, a check is performed
for each selector appearing in a @code{@@selector(@dots{})}
expression, and a corresponding method for that selector has been found
during compilation. Because these checks scan the method table only at
the end of compilation, these warnings are not produced if the final
stage of compilation is not reached, for example because an error is
found during compilation, or because the @option{-fsyntax-only} option is
being used.
@opindex Wstrict-selector-match
@opindex Wno-strict-selector-match
@item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
Warn if multiple methods with differing argument and/or return types are
found for a given selector when attempting to send a message using this
selector to a receiver of type @code{id} or @code{Class}. When this flag
is off (which is the default behavior), the compiler omits such warnings
if any differences found are confined to types that share the same size
and alignment.
@opindex Wundeclared-selector
@opindex Wno-undeclared-selector
@item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
Warn if a @code{@@selector(@dots{})} expression referring to an
undeclared selector is found. A selector is considered undeclared if no
method with that name has been declared before the
@code{@@selector(@dots{})} expression, either explicitly in an
@code{@@interface} or @code{@@protocol} declaration, or implicitly in
an @code{@@implementation} section. This option always performs its
checks as soon as a @code{@@selector(@dots{})} expression is found,
while @option{-Wselector} only performs its checks in the final stage of
compilation. This also enforces the coding style convention
that methods and selectors must be declared before being used.
@opindex print-objc-runtime-info
@item -print-objc-runtime-info
Generate C header describing the largest structure that is passed by
value, if any.
@end table
@node Diagnostic Message Formatting Options
@section Options to Control Diagnostic Messages Formatting
@cindex options to control diagnostics formatting
@cindex diagnostic messages
@cindex message formatting
Traditionally, diagnostic messages have been formatted irrespective of
the output device's aspect (e.g.@: its width, @dots{}). You can use the
options described below
to control the formatting algorithm for diagnostic messages,
e.g.@: how many characters per line, how often source location
information should be reported. Note that some language front ends may not
honor these options.
@table @gcctabopt
@opindex fmessage-length
@item -fmessage-length=@var{n}
Try to format error messages so that they fit on lines of about
@var{n} characters. If @var{n} is zero, then no line-wrapping is
done; each error message appears on a single line. This is the
default for all front ends.
Note - this option also affects the display of the @samp{#error} and
@samp{#warning} pre-processor directives, and the @samp{deprecated}
function/type/variable attribute. It does not however affect the
@samp{pragma GCC warning} and @samp{pragma GCC error} pragmas.
@item -fdiagnostics-plain-output
This option requests that diagnostic output look as plain as possible, which
may be useful when running @command{dejagnu} or other utilities that need to
parse diagnostics output and prefer that it remain more stable over time.
@option{-fdiagnostics-plain-output} is currently equivalent to the following
options:
@gccoptlist{-fno-diagnostics-show-caret
-fno-diagnostics-show-line-numbers
-fdiagnostics-color=never
-fdiagnostics-urls=never
-fdiagnostics-path-format=separate-events
-fdiagnostics-text-art-charset=none
-fno-diagnostics-show-event-links}
In the future, if GCC changes the default appearance of its diagnostics, the
corresponding option to disable the new behavior will be added to this list.
@opindex fdiagnostics-show-location
@item -fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages
reporter to emit source location information @emph{once}; that is, in
case the message is too long to fit on a single physical line and has to
be wrapped, the source location won't be emitted (as prefix) again,
over and over, in subsequent continuation lines. This is the default
behavior.
@item -fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic
messages reporter to emit the same source location information (as
prefix) for physical lines that result from the process of breaking
a message which is too long to fit on a single line.
@opindex fdiagnostics-color
@cindex highlight, color
@vindex GCC_COLORS @r{environment variable}
@item -fdiagnostics-color[=@var{WHEN}]
@itemx -fno-diagnostics-color
Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
or @samp{auto}. The default depends on how the compiler has been configured,
it can be any of the above @var{WHEN} options or also @samp{never}
if @env{GCC_COLORS} environment variable isn't present in the environment,
and @samp{auto} otherwise.
@samp{auto} makes GCC use color only when the standard error is a terminal,
and when not executing in an emacs shell.
The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
aliases for @option{-fdiagnostics-color=always} and
@option{-fdiagnostics-color=never}, respectively.
The colors are defined by the environment variable @env{GCC_COLORS}.
Its value is a colon-separated list of capabilities and Select Graphic
Rendition (SGR) substrings. SGR commands are interpreted by the
terminal or terminal emulator. (See the section in the documentation
of your text terminal for permitted values and their meanings as
character attributes.) These substring values are integers in decimal
representation and can be concatenated with semicolons.
Common values to concatenate include
@samp{1} for bold,
@samp{4} for underline,
@samp{5} for blink,
@samp{7} for inverse,
@samp{39} for default foreground color,
@samp{30} to @samp{37} for foreground colors,
@samp{90} to @samp{97} for 16-color mode foreground colors,
@samp{38;5;0} to @samp{38;5;255}
for 88-color and 256-color modes foreground colors,
@samp{49} for default background color,
@samp{40} to @samp{47} for background colors,
@samp{100} to @samp{107} for 16-color mode background colors,
and @samp{48;5;0} to @samp{48;5;255}
for 88-color and 256-color modes background colors.
The default @env{GCC_COLORS} is
@smallexample
error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
quote=01:path=01;36:fixit-insert=32:fixit-delete=31:\
diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
type-diff=01;32:fnname=01;32:targs=35:valid=01;31:invalid=01;32\
highlight-a=01;32:highlight-b=01;34
@end smallexample
@noindent
where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
@samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
@samp{01} is bold, and @samp{31} is red.
Setting @env{GCC_COLORS} to the empty string disables colors.
Supported capabilities are as follows.
@table @code
@vindex error GCC_COLORS @r{capability}
@item error=
SGR substring for error: markers.
@vindex warning GCC_COLORS @r{capability}
@item warning=
SGR substring for warning: markers.
@vindex note GCC_COLORS @r{capability}
@item note=
SGR substring for note: markers.
@vindex path GCC_COLORS @r{capability}
@item path=
SGR substring for colorizing paths of control-flow events as printed
via @option{-fdiagnostics-path-format=}, such as the identifiers of
individual events and lines indicating interprocedural calls and returns.
@vindex range1 GCC_COLORS @r{capability}
@item range1=
SGR substring for first additional range.
@vindex range2 GCC_COLORS @r{capability}
@item range2=
SGR substring for second additional range.
@vindex locus GCC_COLORS @r{capability}
@item locus=
SGR substring for location information, @samp{file:line} or
@samp{file:line:column} etc.
@vindex quote GCC_COLORS @r{capability}
@item quote=
SGR substring for information printed within quotes.
@vindex fnname GCC_COLORS @r{capability}
@item fnname=
SGR substring for names of C++ functions.
@vindex targs GCC_COLORS @r{capability}
@item targs=
SGR substring for C++ function template parameter bindings.
@vindex fixit-insert GCC_COLORS @r{capability}
@item fixit-insert=
SGR substring for fix-it hints suggesting text to
be inserted or replaced.
@vindex fixit-delete GCC_COLORS @r{capability}
@item fixit-delete=
SGR substring for fix-it hints suggesting text to
be deleted.
@vindex diff-filename GCC_COLORS @r{capability}
@item diff-filename=
SGR substring for filename headers within generated patches.
@vindex diff-hunk GCC_COLORS @r{capability}
@item diff-hunk=
SGR substring for the starts of hunks within generated patches.
@vindex diff-delete GCC_COLORS @r{capability}
@item diff-delete=
SGR substring for deleted lines within generated patches.
@vindex diff-insert GCC_COLORS @r{capability}
@item diff-insert=
SGR substring for inserted lines within generated patches.
@vindex type-diff GCC_COLORS @r{capability}
@item type-diff=
SGR substring for highlighting mismatching types within template
arguments in the C++ frontend.
@vindex valid GCC_COLORS @r{capability}
@item valid=
SGR substring for highlighting valid elements within text art diagrams.
@vindex invalid GCC_COLORS @r{capability}
@item invalid=
SGR substring for highlighting invalid elements within text art diagrams.
@vindex highlight-a GCC_COLORS @r{capability}
@vindex highlight-b GCC_COLORS @r{capability}
@item highlight-a=
@item highlight-b=
SGR substrings for contrasting two different things within diagnostics,
such as a pair of mismatching types.
See @option{-fdiagnostics-show-highlight-colors}.
@end table
@opindex fdiagnostics-urls
@cindex urls
@vindex GCC_URLS @r{environment variable}
@vindex TERM_URLS @r{environment variable}
@item -fdiagnostics-urls[=@var{WHEN}]
Use escape sequences to embed URLs in diagnostics. For example, when
@option{-fdiagnostics-show-option} emits text showing the command-line
option controlling a diagnostic, embed a URL for documentation of that
option.
@var{WHEN} is @samp{never}, @samp{always}, or @samp{auto}.
@samp{auto} makes GCC use URL escape sequences only when the standard error
is a terminal, and when not executing in an emacs shell or any graphical
terminal which is known to be incompatible with this feature, see below.
The default depends on how the compiler has been configured.
It can be any of the above @var{WHEN} options.
GCC can also be configured (via the
@option{--with-diagnostics-urls=auto-if-env} configure-time option)
so that the default is affected by environment variables.
Under such a configuration, GCC defaults to using @samp{auto}
if either @env{GCC_URLS} or @env{TERM_URLS} environment variables are
present and non-empty in the environment of the compiler, or @samp{never}
if neither are.
However, even with @option{-fdiagnostics-urls=always} the behavior is
dependent on those environment variables:
If @env{GCC_URLS} is set to empty or @samp{no}, do not embed URLs in
diagnostics. If set to @samp{st}, URLs use ST escape sequences.
If set to @samp{bel}, the default, URLs use BEL escape sequences.
Any other non-empty value enables the feature.
If @env{GCC_URLS} is not set, use @env{TERM_URLS} as a fallback.
Note: ST is an ANSI escape sequence, string terminator @samp{ESC \},
BEL is an ASCII character, CTRL-G that usually sounds like a beep.
At this time GCC tries to detect also a few terminals that are known to
not implement the URL feature, and have bugs or at least had bugs in
some versions that are still in use, where the URL escapes are likely
to misbehave, i.e. print garbage on the screen.
That list is currently xfce4-terminal, certain known to be buggy
gnome-terminal versions, the linux console, and mingw.
This check can be skipped with the @option{-fdiagnostics-urls=always}.
@opindex fno-diagnostics-show-option
@opindex fdiagnostics-show-option
@item -fno-diagnostics-show-option
By default, each diagnostic emitted includes text indicating the
command-line option that directly controls the diagnostic (if such an
option is known to the diagnostic machinery). Specifying the
@option{-fno-diagnostics-show-option} flag suppresses that behavior.
@opindex fno-diagnostics-show-caret
@opindex fdiagnostics-show-caret
@item -fno-diagnostics-show-caret
By default, each diagnostic emitted includes the original source line
and a caret @samp{^} indicating the column. This option suppresses this
information. The source line is truncated to @var{n} characters, if
the @option{-fmessage-length=n} option is given. When the output is done
to the terminal, the width is limited to the width given by the
@env{COLUMNS} environment variable or, if not set, to the terminal width.
@opindex fno-diagnostics-show-labels
@opindex fdiagnostics-show-labels
@item -fno-diagnostics-show-labels
By default, when printing source code (via @option{-fdiagnostics-show-caret}),
diagnostics can label ranges of source code with pertinent information, such
as the types of expressions:
@smallexample
printf ("foo %s bar", long_i + long_j);
~^ ~~~~~~~~~~~~~~~
| |
char * long int
@end smallexample
This option suppresses the printing of these labels (in the example above,
the vertical bars and the ``char *'' and ``long int'' text).
@opindex fno-diagnostics-show-event-links
@opindex fdiagnostics-show-event-links
@item -fno-diagnostics-show-event-links
By default, when printing execution paths (via
@option{-fdiagnostics-path-format=inline-events}), GCC will print lines
connecting related events, such as the line connecting events 1 and 2 in:
@smallexample
3 | if (p)
| ^
| |
| (1) following `false' branch (when `p' is NULL)... ->-+
| |
| |
|+------------------------------------------------------------+
4 || return 0;
5 || return *p;
|| ~
|| |
|+-------->(2) ...to here
| (3) dereference of NULL `p'
@end smallexample
This option suppresses the printing of such connector lines.
@opindex fno-diagnostics-show-cwe
@opindex fdiagnostics-show-cwe
@item -fno-diagnostics-show-cwe
Diagnostic messages can optionally have an associated
@uref{https://cwe.mitre.org/index.html, CWE} identifier.
GCC itself only provides such metadata for some of the @option{-fanalyzer}
diagnostics. GCC plugins may also provide diagnostics with such metadata.
By default, if this information is present, it will be printed with
the diagnostic. This option suppresses the printing of this metadata.
@opindex fno-diagnostics-show-rules
@opindex fdiagnostics-show-rules
@item -fno-diagnostics-show-rules
Diagnostic messages can optionally have rules associated with them, such
as from a coding standard, or a specification.
GCC itself does not do this for any of its diagnostics, but plugins may do so.
By default, if this information is present, it will be printed with
the diagnostic. This option suppresses the printing of this metadata.
@opindex fno-diagnostics-show-highlight-colors
@opindex fdiagnostics-show-highlight-colors
@item -fno-diagnostics-show-highlight-colors
GCC can use color for emphasis and contrast when printing diagnostic
messages and quoting the user's source.
For example, in
@smallexample
demo.c: In function `test_bad_format_string_args':
../../src/demo.c:25:18: warning: format `%i' expects argument of type `int', but argument 2 has type `const char *' [-Wformat=]
25 | printf("hello %i", msg);
| ~^ ~~~
| | |
| int const char *
| %s
@end smallexample
@itemize @bullet
@item
the @code{%i} and @code{int} in the message and the @code{int} in the
quoted source are colored using @code{highlight-a} (bold green by default),
and
@item
the @code{const char *} in the message and in the quoted source are both
colored using @code{highlight-b} (bold blue by default).
@end itemize
The intent is to draw the reader's eyes to the relationships between the
various aspects of the diagnostic message and the source, using color
to group related elements and distinguish between mismatching ones.
This additional colorization is enabled by default if color printing
is enabled (as per @option{-fdiagnostics-color=}), but it can be separately
disabled via @option{-fno-diagnostics-show-highlight-colors}.
@opindex fno-diagnostics-show-line-numbers
@opindex fdiagnostics-show-line-numbers
@item -fno-diagnostics-show-line-numbers
By default, when printing source code (via @option{-fdiagnostics-show-caret}),
a left margin is printed, showing line numbers. This option suppresses this
left margin.
@opindex fdiagnostics-minimum-margin-width
@item -fdiagnostics-minimum-margin-width=@var{width}
This option controls the minimum width of the left margin printed by
@option{-fdiagnostics-show-line-numbers}. It defaults to 6.
@opindex fdiagnostics-parseable-fixits
@item -fdiagnostics-parseable-fixits
Emit fix-it hints in a machine-parseable format, suitable for consumption
by IDEs. For each fix-it, a line will be printed after the relevant
diagnostic, starting with the string ``fix-it:''. For example:
@smallexample
fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
@end smallexample
The location is expressed as a half-open range, expressed as a count of
bytes, starting at byte 1 for the initial column. In the above example,
bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
given string:
@smallexample
00000000011111111112222222222
12345678901234567890123456789
gtk_widget_showall (dlg);
^^^^^^^^^^^^^^^^^^
gtk_widget_show_all
@end smallexample
The filename and replacement string escape backslash as ``\\", tab as ``\t'',
newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
(e.g. vertical tab as ``\013'').
An empty replacement string indicates that the given range is to be removed.
An empty range (e.g. ``45:3-45:3'') indicates that the string is to
be inserted at the given position.
@opindex fdiagnostics-generate-patch
@item -fdiagnostics-generate-patch
Print fix-it hints to stderr in unified diff format, after any diagnostics
are printed. For example:
@smallexample
--- test.c
+++ test.c
@@ -42,5 +42,5 @@
void show_cb(GtkDialog *dlg)
@{
- gtk_widget_showall(dlg);
+ gtk_widget_show_all(dlg);
@}
@end smallexample
The diff may or may not be colorized, following the same rules
as for diagnostics (see @option{-fdiagnostics-color}).
@opindex fdiagnostics-show-template-tree
@item -fdiagnostics-show-template-tree
In the C++ frontend, when printing diagnostics showing mismatching
template types, such as:
@smallexample
could not convert 'std::map<int, std::vector<double> >()'
from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
@end smallexample
the @option{-fdiagnostics-show-template-tree} flag enables printing a
tree-like structure showing the common and differing parts of the types,
such as:
@smallexample
map<
[...],
vector<
[double != float]>>
@end smallexample
The parts that differ are highlighted with color (``double'' and
``float'' in this case).
@opindex fno-elide-type
@opindex felide-type
@item -fno-elide-type
By default when the C++ frontend prints diagnostics showing mismatching
template types, common parts of the types are printed as ``[...]'' to
simplify the error message. For example:
@smallexample
could not convert 'std::map<int, std::vector<double> >()'
from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
@end smallexample
Specifying the @option{-fno-elide-type} flag suppresses that behavior.
This flag also affects the output of the
@option{-fdiagnostics-show-template-tree} flag.
@opindex fdiagnostics-path-format
@item -fdiagnostics-path-format=@var{KIND}
Specify how to print paths of control-flow events for diagnostics that
have such a path associated with them.
@var{KIND} is @samp{none}, @samp{separate-events}, or @samp{inline-events},
the default.
@samp{none} means to not print diagnostic paths.
@samp{separate-events} means to print a separate ``note'' diagnostic for
each event within the diagnostic. For example:
@smallexample
test.c:29:5: error: passing NULL as argument 1 to 'PyList_Append' which requires a non-NULL parameter
test.c:25:10: note: (1) when 'PyList_New' fails, returning NULL
test.c:27:3: note: (2) when 'i < count'
test.c:29:5: note: (3) when calling 'PyList_Append', passing NULL from (1) as argument 1
@end smallexample
@samp{inline-events} means to print the events ``inline'' within the source
code. This view attempts to consolidate the events into runs of
sufficiently-close events, printing them as labelled ranges within the source.
For example, the same events as above might be printed as:
@smallexample
'test': events 1-3
25 | list = PyList_New(0);
| ^~~~~~~~~~~~~
| |
| (1) when 'PyList_New' fails, returning NULL
26 |
27 | for (i = 0; i < count; i++) @{
| ~~~
| |
| (2) when 'i < count'
28 | item = PyLong_FromLong(random());
29 | PyList_Append(list, item);
| ~~~~~~~~~~~~~~~~~~~~~~~~~
| |
| (3) when calling 'PyList_Append', passing NULL from (1) as argument 1
@end smallexample
Interprocedural control flow is shown by grouping the events by stack frame,
and using indentation to show how stack frames are nested, pushed, and popped.
For example:
@smallexample
'test': events 1-2
|
| 133 | @{
| | ^
| | |
| | (1) entering 'test'
| 134 | boxed_int *obj = make_boxed_int (i);
| | ~~~~~~~~~~~~~~~~~~
| | |
| | (2) calling 'make_boxed_int'
|
+--> 'make_boxed_int': events 3-4
|
| 120 | @{
| | ^
| | |
| | (3) entering 'make_boxed_int'
| 121 | boxed_int *result = (boxed_int *)wrapped_malloc (sizeof (boxed_int));
| | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| | |
| | (4) calling 'wrapped_malloc'
|
+--> 'wrapped_malloc': events 5-6
|
| 7 | @{
| | ^
| | |
| | (5) entering 'wrapped_malloc'
| 8 | return malloc (size);
| | ~~~~~~~~~~~~~
| | |
| | (6) calling 'malloc'
|
<-------------+
|
'test': event 7
|
| 138 | free_boxed_int (obj);
| | ^~~~~~~~~~~~~~~~~~~~
| | |
| | (7) calling 'free_boxed_int'
|
(etc)
@end smallexample
@opindex fdiagnostics-show-path-depths
@item -fdiagnostics-show-path-depths
This option provides additional information when printing control-flow paths
associated with a diagnostic.
If this is option is provided then the stack depth will be printed for
each run of events within @option{-fdiagnostics-path-format=inline-events}.
If provided with @option{-fdiagnostics-path-format=separate-events}, then
the stack depth and function declaration will be appended when printing
each event.
This is intended for use by GCC developers and plugin developers when
debugging diagnostics that report interprocedural control flow.
@opindex fno-show-column
@opindex fshow-column
@item -fno-show-column
Do not print column numbers in diagnostics. This may be necessary if
diagnostics are being scanned by a program that does not understand the
column numbers, such as @command{dejagnu}.
@opindex fdiagnostics-column-unit
@item -fdiagnostics-column-unit=@var{UNIT}
Select the units for the column number. This affects traditional diagnostics
(in the absence of @option{-fno-show-column}), as well as JSON format
diagnostics if requested.
The default @var{UNIT}, @samp{display}, considers the number of display
columns occupied by each character. This may be larger than the number
of bytes required to encode the character, in the case of tab
characters, or it may be smaller, in the case of multibyte characters.
For example, the character ``GREEK SMALL LETTER PI (U+03C0)'' occupies one
display column, and its UTF-8 encoding requires two bytes; the character
``SLIGHTLY SMILING FACE (U+1F642)'' occupies two display columns, and
its UTF-8 encoding requires four bytes.
Setting @var{UNIT} to @samp{byte} changes the column number to the raw byte
count in all cases, as was traditionally output by GCC prior to version 11.1.0.
@opindex fdiagnostics-column-origin
@item -fdiagnostics-column-origin=@var{ORIGIN}
Select the origin for column numbers, i.e. the column number assigned to the
first column. The default value of 1 corresponds to traditional GCC
behavior and to the GNU style guide. Some utilities may perform better with an
origin of 0; any non-negative value may be specified.
@opindex fdiagnostics-escape-format
@item -fdiagnostics-escape-format=@var{FORMAT}
When GCC prints pertinent source lines for a diagnostic it normally attempts
to print the source bytes directly. However, some diagnostics relate to encoding
issues in the source file, such as malformed UTF-8, or issues with Unicode
normalization. These diagnostics are flagged so that GCC will escape bytes
that are not printable ASCII when printing their pertinent source lines.
This option controls how such bytes should be escaped.
The default @var{FORMAT}, @samp{unicode} displays Unicode characters that
are not printable ASCII in the form @samp{<U+XXXX>}, and bytes that do not
correspond to a Unicode character validly-encoded in UTF-8-encoded will be
displayed as hexadecimal in the form @samp{<XX>}.
For example, a source line containing the string @samp{before} followed by the
Unicode character U+03C0 (``GREEK SMALL LETTER PI'', with UTF-8 encoding
0xCF 0x80) followed by the byte 0xBF (a stray UTF-8 trailing byte), followed by
the string @samp{after} will be printed for such a diagnostic as:
@smallexample
before<U+03C0><BF>after
@end smallexample
Setting @var{FORMAT} to @samp{bytes} will display all non-printable-ASCII bytes
in the form @samp{<XX>}, thus showing the underlying encoding of non-ASCII
Unicode characters. For the example above, the following will be printed:
@smallexample
before<CF><80><BF>after
@end smallexample
@opindex fdiagnostics-text-art-charset
@item -fdiagnostics-text-art-charset=@var{CHARSET}
Some diagnostics can contain ``text art'' diagrams: visualizations created
from text, intended to be viewed in a monospaced font.
This option selects which characters should be used for printing such
diagrams, if any. @var{CHARSET} is @samp{none}, @samp{ascii}, @samp{unicode},
or @samp{emoji}.
The @samp{none} value suppresses the printing of such diagrams.
The @samp{ascii} value will ensure that such diagrams are pure ASCII
(``ASCII art''). The @samp{unicode} value will allow for conservative use of
unicode drawing characters (such as box-drawing characters). The @samp{emoji}
value further adds the possibility of emoji in the output (such as emitting
U+26A0 WARNING SIGN followed by U+FE0F VARIATION SELECTOR-16 to select the
emoji variant of the character).
The default is @samp{emoji}, except when the environment variable @env{LANG}
is set to @samp{C}, in which case the default is @samp{ascii}.
@opindex fdiagnostics-format
@item -fdiagnostics-format=@var{FORMAT}
Select a different format for printing diagnostics.
@var{FORMAT} is @samp{text}, @samp{sarif-stderr}, @samp{sarif-file},
@samp{json}, @samp{json-stderr}, or @samp{json-file}.
The default is @samp{text}.
The @samp{sarif-stderr} and @samp{sarif-file} formats both emit
diagnostics in SARIF Version 2.1.0 format, either to stderr, or to a file
named @file{@var{source}.sarif}, respectively.
The @samp{json} format is a synonym for @samp{json-stderr}.
The @samp{json-stderr} and @samp{json-file} formats are identical, apart from
where the JSON is emitted to - with the former, the JSON is emitted to stderr,
whereas with @samp{json-file} it is written to @file{@var{source}.gcc.json}.
The emitted JSON consists of a top-level JSON array containing JSON objects
representing the diagnostics.
Diagnostics can have child diagnostics. For example, this error and note:
@smallexample
misleading-indentation.c:15:3: warning: this 'if' clause does not
guard... [-Wmisleading-indentation]
15 | if (flag)
| ^~
misleading-indentation.c:17:5: note: ...this statement, but the latter
is misleadingly indented as if it were guarded by the 'if'
17 | y = 2;
| ^
@end smallexample
@noindent
might be printed in JSON form (after formatting) like this:
@smallexample
[
@{
"kind": "warning",
"locations": [
@{
"caret": @{
"display-column": 3,
"byte-column": 3,
"column": 3,
"file": "misleading-indentation.c",
"line": 15
@},
"finish": @{
"display-column": 4,
"byte-column": 4,
"column": 4,
"file": "misleading-indentation.c",
"line": 15
@}
@}
],
"message": "this \u2018if\u2019 clause does not guard...",
"option": "-Wmisleading-indentation",
"option_url": "https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wmisleading-indentation",
"children": [
@{
"kind": "note",
"locations": [
@{
"caret": @{
"display-column": 5,
"byte-column": 5,
"column": 5,
"file": "misleading-indentation.c",
"line": 17
@}
@}
],
"escape-source": false,
"message": "...this statement, but the latter is @dots{}"
@}
]
"escape-source": false,
"column-origin": 1,
@}
]
@end smallexample
@noindent
where the @code{note} is a child of the @code{warning}.
A diagnostic has a @code{kind}. If this is @code{warning}, then there is
an @code{option} key describing the command-line option controlling the
warning.
A diagnostic can contain zero or more locations. Each location has an
optional @code{label} string and up to three positions within it: a
@code{caret} position and optional @code{start} and @code{finish} positions.
A position is described by a @code{file} name, a @code{line} number, and
three numbers indicating a column position:
@itemize @bullet
@item
@code{display-column} counts display columns, accounting for tabs and
multibyte characters.
@item
@code{byte-column} counts raw bytes.
@item
@code{column} is equal to one of
the previous two, as dictated by the @option{-fdiagnostics-column-unit}
option.
@end itemize
All three columns are relative to the origin specified by
@option{-fdiagnostics-column-origin}, which is typically equal to 1 but may
be set, for instance, to 0 for compatibility with other utilities that
number columns from 0. The column origin is recorded in the JSON output in
the @code{column-origin} tag. In the remaining examples below, the extra
column number outputs have been omitted for brevity.
For example, this error:
@smallexample
bad-binary-ops.c:64:23: error: invalid operands to binary + (have 'S' @{aka
'struct s'@} and 'T' @{aka 'struct t'@})
64 | return callee_4a () + callee_4b ();
| ~~~~~~~~~~~~ ^ ~~~~~~~~~~~~
| | |
| | T @{aka struct t@}
| S @{aka struct s@}
@end smallexample
@noindent
has three locations. Its primary location is at the ``+'' token at column
23. It has two secondary locations, describing the left and right-hand sides
of the expression, which have labels. It might be printed in JSON form as:
@smallexample
@{
"children": [],
"kind": "error",
"locations": [
@{
"caret": @{
"column": 23, "file": "bad-binary-ops.c", "line": 64
@}
@},
@{
"caret": @{
"column": 10, "file": "bad-binary-ops.c", "line": 64
@},
"finish": @{
"column": 21, "file": "bad-binary-ops.c", "line": 64
@},
"label": "S @{aka struct s@}"
@},
@{
"caret": @{
"column": 25, "file": "bad-binary-ops.c", "line": 64
@},
"finish": @{
"column": 36, "file": "bad-binary-ops.c", "line": 64
@},
"label": "T @{aka struct t@}"
@}
],
"escape-source": false,
"message": "invalid operands to binary + @dots{}"
@}
@end smallexample
If a diagnostic contains fix-it hints, it has a @code{fixits} array,
consisting of half-open intervals, similar to the output of
@option{-fdiagnostics-parseable-fixits}. For example, this diagnostic
with a replacement fix-it hint:
@smallexample
demo.c:8:15: error: 'struct s' has no member named 'colour'; did you
mean 'color'?
8 | return ptr->colour;
| ^~~~~~
| color
@end smallexample
@noindent
might be printed in JSON form as:
@smallexample
@{
"children": [],
"fixits": [
@{
"next": @{
"column": 21,
"file": "demo.c",
"line": 8
@},
"start": @{
"column": 15,
"file": "demo.c",
"line": 8
@},
"string": "color"
@}
],
"kind": "error",
"locations": [
@{
"caret": @{
"column": 15,
"file": "demo.c",
"line": 8
@},
"finish": @{
"column": 20,
"file": "demo.c",
"line": 8
@}
@}
],
"escape-source": false,
"message": "\u2018struct s\u2019 has no member named @dots{}"
@}
@end smallexample
@noindent
where the fix-it hint suggests replacing the text from @code{start} up
to but not including @code{next} with @code{string}'s value. Deletions
are expressed via an empty value for @code{string}, insertions by
having @code{start} equal @code{next}.
If the diagnostic has a path of control-flow events associated with it,
it has a @code{path} array of objects representing the events. Each
event object has a @code{description} string, a @code{location} object,
along with a @code{function} string and a @code{depth} number for
representing interprocedural paths. The @code{function} represents the
current function at that event, and the @code{depth} represents the
stack depth relative to some baseline: the higher, the more frames are
within the stack.
For example, the intraprocedural example shown for
@option{-fdiagnostics-path-format=} might have this JSON for its path:
@smallexample
"path": [
@{
"depth": 0,
"description": "when 'PyList_New' fails, returning NULL",
"function": "test",
"location": @{
"column": 10,
"file": "test.c",
"line": 25
@}
@},
@{
"depth": 0,
"description": "when 'i < count'",
"function": "test",
"location": @{
"column": 3,
"file": "test.c",
"line": 27
@}
@},
@{
"depth": 0,
"description": "when calling 'PyList_Append', passing NULL from (1) as argument 1",
"function": "test",
"location": @{
"column": 5,
"file": "test.c",
"line": 29
@}
@}
]
@end smallexample
Diagnostics have a boolean attribute @code{escape-source}, hinting whether
non-ASCII bytes should be escaped when printing the pertinent lines of
source code (@code{true} for diagnostics involving source encoding issues).
@opindex fno-diagnostics-json-formatting
@opindex fdiagnostics-json-formatting
@item -fno-diagnostics-json-formatting
By default, when JSON is emitted for diagnostics (via
@option{-fdiagnostics-format=sarif-stderr},
@option{-fdiagnostics-format=sarif-file},
@option{-fdiagnostics-format=json},
@option{-fdiagnostics-format=json-stderr},
@option{-fdiagnostics-format=json-file}),
GCC will add newlines and indentation to visually emphasize the
hierarchical structure of the JSON.
Use @option{-fno-diagnostics-json-formatting} to suppress this whitespace.
It must be passed before the option it is to affect.
This is intended for compatibility with tools that do not expect the output
to contain newlines, such as that emitted by older GCC releases.
@end table
@node Warning Options
@section Options to Request or Suppress Warnings
@cindex options to control warnings
@cindex warning messages
@cindex messages, warning
@cindex suppressing warnings
Warnings are diagnostic messages that report constructions that
are not inherently erroneous but that are risky or suggest there
may have been an error.
The following language-independent options do not enable specific
warnings but control the kinds of diagnostics produced by GCC@.
@table @gcctabopt
@cindex syntax checking
@opindex fsyntax-only
@item -fsyntax-only
Check the code for syntax errors, but don't do anything beyond that.
@opindex fmax-errors
@item -fmax-errors=@var{n}
Limits the maximum number of error messages to @var{n}, at which point
GCC bails out rather than attempting to continue processing the source
code. If @var{n} is 0 (the default), there is no limit on the number
of error messages produced. If @option{-Wfatal-errors} is also
specified, then @option{-Wfatal-errors} takes precedence over this
option.
@opindex w
@item -w
Inhibit all warning messages.
@opindex Werror
@opindex Wno-error
@item -Werror
Make all warnings into errors.
@opindex Werror=
@opindex Wno-error=
@item -Werror=
Make the specified warning into an error. The specifier for a warning
is appended; for example @option{-Werror=switch} turns the warnings
controlled by @option{-Wswitch} into errors. This switch takes a
negative form, to be used to negate @option{-Werror} for specific
warnings; for example @option{-Wno-error=switch} makes
@option{-Wswitch} warnings not be errors, even when @option{-Werror}
is in effect.
The warning message for each controllable warning includes the
option that controls the warning. That option can then be used with
@option{-Werror=} and @option{-Wno-error=} as described above.
(Printing of the option in the warning message can be disabled using the
@option{-fno-diagnostics-show-option} flag.)
Note that specifying @option{-Werror=}@var{foo} automatically implies
@option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
imply anything.
@opindex Wfatal-errors
@opindex Wno-fatal-errors
@item -Wfatal-errors
This option causes the compiler to abort compilation on the first error
occurred rather than trying to keep going and printing further error
messages.
@end table
You can request many specific warnings with options beginning with
@samp{-W}, for example @option{-Wimplicit} to request warnings on
implicit declarations. Each of these specific warning options also
has a negative form beginning @samp{-Wno-} to turn off warnings; for
example, @option{-Wno-implicit}. This manual lists only one of the
two forms, whichever is not the default. For further
language-specific options also refer to @ref{C++ Dialect Options} and
@ref{Objective-C and Objective-C++ Dialect Options}.
Additional warnings can be produced by enabling the static analyzer;
@xref{Static Analyzer Options}.
Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
options, such as @option{-Wunused}, which may turn on further options,
such as @option{-Wunused-value}. The combined effect of positive and
negative forms is that more specific options have priority over less
specific ones, independently of their position in the command-line. For
options of the same specificity, the last one takes effect. Options
enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
as if they appeared at the end of the command-line.
When an unrecognized warning option is requested (e.g.,
@option{-Wunknown-warning}), GCC emits a diagnostic stating
that the option is not recognized. However, if the @option{-Wno-} form
is used, the behavior is slightly different: no diagnostic is
produced for @option{-Wno-unknown-warning} unless other diagnostics
are being produced. This allows the use of new @option{-Wno-} options
with old compilers, but if something goes wrong, the compiler
warns that an unrecognized option is present.
The effectiveness of some warnings depends on optimizations also being
enabled. For example @option{-Wsuggest-final-types} is more effective
with link-time optimization and some instances of other warnings may
not be issued at all unless optimization is enabled. While optimization
in general improves the efficacy of control and data flow sensitive
warnings, in some cases it may also cause false positives.
@table @gcctabopt
@opindex pedantic
@opindex Wpedantic
@opindex Wno-pedantic
@item -Wpedantic
@itemx -pedantic
Issue all the warnings demanded by strict ISO C and ISO C++;
diagnose all programs that use forbidden extensions, and some other
programs that do not follow ISO C and ISO C++. This follows the version
of the ISO C or C++ standard specified by any @option{-std} option used.
Valid ISO C and ISO C++ programs should compile properly with or without
this option (though a rare few require @option{-ansi} or a
@option{-std} option specifying the version of the standard)@. However,
without this option, certain GNU extensions and traditional C and C++
features are supported as well. With this option, they are diagnosed
(or rejected with @option{-pedantic-errors}).
@option{-Wpedantic} does not cause warning messages for use of the
alternate keywords whose names begin and end with @samp{__}. This alternate
format can also be used to disable warnings for non-ISO @samp{__intN} types,
i.e. @samp{__intN__}.
Pedantic warnings are also disabled in the expression that follows
@code{__extension__}. However, only system header files should use
these escape routes; application programs should avoid them.
@xref{Alternate Keywords}.
Some warnings about non-conforming programs are controlled by options
other than @option{-Wpedantic}; in many cases they are implied by
@option{-Wpedantic} but can be disabled separately by their specific
option, e.g. @option{-Wpedantic -Wno-pointer-sign}.
Where the standard specified with @option{-std} represents a GNU
extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
corresponding @dfn{base standard}, the version of ISO C on which the GNU
extended dialect is based. Warnings from @option{-Wpedantic} are given
where they are required by the base standard. (It does not make sense
for such warnings to be given only for features not in the specified GNU
C dialect, since by definition the GNU dialects of C include all
features the compiler supports with the given option, and there would be
nothing to warn about.)
@opindex pedantic-errors
@item -pedantic-errors
Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
requires a diagnostic, in some cases where there is undefined behavior
at compile-time and in some other cases that do not prevent compilation
of programs that are valid according to the standard. This is not
equivalent to @option{-Werror=pedantic}: the latter option is unlikely to be
useful, as it only makes errors of the diagnostics that are controlled by
@option{-Wpedantic}, whereas this option also affects required diagnostics that
are always enabled or controlled by options other than @option{-Wpedantic}.
If you want the required diagnostics that are warnings by default to
be errors instead, but don't also want to enable the @option{-Wpedantic}
diagnostics, you can specify @option{-pedantic-errors -Wno-pedantic}
(or @option{-pedantic-errors -Wno-error=pedantic} to enable them but
only as warnings).
Some required diagnostics are errors by default, but can be reduced to
warnings using @option{-fpermissive} or their specific warning option,
e.g. @option{-Wno-error=narrowing}.
Some diagnostics for non-ISO practices are controlled by specific
warning options other than @option{-Wpedantic}, but are also made
errors by @option{-pedantic-errors}. For instance:
@gccoptlist{
-Wattributes @r{(for standard attributes)}
-Wchanges-meaning @r{(C++)}
-Wcomma-subscript @r{(C++23 or later)}
-Wdeclaration-after-statement @r{(C90 or earlier)}
-Welaborated-enum-base @r{(C++11 or later)}
-Wimplicit-int @r{(C99 or later)}
-Wimplicit-function-declaration @r{(C99 or later)}
-Wincompatible-pointer-types
-Wint-conversion
-Wlong-long @r{(C90 or earlier)}
-Wmain
-Wnarrowing @r{(C++11 or later)}
-Wpointer-arith
-Wpointer-sign
-Wincompatible-pointer-types
-Wregister @r{(C++17 or later)}
-Wvla @r{(C90 or earlier)}
-Wwrite-strings @r{(C++11 or later)}
}
@opindex fpermissive
@item -fpermissive
Downgrade some required diagnostics about nonconformant code from
errors to warnings. Thus, using @option{-fpermissive} allows some
nonconforming code to compile. Some C++ diagnostics are controlled
only by this flag, but it also downgrades some C and C++ diagnostics
that have their own flag:
@gccoptlist{
-Wdeclaration-missing-parameter-type @r{(C and Objective-C only)}
-Wimplicit-function-declaration @r{(C and Objective-C only)}
-Wimplicit-int @r{(C and Objective-C only)}
-Wincompatible-pointer-types @r{(C and Objective-C only)}
-Wint-conversion @r{(C and Objective-C only)}
-Wnarrowing @r{(C++ and Objective-C++ only)}
-Wreturn-mismatch @r{(C and Objective-C only)}
}
The @option{-fpermissive} option is the default for historic C language
modes (@option{-std=c89}, @option{-std=gnu89}, @option{-std=c90},
@option{-std=gnu90}).
@opindex Wall
@opindex Wno-all
@item -Wall
This enables all the warnings about constructions that some users
consider questionable, and that are easy to avoid (or modify to
prevent the warning), even in conjunction with macros. This also
enables some language-specific warnings described in @ref{C++ Dialect
Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
@option{-Wall} turns on the following warning flags:
@gccoptlist{-Waddress
-Waligned-new @r{(C++ and Objective-C++ only)}
-Warray-bounds=1 @r{(only with} @option{-O2}@r{)}
-Warray-compare
-Warray-parameter=2
-Wbool-compare
-Wbool-operation
-Wc++11-compat -Wc++14-compat -Wc++17compat -Wc++20compat
-Wcatch-value @r{(C++ and Objective-C++ only)}
-Wchar-subscripts
-Wclass-memaccess @r{(C++ and Objective-C++ only)}
-Wcomment
-Wdangling-else
-Wdangling-pointer=2
-Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
-Wduplicate-decl-specifier @r{(C and Objective-C only)}
-Wenum-compare @r{(in C/ObjC; this is on by default in C++)}
-Wenum-int-mismatch @r{(C and Objective-C only)}
-Wformat=1
-Wformat-contains-nul
-Wformat-diag
-Wformat-extra-args
-Wformat-overflow=1
-Wformat-truncation=1
-Wformat-zero-length
-Wframe-address
-Wimplicit @r{(C and Objective-C only)}
-Wimplicit-function-declaration @r{(C and Objective-C only)}
-Wimplicit-int @r{(C and Objective-C only)}
-Winfinite-recursion
-Winit-self @r{(C++ and Objective-C++ only)}
-Wint-in-bool-context
-Wlogical-not-parentheses
-Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)}
-Wmaybe-uninitialized
-Wmemset-elt-size
-Wmemset-transposed-args
-Wmisleading-indentation @r{(only for C/C++)}
-Wmismatched-dealloc
-Wmismatched-new-delete @r{(C++ and Objective-C++ only)}
-Wmissing-attributes
-Wmissing-braces @r{(only for C/ObjC)}
-Wmultistatement-macros
-Wnarrowing @r{(C++ and Objective-C++ only)}
-Wnonnull
-Wnonnull-compare
-Wopenmp-simd @r{(C and C++ only)}
-Woverloaded-virtual=1 @r{(C++ and Objective-C++ only)}
-Wpacked-not-aligned
-Wparentheses
-Wpessimizing-move @r{(C++ and Objective-C++ only)}
-Wpointer-sign @r{(only for C/ObjC)}
-Wrange-loop-construct @r{(C++ and Objective-C++ only)}
-Wreorder @r{(C++ and Objective-C++ only)}
-Wrestrict
-Wreturn-type
-Wself-move @r{(C++ and Objective-C++ only)}
-Wsequence-point
-Wsign-compare @r{(C++ and Objective-C++ only)}
-Wsizeof-array-div
-Wsizeof-pointer-div
-Wsizeof-pointer-memaccess
-Wstrict-aliasing
-Wstrict-overflow=1
-Wswitch
-Wtautological-compare
-Wtrigraphs
-Wuninitialized
-Wunknown-pragmas
-Wunused
-Wunused-but-set-variable
-Wunused-const-variable=1 @r{(only for C/ObjC)}
-Wunused-function
-Wunused-label
-Wunused-local-typedefs
-Wunused-value
-Wunused-variable
-Wuse-after-free=2
-Wvla-parameter
-Wvolatile-register-var
-Wzero-length-bounds}
Note that some warning flags are not implied by @option{-Wall}. Some of
them warn about constructions that users generally do not consider
questionable, but which occasionally you might wish to check for;
others warn about constructions that are necessary or hard to avoid in
some cases, and there is no simple way to modify the code to suppress
the warning. Some of them are enabled by @option{-Wextra} but many of
them must be enabled individually.
@opindex W
@opindex Wextra
@opindex Wno-extra
@item -Wextra
This enables some extra warning flags that are not enabled by
@option{-Wall}. (This option used to be called @option{-W}. The older
name is still supported, but the newer name is more descriptive.)
@gccoptlist{-Wabsolute-value @r{(only for C/ObjC)}
-Walloc-size
-Wcalloc-transposed-args
-Wcast-function-type
-Wclobbered
-Wdeprecated-copy @r{(C++ and Objective-C++ only)}
-Wempty-body
-Wenum-conversion @r{(only for C/ObjC)}
-Wexpansion-to-defined
-Wignored-qualifiers @r{(only for C/C++)}
-Wimplicit-fallthrough=3
-Wmaybe-uninitialized
-Wmissing-field-initializers
-Wmissing-parameter-type @r{(C/ObjC only)}
-Wold-style-declaration @r{(C/ObjC only)}
-Woverride-init @r{(C/ObjC only)}
-Wredundant-move @r{(C++ and Objective-C++ only)}
-Wshift-negative-value @r{(in C++11 to C++17 and in C99 and newer)}
-Wsign-compare @r{(C++ and Objective-C++ only)}
-Wsized-deallocation @r{(C++ and Objective-C++ only)}
-Wstring-compare
-Wtype-limits
-Wuninitialized
-Wunterminated-string-initialization
-Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}
-Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}}
The option @option{-Wextra} also prints warning messages for the
following cases:
@itemize @bullet
@item
A pointer is compared against integer zero with @code{<}, @code{<=},
@code{>}, or @code{>=}.
@item
(C++ only) An enumerator and a non-enumerator both appear in a
conditional expression.
@item
(C++ only) Ambiguous virtual bases.
@item
(C++ only) Subscripting an array that has been declared @code{register}.
@item
(C++ only) Taking the address of a variable that has been declared
@code{register}.
@item
(C++ only) A base class is not initialized in the copy constructor
of a derived class.
@end itemize
@opindex Wabi
@opindex Wno-abi
@item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
Warn about code affected by ABI changes. This includes code that may
not be compatible with the vendor-neutral C++ ABI as well as the psABI
for the particular target.
Since G++ now defaults to updating the ABI with each major release,
normally @option{-Wabi} warns only about C++ ABI compatibility
problems if there is a check added later in a release series for an
ABI issue discovered since the initial release. @option{-Wabi} warns
about more things if an older ABI version is selected (with
@option{-fabi-version=@var{n}}).
@option{-Wabi} can also be used with an explicit version number to
warn about C++ ABI compatibility with a particular @option{-fabi-version}
level, e.g.@: @option{-Wabi=2} to warn about changes relative to
@option{-fabi-version=2}.
If an explicit version number is provided and
@option{-fabi-compat-version} is not specified, the version number
from this option is used for compatibility aliases. If no explicit
version number is provided with this option, but
@option{-fabi-compat-version} is specified, that version number is
used for C++ ABI warnings.
Although an effort has been made to warn about
all such cases, there are probably some cases that are not warned about,
even though G++ is generating incompatible code. There may also be
cases where warnings are emitted even though the code that is generated
is compatible.
You should rewrite your code to avoid these warnings if you are
concerned about the fact that code generated by G++ may not be binary
compatible with code generated by other compilers.
Known incompatibilities in @option{-fabi-version=2} (which was the
default from GCC 3.4 to 4.9) include:
@itemize @bullet
@item
A template with a non-type template parameter of reference type was
mangled incorrectly:
@smallexample
extern int N;
template <int &> struct S @{@};
void n (S<N>) @{2@}
@end smallexample
This was fixed in @option{-fabi-version=3}.
@item
SIMD vector types declared using @code{__attribute ((vector_size))} were
mangled in a non-standard way that does not allow for overloading of
functions taking vectors of different sizes.
The mangling was changed in @option{-fabi-version=4}.
@item
@code{__attribute ((const))} and @code{noreturn} were mangled as type
qualifiers, and @code{decltype} of a plain declaration was folded away.
These mangling issues were fixed in @option{-fabi-version=5}.
@item
Scoped enumerators passed as arguments to a variadic function are
promoted like unscoped enumerators, causing @code{va_arg} to complain.
On most targets this does not actually affect the parameter passing
ABI, as there is no way to pass an argument smaller than @code{int}.
Also, the ABI changed the mangling of template argument packs,
@code{const_cast}, @code{static_cast}, prefix increment/decrement, and
a class scope function used as a template argument.
These issues were corrected in @option{-fabi-version=6}.
@item
Lambdas in default argument scope were mangled incorrectly, and the
ABI changed the mangling of @code{nullptr_t}.
These issues were corrected in @option{-fabi-version=7}.
@item
When mangling a function type with function-cv-qualifiers, the
un-qualified function type was incorrectly treated as a substitution
candidate.
This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
@item
@code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
unaligned accesses. Note that this did not affect the ABI of a
function with a @code{nullptr_t} parameter, as parameters have a
minimum alignment.
This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
@item
Target-specific attributes that affect the identity of a type, such as
ia32 calling conventions on a function type (stdcall, regparm, etc.),
did not affect the mangled name, leading to name collisions when
function pointers were used as template arguments.
This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
@end itemize
This option also enables warnings about psABI-related changes.
The known psABI changes at this point include:
@itemize @bullet
@item
For SysV/x86-64, unions with @code{long double} members are
passed in memory as specified in psABI. Prior to GCC 4.4, this was not
the case. For example:
@smallexample
union U @{
long double ld;
int i;
@};
@end smallexample
@noindent
@code{union U} is now always passed in memory.
@end itemize
@item -Wno-changes-meaning @r{(C++ and Objective-C++ only)}
C++ requires that unqualified uses of a name within a class have the
same meaning in the complete scope of the class, so declaring the name
after using it is ill-formed:
@smallexample
struct A;
struct B1 @{ A a; typedef A A; @}; // warning, 'A' changes meaning
struct B2 @{ A a; struct A @{ @}; @}; // error, 'A' changes meaning
@end smallexample
By default, the B1 case is only a warning because the two declarations
have the same type, while the B2 case is an error. Both diagnostics
can be disabled with @option{-Wno-changes-meaning}. Alternately, the
error case can be reduced to a warning with
@option{-Wno-error=changes-meaning} or @option{-fpermissive}.
Both diagnostics are also suppressed by @option{-fms-extensions}.
@opindex Wchar-subscripts
@opindex Wno-char-subscripts
@item -Wchar-subscripts
Warn if an array subscript has type @code{char}. This is a common cause
of error, as programmers often forget that this type is signed on some
machines.
This warning is enabled by @option{-Wall}.
@opindex Wno-coverage-mismatch
@opindex Wcoverage-mismatch
@item -Wno-coverage-mismatch
Warn if feedback profiles do not match when using the
@option{-fprofile-use} option.
If a source file is changed between compiling with @option{-fprofile-generate}
and with @option{-fprofile-use}, the files with the profile feedback can fail
to match the source file and GCC cannot use the profile feedback
information. By default, this warning is enabled and is treated as an
error. @option{-Wno-coverage-mismatch} can be used to disable the
warning or @option{-Wno-error=coverage-mismatch} can be used to
disable the error. Disabling the error for this warning can result in
poorly optimized code and is useful only in the
case of very minor changes such as bug fixes to an existing code-base.
Completely disabling the warning is not recommended.
@opindex Wno-coverage-too-many-conditions
@opindex Wcoverage-too-many-conditions
@item -Wno-coverage-too-many-conditions
Warn if @option{-fcondition-coverage} is used and an expression have too many
terms and GCC gives up coverage. Coverage is given up when there are more
terms in the conditional than there are bits in a @code{gcov_type_unsigned}.
This warning is enabled by default.
@opindex Wno-coverage-invalid-line-number
@opindex Wcoverage-invalid-line-number
@item -Wno-coverage-invalid-line-number
Warn in case a function ends earlier than it begins due
to an invalid linenum macros. The warning is emitted only
with @option{--coverage} enabled.
By default, this warning is enabled and is treated as an
error. @option{-Wno-coverage-invalid-line-number} can be used to disable the
warning or @option{-Wno-error=coverage-invalid-line-number} can be used to
disable the error.
@opindex Wno-cpp
@opindex Wcpp
@item -Wno-cpp @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
Suppress warning messages emitted by @code{#warning} directives.
@opindex Wdouble-promotion
@opindex Wno-double-promotion
@item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
Give a warning when a value of type @code{float} is implicitly
promoted to @code{double}. CPUs with a 32-bit ``single-precision''
floating-point unit implement @code{float} in hardware, but emulate
@code{double} in software. On such a machine, doing computations
using @code{double} values is much more expensive because of the
overhead required for software emulation.
It is easy to accidentally do computations with @code{double} because
floating-point literals are implicitly of type @code{double}. For
example, in:
@smallexample
@group
float area(float radius)
@{
return 3.14159 * radius * radius;
@}
@end group
@end smallexample
the compiler performs the entire computation with @code{double}
because the floating-point literal is a @code{double}.
@opindex Wduplicate-decl-specifier
@opindex Wno-duplicate-decl-specifier
@item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
Warn if a declaration has duplicate @code{const}, @code{volatile},
@code{restrict} or @code{_Atomic} specifier. This warning is enabled by
@option{-Wall}.
@opindex Wformat
@opindex Wno-format
@opindex ffreestanding
@opindex fno-builtin
@opindex Wformat=
@item -Wformat
@itemx -Wformat=@var{n}
Check calls to @code{printf} and @code{scanf}, etc., to make sure that
the arguments supplied have types appropriate to the format string
specified, and that the conversions specified in the format string make
sense. This includes standard functions, and others specified by format
attributes (@pxref{Function Attributes}), in the @code{printf},
@code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
not in the C standard) families (or other target-specific families).
Which functions are checked without format attributes having been
specified depends on the standard version selected, and such checks of
functions without the attribute specified are disabled by
@option{-ffreestanding} or @option{-fno-builtin}.
The formats are checked against the format features supported by GNU
libc version 2.2. These include all ISO C90 and C99 features, as well
as features from the Single Unix Specification and some BSD and GNU
extensions. Other library implementations may not support all these
features; GCC does not support warning about features that go beyond a
particular library's limitations. However, if @option{-Wpedantic} is used
with @option{-Wformat}, warnings are given about format features not
in the selected standard version (but not for @code{strfmon} formats,
since those are not in any version of the C standard). @xref{C Dialect
Options,,Options Controlling C Dialect}.
@table @gcctabopt
@opindex Wformat
@opindex Wformat=1
@item -Wformat=1
@itemx -Wformat
Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
@option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
@option{-Wformat} also checks for null format arguments for several
functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
aspects of this level of format checking can be disabled by the
options: @option{-Wno-format-contains-nul},
@option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
@option{-Wformat} is enabled by @option{-Wall}.
@opindex Wformat=2
@item -Wformat=2
Enable @option{-Wformat} plus additional format checks. Currently
equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
-Wformat-y2k}.
@end table
@opindex Wno-format-contains-nul
@opindex Wformat-contains-nul
@item -Wno-format-contains-nul
If @option{-Wformat} is specified, do not warn about format strings that
contain NUL bytes.
@opindex Wno-format-extra-args
@opindex Wformat-extra-args
@item -Wno-format-extra-args
If @option{-Wformat} is specified, do not warn about excess arguments to a
@code{printf} or @code{scanf} format function. The C standard specifies
that such arguments are ignored.
Where the unused arguments lie between used arguments that are
specified with @samp{$} operand number specifications, normally
warnings are still given, since the implementation could not know what
type to pass to @code{va_arg} to skip the unused arguments. However,
in the case of @code{scanf} formats, this option suppresses the
warning if the unused arguments are all pointers, since the Single
Unix Specification says that such unused arguments are allowed.
@opindex Wformat-overflow
@opindex Wno-format-overflow
@item -Wformat-overflow
@itemx -Wformat-overflow=@var{level}
Warn about calls to formatted input/output functions such as @code{sprintf}
and @code{vsprintf} that might overflow the destination buffer. When the
exact number of bytes written by a format directive cannot be determined
at compile-time it is estimated based on heuristics that depend on the
@var{level} argument and on optimization. While enabling optimization
will in most cases improve the accuracy of the warning, it may also
result in false positives.
@table @gcctabopt
@opindex Wformat-overflow
@opindex Wno-format-overflow
@item -Wformat-overflow
@itemx -Wformat-overflow=1
Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
employs a conservative approach that warns only about calls that most
likely overflow the buffer. At this level, numeric arguments to format
directives with unknown values are assumed to have the value of one, and
strings of unknown length to be empty. Numeric arguments that are known
to be bounded to a subrange of their type, or string arguments whose output
is bounded either by their directive's precision or by a finite set of
string literals, are assumed to take on the value within the range that
results in the most bytes on output. For example, the call to @code{sprintf}
below is diagnosed because even with both @var{a} and @var{b} equal to zero,
the terminating NUL character (@code{'\0'}) appended by the function
to the destination buffer will be written past its end. Increasing
the size of the buffer by a single byte is sufficient to avoid the
warning, though it may not be sufficient to avoid the overflow.
@smallexample
void f (int a, int b)
@{
char buf [13];
sprintf (buf, "a = %i, b = %i\n", a, b);
@}
@end smallexample
@item -Wformat-overflow=2
Level @var{2} warns also about calls that might overflow the destination
buffer given an argument of sufficient length or magnitude. At level
@var{2}, unknown numeric arguments are assumed to have the minimum
representable value for signed types with a precision greater than 1, and
the maximum representable value otherwise. Unknown string arguments whose
length cannot be assumed to be bounded either by the directive's precision,
or by a finite set of string literals they may evaluate to, or the character
array they may point to, are assumed to be 1 character long.
At level @var{2}, the call in the example above is again diagnosed, but
this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
@code{%i} directive will write some of its digits beyond the end of
the destination buffer. To make the call safe regardless of the values
of the two variables, the size of the destination buffer must be increased
to at least 34 bytes. GCC includes the minimum size of the buffer in
an informational note following the warning.
An alternative to increasing the size of the destination buffer is to
constrain the range of formatted values. The maximum length of string
arguments can be bounded by specifying the precision in the format
directive. When numeric arguments of format directives can be assumed
to be bounded by less than the precision of their type, choosing
an appropriate length modifier to the format specifier will reduce
the required buffer size. For example, if @var{a} and @var{b} in the
example above can be assumed to be within the precision of
the @code{short int} type then using either the @code{%hi} format
directive or casting the argument to @code{short} reduces the maximum
required size of the buffer to 24 bytes.
@smallexample
void f (int a, int b)
@{
char buf [23];
sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
@}
@end smallexample
@end table
@opindex Wno-format-zero-length
@opindex Wformat-zero-length
@item -Wno-format-zero-length
If @option{-Wformat} is specified, do not warn about zero-length formats.
The C standard specifies that zero-length formats are allowed.
@opindex Wformat-nonliteral
@opindex Wno-format-nonliteral
@item -Wformat-nonliteral
If @option{-Wformat} is specified, also warn if the format string is not a
string literal and so cannot be checked, unless the format function
takes its format arguments as a @code{va_list}.
@opindex Wformat-security
@opindex Wno-format-security
@item -Wformat-security
If @option{-Wformat} is specified, also warn about uses of format
functions that represent possible security problems. At present, this
warns about calls to @code{printf} and @code{scanf} functions where the
format string is not a string literal and there are no format arguments,
as in @code{printf (foo);}. This may be a security hole if the format
string came from untrusted input and contains @samp{%n}. (This is
currently a subset of what @option{-Wformat-nonliteral} warns about, but
in future warnings may be added to @option{-Wformat-security} that are not
included in @option{-Wformat-nonliteral}.)
@opindex Wformat-signedness
@opindex Wno-format-signedness
@item -Wformat-signedness
If @option{-Wformat} is specified, also warn if the format string
requires an unsigned argument and the argument is signed and vice versa.
@opindex Wformat-truncation
@opindex Wno-format-truncation
@item -Wformat-truncation
@itemx -Wformat-truncation=@var{level}
Warn about calls to formatted input/output functions such as @code{snprintf}
and @code{vsnprintf} that might result in output truncation. When the exact
number of bytes written by a format directive cannot be determined at
compile-time it is estimated based on heuristics that depend on
the @var{level} argument and on optimization. While enabling optimization
will in most cases improve the accuracy of the warning, it may also result
in false positives. Except as noted otherwise, the option uses the same
logic @option{-Wformat-overflow}.
@table @gcctabopt
@opindex Wformat-truncation
@opindex Wno-format-truncation
@item -Wformat-truncation
@itemx -Wformat-truncation=1
Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
employs a conservative approach that warns only about calls to bounded
functions whose return value is unused and that will most likely result
in output truncation.
@item -Wformat-truncation=2
Level @var{2} warns also about calls to bounded functions whose return
value is used and that might result in truncation given an argument of
sufficient length or magnitude.
@end table
@opindex Wformat-y2k
@opindex Wno-format-y2k
@item -Wformat-y2k
If @option{-Wformat} is specified, also warn about @code{strftime}
formats that may yield only a two-digit year.
@opindex Wnonnull
@opindex Wno-nonnull
@item -Wnonnull
Warn about passing a null pointer for arguments marked as
requiring a non-null value by the @code{nonnull} function attribute.
@option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
can be disabled with the @option{-Wno-nonnull} option.
@opindex Wnonnull-compare
@opindex Wno-nonnull-compare
@item -Wnonnull-compare
Warn when comparing an argument marked with the @code{nonnull}
function attribute against null inside the function.
@option{-Wnonnull-compare} is included in @option{-Wall}. It
can be disabled with the @option{-Wno-nonnull-compare} option.
@opindex Wnull-dereference
@opindex Wno-null-dereference
@item -Wnull-dereference
Warn if the compiler detects paths that trigger erroneous or
undefined behavior due to dereferencing a null pointer. This option
is only active when @option{-fdelete-null-pointer-checks} is active,
which is enabled by optimizations in most targets. The precision of
the warnings depends on the optimization options used.
@opindex Wnrvo
@opindex Wno-nrvo
@item -Wnrvo @r{(C++ and Objective-C++ only)}
Warn if the compiler does not elide the copy from a local variable to
the return value of a function in a context where it is allowed by
[class.copy.elision]. This elision is commonly known as the Named
Return Value Optimization. For instance, in the example below the
compiler cannot elide copies from both v1 and v2, so it elides neither.
@smallexample
std::vector<int> f()
@{
std::vector<int> v1, v2;
// ...
if (cond) return v1;
else return v2; // warning: not eliding copy
@}
@end smallexample
@opindex Winfinite-recursion
@opindex Wno-infinite-recursion
@item -Winfinite-recursion
Warn about infinitely recursive calls. The warning is effective at all
optimization levels but requires optimization in order to detect infinite
recursion in calls between two or more functions.
@option{-Winfinite-recursion} is included in @option{-Wall}.
Compare with @option{-Wanalyzer-infinite-recursion} which provides a
similar diagnostic, but is implemented in a different way (as part of
@option{-fanalyzer}).
@opindex Winit-self
@opindex Wno-init-self
@item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
Warn about uninitialized variables that are initialized with themselves.
Note this option can only be used with the @option{-Wuninitialized} option.
For example, GCC warns about @code{i} being uninitialized in the
following snippet only when @option{-Winit-self} has been specified:
@smallexample
@group
int f()
@{
int i = i;
return i;
@}
@end group
@end smallexample
This warning is enabled by @option{-Wall} in C++.
@opindex Wimplicit-int
@opindex Wno-implicit-int
@item -Wno-implicit-int @r{(C and Objective-C only)}
This option controls warnings when a declaration does not specify a type.
This warning is enabled by default, as an error, in C99 and later
dialects of C, and also by @option{-Wall}. The error can be downgraded
to a warning using @option{-fpermissive} (along with certain other
errors), or for this error alone, with @option{-Wno-error=implicit-int}.
This warning is upgraded to an error by @option{-pedantic-errors}.
@opindex Wimplicit-function-declaration
@opindex Wno-implicit-function-declaration
@item -Wno-implicit-function-declaration @r{(C and Objective-C only)}
This option controls warnings when a function is used before being declared.
This warning is enabled by default, as an error, in C99 and later
dialects of C, and also by @option{-Wall}. The error can be downgraded
to a warning using @option{-fpermissive} (along with certain other
errors), or for this error alone, with
@option{-Wno-error=implicit-function-declaration}.
This warning is upgraded to an error by @option{-pedantic-errors}.
@opindex Wimplicit
@opindex Wno-implicit
@item -Wimplicit @r{(C and Objective-C only)}
Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
This warning is enabled by @option{-Wall}.
@opindex Whardened
@opindex Wno-hardened
@item -Whardened
Warn when @option{-fhardened} did not enable an option from its set (for
which see @option{-fhardened}). For instance, using @option{-fhardened}
and @option{-fstack-protector} at the same time on the command line causes
@option{-Whardened} to warn because @option{-fstack-protector-strong} is
not enabled by @option{-fhardened}.
This warning is enabled by default and has effect only when @option{-fhardened}
is enabled.
@opindex Wimplicit-fallthrough
@opindex Wno-implicit-fallthrough
@item -Wimplicit-fallthrough
@option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
and @option{-Wno-implicit-fallthrough} is the same as
@option{-Wimplicit-fallthrough=0}.
@opindex Wimplicit-fallthrough=
@item -Wimplicit-fallthrough=@var{n}
Warn when a switch case falls through. For example:
@smallexample
@group
switch (cond)
@{
case 1:
a = 1;
break;
case 2:
a = 2;
case 3:
a = 3;
break;
@}
@end group
@end smallexample
This warning does not warn when the last statement of a case cannot
fall through, e.g. when there is a return statement or a call to function
declared with the noreturn attribute. @option{-Wimplicit-fallthrough=}
also takes into account control flow statements, such as ifs, and only
warns when appropriate. E.g.@:
@smallexample
@group
switch (cond)
@{
case 1:
if (i > 3) @{
bar (5);
break;
@} else if (i < 1) @{
bar (0);
@} else
return;
default:
@dots{}
@}
@end group
@end smallexample
Since there are occasions where a switch case fall through is desirable,
GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
to be used along with a null statement to suppress this warning that
would normally occur:
@smallexample
@group
switch (cond)
@{
case 1:
bar (0);
__attribute__ ((fallthrough));
default:
@dots{}
@}
@end group
@end smallexample
C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
warning using @code{[[fallthrough]];} instead of the GNU attribute. In C++11
or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
Instead of these attributes, it is also possible to add a fallthrough comment
to silence the warning. The whole body of the C or C++ style comment should
match the given regular expressions listed below. The option argument @var{n}
specifies what kind of comments are accepted:
@itemize @bullet
@item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
@item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
expression, any comment is used as fallthrough comment.
@item @option{-Wimplicit-fallthrough=2} case insensitively matches
@code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
@item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
following regular expressions:
@itemize @bullet
@item @code{-fallthrough}
@item @code{@@fallthrough@@}
@item @code{lint -fallthrough[ \t]*}
@item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
@item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
@item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
@end itemize
@item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
following regular expressions:
@itemize @bullet
@item @code{-fallthrough}
@item @code{@@fallthrough@@}
@item @code{lint -fallthrough[ \t]*}
@item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
@end itemize
@item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
fallthrough comments, only attributes disable the warning.
@end itemize
The comment needs to be followed after optional whitespace and other comments
by @code{case} or @code{default} keywords or by a user label that precedes some
@code{case} or @code{default} label.
@smallexample
@group
switch (cond)
@{
case 1:
bar (0);
/* FALLTHRU */
default:
@dots{}
@}
@end group
@end smallexample
The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
@opindex Wif-not-aligned
@opindex Wno-if-not-aligned
@item -Wno-if-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
Control if warnings triggered by the @code{warn_if_not_aligned} attribute
should be issued. These warnings are enabled by default.
@opindex Wignored-qualifiers
@opindex Wno-ignored-qualifiers
@item -Wignored-qualifiers @r{(C and C++ only)}
Warn if the return type of a function has a type qualifier
such as @code{const}. For ISO C such a type qualifier has no effect,
since the value returned by a function is not an lvalue.
For C++, the warning is only emitted for scalar types or @code{void}.
ISO C prohibits qualified @code{void} return types on function
definitions, so such return types always receive a warning
even without this option.
This warning is also enabled by @option{-Wextra}.
@opindex Wignored-attributes
@opindex Wno-ignored-attributes
@item -Wno-ignored-attributes @r{(C and C++ only)}
This option controls warnings when an attribute is ignored.
This is different from the
@option{-Wattributes} option in that it warns whenever the compiler decides
to drop an attribute, not that the attribute is either unknown, used in a
wrong place, etc. This warning is enabled by default.
@opindex Wmain
@opindex Wno-main
@item -Wmain
Warn if the type of @code{main} is suspicious. @code{main} should be
a function with external linkage, returning int, taking either zero
arguments, two, or three arguments of appropriate types. This warning
is enabled by default in C++ and is enabled by either @option{-Wall}
or @option{-Wpedantic}.
This warning is upgraded to an error by @option{-pedantic-errors}.
@opindex Wmisleading-indentation
@opindex Wno-misleading-indentation
@item -Wmisleading-indentation @r{(C and C++ only)}
Warn when the indentation of the code does not reflect the block structure.
Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
@code{for} clauses with a guarded statement that does not use braces,
followed by an unguarded statement with the same indentation.
In the following example, the call to ``bar'' is misleadingly indented as
if it were guarded by the ``if'' conditional.
@smallexample
if (some_condition ())
foo ();
bar (); /* Gotcha: this is not guarded by the "if". */
@end smallexample
In the case of mixed tabs and spaces, the warning uses the
@option{-ftabstop=} option to determine if the statements line up
(defaulting to 8).
The warning is not issued for code involving multiline preprocessor logic
such as the following example.
@smallexample
if (flagA)
foo (0);
#if SOME_CONDITION_THAT_DOES_NOT_HOLD
if (flagB)
#endif
foo (1);
@end smallexample
The warning is not issued after a @code{#line} directive, since this
typically indicates autogenerated code, and no assumptions can be made
about the layout of the file that the directive references.
This warning is enabled by @option{-Wall} in C and C++.
@opindex Wmissing-attributes
@opindex Wno-missing-attributes
@item -Wmissing-attributes
Warn when a declaration of a function is missing one or more attributes
that a related function is declared with and whose absence may adversely
affect the correctness or efficiency of generated code. For example,
the warning is issued for declarations of aliases that use attributes
to specify less restrictive requirements than those of their targets.
This typically represents a potential optimization opportunity.
By contrast, the @option{-Wattribute-alias=2} option controls warnings
issued when the alias is more restrictive than the target, which could
lead to incorrect code generation.
Attributes considered include @code{alloc_align}, @code{alloc_size},
@code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
@code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
@code{returns_nonnull}, and @code{returns_twice}.
In C++, the warning is issued when an explicit specialization of a primary
template declared with attribute @code{alloc_align}, @code{alloc_size},
@code{assume_aligned}, @code{format}, @code{format_arg}, @code{malloc},
or @code{nonnull} is declared without it. Attributes @code{deprecated},
@code{error}, and @code{warning} suppress the warning.
(@pxref{Function Attributes}).
You can use the @code{copy} attribute to apply the same
set of attributes to a declaration as that on another declaration without
explicitly enumerating the attributes. This attribute can be applied
to declarations of functions (@pxref{Common Function Attributes}),
variables (@pxref{Common Variable Attributes}), or types
(@pxref{Common Type Attributes}).
@option{-Wmissing-attributes} is enabled by @option{-Wall}.
For example, since the declaration of the primary function template
below makes use of both attribute @code{malloc} and @code{alloc_size}
the declaration of the explicit specialization of the template is
diagnosed because it is missing one of the attributes.
@smallexample
template <class T>
T* __attribute__ ((malloc, alloc_size (1)))
allocate (size_t);
template <>
void* __attribute__ ((malloc)) // missing alloc_size
allocate<void> (size_t);
@end smallexample
@opindex Wmissing-braces
@opindex Wno-missing-braces
@item -Wmissing-braces
Warn if an aggregate or union initializer is not fully bracketed. In
the following example, the initializer for @code{a} is not fully
bracketed, but that for @code{b} is fully bracketed.
@smallexample
int a[2][2] = @{ 0, 1, 2, 3 @};
int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
@end smallexample
This warning is enabled by @option{-Wall}.
@opindex Wmissing-include-dirs
@opindex Wno-missing-include-dirs
@item -Wmissing-include-dirs @r{(C, C++, Objective-C, Objective-C++ and Fortran only)}
Warn if a user-supplied include directory does not exist. This option is disabled
by default for C, C++, Objective-C and Objective-C++. For Fortran, it is partially
enabled by default by warning for -I and -J, only.
@opindex Wmissing-profile
@opindex Wno-missing-profile
@item -Wno-missing-profile
This option controls warnings if feedback profiles are missing when using the
@option{-fprofile-use} option.
This option diagnoses those cases where a new function or a new file is added
between compiling with @option{-fprofile-generate} and with
@option{-fprofile-use}, without regenerating the profiles.
In these cases, the profile feedback data files do not contain any
profile feedback information for
the newly added function or file respectively. Also, in the case when profile
count data (.gcda) files are removed, GCC cannot use any profile feedback
information. In all these cases, warnings are issued to inform you that a
profile generation step is due.
Ignoring the warning can result in poorly optimized code.
@option{-Wno-missing-profile} can be used to
disable the warning, but this is not recommended and should be done only
when non-existent profile data is justified.
@opindex Wmismatched-dealloc
@opindex Wno-mismatched-dealloc
@item -Wmismatched-dealloc
Warn for calls to deallocation functions with pointer arguments returned
from allocation functions for which the former isn't a suitable
deallocator. A pair of functions can be associated as matching allocators
and deallocators by use of attribute @code{malloc}. Unless disabled by
the @option{-fno-builtin} option the standard functions @code{calloc},
@code{malloc}, @code{realloc}, and @code{free}, as well as the corresponding
forms of C++ @code{operator new} and @code{operator delete} are implicitly
associated as matching allocators and deallocators. In the following
example @code{mydealloc} is the deallocator for pointers returned from
@code{myalloc}.
@smallexample
void mydealloc (void*);
__attribute__ ((malloc (mydealloc, 1))) void*
myalloc (size_t);
void f (void)
@{
void *p = myalloc (32);
// @dots{}use p@dots{}
free (p); // warning: not a matching deallocator for myalloc
mydealloc (p); // ok
@}
@end smallexample
In C++, the related option @option{-Wmismatched-new-delete} diagnoses
mismatches involving either @code{operator new} or @code{operator delete}.
Option @option{-Wmismatched-dealloc} is included in @option{-Wall}.
@opindex Wmultistatement-macros
@opindex Wno-multistatement-macros
@item -Wmultistatement-macros
Warn about unsafe multiple statement macros that appear to be guarded
by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
@code{while}, in which only the first statement is actually guarded after
the macro is expanded.
For example:
@smallexample
#define DOIT x++; y++
if (c)
DOIT;
@end smallexample
will increment @code{y} unconditionally, not just when @code{c} holds.
The can usually be fixed by wrapping the macro in a do-while loop:
@smallexample
#define DOIT do @{ x++; y++; @} while (0)
if (c)
DOIT;
@end smallexample
This warning is enabled by @option{-Wall} in C and C++.
@opindex Wparentheses
@opindex Wno-parentheses
@item -Wparentheses
Warn if parentheses are omitted in certain contexts, such
as when there is an assignment in a context where a truth value
is expected, or when operators are nested whose precedence people
often get confused about.
Also warn if a comparison like @code{x<=y<=z} appears; this is
equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
interpretation from that of ordinary mathematical notation.
Also warn for dangerous uses of the GNU extension to
@code{?:} with omitted middle operand. When the condition
in the @code{?}: operator is a boolean expression, the omitted value is
always 1. Often programmers expect it to be a value computed
inside the conditional expression instead.
For C++ this also warns for some cases of unnecessary parentheses in
declarations, which can indicate an attempt at a function call instead
of a declaration:
@smallexample
@{
// Declares a local variable called mymutex.
std::unique_lock<std::mutex> (mymutex);
// User meant std::unique_lock<std::mutex> lock (mymutex);
@}
@end smallexample
This warning is enabled by @option{-Wall}.
@opindex Wself-move
@opindex Wno-self-move
@item -Wno-self-move @r{(C++ and Objective-C++ only)}
This warning warns when a value is moved to itself with @code{std::move}.
Such a @code{std::move} typically has no effect.
@smallexample
struct T @{
@dots{}
@};
void fn()
@{
T t;
@dots{}
t = std::move (t);
@}
@end smallexample
This warning is enabled by @option{-Wall}.
@opindex Wsequence-point
@opindex Wno-sequence-point
@item -Wsequence-point
Warn about code that may have undefined semantics because of violations
of sequence point rules in the C and C++ standards.
The C and C++ standards define the order in which expressions in a C/C++
program are evaluated in terms of @dfn{sequence points}, which represent
a partial ordering between the execution of parts of the program: those
executed before the sequence point, and those executed after it. These
occur after the evaluation of a full expression (one which is not part
of a larger expression), after the evaluation of the first operand of a
@code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
function is called (but after the evaluation of its arguments and the
expression denoting the called function), and in certain other places.
Other than as expressed by the sequence point rules, the order of
evaluation of subexpressions of an expression is not specified. All
these rules describe only a partial order rather than a total order,
since, for example, if two functions are called within one expression
with no sequence point between them, the order in which the functions
are called is not specified. However, the standards committee have
ruled that function calls do not overlap.
It is not specified when between sequence points modifications to the
values of objects take effect. Programs whose behavior depends on this
have undefined behavior; the C and C++ standards specify that ``Between
the previous and next sequence point an object shall have its stored
value modified at most once by the evaluation of an expression.
Furthermore, the prior value shall be read only to determine the value
to be stored.''. If a program breaks these rules, the results on any
particular implementation are entirely unpredictable.
Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
= b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
diagnosed by this option, and it may give an occasional false positive
result, but in general it has been found fairly effective at detecting
this sort of problem in programs.
The C++17 standard will define the order of evaluation of operands in
more cases: in particular it requires that the right-hand side of an
assignment be evaluated before the left-hand side, so the above
examples are no longer undefined. But this option will still warn
about them, to help people avoid writing code that is undefined in C
and earlier revisions of C++.
The standard is worded confusingly, therefore there is some debate
over the precise meaning of the sequence point rules in subtle cases.
Links to discussions of the problem, including proposed formal
definitions, may be found on the GCC readings page, at
@uref{https://gcc.gnu.org/@/readings.html}.
This warning is enabled by @option{-Wall} for C and C++.
@opindex Wno-return-local-addr
@opindex Wreturn-local-addr
@item -Wno-return-local-addr
Do not warn about returning a pointer (or in C++, a reference) to a
variable that goes out of scope after the function returns.
@opindex Wreturn-mismatch
@opindex Wno-return-mismatch
@item -Wreturn-mismatch
Warn about return statements without an expressions in functions which
do not return @code{void}. Also warn about a @code{return} statement
with an expression in a function whose return type is @code{void},
unless the expression type is also @code{void}. As a GNU extension, the
latter case is accepted without a warning unless @option{-Wpedantic} is
used.
Attempting to use the return value of a non-@code{void} function other
than @code{main} that flows off the end by reaching the closing curly
brace that terminates the function is undefined.
This warning is specific to C and enabled by default. In C99 and later
language dialects, it is treated as an error. It can be downgraded
to a warning using @option{-fpermissive} (along with other warnings),
or for just this warning, with @option{-Wno-error=return-mismatch}.
@opindex Wreturn-type
@opindex Wno-return-type
@item -Wreturn-type
Warn whenever a function is defined with a return type that defaults to
@code{int} (unless @option{-Wimplicit-int} is active, which takes
precedence). Also warn if execution may reach the end of the function
body, or if the function does not contain any return statement at all.
Attempting to use the return value of a non-@code{void} function other
than @code{main} that flows off the end by reaching the closing curly
brace that terminates the function is undefined.
Unlike in C, in C++, flowing off the end of a non-@code{void} function other
than @code{main} results in undefined behavior even when the value of
the function is not used.
This warning is enabled by default in C++ and by @option{-Wall} otherwise.
@opindex Wshift-count-negative
@opindex Wno-shift-count-negative
@item -Wno-shift-count-negative
Controls warnings if a shift count is negative.
This warning is enabled by default.
@opindex Wshift-count-overflow
@opindex Wno-shift-count-overflow
@item -Wno-shift-count-overflow
Controls warnings if a shift count is greater than or equal to the bit width
of the type. This warning is enabled by default.
@opindex Wshift-negative-value
@opindex Wno-shift-negative-value
@item -Wshift-negative-value
Warn if left shifting a negative value. This warning is enabled by
@option{-Wextra} in C99 (and newer) and C++11 to C++17 modes.
@opindex Wshift-overflow
@opindex Wno-shift-overflow
@item -Wno-shift-overflow
@itemx -Wshift-overflow=@var{n}
These options control warnings about left shift overflows.
@table @gcctabopt
@item -Wshift-overflow=1
This is the warning level of @option{-Wshift-overflow} and is enabled
by default in C99 and C++11 modes (and newer). This warning level does
not warn about left-shifting 1 into the sign bit. (However, in C, such
an overflow is still rejected in contexts where an integer constant expression
is required.) No warning is emitted in C++20 mode (and newer), as signed left
shifts always wrap.
@item -Wshift-overflow=2
This warning level also warns about left-shifting 1 into the sign bit,
unless C++14 mode (or newer) is active.
@end table
@opindex Wswitch
@opindex Wno-switch
@item -Wswitch
Warn whenever a @code{switch} statement has an index of enumerated type
and lacks a @code{case} for one or more of the named codes of that
enumeration. (The presence of a @code{default} label prevents this
warning.) @code{case} labels outside the enumeration range also
provoke warnings when this option is used (even if there is a
@code{default} label).
This warning is enabled by @option{-Wall}.
@opindex Wswitch-default
@opindex Wno-switch-default
@item -Wswitch-default
Warn whenever a @code{switch} statement does not have a @code{default}
case.
@opindex Wswitch-enum
@opindex Wno-switch-enum
@item -Wswitch-enum
Warn whenever a @code{switch} statement has an index of enumerated type
and lacks a @code{case} for one or more of the named codes of that
enumeration. @code{case} labels outside the enumeration range also
provoke warnings when this option is used. The only difference
between @option{-Wswitch} and this option is that this option gives a
warning about an omitted enumeration code even if there is a
@code{default} label.
@opindex Wswitch-bool
@opindex Wno-switch-bool
@item -Wno-switch-bool
Do not warn when a @code{switch} statement has an index of boolean type
and the case values are outside the range of a boolean type.
It is possible to suppress this warning by casting the controlling
expression to a type other than @code{bool}. For example:
@smallexample
@group
switch ((int) (a == 4))
@{
@dots{}
@}
@end group
@end smallexample
This warning is enabled by default for C and C++ programs.
@opindex Wswitch-outside-range
@opindex Wno-switch-outside-range
@item -Wno-switch-outside-range
This option controls warnings when a @code{switch} case has a value
that is outside of its
respective type range. This warning is enabled by default for
C and C++ programs.
@opindex Wswitch-unreachable
@opindex Wno-switch-unreachable
@item -Wno-switch-unreachable
Do not warn when a @code{switch} statement contains statements between the
controlling expression and the first case label, which will never be
executed. For example:
@smallexample
@group
switch (cond)
@{
i = 15;
@dots{}
case 5:
@dots{}
@}
@end group
@end smallexample
@option{-Wswitch-unreachable} does not warn if the statement between the
controlling expression and the first case label is just a declaration:
@smallexample
@group
switch (cond)
@{
int i;
@dots{}
case 5:
i = 5;
@dots{}
@}
@end group
@end smallexample
This warning is enabled by default for C and C++ programs.
@opindex Wsync-nand
@opindex Wno-sync-nand
@item -Wsync-nand @r{(C and C++ only)}
Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
built-in functions are used. These functions changed semantics in GCC 4.4.
@opindex Wtrivial-auto-var-init
@opindex Wno-trivial-auto-var-init
@item -Wtrivial-auto-var-init
Warn when @code{-ftrivial-auto-var-init} cannot initialize the automatic
variable. A common situation is an automatic variable that is declared
between the controlling expression and the first case label of a @code{switch}
statement.
@opindex Wunused-but-set-parameter
@opindex Wno-unused-but-set-parameter
@item -Wunused-but-set-parameter
Warn whenever a function parameter is assigned to, but otherwise unused
(aside from its declaration).
To suppress this warning use the @code{unused} attribute
(@pxref{Variable Attributes}).
This warning is also enabled by @option{-Wunused} together with
@option{-Wextra}.
@opindex Wunused-but-set-variable
@opindex Wno-unused-but-set-variable
@item -Wunused-but-set-variable
Warn whenever a local variable is assigned to, but otherwise unused
(aside from its declaration).
This warning is enabled by @option{-Wall}.
To suppress this warning use the @code{unused} attribute
(@pxref{Variable Attributes}).
This warning is also enabled by @option{-Wunused}, which is enabled
by @option{-Wall}.
@opindex Wunused-function
@opindex Wno-unused-function
@item -Wunused-function
Warn whenever a static function is declared but not defined or a
non-inline static function is unused.
This warning is enabled by @option{-Wall}.
@opindex Wunused-label
@opindex Wno-unused-label
@item -Wunused-label
Warn whenever a label is declared but not used.
This warning is enabled by @option{-Wall}.
To suppress this warning use the @code{unused} attribute
(@pxref{Variable Attributes}).
@opindex Wunused-local-typedefs
@opindex Wno-unused-local-typedefs
@item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
Warn when a typedef locally defined in a function is not used.
This warning is enabled by @option{-Wall}.
@opindex Wunused-parameter
@opindex Wno-unused-parameter
@item -Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.
This option is not enabled by @code{-Wunused} unless @code{-Wextra} is also
specified.
To suppress this warning use the @code{unused} attribute
(@pxref{Variable Attributes}).
@opindex Wunused-result
@opindex Wno-unused-result
@item -Wno-unused-result
Do not warn if a caller of a function marked with attribute
@code{warn_unused_result} (@pxref{Function Attributes}) does not use
its return value. The default is @option{-Wunused-result}.
@opindex Wunused-variable
@opindex Wno-unused-variable
@item -Wunused-variable
Warn whenever a local or static variable is unused aside from its
declaration. This option implies @option{-Wunused-const-variable=1} for C,
but not for C++. This warning is enabled by @option{-Wall}.
To suppress this warning use the @code{unused} attribute
(@pxref{Variable Attributes}).
@opindex Wunused-const-variable
@opindex Wno-unused-const-variable
@item -Wunused-const-variable
@itemx -Wunused-const-variable=@var{n}
Warn whenever a constant static variable is unused aside from its declaration.
To suppress this warning use the @code{unused} attribute
(@pxref{Variable Attributes}).
@table @gcctabopt
@item -Wunused-const-variable=1
Warn about unused static const variables defined in the main
compilation unit, but not about static const variables declared in any
header included.
@option{-Wunused-const-variable=1} is enabled by either
@option{-Wunused-variable} or @option{-Wunused} for C, but not for
C++. In C this declares variable storage, but in C++ this is not an
error since const variables take the place of @code{#define}s.
@item -Wunused-const-variable=2
This warning level also warns for unused constant static variables in
headers (excluding system headers). It is equivalent to the short form
@option{-Wunused-const-variable}. This level must be explicitly
requested in both C and C++ because it might be hard to clean up all
headers included.
@end table
@opindex Wunused-value
@opindex Wno-unused-value
@item -Wunused-value
Warn whenever a statement computes a result that is explicitly not
used. To suppress this warning cast the unused expression to
@code{void}. This includes an expression-statement or the left-hand
side of a comma expression that contains no side effects. For example,
an expression such as @code{x[i,j]} causes a warning, while
@code{x[(void)i,j]} does not.
This warning is enabled by @option{-Wall}.
@opindex Wunused
@opindex Wno-unused
@item -Wunused
All the above @option{-Wunused} options combined, except those documented
as needing to be specified explicitly.
In order to get a warning about an unused function parameter, you must
either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
@option{-Wunused}), or separately specify @option{-Wunused-parameter} and/or
@option{-Wunused-but-set-parameter}.
@option{-Wunused} enables only @option{-Wunused-const-variable=1} rather than
@option{-Wunused-const-variable}, and only for C, not C++.
@opindex Wuse-after-free
@opindex Wno-use-after-free
@item -Wuse-after-free @r{(C, Objective-C, C++ and Objective-C++ only)}
@itemx -Wuse-after-free=@var{n}
Warn about uses of pointers to dynamically allocated objects that have
been rendered indeterminate by a call to a deallocation function.
The warning is enabled at all optimization levels but may yield different
results with optimization than without.
@table @gcctabopt
@item -Wuse-after-free=1
At level 1 the warning attempts to diagnose only unconditional uses
of pointers made indeterminate by a deallocation call or a successful
call to @code{realloc}, regardless of whether or not the call resulted
in an actual reallocation of memory. This includes double-@code{free}
calls as well as uses in arithmetic and relational expressions. Although
undefined, uses of indeterminate pointers in equality (or inequality)
expressions are not diagnosed at this level.
@item -Wuse-after-free=2
At level 2, in addition to unconditional uses, the warning also diagnoses
conditional uses of pointers made indeterminate by a deallocation call.
As at level 2, uses in equality (or inequality) expressions are not
diagnosed. For example, the second call to @code{free} in the following
function is diagnosed at this level:
@smallexample
struct A @{ int refcount; void *data; @};
void release (struct A *p)
@{
int refcount = --p->refcount;
free (p);
if (refcount == 0)
free (p->data); // warning: p may be used after free
@}
@end smallexample
@item -Wuse-after-free=3
At level 3, the warning also diagnoses uses of indeterminate pointers in
equality expressions. All uses of indeterminate pointers are undefined
but equality tests sometimes appear after calls to @code{realloc} as
an attempt to determine whether the call resulted in relocating the object
to a different address. They are diagnosed at a separate level to aid
gradually transitioning legacy code to safe alternatives. For example,
the equality test in the function below is diagnosed at this level:
@smallexample
void adjust_pointers (int**, int);
void grow (int **p, int n)
@{
int **q = (int**)realloc (p, n *= 2);
if (q == p)
return;
adjust_pointers ((int**)q, n);
@}
@end smallexample
To avoid the warning at this level, store offsets into allocated memory
instead of pointers. This approach obviates needing to adjust the stored
pointers after reallocation.
@end table
@option{-Wuse-after-free=2} is included in @option{-Wall}.
@opindex Wuseless-cast
@opindex Wno-useless-cast
@item -Wuseless-cast @r{(C, Objective-C, C++ and Objective-C++ only)}
Warn when an expression is cast to its own type. This warning does not
occur when a class object is converted to a non-reference type as that
is a way to create a temporary:
@smallexample
struct S @{ @};
void g (S&&);
void f (S&& arg)
@{
g (S(arg)); // make arg prvalue so that it can bind to S&&
@}
@end smallexample
@opindex Wuninitialized
@opindex Wno-uninitialized
@item -Wuninitialized
Warn if an object with automatic or allocated storage duration is used
without having been initialized. In C++, also warn if a non-static
reference or non-static @code{const} member appears in a class without
constructors.
In addition, passing a pointer (or in C++, a reference) to an uninitialized
object to a @code{const}-qualified argument of a built-in function known to
read the object is also diagnosed by this warning.
(@option{-Wmaybe-uninitialized} is issued for ordinary functions.)
If you want to warn about code that uses the uninitialized value of the
variable in its own initializer, use the @option{-Winit-self} option.
These warnings occur for individual uninitialized elements of
structure, union or array variables as well as for variables that are
uninitialized as a whole. They do not occur for variables or elements
declared @code{volatile}. Because these warnings depend on
optimization, the exact variables or elements for which there are
warnings depend on the precise optimization options and version of GCC
used.
Note that there may be no warning about a variable that is used only
to compute a value that itself is never used, because such
computations may be deleted by data flow analysis before the warnings
are printed.
In C++, this warning also warns about using uninitialized objects in
member-initializer-lists. For example, GCC warns about @code{b} being
uninitialized in the following snippet:
@smallexample
struct A @{
int a;
int b;
A() : a(b) @{ @}
@};
@end smallexample
@opindex Winvalid-memory-model
@opindex Wno-invalid-memory-model
@item -Wno-invalid-memory-model
This option controls warnings
for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
and the C11 atomic generic functions with a memory consistency argument
that is either invalid for the operation or outside the range of values
of the @code{memory_order} enumeration. For example, since the
@code{__atomic_store} and @code{__atomic_store_n} built-ins are only
defined for the relaxed, release, and sequentially consistent memory
orders the following code is diagnosed:
@smallexample
void store (int *i)
@{
__atomic_store_n (i, 0, memory_order_consume);
@}
@end smallexample
@option{-Winvalid-memory-model} is enabled by default.
@opindex Wmaybe-uninitialized
@opindex Wno-maybe-uninitialized
@item -Wmaybe-uninitialized
For an object with automatic or allocated storage duration, if there exists
a path from the function entry to a use of the object that is initialized,
but there exist some other paths for which the object is not initialized,
the compiler emits a warning if it cannot prove the uninitialized paths
are not executed at run time.
In addition, passing a pointer (or in C++, a reference) to an uninitialized
object to a @code{const}-qualified function argument is also diagnosed by
this warning. (@option{-Wuninitialized} is issued for built-in functions
known to read the object.) Annotating the function with attribute
@code{access (none)} indicates that the argument isn't used to access
the object and avoids the warning (@pxref{Common Function Attributes}).
These warnings are only possible in optimizing compilation, because otherwise
GCC does not keep track of the state of variables.
These warnings are made optional because GCC may not be able to determine when
the code is correct in spite of appearing to have an error. Here is one
example of how this can happen:
@smallexample
@group
@{
int x;
switch (y)
@{
case 1: x = 1;
break;
case 2: x = 4;
break;
case 3: x = 5;
@}
foo (x);
@}
@end group
@end smallexample
@noindent
If the value of @code{y} is always 1, 2 or 3, then @code{x} is
always initialized, but GCC doesn't know this. To suppress the
warning, you need to provide a default case with assert(0) or
similar code.
@cindex @code{longjmp} warnings
This option also warns when a non-volatile automatic variable might be
changed by a call to @code{longjmp}.
The compiler sees only the calls to @code{setjmp}. It cannot know
where @code{longjmp} will be called; in fact, a signal handler could
call it at any point in the code. As a result, you may get a warning
even when there is in fact no problem because @code{longjmp} cannot
in fact be called at the place that would cause a problem.
Some spurious warnings can be avoided if you declare all the functions
you use that never return as @code{noreturn}. @xref{Function
Attributes}.
This warning is enabled by @option{-Wall} or @option{-Wextra}.
@opindex Wunknown-pragmas
@opindex Wno-unknown-pragmas
@cindex warning for unknown pragmas
@cindex unknown pragmas, warning
@cindex pragmas, warning of unknown
@item -Wunknown-pragmas
Warn when a @code{#pragma} directive is encountered that is not understood by
GCC@. If this command-line option is used, warnings are even issued
for unknown pragmas in system header files. This is not the case if
the warnings are only enabled by the @option{-Wall} command-line option.
@opindex Wno-pragmas
@opindex Wpragmas
@item -Wno-pragmas
Do not warn about misuses of pragmas, such as incorrect parameters,
invalid syntax, or conflicts between pragmas. See also
@option{-Wunknown-pragmas}.
@opindex Wno-prio-ctor-dtor
@opindex Wprio-ctor-dtor
@item -Wno-prio-ctor-dtor
Do not warn if a priority from 0 to 100 is used for constructor or destructor.
The use of constructor and destructor attributes allow you to assign a
priority to the constructor/destructor to control its order of execution
before @code{main} is called or after it returns. The priority values must be
greater than 100 as the compiler reserves priority values between 0--100 for
the implementation.
@opindex Wstrict-aliasing
@opindex Wno-strict-aliasing
@item -Wstrict-aliasing
This option is only active when @option{-fstrict-aliasing} is active.
It warns about code that might break the strict aliasing rules that the
compiler is using for optimization. The warning does not catch all
cases, but does attempt to catch the more common pitfalls. It is
included in @option{-Wall}.
It is equivalent to @option{-Wstrict-aliasing=3}
@opindex Wstrict-aliasing=n
@item -Wstrict-aliasing=n
This option is only active when @option{-fstrict-aliasing} is active.
It warns about code that might break the strict aliasing rules that the
compiler is using for optimization.
Higher levels correspond to higher accuracy (fewer false positives).
Higher levels also correspond to more effort, similar to the way @option{-O}
works.
@option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
Level 1: Most aggressive, quick, least accurate.
Possibly useful when higher levels
do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
false negatives. However, it has many false positives.
Warns for all pointer conversions between possibly incompatible types,
even if never dereferenced. Runs in the front end only.
Level 2: Aggressive, quick, not too precise.
May still have many false positives (not as many as level 1 though),
and few false negatives (but possibly more than level 1).
Unlike level 1, it only warns when an address is taken. Warns about
incomplete types. Runs in the front end only.
Level 3 (default for @option{-Wstrict-aliasing}):
Should have very few false positives and few false
negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
Takes care of the common pun+dereference pattern in the front end:
@code{*(int*)&some_float}.
If optimization is enabled, it also runs in the back end, where it deals
with multiple statement cases using flow-sensitive points-to information.
Only warns when the converted pointer is dereferenced.
Does not warn about incomplete types.
@opindex Wstrict-overflow
@opindex Wno-strict-overflow
@item -Wstrict-overflow
@itemx -Wstrict-overflow=@var{n}
This option is only active when signed overflow is undefined.
It warns about cases where the compiler optimizes based on the
assumption that signed overflow does not occur. Note that it does not
warn about all cases where the code might overflow: it only warns
about cases where the compiler implements some optimization. Thus
this warning depends on the optimization level.
An optimization that assumes that signed overflow does not occur is
perfectly safe if the values of the variables involved are such that
overflow never does, in fact, occur. Therefore this warning can
easily give a false positive: a warning about code that is not
actually a problem. To help focus on important issues, several
warning levels are defined. No warnings are issued for the use of
undefined signed overflow when estimating how many iterations a loop
requires, in particular when determining whether a loop will be
executed at all.
@table @gcctabopt
@item -Wstrict-overflow=1
Warn about cases that are both questionable and easy to avoid. For
example the compiler simplifies
@code{x + 1 > x} to @code{1}. This level of
@option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
are not, and must be explicitly requested.
@item -Wstrict-overflow=2
Also warn about other cases where a comparison is simplified to a
constant. For example: @code{abs (x) >= 0}. This can only be
simplified when signed integer overflow is undefined, because
@code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
zero. @option{-Wstrict-overflow} (with no level) is the same as
@option{-Wstrict-overflow=2}.
@item -Wstrict-overflow=3
Also warn about other cases where a comparison is simplified. For
example: @code{x + 1 > 1} is simplified to @code{x > 0}.
@item -Wstrict-overflow=4
Also warn about other simplifications not covered by the above cases.
For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
@item -Wstrict-overflow=5
Also warn about cases where the compiler reduces the magnitude of a
constant involved in a comparison. For example: @code{x + 2 > y} is
simplified to @code{x + 1 >= y}. This is reported only at the
highest warning level because this simplification applies to many
comparisons, so this warning level gives a very large number of
false positives.
@end table
@opindex Wstring-compare
@opindex Wno-string-compare
@item -Wstring-compare
Warn for calls to @code{strcmp} and @code{strncmp} whose result is
determined to be either zero or non-zero in tests for such equality
owing to the length of one argument being greater than the size of
the array the other argument is stored in (or the bound in the case
of @code{strncmp}). Such calls could be mistakes. For example,
the call to @code{strcmp} below is diagnosed because its result is
necessarily non-zero irrespective of the contents of the array @code{a}.
@smallexample
extern char a[4];
void f (char *d)
@{
strcpy (d, "string");
@dots{}
if (0 == strcmp (a, d)) // cannot be true
puts ("a and d are the same");
@}
@end smallexample
@option{-Wstring-compare} is enabled by @option{-Wextra}.
@opindex Wstringop-overflow
@opindex Wno-stringop-overflow
@item -Wno-stringop-overflow
@item -Wstringop-overflow
@itemx -Wstringop-overflow=@var{type}
Warn for calls to string manipulation functions such as @code{memcpy} and
@code{strcpy} that are determined to overflow the destination buffer. The
optional argument is one greater than the type of Object Size Checking to
perform to determine the size of the destination. @xref{Object Size Checking}.
The argument is meaningful only for functions that operate on character arrays
but not for raw memory functions like @code{memcpy} which always make use
of Object Size type-0. The option also warns for calls that specify a size
in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
The option produces the best results with optimization enabled but can detect
a small subset of simple buffer overflows even without optimization in
calls to the GCC built-in functions like @code{__builtin_memcpy} that
correspond to the standard functions. In any case, the option warns about
just a subset of buffer overflows detected by the corresponding overflow
checking built-ins. For example, the option issues a warning for
the @code{strcpy} call below because it copies at least 5 characters
(the string @code{"blue"} including the terminating NUL) into the buffer
of size 4.
@smallexample
enum Color @{ blue, purple, yellow @};
const char* f (enum Color clr)
@{
static char buf [4];
const char *str;
switch (clr)
@{
case blue: str = "blue"; break;
case purple: str = "purple"; break;
case yellow: str = "yellow"; break;
@}
return strcpy (buf, str); // warning here
@}
@end smallexample
Option @option{-Wstringop-overflow=2} is enabled by default.
@table @gcctabopt
@opindex Wstringop-overflow
@opindex Wno-stringop-overflow
@item -Wstringop-overflow
@itemx -Wstringop-overflow=1
The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
to determine the sizes of destination objects. At this setting the option
does not warn for writes past the end of subobjects of larger objects accessed
by pointers unless the size of the largest surrounding object is known. When
the destination may be one of several objects it is assumed to be the largest
one of them. On Linux systems, when optimization is enabled at this setting
the option warns for the same code as when the @code{_FORTIFY_SOURCE} macro
is defined to a non-zero value.
@item -Wstringop-overflow=2
The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
to determine the sizes of destination objects. At this setting the option
warns about overflows when writing to members of the largest complete
objects whose exact size is known. However, it does not warn for excessive
writes to the same members of unknown objects referenced by pointers since
they may point to arrays containing unknown numbers of elements. This is
the default setting of the option.
@item -Wstringop-overflow=3
The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
to determine the sizes of destination objects. At this setting the option
warns about overflowing the smallest object or data member. This is the
most restrictive setting of the option that may result in warnings for safe
code.
@item -Wstringop-overflow=4
The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
to determine the sizes of destination objects. At this setting the option
warns about overflowing any data members, and when the destination is
one of several objects it uses the size of the largest of them to decide
whether to issue a warning. Similarly to @option{-Wstringop-overflow=3} this
setting of the option may result in warnings for benign code.
@end table
@opindex Wstringop-overread
@opindex Wno-stringop-overread
@item -Wno-stringop-overread
Warn for calls to string manipulation functions such as @code{memchr}, or
@code{strcpy} that are determined to read past the end of the source
sequence.
Option @option{-Wstringop-overread} is enabled by default.
@opindex Wstringop-truncation
@opindex Wno-stringop-truncation
@item -Wno-stringop-truncation
Do not warn for calls to bounded string manipulation functions
such as @code{strncat},
@code{strncpy}, and @code{stpncpy} that may either truncate the copied string
or leave the destination unchanged.
In the following example, the call to @code{strncat} specifies a bound that
is less than the length of the source string. As a result, the copy of
the source will be truncated and so the call is diagnosed. To avoid the
warning use @code{bufsize - strlen (buf) - 1)} as the bound.
@smallexample
void append (char *buf, size_t bufsize)
@{
strncat (buf, ".txt", 3);
@}
@end smallexample
As another example, the following call to @code{strncpy} results in copying
to @code{d} just the characters preceding the terminating NUL, without
appending the NUL to the end. Assuming the result of @code{strncpy} is
necessarily a NUL-terminated string is a common mistake, and so the call
is diagnosed. To avoid the warning when the result is not expected to be
NUL-terminated, call @code{memcpy} instead.
@smallexample
void copy (char *d, const char *s)
@{
strncpy (d, s, strlen (s));
@}
@end smallexample
In the following example, the call to @code{strncpy} specifies the size
of the destination buffer as the bound. If the length of the source
string is equal to or greater than this size the result of the copy will
not be NUL-terminated. Therefore, the call is also diagnosed. To avoid
the warning, specify @code{sizeof buf - 1} as the bound and set the last
element of the buffer to @code{NUL}.
@smallexample
void copy (const char *s)
@{
char buf[80];
strncpy (buf, s, sizeof buf);
@dots{}
@}
@end smallexample
In situations where a character array is intended to store a sequence
of bytes with no terminating @code{NUL} such an array may be annotated
with attribute @code{nonstring} to avoid this warning. Such arrays,
however, are not suitable arguments to functions that expect
@code{NUL}-terminated strings. To help detect accidental misuses of
such arrays GCC issues warnings unless it can prove that the use is
safe. @xref{Common Variable Attributes}.
@opindex Wstrict-flex-arrays
@opindex Wno-strict-flex-arrays
@item -Wstrict-flex-arrays @r{(C and C++ only)}
Warn about improper usages of flexible array members
according to the @var{level} of the @code{strict_flex_array (@var{level})}
attribute attached to the trailing array field of a structure if it's
available, otherwise according to the @var{level} of the option
@option{-fstrict-flex-arrays=@var{level}}. @xref{Common Variable Attributes},
for more information about the attribute, and @ref{C Dialect Options} for
more information about the option. @code{-Wstrict-flex-arrays}
is effective only when @var{level} is greater than 0.
When @var{level}=1, warnings are issued for a trailing array reference
of a structure that have 2 or more elements if the trailing array is referenced
as a flexible array member.
When @var{level}=2, in addition to @var{level}=1, additional warnings are
issued for a trailing one-element array reference of a structure
if the array is referenced as a flexible array member.
When @var{level}=3, in addition to @var{level}=2, additional warnings are
issued for a trailing zero-length array reference of a structure
if the array is referenced as a flexible array member.
This option is more effective when @option{-ftree-vrp} is active (the
default for @option{-O2} and above) but some warnings may be diagnosed
even without optimization.
@opindex Wsuggest-attribute=
@opindex Wno-suggest-attribute=
@item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}cold@r{|}malloc@r{]}returns_nonnull@r{|}
Warn for cases where adding an attribute may be beneficial. The
attributes currently supported are listed below.
@table @gcctabopt
@opindex Wsuggest-attribute=pure
@opindex Wno-suggest-attribute=pure
@opindex Wsuggest-attribute=const
@opindex Wno-suggest-attribute=const
@opindex Wsuggest-attribute=noreturn
@opindex Wno-suggest-attribute=noreturn
@opindex Wmissing-noreturn
@opindex Wno-missing-noreturn
@opindex Wsuggest-attribute=malloc
@opindex Wno-suggest-attribute=malloc
@item -Wsuggest-attribute=pure
@itemx -Wsuggest-attribute=const
@itemx -Wsuggest-attribute=noreturn
@itemx -Wmissing-noreturn
@itemx -Wsuggest-attribute=malloc
@itemx -Wsuggest-attribute=returns_nonnull
@itemx -Wno-suggest-attribute=returns_nonnull
Warn about functions that might be candidates for attributes
@code{pure}, @code{const}, @code{noreturn}, @code{malloc} or @code{returns_nonnull}. The compiler
only warns for functions visible in other compilation units or (in the case of
@code{pure} and @code{const}) if it cannot prove that the function returns
normally. A function returns normally if it doesn't contain an infinite loop or
return abnormally by throwing, calling @code{abort} or trapping. This analysis
requires option @option{-fipa-pure-const}, which is enabled by default at
@option{-O} and higher. Higher optimization levels improve the accuracy
of the analysis.
@opindex Wsuggest-attribute=format
@opindex Wmissing-format-attribute
@opindex Wno-suggest-attribute=format
@opindex Wno-missing-format-attribute
@opindex Wformat
@opindex Wno-format
@item -Wsuggest-attribute=format
@itemx -Wmissing-format-attribute
Warn about function pointers that might be candidates for @code{format}
attributes. Note these are only possible candidates, not absolute ones.
GCC guesses that function pointers with @code{format} attributes that
are used in assignment, initialization, parameter passing or return
statements should have a corresponding @code{format} attribute in the
resulting type. I.e.@: the left-hand side of the assignment or
initialization, the type of the parameter variable, or the return type
of the containing function respectively should also have a @code{format}
attribute to avoid the warning.
GCC also warns about function definitions that might be
candidates for @code{format} attributes. Again, these are only
possible candidates. GCC guesses that @code{format} attributes
might be appropriate for any function that calls a function like
@code{vprintf} or @code{vscanf}, but this might not always be the
case, and some functions for which @code{format} attributes are
appropriate may not be detected.
@opindex Wsuggest-attribute=cold
@opindex Wno-suggest-attribute=cold
@item -Wsuggest-attribute=cold
Warn about functions that might be candidates for @code{cold} attribute. This
is based on static detection and generally only warns about functions which
always leads to a call to another @code{cold} function such as wrappers of
C++ @code{throw} or fatal error reporting functions leading to @code{abort}.
@end table
@opindex Wno-alloc-size
@opindex Walloc-size
@item -Walloc-size
Warn about calls to allocation functions decorated with attribute
@code{alloc_size} that specify insufficient size for the target type of
the pointer the result is assigned to, including those to the built-in
forms of the functions @code{aligned_alloc}, @code{alloca},
@code{calloc}, @code{malloc}, and @code{realloc}.
@opindex Wno-alloc-zero
@opindex Walloc-zero
@item -Walloc-zero
Warn about calls to allocation functions decorated with attribute
@code{alloc_size} that specify zero bytes, including those to the built-in
forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
@code{malloc}, and @code{realloc}. Because the behavior of these functions
when called with a zero size differs among implementations (and in the case
of @code{realloc} has been deprecated) relying on it may result in subtle
portability bugs and should be avoided.
@opindex Wcalloc-transposed-args
@opindex Wno-calloc-transposed-args
@item -Wcalloc-transposed-args
Warn about calls to allocation functions decorated with attribute
@code{alloc_size} with two arguments, which use @code{sizeof} operator
as the earlier size argument and don't use it as the later size argument.
This is a coding style warning. The first argument to @code{calloc} is
documented to be number of elements in array, while the second argument
is size of each element, so @code{calloc (@var{n}, sizeof (int))} is preferred
over @code{calloc (sizeof (int), @var{n})}. If @code{sizeof} in the earlier
argument and not the latter is intentional, the warning can be suppressed
by using @code{calloc (sizeof (struct @var{S}) + 0, n)} or
@code{calloc (1 * sizeof (struct @var{S}), 4)} or using @code{sizeof} in the
later argument as well.
@opindex Walloc-size-larger-than=
@opindex Wno-alloc-size-larger-than
@item -Walloc-size-larger-than=@var{byte-size}
Warn about calls to functions decorated with attribute @code{alloc_size}
that attempt to allocate objects larger than the specified number of bytes,
or where the result of the size computation in an integer type with infinite
precision would exceed the value of @samp{PTRDIFF_MAX} on the target.
@option{-Walloc-size-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
Warnings controlled by the option can be disabled either by specifying
@var{byte-size} of @samp{SIZE_MAX} or more or by
@option{-Wno-alloc-size-larger-than}.
@xref{Function Attributes}.
@opindex Wno-alloc-size-larger-than
@item -Wno-alloc-size-larger-than
Disable @option{-Walloc-size-larger-than=} warnings. The option is
equivalent to @option{-Walloc-size-larger-than=}@samp{SIZE_MAX} or
larger.
@opindex Wno-alloca
@opindex Walloca
@item -Walloca
This option warns on all uses of @code{alloca} in the source.
@opindex Walloca-larger-than=
@opindex Wno-alloca-larger-than
@item -Walloca-larger-than=@var{byte-size}
This option warns on calls to @code{alloca} with an integer argument whose
value is either zero, or that is not bounded by a controlling predicate
that limits its value to at most @var{byte-size}. It also warns for calls
to @code{alloca} where the bound value is unknown. Arguments of non-integer
types are considered unbounded even if they appear to be constrained to
the expected range.
For example, a bounded case of @code{alloca} could be:
@smallexample
void func (size_t n)
@{
void *p;
if (n <= 1000)
p = alloca (n);
else
p = malloc (n);
f (p);
@}
@end smallexample
In the above example, passing @code{-Walloca-larger-than=1000} would not
issue a warning because the call to @code{alloca} is known to be at most
1000 bytes. However, if @code{-Walloca-larger-than=500} were passed,
the compiler would emit a warning.
Unbounded uses, on the other hand, are uses of @code{alloca} with no
controlling predicate constraining its integer argument. For example:
@smallexample
void func ()
@{
void *p = alloca (n);
f (p);
@}
@end smallexample
If @code{-Walloca-larger-than=500} were passed, the above would trigger
a warning, but this time because of the lack of bounds checking.
Note, that even seemingly correct code involving signed integers could
cause a warning:
@smallexample
void func (signed int n)
@{
if (n < 500)
@{
p = alloca (n);
f (p);
@}
@}
@end smallexample
In the above example, @var{n} could be negative, causing a larger than
expected argument to be implicitly cast into the @code{alloca} call.
This option also warns when @code{alloca} is used in a loop.
@option{-Walloca-larger-than=}@samp{PTRDIFF_MAX} is enabled by default
but is usually only effective when @option{-ftree-vrp} is active (default
for @option{-O2} and above).
See also @option{-Wvla-larger-than=}@samp{byte-size}.
@opindex Wno-alloca-larger-than
@item -Wno-alloca-larger-than
Disable @option{-Walloca-larger-than=} warnings. The option is
equivalent to @option{-Walloca-larger-than=}@samp{SIZE_MAX} or larger.
@opindex Warith-conversion
@opindex Wno-arith-conversion
@item -Warith-conversion
Do warn about implicit conversions from arithmetic operations even
when conversion of the operands to the same type cannot change their
values. This affects warnings from @option{-Wconversion},
@option{-Wfloat-conversion}, and @option{-Wsign-conversion}.
@smallexample
@group
void f (char c, int i)
@{
c = c + i; // warns with @option{-Wconversion}
c = c + 1; // only warns with @option{-Warith-conversion}
@}
@end group
@end smallexample
@opindex Wno-array-bounds
@opindex Warray-bounds
@item -Warray-bounds
@itemx -Warray-bounds=@var{n}
Warn about out of bounds subscripts or offsets into arrays. This warning
is enabled by @option{-Wall}. It is more effective when @option{-ftree-vrp}
is active (the default for @option{-O2} and above) but a subset of instances
are issued even without optimization.
By default, the trailing array of a structure will be treated as a flexible
array member by @option{-Warray-bounds} or @option{-Warray-bounds=@var{n}}
if it is declared as either a flexible array member per C99 standard onwards
(@samp{[]}), a GCC zero-length array extension (@samp{[0]}), or an one-element
array (@samp{[1]}). As a result, out of bounds subscripts or offsets into
zero-length arrays or one-element arrays are not warned by default.
You can add the option @option{-fstrict-flex-arrays} or
@option{-fstrict-flex-arrays=@var{level}} to control how this
option treat trailing array of a structure as a flexible array member:
when @var{level}<=1, no change to the default behavior.
when @var{level}=2, additional warnings will be issued for out of bounds
subscripts or offsets into one-element arrays;
when @var{level}=3, in addition to @var{level}=2, additional warnings will be
issued for out of bounds subscripts or offsets into zero-length arrays.
@table @gcctabopt
@item -Warray-bounds=1
This is the default warning level of @option{-Warray-bounds} and is enabled
by @option{-Wall}; higher levels are not, and must be explicitly requested.
@item -Warray-bounds=2
This warning level also warns about the intermediate results of pointer
arithmetic that may yield out of bounds values. This warning level may
give a larger number of false positives and is deactivated by default.
@end table
@opindex Wunterminated-string-initialization
@opindex Wno-unterminated-string-initialization
@item -Wunterminated-string-initialization @r{(C and Objective-C only)}
Warn about character arrays
initialized as unterminated character sequences
with a string literal.
For example:
@smallexample
char arr[3] = "foo";
@end smallexample
This warning is enabled by @option{-Wextra} and @option{-Wc++-compat}.
In C++, such initializations are an error.
@opindex Warray-compare
@opindex Wno-array-compare
@item -Warray-compare
Warn about equality and relational comparisons between two operands of array
type. This comparison was deprecated in C++20. For example:
@smallexample
int arr1[5];
int arr2[5];
bool same = arr1 == arr2;
@end smallexample
@option{-Warray-compare} is enabled by @option{-Wall}.
@opindex Wno-array-parameter
@opindex Warray-parameter
@item -Warray-parameter
@itemx -Warray-parameter=@var{n}
Warn about redeclarations of functions involving parameters of array or
pointer types of inconsistent kinds or forms, and enable the detection
of out-of-bounds accesses to such parameters by warnings such as
@option{-Warray-bounds}.
If the first function declaration uses the array form for a parameter
declaration, the bound specified
in the array is assumed to be the minimum number of elements expected to
be provided in calls to the function and the maximum number of elements
accessed by it. Failing to provide arguments of sufficient size or accessing
more than the maximum number of elements may be diagnosed by warnings such
as @option{-Warray-bounds} or @option{-Wstringop-overflow}.
At level 1, the warning diagnoses inconsistencies
involving array parameters declared using the @code{T[static N]} form.
For example, the warning triggers for the second declaration of @code{f}
because the first one with the keyword @code{static} specifies that
the array argument must have at least four elements, while the second
allows an array of any size to be passed to @code{f}.
@smallexample
void f (int[static 4]);
void f (int[]); // warning (inconsistent array form)
void g (void)
@{
int *p = (int *)malloc (1 * sizeof (int));
f (p); // warning (array too small)
@dots{}
@}
@end smallexample
At level 2 the warning also triggers for redeclarations involving any other
inconsistency in array or pointer argument forms denoting array sizes.
Pointers and arrays of unspecified bound are considered equivalent and do
not trigger a warning.
@smallexample
void g (int*);
void g (int[]); // no warning
void g (int[8]); // warning (inconsistent array bound)
@end smallexample
@option{-Warray-parameter=2} is included in @option{-Wall}. The
@option{-Wvla-parameter} option triggers warnings for similar inconsistencies
involving Variable Length Array arguments.
The short form of the option @option{-Warray-parameter} is equivalent to
@option{-Warray-parameter=2}. The negative form @option{-Wno-array-parameter}
is equivalent to @option{-Warray-parameter=0}.
@opindex Wattribute-alias
@opindex Wno-attribute-alias
@item -Wattribute-alias=@var{n}
@itemx -Wno-attribute-alias
Warn about declarations using the @code{alias} and similar attributes whose
target is incompatible with the type of the alias.
@xref{Function Attributes,,Declaring Attributes of Functions}.
@table @gcctabopt
@item -Wattribute-alias=1
The default warning level of the @option{-Wattribute-alias} option diagnoses
incompatibilities between the type of the alias declaration and that of its
target. Such incompatibilities are typically indicative of bugs.
@item -Wattribute-alias=2
At this level @option{-Wattribute-alias} also diagnoses cases where
the attributes of the alias declaration are more restrictive than the
attributes applied to its target. These mismatches can potentially
result in incorrect code generation. In other cases they may be
benign and could be resolved simply by adding the missing attribute to
the target. For comparison, see the @option{-Wmissing-attributes}
option, which controls diagnostics when the alias declaration is less
restrictive than the target, rather than more restrictive.
Attributes considered include @code{alloc_align}, @code{alloc_size},
@code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
@code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
@code{returns_nonnull}, and @code{returns_twice}.
@end table
@option{-Wattribute-alias} is equivalent to @option{-Wattribute-alias=1}.
This is the default. You can disable these warnings with either
@option{-Wno-attribute-alias} or @option{-Wattribute-alias=0}.
@opindex Wbidi-chars=
@opindex Wbidi-chars
@opindex Wno-bidi-chars
@item -Wbidi-chars=@r{[}none@r{|}unpaired@r{|}any@r{|}ucn@r{]}
Warn about possibly misleading UTF-8 bidirectional control characters in
comments, string literals, character constants, and identifiers. Such
characters can change left-to-right writing direction into right-to-left
(and vice versa), which can cause confusion between the logical order and
visual order. This may be dangerous; for instance, it may seem that a piece
of code is not commented out, whereas it in fact is.
There are three levels of warning supported by GCC@. The default is
@option{-Wbidi-chars=unpaired}, which warns about improperly terminated
bidi contexts. @option{-Wbidi-chars=none} turns the warning off.
@option{-Wbidi-chars=any} warns about any use of bidirectional control
characters.
By default, this warning does not warn about UCNs. It is, however, possible
to turn on such checking by using @option{-Wbidi-chars=unpaired,ucn} or
@option{-Wbidi-chars=any,ucn}. Using @option{-Wbidi-chars=ucn} is valid,
and is equivalent to @option{-Wbidi-chars=unpaired,ucn}, if no previous
@option{-Wbidi-chars=any} was specified.
@opindex Wno-bool-compare
@opindex Wbool-compare
@item -Wbool-compare
Warn about boolean expression compared with an integer value different from
@code{true}/@code{false}. For instance, the following comparison is
always false:
@smallexample
int n = 5;
@dots{}
if ((n > 1) == 2) @{ @dots{} @}
@end smallexample
This warning is enabled by @option{-Wall}.
@opindex Wno-bool-operation
@opindex Wbool-operation
@item -Wbool-operation
Warn about suspicious operations on expressions of a boolean type. For
instance, bitwise negation of a boolean is very likely a bug in the program.
For C, this warning also warns about incrementing or decrementing a boolean,
which rarely makes sense. (In C++, decrementing a boolean is always invalid.
Incrementing a boolean is invalid in C++17, and deprecated otherwise.)
This warning is enabled by @option{-Wall}.
@opindex Wno-duplicated-branches
@opindex Wduplicated-branches
@item -Wduplicated-branches
Warn when an if-else has identical branches. This warning detects cases like
@smallexample
if (p != NULL)
return 0;
else
return 0;
@end smallexample
It doesn't warn when both branches contain just a null statement. This warning
also warn for conditional operators:
@smallexample
int i = x ? *p : *p;
@end smallexample
@opindex Wno-duplicated-cond
@opindex Wduplicated-cond
@item -Wduplicated-cond
Warn about duplicated conditions in an if-else-if chain. For instance,
warn for the following code:
@smallexample
if (p->q != NULL) @{ @dots{} @}
else if (p->q != NULL) @{ @dots{} @}
@end smallexample
@opindex Wno-frame-address
@opindex Wframe-address
@item -Wframe-address
Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
is called with an argument greater than 0. Such calls may return indeterminate
values or crash the program. The warning is included in @option{-Wall}.
@opindex Wno-discarded-qualifiers
@opindex Wdiscarded-qualifiers
@item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
Do not warn if type qualifiers on pointers are being discarded.
Typically, the compiler warns if a @code{const char *} variable is
passed to a function that takes a @code{char *} parameter. This option
can be used to suppress such a warning.
@opindex Wno-discarded-array-qualifiers
@opindex Wdiscarded-array-qualifiers
@item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
Do not warn if type qualifiers on arrays which are pointer targets
are being discarded. Typically, the compiler warns if a
@code{const int (*)[]} variable is passed to a function that
takes a @code{int (*)[]} parameter. This option can be used to
suppress such a warning.
@opindex Wno-incompatible-pointer-types
@opindex Wincompatible-pointer-types
@item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
Do not warn when there is a conversion between pointers that have incompatible
types. This warning is for cases not covered by @option{-Wno-pointer-sign},
which warns for pointer argument passing or assignment with different
signedness.
By default, in C99 and later dialects of C, GCC treats this issue as an
error. The error can be downgraded to a warning using
@option{-fpermissive} (along with certain other errors), or for this
error alone, with @option{-Wno-error=incompatible-pointer-types}.
This warning is upgraded to an error by @option{-pedantic-errors}.
@opindex Wno-int-conversion
@opindex Wint-conversion
@item -Wno-int-conversion @r{(C and Objective-C only)}
Do not warn about incompatible integer to pointer and pointer to integer
conversions. This warning is about implicit conversions; for explicit
conversions the warnings @option{-Wno-int-to-pointer-cast} and
@option{-Wno-pointer-to-int-cast} may be used.
By default, in C99 and later dialects of C, GCC treats this issue as an
error. The error can be downgraded to a warning using
@option{-fpermissive} (along with certain other errors), or for this
error alone, with @option{-Wno-error=int-conversion}.
This warning is upgraded to an error by @option{-pedantic-errors}.
@opindex Wzero-length-bounds
@opindex Wzero-length-bounds
@item -Wzero-length-bounds
Warn about accesses to elements of zero-length array members that might
overlap other members of the same object. Declaring interior zero-length
arrays is discouraged because accesses to them are undefined.
@xref{Zero Length}.
For example, the first two stores in function @code{bad} are diagnosed
because the array elements overlap the subsequent members @code{b} and
@code{c}. The third store is diagnosed by @option{-Warray-bounds}
because it is beyond the bounds of the enclosing object.
@smallexample
struct X @{ int a[0]; int b, c; @};
struct X x;
void bad (void)
@{
x.a[0] = 0; // -Wzero-length-bounds
x.a[1] = 1; // -Wzero-length-bounds
x.a[2] = 2; // -Warray-bounds
@}
@end smallexample
Option @option{-Wzero-length-bounds} is enabled by @option{-Warray-bounds}.
@opindex Wno-div-by-zero
@opindex Wdiv-by-zero
@item -Wno-div-by-zero
Do not warn about compile-time integer division by zero. Floating-point
division by zero is not warned about, as it can be a legitimate way of
obtaining infinities and NaNs.
@opindex Wsystem-headers
@opindex Wno-system-headers
@cindex warnings from system headers
@cindex system headers, warnings from
@item -Wsystem-headers
Print warning messages for constructs found in system header files.
Warnings from system headers are normally suppressed, on the assumption
that they usually do not indicate real problems and would only make the
compiler output harder to read. Using this command-line option tells
GCC to emit warnings from system headers as if they occurred in user
code. However, note that using @option{-Wall} in conjunction with this
option does @emph{not} warn about unknown pragmas in system
headers---for that, @option{-Wunknown-pragmas} must also be used.
@opindex Wtautological-compare
@opindex Wno-tautological-compare
@item -Wtautological-compare
Warn if a self-comparison always evaluates to true or false. This
warning detects various mistakes such as:
@smallexample
int i = 1;
@dots{}
if (i > i) @{ @dots{} @}
@end smallexample
This warning also warns about bitwise comparisons that always evaluate
to true or false, for instance:
@smallexample
if ((a & 16) == 10) @{ @dots{} @}
@end smallexample
will always be false.
This warning is enabled by @option{-Wall}.
@opindex Wtrampolines
@opindex Wno-trampolines
@item -Wtrampolines
Warn about trampolines generated for pointers to nested functions.
A trampoline is a small piece of data or code that is created at run
time on the stack when the address of a nested function is taken, and is
used to call the nested function indirectly. For some targets, it is
made up of data only and thus requires no special treatment. But, for
most targets, it is made up of code and thus requires the stack to be
made executable in order for the program to work properly.
@opindex Wfloat-equal
@opindex Wno-float-equal
@item -Wfloat-equal
Warn if floating-point values are used in equality comparisons.
The idea behind this is that sometimes it is convenient (for the
programmer) to consider floating-point values as approximations to
infinitely precise real numbers. If you are doing this, then you need
to compute (by analyzing the code, or in some other way) the maximum or
likely maximum error that the computation introduces, and allow for it
when performing comparisons (and when producing output, but that's a
different problem). In particular, instead of testing for equality, you
should check to see whether the two values have ranges that overlap; and
this is done with the relational operators, so equality comparisons are
probably mistaken.
@opindex Wtraditional
@opindex Wno-traditional
@item -Wtraditional @r{(C and Objective-C only)}
Warn about certain constructs that behave differently in traditional and
ISO C@. Also warn about ISO C constructs that have no traditional C
equivalent, and/or problematic constructs that should be avoided.
@itemize @bullet
@item
Macro parameters that appear within string literals in the macro body.
In traditional C macro replacement takes place within string literals,
but in ISO C it does not.
@item
In traditional C, some preprocessor directives did not exist.
Traditional preprocessors only considered a line to be a directive
if the @samp{#} appeared in column 1 on the line. Therefore
@option{-Wtraditional} warns about directives that traditional C
understands but ignores because the @samp{#} does not appear as the
first character on the line. It also suggests you hide directives like
@code{#pragma} not understood by traditional C by indenting them. Some
traditional implementations do not recognize @code{#elif}, so this option
suggests avoiding it altogether.
@item
A function-like macro that appears without arguments.
@item
The unary plus operator.
@item
The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
constant suffixes. (Traditional C does support the @samp{L} suffix on integer
constants.) Note, these suffixes appear in macros defined in the system
headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
Use of these macros in user code might normally lead to spurious
warnings, however GCC's integrated preprocessor has enough context to
avoid warning in these cases.
@item
A function declared external in one block and then used after the end of
the block.
@item
A @code{switch} statement has an operand of type @code{long}.
@item
A non-@code{static} function declaration follows a @code{static} one.
This construct is not accepted by some traditional C compilers.
@item
The ISO type of an integer constant has a different width or
signedness from its traditional type. This warning is only issued if
the base of the constant is ten. I.e.@: hexadecimal or octal values, which
typically represent bit patterns, are not warned about.
@item
Usage of ISO string concatenation is detected.
@item
Initialization of automatic aggregates.
@item
Identifier conflicts with labels. Traditional C lacks a separate
namespace for labels.
@item
Initialization of unions. If the initializer is zero, the warning is
omitted. This is done under the assumption that the zero initializer in
user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
initializer warnings and relies on default initialization to zero in the
traditional C case.
@item
Conversions by prototypes between fixed/floating-point values and vice
versa. The absence of these prototypes when compiling with traditional
C causes serious problems. This is a subset of the possible
conversion warnings; for the full set use @option{-Wtraditional-conversion}.
@item
Use of ISO C style function definitions. This warning intentionally is
@emph{not} issued for prototype declarations or variadic functions
because these ISO C features appear in your code when using
libiberty's traditional C compatibility macros, @code{PARAMS} and
@code{VPARAMS}. This warning is also bypassed for nested functions
because that feature is already a GCC extension and thus not relevant to
traditional C compatibility.
@end itemize
@opindex Wtraditional-conversion
@opindex Wno-traditional-conversion
@item -Wtraditional-conversion @r{(C and Objective-C only)}
Warn if a prototype causes a type conversion that is different from what
would happen to the same argument in the absence of a prototype. This
includes conversions of fixed point to floating and vice versa, and
conversions changing the width or signedness of a fixed-point argument
except when the same as the default promotion.
@opindex Wdeclaration-after-statement
@opindex Wno-declaration-after-statement
@item -Wdeclaration-after-statement @r{(C and Objective-C only)}
Warn when a declaration is found after a statement in a block. This
construct, known from C++, was introduced with ISO C99 and is by default
allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Labels and Declarations}.
This warning is upgraded to an error by @option{-pedantic-errors}.
@opindex Wshadow
@opindex Wno-shadow
@item -Wshadow
Warn whenever a local variable or type declaration shadows another
variable, parameter, type, class member (in C++), or instance variable
(in Objective-C) or whenever a built-in function is shadowed. Note
that in C++, the compiler warns if a local variable shadows an
explicit typedef, but not if it shadows a struct/class/enum.
If this warning is enabled, it includes also all instances of
local shadowing. This means that @option{-Wno-shadow=local}
and @option{-Wno-shadow=compatible-local} are ignored when
@option{-Wshadow} is used.
Same as @option{-Wshadow=global}.
@opindex Wno-shadow-ivar
@opindex Wshadow-ivar
@item -Wno-shadow-ivar @r{(Objective-C only)}
Do not warn whenever a local variable shadows an instance variable in an
Objective-C method.
@opindex Wshadow=global
@item -Wshadow=global
Warn for any shadowing.
Same as @option{-Wshadow}.
@opindex Wshadow=local
@item -Wshadow=local
Warn when a local variable shadows another local variable or parameter.
@opindex Wshadow=compatible-local
@item -Wshadow=compatible-local
Warn when a local variable shadows another local variable or parameter
whose type is compatible with that of the shadowing variable. In C++,
type compatibility here means the type of the shadowing variable can be
converted to that of the shadowed variable. The creation of this flag
(in addition to @option{-Wshadow=local}) is based on the idea that when
a local variable shadows another one of incompatible type, it is most
likely intentional, not a bug or typo, as shown in the following example:
@smallexample
@group
for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
@{
for (int i = 0; i < N; ++i)
@{
...
@}
...
@}
@end group
@end smallexample
Since the two variable @code{i} in the example above have incompatible types,
enabling only @option{-Wshadow=compatible-local} does not emit a warning.
Because their types are incompatible, if a programmer accidentally uses one
in place of the other, type checking is expected to catch that and emit an
error or warning. Use of this flag instead of @option{-Wshadow=local} can
possibly reduce the number of warnings triggered by intentional shadowing.
Note that this also means that shadowing @code{const char *i} by
@code{char *i} does not emit a warning.
This warning is also enabled by @option{-Wshadow=local}.
@opindex Wlarger-than=
@opindex Wlarger-than-@var{byte-size}
@item -Wlarger-than=@var{byte-size}
Warn whenever an object is defined whose size exceeds @var{byte-size}.
@option{-Wlarger-than=}@samp{PTRDIFF_MAX} is enabled by default.
Warnings controlled by the option can be disabled either by specifying
@var{byte-size} of @samp{SIZE_MAX} or more or by @option{-Wno-larger-than}.
Also warn for calls to bounded functions such as @code{memchr} or
@code{strnlen} that specify a bound greater than the largest possible
object, which is @samp{PTRDIFF_MAX} bytes by default. These warnings
can only be disabled by @option{-Wno-larger-than}.
@opindex Wno-larger-than
@item -Wno-larger-than
Disable @option{-Wlarger-than=} warnings. The option is equivalent
to @option{-Wlarger-than=}@samp{SIZE_MAX} or larger.
@opindex Wframe-larger-than=
@opindex Wno-frame-larger-than
@item -Wframe-larger-than=@var{byte-size}
Warn if the size of a function frame exceeds @var{byte-size}.
The computation done to determine the stack frame size is approximate
and not conservative.
The actual requirements may be somewhat greater than @var{byte-size}
even if you do not get a warning. In addition, any space allocated
via @code{alloca}, variable-length arrays, or related constructs
is not included by the compiler when determining
whether or not to issue a warning.
@option{-Wframe-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
Warnings controlled by the option can be disabled either by specifying
@var{byte-size} of @samp{SIZE_MAX} or more or by
@option{-Wno-frame-larger-than}.
@opindex Wno-frame-larger-than
@item -Wno-frame-larger-than
Disable @option{-Wframe-larger-than=} warnings. The option is equivalent
to @option{-Wframe-larger-than=}@samp{SIZE_MAX} or larger.
@opindex Wfree-nonheap-object
@opindex Wno-free-nonheap-object
@item -Wfree-nonheap-object
Warn when attempting to deallocate an object that was either not allocated
on the heap, or by using a pointer that was not returned from a prior call
to the corresponding allocation function. For example, because the call
to @code{stpcpy} returns a pointer to the terminating nul character and
not to the beginning of the object, the call to @code{free} below is
diagnosed.
@smallexample
void f (char *p)
@{
p = stpcpy (p, "abc");
// ...
free (p); // warning
@}
@end smallexample
@option{-Wfree-nonheap-object} is included in @option{-Wall}.
@opindex Wstack-usage
@opindex Wno-stack-usage
@item -Wstack-usage=@var{byte-size}
Warn if the stack usage of a function might exceed @var{byte-size}.
The computation done to determine the stack usage is conservative.
Any space allocated via @code{alloca}, variable-length arrays, or related
constructs is included by the compiler when determining whether or not to
issue a warning.
The message is in keeping with the output of @option{-fstack-usage}.
@itemize
@item
If the stack usage is fully static but exceeds the specified amount, it's:
@smallexample
warning: stack usage is 1120 bytes
@end smallexample
@item
If the stack usage is (partly) dynamic but bounded, it's:
@smallexample
warning: stack usage might be 1648 bytes
@end smallexample
@item
If the stack usage is (partly) dynamic and not bounded, it's:
@smallexample
warning: stack usage might be unbounded
@end smallexample
@end itemize
@option{-Wstack-usage=}@samp{PTRDIFF_MAX} is enabled by default.
Warnings controlled by the option can be disabled either by specifying
@var{byte-size} of @samp{SIZE_MAX} or more or by
@option{-Wno-stack-usage}.
@opindex Wno-stack-usage
@item -Wno-stack-usage
Disable @option{-Wstack-usage=} warnings. The option is equivalent
to @option{-Wstack-usage=}@samp{SIZE_MAX} or larger.
@opindex Wunsafe-loop-optimizations
@opindex Wno-unsafe-loop-optimizations
@item -Wunsafe-loop-optimizations
Warn if the loop cannot be optimized because the compiler cannot
assume anything on the bounds of the loop indices. With
@option{-funsafe-loop-optimizations} warn if the compiler makes
such assumptions.
@opindex Wno-pedantic-ms-format
@opindex Wpedantic-ms-format
@item -Wno-pedantic-ms-format @r{(MinGW targets only)}
When used in combination with @option{-Wformat}
and @option{-pedantic} without GNU extensions, this option
disables the warnings about non-ISO @code{printf} / @code{scanf} format
width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
which depend on the MS runtime.
@opindex Wpointer-arith
@opindex Wno-pointer-arith
@item -Wpointer-arith
Warn about anything that depends on the ``size of'' a function type or
of @code{void}. GNU C assigns these types a size of 1, for
convenience in calculations with @code{void *} pointers and pointers
to functions. In C++, warn also when an arithmetic operation involves
@code{NULL}. This warning is also enabled by @option{-Wpedantic}.
This warning is upgraded to an error by @option{-pedantic-errors}.
@opindex Wpointer-compare
@opindex Wno-pointer-compare
@item -Wno-pointer-compare
Do not warn if a pointer is compared with a zero character constant.
This usually
means that the pointer was meant to be dereferenced. For example:
@smallexample
const char *p = foo ();
if (p == '\0')
return 42;
@end smallexample
Note that the code above is invalid in C++11.
This warning is enabled by default.
@opindex Wtsan
@opindex Wno-tsan
@item -Wno-tsan
Disable warnings about unsupported features in ThreadSanitizer.
ThreadSanitizer does not support @code{std::atomic_thread_fence} and
can report false positives.
@opindex Wtype-limits
@opindex Wno-type-limits
@item -Wtype-limits
Warn if a comparison is always true or always false due to the limited
range of the data type, but do not warn for constant expressions. For
example, warn if an unsigned variable is compared against zero with
@code{<} or @code{>=}. This warning is also enabled by
@option{-Wextra}.
@opindex Wabsolute-value
@opindex Wno-absolute-value
@item -Wabsolute-value @r{(C and Objective-C only)}
Warn for calls to standard functions that compute the absolute value
of an argument when a more appropriate standard function is available.
For example, calling @code{abs(3.14)} triggers the warning because the
appropriate function to call to compute the absolute value of a double
argument is @code{fabs}. The option also triggers warnings when the
argument in a call to such a function has an unsigned type. This
warning can be suppressed with an explicit type cast and it is also
enabled by @option{-Wextra}.
@include cppwarnopts.texi
@opindex Wbad-function-cast
@opindex Wno-bad-function-cast
@item -Wbad-function-cast @r{(C and Objective-C only)}
Warn when a function call is cast to a non-matching type.
For example, warn if a call to a function returning an integer type
is cast to a pointer type.
@opindex Wc90-c99-compat
@opindex Wno-c90-c99-compat
@item -Wc90-c99-compat @r{(C and Objective-C only)}
Warn about features not present in ISO C90, but present in ISO C99.
For instance, warn about use of variable length arrays, @code{long long}
type, @code{bool} type, compound literals, designated initializers, and so
on. This option is independent of the standards mode. Warnings are disabled
in the expression that follows @code{__extension__}.
@opindex Wc99-c11-compat
@opindex Wno-c99-c11-compat
@item -Wc99-c11-compat @r{(C and Objective-C only)}
Warn about features not present in ISO C99, but present in ISO C11.
For instance, warn about use of anonymous structures and unions,
@code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
@code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
and so on. This option is independent of the standards mode. Warnings are
disabled in the expression that follows @code{__extension__}.
@opindex Wc11-c23-compat
@opindex Wno-c11-c23-compat
@item -Wc11-c23-compat @r{(C and Objective-C only)}
@itemx -Wc11-c2x-compat @r{(C and Objective-C only)}
Warn about features not present in ISO C11, but present in ISO C23.
For instance, warn about omitting the string in @code{_Static_assert},
use of @samp{[[]]} syntax for attributes, use of decimal
floating-point types, and so on. This option is independent of the
standards mode. Warnings are disabled in the expression that follows
@code{__extension__}. The name @option{-Wc11-c2x-compat} is
deprecated.
When not compiling in C23 mode, these warnings are upgraded to errors
by @option{-pedantic-errors}.
@opindex Wc23-c2y-compat
@opindex Wno-c23-c2y-compat
@item -Wc23-c2y-compat @r{(C and Objective-C only)}
@itemx -Wc23-c2y-compat @r{(C and Objective-C only)}
Warn about features not present in ISO C23, but present in ISO C2Y.
For instance, warn about @code{_Generic} selecting with a type name
instead of an expression. This option is independent of the standards
mode. Warnings are disabled in the expression that follows
@code{__extension__}.
When not compiling in C2Y mode, these warnings are upgraded to errors
by @option{-pedantic-errors}.
@opindex Wc++-compat
@opindex Wno-c++-compat
@item -Wc++-compat @r{(C and Objective-C only)}
Warn about ISO C constructs that are outside of the common subset of
ISO C and ISO C++, e.g.@: request for implicit conversion from
@code{void *} to a pointer to non-@code{void} type.
@opindex Wc++11-compat
@opindex Wno-c++11-compat
@item -Wc++11-compat @r{(C++ and Objective-C++ only)}
Warn about C++ constructs whose meaning differs between ISO C++ 1998
and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
enabled by @option{-Wall}.
@opindex Wc++14-compat
@opindex Wno-c++14-compat
@item -Wc++14-compat @r{(C++ and Objective-C++ only)}
Warn about C++ constructs whose meaning differs between ISO C++ 2011
and ISO C++ 2014. This warning is enabled by @option{-Wall}.
@opindex Wc++17-compat
@opindex Wno-c++17-compat
@item -Wc++17-compat @r{(C++ and Objective-C++ only)}
Warn about C++ constructs whose meaning differs between ISO C++ 2014
and ISO C++ 2017. This warning is enabled by @option{-Wall}.
@opindex Wc++20-compat
@opindex Wno-c++20-compat
@item -Wc++20-compat @r{(C++ and Objective-C++ only)}
Warn about C++ constructs whose meaning differs between ISO C++ 2017
and ISO C++ 2020. This warning is enabled by @option{-Wall}.
@opindex Wc++11-extensions
@opindex Wno-c++11-extensions
@item -Wno-c++11-extensions @r{(C++ and Objective-C++ only)}
Do not warn about C++11 constructs in code being compiled using
an older C++ standard. Even without this option, some C++11 constructs
will only be diagnosed if @option{-Wpedantic} is used.
@opindex Wc++14-extensions
@opindex Wno-c++14-extensions
@item -Wno-c++14-extensions @r{(C++ and Objective-C++ only)}
Do not warn about C++14 constructs in code being compiled using
an older C++ standard. Even without this option, some C++14 constructs
will only be diagnosed if @option{-Wpedantic} is used.
@opindex Wc++17-extensions
@opindex Wno-c++17-extensions
@item -Wno-c++17-extensions @r{(C++ and Objective-C++ only)}
Do not warn about C++17 constructs in code being compiled using
an older C++ standard. Even without this option, some C++17 constructs
will only be diagnosed if @option{-Wpedantic} is used.
@opindex Wc++20-extensions
@opindex Wno-c++20-extensions
@item -Wno-c++20-extensions @r{(C++ and Objective-C++ only)}
Do not warn about C++20 constructs in code being compiled using
an older C++ standard. Even without this option, some C++20 constructs
will only be diagnosed if @option{-Wpedantic} is used.
@opindex Wc++23-extensions
@opindex Wno-c++23-extensions
@item -Wno-c++23-extensions @r{(C++ and Objective-C++ only)}
Do not warn about C++23 constructs in code being compiled using
an older C++ standard. Even without this option, some C++23 constructs
will only be diagnosed if @option{-Wpedantic} is used.
@opindex Wc++26-extensions
@opindex Wno-c++26-extensions
@item -Wno-c++26-extensions @r{(C++ and Objective-C++ only)}
Do not warn about C++26 constructs in code being compiled using
an older C++ standard. Even without this option, some C++26 constructs
will only be diagnosed if @option{-Wpedantic} is used.
@opindex Wcast-qual
@opindex Wno-cast-qual
@item -Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from
the target type. For example, warn if a @code{const char *} is cast
to an ordinary @code{char *}.
Also warn when making a cast that introduces a type qualifier in an
unsafe way. For example, casting @code{char **} to @code{const char **}
is unsafe, as in this example:
@smallexample
/* p is char ** value. */
const char **q = (const char **) p;
/* Assignment of readonly string to const char * is OK. */
*q = "string";
/* Now char** pointer points to read-only memory. */
**p = 'b';
@end smallexample
@opindex Wcast-align
@opindex Wno-cast-align
@item -Wcast-align
Warn whenever a pointer is cast such that the required alignment of the
target is increased. For example, warn if a @code{char *} is cast to
an @code{int *} on machines where integers can only be accessed at
two- or four-byte boundaries.
@opindex Wcast-align=strict
@item -Wcast-align=strict
Warn whenever a pointer is cast such that the required alignment of the
target is increased. For example, warn if a @code{char *} is cast to
an @code{int *} regardless of the target machine.
@opindex Wcast-function-type
@opindex Wno-cast-function-type
@item -Wcast-function-type
Warn when a function pointer is cast to an incompatible function pointer.
In a cast involving function types with a variable argument list only
the types of initial arguments that are provided are considered.
Any parameter of pointer-type matches any other pointer-type. Any benign
differences in integral types are ignored, like @code{int} vs.@: @code{long}
on ILP32 targets. Likewise type qualifiers are ignored. The function
type @code{void (*) (void)} is special and matches everything, which can
be used to suppress this warning.
In a cast involving pointer to member types this warning warns whenever
the type cast is changing the pointer to member type.
This warning is enabled by @option{-Wextra}.
@opindex Wcast-user-defined
@opindex Wno-cast-user-defined
@item -Wcast-user-defined
Warn when a cast to reference type does not involve a user-defined
conversion that the programmer might expect to be called.
@smallexample
struct A @{ operator const int&(); @} a;
auto r = (int&)a; // warning
@end smallexample
This warning is enabled by default.
@opindex Wwrite-strings
@opindex Wno-write-strings
@item -Wwrite-strings
When compiling C, give string constants the type @code{const
char[@var{length}]} so that copying the address of one into a
non-@code{const} @code{char *} pointer produces a warning. These
warnings help you find at compile time code that can try to write
into a string constant, but only if you have been very careful about
using @code{const} in declarations and prototypes. Otherwise, it is
just a nuisance. This is why we did not make @option{-Wall} request
these warnings.
When compiling C++, warn about the deprecated conversion from string
literals to @code{char *}. This warning is enabled by default for C++
programs.
This warning is upgraded to an error by @option{-pedantic-errors} in
C++11 mode or later.
@opindex Wclobbered
@opindex Wno-clobbered
@item -Wclobbered
Warn for variables that might be changed by @code{longjmp} or
@code{vfork}. This warning is also enabled by @option{-Wextra}.
@opindex Wcomplain-wrong-lang
@opindex Wno-complain-wrong-lang
@item -Wno-complain-wrong-lang
By default, language front ends complain when a command-line option is
valid, but not applicable to that front end.
This may be disabled with @option{-Wno-complain-wrong-lang},
which is mostly useful when invoking a single compiler driver for
multiple source files written in different languages, for example:
@smallexample
$ g++ -fno-rtti a.cc b.f90
@end smallexample
The driver @file{g++} invokes the C++ front end to compile @file{a.cc}
and the Fortran front end to compile @file{b.f90}.
The latter front end diagnoses
@samp{f951: Warning: command-line option '-fno-rtti' is valid for C++/D/ObjC++ but not for Fortran},
which may be disabled with @option{-Wno-complain-wrong-lang}.
@opindex Wcompare-distinct-pointer-types
@item -Wcompare-distinct-pointer-types @r{(C and Objective-C only)}
Warn if pointers of distinct types are compared without a cast. This
warning is enabled by default.
@opindex Wconversion
@opindex Wno-conversion
@item -Wconversion
Warn for implicit conversions that may alter a value. This includes
conversions between real and integer, like @code{abs (x)} when
@code{x} is @code{double}; conversions between signed and unsigned,
like @code{unsigned ui = -1}; and conversions to smaller types, like
@code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
changed by the conversion like in @code{abs (2.0)}. Warnings about
conversions between signed and unsigned integers can be disabled by
using @option{-Wno-sign-conversion}.
For C++, also warn for confusing overload resolution for user-defined
conversions; and conversions that never use a type conversion
operator: conversions to @code{void}, the same type, a base class or a
reference to them. Warnings about conversions between signed and
unsigned integers are disabled by default in C++ unless
@option{-Wsign-conversion} is explicitly enabled.
Warnings about conversion from arithmetic on a small type back to that
type are only given with @option{-Warith-conversion}.
@opindex Wdangling-else
@opindex Wno-dangling-else
@item -Wdangling-else
Warn about constructions where there may be confusion to which
@code{if} statement an @code{else} branch belongs. Here is an example of
such a case:
@smallexample
@group
@{
if (a)
if (b)
foo ();
else
bar ();
@}
@end group
@end smallexample
In C/C++, every @code{else} branch belongs to the innermost possible
@code{if} statement, which in this example is @code{if (b)}. This is
often not what the programmer expected, as illustrated in the above
example by indentation the programmer chose. When there is the
potential for this confusion, GCC issues a warning when this flag
is specified. To eliminate the warning, add explicit braces around
the innermost @code{if} statement so there is no way the @code{else}
can belong to the enclosing @code{if}. The resulting code
looks like this:
@smallexample
@group
@{
if (a)
@{
if (b)
foo ();
else
bar ();
@}
@}
@end group
@end smallexample
This warning is enabled by @option{-Wparentheses}.
@opindex Wdangling-pointer
@opindex Wno-dangling-pointer
@item -Wdangling-pointer
@itemx -Wdangling-pointer=@var{n}
Warn about uses of pointers (or C++ references) to objects with automatic
storage duration after their lifetime has ended. This includes local
variables declared in nested blocks, compound literals and other unnamed
temporary objects. In addition, warn about storing the address of such
objects in escaped pointers. The warning is enabled at all optimization
levels but may yield different results with optimization than without.
@table @gcctabopt
@item -Wdangling-pointer=1
At level 1, the warning diagnoses only unconditional uses of dangling pointers.
@item -Wdangling-pointer=2
At level 2, in addition to unconditional uses the warning also diagnoses
conditional uses of dangling pointers.
@end table
The short form @option{-Wdangling-pointer} is equivalent to
@option{-Wdangling-pointer=2}, while @option{-Wno-dangling-pointer} and
@option{-Wdangling-pointer=0} have the same effect of disabling the warnings.
@option{-Wdangling-pointer=2} is included in @option{-Wall}.
This example triggers the warning at level 1; the address of the unnamed
temporary is unconditionally referenced outside of its scope.
@smallexample
char f (char c1, char c2, char c3)
@{
char *p;
@{
p = (char[]) @{ c1, c2, c3 @};
@}
// warning: using dangling pointer 'p' to an unnamed temporary
return *p;
@}
@end smallexample
In the following function the store of the address of the local variable
@code{x} in the escaped pointer @code{*p} triggers the warning at
level 1.
@smallexample
void g (int **p)
@{
int x = 7;
// warning: storing the address of local variable 'x' in '*p'
*p = &x;
@}
@end smallexample
In this example, the array @var{a} is out of
scope when the pointer @var{s} is used. Since the code that sets @code{s}
is conditional, the warning triggers at level 2.
@smallexample
extern void frob (const char *);
void h (char *s)
@{
if (!s)
@{
char a[12] = "tmpname";
s = a;
@}
// warning: dangling pointer 's' to 'a' may be used
frob (s);
@}
@end smallexample
@opindex Wdate-time
@opindex Wno-date-time
@item -Wdate-time
Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
are encountered as they might prevent bit-wise-identical reproducible
compilations.
@opindex Wempty-body
@opindex Wno-empty-body
@item -Wempty-body
Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
while} statement. This warning is also enabled by @option{-Wextra}.
@opindex Wendif-labels
@opindex Wno-endif-labels
@item -Wno-endif-labels
Do not warn about stray tokens after @code{#else} and @code{#endif}.
@opindex Wenum-compare
@opindex Wno-enum-compare
@item -Wenum-compare
Warn about a comparison between values of different enumerated types.
In C++ enumerated type mismatches in conditional expressions are also
diagnosed and the warning is enabled by default. In C this warning is
enabled by @option{-Wall}.
@opindex Wenum-conversion
@opindex Wno-enum-conversion
@item -Wenum-conversion
Warn when a value of enumerated type is implicitly converted to a
different enumerated type. This warning is enabled by @option{-Wextra}
in C@.
@opindex Wenum-int-mismatch
@opindex Wno-enum-int-mismatch
@item -Wenum-int-mismatch @r{(C and Objective-C only)}
Warn about mismatches between an enumerated type and an integer type in
declarations. For example:
@smallexample
enum E @{ l = -1, z = 0, g = 1 @};
int foo(void);
enum E foo(void);
@end smallexample
In C, an enumerated type is compatible with @code{char}, a signed
integer type, or an unsigned integer type. However, since the choice
of the underlying type of an enumerated type is implementation-defined,
such mismatches may cause portability issues. In C++, such mismatches
are an error. In C, this warning is enabled by @option{-Wall} and
@option{-Wc++-compat}.
@opindex Wjump-misses-init
@opindex Wno-jump-misses-init
@item -Wjump-misses-init @r{(C, Objective-C only)}
Warn if a @code{goto} statement or a @code{switch} statement jumps
forward across the initialization of a variable, or jumps backward to a
label after the variable has been initialized. This only warns about
variables that are initialized when they are declared. This warning is
only supported for C and Objective-C; in C++ this sort of branch is an
error in any case.
@option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
can be disabled with the @option{-Wno-jump-misses-init} option.
@opindex Wsign-compare
@opindex Wno-sign-compare
@cindex warning for comparison of signed and unsigned values
@cindex comparison of signed and unsigned values, warning
@cindex signed and unsigned values, comparison warning
@item -Wsign-compare
Warn when a comparison between signed and unsigned values could produce
an incorrect result when the signed value is converted to unsigned.
In C++, this warning is also enabled by @option{-Wall}. In C, it is
also enabled by @option{-Wextra}.
@opindex Wsign-conversion
@opindex Wno-sign-conversion
@item -Wsign-conversion
Warn for implicit conversions that may change the sign of an integer
value, like assigning a signed integer expression to an unsigned
integer variable. An explicit cast silences the warning. In C, this
option is enabled also by @option{-Wconversion}.
@opindex Wflex-array-member-not-at-end
@opindex Wno-flex-array-member-not-at-end
@item -Wflex-array-member-not-at-end @r{(C and C++ only)}
Warn when a structure containing a C99 flexible array member as the last
field is not at the end of another structure.
This warning warns e.g. about
@smallexample
struct flex @{ int length; char data[]; @};
struct mid_flex @{ int m; struct flex flex_data; int n; @};
@end smallexample
@opindex Wfloat-conversion
@opindex Wno-float-conversion
@item -Wfloat-conversion
Warn for implicit conversions that reduce the precision of a real value.
This includes conversions from real to integer, and from higher precision
real to lower precision real values. This option is also enabled by
@option{-Wconversion}.
@opindex Wno-scalar-storage-order
@opindex Wscalar-storage-order
@item -Wno-scalar-storage-order
Do not warn on suspicious constructs involving reverse scalar storage order.
@opindex Wsizeof-array-div
@opindex Wno-sizeof-array-div
@item -Wsizeof-array-div
Warn about divisions of two sizeof operators when the first one is applied
to an array and the divisor does not equal the size of the array element.
In such a case, the computation will not yield the number of elements in the
array, which is likely what the user intended. This warning warns e.g. about
@smallexample
int fn ()
@{
int arr[10];
return sizeof (arr) / sizeof (short);
@}
@end smallexample
This warning is enabled by @option{-Wall}.
@opindex Wsizeof-pointer-div
@opindex Wno-sizeof-pointer-div
@item -Wsizeof-pointer-div
Warn for suspicious divisions of two sizeof expressions that divide
the pointer size by the element size, which is the usual way to compute
the array size but won't work out correctly with pointers. This warning
warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
not an array, but a pointer. This warning is enabled by @option{-Wall}.
@opindex Wsizeof-pointer-memaccess
@opindex Wno-sizeof-pointer-memaccess
@item -Wsizeof-pointer-memaccess
Warn for suspicious length parameters to certain string and memory built-in
functions if the argument uses @code{sizeof}. This warning triggers for
example for @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not
an array, but a pointer, and suggests a possible fix, or about
@code{memcpy (&foo, ptr, sizeof (&foo));}. @option{-Wsizeof-pointer-memaccess}
also warns about calls to bounded string copy functions like @code{strncat}
or @code{strncpy} that specify as the bound a @code{sizeof} expression of
the source array. For example, in the following function the call to
@code{strncat} specifies the size of the source string as the bound. That
is almost certainly a mistake and so the call is diagnosed.
@smallexample
void make_file (const char *name)
@{
char path[PATH_MAX];
strncpy (path, name, sizeof path - 1);
strncat (path, ".text", sizeof ".text");
@dots{}
@}
@end smallexample
The @option{-Wsizeof-pointer-memaccess} option is enabled by @option{-Wall}.
@opindex Wsizeof-array-argument
@opindex Wno-sizeof-array-argument
@item -Wno-sizeof-array-argument
Do not warn when the @code{sizeof} operator is applied to a parameter that is
declared as an array in a function definition. This warning is enabled by
default for C and C++ programs.
@opindex Wmemset-elt-size
@opindex Wno-memset-elt-size
@item -Wmemset-elt-size
Warn for suspicious calls to the @code{memset} built-in function, if the
first argument references an array, and the third argument is a number
equal to the number of elements, but not equal to the size of the array
in memory. This indicates that the user has omitted a multiplication by
the element size. This warning is enabled by @option{-Wall}.
@opindex Wmemset-transposed-args
@opindex Wno-memset-transposed-args
@item -Wmemset-transposed-args
Warn for suspicious calls to the @code{memset} built-in function where
the second argument is not zero and the third argument is zero. For
example, the call @code{memset (buf, sizeof buf, 0)} is diagnosed because
@code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostic
is only emitted if the third argument is a literal zero. Otherwise, if
it is an expression that is folded to zero, or a cast of zero to some
type, it is far less likely that the arguments have been mistakenly
transposed and no warning is emitted. This warning is enabled
by @option{-Wall}.
@opindex Waddress
@opindex Wno-address
@item -Waddress
Warn about suspicious uses of address expressions. These include comparing
the address of a function or a declared object to the null pointer constant
such as in
@smallexample
void f (void);
void g (void)
@{
if (!f) // warning: expression evaluates to false
abort ();
@}
@end smallexample
comparisons of a pointer to a string literal, such as in
@smallexample
void f (const char *x)
@{
if (x == "abc") // warning: expression evaluates to false
puts ("equal");
@}
@end smallexample
and tests of the results of pointer addition or subtraction for equality
to null, such as in
@smallexample
void f (const int *p, int i)
@{
return p + i == NULL;
@}
@end smallexample
Such uses typically indicate a programmer error: the address of most
functions and objects necessarily evaluates to true (the exception are
weak symbols), so their use in a conditional might indicate missing
parentheses in a function call or a missing dereference in an array
expression. The subset of the warning for object pointers can be
suppressed by casting the pointer operand to an integer type such
as @code{intptr_t} or @code{uintptr_t}.
Comparisons against string literals result in unspecified behavior
and are not portable, and suggest the intent was to call @code{strcmp}.
The warning is suppressed if the suspicious expression is the result
of macro expansion.
@option{-Waddress} warning is enabled by @option{-Wall}.
@opindex Waddress-of-packed-member
@opindex Wno-address-of-packed-member
@item -Wno-address-of-packed-member
Do not warn when the address of packed member of struct or union is taken,
which usually results in an unaligned pointer value. This is
enabled by default.
@opindex Wlogical-op
@opindex Wno-logical-op
@item -Wlogical-op
Warn about suspicious uses of logical operators in expressions.
This includes using logical operators in contexts where a
bit-wise operator is likely to be expected. Also warns when
the operands of a logical operator are the same:
@smallexample
extern int a;
if (a < 0 && a < 0) @{ @dots{} @}
@end smallexample
@opindex Wlogical-not-parentheses
@opindex Wno-logical-not-parentheses
@item -Wlogical-not-parentheses
Warn about logical not used on the left hand side operand of a comparison.
This option does not warn if the right operand is considered to be a boolean
expression. Its purpose is to detect suspicious code like the following:
@smallexample
int a;
@dots{}
if (!a > 1) @{ @dots{} @}
@end smallexample
It is possible to suppress the warning by wrapping the LHS into
parentheses:
@smallexample
if ((!a) > 1) @{ @dots{} @}
@end smallexample
This warning is enabled by @option{-Wall}.
@opindex Waggregate-return
@opindex Wno-aggregate-return
@item -Waggregate-return
Warn if any functions that return structures or unions are defined or
called. (In languages where you can return an array, this also elicits
a warning.)
@opindex Wno-aggressive-loop-optimizations
@opindex Waggressive-loop-optimizations
@item -Wno-aggressive-loop-optimizations
Warn if in a loop with constant number of iterations the compiler detects
undefined behavior in some statement during one or more of the iterations.
@opindex Wno-attributes
@opindex Wattributes
@item -Wno-attributes
Do not warn if an unexpected @code{__attribute__} is used, such as
unrecognized attributes, function attributes applied to variables,
etc. This does not stop errors for incorrect use of supported
attributes.
Warnings about ill-formed uses of standard attributes are upgraded to
errors by @option{-pedantic-errors}.
Additionally, using @option{-Wno-attributes=}, it is possible to suppress
warnings about unknown scoped attributes (in C++11 and C23). For example,
@option{-Wno-attributes=vendor::attr} disables warning about the following
declaration:
@smallexample
[[vendor::attr]] void f();
@end smallexample
It is also possible to disable warning about all attributes in a namespace
using @option{-Wno-attributes=vendor::} which prevents warning about both
of these declarations:
@smallexample
[[vendor::safe]] void f();
[[vendor::unsafe]] void f2();
@end smallexample
Note that @option{-Wno-attributes=} does not imply @option{-Wno-attributes}.
@opindex Wno-builtin-declaration-mismatch
@opindex Wbuiltin-declaration-mismatch
@item -Wno-builtin-declaration-mismatch
Warn if a built-in function is declared with an incompatible signature
or as a non-function, or when a built-in function declared with a type
that does not include a prototype is called with arguments whose promoted
types do not match those expected by the function. When @option{-Wextra}
is specified, also warn when a built-in function that takes arguments is
declared without a prototype. The @option{-Wbuiltin-declaration-mismatch}
warning is enabled by default. To avoid the warning include the appropriate
header to bring the prototypes of built-in functions into scope.
For example, the call to @code{memset} below is diagnosed by the warning
because the function expects a value of type @code{size_t} as its argument
but the type of @code{32} is @code{int}. With @option{-Wextra},
the declaration of the function is diagnosed as well.
@smallexample
extern void* memset ();
void f (void *d)
@{
memset (d, '\0', 32);
@}
@end smallexample
@opindex Wno-builtin-macro-redefined
@opindex Wbuiltin-macro-redefined
@item -Wno-builtin-macro-redefined
Do not warn if certain built-in macros are redefined. This suppresses
warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
@code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
@opindex Wstrict-prototypes
@opindex Wno-strict-prototypes
@item -Wstrict-prototypes @r{(C and Objective-C only)}
Warn if a function is declared or defined without specifying the
argument types. (An old-style function definition is permitted without
a warning if preceded by a declaration that specifies the argument
types.)
@opindex Wold-style-declaration
@opindex Wno-old-style-declaration
@item -Wold-style-declaration @r{(C and Objective-C only)}
Warn for obsolescent usages, according to the C Standard, in a
declaration. For example, warn if storage-class specifiers like
@code{static} are not the first things in a declaration. This warning
is also enabled by @option{-Wextra}.
@opindex Wold-style-definition
@opindex Wno-old-style-definition
@item -Wold-style-definition @r{(C and Objective-C only)}
Warn if an old-style function definition is used. A warning is given
even if there is a previous prototype. A definition using @samp{()}
is not considered an old-style definition in C23 mode, because it is
equivalent to @samp{(void)} in that case, but is considered an
old-style definition for older standards.
@opindex Wmissing-parameter-type
@opindex Wno-missing-parameter-type
@item -Wmissing-parameter-type @r{(C and Objective-C only)}
A function parameter is declared without a type specifier in K&R-style
functions:
@smallexample
void foo(bar) @{ @}
@end smallexample
This warning is also enabled by @option{-Wextra}.
@opindex Wno-declaration-missing-parameter-type
@opindex Wdeclaration-missing-parameter-type
@item -Wno-declaration-missing-parameter-type @r{(C and Objective-C only)}
Do not warn if a function declaration contains a parameter name without
a type. Such function declarations do not provide a function prototype
and prevent most type checking in function calls.
This warning is enabled by default. In C99 and later dialects of C, it
is treated as an error. The error can be downgraded to a warning using
@option{-fpermissive} (along with certain other errors), or for this
error alone, with @option{-Wno-error=declaration-missing-parameter-type}.
This warning is upgraded to an error by @option{-pedantic-errors}.
@opindex Wmissing-prototypes
@opindex Wno-missing-prototypes
@item -Wmissing-prototypes @r{(C and Objective-C only)}
Warn if a global function is defined without a previous prototype
declaration. This warning is issued even if the definition itself
provides a prototype. Use this option to detect global functions
that do not have a matching prototype declaration in a header file.
This option is not valid for C++ because all function declarations
provide prototypes and a non-matching declaration declares an
overload rather than conflict with an earlier declaration.
Use @option{-Wmissing-declarations} to detect missing declarations in C++.
@opindex Wmissing-variable-declarations
@opindex Wno-missing-variable-declarations
@item -Wmissing-variable-declarations @r{(C and Objective-C only)}
Warn if a global variable is defined without a previous declaration.
Use this option to detect global variables that do not have a matching
extern declaration in a header file.
@opindex Wmissing-declarations
@opindex Wno-missing-declarations
@item -Wmissing-declarations
Warn if a global function is defined without a previous declaration.
Do so even if the definition itself provides a prototype.
Use this option to detect global functions that are not declared in
header files. In C, no warnings are issued for functions with previous
non-prototype declarations; use @option{-Wmissing-prototypes} to detect
missing prototypes. In C++, no warnings are issued for function templates,
or for inline functions, or for functions in anonymous namespaces.
@opindex Wmissing-field-initializers
@opindex Wno-missing-field-initializers
@opindex W
@opindex Wextra
@opindex Wno-extra
@item -Wmissing-field-initializers
Warn if a structure's initializer has some fields missing. For
example, the following code causes such a warning, because
@code{x.h} is implicitly zero:
@smallexample
struct s @{ int f, g, h; @};
struct s x = @{ 3, 4 @};
@end smallexample
@c It's unclear if this behavior is desirable. See PR39589 and PR96868.
In C this option does not warn about designated initializers, so the
following modification does not trigger a warning:
@smallexample
struct s @{ int f, g, h; @};
struct s x = @{ .f = 3, .g = 4 @};
@end smallexample
In C this option does not warn about the universal zero initializer
@samp{@{ 0 @}}:
@smallexample
struct s @{ int f, g, h; @};
struct s x = @{ 0 @};
@end smallexample
Likewise, in C++ this option does not warn about the empty @{ @}
initializer, for example:
@smallexample
struct s @{ int f, g, h; @};
s x = @{ @};
@end smallexample
This warning is included in @option{-Wextra}. To get other @option{-Wextra}
warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
@opindex Wmissing-requires
@opindex Wno-missing-requires
@item -Wno-missing-requires
By default, the compiler warns about a concept-id appearing as a C++20 simple-requirement:
@smallexample
bool satisfied = requires @{ C<T> @};
@end smallexample
Here @samp{satisfied} will be true if @samp{C<T>} is a valid
expression, which it is for all T. Presumably the user meant to write
@smallexample
bool satisfied = requires @{ requires C<T> @};
@end smallexample
so @samp{satisfied} is only true if concept @samp{C} is satisfied for
type @samp{T}.
This warning can be disabled with @option{-Wno-missing-requires}.
@opindex Wmissing-template-keyword
@opindex Wno-missing-template-keyword
@item -Wno-missing-template-keyword
The member access tokens ., -> and :: must be followed by the @code{template}
keyword if the parent object is dependent and the member being named is a
template.
@smallexample
template <class X>
void DoStuff (X x)
@{
x.template DoSomeOtherStuff<X>(); // Good.
x.DoMoreStuff<X>(); // Warning, x is dependent.
@}
@end smallexample
In rare cases it is possible to get false positives. To silence this, wrap
the expression in parentheses. For example, the following is treated as a
template, even where m and N are integers:
@smallexample
void NotATemplate (my_class t)
@{
int N = 5;
bool test = t.m < N > (0); // Treated as a template.
test = (t.m < N) > (0); // Same meaning, but not treated as a template.
@}
@end smallexample
This warning can be disabled with @option{-Wno-missing-template-keyword}.
@opindex Wno-multichar
@opindex Wmultichar
@item -Wno-multichar
Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
Usually they indicate a typo in the user's code, as they have
implementation-defined values, and should not be used in portable code.
@opindex Wnormalized=
@opindex Wnormalized
@opindex Wno-normalized
@cindex NFC
@cindex NFKC
@cindex character set, input normalization
@item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
In ISO C and ISO C++, two identifiers are different if they are
different sequences of characters. However, sometimes when characters
outside the basic ASCII character set are used, you can have two
different character sequences that look the same. To avoid confusion,
the ISO 10646 standard sets out some @dfn{normalization rules} which
when applied ensure that two sequences that look the same are turned into
the same sequence. GCC can warn you if you are using identifiers that
have not been normalized; this option controls that warning.
There are four levels of warning supported by GCC@. The default is
@option{-Wnormalized=nfc}, which warns about any identifier that is
not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
recommended form for most uses. It is equivalent to
@option{-Wnormalized}.
Unfortunately, there are some characters allowed in identifiers by
ISO C and ISO C++ that, when turned into NFC, are not allowed in
identifiers. That is, there's no way to use these symbols in portable
ISO C or C++ and have all your identifiers in NFC@.
@option{-Wnormalized=id} suppresses the warning for these characters.
It is hoped that future versions of the standards involved will correct
this, which is why this option is not the default.
You can switch the warning off for all characters by writing
@option{-Wnormalized=none} or @option{-Wno-normalized}. You should
only do this if you are using some other normalization scheme (like
``D''), because otherwise you can easily create bugs that are
literally impossible to see.
Some characters in ISO 10646 have distinct meanings but look identical
in some fonts or display methodologies, especially once formatting has
been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
LETTER N'', displays just like a regular @code{n} that has been
placed in a superscript. ISO 10646 defines the @dfn{NFKC}
normalization scheme to convert all these into a standard form as
well, and GCC warns if your code is not in NFKC if you use
@option{-Wnormalized=nfkc}. This warning is comparable to warning
about every identifier that contains the letter O because it might be
confused with the digit 0, and so is not the default, but may be
useful as a local coding convention if the programming environment
cannot be fixed to display these characters distinctly.
@opindex Wno-attribute-warning
@opindex Wattribute-warning
@item -Wno-attribute-warning
Do not warn about usage of functions (@pxref{Function Attributes})
declared with @code{warning} attribute. By default, this warning is
enabled. @option{-Wno-attribute-warning} can be used to disable the
warning or @option{-Wno-error=attribute-warning} can be used to
disable the error when compiled with @option{-Werror} flag.
@opindex Wno-deprecated
@opindex Wdeprecated
@item -Wno-deprecated
Do not warn about usage of deprecated features. @xref{Deprecated Features}.
@opindex Wno-deprecated-declarations
@opindex Wdeprecated-declarations
@item -Wno-deprecated-declarations
Do not warn about uses of functions (@pxref{Function Attributes}),
variables (@pxref{Variable Attributes}), and types (@pxref{Type
Attributes}) marked as deprecated by using the @code{deprecated}
attribute.
@opindex Wno-overflow
@opindex Woverflow
@item -Wno-overflow
Do not warn about compile-time overflow in constant expressions.
@opindex Wno-odr
@opindex Wodr
@item -Wno-odr
Warn about One Definition Rule violations during link-time optimization.
Enabled by default.
@opindex Wopenacc-parallelism
@opindex Wno-openacc-parallelism
@cindex OpenACC accelerator programming
@item -Wopenacc-parallelism
Warn about potentially suboptimal choices related to OpenACC parallelism.
@opindex Wopenmp
@opindex Wno-openmp
@item -Wno-openmp
Warn about suspicious OpenMP code.
@opindex Wopenmp-simd
@opindex Wno-openmp-simd
@item -Wopenmp-simd
Warn if the vectorizer cost model overrides the OpenMP
simd directive set by user. The @option{-fsimd-cost-model=unlimited}
option can be used to relax the cost model.
@opindex Woverride-init
@opindex Wno-override-init
@opindex W
@opindex Wextra
@opindex Wno-extra
@item -Woverride-init @r{(C and Objective-C only)}
Warn if an initialized field without side effects is overridden when
using designated initializers (@pxref{Designated Inits, , Designated
Initializers}).
This warning is included in @option{-Wextra}. To get other
@option{-Wextra} warnings without this one, use @option{-Wextra
-Wno-override-init}.
@opindex Woverride-init-side-effects
@opindex Wno-override-init-side-effects
@item -Wno-override-init-side-effects @r{(C and Objective-C only)}
Do not warn if an initialized field with side effects is overridden when
using designated initializers (@pxref{Designated Inits, , Designated
Initializers}). This warning is enabled by default.
@opindex Wpacked
@opindex Wno-packed
@item -Wpacked
Warn if a structure is given the packed attribute, but the packed
attribute has no effect on the layout or size of the structure.
Such structures may be mis-aligned for little benefit. For
instance, in this code, the variable @code{f.x} in @code{struct bar}
is misaligned even though @code{struct bar} does not itself
have the packed attribute:
@smallexample
@group
struct foo @{
int x;
char a, b, c, d;
@} __attribute__((packed));
struct bar @{
char z;
struct foo f;
@};
@end group
@end smallexample
@opindex Wpacked-bitfield-compat
@opindex Wno-packed-bitfield-compat
@item -Wnopacked-bitfield-compat
The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
on bit-fields of type @code{char}. This was fixed in GCC 4.4 but
the change can lead to differences in the structure layout. GCC
informs you when the offset of such a field has changed in GCC 4.4.
For example there is no longer a 4-bit padding between field @code{a}
and @code{b} in this structure:
@smallexample
struct foo
@{
char a:4;
char b:8;
@} __attribute__ ((packed));
@end smallexample
This warning is enabled by default. Use
@option{-Wno-packed-bitfield-compat} to disable this warning.
@opindex Wpacked-not-aligned
@opindex Wno-packed-not-aligned
@item -Wpacked-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
Warn if a structure field with explicitly specified alignment in a
packed struct or union is misaligned. For example, a warning will
be issued on @code{struct S}, like, @code{warning: alignment 1 of
'struct S' is less than 8}, in this code:
@smallexample
@group
struct __attribute__ ((aligned (8))) S8 @{ char a[8]; @};
struct __attribute__ ((packed)) S @{
struct S8 s8;
@};
@end group
@end smallexample
This warning is enabled by @option{-Wall}.
@opindex Wpadded
@opindex Wno-padded
@item -Wpadded
Warn if padding is included in a structure, either to align an element
of the structure or to align the whole structure. Sometimes when this
happens it is possible to rearrange the fields of the structure to
reduce the padding and so make the structure smaller.
@opindex Wredundant-decls
@opindex Wno-redundant-decls
@item -Wredundant-decls
Warn if anything is declared more than once in the same scope, even in
cases where multiple declaration is valid and changes nothing.
@opindex Wrestrict
@opindex Wno-restrict
@item -Wrestrict
Warn when an object referenced by a @code{restrict}-qualified parameter
(or, in C++, a @code{__restrict}-qualified parameter) is aliased by another
argument, or when copies between such objects overlap. For example,
the call to the @code{strcpy} function below attempts to truncate the string
by replacing its initial characters with the last four. However, because
the call writes the terminating NUL into @code{a[4]}, the copies overlap and
the call is diagnosed.
@smallexample
void foo (void)
@{
char a[] = "abcd1234";
strcpy (a, a + 4);
@dots{}
@}
@end smallexample
The @option{-Wrestrict} option detects some instances of simple overlap
even without optimization but works best at @option{-O2} and above. It
is included in @option{-Wall}.
@opindex Wnested-externs
@opindex Wno-nested-externs
@item -Wnested-externs @r{(C and Objective-C only)}
Warn if an @code{extern} declaration is encountered within a function.
@opindex Winline
@opindex Wno-inline
@item -Winline
Warn if a function that is declared as inline cannot be inlined.
Even with this option, the compiler does not warn about failures to
inline functions declared in system headers.
The compiler uses a variety of heuristics to determine whether or not
to inline a function. For example, the compiler takes into account
the size of the function being inlined and the amount of inlining
that has already been done in the current function. Therefore,
seemingly insignificant changes in the source program can cause the
warnings produced by @option{-Winline} to appear or disappear.
@opindex Winterference-size
@item -Winterference-size
Warn about use of C++17 @code{std::hardware_destructive_interference_size}
without specifying its value with @option{--param destructive-interference-size}.
Also warn about questionable values for that option.
This variable is intended to be used for controlling class layout, to
avoid false sharing in concurrent code:
@smallexample
struct independent_fields @{
alignas(std::hardware_destructive_interference_size)
std::atomic<int> one;
alignas(std::hardware_destructive_interference_size)
std::atomic<int> two;
@};
@end smallexample
Here @samp{one} and @samp{two} are intended to be far enough apart
that stores to one won't require accesses to the other to reload the
cache line.
By default, @option{--param destructive-interference-size} and
@option{--param constructive-interference-size} are set based on the
current @option{-mtune} option, typically to the L1 cache line size
for the particular target CPU, sometimes to a range if tuning for a
generic target. So all translation units that depend on ABI
compatibility for the use of these variables must be compiled with
the same @option{-mtune} (or @option{-mcpu}).
If ABI stability is important, such as if the use is in a header for a
library, you should probably not use the hardware interference size
variables at all. Alternatively, you can force a particular value
with @option{--param}.
If you are confident that your use of the variable does not affect ABI
outside a single build of your project, you can turn off the warning
with @option{-Wno-interference-size}.
@opindex Wint-in-bool-context
@opindex Wno-int-in-bool-context
@item -Wint-in-bool-context
Warn for suspicious use of integer values where boolean values are expected,
such as conditional expressions (?:) using non-boolean integer constants in
boolean context, like @code{if (a <= b ? 2 : 3)}. Or left shifting of signed
integers in boolean context, like @code{for (a = 0; 1 << a; a++);}. Likewise
for all kinds of multiplications regardless of the data type.
This warning is enabled by @option{-Wall}.
@opindex Wno-int-to-pointer-cast
@opindex Wint-to-pointer-cast
@item -Wno-int-to-pointer-cast
Suppress warnings from casts to pointer type of an integer of a
different size. In C++, casting to a pointer type of smaller size is
an error. @option{Wint-to-pointer-cast} is enabled by default.
@opindex Wno-pointer-to-int-cast
@opindex Wpointer-to-int-cast
@item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
Suppress warnings from casts from a pointer to an integer type of a
different size.
@opindex Winvalid-pch
@opindex Wno-invalid-pch
@item -Winvalid-pch
Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
the search path but cannot be used.
@opindex Winvalid-utf8
@opindex Wno-invalid-utf8
@item -Winvalid-utf8
Warn if an invalid UTF-8 character is found.
This warning is on by default for C++23 if @option{-finput-charset=UTF-8}
is used and turned into error with @option{-pedantic-errors}.
@opindex Wunicode
@opindex Wno-unicode
@item -Wno-unicode
Don't diagnose invalid forms of delimited or named escape sequences which are
treated as separate tokens. @option{Wunicode} is enabled by default.
@opindex Wlong-long
@opindex Wno-long-long
@item -Wlong-long
Warn if @code{long long} type is used. This is enabled by either
@option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
modes. To inhibit the warning messages, use @option{-Wno-long-long}.
This warning is upgraded to an error by @option{-pedantic-errors}.
@opindex Wvariadic-macros
@opindex Wno-variadic-macros
@item -Wvariadic-macros
Warn if variadic macros are used in ISO C90 mode, or if the GNU
alternate syntax is used in ISO C99 mode. This is enabled by either
@option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
messages, use @option{-Wno-variadic-macros}.
@opindex Wvarargs
@opindex Wno-varargs
@item -Wno-varargs
Do not warn upon questionable usage of the macros used to handle variable
arguments like @code{va_start}. These warnings are enabled by default.
@opindex Wvector-operation-performance
@opindex Wno-vector-operation-performance
@item -Wvector-operation-performance
Warn if vector operation is not implemented via SIMD capabilities of the
architecture. Mainly useful for the performance tuning.
Vector operation can be implemented @code{piecewise}, which means that the
scalar operation is performed on every vector element;
@code{in parallel}, which means that the vector operation is implemented
using scalars of wider type, which normally is more performance efficient;
and @code{as a single scalar}, which means that vector fits into a
scalar type.
@opindex Wvla
@opindex Wno-vla
@item -Wvla
Warn if a variable-length array is used in the code.
@option{-Wno-vla} prevents the @option{-Wpedantic} warning of
the variable-length array.
This warning is upgraded to an error by @option{-pedantic-errors}.
@opindex Wvla-larger-than=
@opindex Wno-vla-larger-than
@item -Wvla-larger-than=@var{byte-size}
If this option is used, the compiler warns for declarations of
variable-length arrays whose size is either unbounded, or bounded
by an argument that allows the array size to exceed @var{byte-size}
bytes. This is similar to how @option{-Walloca-larger-than=}@var{byte-size}
works, but with variable-length arrays.
Note that GCC may optimize small variable-length arrays of a known
value into plain arrays, so this warning may not get triggered for
such arrays.
@option{-Wvla-larger-than=}@samp{PTRDIFF_MAX} is enabled by default but
is typically only effective when @option{-ftree-vrp} is active (default
for @option{-O2} and above).
See also @option{-Walloca-larger-than=@var{byte-size}}.
@opindex Wno-vla-larger-than
@item -Wno-vla-larger-than
Disable @option{-Wvla-larger-than=} warnings. The option is equivalent
to @option{-Wvla-larger-than=}@samp{SIZE_MAX} or larger.
@opindex Wno-vla-parameter
@item -Wvla-parameter
Warn about redeclarations of functions involving arguments of Variable
Length Array types of inconsistent kinds or forms, and enable the detection
of out-of-bounds accesses to such parameters by warnings such as
@option{-Warray-bounds}.
If the first function declaration uses the VLA form the bound specified
in the array is assumed to be the minimum number of elements expected to
be provided in calls to the function and the maximum number of elements
accessed by it. Failing to provide arguments of sufficient size or
accessing more than the maximum number of elements may be diagnosed.
For example, the warning triggers for the following redeclarations because
the first one allows an array of any size to be passed to @code{f} while
the second one specifies that the array argument must have at least @code{n}
elements. In addition, calling @code{f} with the associated VLA bound
parameter in excess of the actual VLA bound triggers a warning as well.
@smallexample
void f (int n, int[n]);
// warning: argument 2 previously declared as a VLA
void f (int, int[]);
void g (int n)
@{
if (n > 4)
return;
int a[n];
// warning: access to a by f may be out of bounds
f (sizeof a, a);
@dots{}
@}
@end smallexample
@option{-Wvla-parameter} is included in @option{-Wall}. The
@option{-Warray-parameter} option triggers warnings for similar problems
involving ordinary array arguments.
@opindex Wvolatile-register-var
@opindex Wno-volatile-register-var
@item -Wvolatile-register-var
Warn if a register variable is declared volatile. The volatile
modifier does not inhibit all optimizations that may eliminate reads
and/or writes to register variables. This warning is enabled by
@option{-Wall}.
@opindex Wxor-used-as-pow
@opindex Wno-xor-used-as-pow
@item -Wno-xor-used-as-pow @r{(C, C++, Objective-C and Objective-C++ only)}
Disable warnings about uses of @code{^}, the exclusive or operator,
where it appears the code meant exponentiation.
Specifically, the warning occurs when the
left-hand side is the decimal constant 2 or 10 and the right-hand side
is also a decimal constant.
In C and C++, @code{^} means exclusive or, whereas in some other languages
(e.g. TeX and some versions of BASIC) it means exponentiation.
This warning can be silenced by converting one of the operands to
hexadecimal as well as by compiling with @option{-Wno-xor-used-as-pow}.
@opindex Wdisabled-optimization
@opindex Wno-disabled-optimization
@item -Wdisabled-optimization
Warn if a requested optimization pass is disabled. This warning does
not generally indicate that there is anything wrong with your code; it
merely indicates that GCC's optimizers are unable to handle the code
effectively. Often, the problem is that your code is too big or too
complex; GCC refuses to optimize programs when the optimization
itself is likely to take inordinate amounts of time.
@opindex Wpointer-sign
@opindex Wno-pointer-sign
@item -Wpointer-sign @r{(C and Objective-C only)}
Warn for pointer argument passing or assignment with different signedness.
This option is only supported for C and Objective-C@. It is implied by
@option{-Wall} and by @option{-Wpedantic}, which can be disabled with
@option{-Wno-pointer-sign}.
This warning is upgraded to an error by @option{-pedantic-errors}.
@opindex Wstack-protector
@opindex Wno-stack-protector
@item -Wstack-protector
This option is only active when @option{-fstack-protector} is active. It
warns about functions that are not protected against stack smashing.
@opindex Woverlength-strings
@opindex Wno-overlength-strings
@item -Woverlength-strings
Warn about string constants that are longer than the ``minimum
maximum'' length specified in the C standard. Modern compilers
generally allow string constants that are much longer than the
standard's minimum limit, but very portable programs should avoid
using longer strings.
The limit applies @emph{after} string constant concatenation, and does
not count the trailing NUL@. In C90, the limit was 509 characters; in
C99, it was raised to 4095. C++98 does not specify a normative
minimum maximum, so we do not diagnose overlength strings in C++@.
This option is implied by @option{-Wpedantic}, and can be disabled with
@option{-Wno-overlength-strings}.
@opindex Wunsuffixed-float-constants
@opindex Wno-unsuffixed-float-constants
@item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
Issue a warning for any floating constant that does not have
a suffix. When used together with @option{-Wsystem-headers} it
warns about such constants in system header files. This can be useful
when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
from the decimal floating-point extension to C99.
@opindex Wlto-type-mismatch
@opindex Wno-lto-type-mismatch
@item -Wno-lto-type-mismatch
During the link-time optimization, do not warn about type mismatches in
global declarations from different compilation units.
Requires @option{-flto} to be enabled. Enabled by default.
@opindex Wdesignated-init
@opindex Wno-designated-init
@item -Wno-designated-init @r{(C and Objective-C only)}
Suppress warnings when a positional initializer is used to initialize
a structure that has been marked with the @code{designated_init}
attribute.
@end table
@node Static Analyzer Options
@section Options That Control Static Analysis
@table @gcctabopt
@opindex analyzer
@opindex fanalyzer
@opindex fno-analyzer
@item -fanalyzer
This option enables an static analysis of program flow which looks
for ``interesting'' interprocedural paths through the
code, and issues warnings for problems found on them.
This analysis is much more expensive than other GCC warnings.
In technical terms, it performs coverage-guided symbolic execution of
the code being compiled. It is neither sound nor complete: it can
have false positives and false negatives. It is a bug-finding tool,
rather than a tool for proving program correctness.
The analyzer is only suitable for use on C code in this release.
Enabling this option effectively enables the following warnings:
@gccoptlist{
-Wanalyzer-allocation-size
-Wanalyzer-deref-before-check
-Wanalyzer-double-fclose
-Wanalyzer-double-free
-Wanalyzer-exposure-through-output-file
-Wanalyzer-exposure-through-uninit-copy
-Wanalyzer-fd-access-mode-mismatch
-Wanalyzer-fd-double-close
-Wanalyzer-fd-leak
-Wanalyzer-fd-phase-mismatch
-Wanalyzer-fd-type-mismatch
-Wanalyzer-fd-use-after-close
-Wanalyzer-fd-use-without-check
-Wanalyzer-file-leak
-Wanalyzer-free-of-non-heap
-Wanalyzer-imprecise-fp-arithmetic
-Wanalyzer-infinite-loop
-Wanalyzer-infinite-recursion
-Wanalyzer-jump-through-null
-Wanalyzer-malloc-leak
-Wanalyzer-mismatching-deallocation
-Wanalyzer-null-argument
-Wanalyzer-null-dereference
-Wanalyzer-out-of-bounds
-Wanalyzer-overlapping-buffers
-Wanalyzer-possible-null-argument
-Wanalyzer-possible-null-dereference
-Wanalyzer-putenv-of-auto-var
-Wanalyzer-shift-count-negative
-Wanalyzer-shift-count-overflow
-Wanalyzer-stale-setjmp-buffer
-Wanalyzer-tainted-allocation-size
-Wanalyzer-tainted-array-index
-Wanalyzer-tainted-assertion
-Wanalyzer-tainted-divisor
-Wanalyzer-tainted-offset
-Wanalyzer-tainted-size
-Wanalyzer-undefined-behavior-ptrdiff
-Wanalyzer-undefined-behavior-strtok
-Wanalyzer-unsafe-call-within-signal-handler
-Wanalyzer-use-after-free
-Wanalyzer-use-of-pointer-in-stale-stack-frame
-Wanalyzer-use-of-uninitialized-value
-Wanalyzer-va-arg-type-mismatch
-Wanalyzer-va-list-exhausted
-Wanalyzer-va-list-leak
-Wanalyzer-va-list-use-after-va-end
-Wanalyzer-write-to-const
-Wanalyzer-write-to-string-literal
}
This option is only available if GCC was configured with analyzer
support enabled.
@opindex Wanalyzer-symbol-too-complex
@opindex Wno-analyzer-symbol-too-complex
@item -Wanalyzer-symbol-too-complex
If @option{-fanalyzer} is enabled, the analyzer uses various heuristics
to attempt to track the state of memory, but these can be defeated by
sufficiently complicated code.
By default, the analysis silently stops tracking values of expressions
if they exceed the threshold defined by
@option{--param analyzer-max-svalue-depth=@var{value}}, and falls back
to an imprecise representation for such expressions.
The @option{-Wanalyzer-symbol-too-complex} option warns if this occurs.
@opindex Wanalyzer-too-complex
@opindex Wno-analyzer-too-complex
@item -Wanalyzer-too-complex
If @option{-fanalyzer} is enabled, the analyzer uses various heuristics
to attempt to explore the control flow and data flow in the program,
but these can be defeated by sufficiently complicated code.
By default, the analysis silently stops if the code is too
complicated for the analyzer to fully explore and it reaches an internal
limit. The @option{-Wanalyzer-too-complex} option warns if this occurs.
@opindex Wanalyzer-allocation-size
@opindex Wno-analyzer-allocation-size
@item -Wno-analyzer-allocation-size
This warning requires @option{-fanalyzer}, which enables it;
to disable it, use @option{-Wno-analyzer-allocation-size}.
This diagnostic warns for paths through the code in which a pointer to
a buffer is assigned to point at a buffer with a size that is not a
multiple of @code{sizeof (*pointer)}.
See @uref{https://cwe.mitre.org/data/definitions/131.html, CWE-131: Incorrect Calculation of Buffer Size}.
@opindex Wanalyzer-deref-before-check
@opindex Wno-analyzer-deref-before-check
@item -Wno-analyzer-deref-before-check
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-deref-before-check}
to disable it.
This diagnostic warns for paths through the code in which a pointer
is checked for @code{NULL} *after* it has already been
dereferenced, suggesting that the pointer could have been NULL.
Such cases suggest that the check for NULL is either redundant,
or that it needs to be moved to before the pointer is dereferenced.
This diagnostic also considers values passed to a function argument
marked with @code{__attribute__((nonnull))} as requiring a non-NULL
value, and thus will complain if such values are checked for @code{NULL}
after returning from such a function call.
This diagnostic is unlikely to be reported when any level of optimization
is enabled, as GCC's optimization logic will typically consider such
checks for NULL as being redundant, and optimize them away before the
analyzer "sees" them. Hence optimization should be disabled when
attempting to trigger this diagnostic.
@opindex Wanalyzer-double-fclose
@opindex Wno-analyzer-double-fclose
@item -Wno-analyzer-double-fclose
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-double-fclose} to disable it.
This diagnostic warns for paths through the code in which a @code{FILE *}
can have @code{fclose} called on it more than once.
See @uref{https://cwe.mitre.org/data/definitions/1341.html, CWE-1341: Multiple Releases of Same Resource or Handle}.
@opindex Wanalyzer-double-free
@opindex Wno-analyzer-double-free
@item -Wno-analyzer-double-free
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-double-free} to disable it.
This diagnostic warns for paths through the code in which a pointer
can have a deallocator called on it more than once, either @code{free},
or a deallocator referenced by attribute @code{malloc}.
See @uref{https://cwe.mitre.org/data/definitions/415.html, CWE-415: Double Free}.
@opindex Wanalyzer-exposure-through-output-file
@opindex Wno-analyzer-exposure-through-output-file
@item -Wno-analyzer-exposure-through-output-file
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-exposure-through-output-file}
to disable it.
This diagnostic warns for paths through the code in which a
security-sensitive value is written to an output file
(such as writing a password to a log file).
See @uref{https://cwe.mitre.org/data/definitions/532.html, CWE-532: Information Exposure Through Log Files}.
@opindex Wanalyzer-exposure-through-uninit-copy
@opindex Wno-analyzer-exposure-through-uninit-copy
@item -Wanalyzer-exposure-through-uninit-copy
This warning requires both @option{-fanalyzer} and the use of a plugin
to specify a function that copies across a ``trust boundary''. Use
@option{-Wno-analyzer-exposure-through-uninit-copy} to disable it.
This diagnostic warns for ``infoleaks'' - paths through the code in which
uninitialized values are copied across a security boundary
(such as code within an OS kernel that copies a partially-initialized
struct on the stack to user space).
See @uref{https://cwe.mitre.org/data/definitions/200.html, CWE-200: Exposure of Sensitive Information to an Unauthorized Actor}.
@opindex Wanalyzer-fd-access-mode-mismatch
@opindex Wno-analyzer-fd-access-mode-mismatch
@item -Wno-analyzer-fd-access-mode-mismatch
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-fd-access-mode-mismatch}
to disable it.
This diagnostic warns for paths through code in which a
@code{read} on a write-only file descriptor is attempted, or vice versa.
This diagnostic also warns for code paths in a which a function with attribute
@code{fd_arg_read (N)} is called with a file descriptor opened with
@code{O_WRONLY} at referenced argument @code{N} or a function with attribute
@code{fd_arg_write (N)} is called with a file descriptor opened with
@code{O_RDONLY} at referenced argument @var{N}.
@opindex Wanalyzer-fd-double-close
@opindex Wno-analyzer-fd-double-close
@item -Wno-analyzer-fd-double-close
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-fd-double-close}
to disable it.
This diagnostic warns for paths through code in which a
file descriptor can be closed more than once.
See @uref{https://cwe.mitre.org/data/definitions/1341.html, CWE-1341: Multiple Releases of Same Resource or Handle}.
@opindex Wanalyzer-fd-leak
@opindex Wno-analyzer-fd-leak
@item -Wno-analyzer-fd-leak
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-fd-leak}
to disable it.
This diagnostic warns for paths through code in which an
open file descriptor is leaked.
See @uref{https://cwe.mitre.org/data/definitions/775.html, CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime}.
@opindex Wanalyzer-fd-phase-mismatch
@opindex Wno-analyzer-fd-phase-mismatch
@item -Wno-analyzer-fd-phase-mismatch
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-fd-phase-mismatch}
to disable it.
This diagnostic warns for paths through code in which an operation is
attempted in the wrong phase of a file descriptor's lifetime.
For example, it will warn on attempts to call @code{accept} on a stream
socket that has not yet had @code{listen} successfully called on it.
See @uref{https://cwe.mitre.org/data/definitions/666.html, CWE-666: Operation on Resource in Wrong Phase of Lifetime}.
@opindex Wanalyzer-fd-type-mismatch
@opindex Wno-analyzer-fd-type-mismatch
@item -Wno-analyzer-fd-type-mismatch
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-fd-type-mismatch}
to disable it.
This diagnostic warns for paths through code in which an
operation is attempted on the wrong type of file descriptor.
For example, it will warn on attempts to use socket operations
on a file descriptor obtained via @code{open}, or when attempting
to use a stream socket operation on a datagram socket.
@opindex Wanalyzer-fd-use-after-close
@opindex Wno-analyzer-fd-use-after-close
@item -Wno-analyzer-fd-use-after-close
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-fd-use-after-close}
to disable it.
This diagnostic warns for paths through code in which a
read or write is called on a closed file descriptor.
This diagnostic also warns for paths through code in which
a function with attribute @code{fd_arg (N)} or @code{fd_arg_read (N)}
or @code{fd_arg_write (N)} is called with a closed file descriptor at
referenced argument @code{N}.
@opindex Wanalyzer-fd-use-without-check
@opindex Wno-analyzer-fd-use-without-check
@item -Wno-analyzer-fd-use-without-check
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-fd-use-without-check}
to disable it.
This diagnostic warns for paths through code in which a
file descriptor is used without being checked for validity.
This diagnostic also warns for paths through code in which
a function with attribute @code{fd_arg (N)} or @code{fd_arg_read (N)}
or @code{fd_arg_write (N)} is called with a file descriptor, at referenced
argument @code{N}, without being checked for validity.
@opindex Wanalyzer-file-leak
@opindex Wno-analyzer-file-leak
@item -Wno-analyzer-file-leak
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-file-leak}
to disable it.
This diagnostic warns for paths through the code in which a
@code{<stdio.h>} @code{FILE *} stream object is leaked.
See @uref{https://cwe.mitre.org/data/definitions/775.html, CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime}.
@opindex Wanalyzer-free-of-non-heap
@opindex Wno-analyzer-free-of-non-heap
@item -Wno-analyzer-free-of-non-heap
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-free-of-non-heap}
to disable it.
This diagnostic warns for paths through the code in which @code{free}
is called on a non-heap pointer (e.g. an on-stack buffer, or a global).
See @uref{https://cwe.mitre.org/data/definitions/590.html, CWE-590: Free of Memory not on the Heap}.
@opindex Wanalyzer-imprecise-fp-arithmetic
@opindex Wno-analyzer-imprecise-fp-arithmetic
@item -Wno-analyzer-imprecise-fp-arithmetic
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-imprecise-fp-arithmetic}
to disable it.
This diagnostic warns for paths through the code in which floating-point
arithmetic is used in locations where precise computation is needed. This
diagnostic only warns on use of floating-point operands inside the
calculation of an allocation size at the moment.
@opindex Wanalyzer-infinite-loop
@opindex Wno-analyzer-infinite-loop
@item -Wno-analyzer-infinite-loop
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-infinite-loop} to disable it.
This diagnostics warns for paths through the code which appear to
lead to an infinite loop.
Specifically, the analyzer will issue this warning when it "sees" a loop
in which:
@itemize @bullet
@item
no externally-visible work could be being done within the loop
@item
there is no way to escape from the loop
@item
the analyzer is sufficiently confident about the program state
throughout the loop to know that the above are true
@end itemize
One way for this warning to be emitted is when there is an execution
path through a loop for which taking the path on one iteration implies
that the same path will be taken on all subsequent iterations.
For example, consider:
@smallexample
while (1)
@{
char opcode = *cpu_state.pc;
switch (opcode)
@{
case OPCODE_FOO:
handle_opcode_foo (&cpu_state);
break;
case OPCODE_BAR:
handle_opcode_bar (&cpu_state);
break;
@}
@}
@end smallexample
The analyzer will complain for the above case because if @code{opcode}
ever matches none of the cases, the @code{switch} will follow the
implicit @code{default} case, making the body of the loop be a ``no-op''
with @code{cpu_state.pc} unchanged, and thus using the same value of
@code{opcode} on all subseqent iterations, leading to an infinite loop.
See @uref{https://cwe.mitre.org/data/definitions/835.html, CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop')}.
@opindex Wanalyzer-infinite-recursion
@opindex Wno-analyzer-infinite-recursion
@item -Wno-analyzer-infinite-recursion
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-infinite-recursion} to disable it.
This diagnostics warns for paths through the code which appear to
lead to infinite recursion.
Specifically, when the analyzer "sees" a recursive call, it will compare
the state of memory at the entry to the new frame with that at the entry
to the previous frame of that function on the stack. The warning is
issued if nothing in memory appears to be changing; any changes observed
to parameters or globals are assumed to lead to termination of the
recursion and thus suppress the warning.
This diagnostic is likely to miss cases of infinite recursion that
are convered to iteration by the optimizer before the analyzer "sees"
them. Hence optimization should be disabled when attempting to trigger
this diagnostic.
Compare with @option{-Winfinite-recursion}, which provides a similar
diagnostic, but is implemented in a different way.
See @uref{https://cwe.mitre.org/data/definitions/674.html, CWE-674: Uncontrolled Recursion}.
@opindex Wanalyzer-jump-through-null
@opindex Wno-analyzer-jump-through-null
@item -Wno-analyzer-jump-through-null
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-jump-through-null}
to disable it.
This diagnostic warns for paths through the code in which a @code{NULL}
function pointer is called.
@opindex Wanalyzer-malloc-leak
@opindex Wno-analyzer-malloc-leak
@item -Wno-analyzer-malloc-leak
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-malloc-leak}
to disable it.
This diagnostic warns for paths through the code in which a
pointer allocated via an allocator is leaked: either @code{malloc},
or a function marked with attribute @code{malloc}.
See @uref{https://cwe.mitre.org/data/definitions/401.html, CWE-401: Missing Release of Memory after Effective Lifetime}.
@opindex Wanalyzer-mismatching-deallocation
@opindex Wno-analyzer-mismatching-deallocation
@item -Wno-analyzer-mismatching-deallocation
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-mismatching-deallocation}
to disable it.
This diagnostic warns for paths through the code in which the
wrong deallocation function is called on a pointer value, based on
which function was used to allocate the pointer value. The diagnostic
will warn about mismatches between @code{free}, scalar @code{delete}
and vector @code{delete[]}, and those marked as allocator/deallocator
pairs using attribute @code{malloc}.
See @uref{https://cwe.mitre.org/data/definitions/762.html, CWE-762: Mismatched Memory Management Routines}.
@opindex Wanalyzer-out-of-bounds
@opindex Wno-analyzer-out-of-bounds
@item -Wno-analyzer-out-of-bounds
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-out-of-bounds} to disable it.
This diagnostic warns for paths through the code in which a buffer is
definitely read or written out-of-bounds. The diagnostic applies for
cases where the analyzer is able to determine a constant offset and for
accesses past the end of a buffer, also a constant capacity. Further,
the diagnostic does limited checking for accesses past the end when the
offset as well as the capacity is symbolic.
See @uref{https://cwe.mitre.org/data/definitions/119.html, CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer}.
For cases where the analyzer is able, it will emit a text art diagram
visualizing the spatial relationship between the memory region that the
analyzer predicts would be accessed, versus the range of memory that is
valid to access: whether they overlap, are touching, are close or far
apart; which one is before or after in memory, the relative sizes
involved, the direction of the access (read vs write), and, in some
cases, the values of data involved. This diagram can be suppressed
using @option{-fdiagnostics-text-art-charset=none}.
@opindex Wanalyzer-overlapping-buffers
@opindex Wno-analyzer-overlapping-buffers
@item -Wno-analyzer-overlapping-buffers
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-overlapping-buffers} to disable it.
This diagnostic warns for paths through the code in which overlapping
buffers are passed to an API for which the behavior on such buffers
is undefined.
Specifically, the diagnostic occurs on calls to the following functions
@itemize @bullet
@item @code{memcpy}
@item @code{strcat}
@item @code{strcpy}
@end itemize
for cases where the buffers are known to overlap.
@opindex Wanalyzer-possible-null-argument
@opindex Wno-analyzer-possible-null-argument
@item -Wno-analyzer-possible-null-argument
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-possible-null-argument} to disable it.
This diagnostic warns for paths through the code in which a
possibly-NULL value is passed to a function argument marked
with @code{__attribute__((nonnull))} as requiring a non-NULL
value.
See @uref{https://cwe.mitre.org/data/definitions/690.html, CWE-690: Unchecked Return Value to NULL Pointer Dereference}.
@opindex Wanalyzer-possible-null-dereference
@opindex Wno-analyzer-possible-null-dereference
@item -Wno-analyzer-possible-null-dereference
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-possible-null-dereference} to disable it.
This diagnostic warns for paths through the code in which a
possibly-NULL value is dereferenced.
See @uref{https://cwe.mitre.org/data/definitions/690.html, CWE-690: Unchecked Return Value to NULL Pointer Dereference}.
@opindex Wanalyzer-null-argument
@opindex Wno-analyzer-null-argument
@item -Wno-analyzer-null-argument
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-null-argument} to disable it.
This diagnostic warns for paths through the code in which a
value known to be NULL is passed to a function argument marked
with @code{__attribute__((nonnull))} as requiring a non-NULL
value.
See @uref{https://cwe.mitre.org/data/definitions/476.html, CWE-476: NULL Pointer Dereference}.
@opindex Wanalyzer-null-dereference
@opindex Wno-analyzer-null-dereference
@item -Wno-analyzer-null-dereference
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-null-dereference} to disable it.
This diagnostic warns for paths through the code in which a
value known to be NULL is dereferenced.
See @uref{https://cwe.mitre.org/data/definitions/476.html, CWE-476: NULL Pointer Dereference}.
@opindex Wanalyzer-putenv-of-auto-var
@opindex Wno-analyzer-putenv-of-auto-var
@item -Wno-analyzer-putenv-of-auto-var
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-putenv-of-auto-var} to disable it.
This diagnostic warns for paths through the code in which a
call to @code{putenv} is passed a pointer to an automatic variable
or an on-stack buffer.
See @uref{https://wiki.sei.cmu.edu/confluence/x/6NYxBQ, POS34-C. Do not call putenv() with a pointer to an automatic variable as the argument}.
@opindex Wanalyzer-shift-count-negative
@opindex Wno-analyzer-shift-count-negative
@item -Wno-analyzer-shift-count-negative
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-shift-count-negative} to disable it.
This diagnostic warns for paths through the code in which a
shift is attempted with a negative count. It is analogous to
the @option{-Wshift-count-negative} diagnostic implemented in
the C/C++ front ends, but is implemented based on analyzing
interprocedural paths, rather than merely parsing the syntax tree.
However, the analyzer does not prioritize detection of such paths, so
false negatives are more likely relative to other warnings.
@opindex Wanalyzer-shift-count-overflow
@opindex Wno-analyzer-shift-count-overflow
@item -Wno-analyzer-shift-count-overflow
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-shift-count-overflow} to disable it.
This diagnostic warns for paths through the code in which a
shift is attempted with a count greater than or equal to the
precision of the operand's type. It is analogous to
the @option{-Wshift-count-overflow} diagnostic implemented in
the C/C++ front ends, but is implemented based on analyzing
interprocedural paths, rather than merely parsing the syntax tree.
However, the analyzer does not prioritize detection of such paths, so
false negatives are more likely relative to other warnings.
@opindex Wanalyzer-stale-setjmp-buffer
@opindex Wno-analyzer-stale-setjmp-buffer
@item -Wno-analyzer-stale-setjmp-buffer
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-stale-setjmp-buffer} to disable it.
This diagnostic warns for paths through the code in which
@code{longjmp} is called to rewind to a @code{jmp_buf} relating
to a @code{setjmp} call in a function that has returned.
When @code{setjmp} is called on a @code{jmp_buf} to record a rewind
location, it records the stack frame. The stack frame becomes invalid
when the function containing the @code{setjmp} call returns. Attempting
to rewind to it via @code{longjmp} would reference a stack frame that
no longer exists, and likely lead to a crash (or worse).
@opindex Wanalyzer-tainted-allocation-size
@opindex Wno-analyzer-tainted-allocation-size
@item -Wno-analyzer-tainted-allocation-size
This warning requires @option{-fanalyzer} which enables it;
use @option{-Wno-analyzer-tainted-allocation-size} to disable it.
This diagnostic warns for paths through the code in which a value
that could be under an attacker's control is used as the size
of an allocation without being sanitized, so that an attacker could
inject an excessively large allocation and potentially cause a denial
of service attack.
See @uref{https://cwe.mitre.org/data/definitions/789.html, CWE-789: Memory Allocation with Excessive Size Value}.
@opindex Wanalyzer-tainted-assertion
@opindex Wno-analyzer-tainted-assertion
@item -Wno-analyzer-tainted-assertion
This warning requires @option{-fanalyzer} which enables it;
use @option{-Wno-analyzer-tainted-assertion} to disable it.
This diagnostic warns for paths through the code in which a value
that could be under an attacker's control is used as part of a
condition without being first sanitized, and that condition guards a
call to a function marked with attribute @code{noreturn}
(such as the function @code{__builtin_unreachable}). Such functions
typically indicate abnormal termination of the program, such as for
assertion failure handlers. For example:
@smallexample
assert (some_tainted_value < SOME_LIMIT);
@end smallexample
In such cases:
@itemize
@item
when assertion-checking is enabled: an attacker could trigger
a denial of service by injecting an assertion failure
@item
when assertion-checking is disabled, such as by defining @code{NDEBUG},
an attacker could inject data that subverts the process, since it
presumably violates a precondition that is being assumed by the code.
@end itemize
Note that when assertion-checking is disabled, the assertions are
typically removed by the preprocessor before the analyzer has a chance
to "see" them, so this diagnostic can only generate warnings on builds
in which assertion-checking is enabled.
For the purpose of this warning, any function marked with attribute
@code{noreturn} is considered as a possible assertion failure
handler, including @code{__builtin_unreachable}. Note that these functions
are sometimes removed by the optimizer before the analyzer "sees" them.
Hence optimization should be disabled when attempting to trigger this
diagnostic.
See @uref{https://cwe.mitre.org/data/definitions/617.html, CWE-617: Reachable Assertion}.
The warning can also report problematic constructions such as
@smallexample
switch (some_tainted_value) @{
case 0:
/* [...etc; various valid cases omitted...] */
break;
default:
__builtin_unreachable (); /* BUG: attacker can trigger this */
@}
@end smallexample
despite the above not being an assertion failure, strictly speaking.
@opindex Wanalyzer-tainted-array-index
@opindex Wno-analyzer-tainted-array-index
@item -Wno-analyzer-tainted-array-index
This warning requires @option{-fanalyzer} which enables it;
use @option{-Wno-analyzer-tainted-array-index} to disable it.
This diagnostic warns for paths through the code in which a value
that could be under an attacker's control is used as the index
of an array access without being sanitized, so that an attacker
could inject an out-of-bounds access.
See @uref{https://cwe.mitre.org/data/definitions/129.html, CWE-129: Improper Validation of Array Index}.
@opindex Wanalyzer-tainted-divisor
@opindex Wno-analyzer-tainted-divisor
@item -Wno-analyzer-tainted-divisor
This warning requires @option{-fanalyzer} which enables it;
use @option{-Wno-analyzer-tainted-divisor} to disable it.
This diagnostic warns for paths through the code in which a value
that could be under an attacker's control is used as the divisor
in a division or modulus operation without being sanitized, so that
an attacker could inject a division-by-zero.
See @uref{https://cwe.mitre.org/data/definitions/369.html, CWE-369: Divide By Zero}.
@opindex Wanalyzer-tainted-offset
@opindex Wno-analyzer-tainted-offset
@item -Wno-analyzer-tainted-offset
This warning requires @option{-fanalyzer} which enables it;
use @option{-Wno-analyzer-tainted-offset} to disable it.
This diagnostic warns for paths through the code in which a value
that could be under an attacker's control is used as a pointer offset
without being sanitized, so that an attacker could inject an out-of-bounds
access.
See @uref{https://cwe.mitre.org/data/definitions/823.html, CWE-823: Use of Out-of-range Pointer Offset}.
@opindex Wanalyzer-tainted-size
@opindex Wno-analyzer-tainted-size
@item -Wno-analyzer-tainted-size
This warning requires @option{-fanalyzer} which enables it;
use @option{-Wno-analyzer-tainted-size} to disable it.
This diagnostic warns for paths through the code in which a value
that could be under an attacker's control is used as the size of
an operation such as @code{memset} without being sanitized, so that an
attacker could inject an out-of-bounds access.
See @uref{https://cwe.mitre.org/data/definitions/129.html, CWE-129: Improper Validation of Array Index}.
@opindex Wanalyzer-undefined-behavior-ptrdiff
@opindex Wno-analyzer-undefined-behavior-ptrdiff
@item -Wno-analyzer-undefined-behavior-ptrdiff
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-undefined-behavior-ptrdiff} to disable it.
This diagnostic warns for paths through the code in which a pointer
subtraction occurs where the pointers refer to different chunks of
memory. Such code relies on undefined behavior, as pointer subtraction
is only defined for cases where both pointers point to within (or just
after) the same array.
See @uref{https://cwe.mitre.org/data/definitions/469.html, CWE-469: Use of Pointer Subtraction to Determine Size}.
@opindex Wanalyzer-undefined-behavior-strtok
@opindex Wno-analyzer-undefined-behavior-strtok
@item -Wno-analyzer-undefined-behavior-strtok
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-undefined-behavior-strtok} to disable it.
This diagnostic warns for paths through the code in which a
call is made to @code{strtok} with undefined behavior.
Specifically, passing NULL as the first parameter for the initial
call to @code{strtok} within a process has undefined behavior.
@opindex Wanalyzer-unsafe-call-within-signal-handler
@opindex Wno-analyzer-unsafe-call-within-signal-handler
@item -Wno-analyzer-unsafe-call-within-signal-handler
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-unsafe-call-within-signal-handler} to disable it.
This diagnostic warns for paths through the code in which a
function known to be async-signal-unsafe (such as @code{fprintf}) is
called from a signal handler.
See @uref{https://cwe.mitre.org/data/definitions/479.html, CWE-479: Signal Handler Use of a Non-reentrant Function}.
@opindex Wanalyzer-use-after-free
@opindex Wno-analyzer-use-after-free
@item -Wno-analyzer-use-after-free
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-use-after-free} to disable it.
This diagnostic warns for paths through the code in which a
pointer is used after a deallocator is called on it: either @code{free},
or a deallocator referenced by attribute @code{malloc}.
See @uref{https://cwe.mitre.org/data/definitions/416.html, CWE-416: Use After Free}.
@opindex Wanalyzer-use-of-pointer-in-stale-stack-frame
@opindex Wno-analyzer-use-of-pointer-in-stale-stack-frame
@item -Wno-analyzer-use-of-pointer-in-stale-stack-frame
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-use-of-pointer-in-stale-stack-frame}
to disable it.
This diagnostic warns for paths through the code in which a pointer
is dereferenced that points to a variable in a stale stack frame.
@opindex Wanalyzer-va-arg-type-mismatch
@opindex Wno-analyzer-va-arg-type-mismatch
@item -Wno-analyzer-va-arg-type-mismatch
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-va-arg-type-mismatch}
to disable it.
This diagnostic warns for interprocedural paths through the code for which
the analyzer detects an attempt to use @code{va_arg} to extract a value
passed to a variadic call, but uses a type that does not match that of
the expression passed to the call.
See @uref{https://cwe.mitre.org/data/definitions/686.html, CWE-686: Function Call With Incorrect Argument Type}.
@opindex Wanalyzer-va-list-exhausted
@opindex Wno-analyzer-va-list-exhausted
@item -Wno-analyzer-va-list-exhausted
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-va-list-exhausted}
to disable it.
This diagnostic warns for interprocedural paths through the code for which
the analyzer detects an attempt to use @code{va_arg} to access the next
value passed to a variadic call, but all of the values in the
@code{va_list} have already been consumed.
See @uref{https://cwe.mitre.org/data/definitions/685.html, CWE-685: Function Call With Incorrect Number of Arguments}.
@opindex Wanalyzer-va-list-leak
@opindex Wno-analyzer-va-list-leak
@item -Wno-analyzer-va-list-leak
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-va-list-leak}
to disable it.
This diagnostic warns for interprocedural paths through the code for which
the analyzer detects that @code{va_start} or @code{va_copy} has been called
on a @code{va_list} without a corresponding call to @code{va_end}.
@opindex Wanalyzer-va-list-use-after-va-end
@opindex Wno-analyzer-va-list-use-after-va-end
@item -Wno-analyzer-va-list-use-after-va-end
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-va-list-use-after-va-end}
to disable it.
This diagnostic warns for interprocedural paths through the code for which
the analyzer detects an attempt to use a @code{va_list} after
@code{va_end} has been called on it.
@code{va_list}.
@opindex Wanalyzer-write-to-const
@opindex Wno-analyzer-write-to-const
@item -Wno-analyzer-write-to-const
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-write-to-const}
to disable it.
This diagnostic warns for paths through the code in which the analyzer
detects an attempt to write through a pointer to a @code{const} object.
However, the analyzer does not prioritize detection of such paths, so
false negatives are more likely relative to other warnings.
@opindex Wanalyzer-write-to-string-literal
@opindex Wno-analyzer-write-to-string-literal
@item -Wno-analyzer-write-to-string-literal
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-write-to-string-literal}
to disable it.
This diagnostic warns for paths through the code in which the analyzer
detects an attempt to write through a pointer to a string literal.
However, the analyzer does not prioritize detection of such paths, so
false negatives are more likely relative to other warnings.
@opindex Wanalyzer-use-of-uninitialized-value
@opindex Wno-analyzer-use-of-uninitialized-value
@item -Wno-analyzer-use-of-uninitialized-value
This warning requires @option{-fanalyzer}, which enables it; use
@option{-Wno-analyzer-use-of-uninitialized-value} to disable it.
This diagnostic warns for paths through the code in which an uninitialized
value is used.
See @uref{https://cwe.mitre.org/data/definitions/457.html, CWE-457: Use of Uninitialized Variable}.
@end table
The analyzer has hardcoded knowledge about the behavior of the following
memory-management functions:
@itemize @bullet
@item @code{alloca}
@item The built-in functions @code{__builtin_alloc},
@code{__builtin_alloc_with_align}, @item @code{__builtin_calloc},
@code{__builtin_free}, @code{__builtin_malloc}, @code{__builtin_memcpy},
@code{__builtin_memcpy_chk}, @code{__builtin_memset},
@code{__builtin_memset_chk}, @code{__builtin_realloc},
@code{__builtin_stack_restore}, and @code{__builtin_stack_save}
@item @code{calloc}
@item @code{free}
@item @code{malloc}
@item @code{memset}
@item @code{operator delete}
@item @code{operator delete []}
@item @code{operator new}
@item @code{operator new []}
@item @code{realloc}
@item @code{strdup}
@item @code{strndup}
@end itemize
@noindent
of the following functions for working with file descriptors:
@itemize @bullet
@item @code{open}
@item @code{close}
@item @code{creat}
@item @code{dup}, @code{dup2} and @code{dup3}
@item @code{isatty}
@item @code{pipe}, and @code{pipe2}
@item @code{read}
@item @code{write}
@item @code{socket}, @code{bind}, @code{listen}, @code{accept}, and @code{connect}
@end itemize
@noindent
of the following functions for working with @code{<stdio.h>} streams:
@itemize @bullet
@item The built-in functions @code{__builtin_fprintf},
@code{__builtin_fprintf_unlocked}, @code{__builtin_fputc},
@code{__builtin_fputc_unlocked}, @code{__builtin_fputs},
@code{__builtin_fputs_unlocked}, @code{__builtin_fwrite},
@code{__builtin_fwrite_unlocked}, @code{__builtin_printf},
@code{__builtin_printf_unlocked}, @code{__builtin_putc},
@code{__builtin_putchar}, @code{__builtin_putchar_unlocked},
@code{__builtin_putc_unlocked}, @code{__builtin_puts},
@code{__builtin_puts_unlocked}, @code{__builtin_vfprintf}, and
@code{__builtin_vprintf}
@item @code{fopen}
@item @code{fclose}
@item @code{ferror}
@item @code{fgets}
@item @code{fgets_unlocked}
@item @code{fileno}
@item @code{fread}
@item @code{getc}
@item @code{getchar}
@item @code{fprintf}
@item @code{printf}
@item @code{fwrite}
@end itemize
@noindent
and of the following functions:
@itemize @bullet
@item The built-in functions @code{__builtin_expect},
@code{__builtin_expect_with_probability}, @code{__builtin_strchr},
@code{__builtin_strcpy}, @code{__builtin_strcpy_chk},
@code{__builtin_strlen}, @code{__builtin_va_copy}, and
@code{__builtin_va_start}
@item The GNU extensions @code{error} and @code{error_at_line}
@item @code{getpass}
@item @code{longjmp}
@item @code{putenv}
@item @code{setjmp}
@item @code{siglongjmp}
@item @code{signal}
@item @code{sigsetjmp}
@item @code{strcat}
@item @code{strchr}
@item @code{strlen}
@end itemize
In addition, various functions with an @code{__analyzer_} prefix have
special meaning to the analyzer, described in the GCC Internals manual.
Pertinent parameters for controlling the exploration are:
@itemize @bullet
@item @option{--param analyzer-bb-explosion-factor=@var{value}}
@item @option{--param analyzer-max-enodes-per-program-point=@var{value}}
@item @option{--param analyzer-max-recursion-depth=@var{value}}
@item @option{--param analyzer-min-snodes-for-call-summary=@var{value}}
@end itemize
The following options control the analyzer.
@table @gcctabopt
@opindex fanalyzer-call-summaries
@opindex fno-analyzer-call-summaries
@item -fanalyzer-call-summaries
Simplify interprocedural analysis by computing the effect of certain calls,
rather than exploring all paths through the function from callsite to each
possible return.
If enabled, call summaries are only used for functions with more than one
call site, and that are sufficiently complicated (as per
@option{--param analyzer-min-snodes-for-call-summary=@var{value}}).
@opindex fanalyzer-checker
@item -fanalyzer-checker=@var{name}
Restrict the analyzer to run just the named checker, and enable it.
@opindex fanalyzer-debug-text-art
@opindex fno-analyzer-debug-text-art
@item -fanalyzer-debug-text-art-headings
This option is intended for analyzer developers. If enabled,
the analyzer will add extra annotations to any diagrams it generates.
@opindex fanalyzer-feasibility
@opindex fno-analyzer-feasibility
@item -fno-analyzer-feasibility
This option is intended for analyzer developers.
By default the analyzer verifies that there is a feasible control flow path
for each diagnostic it emits: that the conditions that hold are not mutually
exclusive. Diagnostics for which no feasible path can be found are rejected.
This filtering can be suppressed with @option{-fno-analyzer-feasibility}, for
debugging issues in this code.
@opindex fanalyzer-fine-grained
@opindex fno-analyzer-fine-grained
@item -fanalyzer-fine-grained
This option is intended for analyzer developers.
Internally the analyzer builds an ``exploded graph'' that combines
control flow graphs with data flow information.
By default, an edge in this graph can contain the effects of a run
of multiple statements within a basic block. With
@option{-fanalyzer-fine-grained}, each statement gets its own edge.
@opindex fanalyzer-show-duplicate-count
@opindex fno-analyzer-show-duplicate-count
@item -fanalyzer-show-duplicate-count
This option is intended for analyzer developers: if multiple diagnostics
have been detected as being duplicates of each other, it emits a note when
reporting the best diagnostic, giving the number of additional diagnostics
that were suppressed by the deduplication logic.
@opindex fanalyzer-show-events-in-system-headers
@opindex fno-analyzer-show-events-in-system-headers
@item -fanalyzer-show-events-in-system-headers
By default the analyzer emits simplified diagnostics paths by hiding
events fully located within a system header.
With @option{-fanalyzer-show-events-in-system-headers} such
events are no longer suppressed.
@opindex fanalyzer-state-merge
@opindex fno-analyzer-state-merge
@item -fno-analyzer-state-merge
This option is intended for analyzer developers.
By default the analyzer attempts to simplify analysis by merging
sufficiently similar states at each program point as it builds its
``exploded graph''. With @option{-fno-analyzer-state-merge} this
merging can be suppressed, for debugging state-handling issues.
@opindex fanalyzer-state-purge
@opindex fno-analyzer-state-purge
@item -fno-analyzer-state-purge
This option is intended for analyzer developers.
By default the analyzer attempts to simplify analysis by purging
aspects of state at a program point that appear to no longer be relevant
e.g. the values of locals that aren't accessed later in the function
and which aren't relevant to leak analysis.
With @option{-fno-analyzer-state-purge} this purging of state can
be suppressed, for debugging state-handling issues.
@opindex fanalyzer-suppress-followups
@opindex fno-analyzer-suppress-followups
@item -fno-analyzer-suppress-followups
This option is intended for analyzer developers.
By default the analyzer will stop exploring an execution path after
encountering certain diagnostics, in order to avoid potentially issuing a
cascade of follow-up diagnostics.
The diagnostics that terminate analysis along a path are:
@itemize
@item @option{-Wanalyzer-null-argument}
@item @option{-Wanalyzer-null-dereference}
@item @option{-Wanalyzer-use-after-free}
@item @option{-Wanalyzer-use-of-pointer-in-stale-stack-frame}
@item @option{-Wanalyzer-use-of-uninitialized-value}
@end itemize
With @option{-fno-analyzer-suppress-followups} the analyzer will
continue to explore such paths even after such diagnostics, which may
be helpful for debugging issues in the analyzer, or for microbenchmarks
for detecting undefined behavior.
@opindex fanalyzer-transitivity
@opindex fno-analyzer-transitivity
@item -fanalyzer-transitivity
This option enables transitivity of constraints within the analyzer.
@opindex fanalyzer-undo-inlining
@opindex fno-analyzer-undo-inlining
@item -fno-analyzer-undo-inlining
This option is intended for analyzer developers.
@option{-fanalyzer} runs relatively late compared to other code analysis
tools, and some optimizations have already been applied to the code. In
particular function inlining may have occurred, leading to the
interprocedural execution paths emitted by the analyzer containing
function frames that don't correspond to those in the original source
code.
By default the analyzer attempts to reconstruct the original function
frames, and to emit events showing the inlined calls.
With @option{-fno-analyzer-undo-inlining} this attempt to reconstruct
the original frame information can be disabled, which may be of help
when debugging issues in the analyzer.
@item -fanalyzer-verbose-edges
This option is intended for analyzer developers. It enables more
verbose, lower-level detail in the descriptions of control flow
within diagnostic paths.
@item -fanalyzer-verbose-state-changes
This option is intended for analyzer developers. It enables more
verbose, lower-level detail in the descriptions of events relating
to state machines within diagnostic paths.
@item -fanalyzer-verbosity=@var{level}
This option controls the complexity of the control flow paths that are
emitted for analyzer diagnostics.
The @var{level} can be one of:
@table @samp
@item 0
At this level, interprocedural call and return events are displayed,
along with the most pertinent state-change events relating to
a diagnostic. For example, for a double-@code{free} diagnostic,
both calls to @code{free} will be shown.
@item 1
As per the previous level, but also show events for the entry
to each function.
@item 2
As per the previous level, but also show events relating to
control flow that are significant to triggering the issue
(e.g. ``true path taken'' at a conditional).
This level is the default.
@item 3
As per the previous level, but show all control flow events, not
just significant ones.
@item 4
This level is intended for analyzer developers; it adds various
other events intended for debugging the analyzer.
@end table
@opindex fdump-analyzer
@item -fdump-analyzer
Dump internal details about what the analyzer is doing to
@file{@var{file}.analyzer.txt}.
@option{-fdump-analyzer-stderr} overrides this option.
@opindex fdump-analyzer-stderr
@item -fdump-analyzer-stderr
Dump internal details about what the analyzer is doing to stderr.
This option overrides @option{-fdump-analyzer}.
@opindex fdump-analyzer-callgraph
@item -fdump-analyzer-callgraph
Dump a representation of the call graph suitable for viewing with
GraphViz to @file{@var{file}.callgraph.dot}.
@opindex fdump-analyzer-exploded-graph
@item -fdump-analyzer-exploded-graph
Dump a representation of the ``exploded graph'' suitable for viewing with
GraphViz to @file{@var{file}.eg.dot}.
Nodes are color-coded based on state-machine states to emphasize
state changes.
@opindex dump-analyzer-exploded-nodes
@item -fdump-analyzer-exploded-nodes
Emit diagnostics showing where nodes in the ``exploded graph'' are
in relation to the program source.
@opindex dump-analyzer-exploded-nodes-2
@item -fdump-analyzer-exploded-nodes-2
Dump a textual representation of the ``exploded graph'' to
@file{@var{file}.eg.txt}.
@opindex dump-analyzer-exploded-nodes-3
@item -fdump-analyzer-exploded-nodes-3
Dump a textual representation of the ``exploded graph'' to
one dump file per node, to @file{@var{file}.eg-@var{id}.txt}.
This is typically a large number of dump files.
@opindex fdump-analyzer-exploded-paths
@item -fdump-analyzer-exploded-paths
Dump a textual representation of the ``exploded path'' for each
diagnostic to @file{@var{file}.@var{idx}.@var{kind}.epath.txt}.
@opindex dump-analyzer-feasibility
@item -fdump-analyzer-feasibility
Dump internal details about the analyzer's search for feasible paths.
The details are written in a form suitable for viewing with GraphViz
to filenames of the form @file{@var{file}.*.fg.dot},
@file{@var{file}.*.tg.dot}, and @file{@var{file}.*.fpath.txt}.
@opindex dump-analyzer-infinite-loop
@item -fdump-analyzer-infinite-loop
Dump internal details about the analyzer's search for infinite loops.
The details are written in a form suitable for viewing with GraphViz
to filenames of the form @file{@var{file}.*.infinite-loop.dot}.
@opindex fdump-analyzer-json
@item -fdump-analyzer-json
Dump a compressed JSON representation of analyzer internals to
@file{@var{file}.analyzer.json.gz}. The precise format is subject
to change.
@opindex fdump-analyzer-state-purge
@item -fdump-analyzer-state-purge
As per @option{-fdump-analyzer-supergraph}, dump a representation of the
``supergraph'' suitable for viewing with GraphViz, but annotate the
graph with information on what state will be purged at each node.
The graph is written to @file{@var{file}.state-purge.dot}.
@opindex fdump-analyzer-supergraph
@item -fdump-analyzer-supergraph
Dump representations of the ``supergraph'' suitable for viewing with
GraphViz to @file{@var{file}.supergraph.dot} and to
@file{@var{file}.supergraph-eg.dot}. These show all of the
control flow graphs in the program, with interprocedural edges for
calls and returns. The second dump contains annotations showing nodes
in the ``exploded graph'' and diagnostics associated with them.
@opindex fdump-analyzer-untracked
@item -fdump-analyzer-untracked
Emit custom warnings with internal details intended for analyzer developers.
@end table
@node Debugging Options
@section Options for Debugging Your Program
@cindex options, debugging
@cindex debugging information options
To tell GCC to emit extra information for use by a debugger, in almost
all cases you need only to add @option{-g} to your other options. Some debug
formats can co-exist (like DWARF with CTF) when each of them is enabled
explicitly by adding the respective command line option to your other options.
GCC allows you to use @option{-g} with
@option{-O}. The shortcuts taken by optimized code may occasionally
be surprising: some variables you declared may not exist
at all; flow of control may briefly move where you did not expect it;
some statements may not be executed because they compute constant
results or their values are already at hand; some statements may
execute in different places because they have been moved out of loops.
Nevertheless it is possible to debug optimized output. This makes
it reasonable to use the optimizer for programs that might have bugs.
If you are not using some other optimization option, consider
using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
With no @option{-O} option at all, some compiler passes that collect
information useful for debugging do not run at all, so that
@option{-Og} may result in a better debugging experience.
@table @gcctabopt
@opindex g
@item -g
Produce debugging information in the operating system's native format
(stabs, COFF, XCOFF, or DWARF)@. GDB can work with this debugging
information.
On most systems that use stabs format, @option{-g} enables use of extra
debugging information that only GDB can use; this extra information
makes debugging work better in GDB but probably makes other debuggers
crash or refuse to read the program. If you want to control for certain whether
to generate the extra information, use @option{-gvms} (see below).
@opindex ggdb
@item -ggdb
Produce debugging information for use by GDB@. This means to use the
most expressive format available (DWARF, stabs, or the native format
if neither of those are supported), including GDB extensions if at all
possible.
@opindex gdwarf
@item -gdwarf
@itemx -gdwarf-@var{version}
Produce debugging information in DWARF format (if that is supported).
The value of @var{version} may be either 2, 3, 4 or 5; the default
version for most targets is 5 (with the exception of VxWorks, TPF and
Darwin / macOS, which default to version 2, and AIX, which defaults
to version 4).
Note that with DWARF Version 2, some ports require and always
use some non-conflicting DWARF 3 extensions in the unwind tables.
Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
for maximum benefit. Version 5 requires GDB 8.0 or higher.
GCC no longer supports DWARF Version 1, which is substantially
different than Version 2 and later. For historical reasons, some
other DWARF-related options such as
@option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
in their names, but apply to all currently-supported versions of DWARF.
@opindex gbtf
@item -gbtf
Request BTF debug information. BTF is the default debugging format for the
eBPF target. On other targets, like x86, BTF debug information can be
generated along with DWARF debug information when both of the debug formats are
enabled explicitly via their respective command line options.
@opindex gprune-btf
@opindex gno-prune-btf
@item -gprune-btf
@itemx -gno-prune-btf
Prune BTF information before emission. When pruning, only type
information for types used by global variables and file-scope functions
will be emitted. If compiling for the BPF target with BPF CO-RE
enabled, type information will also be emitted for types used in BPF
CO-RE relocations. In addition, struct and union types which are only
referred to via pointers from members of other struct or union types
shall be pruned and replaced with BTF_KIND_FWD, as though those types
were only present in the input as forward declarations.
This option substantially reduces the size of produced BTF information,
but at significant loss in the amount of detailed type information.
It is primarily useful when compiling for the BPF target, to minimize
the size of the resulting object, and to eliminate BTF information
which is not immediately relevant to the BPF program loading process.
This option is enabled by default for the BPF target when generating
BTF information.
@opindex gctf
@item -gctf
@itemx -gctf@var{level}
Request CTF debug information and use level to specify how much CTF debug
information should be produced. If @option{-gctf} is specified
without a value for level, the default level of CTF debug information is 2.
CTF debug information can be generated along with DWARF debug information when
both of the debug formats are enabled explicitly via their respective command
line options.
Level 0 produces no CTF debug information at all. Thus, @option{-gctf0}
negates @option{-gctf}.
Level 1 produces CTF information for tracebacks only. This includes callsite
information, but does not include type information.
Level 2 produces type information for entities (functions, data objects etc.)
at file-scope or global-scope only.
@opindex gvms
@item -gvms
Produce debugging information in Alpha/VMS debug format (if that is
supported). This is the format used by DEBUG on Alpha/VMS systems.
@item -gcodeview
@opindex gcodeview
Produce debugging information in CodeView debug format (if that is
supported). This is the format used by Microsoft Visual C++ on
Windows.
@item -g@var{level}
@itemx -ggdb@var{level}
@itemx -gvms@var{level}
Request debugging information and also use @var{level} to specify how
much information. The default level is 2.
Level 0 produces no debug information at all. Thus, @option{-g0} negates
@option{-g}.
Level 1 produces minimal information, enough for making backtraces in
parts of the program that you don't plan to debug. This includes
descriptions of functions and external variables, and line number
tables, but no information about local variables.
Level 3 includes extra information, such as all the macro definitions
present in the program. Some debuggers support macro expansion when
you use @option{-g3}.
If you use multiple @option{-g} options, with or without level numbers,
the last such option is the one that is effective.
@option{-gdwarf} does not accept a concatenated debug level, to avoid
confusion with @option{-gdwarf-@var{level}}.
Instead use an additional @option{-g@var{level}} option to change the
debug level for DWARF.
@opindex feliminate-unused-debug-symbols
@opindex fno-eliminate-unused-debug-symbols
@item -fno-eliminate-unused-debug-symbols
By default, no debug information is produced for symbols that are not actually
used. Use this option if you want debug information for all symbols.
@opindex femit-class-debug-always
@item -femit-class-debug-always
Instead of emitting debugging information for a C++ class in only one
object file, emit it in all object files using the class. This option
should be used only with debuggers that are unable to handle the way GCC
normally emits debugging information for classes because using this
option increases the size of debugging information by as much as a
factor of two.
@opindex fmerge-debug-strings
@opindex fno-merge-debug-strings
@item -fno-merge-debug-strings
Direct the linker to not merge together strings in the debugging
information that are identical in different object files. Merging is
not supported by all assemblers or linkers. Merging decreases the size
of the debug information in the output file at the cost of increasing
link processing time. Merging is enabled by default.
@opindex fdebug-prefix-map
@item -fdebug-prefix-map=@var{old}=@var{new}
When compiling files residing in directory @file{@var{old}}, record
debugging information describing them as if the files resided in
directory @file{@var{new}} instead. This can be used to replace a
build-time path with an install-time path in the debug info. It can
also be used to change an absolute path to a relative path by using
@file{.} for @var{new}. This can give more reproducible builds, which
are location independent, but may require an extra command to tell GDB
where to find the source files. See also @option{-ffile-prefix-map}
and @option{-fcanon-prefix-map}.
@opindex fvar-tracking
@item -fvar-tracking
Run variable tracking pass. It computes where variables are stored at each
position in code. Better debugging information is then generated
(if the debugging information format supports this information).
It is enabled by default when compiling with optimization (@option{-Os},
@option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
the debug info format supports it.
@opindex fvar-tracking-assignments
@opindex fno-var-tracking-assignments
@item -fvar-tracking-assignments
Annotate assignments to user variables early in the compilation and
attempt to carry the annotations over throughout the compilation all the
way to the end, in an attempt to improve debug information while
optimizing. Use of @option{-gdwarf-4} is recommended along with it.
It can be enabled even if var-tracking is disabled, in which case
annotations are created and maintained, but discarded at the end.
By default, this flag is enabled together with @option{-fvar-tracking},
except when selective scheduling is enabled.
@opindex gsplit-dwarf
@item -gsplit-dwarf
If DWARF debugging information is enabled, separate as much debugging
information as possible into a separate output file with the extension
@file{.dwo}. This option allows the build system to avoid linking files with
debug information. To be useful, this option requires a debugger capable of
reading @file{.dwo} files.
@opindex gdwarf32
@opindex gdwarf64
@item -gdwarf32
@itemx -gdwarf64
If DWARF debugging information is enabled, the @option{-gdwarf32} selects
the 32-bit DWARF format and the @option{-gdwarf64} selects the 64-bit
DWARF format. The default is target specific, on most targets it is
@option{-gdwarf32} though. The 32-bit DWARF format is smaller, but
can't support more than 2GiB of debug information in any of the DWARF
debug information sections. The 64-bit DWARF format allows larger debug
information and might not be well supported by all consumers yet.
@opindex gdescribe-dies
@item -gdescribe-dies
Add description attributes to some DWARF DIEs that have no name attribute,
such as artificial variables, external references and call site
parameter DIEs.
@opindex gpubnames
@item -gpubnames
Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
@opindex ggnu-pubnames
@item -ggnu-pubnames
Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
suitable for conversion into a GDB@ index. This option is only useful
with a linker that can produce GDB@ index version 7.
@opindex fdebug-types-section
@opindex fno-debug-types-section
@item -fdebug-types-section
When using DWARF Version 4 or higher, type DIEs can be put into
their own @code{.debug_types} section instead of making them part of the
@code{.debug_info} section. It is more efficient to put them in a separate
comdat section since the linker can then remove duplicates.
But not all DWARF consumers support @code{.debug_types} sections yet
and on some objects @code{.debug_types} produces larger instead of smaller
debugging information.
@opindex grecord-gcc-switches
@opindex gno-record-gcc-switches
@item -grecord-gcc-switches
@itemx -gno-record-gcc-switches
This switch causes the command-line options used to invoke the
compiler that may affect code generation to be appended to the
DW_AT_producer attribute in DWARF debugging information. The options
are concatenated with spaces separating them from each other and from
the compiler version.
It is enabled by default.
See also @option{-frecord-gcc-switches} for another
way of storing compiler options into the object file.
@opindex gstrict-dwarf
@item -gstrict-dwarf
Disallow using extensions of later DWARF standard version than selected
with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
DWARF extensions from later standard versions is allowed.
@opindex gno-strict-dwarf
@item -gno-strict-dwarf
Allow using extensions of later DWARF standard version than selected with
@option{-gdwarf-@var{version}}.
@opindex gas-loc-support
@item -gas-loc-support
Inform the compiler that the assembler supports @code{.loc} directives.
It may then use them for the assembler to generate DWARF2+ line number
tables.
This is generally desirable, because assembler-generated line-number
tables are a lot more compact than those the compiler can generate
itself.
This option will be enabled by default if, at GCC configure time, the
assembler was found to support such directives.
@opindex gno-as-loc-support
@item -gno-as-loc-support
Force GCC to generate DWARF2+ line number tables internally, if DWARF2+
line number tables are to be generated.
@opindex gas-locview-support
@item -gas-locview-support
Inform the compiler that the assembler supports @code{view} assignment
and reset assertion checking in @code{.loc} directives.
This option will be enabled by default if, at GCC configure time, the
assembler was found to support them.
@item -gno-as-locview-support
Force GCC to assign view numbers internally, if
@option{-gvariable-location-views} are explicitly requested.
@opindex gcolumn-info
@opindex gno-column-info
@item -gcolumn-info
@itemx -gno-column-info
Emit location column information into DWARF debugging information, rather
than just file and line.
This option is enabled by default.
@opindex gstatement-frontiers
@opindex gno-statement-frontiers
@item -gstatement-frontiers
@itemx -gno-statement-frontiers
This option causes GCC to create markers in the internal representation
at the beginning of statements, and to keep them roughly in place
throughout compilation, using them to guide the output of @code{is_stmt}
markers in the line number table. This is enabled by default when
compiling with optimization (@option{-Os}, @option{-O1}, @option{-O2},
@dots{}), and outputting DWARF 2 debug information at the normal level.
@opindex gvariable-location-views
@opindex gvariable-location-views=incompat5
@opindex gno-variable-location-views
@item -gvariable-location-views
@itemx -gvariable-location-views=incompat5
@itemx -gno-variable-location-views
Augment variable location lists with progressive view numbers implied
from the line number table. This enables debug information consumers to
inspect state at certain points of the program, even if no instructions
associated with the corresponding source locations are present at that
point. If the assembler lacks support for view numbers in line number
tables, this will cause the compiler to emit the line number table,
which generally makes them somewhat less compact. The augmented line
number tables and location lists are fully backward-compatible, so they
can be consumed by debug information consumers that are not aware of
these augmentations, but they won't derive any benefit from them either.
This is enabled by default when outputting DWARF 2 debug information at
the normal level, as long as there is assembler support,
@option{-fvar-tracking-assignments} is enabled and
@option{-gstrict-dwarf} is not. When assembler support is not
available, this may still be enabled, but it will force GCC to output
internal line number tables, and if
@option{-ginternal-reset-location-views} is not enabled, that will most
certainly lead to silently mismatching location views.
There is a proposed representation for view numbers that is not backward
compatible with the location list format introduced in DWARF 5, that can
be enabled with @option{-gvariable-location-views=incompat5}. This
option may be removed in the future, is only provided as a reference
implementation of the proposed representation. Debug information
consumers are not expected to support this extended format, and they
would be rendered unable to decode location lists using it.
@opindex ginternal-reset-location-views
@opindex gno-internal-reset-location-views
@item -ginternal-reset-location-views
@itemx -gno-internal-reset-location-views
Attempt to determine location views that can be omitted from location
view lists. This requires the compiler to have very accurate insn
length estimates, which isn't always the case, and it may cause
incorrect view lists to be generated silently when using an assembler
that does not support location view lists. The GNU assembler will flag
any such error as a @code{view number mismatch}. This is only enabled
on ports that define a reliable estimation function.
@opindex ginline-points
@opindex gno-inline-points
@item -ginline-points
@itemx -gno-inline-points
Generate extended debug information for inlined functions. Location
view tracking markers are inserted at inlined entry points, so that
address and view numbers can be computed and output in debug
information. This can be enabled independently of location views, in
which case the view numbers won't be output, but it can only be enabled
along with statement frontiers, and it is only enabled by default if
location views are enabled.
@opindex gz
@item -gz@r{[}=@var{type}@r{]}
Produce compressed debug sections in DWARF format, if that is supported.
If @var{type} is not given, the default type depends on the capabilities
of the assembler and linker used. @var{type} may be one of
@samp{none} (don't compress debug sections), or @samp{zlib} (use zlib
compression in ELF gABI format). If the linker doesn't support writing
compressed debug sections, the option is rejected. Otherwise, if the
assembler does not support them, @option{-gz} is silently ignored when
producing object files.
@opindex femit-struct-debug-baseonly
@item -femit-struct-debug-baseonly
Emit debug information for struct-like types
only when the base name of the compilation source file
matches the base name of file in which the struct is defined.
This option substantially reduces the size of debugging information,
but at significant potential loss in type information to the debugger.
See @option{-femit-struct-debug-reduced} for a less aggressive option.
See @option{-femit-struct-debug-detailed} for more detailed control.
This option works only with DWARF debug output.
@opindex femit-struct-debug-reduced
@item -femit-struct-debug-reduced
Emit debug information for struct-like types
only when the base name of the compilation source file
matches the base name of file in which the type is defined,
unless the struct is a template or defined in a system header.
This option significantly reduces the size of debugging information,
with some potential loss in type information to the debugger.
See @option{-femit-struct-debug-baseonly} for a more aggressive option.
See @option{-femit-struct-debug-detailed} for more detailed control.
This option works only with DWARF debug output.
@opindex femit-struct-debug-detailed
@item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
Specify the struct-like types
for which the compiler generates debug information.
The intent is to reduce duplicate struct debug information
between different object files within the same program.
This option is a detailed version of
@option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
which serves for most needs.
A specification has the syntax@*
[@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
The optional first word limits the specification to
structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
A struct type is used directly when it is the type of a variable, member.
Indirect uses arise through pointers to structs.
That is, when use of an incomplete struct is valid, the use is indirect.
An example is
@samp{struct one direct; struct two * indirect;}.
The optional second word limits the specification to
ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
Generic structs are a bit complicated to explain.
For C++, these are non-explicit specializations of template classes,
or non-template classes within the above.
Other programming languages have generics,
but @option{-femit-struct-debug-detailed} does not yet implement them.
The third word specifies the source files for those
structs for which the compiler should emit debug information.
The values @samp{none} and @samp{any} have the normal meaning.
The value @samp{base} means that
the base of name of the file in which the type declaration appears
must match the base of the name of the main compilation file.
In practice, this means that when compiling @file{foo.c}, debug information
is generated for types declared in that file and @file{foo.h},
but not other header files.
The value @samp{sys} means those types satisfying @samp{base}
or declared in system or compiler headers.
You may need to experiment to determine the best settings for your application.
The default is @option{-femit-struct-debug-detailed=all}.
This option works only with DWARF debug output.
@opindex fdwarf2-cfi-asm
@opindex fno-dwarf2-cfi-asm
@item -fno-dwarf2-cfi-asm
Emit DWARF unwind info as compiler generated @code{.eh_frame} section
instead of using GAS @code{.cfi_*} directives.
@opindex feliminate-unused-debug-types
@opindex fno-eliminate-unused-debug-types
@item -fno-eliminate-unused-debug-types
Normally, when producing DWARF output, GCC avoids producing debug symbol
output for types that are nowhere used in the source file being compiled.
Sometimes it is useful to have GCC emit debugging
information for all types declared in a compilation
unit, regardless of whether or not they are actually used
in that compilation unit, for example
if, in the debugger, you want to cast a value to a type that is
not actually used in your program (but is declared). More often,
however, this results in a significant amount of wasted space.
@end table
@node Optimize Options
@section Options That Control Optimization
@cindex optimize options
@cindex options, optimization
These options control various sorts of optimizations.
Without any optimization option, the compiler's goal is to reduce the
cost of compilation and to make debugging produce the expected
results. Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new value to any
variable or change the program counter to any other statement in the
function and get exactly the results you expect from the source
code.
Turning on optimization flags makes the compiler attempt to improve
the performance and/or code size at the expense of compilation time
and possibly the ability to debug the program.
The compiler performs optimization based on the knowledge it has of the
program. Compiling multiple files at once to a single output file mode allows
the compiler to use information gained from all of the files when compiling
each of them.
Not all optimizations are controlled directly by a flag. Only
optimizations that have a flag are listed in this section.
Most optimizations are completely disabled at @option{-O0} or if an
@option{-O} level is not set on the command line, even if individual
optimization flags are specified. Similarly, @option{-Og} suppresses
many optimization passes.
Depending on the target and how GCC was configured, a slightly different
set of optimizations may be enabled at each @option{-O} level than
those listed here. You can invoke GCC with @option{-Q --help=optimizers}
to find out the exact set of optimizations that are enabled at each level.
@xref{Overall Options}, for examples.
@table @gcctabopt
@opindex O
@opindex O1
@item -O
@itemx -O1
Optimize. Optimizing compilation takes somewhat more time, and a lot
more memory for a large function.
With @option{-O}, the compiler tries to reduce code size and execution
time, without performing any optimizations that take a great deal of
compilation time.
@c Note that in addition to the default_options_table list in opts.cc,
@c several optimization flags default to true but control optimization
@c passes that are explicitly disabled at -O0.
@option{-O} turns on the following optimization flags:
@c Please keep the following list alphabetized.
@gccoptlist{-fauto-inc-dec
-fbranch-count-reg
-fcombine-stack-adjustments
-fcompare-elim
-fcprop-registers
-fdce
-fdefer-pop
-fdelayed-branch
-fdse
-fforward-propagate
-fguess-branch-probability
-fif-conversion
-fif-conversion2
-finline-functions-called-once
-fipa-modref
-fipa-profile
-fipa-pure-const
-fipa-reference
-fipa-reference-addressable
-fmerge-constants
-fmove-loop-invariants
-fmove-loop-stores
-fomit-frame-pointer
-freorder-blocks
-fshrink-wrap
-fshrink-wrap-separate
-fsplit-wide-types
-fssa-backprop
-fssa-phiopt
-ftree-bit-ccp
-ftree-ccp
-ftree-ch
-ftree-coalesce-vars
-ftree-copy-prop
-ftree-dce
-ftree-dominator-opts
-ftree-dse
-ftree-forwprop
-ftree-fre
-ftree-phiprop
-ftree-pta
-ftree-scev-cprop
-ftree-sink
-ftree-slsr
-ftree-sra
-ftree-ter
-funit-at-a-time}
@opindex O2
@item -O2
Optimize even more. GCC performs nearly all supported optimizations
that do not involve a space-speed tradeoff.
As compared to @option{-O}, this option increases both compilation time
and the performance of the generated code.
@option{-O2} turns on all optimization flags specified by @option{-O1}. It
also turns on the following optimization flags:
@c Please keep the following list alphabetized!
@gccoptlist{-falign-functions -falign-jumps
-falign-labels -falign-loops
-fcaller-saves
-fcode-hoisting
-fcrossjumping
-fcse-follow-jumps -fcse-skip-blocks
-fdelete-null-pointer-checks
-fdevirtualize -fdevirtualize-speculatively
-fexpensive-optimizations
-ffinite-loops
-fgcse -fgcse-lm
-fhoist-adjacent-loads
-finline-functions
-finline-small-functions
-findirect-inlining
-fipa-bit-cp -fipa-cp -fipa-icf
-fipa-ra -fipa-sra -fipa-vrp
-fisolate-erroneous-paths-dereference
-flra-remat
-foptimize-sibling-calls
-foptimize-strlen
-fpartial-inlining
-fpeephole2
-freorder-blocks-algorithm=stc
-freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop
-fschedule-insns -fschedule-insns2
-fsched-interblock -fsched-spec
-fstore-merging
-fstrict-aliasing
-fthread-jumps
-ftree-builtin-call-dce
-ftree-loop-vectorize
-ftree-pre
-ftree-slp-vectorize
-ftree-switch-conversion -ftree-tail-merge
-ftree-vrp
-fvect-cost-model=very-cheap}
Please note the warning under @option{-fgcse} about
invoking @option{-O2} on programs that use computed gotos.
@opindex O3
@item -O3
Optimize yet more. @option{-O3} turns on all optimizations specified
by @option{-O2} and also turns on the following optimization flags:
@c Please keep the following list alphabetized!
@gccoptlist{-fgcse-after-reload
-fipa-cp-clone
-floop-interchange
-floop-unroll-and-jam
-fpeel-loops
-fpredictive-commoning
-fsplit-loops
-fsplit-paths
-ftree-loop-distribution
-ftree-partial-pre
-funswitch-loops
-fvect-cost-model=dynamic
-fversion-loops-for-strides}
@opindex O0
@item -O0
Reduce compilation time and make debugging produce the expected
results. This is the default.
@opindex Os
@item -Os
Optimize for size. @option{-Os} enables all @option{-O2} optimizations
except those that often increase code size:
@gccoptlist{-falign-functions -falign-jumps
-falign-labels -falign-loops
-fprefetch-loop-arrays -freorder-blocks-algorithm=stc}
It also enables @option{-finline-functions}, causes the compiler to tune for
code size rather than execution speed, and performs further optimizations
designed to reduce code size.
@opindex Ofast
@item -Ofast
Disregard strict standards compliance. @option{-Ofast} enables all
@option{-O3} optimizations. It also enables optimizations that are not
valid for all standard-compliant programs.
It turns on @option{-ffast-math}, @option{-fallow-store-data-races}
and the Fortran-specific @option{-fstack-arrays}, unless
@option{-fmax-stack-var-size} is specified, and @option{-fno-protect-parens}.
It turns off @option{-fsemantic-interposition}.
@opindex Og
@item -Og
Optimize debugging experience. @option{-Og} should be the optimization
level of choice for the standard edit-compile-debug cycle, offering
a reasonable level of optimization while maintaining fast compilation
and a good debugging experience. It is a better choice than @option{-O0}
for producing debuggable code because some compiler passes
that collect debug information are disabled at @option{-O0}.
Like @option{-O0}, @option{-Og} completely disables a number of
optimization passes so that individual options controlling them have
no effect. Otherwise @option{-Og} enables all @option{-O1}
optimization flags except for those that may interfere with debugging:
@gccoptlist{-fbranch-count-reg -fdelayed-branch
-fdse -fif-conversion -fif-conversion2
-finline-functions-called-once
-fmove-loop-invariants -fmove-loop-stores -fssa-phiopt
-ftree-bit-ccp -ftree-dse -ftree-pta -ftree-sra}
@opindex Oz
@item -Oz
Optimize aggressively for size rather than speed. This may increase
the number of instructions executed if those instructions require
fewer bytes to encode. @option{-Oz} behaves similarly to @option{-Os}
including enabling most @option{-O2} optimizations.
@end table
If you use multiple @option{-O} options, with or without level numbers,
the last such option is the one that is effective.
Options of the form @option{-f@var{flag}} specify machine-independent
flags. Most flags have both positive and negative forms; the negative
form of @option{-ffoo} is @option{-fno-foo}. In the table
below, only one of the forms is listed---the one you typically
use. You can figure out the other form by either removing @samp{no-}
or adding it.
The following options control specific optimizations. They are either
activated by @option{-O} options or are related to ones that are. You
can use the following flags in the rare cases when ``fine-tuning'' of
optimizations to be performed is desired.
@table @gcctabopt
@opindex fno-defer-pop
@opindex fdefer-pop
@item -fno-defer-pop
For machines that must pop arguments after a function call, always pop
the arguments as soon as each function returns.
At levels @option{-O1} and higher, @option{-fdefer-pop} is the default;
this allows the compiler to let arguments accumulate on the stack for several
function calls and pop them all at once.
@opindex fforward-propagate
@item -fforward-propagate
Perform a forward propagation pass on RTL@. The pass tries to combine two
instructions and checks if the result can be simplified. If loop unrolling
is active, two passes are performed and the second is scheduled after
loop unrolling.
This option is enabled by default at optimization levels @option{-O1},
@option{-O2}, @option{-O3}, @option{-Os}.
@opindex ffp-contract
@item -ffp-contract=@var{style}
@option{-ffp-contract=off} disables floating-point expression contraction.
@option{-ffp-contract=fast} enables floating-point expression contraction
such as forming of fused multiply-add operations if the target has
native support for them.
@option{-ffp-contract=on} enables floating-point expression contraction
if allowed by the language standard. This is implemented for C and C++,
where it enables contraction within one expression, but not across
different statements.
The default is @option{-ffp-contract=off} for C in a standards compliant mode
(@option{-std=c11} or similar), @option{-ffp-contract=fast} otherwise.
@opindex fomit-frame-pointer
@item -fomit-frame-pointer
Omit the frame pointer in functions that don't need one. This avoids the
instructions to save, set up and restore the frame pointer; on many targets
it also makes an extra register available.
On some targets this flag has no effect because the standard calling sequence
always uses a frame pointer, so it cannot be omitted.
Note that @option{-fno-omit-frame-pointer} doesn't guarantee the frame pointer
is used in all functions. Several targets always omit the frame pointer in
leaf functions.
Enabled by default at @option{-O1} and higher.
@opindex foptimize-sibling-calls
@item -foptimize-sibling-calls
Optimize sibling and tail recursive calls.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex foptimize-strlen
@item -foptimize-strlen
Optimize various standard C string functions (e.g.@: @code{strlen},
@code{strchr} or @code{strcpy}) and
their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
Enabled at levels @option{-O2}, @option{-O3}.
@opindex finline-stringops
@item -finline-stringops[=@var{fn}]
Expand memory and string operations (for now, only @code{memset})
inline, even when the length is variable or big enough as to require
looping. This is most useful along with @option{-ffreestanding} and
@option{-fno-builtin}.
In some circumstances, it enables the compiler to generate code that
takes advantage of known alignment and length multipliers, but even then
it may be less efficient than optimized runtime implementations, and
grow code size so much that even a less performant but shared
implementation runs faster due to better use of code caches. This
option is disabled by default.
@opindex fno-inline
@opindex finline
@item -fno-inline
Do not expand any functions inline apart from those marked with
the @code{always_inline} attribute. This is the default when not
optimizing.
Single functions can be exempted from inlining by marking them
with the @code{noinline} attribute.
@opindex finline-small-functions
@item -finline-small-functions
Integrate functions into their callers when their body is smaller than expected
function call code (so overall size of program gets smaller). The compiler
heuristically decides which functions are simple enough to be worth integrating
in this way. This inlining applies to all functions, even those not declared
inline.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex findirect-inlining
@item -findirect-inlining
Inline also indirect calls that are discovered to be known at compile
time thanks to previous inlining. This option has any effect only
when inlining itself is turned on by the @option{-finline-functions}
or @option{-finline-small-functions} options.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex finline-functions
@item -finline-functions
Consider all functions for inlining, even if they are not declared inline.
The compiler heuristically decides which functions are worth integrating
in this way.
If all calls to a given function are integrated, and the function is
declared @code{static}, then the function is normally not output as
assembler code in its own right.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. Also enabled
by @option{-fprofile-use} and @option{-fauto-profile}.
@opindex finline-functions-called-once
@item -finline-functions-called-once
Consider all @code{static} functions called once for inlining into their
caller even if they are not marked @code{inline}. If a call to a given
function is integrated, then the function is not output as assembler code
in its own right.
Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os},
but not @option{-Og}.
@opindex fearly-inlining
@item -fearly-inlining
Inline functions marked by @code{always_inline} and functions whose body seems
smaller than the function call overhead early before doing
@option{-fprofile-generate} instrumentation and real inlining pass. Doing so
makes profiling significantly cheaper and usually inlining faster on programs
having large chains of nested wrapper functions.
Enabled by default.
@opindex fipa-sra
@item -fipa-sra
Perform interprocedural scalar replacement of aggregates, removal of
unused parameters and replacement of parameters passed by reference
by parameters passed by value.
Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
@opindex finline-limit
@item -finline-limit=@var{n}
By default, GCC limits the size of functions that can be inlined. This flag
allows coarse control of this limit. @var{n} is the size of functions that
can be inlined in number of pseudo instructions.
Inlining is actually controlled by a number of parameters, which may be
specified individually by using @option{--param @var{name}=@var{value}}.
The @option{-finline-limit=@var{n}} option sets some of these parameters
as follows:
@table @gcctabopt
@item max-inline-insns-single
is set to @var{n}/2.
@item max-inline-insns-auto
is set to @var{n}/2.
@end table
See below for a documentation of the individual
parameters controlling inlining and for the defaults of these parameters.
@emph{Note:} there may be no value to @option{-finline-limit} that results
in default behavior.
@emph{Note:} pseudo instruction represents, in this particular context, an
abstract measurement of function's size. In no way does it represent a count
of assembly instructions and as such its exact meaning might change from one
release to an another.
@opindex fno-keep-inline-dllexport
@opindex fkeep-inline-dllexport
@item -fno-keep-inline-dllexport
This is a more fine-grained version of @option{-fkeep-inline-functions},
which applies only to functions that are declared using the @code{dllexport}
attribute or declspec. @xref{Function Attributes,,Declaring Attributes of
Functions}.
@opindex fkeep-inline-functions
@item -fkeep-inline-functions
In C, emit @code{static} functions that are declared @code{inline}
into the object file, even if the function has been inlined into all
of its callers. This switch does not affect functions using the
@code{extern inline} extension in GNU C90@. In C++, emit any and all
inline functions into the object file.
@opindex fkeep-static-functions
@item -fkeep-static-functions
Emit @code{static} functions into the object file, even if the function
is never used.
@opindex fkeep-static-consts
@item -fkeep-static-consts
Emit variables declared @code{static const} when optimization isn't turned
on, even if the variables aren't referenced.
GCC enables this option by default. If you want to force the compiler to
check if a variable is referenced, regardless of whether or not
optimization is turned on, use the @option{-fno-keep-static-consts} option.
@opindex fmerge-constants
@item -fmerge-constants
Attempt to merge identical constants (string constants and floating-point
constants) across compilation units.
This option is the default for optimized compilation if the assembler and
linker support it. Use @option{-fno-merge-constants} to inhibit this
behavior.
Enabled at levels @option{-O1}, @option{-O2}, @option{-O3}, @option{-Os}.
@opindex fmerge-all-constants
@item -fmerge-all-constants
Attempt to merge identical constants and identical variables.
This option implies @option{-fmerge-constants}. In addition to
@option{-fmerge-constants} this considers e.g.@: even constant initialized
arrays or initialized constant variables with integral or floating-point
types. Languages like C or C++ require each variable, including multiple
instances of the same variable in recursive calls, to have distinct locations,
so using this option results in non-conforming
behavior.
@opindex fmodulo-sched
@item -fmodulo-sched
Perform swing modulo scheduling immediately before the first scheduling
pass. This pass looks at innermost loops and reorders their
instructions by overlapping different iterations.
@opindex fmodulo-sched-allow-regmoves
@item -fmodulo-sched-allow-regmoves
Perform more aggressive SMS-based modulo scheduling with register moves
allowed. By setting this flag certain anti-dependences edges are
deleted, which triggers the generation of reg-moves based on the
life-range analysis. This option is effective only with
@option{-fmodulo-sched} enabled.
@opindex fno-branch-count-reg
@opindex fbranch-count-reg
@item -fno-branch-count-reg
Disable the optimization pass that scans for opportunities to use
``decrement and branch'' instructions on a count register instead of
instruction sequences that decrement a register, compare it against zero, and
then branch based upon the result. This option is only meaningful on
architectures that support such instructions, which include x86, PowerPC,
IA-64 and S/390. Note that the @option{-fno-branch-count-reg} option
doesn't remove the decrement and branch instructions from the generated
instruction stream introduced by other optimization passes.
The default is @option{-fbranch-count-reg} at @option{-O1} and higher,
except for @option{-Og}.
@opindex fno-function-cse
@opindex ffunction-cse
@item -fno-function-cse
Do not put function addresses in registers; make each instruction that
calls a constant function contain the function's address explicitly.
This option results in less efficient code, but some strange hacks
that alter the assembler output may be confused by the optimizations
performed when this option is not used.
The default is @option{-ffunction-cse}
@opindex fno-zero-initialized-in-bss
@opindex fzero-initialized-in-bss
@item -fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that
are initialized to zero into BSS@. This can save space in the resulting
code.
This option turns off this behavior because some programs explicitly
rely on variables going to the data section---e.g., so that the
resulting executable can find the beginning of that section and/or make
assumptions based on that.
The default is @option{-fzero-initialized-in-bss}.
@opindex fthread-jumps
@item -fthread-jumps
Perform optimizations that check to see if a jump branches to a
location where another comparison subsumed by the first is found. If
so, the first branch is redirected to either the destination of the
second branch or a point immediately following it, depending on whether
the condition is known to be true or false.
Enabled at levels @option{-O1}, @option{-O2}, @option{-O3}, @option{-Os}.
@opindex fsplit-wide-types
@item -fsplit-wide-types
When using a type that occupies multiple registers, such as @code{long
long} on a 32-bit system, split the registers apart and allocate them
independently. This normally generates better code for those types,
but may make debugging more difficult.
Enabled at levels @option{-O1}, @option{-O2}, @option{-O3},
@option{-Os}.
@opindex fsplit-wide-types-early
@item -fsplit-wide-types-early
Fully split wide types early, instead of very late.
This option has no effect unless @option{-fsplit-wide-types} is turned on.
This is the default on some targets.
@opindex fcse-follow-jumps
@item -fcse-follow-jumps
In common subexpression elimination (CSE), scan through jump instructions
when the target of the jump is not reached by any other path. For
example, when CSE encounters an @code{if} statement with an
@code{else} clause, CSE follows the jump when the condition
tested is false.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex fcse-skip-blocks
@item -fcse-skip-blocks
This is similar to @option{-fcse-follow-jumps}, but causes CSE to
follow jumps that conditionally skip over blocks. When CSE
encounters a simple @code{if} statement with no else clause,
@option{-fcse-skip-blocks} causes CSE to follow the jump around the
body of the @code{if}.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex frerun-cse-after-loop
@item -frerun-cse-after-loop
Re-run common subexpression elimination after loop optimizations are
performed.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex fgcse
@item -fgcse
Perform a global common subexpression elimination pass.
This pass also performs global constant and copy propagation.
@emph{Note:} When compiling a program using computed gotos, a GCC
extension, you may get better run-time performance if you disable
the global common subexpression elimination pass by adding
@option{-fno-gcse} to the command line.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex fgcse-lm
@item -fgcse-lm
When @option{-fgcse-lm} is enabled, global common subexpression elimination
attempts to move loads that are only killed by stores into themselves. This
allows a loop containing a load/store sequence to be changed to a load outside
the loop, and a copy/store within the loop.
Enabled by default when @option{-fgcse} is enabled.
@opindex fgcse-sm
@item -fgcse-sm
When @option{-fgcse-sm} is enabled, a store motion pass is run after
global common subexpression elimination. This pass attempts to move
stores out of loops. When used in conjunction with @option{-fgcse-lm},
loops containing a load/store sequence can be changed to a load before
the loop and a store after the loop.
Not enabled at any optimization level.
@opindex fgcse-las
@item -fgcse-las
When @option{-fgcse-las} is enabled, the global common subexpression
elimination pass eliminates redundant loads that come after stores to the
same memory location (both partial and full redundancies).
Not enabled at any optimization level.
@opindex fgcse-after-reload
@item -fgcse-after-reload
When @option{-fgcse-after-reload} is enabled, a redundant load elimination
pass is performed after reload. The purpose of this pass is to clean up
redundant spilling.
Enabled by @option{-O3}, @option{-fprofile-use} and @option{-fauto-profile}.
@opindex faggressive-loop-optimizations
@item -faggressive-loop-optimizations
This option tells the loop optimizer to use language constraints to
derive bounds for the number of iterations of a loop. This assumes that
loop code does not invoke undefined behavior by for example causing signed
integer overflows or out-of-bound array accesses. The bounds for the
number of iterations of a loop are used to guide loop unrolling and peeling
and loop exit test optimizations.
This option is enabled by default.
@opindex funconstrained-commons
@item -funconstrained-commons
This option tells the compiler that variables declared in common blocks
(e.g.@: Fortran) may later be overridden with longer trailing arrays. This
prevents certain optimizations that depend on knowing the array bounds.
@opindex fcrossjumping
@item -fcrossjumping
Perform cross-jumping transformation.
This transformation unifies equivalent code and saves code size. The
resulting code may or may not perform better than without cross-jumping.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex fauto-inc-dec
@item -fauto-inc-dec
Combine increments or decrements of addresses with memory accesses.
This pass is always skipped on architectures that do not have
instructions to support this. Enabled by default at @option{-O1} and
higher on architectures that support this.
@opindex fdce
@item -fdce
Perform dead code elimination (DCE) on RTL@.
Enabled by default at @option{-O1} and higher.
@opindex fdse
@item -fdse
Perform dead store elimination (DSE) on RTL@.
Enabled by default at @option{-O1} and higher.
@opindex fif-conversion
@item -fif-conversion
Attempt to transform conditional jumps into branch-less equivalents. This
includes use of conditional moves, min, max, set flags and abs instructions, and
some tricks doable by standard arithmetics. The use of conditional execution
on chips where it is available is controlled by @option{-fif-conversion2}.
Enabled at levels @option{-O1}, @option{-O2}, @option{-O3}, @option{-Os}, but
not with @option{-Og}.
@opindex fif-conversion2
@item -fif-conversion2
Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.
Enabled at levels @option{-O1}, @option{-O2}, @option{-O3}, @option{-Os}, but
not with @option{-Og}.
@opindex fdeclone-ctor-dtor
@item -fdeclone-ctor-dtor
The C++ ABI requires multiple entry points for constructors and
destructors: one for a base subobject, one for a complete object, and
one for a virtual destructor that calls operator delete afterwards.
For a hierarchy with virtual bases, the base and complete variants are
clones, which means two copies of the function. With this option, the
base and complete variants are changed to be thunks that call a common
implementation.
Enabled by @option{-Os}.
@opindex fdelete-null-pointer-checks
@item -fdelete-null-pointer-checks
Assume that programs cannot safely dereference null pointers, and that
no code or data element resides at address zero.
This option enables simple constant
folding optimizations at all optimization levels. In addition, other
optimization passes in GCC use this flag to control global dataflow
analyses that eliminate useless checks for null pointers; these assume
that a memory access to address zero always results in a trap, so
that if a pointer is checked after it has already been dereferenced,
it cannot be null.
Note however that in some environments this assumption is not true.
Use @option{-fno-delete-null-pointer-checks} to disable this optimization
for programs that depend on that behavior.
This option is enabled by default on most targets. On Nios II ELF, it
defaults to off. On AVR and MSP430, this option is completely disabled.
Passes that use the dataflow information
are enabled independently at different optimization levels.
@opindex fdevirtualize
@item -fdevirtualize
Attempt to convert calls to virtual functions to direct calls. This
is done both within a procedure and interprocedurally as part of
indirect inlining (@option{-findirect-inlining}) and interprocedural constant
propagation (@option{-fipa-cp}).
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex fdevirtualize-speculatively
@item -fdevirtualize-speculatively
Attempt to convert calls to virtual functions to speculative direct calls.
Based on the analysis of the type inheritance graph, determine for a given call
the set of likely targets. If the set is small, preferably of size 1, change
the call into a conditional deciding between direct and indirect calls. The
speculative calls enable more optimizations, such as inlining. When they seem
useless after further optimization, they are converted back into original form.
@opindex fdevirtualize-at-ltrans
@item -fdevirtualize-at-ltrans
Stream extra information needed for aggressive devirtualization when running
the link-time optimizer in local transformation mode.
This option enables more devirtualization but
significantly increases the size of streamed data. For this reason it is
disabled by default.
@opindex fexpensive-optimizations
@item -fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex free
@item -free
Attempt to remove redundant extension instructions. This is especially
helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
registers after writing to their lower 32-bit half.
Enabled for Alpha, AArch64, LoongArch, PowerPC, RISC-V, SPARC, h83000 and x86 at
levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex fno-lifetime-dse
@opindex flifetime-dse
@item -fno-lifetime-dse
In C++ the value of an object is only affected by changes within its
lifetime: when the constructor begins, the object has an indeterminate
value, and any changes during the lifetime of the object are dead when
the object is destroyed. Normally dead store elimination will take
advantage of this; if your code relies on the value of the object
storage persisting beyond the lifetime of the object, you can use this
flag to disable this optimization. To preserve stores before the
constructor starts (e.g.@: because your operator new clears the object
storage) but still treat the object as dead after the destructor, you
can use @option{-flifetime-dse=1}. The default behavior can be
explicitly selected with @option{-flifetime-dse=2}.
@option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
@opindex flive-range-shrinkage
@item -flive-range-shrinkage
Attempt to decrease register pressure through register live range
shrinkage. This is helpful for fast processors with small or moderate
size register sets.
@opindex fira-algorithm
@item -fira-algorithm=@var{algorithm}
Use the specified coloring algorithm for the integrated register
allocator. The @var{algorithm} argument can be @samp{priority}, which
specifies Chow's priority coloring, or @samp{CB}, which specifies
Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
for all architectures, but for those targets that do support it, it is
the default because it generates better code.
@opindex fira-region
@item -fira-region=@var{region}
Use specified regions for the integrated register allocator. The
@var{region} argument should be one of the following:
@table @samp
@item all
Use all loops as register allocation regions.
This can give the best results for machines with a small and/or
irregular register set.
@item mixed
Use all loops except for loops with small register pressure
as the regions. This value usually gives
the best results in most cases and for most architectures,
and is enabled by default when compiling with optimization for speed
(@option{-O}, @option{-O2}, @dots{}).
@item one
Use all functions as a single region.
This typically results in the smallest code size, and is enabled by default for
@option{-Os} or @option{-O0}.
@end table
@opindex fira-hoist-pressure
@item -fira-hoist-pressure
Use IRA to evaluate register pressure in the code hoisting pass for
decisions to hoist expressions. This option usually results in smaller
code, but it can slow the compiler down.
This option is enabled at level @option{-Os} for all targets.
@opindex fira-loop-pressure
@item -fira-loop-pressure
Use IRA to evaluate register pressure in loops for decisions to move
loop invariants. This option usually results in generation
of faster and smaller code on machines with large register files (>= 32
registers), but it can slow the compiler down.
This option is enabled at level @option{-O3} for some targets.
@opindex fno-ira-share-save-slots
@opindex fira-share-save-slots
@item -fno-ira-share-save-slots
Disable sharing of stack slots used for saving call-used hard
registers living through a call. Each hard register gets a
separate stack slot, and as a result function stack frames are
larger.
@opindex fno-ira-share-spill-slots
@opindex fira-share-spill-slots
@item -fno-ira-share-spill-slots
Disable sharing of stack slots allocated for pseudo-registers. Each
pseudo-register that does not get a hard register gets a separate
stack slot, and as a result function stack frames are larger.
@opindex flra-remat
@item -flra-remat
Enable CFG-sensitive rematerialization in LRA. Instead of loading
values of spilled pseudos, LRA tries to rematerialize (recalculate)
values if it is profitable.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex fdelayed-branch
@item -fdelayed-branch
If supported for the target machine, attempt to reorder instructions
to exploit instruction slots available after delayed branch
instructions.
Enabled at levels @option{-O1}, @option{-O2}, @option{-O3}, @option{-Os},
but not at @option{-Og}.
@opindex fschedule-insns
@item -fschedule-insns
If supported for the target machine, attempt to reorder instructions to
eliminate execution stalls due to required data being unavailable. This
helps machines that have slow floating point or memory load instructions
by allowing other instructions to be issued until the result of the load
or floating-point instruction is required.
Enabled at levels @option{-O2}, @option{-O3}.
@opindex fschedule-insns2
@item -fschedule-insns2
Similar to @option{-fschedule-insns}, but requests an additional pass of
instruction scheduling after register allocation has been done. This is
especially useful on machines with a relatively small number of
registers and where memory load instructions take more than one cycle.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex fno-sched-interblock
@opindex fsched-interblock
@item -fno-sched-interblock
Disable instruction scheduling across basic blocks, which
is normally enabled when scheduling before register allocation, i.e.@:
with @option{-fschedule-insns} or at @option{-O2} or higher.
@opindex fno-sched-spec
@opindex fsched-spec
@item -fno-sched-spec
Disable speculative motion of non-load instructions, which
is normally enabled when scheduling before register allocation, i.e.@:
with @option{-fschedule-insns} or at @option{-O2} or higher.
@opindex fsched-pressure
@item -fsched-pressure
Enable register pressure sensitive insn scheduling before register
allocation. This only makes sense when scheduling before register
allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
@option{-O2} or higher. Usage of this option can improve the
generated code and decrease its size by preventing register pressure
increase above the number of available hard registers and subsequent
spills in register allocation.
@opindex fsched-spec-load
@item -fsched-spec-load
Allow speculative motion of some load instructions. This only makes
sense when scheduling before register allocation, i.e.@: with
@option{-fschedule-insns} or at @option{-O2} or higher.
@opindex fsched-spec-load-dangerous
@item -fsched-spec-load-dangerous
Allow speculative motion of more load instructions. This only makes
sense when scheduling before register allocation, i.e.@: with
@option{-fschedule-insns} or at @option{-O2} or higher.
@opindex fsched-stalled-insns
@item -fsched-stalled-insns
@itemx -fsched-stalled-insns=@var{n}
Define how many insns (if any) can be moved prematurely from the queue
of stalled insns into the ready list during the second scheduling pass.
@option{-fno-sched-stalled-insns} means that no insns are moved
prematurely, @option{-fsched-stalled-insns=0} means there is no limit
on how many queued insns can be moved prematurely.
@option{-fsched-stalled-insns} without a value is equivalent to
@option{-fsched-stalled-insns=1}.
@opindex fsched-stalled-insns-dep
@item -fsched-stalled-insns-dep
@itemx -fsched-stalled-insns-dep=@var{n}
Define how many insn groups (cycles) are examined for a dependency
on a stalled insn that is a candidate for premature removal from the queue
of stalled insns. This has an effect only during the second scheduling pass,
and only if @option{-fsched-stalled-insns} is used.
@option{-fno-sched-stalled-insns-dep} is equivalent to
@option{-fsched-stalled-insns-dep=0}.
@option{-fsched-stalled-insns-dep} without a value is equivalent to
@option{-fsched-stalled-insns-dep=1}.
@opindex fsched2-use-superblocks
@item -fsched2-use-superblocks
When scheduling after register allocation, use superblock scheduling.
This allows motion across basic block boundaries,
resulting in faster schedules. This option is experimental, as not all machine
descriptions used by GCC model the CPU closely enough to avoid unreliable
results from the algorithm.
This only makes sense when scheduling after register allocation, i.e.@: with
@option{-fschedule-insns2} or at @option{-O2} or higher.
@opindex fsched-group-heuristic
@item -fsched-group-heuristic
Enable the group heuristic in the scheduler. This heuristic favors
the instruction that belongs to a schedule group. This is enabled
by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
or @option{-fschedule-insns2} or at @option{-O2} or higher.
@opindex fsched-critical-path-heuristic
@item -fsched-critical-path-heuristic
Enable the critical-path heuristic in the scheduler. This heuristic favors
instructions on the critical path. This is enabled by default when
scheduling is enabled, i.e.@: with @option{-fschedule-insns}
or @option{-fschedule-insns2} or at @option{-O2} or higher.
@opindex fsched-spec-insn-heuristic
@item -fsched-spec-insn-heuristic
Enable the speculative instruction heuristic in the scheduler. This
heuristic favors speculative instructions with greater dependency weakness.
This is enabled by default when scheduling is enabled, i.e.@:
with @option{-fschedule-insns} or @option{-fschedule-insns2}
or at @option{-O2} or higher.
@opindex fsched-rank-heuristic
@item -fsched-rank-heuristic
Enable the rank heuristic in the scheduler. This heuristic favors
the instruction belonging to a basic block with greater size or frequency.
This is enabled by default when scheduling is enabled, i.e.@:
with @option{-fschedule-insns} or @option{-fschedule-insns2} or
at @option{-O2} or higher.
@opindex fsched-last-insn-heuristic
@item -fsched-last-insn-heuristic
Enable the last-instruction heuristic in the scheduler. This heuristic
favors the instruction that is less dependent on the last instruction
scheduled. This is enabled by default when scheduling is enabled,
i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
at @option{-O2} or higher.
@opindex fsched-dep-count-heuristic
@item -fsched-dep-count-heuristic
Enable the dependent-count heuristic in the scheduler. This heuristic
favors the instruction that has more instructions depending on it.
This is enabled by default when scheduling is enabled, i.e.@:
with @option{-fschedule-insns} or @option{-fschedule-insns2} or
at @option{-O2} or higher.
@opindex freschedule-modulo-scheduled-loops
@item -freschedule-modulo-scheduled-loops
Modulo scheduling is performed before traditional scheduling. If a loop
is modulo scheduled, later scheduling passes may change its schedule.
Use this option to control that behavior.
@opindex fselective-scheduling
@item -fselective-scheduling
Schedule instructions using selective scheduling algorithm. Selective
scheduling runs instead of the first scheduler pass.
@opindex fselective-scheduling2
@item -fselective-scheduling2
Schedule instructions using selective scheduling algorithm. Selective
scheduling runs instead of the second scheduler pass.
@opindex fsel-sched-pipelining
@item -fsel-sched-pipelining
Enable software pipelining of innermost loops during selective scheduling.
This option has no effect unless one of @option{-fselective-scheduling} or
@option{-fselective-scheduling2} is turned on.
@opindex fsel-sched-pipelining-outer-loops
@item -fsel-sched-pipelining-outer-loops
When pipelining loops during selective scheduling, also pipeline outer loops.
This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
@opindex fsemantic-interposition
@item -fsemantic-interposition
Some object formats, like ELF, allow interposing of symbols by the
dynamic linker.
This means that for symbols exported from the DSO, the compiler cannot perform
interprocedural propagation, inlining and other optimizations in anticipation
that the function or variable in question may change. While this feature is
useful, for example, to rewrite memory allocation functions by a debugging
implementation, it is expensive in the terms of code quality.
With @option{-fno-semantic-interposition} the compiler assumes that
if interposition happens for functions the overwriting function will have
precisely the same semantics (and side effects).
Similarly if interposition happens
for variables, the constructor of the variable will be the same. The flag
has no effect for functions explicitly declared inline
(where it is never allowed for interposition to change semantics)
and for symbols explicitly declared weak.
@opindex fshrink-wrap
@item -fshrink-wrap
Emit function prologues only before parts of the function that need it,
rather than at the top of the function. This flag is enabled by default at
@option{-O} and higher.
@opindex fshrink-wrap-separate
@item -fshrink-wrap-separate
Shrink-wrap separate parts of the prologue and epilogue separately, so that
those parts are only executed when needed.
This option is on by default, but has no effect unless @option{-fshrink-wrap}
is also turned on and the target supports this.
@opindex fcaller-saves
@item -fcaller-saves
Enable allocation of values to registers that are clobbered by
function calls, by emitting extra instructions to save and restore the
registers around such calls. Such allocation is done only when it
seems to result in better code.
This option is always enabled by default on certain machines, usually
those which have no call-preserved registers to use instead.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex fcombine-stack-adjustments
@item -fcombine-stack-adjustments
Tracks stack adjustments (pushes and pops) and stack memory references
and then tries to find ways to combine them.
Enabled by default at @option{-O1} and higher.
@opindex fipa-ra
@item -fipa-ra
Use caller save registers for allocation if those registers are not used by
any called function. In that case it is not necessary to save and restore
them around calls. This is only possible if called functions are part of
same compilation unit as current function and they are compiled before it.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
is disabled if generated code will be instrumented for profiling
(@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
exactly (this happens on targets that do not expose prologues
and epilogues in RTL).
@opindex fconserve-stack
@item -fconserve-stack
Attempt to minimize stack usage. The compiler attempts to use less
stack space, even if that makes the program slower. This option
implies setting the @option{large-stack-frame} parameter to 100
and the @option{large-stack-frame-growth} parameter to 400.
@opindex ftree-reassoc
@item -ftree-reassoc
Perform reassociation on trees. This flag is enabled by default
at @option{-O1} and higher.
@opindex fcode-hoisting
@item -fcode-hoisting
Perform code hoisting. Code hoisting tries to move the
evaluation of expressions executed on all paths to the function exit
as early as possible. This is especially useful as a code size
optimization, but it often helps for code speed as well.
This flag is enabled by default at @option{-O2} and higher.
@opindex ftree-pre
@item -ftree-pre
Perform partial redundancy elimination (PRE) on trees. This flag is
enabled by default at @option{-O2} and @option{-O3}.
@opindex ftree-partial-pre
@item -ftree-partial-pre
Make partial redundancy elimination (PRE) more aggressive. This flag is
enabled by default at @option{-O3}.
@opindex ftree-forwprop
@item -ftree-forwprop
Perform forward propagation on trees. This flag is enabled by default
at @option{-O1} and higher.
@opindex ftree-fre
@item -ftree-fre
Perform full redundancy elimination (FRE) on trees. The difference
between FRE and PRE is that FRE only considers expressions
that are computed on all paths leading to the redundant computation.
This analysis is faster than PRE, though it exposes fewer redundancies.
This flag is enabled by default at @option{-O1} and higher.
@opindex ftree-phiprop
@item -ftree-phiprop
Perform hoisting of loads from conditional pointers on trees. This
pass is enabled by default at @option{-O1} and higher.
@opindex fhoist-adjacent-loads
@item -fhoist-adjacent-loads
Speculatively hoist loads from both branches of an if-then-else if the
loads are from adjacent locations in the same structure and the target
architecture has a conditional move instruction. This flag is enabled
by default at @option{-O2} and higher.
@opindex ftree-copy-prop
@item -ftree-copy-prop
Perform copy propagation on trees. This pass eliminates unnecessary
copy operations. This flag is enabled by default at @option{-O1} and
higher.
@opindex fipa-pure-const
@item -fipa-pure-const
Discover which functions are pure or constant.
Enabled by default at @option{-O1} and higher.
@opindex fipa-reference
@item -fipa-reference
Discover which static variables do not escape the
compilation unit.
Enabled by default at @option{-O1} and higher.
@opindex fipa-reference-addressable
@item -fipa-reference-addressable
Discover read-only, write-only and non-addressable static variables.
Enabled by default at @option{-O1} and higher.
@opindex fipa-stack-alignment
@item -fipa-stack-alignment
Reduce stack alignment on call sites if possible.
Enabled by default.
@opindex fipa-pta
@item -fipa-pta
Perform interprocedural pointer analysis and interprocedural modification
and reference analysis. This option can cause excessive memory and
compile-time usage on large compilation units. It is not enabled by
default at any optimization level.
@opindex fipa-profile
@item -fipa-profile
Perform interprocedural profile propagation. The functions called only from
cold functions are marked as cold. Also functions executed once (such as
@code{cold}, @code{noreturn}, static constructors or destructors) are
identified. Cold functions and loop less parts of functions executed once are
then optimized for size.
Enabled by default at @option{-O1} and higher.
@opindex fipa-modref
@item -fipa-modref
Perform interprocedural mod/ref analysis. This optimization analyzes the side
effects of functions (memory locations that are modified or referenced) and
enables better optimization across the function call boundary. This flag is
enabled by default at @option{-O1} and higher.
@opindex fipa-cp
@item -fipa-cp
Perform interprocedural constant propagation.
This optimization analyzes the program to determine when values passed
to functions are constants and then optimizes accordingly.
This optimization can substantially increase performance
if the application has constants passed to functions.
This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
@opindex fipa-cp-clone
@item -fipa-cp-clone
Perform function cloning to make interprocedural constant propagation stronger.
When enabled, interprocedural constant propagation performs function cloning
when externally visible function can be called with constant arguments.
Because this optimization can create multiple copies of functions,
it may significantly increase code size
(see @option{--param ipa-cp-unit-growth=@var{value}}).
This flag is enabled by default at @option{-O3}.
It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
@opindex fipa-bit-cp
@item -fipa-bit-cp
When enabled, perform interprocedural bitwise constant
propagation. This flag is enabled by default at @option{-O2} and
by @option{-fprofile-use} and @option{-fauto-profile}.
It requires that @option{-fipa-cp} is enabled.
@opindex fipa-vrp
@item -fipa-vrp
When enabled, perform interprocedural propagation of value
ranges. This flag is enabled by default at @option{-O2}. It requires
that @option{-fipa-cp} is enabled.
@opindex fipa-icf
@item -fipa-icf
Perform Identical Code Folding for functions and read-only variables.
The optimization reduces code size and may disturb unwind stacks by replacing
a function by equivalent one with a different name. The optimization works
more effectively with link-time optimization enabled.
Although the behavior is similar to the Gold Linker's ICF optimization, GCC ICF
works on different levels and thus the optimizations are not same - there are
equivalences that are found only by GCC and equivalences found only by Gold.
This flag is enabled by default at @option{-O2} and @option{-Os}.
@opindex flate-combine-instructions
@item -flate-combine-instructions
Enable two instruction combination passes that run relatively late in the
compilation process. One of the passes runs before register allocation and
the other after register allocation. The main aim of the passes is to
substitute definitions into all uses.
Most targets enable this flag by default at @option{-O2} and @option{-Os}.
@opindex flive-patching
@item -flive-patching=@var{level}
Control GCC's optimizations to produce output suitable for live-patching.
If the compiler's optimization uses a function's body or information extracted
from its body to optimize/change another function, the latter is called an
impacted function of the former. If a function is patched, its impacted
functions should be patched too.
The impacted functions are determined by the compiler's interprocedural
optimizations. For example, a caller is impacted when inlining a function
into its caller,
cloning a function and changing its caller to call this new clone,
or extracting a function's pureness/constness information to optimize
its direct or indirect callers, etc.
Usually, the more IPA optimizations enabled, the larger the number of
impacted functions for each function. In order to control the number of
impacted functions and more easily compute the list of impacted function,
IPA optimizations can be partially enabled at two different levels.
The @var{level} argument should be one of the following:
@table @samp
@item inline-clone
Only enable inlining and cloning optimizations, which includes inlining,
cloning, interprocedural scalar replacement of aggregates and partial inlining.
As a result, when patching a function, all its callers and its clones'
callers are impacted, therefore need to be patched as well.
@option{-flive-patching=inline-clone} disables the following optimization flags:
@gccoptlist{-fwhole-program -fipa-pta -fipa-reference -fipa-ra
-fipa-icf -fipa-icf-functions -fipa-icf-variables
-fipa-bit-cp -fipa-vrp -fipa-pure-const
-fipa-reference-addressable
-fipa-stack-alignment -fipa-modref}
@item inline-only-static
Only enable inlining of static functions.
As a result, when patching a static function, all its callers are impacted
and so need to be patched as well.
In addition to all the flags that @option{-flive-patching=inline-clone}
disables,
@option{-flive-patching=inline-only-static} disables the following additional
optimization flags:
@gccoptlist{-fipa-cp-clone -fipa-sra -fpartial-inlining -fipa-cp}
@end table
When @option{-flive-patching} is specified without any value, the default value
is @var{inline-clone}.
This flag is disabled by default.
Note that @option{-flive-patching} is not supported with link-time optimization
(@option{-flto}).
@opindex fisolate-erroneous-paths-dereference
@item -fisolate-erroneous-paths-dereference
Detect paths that trigger erroneous or undefined behavior due to
dereferencing a null pointer. Isolate those paths from the main control
flow and turn the statement with erroneous or undefined behavior into a trap.
This flag is enabled by default at @option{-O2} and higher and depends on
@option{-fdelete-null-pointer-checks} also being enabled.
@opindex fisolate-erroneous-paths-attribute
@item -fisolate-erroneous-paths-attribute
Detect paths that trigger erroneous or undefined behavior due to a null value
being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
attribute. Isolate those paths from the main control flow and turn the
statement with erroneous or undefined behavior into a trap. This is not
currently enabled, but may be enabled by @option{-O2} in the future.
@opindex ftree-sink
@item -ftree-sink
Perform forward store motion on trees. This flag is
enabled by default at @option{-O1} and higher.
@opindex ftree-bit-ccp
@item -ftree-bit-ccp
Perform sparse conditional bit constant propagation on trees and propagate
pointer alignment information.
This pass only operates on local scalar variables and is enabled by default
at @option{-O1} and higher, except for @option{-Og}.
It requires that @option{-ftree-ccp} is enabled.
@opindex ftree-ccp
@item -ftree-ccp
Perform sparse conditional constant propagation (CCP) on trees. This
pass only operates on local scalar variables and is enabled by default
at @option{-O1} and higher.
@opindex fssa-backprop
@item -fssa-backprop
Propagate information about uses of a value up the definition chain
in order to simplify the definitions. For example, this pass strips
sign operations if the sign of a value never matters. The flag is
enabled by default at @option{-O1} and higher.
@opindex fssa-phiopt
@item -fssa-phiopt
Perform pattern matching on SSA PHI nodes to optimize conditional
code. This pass is enabled by default at @option{-O1} and higher,
except for @option{-Og}.
@opindex ftree-switch-conversion
@item -ftree-switch-conversion
Perform conversion of simple initializations in a switch to
initializations from a scalar array. This flag is enabled by default
at @option{-O2} and higher.
@opindex ftree-tail-merge
@item -ftree-tail-merge
Look for identical code sequences. When found, replace one with a jump to the
other. This optimization is known as tail merging or cross jumping. This flag
is enabled by default at @option{-O2} and higher. The compilation time
in this pass can
be limited using @option{max-tail-merge-comparisons} parameter and
@option{max-tail-merge-iterations} parameter.
@opindex ftree-dce
@item -ftree-dce
Perform dead code elimination (DCE) on trees. This flag is enabled by
default at @option{-O1} and higher.
@opindex ftree-builtin-call-dce
@item -ftree-builtin-call-dce
Perform conditional dead code elimination (DCE) for calls to built-in functions
that may set @code{errno} but are otherwise free of side effects. This flag is
enabled by default at @option{-O2} and higher if @option{-Os} is not also
specified.
@opindex ffinite-loops
@opindex fno-finite-loops
@item -ffinite-loops
Assume that a loop with an exit will eventually take the exit and not loop
indefinitely. This allows the compiler to remove loops that otherwise have
no side-effects, not considering eventual endless looping as such.
This option is enabled by default at @option{-O2} for C++ with -std=c++11
or higher.
@opindex ftree-dominator-opts
@item -ftree-dominator-opts
Perform a variety of simple scalar cleanups (constant/copy
propagation, redundancy elimination, range propagation and expression
simplification) based on a dominator tree traversal. This also
performs jump threading (to reduce jumps to jumps). This flag is
enabled by default at @option{-O1} and higher.
@opindex ftree-dse
@item -ftree-dse
Perform dead store elimination (DSE) on trees. A dead store is a store into
a memory location that is later overwritten by another store without
any intervening loads. In this case the earlier store can be deleted. This
flag is enabled by default at @option{-O1} and higher.
@opindex ftree-ch
@item -ftree-ch
Perform loop header copying on trees. This is beneficial since it increases
effectiveness of code motion optimizations. It also saves one jump. This flag
is enabled by default at @option{-O1} and higher. It is not enabled
for @option{-Os}, since it usually increases code size.
@opindex ftree-loop-optimize
@item -ftree-loop-optimize
Perform loop optimizations on trees. This flag is enabled by default
at @option{-O1} and higher.
@opindex ftree-loop-linear
@opindex floop-strip-mine
@opindex floop-block
@item -ftree-loop-linear
@itemx -floop-strip-mine
@itemx -floop-block
Perform loop nest optimizations. Same as
@option{-floop-nest-optimize}. To use this code transformation, GCC has
to be configured with @option{--with-isl} to enable the Graphite loop
transformation infrastructure.
@opindex fgraphite-identity
@item -fgraphite-identity
Enable the identity transformation for graphite. For every SCoP we generate
the polyhedral representation and transform it back to gimple. Using
@option{-fgraphite-identity} we can check the costs or benefits of the
GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
are also performed by the code generator isl, like index splitting and
dead code elimination in loops.
@opindex floop-nest-optimize
@item -floop-nest-optimize
Enable the isl based loop nest optimizer. This is a generic loop nest
optimizer based on the Pluto optimization algorithms. It calculates a loop
structure optimized for data-locality and parallelism. This option
is experimental.
@opindex floop-parallelize-all
@item -floop-parallelize-all
Use the Graphite data dependence analysis to identify loops that can
be parallelized. Parallelize all the loops that can be analyzed to
not contain loop carried dependences without checking that it is
profitable to parallelize the loops.
@opindex ftree-coalesce-vars
@item -ftree-coalesce-vars
While transforming the program out of the SSA representation, attempt to
reduce copying by coalescing versions of different user-defined
variables, instead of just compiler temporaries. This may severely
limit the ability to debug an optimized program compiled with
@option{-fno-var-tracking-assignments}. In the negated form, this flag
prevents SSA coalescing of user variables. This option is enabled by
default if optimization is enabled, and it does very little otherwise.
@opindex ftree-loop-if-convert
@item -ftree-loop-if-convert
Attempt to transform conditional jumps in the innermost loops to
branch-less equivalents. The intent is to remove control-flow from
the innermost loops in order to improve the ability of the
vectorization pass to handle these loops. This is enabled by default
if vectorization is enabled.
@opindex ftree-loop-distribution
@item -ftree-loop-distribution
Perform loop distribution. This flag can improve cache performance on
big loop bodies and allow further loop optimizations, like
parallelization or vectorization, to take place. For example, the loop
@smallexample
DO I = 1, N
A(I) = B(I) + C
D(I) = E(I) * F
ENDDO
@end smallexample
is transformed to
@smallexample
DO I = 1, N
A(I) = B(I) + C
ENDDO
DO I = 1, N
D(I) = E(I) * F
ENDDO
@end smallexample
This flag is enabled by default at @option{-O3}.
It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
@opindex ftree-loop-distribute-patterns
@item -ftree-loop-distribute-patterns
Perform loop distribution of patterns that can be code generated with
calls to a library. This flag is enabled by default at @option{-O2} and
higher, and by @option{-fprofile-use} and @option{-fauto-profile}.
This pass distributes the initialization loops and generates a call to
memset zero. For example, the loop
@smallexample
DO I = 1, N
A(I) = 0
B(I) = A(I) + I
ENDDO
@end smallexample
is transformed to
@smallexample
DO I = 1, N
A(I) = 0
ENDDO
DO I = 1, N
B(I) = A(I) + I
ENDDO
@end smallexample
and the initialization loop is transformed into a call to memset zero.
@opindex floop-interchange
@item -floop-interchange
Perform loop interchange outside of graphite. This flag can improve cache
performance on loop nest and allow further loop optimizations, like
vectorization, to take place. For example, the loop
@smallexample
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
c[i][j] = c[i][j] + a[i][k]*b[k][j];
@end smallexample
is transformed to
@smallexample
for (int i = 0; i < N; i++)
for (int k = 0; k < N; k++)
for (int j = 0; j < N; j++)
c[i][j] = c[i][j] + a[i][k]*b[k][j];
@end smallexample
This flag is enabled by default at @option{-O3}.
It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
@opindex floop-unroll-and-jam
@item -floop-unroll-and-jam
Apply unroll and jam transformations on feasible loops. In a loop
nest this unrolls the outer loop by some factor and fuses the resulting
multiple inner loops. This flag is enabled by default at @option{-O3}.
It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
@opindex ftree-loop-im
@item -ftree-loop-im
Perform loop invariant motion on trees. This pass moves only invariants that
are hard to handle at RTL level (function calls, operations that expand to
nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
operands of conditions that are invariant out of the loop, so that we can use
just trivial invariantness analysis in loop unswitching. The pass also includes
store motion.
@opindex ftree-loop-ivcanon
@item -ftree-loop-ivcanon
Create a canonical counter for number of iterations in loops for which
determining number of iterations requires complicated analysis. Later
optimizations then may determine the number easily. Useful especially
in connection with unrolling.
@opindex ftree-scev-cprop
@item -ftree-scev-cprop
Perform final value replacement. If a variable is modified in a loop
in such a way that its value when exiting the loop can be determined using
only its initial value and the number of loop iterations, replace uses of
the final value by such a computation, provided it is sufficiently cheap.
This reduces data dependencies and may allow further simplifications.
Enabled by default at @option{-O1} and higher.
@opindex fivopts
@item -fivopts
Perform induction variable optimizations (strength reduction, induction
variable merging and induction variable elimination) on trees.
@opindex ftree-parallelize-loops
@item -ftree-parallelize-loops=n
Parallelize loops, i.e., split their iteration space to run in n threads.
This is only possible for loops whose iterations are independent
and can be arbitrarily reordered. The optimization is only
profitable on multiprocessor machines, for loops that are CPU-intensive,
rather than constrained e.g.@: by memory bandwidth. This option
implies @option{-pthread}, and thus is only supported on targets
that have support for @option{-pthread}.
@opindex ftree-pta
@item -ftree-pta
Perform function-local points-to analysis on trees. This flag is
enabled by default at @option{-O1} and higher, except for @option{-Og}.
@opindex ftree-sra
@item -ftree-sra
Perform scalar replacement of aggregates. This pass replaces structure
references with scalars to prevent committing structures to memory too
early. This flag is enabled by default at @option{-O1} and higher,
except for @option{-Og}.
@opindex fstore-merging
@item -fstore-merging
Perform merging of narrow stores to consecutive memory addresses. This pass
merges contiguous stores of immediate values narrower than a word into fewer
wider stores to reduce the number of instructions. This is enabled by default
at @option{-O2} and higher as well as @option{-Os}.
@opindex ftree-ter
@item -ftree-ter
Perform temporary expression replacement during the SSA->normal phase. Single
use/single def temporaries are replaced at their use location with their
defining expression. This results in non-GIMPLE code, but gives the expanders
much more complex trees to work on resulting in better RTL generation. This is
enabled by default at @option{-O1} and higher.
@opindex ftree-slsr
@item -ftree-slsr
Perform straight-line strength reduction on trees. This recognizes related
expressions involving multiplications and replaces them by less expensive
calculations when possible. This is enabled by default at @option{-O1} and
higher.
@opindex ftree-vectorize
@item -ftree-vectorize
Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
and @option{-ftree-slp-vectorize} if not explicitly specified.
@opindex ftree-loop-vectorize
@item -ftree-loop-vectorize
Perform loop vectorization on trees. This flag is enabled by default at
@option{-O2} and by @option{-ftree-vectorize}, @option{-fprofile-use},
and @option{-fauto-profile}.
@opindex ftree-slp-vectorize
@item -ftree-slp-vectorize
Perform basic block vectorization on trees. This flag is enabled by default at
@option{-O2} and by @option{-ftree-vectorize}, @option{-fprofile-use},
and @option{-fauto-profile}.
@opindex ftrivial-auto-var-init
@item -ftrivial-auto-var-init=@var{choice}
Initialize automatic variables with either a pattern or with zeroes to increase
the security and predictability of a program by preventing uninitialized memory
disclosure and use.
GCC still considers an automatic variable that doesn't have an explicit
initializer as uninitialized, @option{-Wuninitialized} and
@option{-Wanalyzer-use-of-uninitialized-value} will still report
warning messages on such automatic variables and the compiler will
perform optimization as if the variable were uninitialized.
With this option, GCC will also initialize any padding of automatic variables
that have structure or union types to zeroes.
However, the current implementation cannot initialize automatic variables that
are declared between the controlling expression and the first case of a
@code{switch} statement. Using @option{-Wtrivial-auto-var-init} to report all
such cases.
The three values of @var{choice} are:
@itemize @bullet
@item
@samp{uninitialized} doesn't initialize any automatic variables.
This is C and C++'s default.
@item
@samp{pattern} Initialize automatic variables with values which will likely
transform logic bugs into crashes down the line, are easily recognized in a
crash dump and without being values that programmers can rely on for useful
program semantics.
The current value is byte-repeatable pattern with byte "0xFE".
The values used for pattern initialization might be changed in the future.
@item
@samp{zero} Initialize automatic variables with zeroes.
@end itemize
The default is @samp{uninitialized}.
Note that the initializer values, whether @samp{zero} or @samp{pattern},
refer to data representation (in memory or machine registers), rather
than to their interpretation as numerical values. This distinction may
be important in languages that support types with biases or implicit
multipliers, and with such extensions as @samp{hardbool} (@pxref{Type
Attributes}). For example, a variable that uses 8 bits to represent
(biased) quantities in the @code{range 160..400} will be initialized
with the bit patterns @code{0x00} or @code{0xFE}, depending on
@var{choice}, whether or not these representations stand for values in
that range, and even if they do, the interpretation of the value held by
the variable will depend on the bias. A @samp{hardbool} variable that
uses say @code{0X5A} and @code{0xA5} for @code{false} and @code{true},
respectively, will trap with either @samp{choice} of trivial
initializer, i.e., @samp{zero} initialization will not convert to the
representation for @code{false}, even if it would for a @code{static}
variable of the same type. This means the initializer pattern doesn't
generally depend on the type of the initialized variable. One notable
exception is that (non-hardened) boolean variables that fit in registers
are initialized with @code{false} (zero), even when @samp{pattern} is
requested.
You can control this behavior for a specific variable by using the variable
attribute @code{uninitialized} (@pxref{Variable Attributes}).
@opindex fvect-cost-model
@item -fvect-cost-model=@var{model}
Alter the cost model used for vectorization. The @var{model} argument
should be one of @samp{unlimited}, @samp{dynamic}, @samp{cheap} or
@samp{very-cheap}.
With the @samp{unlimited} model the vectorized code-path is assumed
to be profitable while with the @samp{dynamic} model a runtime check
guards the vectorized code-path to enable it only for iteration
counts that will likely execute faster than when executing the original
scalar loop. The @samp{cheap} model disables vectorization of
loops where doing so would be cost prohibitive for example due to
required runtime checks for data dependence or alignment but otherwise
is equal to the @samp{dynamic} model. The @samp{very-cheap} model only
allows vectorization if the vector code would entirely replace the
scalar code that is being vectorized. For example, if each iteration
of a vectorized loop would only be able to handle exactly four iterations
of the scalar loop, the @samp{very-cheap} model would only allow
vectorization if the scalar iteration count is known to be a multiple
of four.
The default cost model depends on other optimization flags and is
either @samp{dynamic} or @samp{cheap}.
@opindex fsimd-cost-model
@item -fsimd-cost-model=@var{model}
Alter the cost model used for vectorization of loops marked with the OpenMP
simd directive. The @var{model} argument should be one of
@samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
have the same meaning as described in @option{-fvect-cost-model} and by
default a cost model defined with @option{-fvect-cost-model} is used.
@opindex ftree-vrp
@item -ftree-vrp
Perform Value Range Propagation on trees. This is similar to the
constant propagation pass, but instead of values, ranges of values are
propagated. This allows the optimizers to remove unnecessary range
checks like array bound checks and null pointer checks. This is
enabled by default at @option{-O2} and higher. Null pointer check
elimination is only done if @option{-fdelete-null-pointer-checks} is
enabled.
@opindex fsplit-paths
@item -fsplit-paths
Split paths leading to loop backedges. This can improve dead code
elimination and common subexpression elimination. This is enabled by
default at @option{-O3} and above.
@opindex fsplit-ivs-in-unroller
@item -fsplit-ivs-in-unroller
Enables expression of values of induction variables in later iterations
of the unrolled loop using the value in the first iteration. This breaks
long dependency chains, thus improving efficiency of the scheduling passes.
A combination of @option{-fweb} and CSE is often sufficient to obtain the
same effect. However, that is not reliable in cases where the loop body
is more complicated than a single basic block. It also does not work at all
on some architectures due to restrictions in the CSE pass.
This optimization is enabled by default.
@opindex fvariable-expansion-in-unroller
@item -fvariable-expansion-in-unroller
With this option, the compiler creates multiple copies of some
local variables when unrolling a loop, which can result in superior code.
This optimization is enabled by default for PowerPC targets, but disabled
by default otherwise.
@opindex fpartial-inlining
@item -fpartial-inlining
Inline parts of functions. This option has any effect only
when inlining itself is turned on by the @option{-finline-functions}
or @option{-finline-small-functions} options.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex fpredictive-commoning
@item -fpredictive-commoning
Perform predictive commoning optimization, i.e., reusing computations
(especially memory loads and stores) performed in previous
iterations of loops.
This option is enabled at level @option{-O3}.
It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
@opindex fprefetch-loop-arrays
@item -fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch
memory to improve the performance of loops that access large arrays.
This option may generate better or worse code; results are highly
dependent on the structure of loops within the source code.
Disabled at level @option{-Os}.
@opindex fno-printf-return-value
@opindex fprintf-return-value
@item -fno-printf-return-value
Do not substitute constants for known return value of formatted output
functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
@code{vsnprintf} (but not @code{printf} of @code{fprintf}). This
transformation allows GCC to optimize or even eliminate branches based
on the known return value of these functions called with arguments that
are either constant, or whose values are known to be in a range that
makes determining the exact return value possible. For example, when
@option{-fprintf-return-value} is in effect, both the branch and the
body of the @code{if} statement (but not the call to @code{snprint})
can be optimized away when @code{i} is a 32-bit or smaller integer
because the return value is guaranteed to be at most 8.
@smallexample
char buf[9];
if (snprintf (buf, "%08x", i) >= sizeof buf)
@dots{}
@end smallexample
The @option{-fprintf-return-value} option relies on other optimizations
and yields best results with @option{-O2} and above. It works in tandem
with the @option{-Wformat-overflow} and @option{-Wformat-truncation}
options. The @option{-fprintf-return-value} option is enabled by default.
@opindex fno-peephole
@opindex fpeephole
@opindex fno-peephole2
@opindex fpeephole2
@item -fno-peephole
@itemx -fno-peephole2
Disable any machine-specific peephole optimizations. The difference
between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
are implemented in the compiler; some targets use one, some use the
other, a few use both.
@option{-fpeephole} is enabled by default.
@option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex fno-guess-branch-probability
@opindex fguess-branch-probability
@item -fno-guess-branch-probability
Do not guess branch probabilities using heuristics.
GCC uses heuristics to guess branch probabilities if they are
not provided by profiling feedback (@option{-fprofile-arcs}). These
heuristics are based on the control flow graph. If some branch probabilities
are specified by @code{__builtin_expect}, then the heuristics are
used to guess branch probabilities for the rest of the control flow graph,
taking the @code{__builtin_expect} info into account. The interactions
between the heuristics and @code{__builtin_expect} can be complex, and in
some cases, it may be useful to disable the heuristics so that the effects
of @code{__builtin_expect} are easier to understand.
It is also possible to specify expected probability of the expression
with @code{__builtin_expect_with_probability} built-in function.
The default is @option{-fguess-branch-probability} at levels
@option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
@opindex freorder-blocks
@item -freorder-blocks
Reorder basic blocks in the compiled function in order to reduce number of
taken branches and improve code locality.
Enabled at levels @option{-O1}, @option{-O2}, @option{-O3}, @option{-Os}.
@opindex freorder-blocks-algorithm
@item -freorder-blocks-algorithm=@var{algorithm}
Use the specified algorithm for basic block reordering. The
@var{algorithm} argument can be @samp{simple}, which does not increase
code size (except sometimes due to secondary effects like alignment),
or @samp{stc}, the ``software trace cache'' algorithm, which tries to
put all often executed code together, minimizing the number of branches
executed by making extra copies of code.
The default is @samp{simple} at levels @option{-O1}, @option{-Os}, and
@samp{stc} at levels @option{-O2}, @option{-O3}.
@opindex freorder-blocks-and-partition
@item -freorder-blocks-and-partition
In addition to reordering basic blocks in the compiled function, in order
to reduce number of taken branches, partitions hot and cold basic blocks
into separate sections of the assembly and @file{.o} files, to improve
paging and cache locality performance.
This optimization is automatically turned off in the presence of
exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
section attribute and on any architecture that does not support named
sections. When @option{-fsplit-stack} is used this option is not
enabled by default (to avoid linker errors), but may be enabled
explicitly (if using a working linker).
Enabled for x86 at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex freorder-functions
@item -freorder-functions
Reorder functions in the object file in order to
improve code locality. This is implemented by using special
subsections @code{.text.hot} for most frequently executed functions and
@code{.text.unlikely} for unlikely executed functions. Reordering is done by
the linker so object file format must support named sections and linker must
place them in a reasonable way.
This option isn't effective unless you either provide profile feedback
(see @option{-fprofile-arcs} for details) or manually annotate functions with
@code{hot} or @code{cold} attributes (@pxref{Common Function Attributes}).
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex fstrict-aliasing
@item -fstrict-aliasing
Allow the compiler to assume the strictest aliasing rules applicable to
the language being compiled. For C (and C++), this activates
optimizations based on the type of expressions. In particular, an
object of one type is assumed never to reside at the same address as an
object of a different type, unless the types are almost the same. For
example, an @code{unsigned int} can alias an @code{int}, but not a
@code{void*} or a @code{double}. A character type may alias any other
type.
@anchor{Type-punning}Pay special attention to code like this:
@smallexample
union a_union @{
int i;
double d;
@};
int f() @{
union a_union t;
t.d = 3.0;
return t.i;
@}
@end smallexample
The practice of reading from a different union member than the one most
recently written to (called ``type-punning'') is common. Even with
@option{-fstrict-aliasing}, type-punning is allowed, provided the memory
is accessed through the union type. So, the code above works as
expected. @xref{Structures unions enumerations and bit-fields
implementation}. However, this code might not:
@smallexample
int f() @{
union a_union t;
int* ip;
t.d = 3.0;
ip = &t.i;
return *ip;
@}
@end smallexample
Similarly, access by taking the address, casting the resulting pointer
and dereferencing the result has undefined behavior, even if the cast
uses a union type, e.g.:
@smallexample
int f() @{
double d = 3.0;
return ((union a_union *) &d)->i;
@}
@end smallexample
The @option{-fstrict-aliasing} option is enabled at levels
@option{-O2}, @option{-O3}, @option{-Os}.
@opindex fipa-strict-aliasing
@item -fipa-strict-aliasing
Controls whether rules of @option{-fstrict-aliasing} are applied across
function boundaries. Note that if multiple functions gets inlined into a
single function the memory accesses are no longer considered to be crossing a
function boundary.
The @option{-fipa-strict-aliasing} option is enabled by default and is
effective only in combination with @option{-fstrict-aliasing}.
@opindex falign-functions
@item -falign-functions
@itemx -falign-functions=@var{n}
@itemx -falign-functions=@var{n}:@var{m}
@itemx -falign-functions=@var{n}:@var{m}:@var{n2}
@itemx -falign-functions=@var{n}:@var{m}:@var{n2}:@var{m2}
Align the start of functions to the next power-of-two greater than or
equal to @var{n}, skipping up to @var{m}-1 bytes. This ensures that at
least the first @var{m} bytes of the function can be fetched by the CPU
without crossing an @var{n}-byte alignment boundary.
This is an optimization of code performance and alignment is ignored for
functions considered cold. If alignment is required for all functions,
use @option{-fmin-function-alignment}.
If @var{m} is not specified, it defaults to @var{n}.
Examples: @option{-falign-functions=32} aligns functions to the next
32-byte boundary, @option{-falign-functions=24} aligns to the next
32-byte boundary only if this can be done by skipping 23 bytes or less,
@option{-falign-functions=32:7} aligns to the next
32-byte boundary only if this can be done by skipping 6 bytes or less.
The second pair of @var{n2}:@var{m2} values allows you to specify
a secondary alignment: @option{-falign-functions=64:7:32:3} aligns to
the next 64-byte boundary if this can be done by skipping 6 bytes or less,
otherwise aligns to the next 32-byte boundary if this can be done
by skipping 2 bytes or less.
If @var{m2} is not specified, it defaults to @var{n2}.
Some assemblers only support this flag when @var{n} is a power of two;
in that case, it is rounded up.
@option{-fno-align-functions} and @option{-falign-functions=1} are
equivalent and mean that functions are not aligned.
If @var{n} is not specified or is zero, use a machine-dependent default.
The maximum allowed @var{n} option value is 65536.
Enabled at levels @option{-O2}, @option{-O3}.
@item -flimit-function-alignment
If this option is enabled, the compiler tries to avoid unnecessarily
overaligning functions. It attempts to instruct the assembler to align
by the amount specified by @option{-falign-functions}, but not to
skip more bytes than the size of the function.
@opindex falign-labels
@item -falign-labels
@itemx -falign-labels=@var{n}
@itemx -falign-labels=@var{n}:@var{m}
@itemx -falign-labels=@var{n}:@var{m}:@var{n2}
@itemx -falign-labels=@var{n}:@var{m}:@var{n2}:@var{m2}
Align all branch targets to a power-of-two boundary.
Parameters of this option are analogous to the @option{-falign-functions} option.
@option{-fno-align-labels} and @option{-falign-labels=1} are
equivalent and mean that labels are not aligned.
If @option{-falign-loops} or @option{-falign-jumps} are applicable and
are greater than this value, then their values are used instead.
If @var{n} is not specified or is zero, use a machine-dependent default
which is very likely to be @samp{1}, meaning no alignment.
The maximum allowed @var{n} option value is 65536.
Enabled at levels @option{-O2}, @option{-O3}.
@opindex falign-loops
@item -falign-loops
@itemx -falign-loops=@var{n}
@itemx -falign-loops=@var{n}:@var{m}
@itemx -falign-loops=@var{n}:@var{m}:@var{n2}
@itemx -falign-loops=@var{n}:@var{m}:@var{n2}:@var{m2}
Align loops to a power-of-two boundary. If the loops are executed
many times, this makes up for any execution of the dummy padding
instructions.
This is an optimization of code performance and alignment is ignored for
loops considered cold.
If @option{-falign-labels} is greater than this value, then its value
is used instead.
Parameters of this option are analogous to the @option{-falign-functions} option.
@option{-fno-align-loops} and @option{-falign-loops=1} are
equivalent and mean that loops are not aligned.
The maximum allowed @var{n} option value is 65536.
If @var{n} is not specified or is zero, use a machine-dependent default.
Enabled at levels @option{-O2}, @option{-O3}.
@opindex falign-jumps
@item -falign-jumps
@itemx -falign-jumps=@var{n}
@itemx -falign-jumps=@var{n}:@var{m}
@itemx -falign-jumps=@var{n}:@var{m}:@var{n2}
@itemx -falign-jumps=@var{n}:@var{m}:@var{n2}:@var{m2}
Align branch targets to a power-of-two boundary, for branch targets
where the targets can only be reached by jumping. In this case,
no dummy operations need be executed.
This is an optimization of code performance and alignment is ignored for
jumps considered cold.
If @option{-falign-labels} is greater than this value, then its value
is used instead.
Parameters of this option are analogous to the @option{-falign-functions} option.
@option{-fno-align-jumps} and @option{-falign-jumps=1} are
equivalent and mean that loops are not aligned.
If @var{n} is not specified or is zero, use a machine-dependent default.
The maximum allowed @var{n} option value is 65536.
Enabled at levels @option{-O2}, @option{-O3}.
@opindex fmin-function-alignment=@var{n}
@item -fmin-function-alignment
Specify minimal alignment of functions to the next power-of-two greater than or
equal to @var{n}. Unlike @option{-falign-functions} this alignment is applied
also to all functions (even those considered cold). The alignment is also not
affected by @option{-flimit-function-alignment}
@opindex fno-allocation-dce
@item -fno-allocation-dce
Do not remove unused C++ allocations in dead code elimination.
@opindex fallow-store-data-races
@item -fallow-store-data-races
Allow the compiler to perform optimizations that may introduce new data races
on stores, without proving that the variable cannot be concurrently accessed
by other threads. Does not affect optimization of local data. It is safe to
use this option if it is known that global data will not be accessed by
multiple threads.
Examples of optimizations enabled by @option{-fallow-store-data-races} include
hoisting or if-conversions that may cause a value that was already in memory
to be re-written with that same value. Such re-writing is safe in a single
threaded context but may be unsafe in a multi-threaded context. Note that on
some processors, if-conversions may be required in order to enable
vectorization.
Enabled at level @option{-Ofast}.
@opindex funit-at-a-time
@item -funit-at-a-time
This option is left for compatibility reasons. @option{-funit-at-a-time}
has no effect, while @option{-fno-unit-at-a-time} implies
@option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
Enabled by default.
@opindex fno-toplevel-reorder
@opindex ftoplevel-reorder
@item -fno-toplevel-reorder
Do not reorder top-level functions, variables, and @code{asm}
statements. Output them in the same order that they appear in the
input file. When this option is used, unreferenced static variables
are not removed. This option is intended to support existing code
that relies on a particular ordering. For new code, it is better to
use attributes when possible.
@option{-ftoplevel-reorder} is the default at @option{-O1} and higher, and
also at @option{-O0} if @option{-fsection-anchors} is explicitly requested.
Additionally @option{-fno-toplevel-reorder} implies
@option{-fno-section-anchors}.
@opindex funreachable-traps
@item -funreachable-traps
With this option, the compiler turns calls to
@code{__builtin_unreachable} into traps, instead of using them for
optimization. This also affects any such calls implicitly generated
by the compiler.
This option has the same effect as @option{-fsanitize=unreachable
-fsanitize-trap=unreachable}, but does not affect the values of those
options. If @option{-fsanitize=unreachable} is enabled, that option
takes priority over this one.
This option is enabled by default at @option{-O0} and @option{-Og}.
@opindex fweb
@item -fweb
Constructs webs as commonly used for register allocation purposes and assign
each web individual pseudo register. This allows the register allocation pass
to operate on pseudos directly, but also strengthens several other optimization
passes, such as CSE, loop optimizer and trivial dead code remover. It can,
however, make debugging impossible, since variables no longer stay in a
``home register''.
Enabled by default with @option{-funroll-loops}.
@opindex fwhole-program
@item -fwhole-program
Assume that the current compilation unit represents the whole program being
compiled. All public functions and variables with the exception of @code{main}
and those merged by attribute @code{externally_visible} become static functions
and in effect are optimized more aggressively by interprocedural optimizers.
With @option{-flto} this option has a limited use. In most cases the
precise list of symbols used or exported from the binary is known the
resolution info passed to the link-time optimizer by the linker plugin. It is
still useful if no linker plugin is used or during incremental link step when
final code is produced (with @option{-flto}
@option{-flinker-output=nolto-rel}).
@opindex flto
@item -flto[=@var{n}]
This option runs the standard link-time optimizer. When invoked
with source code, it generates GIMPLE (one of GCC's internal
representations) and writes it to special ELF sections in the object
file. When the object files are linked together, all the function
bodies are read from these ELF sections and instantiated as if they
had been part of the same translation unit.
To use the link-time optimizer, @option{-flto} and optimization
options should be specified at compile time and during the final link.
It is recommended that you compile all the files participating in the
same link with the same options and also specify those options at
link time.
For example:
@smallexample
gcc -c -O2 -flto foo.c
gcc -c -O2 -flto bar.c
gcc -o myprog -flto -O2 foo.o bar.o
@end smallexample
The first two invocations to GCC save a bytecode representation
of GIMPLE into special ELF sections inside @file{foo.o} and
@file{bar.o}. The final invocation reads the GIMPLE bytecode from
@file{foo.o} and @file{bar.o}, merges the two files into a single
internal image, and compiles the result as usual. Since both
@file{foo.o} and @file{bar.o} are merged into a single image, this
causes all the interprocedural analyses and optimizations in GCC to
work across the two files as if they were a single one. This means,
for example, that the inliner is able to inline functions in
@file{bar.o} into functions in @file{foo.o} and vice-versa.
Another (simpler) way to enable link-time optimization is:
@smallexample
gcc -o myprog -flto -O2 foo.c bar.c
@end smallexample
The above generates bytecode for @file{foo.c} and @file{bar.c},
merges them together into a single GIMPLE representation and optimizes
them as usual to produce @file{myprog}.
The important thing to keep in mind is that to enable link-time
optimizations you need to use the GCC driver to perform the link step.
GCC automatically performs link-time optimization if any of the
objects involved were compiled with the @option{-flto} command-line option.
You can always override
the automatic decision to do link-time optimization
by passing @option{-fno-lto} to the link command.
To make whole program optimization effective, it is necessary to make
certain whole program assumptions. The compiler needs to know
what functions and variables can be accessed by libraries and runtime
outside of the link-time optimized unit. When supported by the linker,
the linker plugin (see @option{-fuse-linker-plugin}) passes information
to the compiler about used and externally visible symbols. When
the linker plugin is not available, @option{-fwhole-program} should be
used to allow the compiler to make these assumptions, which leads
to more aggressive optimization decisions.
When a file is compiled with @option{-flto} without
@option{-fuse-linker-plugin}, the generated object file is larger than
a regular object file because it contains GIMPLE bytecodes and the usual
final code (see @option{-ffat-lto-objects}). This means that
object files with LTO information can be linked as normal object
files; if @option{-fno-lto} is passed to the linker, no
interprocedural optimizations are applied. Note that when
@option{-fno-fat-lto-objects} is enabled the compile stage is faster
but you cannot perform a regular, non-LTO link on them.
When producing the final binary, GCC only
applies link-time optimizations to those files that contain bytecode.
Therefore, you can mix and match object files and libraries with
GIMPLE bytecodes and final object code. GCC automatically selects
which files to optimize in LTO mode and which files to link without
further processing.
Generally, options specified at link time override those
specified at compile time, although in some cases GCC attempts to infer
link-time options from the settings used to compile the input files.
If you do not specify an optimization level option @option{-O} at
link time, then GCC uses the highest optimization level
used when compiling the object files. Note that it is generally
ineffective to specify an optimization level option only at link time and
not at compile time, for two reasons. First, compiling without
optimization suppresses compiler passes that gather information
needed for effective optimization at link time. Second, some early
optimization passes can be performed only at compile time and
not at link time.
There are some code generation flags preserved by GCC when
generating bytecodes, as they need to be used during the final link.
Currently, the following options and their settings are taken from
the first object file that explicitly specifies them:
@option{-fcommon}, @option{-fexceptions}, @option{-fnon-call-exceptions},
@option{-fgnu-tm} and all the @option{-m} target flags.
The following options @option{-fPIC}, @option{-fpic}, @option{-fpie} and
@option{-fPIE} are combined based on the following scheme:
@smallexample
@option{-fPIC} + @option{-fpic} = @option{-fpic}
@option{-fPIC} + @option{-fno-pic} = @option{-fno-pic}
@option{-fpic/-fPIC} + (no option) = (no option)
@option{-fPIC} + @option{-fPIE} = @option{-fPIE}
@option{-fpic} + @option{-fPIE} = @option{-fpie}
@option{-fPIC/-fpic} + @option{-fpie} = @option{-fpie}
@end smallexample
Certain ABI-changing flags are required to match in all compilation units,
and trying to override this at link time with a conflicting value
is ignored. This includes options such as @option{-freg-struct-return}
and @option{-fpcc-struct-return}.
Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
@option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
are passed through to the link stage and merged conservatively for
conflicting translation units. Specifically
@option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
precedence; and for example @option{-ffp-contract=off} takes precedence
over @option{-ffp-contract=fast}. You can override them at link time.
Diagnostic options such as @option{-Wstringop-overflow} are passed
through to the link stage and their setting matches that of the
compile-step at function granularity. Note that this matters only
for diagnostics emitted during optimization. Note that code
transforms such as inlining can lead to warnings being enabled
or disabled for regions if code not consistent with the setting
at compile time.
When you need to pass options to the assembler via @option{-Wa} or
@option{-Xassembler} make sure to either compile such translation
units with @option{-fno-lto} or consistently use the same assembler
options on all translation units. You can alternatively also
specify assembler options at LTO link time.
To enable debug info generation you need to supply @option{-g} at
compile time. If any of the input files at link time were built
with debug info generation enabled the link will enable debug info
generation as well. Any elaborate debug info settings
like the dwarf level @option{-gdwarf-5} need to be explicitly repeated
at the linker command line and mixing different settings in different
translation units is discouraged.
If LTO encounters objects with C linkage declared with incompatible
types in separate translation units to be linked together (undefined
behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
issued. The behavior is still undefined at run time. Similar
diagnostics may be raised for other languages.
Another feature of LTO is that it is possible to apply interprocedural
optimizations on files written in different languages:
@smallexample
gcc -c -flto foo.c
g++ -c -flto bar.cc
gfortran -c -flto baz.f90
g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
@end smallexample
Notice that the final link is done with @command{g++} to get the C++
runtime libraries and @option{-lgfortran} is added to get the Fortran
runtime libraries. In general, when mixing languages in LTO mode, you
should use the same link command options as when mixing languages in a
regular (non-LTO) compilation.
If object files containing GIMPLE bytecode are stored in a library archive, say
@file{libfoo.a}, it is possible to extract and use them in an LTO link if you
are using a linker with plugin support. To create static libraries suitable
for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
and @command{ranlib};
to show the symbols of object files with GIMPLE bytecode, use
@command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
and @command{nm} have been compiled with plugin support. At link time, use the
flag @option{-fuse-linker-plugin} to ensure that the library participates in
the LTO optimization process:
@smallexample
gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
@end smallexample
With the linker plugin enabled, the linker extracts the needed
GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
to make them part of the aggregated GIMPLE image to be optimized.
If you are not using a linker with plugin support and/or do not
enable the linker plugin, then the objects inside @file{libfoo.a}
are extracted and linked as usual, but they do not participate
in the LTO optimization process. In order to make a static library suitable
for both LTO optimization and usual linkage, compile its object files with
@option{-flto} @option{-ffat-lto-objects}.
Link-time optimizations do not require the presence of the whole program to
operate. If the program does not require any symbols to be exported, it is
possible to combine @option{-flto} and @option{-fwhole-program} to allow
the interprocedural optimizers to use more aggressive assumptions which may
lead to improved optimization opportunities.
Use of @option{-fwhole-program} is not needed when linker plugin is
active (see @option{-fuse-linker-plugin}).
The current implementation of LTO makes no
attempt to generate bytecode that is portable between different
types of hosts. The bytecode files are versioned and there is a
strict version check, so bytecode files generated in one version of
GCC do not work with an older or newer version of GCC.
Link-time optimization does not work well with generation of debugging
information on systems other than those using a combination of ELF and
DWARF.
If you specify the optional @var{n}, the optimization and code
generation done at link time is executed in parallel using @var{n}
parallel jobs by utilizing an installed @command{make} program. The
environment variable @env{MAKE} may be used to override the program
used.
You can also specify @option{-flto=jobserver} to use GNU make's
job server mode to determine the number of parallel jobs. This
is useful when the Makefile calling GCC is already executing in parallel.
You must prepend a @samp{+} to the command recipe in the parent Makefile
for this to work. This option likely only works if @env{MAKE} is
GNU make. Even without the option value, GCC tries to automatically
detect a running GNU make's job server.
Use @option{-flto=auto} to use GNU make's job server, if available,
or otherwise fall back to autodetection of the number of CPU threads
present in your system.
@opindex flto-partition
@item -flto-partition=@var{alg}
Specify the partitioning algorithm used by the link-time optimizer.
The value is either @samp{1to1} to specify a partitioning mirroring
the original source files or @samp{balanced} to specify partitioning
into equally sized chunks (whenever possible) or @samp{max} to create
new partition for every symbol where possible. Specifying @samp{none}
as an algorithm disables partitioning and streaming completely.
The default value is @samp{balanced}. While @samp{1to1} can be used
as an workaround for various code ordering issues, the @samp{max}
partitioning is intended for internal testing only.
The value @samp{one} specifies that exactly one partition should be
used while the value @samp{none} bypasses partitioning and executes
the link-time optimization step directly from the WPA phase.
@opindex flto-compression-level
@item -flto-compression-level=@var{n}
This option specifies the level of compression used for intermediate
language written to LTO object files, and is only meaningful in
conjunction with LTO mode (@option{-flto}). GCC currently supports two
LTO compression algorithms. For zstd, valid values are 0 (no compression)
to 19 (maximum compression), while zlib supports values from 0 to 9.
Values outside this range are clamped to either minimum or maximum
of the supported values. If the option is not given,
a default balanced compression setting is used.
@opindex fuse-linker-plugin
@item -fuse-linker-plugin
Enables the use of a linker plugin during link-time optimization. This
option relies on plugin support in the linker, which is available in gold
or in GNU ld 2.21 or newer.
This option enables the extraction of object files with GIMPLE bytecode out
of library archives. This improves the quality of optimization by exposing
more code to the link-time optimizer. This information specifies what
symbols can be accessed externally (by non-LTO object or during dynamic
linking). Resulting code quality improvements on binaries (and shared
libraries that use hidden visibility) are similar to @option{-fwhole-program}.
See @option{-flto} for a description of the effect of this flag and how to
use it.
This option is enabled by default when LTO support in GCC is enabled
and GCC was configured for use with
a linker supporting plugins (GNU ld 2.21 or newer or gold).
@opindex ffat-lto-objects
@item -ffat-lto-objects
Fat LTO objects are object files that contain both the intermediate language
and the object code. This makes them usable for both LTO linking and normal
linking. This option is effective only when compiling with @option{-flto}
and is ignored at link time.
@option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
requires the complete toolchain to be aware of LTO. It requires a linker with
linker plugin support for basic functionality. Additionally,
@command{nm}, @command{ar} and @command{ranlib}
need to support linker plugins to allow a full-featured build environment
(capable of building static libraries etc). GCC provides the @command{gcc-ar},
@command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
to these tools. With non fat LTO makefiles need to be modified to use them.
Note that modern binutils provide plugin auto-load mechanism.
Installing the linker plugin into @file{$libdir/bfd-plugins} has the same
effect as usage of the command wrappers (@command{gcc-ar}, @command{gcc-nm} and
@command{gcc-ranlib}).
The default is @option{-fno-fat-lto-objects} on targets with linker plugin
support.
@opindex fcompare-elim
@item -fcompare-elim
After register allocation and post-register allocation instruction splitting,
identify arithmetic instructions that compute processor flags similar to a
comparison operation based on that arithmetic. If possible, eliminate the
explicit comparison operation.
This pass only applies to certain targets that cannot explicitly represent
the comparison operation before register allocation is complete.
Enabled at levels @option{-O1}, @option{-O2}, @option{-O3}, @option{-Os}.
@opindex ffold-mem-offsets
@item -ffold-mem-offsets
@itemx -fno-fold-mem-offsets
Try to eliminate add instructions by folding them in memory loads/stores.
Enabled at levels @option{-O2}, @option{-O3}.
@opindex fcprop-registers
@item -fcprop-registers
After register allocation and post-register allocation instruction splitting,
perform a copy-propagation pass to try to reduce scheduling dependencies
and occasionally eliminate the copy.
Enabled at levels @option{-O1}, @option{-O2}, @option{-O3}, @option{-Os}.
@opindex fprofile-correction
@item -fprofile-correction
Profiles collected using an instrumented binary for multi-threaded programs may
be inconsistent due to missed counter updates. When this option is specified,
GCC uses heuristics to correct or smooth out such inconsistencies. By
default, GCC emits an error message when an inconsistent profile is detected.
This option is enabled by @option{-fauto-profile}.
@opindex fprofile-partial-training
@item -fprofile-partial-training
With @code{-fprofile-use} all portions of programs not executed during train
run are optimized agressively for size rather than speed. In some cases it is
not practical to train all possible hot paths in the program. (For
example, program may contain functions specific for a given hardware and
trianing may not cover all hardware configurations program is run on.) With
@code{-fprofile-partial-training} profile feedback will be ignored for all
functions not executed during the train run leading them to be optimized as if
they were compiled without profile feedback. This leads to better performance
when train run is not representative but also leads to significantly bigger
code.
@opindex fprofile-use
@item -fprofile-use
@itemx -fprofile-use=@var{path}
Enable profile feedback-directed optimizations,
and the following optimizations, many of which
are generally profitable only with profile feedback available:
@gccoptlist{-fbranch-probabilities -fprofile-values
-funroll-loops -fpeel-loops -ftracer -fvpt
-finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp
-fpredictive-commoning -fsplit-loops -funswitch-loops
-fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize
-fvect-cost-model=dynamic -ftree-loop-distribute-patterns
-fprofile-reorder-functions}
Before you can use this option, you must first generate profiling information.
@xref{Instrumentation Options}, for information about the
@option{-fprofile-generate} option.
By default, GCC emits an error message if the feedback profiles do not
match the source code. This error can be turned into a warning by using
@option{-Wno-error=coverage-mismatch}. Note this may result in poorly
optimized code. Additionally, by default, GCC also emits a warning message if
the feedback profiles do not exist (see @option{-Wmissing-profile}).
If @var{path} is specified, GCC looks at the @var{path} to find
the profile feedback data files. See @option{-fprofile-dir}.
@opindex fauto-profile
@item -fauto-profile
@itemx -fauto-profile=@var{path}
Enable sampling-based feedback-directed optimizations,
and the following optimizations,
many of which are generally profitable only with profile feedback available:
@gccoptlist{-fbranch-probabilities -fprofile-values
-funroll-loops -fpeel-loops -ftracer -fvpt
-finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp
-fpredictive-commoning -fsplit-loops -funswitch-loops
-fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize
-fvect-cost-model=dynamic -ftree-loop-distribute-patterns
-fprofile-correction}
@var{path} is the name of a file containing AutoFDO profile information.
If omitted, it defaults to @file{fbdata.afdo} in the current directory.
Producing an AutoFDO profile data file requires running your program
with the @command{perf} utility on a supported GNU/Linux target system.
For more information, see @uref{https://perf.wiki.kernel.org/}.
E.g.
@smallexample
perf record -e br_inst_retired:near_taken -b -o perf.data \
-- your_program
@end smallexample
Then use the @command{create_gcov} tool to convert the raw profile data
to a format that can be used by GCC.@ You must also supply the
unstripped binary for your program to this tool.
See @uref{https://github.com/google/autofdo}.
E.g.
@smallexample
create_gcov --binary=your_program.unstripped --profile=perf.data \
--gcov=profile.afdo
@end smallexample
@end table
The following options control compiler behavior regarding floating-point
arithmetic. These options trade off between speed and
correctness. All must be specifically enabled.
@table @gcctabopt
@opindex ffloat-store
@item -ffloat-store
Do not store floating-point variables in registers, and inhibit other
options that might change whether a floating-point value is taken from a
register or memory.
@cindex floating-point precision
This option prevents undesirable excess precision on machines such as
the 68000 where the floating registers (of the 68881) keep more
precision than a @code{double} is supposed to have. Similarly for the
x86 architecture. For most programs, the excess precision does only
good, but a few programs rely on the precise definition of IEEE floating
point. Use @option{-ffloat-store} for such programs, after modifying
them to store all pertinent intermediate computations into variables.
@opindex fexcess-precision
@item -fexcess-precision=@var{style}
This option allows further control over excess precision on machines
where floating-point operations occur in a format with more precision or
range than the IEEE standard and interchange floating-point types. By
default, @option{-fexcess-precision=fast} is in effect; this means that
operations may be carried out in a wider precision than the types specified
in the source if that would result in faster code, and it is unpredictable
when rounding to the types specified in the source code takes place.
When compiling C or C++, if @option{-fexcess-precision=standard} is specified
then excess precision follows the rules specified in ISO C99 or C++; in particular,
both casts and assignments cause values to be rounded to their
semantic types (whereas @option{-ffloat-store} only affects
assignments). This option is enabled by default for C or C++ if a strict
conformance option such as @option{-std=c99} or @option{-std=c++17} is used.
@option{-ffast-math} enables @option{-fexcess-precision=fast} by default
regardless of whether a strict conformance option is used.
If @option{-fexcess-precision=16} is specified, constants and the
results of expressions with types @code{_Float16} and @code{__bf16}
are computed without excess precision.
@opindex mfpmath
@option{-fexcess-precision=standard} is not implemented for languages
other than C or C++. On the x86, it has no effect if @option{-mfpmath=sse}
or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
semantics apply without excess precision, and in the latter, rounding
is unpredictable.
@opindex ffast-math
@item -ffast-math
Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
@option{-ffinite-math-only}, @option{-fno-rounding-math},
@option{-fno-signaling-nans}, @option{-fcx-limited-range} and
@option{-fexcess-precision=fast}.
This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
This option is not turned on by any @option{-O} option besides
@option{-Ofast} since it can result in incorrect output for programs
that depend on an exact implementation of IEEE or ISO rules/specifications
for math functions. It may, however, yield faster code for programs
that do not require the guarantees of these specifications.
@opindex fno-math-errno
@opindex fmath-errno
@item -fno-math-errno
Do not set @code{errno} after calling math functions that are executed
with a single instruction, e.g., @code{sqrt}. A program that relies on
IEEE exceptions for math error handling may want to use this flag
for speed while maintaining IEEE arithmetic compatibility.
This option is not turned on by any @option{-O} option besides
@option{-Ofast} since it can result in incorrect output for
programs that depend on an exact implementation of IEEE or
ISO rules/specifications for math functions. It may, however,
yield faster code for programs that do not require the guarantees
of these specifications.
The default is @option{-fmath-errno}.
On Darwin systems, the math library never sets @code{errno}. There is
therefore no reason for the compiler to consider the possibility that
it might, and @option{-fno-math-errno} is the default.
@opindex funsafe-math-optimizations
@item -funsafe-math-optimizations
Allow optimizations for floating-point arithmetic that (a) assume
that arguments and results are valid and (b) may violate IEEE or
ANSI standards. When used at link time, it may include libraries
or startup files that change the default FPU control word or other
similar optimizations.
This option is not turned on by any @option{-O} option besides
@option{-Ofast} since it can result in incorrect output
for programs that depend on an exact implementation of IEEE
or ISO rules/specifications for math functions. It may, however,
yield faster code for programs that do not require the guarantees
of these specifications.
Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
@option{-fassociative-math} and @option{-freciprocal-math}.
The default is @option{-fno-unsafe-math-optimizations}.
@opindex fassociative-math
@item -fassociative-math
Allow re-association of operands in series of floating-point operations.
This violates the ISO C and C++ language standard by possibly changing
computation result. NOTE: re-ordering may change the sign of zero as
well as ignore NaNs and inhibit or create underflow or overflow (and
thus cannot be used on code that relies on rounding behavior like
@code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
and thus may not be used when ordered comparisons are required.
This option requires that both @option{-fno-signed-zeros} and
@option{-fno-trapping-math} be in effect. Moreover, it doesn't make
much sense with @option{-frounding-math}. For Fortran the option
is automatically enabled when both @option{-fno-signed-zeros} and
@option{-fno-trapping-math} are in effect.
The default is @option{-fno-associative-math}.
@opindex freciprocal-math
@item -freciprocal-math
Allow the reciprocal of a value to be used instead of dividing by
the value if this enables optimizations. For example @code{x / y}
can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
is subject to common subexpression elimination. Note that this loses
precision and increases the number of flops operating on the value.
The default is @option{-fno-reciprocal-math}.
@opindex ffinite-math-only
@item -ffinite-math-only
Allow optimizations for floating-point arithmetic that assume
that arguments and results are not NaNs or +-Infs.
This option is not turned on by any @option{-O} option besides
@option{-Ofast} since it can result in incorrect output
for programs that depend on an exact implementation of IEEE or
ISO rules/specifications for math functions. It may, however,
yield faster code for programs that do not require the guarantees
of these specifications.
The default is @option{-fno-finite-math-only}.
@opindex fno-signed-zeros
@opindex fsigned-zeros
@item -fno-signed-zeros
Allow optimizations for floating-point arithmetic that ignore the
signedness of zero. IEEE arithmetic specifies the behavior of
distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
This option implies that the sign of a zero result isn't significant.
The default is @option{-fsigned-zeros}.
@opindex fno-trapping-math
@opindex ftrapping-math
@item -fno-trapping-math
Compile code assuming that floating-point operations cannot generate
user-visible traps. These traps include division by zero, overflow,
underflow, inexact result and invalid operation. This option requires
that @option{-fno-signaling-nans} be in effect. Setting this option may
allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
This option is not turned on by any @option{-O} option besides
@option{-Ofast} since it can result in incorrect output for programs
that depend on an exact implementation of IEEE or ISO rules/specifications
for math functions.
The default is @option{-ftrapping-math}.
Future versions of GCC may provide finer control of this setting
using C99's @code{FENV_ACCESS} pragma. This command-line option
will be used along with @option{-frounding-math} to specify the
default state for @code{FENV_ACCESS}.
@opindex frounding-math
@item -frounding-math
Disable transformations and optimizations that assume default floating-point
rounding behavior. This is round-to-zero for all floating point
to integer conversions, and round-to-nearest for all other arithmetic
truncations. This option should be specified for programs that change
the FP rounding mode dynamically, or that may be executed with a
non-default rounding mode. This option disables constant folding of
floating-point expressions at compile time (which may be affected by
rounding mode) and arithmetic transformations that are unsafe in the
presence of sign-dependent rounding modes.
The default is @option{-fno-rounding-math}.
This option is experimental and does not currently guarantee to
disable all GCC optimizations that are affected by rounding mode.
Future versions of GCC may provide finer control of this setting
using C99's @code{FENV_ACCESS} pragma. This command-line option
will be used along with @option{-ftrapping-math} to specify the
default state for @code{FENV_ACCESS}.
@opindex fsignaling-nans
@item -fsignaling-nans
Compile code assuming that IEEE signaling NaNs may generate user-visible
traps during floating-point operations. Setting this option disables
optimizations that may change the number of exceptions visible with
signaling NaNs. This option implies @option{-ftrapping-math}.
This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
be defined.
The default is @option{-fno-signaling-nans}.
This option is experimental and does not currently guarantee to
disable all GCC optimizations that affect signaling NaN behavior.
@opindex fno-fp-int-builtin-inexact
@opindex ffp-int-builtin-inexact
@item -fno-fp-int-builtin-inexact
Do not allow the built-in functions @code{ceil}, @code{floor},
@code{round} and @code{trunc}, and their @code{float} and @code{long
double} variants, to generate code that raises the ``inexact''
floating-point exception for noninteger arguments. ISO C99 and C11
allow these functions to raise the ``inexact'' exception, but ISO/IEC
TS 18661-1:2014, the C bindings to IEEE 754-2008, as integrated into
ISO C23, does not allow these functions to do so.
The default is @option{-ffp-int-builtin-inexact}, allowing the
exception to be raised, unless C23 or a later C standard is selected.
This option does nothing unless @option{-ftrapping-math} is in effect.
Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
generate a call to a library function then the ``inexact'' exception
may be raised if the library implementation does not follow TS 18661.
@opindex fsingle-precision-constant
@item -fsingle-precision-constant
Treat floating-point constants as single precision instead of
implicitly converting them to double-precision constants.
@opindex fcx-limited-range
@item -fcx-limited-range
When enabled, this option states that a range reduction step is not
needed when performing complex division. Also, there is no checking
whether the result of a complex multiplication or division is @code{NaN
+ I*NaN}, with an attempt to rescue the situation in that case. The
default is @option{-fno-cx-limited-range}, but is enabled by
@option{-ffast-math}.
This option controls the default setting of the ISO C99
@code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
all languages.
@opindex fcx-fortran-rules
@item -fcx-fortran-rules
Complex multiplication and division follow Fortran rules. Range
reduction is done as part of complex division, but there is no checking
whether the result of a complex multiplication or division is @code{NaN
+ I*NaN}, with an attempt to rescue the situation in that case.
The default is @option{-fno-cx-fortran-rules}.
@end table
The following options control optimizations that may improve
performance, but are not enabled by any @option{-O} options. This
section includes experimental options that may produce broken code.
@table @gcctabopt
@opindex fbranch-probabilities
@item -fbranch-probabilities
After running a program compiled with @option{-fprofile-arcs}
(@pxref{Instrumentation Options}),
you can compile it a second time using
@option{-fbranch-probabilities}, to improve optimizations based on
the number of times each branch was taken. When a program
compiled with @option{-fprofile-arcs} exits, it saves arc execution
counts to a file called @file{@var{sourcename}.gcda} for each source
file. The information in this data file is very dependent on the
structure of the generated code, so you must use the same source code
and the same optimization options for both compilations.
See details about the file naming in @option{-fprofile-arcs}.
With @option{-fbranch-probabilities}, GCC puts a
@samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
These can be used to improve optimization. Currently, they are only
used in one place: in @file{reorg.cc}, instead of guessing which path a
branch is most likely to take, the @samp{REG_BR_PROB} values are used to
exactly determine which path is taken more often.
Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
@opindex fprofile-values
@item -fprofile-values
If combined with @option{-fprofile-arcs}, it adds code so that some
data about values of expressions in the program is gathered.
With @option{-fbranch-probabilities}, it reads back the data gathered
from profiling values of expressions for usage in optimizations.
Enabled by @option{-fprofile-generate}, @option{-fprofile-use}, and
@option{-fauto-profile}.
@opindex fprofile-reorder-functions
@item -fprofile-reorder-functions
Function reordering based on profile instrumentation collects
first time of execution of a function and orders these functions
in ascending order.
Enabled with @option{-fprofile-use}.
@opindex fvpt
@item -fvpt
If combined with @option{-fprofile-arcs}, this option instructs the compiler
to add code to gather information about values of expressions.
With @option{-fbranch-probabilities}, it reads back the data gathered
and actually performs the optimizations based on them.
Currently the optimizations include specialization of division operations
using the knowledge about the value of the denominator.
Enabled with @option{-fprofile-use} and @option{-fauto-profile}.
@opindex frename-registers
@item -frename-registers
Attempt to avoid false dependencies in scheduled code by making use
of registers left over after register allocation. This optimization
most benefits processors with lots of registers. Depending on the
debug information format adopted by the target, however, it can
make debugging impossible, since variables no longer stay in
a ``home register''.
Enabled by default with @option{-funroll-loops}.
@opindex fschedule-fusion
@item -fschedule-fusion
Performs a target dependent pass over the instruction stream to schedule
instructions of same type together because target machine can execute them
more efficiently if they are adjacent to each other in the instruction flow.
Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
@opindex ftracer
@item -ftracer
Perform tail duplication to enlarge superblock size. This transformation
simplifies the control flow of the function allowing other optimizations to do
a better job.
Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
@opindex funroll-loops
@item -funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. @option{-funroll-loops} implies
@option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
It also turns on complete loop peeling (i.e.@: complete removal of loops with
a small constant number of iterations). This option makes code larger, and may
or may not make it run faster.
Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
@opindex funroll-all-loops
@item -funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when
the loop is entered. This usually makes programs run more slowly.
@option{-funroll-all-loops} implies the same options as
@option{-funroll-loops}.
@opindex fpeel-loops
@item -fpeel-loops
Peels loops for which there is enough information that they do not
roll much (from profile feedback or static analysis). It also turns on
complete loop peeling (i.e.@: complete removal of loops with small constant
number of iterations).
Enabled by @option{-O3}, @option{-fprofile-use}, and @option{-fauto-profile}.
@opindex fmove-loop-invariants
@item -fmove-loop-invariants
Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
at level @option{-O1} and higher, except for @option{-Og}.
@opindex fmove-loop-stores
@item -fmove-loop-stores
Enables the loop store motion pass in the GIMPLE loop optimizer. This
moves invariant stores to after the end of the loop in exchange for
carrying the stored value in a register across the iteration.
Note for this option to have an effect @option{-ftree-loop-im} has to
be enabled as well. Enabled at level @option{-O1} and higher, except
for @option{-Og}.
@opindex fsplit-loops
@item -fsplit-loops
Split a loop into two if it contains a condition that's always true
for one side of the iteration space and false for the other.
Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
@opindex funswitch-loops
@item -funswitch-loops
Move branches with loop invariant conditions out of the loop, with duplicates
of the loop on both branches (modified according to result of the condition).
Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
@opindex fversion-loops-for-strides
@item -fversion-loops-for-strides
If a loop iterates over an array with a variable stride, create another
version of the loop that assumes the stride is always one. For example:
@smallexample
for (int i = 0; i < n; ++i)
x[i * stride] = @dots{};
@end smallexample
becomes:
@smallexample
if (stride == 1)
for (int i = 0; i < n; ++i)
x[i] = @dots{};
else
for (int i = 0; i < n; ++i)
x[i * stride] = @dots{};
@end smallexample
This is particularly useful for assumed-shape arrays in Fortran where
(for example) it allows better vectorization assuming contiguous accesses.
This flag is enabled by default at @option{-O3}.
It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
@opindex ffunction-sections
@opindex fdata-sections
@item -ffunction-sections
@itemx -fdata-sections
Place each function or data item into its own section in the output
file if the target supports arbitrary sections. The name of the
function or the name of the data item determines the section's name
in the output file.
Use these options on systems where the linker can perform optimizations to
improve locality of reference in the instruction space. Most systems using the
ELF object format have linkers with such optimizations. On AIX, the linker
rearranges sections (CSECTs) based on the call graph. The performance impact
varies.
Together with a linker garbage collection (linker @option{--gc-sections}
option) these options may lead to smaller statically-linked executables (after
stripping).
On ELF/DWARF systems these options do not degenerate the quality of the debug
information. There could be issues with other object files/debug info formats.
Only use these options when there are significant benefits from doing so. When
you specify these options, the assembler and linker create larger object and
executable files and are also slower. These options affect code generation.
They prevent optimizations by the compiler and assembler using relative
locations inside a translation unit since the locations are unknown until
link time. An example of such an optimization is relaxing calls to short call
instructions.
@opindex fstdarg-opt
@item -fstdarg-opt
Optimize the prologue of variadic argument functions with respect to usage of
those arguments.
@opindex fsection-anchors
@item -fsection-anchors
Try to reduce the number of symbolic address calculations by using
shared ``anchor'' symbols to address nearby objects. This transformation
can help to reduce the number of GOT entries and GOT accesses on some
targets.
For example, the implementation of the following function @code{foo}:
@smallexample
static int a, b, c;
int foo (void) @{ return a + b + c; @}
@end smallexample
@noindent
usually calculates the addresses of all three variables, but if you
compile it with @option{-fsection-anchors}, it accesses the variables
from a common anchor point instead. The effect is similar to the
following pseudocode (which isn't valid C):
@smallexample
int foo (void)
@{
register int *xr = &x;
return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
@}
@end smallexample
Not all targets support this option.
@opindex fzero-call-used-regs
@item -fzero-call-used-regs=@var{choice}
Zero call-used registers at function return to increase program
security by either mitigating Return-Oriented Programming (ROP)
attacks or preventing information leakage through registers.
The possible values of @var{choice} are the same as for the
@code{zero_call_used_regs} attribute (@pxref{Function Attributes}).
The default is @samp{skip}.
You can control this behavior for a specific function by using the function
attribute @code{zero_call_used_regs} (@pxref{Function Attributes}).
@opindex param
@item --param @var{name}=@var{value}
In some places, GCC uses various constants to control the amount of
optimization that is done. For example, GCC does not inline functions
that contain more than a certain number of instructions. You can
control some of these constants on the command line using the
@option{--param} option.
The names of specific parameters, and the meaning of the values, are
tied to the internals of the compiler, and are subject to change
without notice in future releases.
In order to get the minimal, maximal and default values of a parameter,
use the @option{--help=param -Q} options.
In each case, the @var{value} is an integer. The following choices
of @var{name} are recognized for all targets:
@table @gcctabopt
@item predictable-branch-outcome
When branch is predicted to be taken with probability lower than this threshold
(in percent), then it is considered well predictable.
@item max-rtl-if-conversion-insns
RTL if-conversion tries to remove conditional branches around a block and
replace them with conditionally executed instructions. This parameter
gives the maximum number of instructions in a block which should be
considered for if-conversion. The compiler will
also use other heuristics to decide whether if-conversion is likely to be
profitable.
@item max-rtl-if-conversion-predictable-cost
RTL if-conversion will try to remove conditional branches around a block
and replace them with conditionally executed instructions. These parameters
give the maximum permissible cost for the sequence that would be generated
by if-conversion depending on whether the branch is statically determined
to be predictable or not. The units for this parameter are the same as
those for the GCC internal seq_cost metric. The compiler will try to
provide a reasonable default for this parameter using the BRANCH_COST
target macro.
@item max-crossjump-edges
The maximum number of incoming edges to consider for cross-jumping.
The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
the number of edges incoming to each block. Increasing values mean
more aggressive optimization, making the compilation time increase with
probably small improvement in executable size.
@item min-crossjump-insns
The minimum number of instructions that must be matched at the end
of two blocks before cross-jumping is performed on them. This
value is ignored in the case where all instructions in the block being
cross-jumped from are matched.
@item max-grow-copy-bb-insns
The maximum code size expansion factor when copying basic blocks
instead of jumping. The expansion is relative to a jump instruction.
@item max-goto-duplication-insns
The maximum number of instructions to duplicate to a block that jumps
to a computed goto. To avoid @math{O(N^2)} behavior in a number of
passes, GCC factors computed gotos early in the compilation process,
and unfactors them as late as possible. Only computed jumps at the
end of a basic blocks with no more than max-goto-duplication-insns are
unfactored.
@item max-delay-slot-insn-search
The maximum number of instructions to consider when looking for an
instruction to fill a delay slot. If more than this arbitrary number of
instructions are searched, the time savings from filling the delay slot
are minimal, so stop searching. Increasing values mean more
aggressive optimization, making the compilation time increase with probably
small improvement in execution time.
@item max-delay-slot-live-search
When trying to fill delay slots, the maximum number of instructions to
consider when searching for a block with valid live register
information. Increasing this arbitrarily chosen value means more
aggressive optimization, increasing the compilation time. This parameter
should be removed when the delay slot code is rewritten to maintain the
control-flow graph.
@item max-gcse-memory
The approximate maximum amount of memory in @code{kB} that can be allocated in
order to perform the global common subexpression elimination
optimization. If more memory than specified is required, the
optimization is not done.
@item max-gcse-insertion-ratio
If the ratio of expression insertions to deletions is larger than this value
for any expression, then RTL PRE inserts or removes the expression and thus
leaves partially redundant computations in the instruction stream.
@item max-pending-list-length
The maximum number of pending dependencies scheduling allows
before flushing the current state and starting over. Large functions
with few branches or calls can create excessively large lists which
needlessly consume memory and resources.
@item max-modulo-backtrack-attempts
The maximum number of backtrack attempts the scheduler should make
when modulo scheduling a loop. Larger values can exponentially increase
compilation time.
@item max-inline-functions-called-once-loop-depth
Maximal loop depth of a call considered by inline heuristics that tries to
inline all functions called once.
@item max-inline-functions-called-once-insns
Maximal estimated size of functions produced while inlining functions called
once.
@item max-inline-insns-single
Several parameters control the tree inliner used in GCC@. This number sets the
maximum number of instructions (counted in GCC's internal representation) in a
single function that the tree inliner considers for inlining. This only
affects functions declared inline and methods implemented in a class
declaration (C++).
@item max-inline-insns-auto
When you use @option{-finline-functions} (included in @option{-O3}),
a lot of functions that would otherwise not be considered for inlining
by the compiler are investigated. To those functions, a different
(more restrictive) limit compared to functions declared inline can
be applied (@option{--param max-inline-insns-auto}).
@item max-inline-insns-small
This is bound applied to calls which are considered relevant with
@option{-finline-small-functions}.
@item max-inline-insns-size
This is bound applied to calls which are optimized for size. Small growth
may be desirable to anticipate optimization oppurtunities exposed by inlining.
@item uninlined-function-insns
Number of instructions accounted by inliner for function overhead such as
function prologue and epilogue.
@item uninlined-function-time
Extra time accounted by inliner for function overhead such as time needed to
execute function prologue and epilogue.
@item inline-heuristics-hint-percent
The scale (in percents) applied to @option{inline-insns-single},
@option{inline-insns-single-O2}, @option{inline-insns-auto}
when inline heuristics hints that inlining is
very profitable (will enable later optimizations).
@item uninlined-thunk-insns
@item uninlined-thunk-time
Same as @option{--param uninlined-function-insns} and
@option{--param uninlined-function-time} but applied to function thunks.
@item inline-min-speedup
When estimated performance improvement of caller + callee runtime exceeds this
threshold (in percent), the function can be inlined regardless of the limit on
@option{--param max-inline-insns-single} and @option{--param
max-inline-insns-auto}.
@item large-function-insns
The limit specifying really large functions. For functions larger than this
limit after inlining, inlining is constrained by
@option{--param large-function-growth}. This parameter is useful primarily
to avoid extreme compilation time caused by non-linear algorithms used by the
back end.
@item large-function-growth
Specifies maximal growth of large function caused by inlining in percents.
For example, parameter value 100 limits large function growth to 2.0 times
the original size.
@item large-unit-insns
The limit specifying large translation unit. Growth caused by inlining of
units larger than this limit is limited by @option{--param inline-unit-growth}.
For small units this might be too tight.
For example, consider a unit consisting of function A
that is inline and B that just calls A three times. If B is small relative to
A, the growth of unit is 300\% and yet such inlining is very sane. For very
large units consisting of small inlineable functions, however, the overall unit
growth limit is needed to avoid exponential explosion of code size. Thus for
smaller units, the size is increased to @option{--param large-unit-insns}
before applying @option{--param inline-unit-growth}.
@item lazy-modules
Maximum number of concurrently open C++ module files when lazy loading.
@item inline-unit-growth
Specifies maximal overall growth of the compilation unit caused by inlining.
For example, parameter value 20 limits unit growth to 1.2 times the original
size. Cold functions (either marked cold via an attribute or by profile
feedback) are not accounted into the unit size.
@item ipa-cp-unit-growth
Specifies maximal overall growth of the compilation unit caused by
interprocedural constant propagation. For example, parameter value 10 limits
unit growth to 1.1 times the original size.
@item ipa-cp-large-unit-insns
The size of translation unit that IPA-CP pass considers large.
@item large-stack-frame
The limit specifying large stack frames. While inlining the algorithm is trying
to not grow past this limit too much.
@item large-stack-frame-growth
Specifies maximal growth of large stack frames caused by inlining in percents.
For example, parameter value 1000 limits large stack frame growth to 11 times
the original size.
@item max-inline-insns-recursive
@itemx max-inline-insns-recursive-auto
Specifies the maximum number of instructions an out-of-line copy of a
self-recursive inline
function can grow into by performing recursive inlining.
@option{--param max-inline-insns-recursive} applies to functions
declared inline.
For functions not declared inline, recursive inlining
happens only when @option{-finline-functions} (included in @option{-O3}) is
enabled; @option{--param max-inline-insns-recursive-auto} applies instead.
@item max-inline-recursive-depth
@itemx max-inline-recursive-depth-auto
Specifies the maximum recursion depth used for recursive inlining.
@option{--param max-inline-recursive-depth} applies to functions
declared inline. For functions not declared inline, recursive inlining
happens only when @option{-finline-functions} (included in @option{-O3}) is
enabled; @option{--param max-inline-recursive-depth-auto} applies instead.
@item min-inline-recursive-probability
Recursive inlining is profitable only for function having deep recursion
in average and can hurt for function having little recursion depth by
increasing the prologue size or complexity of function body to other
optimizers.
When profile feedback is available (see @option{-fprofile-generate}) the actual
recursion depth can be guessed from the probability that function recurses
via a given call expression. This parameter limits inlining only to call
expressions whose probability exceeds the given threshold (in percents).
@item early-inlining-insns
Specify growth that the early inliner can make. In effect it increases
the amount of inlining for code having a large abstraction penalty.
@item max-early-inliner-iterations
Limit of iterations of the early inliner. This basically bounds
the number of nested indirect calls the early inliner can resolve.
Deeper chains are still handled by late inlining.
@item comdat-sharing-probability
Probability (in percent) that C++ inline function with comdat visibility
are shared across multiple compilation units.
@item modref-max-bases
@item modref-max-refs
@item modref-max-accesses
Specifies the maximal number of base pointers, references and accesses stored
for a single function by mod/ref analysis.
@item modref-max-tests
Specifies the maxmal number of tests alias oracle can perform to disambiguate
memory locations using the mod/ref information. This parameter ought to be
bigger than @option{--param modref-max-bases} and @option{--param
modref-max-refs}.
@item modref-max-depth
Specifies the maximum depth of DFS walk used by modref escape analysis.
Setting to 0 disables the analysis completely.
@item modref-max-escape-points
Specifies the maximum number of escape points tracked by modref per SSA-name.
@item modref-max-adjustments
Specifies the maximum number the access range is enlarged during modref dataflow
analysis.
@item profile-func-internal-id
A parameter to control whether to use function internal id in profile
database lookup. If the value is 0, the compiler uses an id that
is based on function assembler name and filename, which makes old profile
data more tolerant to source changes such as function reordering etc.
@item min-vect-loop-bound
The minimum number of iterations under which loops are not vectorized
when @option{-ftree-vectorize} is used. The number of iterations after
vectorization needs to be greater than the value specified by this option
to allow vectorization.
@item gcse-cost-distance-ratio
Scaling factor in calculation of maximum distance an expression
can be moved by GCSE optimizations. This is currently supported only in the
code hoisting pass. The bigger the ratio, the more aggressive code hoisting
is with simple expressions, i.e., the expressions that have cost
less than @option{gcse-unrestricted-cost}. Specifying 0 disables
hoisting of simple expressions.
@item gcse-unrestricted-cost
Cost, roughly measured as the cost of a single typical machine
instruction, at which GCSE optimizations do not constrain
the distance an expression can travel. This is currently
supported only in the code hoisting pass. The lesser the cost,
the more aggressive code hoisting is. Specifying 0
allows all expressions to travel unrestricted distances.
@item max-hoist-depth
The depth of search in the dominator tree for expressions to hoist.
This is used to avoid quadratic behavior in hoisting algorithm.
The value of 0 does not limit on the search, but may slow down compilation
of huge functions.
@item max-tail-merge-comparisons
The maximum amount of similar bbs to compare a bb with. This is used to
avoid quadratic behavior in tree tail merging.
@item max-tail-merge-iterations
The maximum amount of iterations of the pass over the function. This is used to
limit compilation time in tree tail merging.
@item store-merging-allow-unaligned
Allow the store merging pass to introduce unaligned stores if it is legal to
do so.
@item max-stores-to-merge
The maximum number of stores to attempt to merge into wider stores in the store
merging pass.
@item max-store-chains-to-track
The maximum number of store chains to track at the same time in the attempt
to merge them into wider stores in the store merging pass.
@item max-stores-to-track
The maximum number of stores to track at the same time in the attemt to
to merge them into wider stores in the store merging pass.
@item max-unrolled-insns
The maximum number of instructions that a loop may have to be unrolled.
If a loop is unrolled, this parameter also determines how many times
the loop code is unrolled.
@item max-average-unrolled-insns
The maximum number of instructions biased by probabilities of their execution
that a loop may have to be unrolled. If a loop is unrolled,
this parameter also determines how many times the loop code is unrolled.
@item max-unroll-times
The maximum number of unrollings of a single loop.
@item max-peeled-insns
The maximum number of instructions that a loop may have to be peeled.
If a loop is peeled, this parameter also determines how many times
the loop code is peeled.
@item max-peel-times
The maximum number of peelings of a single loop.
@item max-peel-branches
The maximum number of branches on the hot path through the peeled sequence.
@item max-completely-peeled-insns
The maximum number of insns of a completely peeled loop.
@item max-completely-peel-times
The maximum number of iterations of a loop to be suitable for complete peeling.
@item max-completely-peel-loop-nest-depth
The maximum depth of a loop nest suitable for complete peeling.
@item max-unswitch-insns
The maximum number of insns of an unswitched loop.
@item max-unswitch-depth
The maximum depth of a loop nest to be unswitched.
@item lim-expensive
The minimum cost of an expensive expression in the loop invariant motion.
@item min-loop-cond-split-prob
When FDO profile information is available, @option{min-loop-cond-split-prob}
specifies minimum threshold for probability of semi-invariant condition
statement to trigger loop split.
@item iv-consider-all-candidates-bound
Bound on number of candidates for induction variables, below which
all candidates are considered for each use in induction variable
optimizations. If there are more candidates than this,
only the most relevant ones are considered to avoid quadratic time complexity.
@item iv-max-considered-uses
The induction variable optimizations give up on loops that contain more
induction variable uses.
@item iv-always-prune-cand-set-bound
If the number of candidates in the set is smaller than this value,
always try to remove unnecessary ivs from the set
when adding a new one.
@item avg-loop-niter
Average number of iterations of a loop.
@item dse-max-object-size
Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
Larger values may result in larger compilation times.
@item dse-max-alias-queries-per-store
Maximum number of queries into the alias oracle per store.
Larger values result in larger compilation times and may result in more
removed dead stores.
@item scev-max-expr-size
Bound on size of expressions used in the scalar evolutions analyzer.
Large expressions slow the analyzer.
@item scev-max-expr-complexity
Bound on the complexity of the expressions in the scalar evolutions analyzer.
Complex expressions slow the analyzer.
@item max-tree-if-conversion-phi-args
Maximum number of arguments in a PHI supported by TREE if conversion
unless the loop is marked with simd pragma.
@item vect-max-layout-candidates
The maximum number of possible vector layouts (such as permutations)
to consider when optimizing to-be-vectorized code.
@item vect-max-version-for-alignment-checks
The maximum number of run-time checks that can be performed when
doing loop versioning for alignment in the vectorizer.
@item vect-max-version-for-alias-checks
The maximum number of run-time checks that can be performed when
doing loop versioning for alias in the vectorizer.
@item vect-max-peeling-for-alignment
The maximum number of loop peels to enhance access alignment
for vectorizer. Value -1 means no limit.
@item max-iterations-to-track
The maximum number of iterations of a loop the brute-force algorithm
for analysis of the number of iterations of the loop tries to evaluate.
@item hot-bb-count-fraction
The denominator n of fraction 1/n of the maximal execution count of a
basic block in the entire program that a basic block needs to at least
have in order to be considered hot. The default is 10000, which means
that a basic block is considered hot if its execution count is greater
than 1/10000 of the maximal execution count. 0 means that it is never
considered hot. Used in non-LTO mode.
@item hot-bb-count-ws-permille
The number of most executed permilles, ranging from 0 to 1000, of the
profiled execution of the entire program to which the execution count
of a basic block must be part of in order to be considered hot. The
default is 990, which means that a basic block is considered hot if
its execution count contributes to the upper 990 permilles, or 99.0%,
of the profiled execution of the entire program. 0 means that it is
never considered hot. Used in LTO mode.
@item hot-bb-frequency-fraction
The denominator n of fraction 1/n of the execution frequency of the
entry block of a function that a basic block of this function needs
to at least have in order to be considered hot. The default is 1000,
which means that a basic block is considered hot in a function if it
is executed more frequently than 1/1000 of the frequency of the entry
block of the function. 0 means that it is never considered hot.
@item unlikely-bb-count-fraction
The denominator n of fraction 1/n of the number of profiled runs of
the entire program below which the execution count of a basic block
must be in order for the basic block to be considered unlikely executed.
The default is 20, which means that a basic block is considered unlikely
executed if it is executed in fewer than 1/20, or 5%, of the runs of
the program. 0 means that it is always considered unlikely executed.
@item max-predicted-iterations
The maximum number of loop iterations we predict statically. This is useful
in cases where a function contains a single loop with known bound and
another loop with unknown bound.
The known number of iterations is predicted correctly, while
the unknown number of iterations average to roughly 10. This means that the
loop without bounds appears artificially cold relative to the other one.
@item builtin-expect-probability
Control the probability of the expression having the specified value. This
parameter takes a percentage (i.e.@: 0 ... 100) as input.
@item builtin-string-cmp-inline-length
The maximum length of a constant string for a builtin string cmp call
eligible for inlining.
@item align-threshold
Select fraction of the maximal frequency of executions of a basic block in
a function to align the basic block.
@item align-loop-iterations
A loop expected to iterate at least the selected number of iterations is
aligned.
@item tracer-dynamic-coverage
@itemx tracer-dynamic-coverage-feedback
This value is used to limit superblock formation once the given percentage of
executed instructions is covered. This limits unnecessary code size
expansion.
The @option{tracer-dynamic-coverage-feedback} parameter
is used only when profile
feedback is available. The real profiles (as opposed to statically estimated
ones) are much less balanced allowing the threshold to be larger value.
@item tracer-max-code-growth
Stop tail duplication once code growth has reached given percentage. This is
a rather artificial limit, as most of the duplicates are eliminated later in
cross jumping, so it may be set to much higher values than is the desired code
growth.
@item tracer-min-branch-ratio
Stop reverse growth when the reverse probability of best edge is less than this
threshold (in percent).
@item tracer-min-branch-probability
@itemx tracer-min-branch-probability-feedback
Stop forward growth if the best edge has probability lower than this
threshold.
Similarly to @option{tracer-dynamic-coverage} two parameters are
provided. @option{tracer-min-branch-probability-feedback} is used for
compilation with profile feedback and @option{tracer-min-branch-probability}
compilation without. The value for compilation with profile feedback
needs to be more conservative (higher) in order to make tracer
effective.
@item stack-clash-protection-guard-size
Specify the size of the operating system provided stack guard as
2 raised to @var{num} bytes. Higher values may reduce the
number of explicit probes, but a value larger than the operating system
provided guard will leave code vulnerable to stack clash style attacks.
@item stack-clash-protection-probe-interval
Stack clash protection involves probing stack space as it is allocated. This
param controls the maximum distance between probes into the stack as 2 raised
to @var{num} bytes. Higher values may reduce the number of explicit probes, but a value
larger than the operating system provided guard will leave code vulnerable to
stack clash style attacks.
@item max-cse-path-length
The maximum number of basic blocks on path that CSE considers.
@item max-cse-insns
The maximum number of instructions CSE processes before flushing.
@item ggc-min-expand
GCC uses a garbage collector to manage its own memory allocation. This
parameter specifies the minimum percentage by which the garbage
collector's heap should be allowed to expand between collections.
Tuning this may improve compilation speed; it has no effect on code
generation.
The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
GCC is not able to calculate RAM on a particular platform, the lower
bound of 30% is used. Setting this parameter and
@option{ggc-min-heapsize} to zero causes a full collection to occur at
every opportunity. This is extremely slow, but can be useful for
debugging.
@item ggc-min-heapsize
Minimum size of the garbage collector's heap before it begins bothering
to collect garbage. The first collection occurs after the heap expands
by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
tuning this may improve compilation speed, and has no effect on code
generation.
The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
with a lower bound of 4096 (four megabytes) and an upper bound of
131072 (128 megabytes). If GCC is not able to calculate RAM on a
particular platform, the lower bound is used. Setting this parameter
very large effectively disables garbage collection. Setting this
parameter and @option{ggc-min-expand} to zero causes a full collection
to occur at every opportunity.
@item max-reload-search-insns
The maximum number of instruction reload should look backward for equivalent
register. Increasing values mean more aggressive optimization, making the
compilation time increase with probably slightly better performance.
@item max-cselib-memory-locations
The maximum number of memory locations cselib should take into account.
Increasing values mean more aggressive optimization, making the compilation time
increase with probably slightly better performance.
@item max-sched-ready-insns
The maximum number of instructions ready to be issued the scheduler should
consider at any given time during the first scheduling pass. Increasing
values mean more thorough searches, making the compilation time increase
with probably little benefit.
@item max-sched-region-blocks
The maximum number of blocks in a region to be considered for
interblock scheduling.
@item max-pipeline-region-blocks
The maximum number of blocks in a region to be considered for
pipelining in the selective scheduler.
@item max-sched-region-insns
The maximum number of insns in a region to be considered for
interblock scheduling.
@item max-pipeline-region-insns
The maximum number of insns in a region to be considered for
pipelining in the selective scheduler.
@item min-spec-prob
The minimum probability (in percents) of reaching a source block
for interblock speculative scheduling.
@item max-sched-extend-regions-iters
The maximum number of iterations through CFG to extend regions.
A value of 0 disables region extensions.
@item max-sched-insn-conflict-delay
The maximum conflict delay for an insn to be considered for speculative motion.
@item sched-spec-prob-cutoff
The minimal probability of speculation success (in percents), so that
speculative insns are scheduled.
@item sched-state-edge-prob-cutoff
The minimum probability an edge must have for the scheduler to save its
state across it.
@item sched-mem-true-dep-cost
Minimal distance (in CPU cycles) between store and load targeting same
memory locations.
@item selsched-max-lookahead
The maximum size of the lookahead window of selective scheduling. It is a
depth of search for available instructions.
@item selsched-max-sched-times
The maximum number of times that an instruction is scheduled during
selective scheduling. This is the limit on the number of iterations
through which the instruction may be pipelined.
@item selsched-insns-to-rename
The maximum number of best instructions in the ready list that are considered
for renaming in the selective scheduler.
@item sms-min-sc
The minimum value of stage count that swing modulo scheduler
generates.
@item max-last-value-rtl
The maximum size measured as number of RTLs that can be recorded in an expression
in combiner for a pseudo register as last known value of that register.
@item max-combine-insns
The maximum number of instructions the RTL combiner tries to combine.
@item integer-share-limit
Small integer constants can use a shared data structure, reducing the
compiler's memory usage and increasing its speed. This sets the maximum
value of a shared integer constant.
@item ssp-buffer-size
The minimum size of buffers (i.e.@: arrays) that receive stack smashing
protection when @option{-fstack-protector} is used.
@item min-size-for-stack-sharing
The minimum size of variables taking part in stack slot sharing when not
optimizing.
@item max-jump-thread-duplication-stmts
Maximum number of statements allowed in a block that needs to be
duplicated when threading jumps.
@item max-jump-thread-paths
The maximum number of paths to consider when searching for jump threading
opportunities. When arriving at a block, incoming edges are only considered
if the number of paths to be searched so far multiplied by the number of
incoming edges does not exhaust the specified maximum number of paths to
consider.
@item max-fields-for-field-sensitive
Maximum number of fields in a structure treated in
a field sensitive manner during pointer analysis.
@item prefetch-latency
Estimate on average number of instructions that are executed before
prefetch finishes. The distance prefetched ahead is proportional
to this constant. Increasing this number may also lead to less
streams being prefetched (see @option{simultaneous-prefetches}).
@item simultaneous-prefetches
Maximum number of prefetches that can run at the same time.
@item l1-cache-line-size
The size of cache line in L1 data cache, in bytes.
@item l1-cache-size
The size of L1 data cache, in kilobytes.
@item l2-cache-size
The size of L2 data cache, in kilobytes.
@item prefetch-dynamic-strides
Whether the loop array prefetch pass should issue software prefetch hints
for strides that are non-constant. In some cases this may be
beneficial, though the fact the stride is non-constant may make it
hard to predict when there is clear benefit to issuing these hints.
Set to 1 if the prefetch hints should be issued for non-constant
strides. Set to 0 if prefetch hints should be issued only for strides that
are known to be constant and below @option{prefetch-minimum-stride}.
@item prefetch-minimum-stride
Minimum constant stride, in bytes, to start using prefetch hints for. If
the stride is less than this threshold, prefetch hints will not be issued.
This setting is useful for processors that have hardware prefetchers, in
which case there may be conflicts between the hardware prefetchers and
the software prefetchers. If the hardware prefetchers have a maximum
stride they can handle, it should be used here to improve the use of
software prefetchers.
A value of -1 means we don't have a threshold and therefore
prefetch hints can be issued for any constant stride.
This setting is only useful for strides that are known and constant.
@item destructive-interference-size
@item constructive-interference-size
The values for the C++17 variables
@code{std::hardware_destructive_interference_size} and
@code{std::hardware_constructive_interference_size}. The destructive
interference size is the minimum recommended offset between two
independent concurrently-accessed objects; the constructive
interference size is the maximum recommended size of contiguous memory
accessed together. Typically both will be the size of an L1 cache
line for the target, in bytes. For a generic target covering a range of L1
cache line sizes, typically the constructive interference size will be
the small end of the range and the destructive size will be the large
end.
The destructive interference size is intended to be used for layout,
and thus has ABI impact. The default value is not expected to be
stable, and on some targets varies with @option{-mtune}, so use of
this variable in a context where ABI stability is important, such as
the public interface of a library, is strongly discouraged; if it is
used in that context, users can stabilize the value using this
option.
The constructive interference size is less sensitive, as it is
typically only used in a @samp{static_assert} to make sure that a type
fits within a cache line.
See also @option{-Winterference-size}.
@item loop-interchange-max-num-stmts
The maximum number of stmts in a loop to be interchanged.
@item loop-interchange-stride-ratio
The minimum ratio between stride of two loops for interchange to be profitable.
@item min-insn-to-prefetch-ratio
The minimum ratio between the number of instructions and the
number of prefetches to enable prefetching in a loop.
@item prefetch-min-insn-to-mem-ratio
The minimum ratio between the number of instructions and the
number of memory references to enable prefetching in a loop.
@item use-canonical-types
Whether the compiler should use the ``canonical'' type system.
Should always be 1, which uses a more efficient internal
mechanism for comparing types in C++ and Objective-C++. However, if
bugs in the canonical type system are causing compilation failures,
set this value to 0 to disable canonical types.
@item switch-conversion-max-branch-ratio
Switch initialization conversion refuses to create arrays that are
bigger than @option{switch-conversion-max-branch-ratio} times the number of
branches in the switch.
@item max-partial-antic-length
Maximum length of the partial antic set computed during the tree
partial redundancy elimination optimization (@option{-ftree-pre}) when
optimizing at @option{-O3} and above. For some sorts of source code
the enhanced partial redundancy elimination optimization can run away,
consuming all of the memory available on the host machine. This
parameter sets a limit on the length of the sets that are computed,
which prevents the runaway behavior. Setting a value of 0 for
this parameter allows an unlimited set length.
@item rpo-vn-max-loop-depth
Maximum loop depth that is value-numbered optimistically.
When the limit hits the innermost
@var{rpo-vn-max-loop-depth} loops and the outermost loop in the
loop nest are value-numbered optimistically and the remaining ones not.
@item sccvn-max-alias-queries-per-access
Maximum number of alias-oracle queries we perform when looking for
redundancies for loads and stores. If this limit is hit the search
is aborted and the load or store is not considered redundant. The
number of queries is algorithmically limited to the number of
stores on all paths from the load to the function entry.
@item ira-max-loops-num
IRA uses regional register allocation by default. If a function
contains more loops than the number given by this parameter, only at most
the given number of the most frequently-executed loops form regions
for regional register allocation.
@item ira-max-conflict-table-size
Although IRA uses a sophisticated algorithm to compress the conflict
table, the table can still require excessive amounts of memory for
huge functions. If the conflict table for a function could be more
than the size in MB given by this parameter, the register allocator
instead uses a faster, simpler, and lower-quality
algorithm that does not require building a pseudo-register conflict table.
@item ira-loop-reserved-regs
IRA can be used to evaluate more accurate register pressure in loops
for decisions to move loop invariants (see @option{-O3}). The number
of available registers reserved for some other purposes is given
by this parameter. Default of the parameter
is the best found from numerous experiments.
@item ira-consider-dup-in-all-alts
Make IRA to consider matching constraint (duplicated operand number)
heavily in all available alternatives for preferred register class.
If it is set as zero, it means IRA only respects the matching
constraint when it's in the only available alternative with an
appropriate register class. Otherwise, it means IRA will check all
available alternatives for preferred register class even if it has
found some choice with an appropriate register class and respect the
found qualified matching constraint.
@item ira-simple-lra-insn-threshold
Approximate function insn number in 1K units triggering simple local RA.
@item lra-inheritance-ebb-probability-cutoff
LRA tries to reuse values reloaded in registers in subsequent insns.
This optimization is called inheritance. EBB is used as a region to
do this optimization. The parameter defines a minimal fall-through
edge probability in percentage used to add BB to inheritance EBB in
LRA. The default value was chosen
from numerous runs of SPEC2000 on x86-64.
@item loop-invariant-max-bbs-in-loop
Loop invariant motion can be very expensive, both in compilation time and
in amount of needed compile-time memory, with very large loops. Loops
with more basic blocks than this parameter won't have loop invariant
motion optimization performed on them.
@item loop-max-datarefs-for-datadeps
Building data dependencies is expensive for very large loops. This
parameter limits the number of data references in loops that are
considered for data dependence analysis. These large loops are no
handled by the optimizations using loop data dependencies.
@item max-vartrack-size
Sets a maximum number of hash table slots to use during variable
tracking dataflow analysis of any function. If this limit is exceeded
with variable tracking at assignments enabled, analysis for that
function is retried without it, after removing all debug insns from
the function. If the limit is exceeded even without debug insns, var
tracking analysis is completely disabled for the function. Setting
the parameter to zero makes it unlimited.
@item max-vartrack-expr-depth
Sets a maximum number of recursion levels when attempting to map
variable names or debug temporaries to value expressions. This trades
compilation time for more complete debug information. If this is set too
low, value expressions that are available and could be represented in
debug information may end up not being used; setting this higher may
enable the compiler to find more complex debug expressions, but compile
time and memory use may grow.
@item max-debug-marker-count
Sets a threshold on the number of debug markers (e.g.@: begin stmt
markers) to avoid complexity explosion at inlining or expanding to RTL.
If a function has more such gimple stmts than the set limit, such stmts
will be dropped from the inlined copy of a function, and from its RTL
expansion.
@item min-nondebug-insn-uid
Use uids starting at this parameter for nondebug insns. The range below
the parameter is reserved exclusively for debug insns created by
@option{-fvar-tracking-assignments}, but debug insns may get
(non-overlapping) uids above it if the reserved range is exhausted.
@item ipa-sra-deref-prob-threshold
IPA-SRA replaces a pointer which is known not be NULL with one or more
new parameters only when the probability (in percent, relative to
function entry) of it being dereferenced is higher than this parameter.
@item ipa-sra-ptr-growth-factor
IPA-SRA replaces a pointer to an aggregate with one or more new
parameters only when their cumulative size is less or equal to
@option{ipa-sra-ptr-growth-factor} times the size of the original
pointer parameter.
@item ipa-sra-ptrwrap-growth-factor
Additional maximum allowed growth of total size of new parameters
that ipa-sra replaces a pointer to an aggregate with,
if it points to a local variable that the caller only writes to and
passes it as an argument to other functions.
@item ipa-sra-max-replacements
Maximum pieces of an aggregate that IPA-SRA tracks. As a
consequence, it is also the maximum number of replacements of a formal
parameter.
@item sra-max-scalarization-size-Ospeed
@itemx sra-max-scalarization-size-Osize
The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
replace scalar parts of aggregates with uses of independent scalar
variables. These parameters control the maximum size, in storage units,
of aggregate which is considered for replacement when compiling for
speed
(@option{sra-max-scalarization-size-Ospeed}) or size
(@option{sra-max-scalarization-size-Osize}) respectively.
@item sra-max-propagations
The maximum number of artificial accesses that Scalar Replacement of
Aggregates (SRA) will track, per one local variable, in order to
facilitate copy propagation.
@item tm-max-aggregate-size
When making copies of thread-local variables in a transaction, this
parameter specifies the size in bytes after which variables are
saved with the logging functions as opposed to save/restore code
sequence pairs. This option only applies when using
@option{-fgnu-tm}.
@item graphite-max-nb-scop-params
To avoid exponential effects in the Graphite loop transforms, the
number of parameters in a Static Control Part (SCoP) is bounded.
A value of zero can be used to lift
the bound. A variable whose value is unknown at compilation time and
defined outside a SCoP is a parameter of the SCoP.
@item hardcfr-max-blocks
Disable @option{-fharden-control-flow-redundancy} for functions with a
larger number of blocks than the specified value. Zero removes any
limit.
@item hardcfr-max-inline-blocks
Force @option{-fharden-control-flow-redundancy} to use out-of-line
checking for functions with a larger number of basic blocks than the
specified value.
@item loop-block-tile-size
Loop blocking or strip mining transforms, enabled with
@option{-floop-block} or @option{-floop-strip-mine}, strip mine each
loop in the loop nest by a given number of iterations. The strip
length can be changed using the @option{loop-block-tile-size}
parameter.
@item ipa-jump-function-lookups
Specifies number of statements visited during jump function offset discovery.
@item ipa-cp-value-list-size
IPA-CP attempts to track all possible values and types passed to a function's
parameter in order to propagate them and perform devirtualization.
@option{ipa-cp-value-list-size} is the maximum number of values and types it
stores per one formal parameter of a function.
@item ipa-cp-eval-threshold
IPA-CP calculates its own score of cloning profitability heuristics
and performs those cloning opportunities with scores that exceed
@option{ipa-cp-eval-threshold}.
@item ipa-cp-max-recursive-depth
Maximum depth of recursive cloning for self-recursive function.
@item ipa-cp-min-recursive-probability
Recursive cloning only when the probability of call being executed exceeds
the parameter.
@item ipa-cp-profile-count-base
When using @option{-fprofile-use} option, IPA-CP will consider the measured
execution count of a call graph edge at this percentage position in their
histogram as the basis for its heuristics calculation.
@item ipa-cp-recursive-freq-factor
The number of times interprocedural copy propagation expects recursive
functions to call themselves.
@item ipa-cp-recursion-penalty
Percentage penalty the recursive functions will receive when they
are evaluated for cloning.
@item ipa-cp-single-call-penalty
Percentage penalty functions containing a single call to another
function will receive when they are evaluated for cloning.
@item ipa-max-agg-items
IPA-CP is also capable to propagate a number of scalar values passed
in an aggregate. @option{ipa-max-agg-items} controls the maximum
number of such values per one parameter.
@item ipa-cp-loop-hint-bonus
When IPA-CP determines that a cloning candidate would make the number
of iterations of a loop known, it adds a bonus of
@option{ipa-cp-loop-hint-bonus} to the profitability score of
the candidate.
@item ipa-max-loop-predicates
The maximum number of different predicates IPA will use to describe when
loops in a function have known properties.
@item ipa-max-aa-steps
During its analysis of function bodies, IPA-CP employs alias analysis
in order to track values pointed to by function parameters. In order
not spend too much time analyzing huge functions, it gives up and
consider all memory clobbered after examining
@option{ipa-max-aa-steps} statements modifying memory.
@item ipa-max-switch-predicate-bounds
Maximal number of boundary endpoints of case ranges of switch statement.
For switch exceeding this limit, IPA-CP will not construct cloning cost
predicate, which is used to estimate cloning benefit, for default case
of the switch statement.
@item ipa-max-param-expr-ops
IPA-CP will analyze conditional statement that references some function
parameter to estimate benefit for cloning upon certain constant value.
But if number of operations in a parameter expression exceeds
@option{ipa-max-param-expr-ops}, the expression is treated as complicated
one, and is not handled by IPA analysis.
@item lto-partitions
Specify desired number of partitions produced during WHOPR compilation.
The number of partitions should exceed the number of CPUs used for compilation.
@item lto-min-partition
Size of minimal partition for WHOPR (in estimated instructions).
This prevents expenses of splitting very small programs into too many
partitions.
@item lto-max-partition
Size of max partition for WHOPR (in estimated instructions).
to provide an upper bound for individual size of partition.
Meant to be used only with balanced partitioning.
@item lto-max-streaming-parallelism
Maximal number of parallel processes used for LTO streaming.
@item cxx-max-namespaces-for-diagnostic-help
The maximum number of namespaces to consult for suggestions when C++
name lookup fails for an identifier.
@item sink-frequency-threshold
The maximum relative execution frequency (in percents) of the target block
relative to a statement's original block to allow statement sinking of a
statement. Larger numbers result in more aggressive statement sinking.
A small positive adjustment is applied for
statements with memory operands as those are even more profitable so sink.
@item max-stores-to-sink
The maximum number of conditional store pairs that can be sunk. Set to 0
if either vectorization (@option{-ftree-vectorize}) or if-conversion
(@option{-ftree-loop-if-convert}) is disabled.
@item case-values-threshold
The smallest number of different values for which it is best to use a
jump-table instead of a tree of conditional branches. If the value is
0, use the default for the machine.
@item jump-table-max-growth-ratio-for-size
The maximum code size growth ratio when expanding
into a jump table (in percent). The parameter is used when
optimizing for size.
@item jump-table-max-growth-ratio-for-speed
The maximum code size growth ratio when expanding
into a jump table (in percent). The parameter is used when
optimizing for speed.
@item tree-reassoc-width
Set the maximum number of instructions executed in parallel in
reassociated tree. This parameter overrides target dependent
heuristics used by default if has non zero value.
@item sched-pressure-algorithm
Choose between the two available implementations of
@option{-fsched-pressure}. Algorithm 1 is the original implementation
and is the more likely to prevent instructions from being reordered.
Algorithm 2 was designed to be a compromise between the relatively
conservative approach taken by algorithm 1 and the rather aggressive
approach taken by the default scheduler. It relies more heavily on
having a regular register file and accurate register pressure classes.
See @file{haifa-sched.cc} in the GCC sources for more details.
The default choice depends on the target.
@item max-slsr-cand-scan
Set the maximum number of existing candidates that are considered when
seeking a basis for a new straight-line strength reduction candidate.
@item asan-globals
Enable buffer overflow detection for global objects. This kind
of protection is enabled by default if you are using
@option{-fsanitize=address} option.
To disable global objects protection use @option{--param asan-globals=0}.
@item asan-stack
Enable buffer overflow detection for stack objects. This kind of
protection is enabled by default when using @option{-fsanitize=address}.
To disable stack protection use @option{--param asan-stack=0} option.
@item asan-instrument-reads
Enable buffer overflow detection for memory reads. This kind of
protection is enabled by default when using @option{-fsanitize=address}.
To disable memory reads protection use
@option{--param asan-instrument-reads=0}.
@item asan-instrument-writes
Enable buffer overflow detection for memory writes. This kind of
protection is enabled by default when using @option{-fsanitize=address}.
To disable memory writes protection use
@option{--param asan-instrument-writes=0} option.
@item asan-memintrin
Enable detection for built-in functions. This kind of protection
is enabled by default when using @option{-fsanitize=address}.
To disable built-in functions protection use
@option{--param asan-memintrin=0}.
@item asan-use-after-return
Enable detection of use-after-return. This kind of protection
is enabled by default when using the @option{-fsanitize=address} option.
To disable it use @option{--param asan-use-after-return=0}.
Note: By default the check is disabled at run time. To enable it,
add @code{detect_stack_use_after_return=1} to the environment variable
@env{ASAN_OPTIONS}.
@item asan-instrumentation-with-call-threshold
If number of memory accesses in function being instrumented
is greater or equal to this number, use callbacks instead of inline checks.
E.g. to disable inline code use
@option{--param asan-instrumentation-with-call-threshold=0}.
@item asan-kernel-mem-intrinsic-prefix
If nonzero, prefix calls to @code{memcpy}, @code{memset} and @code{memmove}
with @samp{__asan_} or @samp{__hwasan_}
for @option{-fsanitize=kernel-address} or @samp{-fsanitize=kernel-hwaddress},
respectively.
@item hwasan-instrument-stack
Enable hwasan instrumentation of statically sized stack-allocated variables.
This kind of instrumentation is enabled by default when using
@option{-fsanitize=hwaddress} and disabled by default when using
@option{-fsanitize=kernel-hwaddress}.
To disable stack instrumentation use
@option{--param hwasan-instrument-stack=0}, and to enable it use
@option{--param hwasan-instrument-stack=1}.
@item hwasan-random-frame-tag
When using stack instrumentation, decide tags for stack variables using a
deterministic sequence beginning at a random tag for each frame. With this
parameter unset tags are chosen using the same sequence but beginning from 1.
This is enabled by default for @option{-fsanitize=hwaddress} and unavailable
for @option{-fsanitize=kernel-hwaddress}.
To disable it use @option{--param hwasan-random-frame-tag=0}.
@item hwasan-instrument-allocas
Enable hwasan instrumentation of dynamically sized stack-allocated variables.
This kind of instrumentation is enabled by default when using
@option{-fsanitize=hwaddress} and disabled by default when using
@option{-fsanitize=kernel-hwaddress}.
To disable instrumentation of such variables use
@option{--param hwasan-instrument-allocas=0}, and to enable it use
@option{--param hwasan-instrument-allocas=1}.
@item hwasan-instrument-reads
Enable hwasan checks on memory reads. Instrumentation of reads is enabled by
default for both @option{-fsanitize=hwaddress} and
@option{-fsanitize=kernel-hwaddress}.
To disable checking memory reads use
@option{--param hwasan-instrument-reads=0}.
@item hwasan-instrument-writes
Enable hwasan checks on memory writes. Instrumentation of writes is enabled by
default for both @option{-fsanitize=hwaddress} and
@option{-fsanitize=kernel-hwaddress}.
To disable checking memory writes use
@option{--param hwasan-instrument-writes=0}.
@item hwasan-instrument-mem-intrinsics
Enable hwasan instrumentation of builtin functions. Instrumentation of these
builtin functions is enabled by default for both @option{-fsanitize=hwaddress}
and @option{-fsanitize=kernel-hwaddress}.
To disable instrumentation of builtin functions use
@option{--param hwasan-instrument-mem-intrinsics=0}.
@item use-after-scope-direct-emission-threshold
If the size of a local variable in bytes is smaller or equal to this
number, directly poison (or unpoison) shadow memory instead of using
run-time callbacks.
@item tsan-distinguish-volatile
Emit special instrumentation for accesses to volatiles.
@item tsan-instrument-func-entry-exit
Emit instrumentation calls to __tsan_func_entry() and __tsan_func_exit().
@item max-fsm-thread-path-insns
Maximum number of instructions to copy when duplicating blocks on a
finite state automaton jump thread path.
@item threader-debug
threader-debug=[none|all] Enables verbose dumping of the threader solver.
@item parloops-chunk-size
Chunk size of omp schedule for loops parallelized by parloops.
@item parloops-schedule
Schedule type of omp schedule for loops parallelized by parloops (static,
dynamic, guided, auto, runtime).
@item parloops-min-per-thread
The minimum number of iterations per thread of an innermost parallelized
loop for which the parallelized variant is preferred over the single threaded
one. Note that for a parallelized loop nest the
minimum number of iterations of the outermost loop per thread is two.
@item max-ssa-name-query-depth
Maximum depth of recursion when querying properties of SSA names in things
like fold routines. One level of recursion corresponds to following a
use-def chain.
@item max-speculative-devirt-maydefs
The maximum number of may-defs we analyze when looking for a must-def
specifying the dynamic type of an object that invokes a virtual call
we may be able to devirtualize speculatively.
@item ranger-debug
Specifies the type of debug output to be issued for ranges.
@item unroll-jam-min-percent
The minimum percentage of memory references that must be optimized
away for the unroll-and-jam transformation to be considered profitable.
@item unroll-jam-max-unroll
The maximum number of times the outer loop should be unrolled by
the unroll-and-jam transformation.
@item max-rtl-if-conversion-unpredictable-cost
Maximum permissible cost for the sequence that would be generated
by the RTL if-conversion pass for a branch that is considered unpredictable.
@item max-variable-expansions-in-unroller
If @option{-fvariable-expansion-in-unroller} is used, the maximum number
of times that an individual variable will be expanded during loop unrolling.
@item partial-inlining-entry-probability
Maximum probability of the entry BB of split region
(in percent relative to entry BB of the function)
to make partial inlining happen.
@item max-tracked-strlens
Maximum number of strings for which strlen optimization pass will
track string lengths.
@item gcse-after-reload-partial-fraction
The threshold ratio for performing partial redundancy
elimination after reload.
@item gcse-after-reload-critical-fraction
The threshold ratio of critical edges execution count that
permit performing redundancy elimination after reload.
@item max-loop-header-insns
The maximum number of insns in loop header duplicated
by the copy loop headers pass.
@item vect-epilogues-nomask
Enable loop epilogue vectorization using smaller vector size.
@item vect-partial-vector-usage
Controls when the loop vectorizer considers using partial vector loads
and stores as an alternative to falling back to scalar code. 0 stops
the vectorizer from ever using partial vector loads and stores. 1 allows
partial vector loads and stores if vectorization removes the need for the
code to iterate. 2 allows partial vector loads and stores in all loops.
The parameter only has an effect on targets that support partial
vector loads and stores.
@item vect-inner-loop-cost-factor
The maximum factor which the loop vectorizer applies to the cost of statements
in an inner loop relative to the loop being vectorized. The factor applied
is the maximum of the estimated number of iterations of the inner loop and
this parameter. The default value of this parameter is 50.
@item vect-induction-float
Enable loop vectorization of floating point inductions.
@item vrp-block-limit
Maximum number of basic blocks before VRP switches to a lower memory algorithm.
@item vrp-sparse-threshold
Maximum number of basic blocks before VRP uses a sparse bitmap cache.
@item vrp-switch-limit
Maximum number of outgoing edges in a switch before VRP will not process it.
@item vrp-vector-threshold
Maximum number of basic blocks for VRP to use a basic cache vector.
@item avoid-fma-max-bits
Maximum number of bits for which we avoid creating FMAs.
@item fully-pipelined-fma
Whether the target fully pipelines FMA instructions. If non-zero,
reassociation considers the benefit of parallelizing FMA's multiplication
part and addition part, assuming FMUL and FMA use the same units that can
also do FADD.
@item sms-loop-average-count-threshold
A threshold on the average loop count considered by the swing modulo scheduler.
@item sms-dfa-history
The number of cycles the swing modulo scheduler considers when checking
conflicts using DFA.
@item graphite-allow-codegen-errors
Whether codegen errors should be ICEs when @option{-fchecking}.
@item sms-max-ii-factor
A factor for tuning the upper bound that swing modulo scheduler
uses for scheduling a loop.
@item lra-max-considered-reload-pseudos
The max number of reload pseudos which are considered during
spilling a non-reload pseudo.
@item max-pow-sqrt-depth
Maximum depth of sqrt chains to use when synthesizing exponentiation
by a real constant.
@item max-dse-active-local-stores
Maximum number of active local stores in RTL dead store elimination.
@item asan-instrument-allocas
Enable asan allocas/VLAs protection.
@item max-iterations-computation-cost
Bound on the cost of an expression to compute the number of iterations.
@item max-isl-operations
Maximum number of isl operations, 0 means unlimited.
@item graphite-max-arrays-per-scop
Maximum number of arrays per scop.
@item max-vartrack-reverse-op-size
Max. size of loc list for which reverse ops should be added.
@item fsm-scale-path-stmts
Scale factor to apply to the number of statements in a threading path
crossing a loop backedge when comparing to
@option{--param=max-jump-thread-duplication-stmts}.
@item uninit-control-dep-attempts
Maximum number of nested calls to search for control dependencies
during uninitialized variable analysis.
@item uninit-max-chain-len
Maximum number of predicates anded for each predicate ored in the normalized
predicate chain.
@item uninit-max-num-chains
Maximum number of predicates ored in the normalized predicate chain.
@item sched-autopref-queue-depth
Hardware autoprefetcher scheduler model control flag.
Number of lookahead cycles the model looks into; at '
' only enable instruction sorting heuristic.
@item loop-versioning-max-inner-insns
The maximum number of instructions that an inner loop can have
before the loop versioning pass considers it too big to copy.
@item loop-versioning-max-outer-insns
The maximum number of instructions that an outer loop can have
before the loop versioning pass considers it too big to copy,
discounting any instructions in inner loops that directly benefit
from versioning.
@item ssa-name-def-chain-limit
The maximum number of SSA_NAME assignments to follow in determining
a property of a variable such as its value. This limits the number
of iterations or recursive calls GCC performs when optimizing certain
statements or when determining their validity prior to issuing
diagnostics.
@item store-merging-max-size
Maximum size of a single store merging region in bytes.
@item hash-table-verification-limit
The number of elements for which hash table verification is done
for each searched element.
@item max-find-base-term-values
Maximum number of VALUEs handled during a single find_base_term call.
@item analyzer-max-enodes-per-program-point
The maximum number of exploded nodes per program point within
the analyzer, before terminating analysis of that point.
@item analyzer-max-constraints
The maximum number of constraints per state.
@item analyzer-min-snodes-for-call-summary
The minimum number of supernodes within a function for the
analyzer to consider summarizing its effects at call sites.
@item analyzer-max-enodes-for-full-dump
The maximum depth of exploded nodes that should appear in a dot dump
before switching to a less verbose format.
@item analyzer-max-recursion-depth
The maximum number of times a callsite can appear in a call stack
within the analyzer, before terminating analysis of a call that would
recurse deeper.
@item analyzer-max-svalue-depth
The maximum depth of a symbolic value, before approximating
the value as unknown.
@item analyzer-max-infeasible-edges
The maximum number of infeasible edges to reject before declaring
a diagnostic as infeasible.
@item gimple-fe-computed-hot-bb-threshold
The number of executions of a basic block which is considered hot.
The parameter is used only in GIMPLE FE.
@item analyzer-bb-explosion-factor
The maximum number of 'after supernode' exploded nodes within the analyzer
per supernode, before terminating analysis.
@item analyzer-text-art-string-ellipsis-threshold
The number of bytes at which to ellipsize string literals in analyzer text art diagrams.
@item analyzer-text-art-ideal-canvas-width
The ideal width in characters of text art diagrams generated by the analyzer.
@item analyzer-text-art-string-ellipsis-head-len
The number of literal bytes to show at the head of a string literal in text art when ellipsizing it.
@item analyzer-text-art-string-ellipsis-tail-len
The number of literal bytes to show at the tail of a string literal in text art when ellipsizing it.
@item ranger-logical-depth
Maximum depth of logical expression evaluation ranger will look through
when evaluating outgoing edge ranges.
@item ranger-recompute-depth
Maximum depth of instruction chains to consider for recomputation
in the outgoing range calculator.
@item relation-block-limit
Maximum number of relations the oracle will register in a basic block.
@item min-pagesize
Minimum page size for warning purposes.
@item openacc-kernels
Specify mode of OpenACC `kernels' constructs handling.
With @option{--param=openacc-kernels=decompose}, OpenACC `kernels'
constructs are decomposed into parts, a sequence of compute
constructs, each then handled individually.
This is work in progress.
With @option{--param=openacc-kernels=parloops}, OpenACC `kernels'
constructs are handled by the @samp{parloops} pass, en bloc.
This is the current default.
@item openacc-privatization
Control whether the @option{-fopt-info-omp-note} and applicable
@option{-fdump-tree-*-details} options emit OpenACC privatization diagnostics.
With @option{--param=openacc-privatization=quiet}, don't diagnose.
This is the current default.
With @option{--param=openacc-privatization=noisy}, do diagnose.
@end table
The following choices of @var{name} are available on AArch64 targets:
@table @gcctabopt
@item aarch64-vect-compare-costs
When vectorizing, consider using multiple different approaches and use
the cost model to choose the cheapest one. This includes:
@itemize
@item
Trying both SVE and Advanced SIMD, when SVE is available.
@item
Trying to use 64-bit Advanced SIMD vectors for the smallest data elements,
rather than using 128-bit vectors for everything.
@item
Trying to use ``unpacked'' SVE vectors for smaller elements. This includes
storing smaller elements in larger containers and accessing elements with
extending loads and truncating stores.
@end itemize
@item aarch64-float-recp-precision
The number of Newton iterations for calculating the reciprocal for float type.
The precision of division is proportional to this param when division
approximation is enabled. The default value is 1.
@item aarch64-double-recp-precision
The number of Newton iterations for calculating the reciprocal for double type.
The precision of division is propotional to this param when division
approximation is enabled. The default value is 2.
@item aarch64-autovec-preference
Force an ISA selection strategy for auto-vectorization. Accepts values from
0 to 4, inclusive.
@table @samp
@item 0
Use the default heuristics.
@item 1
Use only Advanced SIMD for auto-vectorization.
@item 2
Use only SVE for auto-vectorization.
@item 3
Use both Advanced SIMD and SVE. Prefer Advanced SIMD when the costs are
deemed equal.
@item 4
Use both Advanced SIMD and SVE. Prefer SVE when the costs are deemed equal.
@end table
The default value is 0.
@item aarch64-ldp-policy
Fine-grained policy for load pairs.
With @option{--param=aarch64-ldp-policy=default}, use the policy of the
tuning structure. This is the current default.
With @option{--param=aarch64-ldp-policy=always}, emit ldp regardless
of alignment.
With @option{--param=aarch64-ldp-policy=never}, do not emit ldp.
With @option{--param=aarch64-ldp-policy=aligned}, emit ldp only if the
source pointer is aligned to at least double the alignment of the type.
@item aarch64-stp-policy
Fine-grained policy for store pairs.
With @option{--param=aarch64-stp-policy=default}, use the policy of the
tuning structure. This is the current default.
With @option{--param=aarch64-stp-policy=always}, emit stp regardless
of alignment.
With @option{--param=aarch64-stp-policy=never}, do not emit stp.
With @option{--param=aarch64-stp-policy=aligned}, emit stp only if the
source pointer is aligned to at least double the alignment of the type.
@item aarch64-ldp-alias-check-limit
Limit on the number of alias checks performed by the AArch64 load/store pair
fusion pass when attempting to form an ldp/stp. Higher values make the pass
more aggressive at re-ordering loads over stores, at the expense of increased
compile time.
@item aarch64-ldp-writeback
Param to control which writeback opportunities we try to handle in the AArch64
load/store pair fusion pass. A value of zero disables writeback handling. One
means we try to form pairs involving one or more existing individual writeback
accesses where possible. A value of two means we also try to opportunistically
form writeback opportunities by folding in trailing destructive updates of the
base register used by a pair.
@item aarch64-loop-vect-issue-rate-niters
The tuning for some AArch64 CPUs tries to take both latencies and issue
rates into account when deciding whether a loop should be vectorized
using SVE, vectorized using Advanced SIMD, or not vectorized at all.
If this parameter is set to @var{n}, GCC will not use this heuristic
for loops that are known to execute in fewer than @var{n} Advanced
SIMD iterations.
@item aarch64-vect-unroll-limit
The vectorizer will use available tuning information to determine whether it
would be beneficial to unroll the main vectorized loop and by how much. This
parameter set's the upper bound of how much the vectorizer will unroll the main
loop. The default value is four.
@end table
The following choices of @var{name} are available on GCN targets:
@table @gcctabopt
@item gcn-preferred-vectorization-factor
Preferred vectorization factor: @samp{default}, @samp{32}, @samp{64}.
@end table
The following choices of @var{name} are available on i386 and x86_64 targets:
@table @gcctabopt
@item x86-stlf-window-ninsns
Instructions number above which STFL stall penalty can be compensated.
@item x86-stv-max-visits
The maximum number of use and def visits when discovering a STV chain before
the discovery is aborted.
@end table
@end table
@node Instrumentation Options
@section Program Instrumentation Options
@cindex instrumentation options
@cindex program instrumentation options
@cindex run-time error checking options
@cindex profiling options
@cindex options, program instrumentation
@cindex options, run-time error checking
@cindex options, profiling
GCC supports a number of command-line options that control adding
run-time instrumentation to the code it normally generates.
For example, one purpose of instrumentation is collect profiling
statistics for use in finding program hot spots, code coverage
analysis, or profile-guided optimizations.
Another class of program instrumentation is adding run-time checking
to detect programming errors like invalid pointer
dereferences or out-of-bounds array accesses, as well as deliberately
hostile attacks such as stack smashing or C++ vtable hijacking.
There is also a general hook which can be used to implement other
forms of tracing or function-level instrumentation for debug or
program analysis purposes.
@table @gcctabopt
@cindex @command{prof}
@cindex @command{gprof}
@opindex p
@opindex pg
@item -p
@itemx -pg
Generate extra code to write profile information suitable for the
analysis program @command{prof} (for @option{-p}) or @command{gprof}
(for @option{-pg}). You must use this option when compiling
the source files you want data about, and you must also use it when
linking.
You can use the function attribute @code{no_instrument_function} to
suppress profiling of individual functions when compiling with these options.
@xref{Common Function Attributes}.
@opindex fprofile-arcs
@item -fprofile-arcs
Add code so that program flow @dfn{arcs} are instrumented. During
execution the program records how many times each branch and call is
executed and how many times it is taken or returns. On targets that support
constructors with priority support, profiling properly handles constructors,
destructors and C++ constructors (and destructors) of classes which are used
as a type of a global variable.
When the compiled
program exits it saves this data to a file called
@file{@var{auxname}.gcda} for each source file. The data may be used for
profile-directed optimizations (@option{-fbranch-probabilities}), or for
test coverage analysis (@option{-ftest-coverage}). Each object file's
@var{auxname} is generated from the name of the output file, if
explicitly specified and it is not the final executable, otherwise it is
the basename of the source file. In both cases any suffix is removed
(e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
@file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
Note that if a command line directly links source files, the corresponding
@var{.gcda} files will be prefixed with the unsuffixed name of the output file.
E.g. @code{gcc a.c b.c -o binary} would generate @file{binary-a.gcda} and
@file{binary-b.gcda} files.
@item -fcondition-coverage
@opindex fcondition-coverage
Add code so that program conditions are instrumented. During execution the
program records what terms in a conditional contributes to a decision, which
can be used to verify that all terms in a Boolean function are tested and have
an independent effect on the outcome of a decision. The result can be read
with @code{gcov --conditions}.
@xref{Cross-profiling}.
@cindex @command{gcov}
@opindex coverage
@item --coverage
This option is used to compile and link code instrumented for coverage
analysis. The option is a synonym for @option{-fprofile-arcs}
@option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
linking). See the documentation for those options for more details.
@itemize
@item
Compile the source files with @option{-fprofile-arcs} plus optimization
and code generation options. For test coverage analysis, use the
additional @option{-ftest-coverage} option. You do not need to profile
every source file in a program.
@item
Compile the source files additionally with @option{-fprofile-abs-path}
to create absolute path names in the @file{.gcno} files. This allows
@command{gcov} to find the correct sources in projects where compilations
occur with different working directories.
@item
Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
(the latter implies the former).
@item
Run the program on a representative workload to generate the arc profile
information. This may be repeated any number of times. You can run
concurrent instances of your program, and provided that the file system
supports locking, the data files will be correctly updated. Unless
a strict ISO C dialect option is in effect, @code{fork} calls are
detected and correctly handled without double counting.
Moreover, an object file can be recompiled multiple times
and the corresponding @file{.gcda} file merges as long as
the source file and the compiler options are unchanged.
@item
For profile-directed optimizations, compile the source files again with
the same optimization and code generation options plus
@option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
Control Optimization}).
@item
For test coverage analysis, use @command{gcov} to produce human readable
information from the @file{.gcno} and @file{.gcda} files. Refer to the
@command{gcov} documentation for further information.
@end itemize
With @option{-fprofile-arcs}, for each function of your program GCC
creates a program flow graph, then finds a spanning tree for the graph.
Only arcs that are not on the spanning tree have to be instrumented: the
compiler adds code to count the number of times that these arcs are
executed. When an arc is the only exit or only entrance to a block, the
instrumentation code can be added to the block; otherwise, a new basic
block must be created to hold the instrumentation code.
With @option{-fcondition-coverage}, for each conditional in your program GCC
creates a bitset and records the exercised boolean values that have an
independent effect on the outcome of that expression.
@need 2000
@opindex ftest-coverage
@item -ftest-coverage
Produce a notes file that the @command{gcov} code-coverage utility
(@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
show program coverage. Each source file's note file is called
@file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
above for a description of @var{auxname} and instructions on how to
generate test coverage data. Coverage data matches the source files
more closely if you do not optimize.
@opindex fprofile-abs-path
@item -fprofile-abs-path
Automatically convert relative source file names to absolute path names
in the @file{.gcno} files. This allows @command{gcov} to find the correct
sources in projects where compilations occur with different working
directories.
@opindex fprofile-dir
@item -fprofile-dir=@var{path}
Set the directory to search for the profile data files in to @var{path}.
This option affects only the profile data generated by
@option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
and its related options. Both absolute and relative paths can be used.
By default, GCC uses the current directory as @var{path}, thus the
profile data file appears in the same directory as the object file.
In order to prevent the file name clashing, if the object file name is
not an absolute path, we mangle the absolute path of the
@file{@var{sourcename}.gcda} file and use it as the file name of a
@file{.gcda} file. See details about the file naming in @option{-fprofile-arcs}.
See similar option @option{-fprofile-note}.
When an executable is run in a massive parallel environment, it is recommended
to save profile to different folders. That can be done with variables
in @var{path} that are exported during run-time:
@table @gcctabopt
@item %p
process ID.
@item %q@{VAR@}
value of environment variable @var{VAR}
@end table
@opindex fprofile-generate
@item -fprofile-generate
@itemx -fprofile-generate=@var{path}
Enable options usually used for instrumenting application to produce
profile useful for later recompilation with profile feedback based
optimization. You must use @option{-fprofile-generate} both when
compiling and when linking your program.
The following options are enabled:
@option{-fprofile-arcs}, @option{-fprofile-values},
@option{-finline-functions}, and @option{-fipa-bit-cp}.
If @var{path} is specified, GCC looks at the @var{path} to find
the profile feedback data files. See @option{-fprofile-dir}.
To optimize the program based on the collected profile information, use
@option{-fprofile-use}. @xref{Optimize Options}, for more information.
@opindex fprofile-info-section
@item -fprofile-info-section
@itemx -fprofile-info-section=@var{name}
Register the profile information in the specified section instead of using a
constructor/destructor. The section name is @var{name} if it is specified,
otherwise the section name defaults to @code{.gcov_info}. A pointer to the
profile information generated by @option{-fprofile-arcs} is placed in the
specified section for each translation unit. This option disables the profile
information registration through a constructor and it disables the profile
information processing through a destructor. This option is not intended to be
used in hosted environments such as GNU/Linux. It targets freestanding
environments (for example embedded systems) with limited resources which do not
support constructors/destructors or the C library file I/O.
The linker could collect the input sections in a continuous memory block and
define start and end symbols. A GNU linker script example which defines a
linker output section follows:
@smallexample
.gcov_info :
@{
PROVIDE (__gcov_info_start = .);
KEEP (*(.gcov_info))
PROVIDE (__gcov_info_end = .);
@}
@end smallexample
The program could dump the profiling information registered in this linker set
for example like this:
@smallexample
#include <gcov.h>
#include <stdio.h>
#include <stdlib.h>
extern const struct gcov_info *const __gcov_info_start[];
extern const struct gcov_info *const __gcov_info_end[];
static void
dump (const void *d, unsigned n, void *arg)
@{
const unsigned char *c = d;
for (unsigned i = 0; i < n; ++i)
printf ("%02x", c[i]);
@}
static void
filename (const char *f, void *arg)
@{
__gcov_filename_to_gcfn (f, dump, arg );
@}
static void *
allocate (unsigned length, void *arg)
@{
return malloc (length);
@}
static void
dump_gcov_info (void)
@{
const struct gcov_info *const *info = __gcov_info_start;
const struct gcov_info *const *end = __gcov_info_end;
/* Obfuscate variable to prevent compiler optimizations. */
__asm__ ("" : "+r" (info));
while (info != end)
@{
void *arg = NULL;
__gcov_info_to_gcda (*info, filename, dump, allocate, arg);
putchar ('\n');
++info;
@}
@}
int
main (void)
@{
dump_gcov_info ();
return 0;
@}
@end smallexample
The @command{merge-stream} subcommand of @command{gcov-tool} may be used to
deserialize the data stream generated by the @code{__gcov_filename_to_gcfn} and
@code{__gcov_info_to_gcda} functions and merge the profile information into
@file{.gcda} files on the host filesystem.
@opindex fprofile-note
@item -fprofile-note=@var{path}
If @var{path} is specified, GCC saves @file{.gcno} file into @var{path}
location. If you combine the option with multiple source files,
the @file{.gcno} file will be overwritten.
@opindex fprofile-prefix-path
@item -fprofile-prefix-path=@var{path}
This option can be used in combination with
@option{profile-generate=}@var{profile_dir} and
@option{profile-use=}@var{profile_dir} to inform GCC where is the base
directory of built source tree. By default @var{profile_dir} will contain
files with mangled absolute paths of all object files in the built project.
This is not desirable when directory used to build the instrumented binary
differs from the directory used to build the binary optimized with profile
feedback because the profile data will not be found during the optimized build.
In such setups @option{-fprofile-prefix-path=}@var{path} with @var{path}
pointing to the base directory of the build can be used to strip the irrelevant
part of the path and keep all file names relative to the main build directory.
@opindex fprofile-prefix-map
@item -fprofile-prefix-map=@var{old}=@var{new}
When compiling files residing in directory @file{@var{old}}, record
profiling information (with @option{--coverage})
describing them as if the files resided in
directory @file{@var{new}} instead.
See also @option{-ffile-prefix-map} and @option{-fcanon-prefix-map}.
@opindex fprofile-update
@item -fprofile-update=@var{method}
Alter the update method for an application instrumented for profile
feedback based optimization. The @var{method} argument should be one of
@samp{single}, @samp{atomic} or @samp{prefer-atomic}.
The first one is useful for single-threaded applications,
while the second one prevents profile corruption by emitting thread-safe code.
@strong{Warning:} When an application does not properly join all threads
(or creates an detached thread), a profile file can be still corrupted.
Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
when supported by a target, or to @samp{single} otherwise. The GCC driver
automatically selects @samp{prefer-atomic} when @option{-pthread}
is present in the command line, otherwise the default method is @samp{single}.
If @samp{atomic} is selected, then the profile information is updated using
atomic operations on a best-effort basis. Ideally, the profile information is
updated through atomic operations in hardware. If the target platform does not
support the required atomic operations in hardware, however, @file{libatomic}
is available, then the profile information is updated through calls to
@file{libatomic}. If the target platform neither supports the required atomic
operations in hardware nor @file{libatomic}, then the profile information is
not atomically updated and a warning is issued. In this case, the obtained
profiling information may be corrupt for multi-threaded applications.
For performance reasons, if 64-bit counters are used for the profiling
information and the target platform only supports 32-bit atomic operations in
hardware, then the performance critical profiling updates are done using two
32-bit atomic operations for each counter update. If a signal interrupts these
two operations updating a counter, then the profiling information may be in an
inconsistent state.
@opindex fprofile-filter-files
@item -fprofile-filter-files=@var{regex}
Instrument only functions from files whose name matches
any of the regular expressions (separated by semi-colons).
For example, @option{-fprofile-filter-files=main\.c;module.*\.c} will instrument
only @file{main.c} and all C files starting with 'module'.
@opindex fprofile-exclude-files
@item -fprofile-exclude-files=@var{regex}
Instrument only functions from files whose name does not match
any of the regular expressions (separated by semi-colons).
For example, @option{-fprofile-exclude-files=/usr/.*} will prevent instrumentation
of all files that are located in the @file{/usr/} folder.
@opindex fprofile-reproducible
@item -fprofile-reproducible=@r{[}multithreaded@r{|}parallel-runs@r{|}serial@r{]}
Control level of reproducibility of profile gathered by
@code{-fprofile-generate}. This makes it possible to rebuild program
with same outcome which is useful, for example, for distribution
packages.
With @option{-fprofile-reproducible=serial} the profile gathered by
@option{-fprofile-generate} is reproducible provided the trained program
behaves the same at each invocation of the train run, it is not
multi-threaded and profile data streaming is always done in the same
order. Note that profile streaming happens at the end of program run but
also before @code{fork} function is invoked.
Note that it is quite common that execution counts of some part of
programs depends, for example, on length of temporary file names or
memory space randomization (that may affect hash-table collision rate).
Such non-reproducible part of programs may be annotated by
@code{no_instrument_function} function attribute. @command{gcov-dump} with
@option{-l} can be used to dump gathered data and verify that they are
indeed reproducible.
With @option{-fprofile-reproducible=parallel-runs} collected profile
stays reproducible regardless the order of streaming of the data into
gcda files. This setting makes it possible to run multiple instances of
instrumented program in parallel (such as with @code{make -j}). This
reduces quality of gathered data, in particular of indirect call
profiling.
@opindex fsanitize=address
@item -fsanitize=address
Enable AddressSanitizer, a fast memory error detector.
Memory access instructions are instrumented to detect
out-of-bounds and use-after-free bugs.
The option enables @option{-fsanitize-address-use-after-scope}.
See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
more details. The run-time behavior can be influenced using the
@env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
the available options are shown at startup of the instrumented program. See
@url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
for a list of supported options.
The option cannot be combined with @option{-fsanitize=thread} or
@option{-fsanitize=hwaddress}. Note that the only target
@option{-fsanitize=hwaddress} is currently supported on is AArch64.
To get more accurate stack traces, it is possible to use options such as
@option{-O0}, @option{-O1}, or @option{-Og} (which, for instance, prevent
most function inlining), @option{-fno-optimize-sibling-calls} (which prevents
optimizing sibling and tail recursive calls; this option is implicit for
@option{-O0}, @option{-O1}, or @option{-Og}), or @option{-fno-ipa-icf} (which
disables Identical Code Folding for functions). Since multiple runs of the
program may yield backtraces with different addresses due to ASLR (Address
Space Layout Randomization), it may be desirable to turn ASLR off. On Linux,
this can be achieved with @samp{setarch `uname -m` -R ./prog}.
@opindex fsanitize=kernel-address
@item -fsanitize=kernel-address
Enable AddressSanitizer for Linux kernel.
See @uref{https://github.com/google/kernel-sanitizers} for more details.
@opindex fsanitize=hwaddress
@item -fsanitize=hwaddress
Enable Hardware-assisted AddressSanitizer, which uses a hardware ability to
ignore the top byte of a pointer to allow the detection of memory errors with
a low memory overhead.
Memory access instructions are instrumented to detect out-of-bounds and
use-after-free bugs.
The option enables @option{-fsanitize-address-use-after-scope}.
See
@uref{https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html}
for more details. The run-time behavior can be influenced using the
@env{HWASAN_OPTIONS} environment variable. When set to @code{help=1},
the available options are shown at startup of the instrumented program.
The option cannot be combined with @option{-fsanitize=thread} or
@option{-fsanitize=address}, and is currently only available on AArch64.
@opindex fsanitize=kernel-hwaddress
@item -fsanitize=kernel-hwaddress
Enable Hardware-assisted AddressSanitizer for compilation of the Linux kernel.
Similar to @option{-fsanitize=kernel-address} but using an alternate
instrumentation method, and similar to @option{-fsanitize=hwaddress} but with
instrumentation differences necessary for compiling the Linux kernel.
These differences are to avoid hwasan library initialization calls and to
account for the stack pointer having a different value in its top byte.
@emph{Note:} This option has different defaults to the @option{-fsanitize=hwaddress}.
Instrumenting the stack and alloca calls are not on by default but are still
possible by specifying the command-line options
@option{--param hwasan-instrument-stack=1} and
@option{--param hwasan-instrument-allocas=1} respectively. Using a random frame
tag is not implemented for kernel instrumentation.
@opindex fsanitize=pointer-compare
@item -fsanitize=pointer-compare
Instrument comparison operation (<, <=, >, >=) with pointer operands.
The option must be combined with either @option{-fsanitize=kernel-address} or
@option{-fsanitize=address}
The option cannot be combined with @option{-fsanitize=thread}.
Note: By default the check is disabled at run time. To enable it,
add @code{detect_invalid_pointer_pairs=2} to the environment variable
@env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
invalid operation only when both pointers are non-null.
@opindex fsanitize=pointer-subtract
@item -fsanitize=pointer-subtract
Instrument subtraction with pointer operands.
The option must be combined with either @option{-fsanitize=kernel-address} or
@option{-fsanitize=address}
The option cannot be combined with @option{-fsanitize=thread}.
Note: By default the check is disabled at run time. To enable it,
add @code{detect_invalid_pointer_pairs=2} to the environment variable
@env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
invalid operation only when both pointers are non-null.
@opindex fsanitize=shadow-call-stack
@item -fsanitize=shadow-call-stack
Enable ShadowCallStack, a security enhancement mechanism used to protect
programs against return address overwrites (e.g. stack buffer overflows.)
It works by saving a function's return address to a separately allocated
shadow call stack in the function prologue and restoring the return address
from the shadow call stack in the function epilogue. Instrumentation only
occurs in functions that need to save the return address to the stack.
Currently it only supports the aarch64 platform. It is specifically
designed for linux kernels that enable the CONFIG_SHADOW_CALL_STACK option.
For the user space programs, runtime support is not currently provided
in libc and libgcc. Users who want to use this feature in user space need
to provide their own support for the runtime. It should be noted that
this may cause the ABI rules to be broken.
On aarch64, the instrumentation makes use of the platform register @code{x18}.
This generally means that any code that may run on the same thread as code
compiled with ShadowCallStack must be compiled with the flag
@option{-ffixed-x18}, otherwise functions compiled without
@option{-ffixed-x18} might clobber @code{x18} and so corrupt the shadow
stack pointer.
Also, because there is no userspace runtime support, code compiled with
ShadowCallStack cannot use exception handling. Use @option{-fno-exceptions}
to turn off exceptions.
See @uref{https://clang.llvm.org/docs/ShadowCallStack.html} for more
details.
@opindex fsanitize=thread
@item -fsanitize=thread
Enable ThreadSanitizer, a fast data race detector.
Memory access instructions are instrumented to detect
data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
environment variable; see
@url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
supported options.
The option cannot be combined with @option{-fsanitize=address},
@option{-fsanitize=leak}.
Note that sanitized atomic builtins cannot throw exceptions when
operating on invalid memory addresses with non-call exceptions
(@option{-fnon-call-exceptions}).
@opindex fsanitize=leak
@item -fsanitize=leak
Enable LeakSanitizer, a memory leak detector.
This option only matters for linking of executables.
The executable is linked against a library that overrides @code{malloc}
and other allocator functions. See
@uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
details. The run-time behavior can be influenced using the
@env{LSAN_OPTIONS} environment variable.
The option cannot be combined with @option{-fsanitize=thread}.
@opindex fsanitize=undefined
@item -fsanitize=undefined
Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
Various computations are instrumented to detect undefined behavior
at runtime. See @uref{https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html} for more details. The run-time behavior can be influenced using the
@env{UBSAN_OPTIONS} environment variable. Current suboptions are:
@table @gcctabopt
@opindex fsanitize=shift
@item -fsanitize=shift
This option enables checking that the result of a shift operation is
not undefined. Note that what exactly is considered undefined differs
slightly between C and C++, as well as between ISO C90 and C99, etc.
This option has two suboptions, @option{-fsanitize=shift-base} and
@option{-fsanitize=shift-exponent}.
@opindex fsanitize=shift-exponent
@item -fsanitize=shift-exponent
This option enables checking that the second argument of a shift operation
is not negative and is smaller than the precision of the promoted first
argument.
@opindex fsanitize=shift-base
@item -fsanitize=shift-base
If the second argument of a shift operation is within range, check that the
result of a shift operation is not undefined. Note that what exactly is
considered undefined differs slightly between C and C++, as well as between
ISO C90 and C99, etc.
@opindex fsanitize=integer-divide-by-zero
@item -fsanitize=integer-divide-by-zero
Detect integer division by zero.
@opindex fsanitize=unreachable
@item -fsanitize=unreachable
With this option, the compiler turns the @code{__builtin_unreachable}
call into a diagnostics message call instead. When reaching the
@code{__builtin_unreachable} call, the behavior is undefined.
@opindex fsanitize=vla-bound
@item -fsanitize=vla-bound
This option instructs the compiler to check that the size of a variable
length array is positive.
@opindex fsanitize=null
@item -fsanitize=null
This option enables pointer checking. Particularly, the application
built with this option turned on will issue an error message when it
tries to dereference a NULL pointer, or if a reference (possibly an
rvalue reference) is bound to a NULL pointer, or if a method is invoked
on an object pointed by a NULL pointer.
@opindex fsanitize=return
@item -fsanitize=return
This option enables return statement checking. Programs
built with this option turned on will issue an error message
when the end of a non-void function is reached without actually
returning a value. This option works in C++ only.
@opindex fsanitize=signed-integer-overflow
@item -fsanitize=signed-integer-overflow
This option enables signed integer overflow checking. We check that
the result of @code{+}, @code{*}, and both unary and binary @code{-}
does not overflow in the signed arithmetics. This also detects
@code{INT_MIN / -1} signed division. Note, integer promotion
rules must be taken into account. That is, the following is not an
overflow:
@smallexample
signed char a = SCHAR_MAX;
a++;
@end smallexample
@opindex fsanitize=bounds
@item -fsanitize=bounds
This option enables instrumentation of array bounds. Various out of bounds
accesses are detected. Flexible array members, flexible array member-like
arrays, and initializers of variables with static storage are not
instrumented, with the exception of flexible array member-like arrays
for which @code{-fstrict-flex-arrays} or @code{-fstrict-flex-arrays=}
options or @code{strict_flex_array} attributes say they shouldn't be treated
like flexible array member-like arrays.
@opindex fsanitize=bounds-strict
@item -fsanitize=bounds-strict
This option enables strict instrumentation of array bounds. Most out of bounds
accesses are detected, including flexible array member-like arrays.
Initializers of variables with static storage are not instrumented.
@opindex fsanitize=alignment
@item -fsanitize=alignment
This option enables checking of alignment of pointers when they are
dereferenced, or when a reference is bound to insufficiently aligned target,
or when a method or constructor is invoked on insufficiently aligned object.
@opindex fsanitize=object-size
@item -fsanitize=object-size
This option enables instrumentation of memory references using the
@code{__builtin_dynamic_object_size} function. Various out of bounds
pointer accesses are detected.
@opindex fsanitize=float-divide-by-zero
@item -fsanitize=float-divide-by-zero
Detect floating-point division by zero. Unlike other similar options,
@option{-fsanitize=float-divide-by-zero} is not enabled by
@option{-fsanitize=undefined}, since floating-point division by zero can
be a legitimate way of obtaining infinities and NaNs.
@opindex fsanitize=float-cast-overflow
@item -fsanitize=float-cast-overflow
This option enables floating-point type to integer conversion checking.
We check that the result of the conversion does not overflow.
Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
not enabled by @option{-fsanitize=undefined}.
This option does not work well with @code{FE_INVALID} exceptions enabled.
@opindex fsanitize=nonnull-attribute
@item -fsanitize=nonnull-attribute
This option enables instrumentation of calls, checking whether null values
are not passed to arguments marked as requiring a non-null value by the
@code{nonnull} function attribute.
@opindex fsanitize=returns-nonnull-attribute
@item -fsanitize=returns-nonnull-attribute
This option enables instrumentation of return statements in functions
marked with @code{returns_nonnull} function attribute, to detect returning
of null values from such functions.
@opindex fsanitize=bool
@item -fsanitize=bool
This option enables instrumentation of loads from bool. If a value other
than 0/1 is loaded, a run-time error is issued.
@opindex fsanitize=enum
@item -fsanitize=enum
This option enables instrumentation of loads from an enum type. If
a value outside the range of values for the enum type is loaded,
a run-time error is issued.
@opindex fsanitize=vptr
@item -fsanitize=vptr
This option enables instrumentation of C++ member function calls, member
accesses and some conversions between pointers to base and derived classes,
to verify the referenced object has the correct dynamic type.
@opindex fsanitize=pointer-overflow
@item -fsanitize=pointer-overflow
This option enables instrumentation of pointer arithmetics. If the pointer
arithmetics overflows, a run-time error is issued.
@opindex fsanitize=builtin
@item -fsanitize=builtin
This option enables instrumentation of arguments to selected builtin
functions. If an invalid value is passed to such arguments, a run-time
error is issued. E.g.@ passing 0 as the argument to @code{__builtin_ctz}
or @code{__builtin_clz} invokes undefined behavior and is diagnosed
by this option.
@end table
Note that sanitizers tend to increase the rate of false positive
warnings, most notably those around @option{-Wmaybe-uninitialized}.
We recommend against combining @option{-Werror} and [the use of]
sanitizers.
While @option{-ftrapv} causes traps for signed overflows to be emitted,
@option{-fsanitize=undefined} gives a diagnostic message.
This currently works only for the C family of languages.
@opindex fno-sanitize=all
@item -fno-sanitize=all
This option disables all previously enabled sanitizers.
@option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
together.
@opindex fasan-shadow-offset
@item -fasan-shadow-offset=@var{number}
This option forces GCC to use custom shadow offset in AddressSanitizer checks.
It is useful for experimenting with different shadow memory layouts in
Kernel AddressSanitizer.
@opindex fsanitize-sections
@item -fsanitize-sections=@var{s1},@var{s2},...
Sanitize global variables in selected user-defined sections. @var{si} may
contain wildcards.
@opindex fsanitize-recover
@opindex fno-sanitize-recover
@item -fsanitize-recover@r{[}=@var{opts}@r{]}
@option{-fsanitize-recover=} controls error recovery mode for sanitizers
mentioned in comma-separated list of @var{opts}. Enabling this option
for a sanitizer component causes it to attempt to continue
running the program as if no error happened. This means multiple
runtime errors can be reported in a single program run, and the exit
code of the program may indicate success even when errors
have been reported. The @option{-fno-sanitize-recover=} option
can be used to alter
this behavior: only the first detected error is reported
and program then exits with a non-zero exit code.
Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
@option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
@option{-fsanitize=bounds-strict},
@option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
For these sanitizers error recovery is turned on by default,
except @option{-fsanitize=address}, for which this feature is experimental.
@option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
accepted, the former enables recovery for all sanitizers that support it,
the latter disables recovery for all sanitizers that support it.
Even if a recovery mode is turned on the compiler side, it needs to be also
enabled on the runtime library side, otherwise the failures are still fatal.
The runtime library defaults to @code{halt_on_error=0} for
ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
setting the @code{halt_on_error} flag in the corresponding environment variable.
Syntax without an explicit @var{opts} parameter is deprecated. It is
equivalent to specifying an @var{opts} list of:
@smallexample
undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
@end smallexample
@opindex fsanitize-address-use-after-scope
@item -fsanitize-address-use-after-scope
Enable sanitization of local variables to detect use-after-scope bugs.
The option sets @option{-fstack-reuse} to @samp{none}.
@opindex fsanitize-trap
@opindex fno-sanitize-trap
@item -fsanitize-trap@r{[}=@var{opts}@r{]}
The @option{-fsanitize-trap=} option instructs the compiler to
report for sanitizers mentioned in comma-separated list of @var{opts}
undefined behavior using @code{__builtin_trap} rather than a @code{libubsan}
library routine. If this option is enabled for certain sanitizer,
it takes precedence over the @option{-fsanitizer-recover=} for that
sanitizer, @code{__builtin_trap} will be emitted and be fatal regardless
of whether recovery is enabled or disabled using @option{-fsanitize-recover=}.
The advantage of this is that the @code{libubsan} library is not needed
and is not linked in, so this is usable even in freestanding environments.
Currently this feature works with @option{-fsanitize=undefined} (and its suboptions
except for @option{-fsanitize=vptr}), @option{-fsanitize=float-cast-overflow},
@option{-fsanitize=float-divide-by-zero} and
@option{-fsanitize=bounds-strict}. @code{-fsanitize-trap=all} can be also
specified, which enables it for @code{undefined} suboptions,
@option{-fsanitize=float-cast-overflow},
@option{-fsanitize=float-divide-by-zero} and
@option{-fsanitize=bounds-strict}.
If @code{-fsanitize-trap=undefined} or @code{-fsanitize-trap=all} is used
and @code{-fsanitize=vptr} is enabled on the command line, the
instrumentation is silently ignored as the instrumentation always needs
@code{libubsan} support, @option{-fsanitize-trap=vptr} is not allowed.
@opindex fsanitize-undefined-trap-on-error
@item -fsanitize-undefined-trap-on-error
The @option{-fsanitize-undefined-trap-on-error} option is deprecated
equivalent of @option{-fsanitize-trap=all}.
@opindex fsanitize-coverage=trace-pc
@item -fsanitize-coverage=trace-pc
Enable coverage-guided fuzzing code instrumentation.
Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
@opindex fsanitize-coverage=trace-cmp
@item -fsanitize-coverage=trace-cmp
Enable dataflow guided fuzzing code instrumentation.
Inserts a call to @code{__sanitizer_cov_trace_cmp1},
@code{__sanitizer_cov_trace_cmp2}, @code{__sanitizer_cov_trace_cmp4} or
@code{__sanitizer_cov_trace_cmp8} for integral comparison with both operands
variable or @code{__sanitizer_cov_trace_const_cmp1},
@code{__sanitizer_cov_trace_const_cmp2},
@code{__sanitizer_cov_trace_const_cmp4} or
@code{__sanitizer_cov_trace_const_cmp8} for integral comparison with one
operand constant, @code{__sanitizer_cov_trace_cmpf} or
@code{__sanitizer_cov_trace_cmpd} for float or double comparisons and
@code{__sanitizer_cov_trace_switch} for switch statements.
@opindex fcf-protection
@item -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{|}check@r{]}
Enable code instrumentation of control-flow transfers to increase
program security by checking that target addresses of control-flow
transfer instructions (such as indirect function call, function return,
indirect jump) are valid. This prevents diverting the flow of control
to an unexpected target. This is intended to protect against such
threats as Return-oriented Programming (ROP), and similarly
call/jmp-oriented programming (COP/JOP).
The value @code{branch} tells the compiler to implement checking of
validity of control-flow transfer at the point of indirect branch
instructions, i.e.@: call/jmp instructions. The value @code{return}
implements checking of validity at the point of returning from a
function. The value @code{full} is an alias for specifying both
@code{branch} and @code{return}. The value @code{none} turns off
instrumentation.
To override @option{-fcf-protection}, @option{-fcf-protection=none}
needs to be added and then with @option{-fcf-protection=xxx}.
The value @code{check} is used for the final link with link-time
optimization (LTO). An error is issued if LTO object files are
compiled with different @option{-fcf-protection} values. The
value @code{check} is ignored at the compile time.
The macro @code{__CET__} is defined when @option{-fcf-protection} is
used. The first bit of @code{__CET__} is set to 1 for the value
@code{branch} and the second bit of @code{__CET__} is set to 1 for
the @code{return}.
You can also use the @code{nocf_check} attribute to identify
which functions and calls should be skipped from instrumentation
(@pxref{Function Attributes}).
Currently the x86 GNU/Linux target provides an implementation based
on Intel Control-flow Enforcement Technology (CET) which works for
i686 processor or newer.
@opindex fharden-compares
@item -fharden-compares
For every logical test that survives gimple optimizations and is
@emph{not} the condition in a conditional branch (for example,
conditions tested for conditional moves, or to store in boolean
variables), emit extra code to compute and verify the reversed
condition, and to call @code{__builtin_trap} if the results do not
match. Use with @samp{-fharden-conditional-branches} to cover all
conditionals.
@opindex fharden-conditional-branches
@item -fharden-conditional-branches
For every non-vectorized conditional branch that survives gimple
optimizations, emit extra code to compute and verify the reversed
condition, and to call @code{__builtin_trap} if the result is
unexpected. Use with @samp{-fharden-compares} to cover all
conditionals.
@opindex fharden-control-flow-redundancy
@item -fharden-control-flow-redundancy
Emit extra code to set booleans when entering basic blocks, and to
verify and trap, at function exits, when the booleans do not form an
execution path that is compatible with the control flow graph.
Verification takes place before returns, before mandatory tail calls
(see below) and, optionally, before escaping exceptions with
@option{-fhardcfr-check-exceptions}, before returning calls with
@option{-fhardcfr-check-returning-calls}, and before noreturn calls with
@option{-fhardcfr-check-noreturn-calls}). Tuning options
@option{--param hardcfr-max-blocks} and @option{--param
hardcfr-max-inline-blocks} are available.
Tail call optimization takes place too late to affect control flow
redundancy, but calls annotated as mandatory tail calls by language
front-ends, and any calls marked early enough as potential tail calls
would also have verification issued before the call, but these
possibilities are merely theoretical, as these conditions can only be
met when using custom compiler plugins.
@opindex fhardcfr-skip-leaf
@item -fhardcfr-skip-leaf
Disable @option{-fharden-control-flow-redundancy} in leaf functions.
@opindex fhardcfr-check-exceptions
@opindex fno-hardcfr-check-exceptions
@item -fhardcfr-check-exceptions
When @option{-fharden-control-flow-redundancy} is active, check the
recorded execution path against the control flow graph at exception
escape points, as if the function body was wrapped with a cleanup
handler that performed the check and reraised. This option is enabled
by default; use @option{-fno-hardcfr-check-exceptions} to disable it.
@opindex fhardcfr-check-returning-calls
@opindex fno-hardcfr-check-returning-calls
@item -fhardcfr-check-returning-calls
When @option{-fharden-control-flow-redundancy} is active, check the
recorded execution path against the control flow graph before any
function call immediately followed by a return of its result, if any, so
as to not prevent tail-call optimization, whether or not it is
ultimately optimized to a tail call.
This option is enabled by default whenever sibling call optimizations
are enabled (see @option{-foptimize-sibling-calls}), but it can be
enabled (or disabled, using its negated form) explicitly, regardless of
the optimizations.
@opindex fhardcfr-check-noreturn-calls
@item -fhardcfr-check-noreturn-calls=@r{[}always@r{|}no-xthrow@r{|}nothrow@r{|}never@r{]}
When @option{-fharden-control-flow-redundancy} is active, check the
recorded execution path against the control flow graph before
@code{noreturn} calls, either all of them (@option{always}), those that
aren't expected to return control to the caller through an exception
(@option{no-xthrow}, the default), those that may not return control to
the caller through an exception either (@option{nothrow}), or none of
them (@option{never}).
Checking before a @code{noreturn} function that may return control to
the caller through an exception may cause checking to be performed more
than once, if the exception is caught in the caller, whether by a
handler or a cleanup. When @option{-fhardcfr-check-exceptions} is also
enabled, the compiler will avoid associating a @code{noreturn} call with
the implicitly-added cleanup handler, since it would be redundant with
the check performed before the call, but other handlers or cleanups in
the function, if activated, will modify the recorded execution path and
check it again when another checkpoint is hit. The checkpoint may even
be another @code{noreturn} call, so checking may end up performed
multiple times.
Various optimizers may cause calls to be marked as @code{noreturn}
and/or @code{nothrow}, even in the absence of the corresponding
attributes, which may affect the placement of checks before calls, as
well as the addition of implicit cleanup handlers for them. This
unpredictability, and the fact that raising and reraising exceptions
frequently amounts to implicitly calling @code{noreturn} functions, have
made @option{no-xthrow} the default setting for this option: it excludes
from the @code{noreturn} treatment only internal functions used to
(re)raise exceptions, that are not affected by these optimizations.
@opindex fhardened
@item -fhardened
Enable a set of flags for C and C++ that improve the security of the
generated code without affecting its ABI. The precise flags enabled
may change between major releases of GCC, but are currently:
@c Keep this in sync with print_help_hardened!
@gccoptlist{
-D_FORTIFY_SOURCE=3
-D_GLIBCXX_ASSERTIONS
-ftrivial-auto-var-init=zero
-fPIE -pie -Wl,-z,relro,-z,now
-fstack-protector-strong
-fstack-clash-protection
-fcf-protection=full @r{(x86 GNU/Linux only)}
}
The list of options enabled by @option{-fhardened} can be generated using
the @option{--help=hardened} option.
When the system glibc is older than 2.35, @option{-D_FORTIFY_SOURCE=2}
is used instead.
This option is intended to be used in production builds, not merely
in debug builds.
Currently, @option{-fhardened} is only supported on GNU/Linux targets.
@option{-fhardened} only enables a particular option if it wasn't
already specified anywhere on the command line. For instance,
@option{-fhardened} @option{-fstack-protector} will only enable
@option{-fstack-protector}, but not @option{-fstack-protector-strong}.
@opindex fstack-protector
@item -fstack-protector
Emit extra code to check for buffer overflows, such as stack smashing
attacks. This is done by adding a guard variable to functions with
vulnerable objects. This includes functions that call @code{alloca}, and
functions with buffers larger than or equal to 8 bytes. The guards are
initialized when a function is entered and then checked when the function
exits. If a guard check fails, an error message is printed and the program
exits. Only variables that are actually allocated on the stack are
considered, optimized away variables or variables allocated in registers
don't count.
@opindex fstack-protector-all
@item -fstack-protector-all
Like @option{-fstack-protector} except that all functions are protected.
@opindex fstack-protector-strong
@item -fstack-protector-strong
Like @option{-fstack-protector} but includes additional functions to
be protected --- those that have local array definitions, or have
references to local frame addresses. Only variables that are actually
allocated on the stack are considered, optimized away variables or variables
allocated in registers don't count.
@opindex fstack-protector-explicit
@item -fstack-protector-explicit
Like @option{-fstack-protector} but only protects those functions which
have the @code{stack_protect} attribute.
@opindex fstack-check
@item -fstack-check
Generate code to verify that you do not go beyond the boundary of the
stack. You should specify this flag if you are running in an
environment with multiple threads, but you only rarely need to specify it in
a single-threaded environment since stack overflow is automatically
detected on nearly all systems if there is only one stack.
Note that this switch does not actually cause checking to be done; the
operating system or the language runtime must do that. The switch causes
generation of code to ensure that they see the stack being extended.
You can additionally specify a string parameter: @samp{no} means no
checking, @samp{generic} means force the use of old-style checking,
@samp{specific} means use the best checking method and is equivalent
to bare @option{-fstack-check}.
Old-style checking is a generic mechanism that requires no specific
target support in the compiler but comes with the following drawbacks:
@enumerate
@item
Modified allocation strategy for large objects: they are always
allocated dynamically if their size exceeds a fixed threshold. Note this
may change the semantics of some code.
@item
Fixed limit on the size of the static frame of functions: when it is
topped by a particular function, stack checking is not reliable and
a warning is issued by the compiler.
@item
Inefficiency: because of both the modified allocation strategy and the
generic implementation, code performance is hampered.
@end enumerate
Note that old-style stack checking is also the fallback method for
@samp{specific} if no target support has been added in the compiler.
@samp{-fstack-check=} is designed for Ada's needs to detect infinite recursion
and stack overflows. @samp{specific} is an excellent choice when compiling
Ada code. It is not generally sufficient to protect against stack-clash
attacks. To protect against those you want @samp{-fstack-clash-protection}.
@opindex fstack-clash-protection
@item -fstack-clash-protection
Generate code to prevent stack clash style attacks. When this option is
enabled, the compiler will only allocate one page of stack space at a time
and each page is accessed immediately after allocation. Thus, it prevents
allocations from jumping over any stack guard page provided by the
operating system.
Most targets do not fully support stack clash protection. However, on
those targets @option{-fstack-clash-protection} will protect dynamic stack
allocations. @option{-fstack-clash-protection} may also provide limited
protection for static stack allocations if the target supports
@option{-fstack-check=specific}.
@opindex fstack-limit-register
@opindex fstack-limit-symbol
@opindex fno-stack-limit
@item -fstack-limit-register=@var{reg}
@itemx -fstack-limit-symbol=@var{sym}
@itemx -fno-stack-limit
Generate code to ensure that the stack does not grow beyond a certain value,
either the value of a register or the address of a symbol. If a larger
stack is required, a signal is raised at run time. For most targets,
the signal is raised before the stack overruns the boundary, so
it is possible to catch the signal without taking special precautions.
For instance, if the stack starts at absolute address @samp{0x80000000}
and grows downwards, you can use the flags
@option{-fstack-limit-symbol=__stack_limit} and
@option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
of 128KB@. Note that this may only work with the GNU linker.
You can locally override stack limit checking by using the
@code{no_stack_limit} function attribute (@pxref{Function Attributes}).
@opindex fsplit-stack
@item -fsplit-stack
Generate code to automatically split the stack before it overflows.
The resulting program has a discontiguous stack which can only
overflow if the program is unable to allocate any more memory. This
is most useful when running threaded programs, as it is no longer
necessary to calculate a good stack size to use for each thread. This
is currently only implemented for the x86 targets running
GNU/Linux.
When code compiled with @option{-fsplit-stack} calls code compiled
without @option{-fsplit-stack}, there may not be much stack space
available for the latter code to run. If compiling all code,
including library code, with @option{-fsplit-stack} is not an option,
then the linker can fix up these calls so that the code compiled
without @option{-fsplit-stack} always has a large stack. Support for
this is implemented in the gold linker in GNU binutils release 2.21
and later.
@opindex fstrub=disable
@item -fstrub=disable
Disable stack scrubbing entirely, ignoring any @code{strub} attributes.
See @xref{Common Type Attributes}.
@opindex fstrub=strict
@item -fstrub=strict
Functions default to @code{strub} mode @code{disabled}, and apply
@option{strict}ly the restriction that only functions associated with
@code{strub}-@code{callable} modes (@code{at-calls}, @code{callable} and
@code{always_inline} @code{internal}) are @code{callable} by functions
with @code{strub}-enabled modes (@code{at-calls} and @code{internal}).
@opindex fstrub=relaxed
@item -fstrub=relaxed
Restore the default stack scrub (@code{strub}) setting, namely,
@code{strub} is only enabled as required by @code{strub} attributes
associated with function and data types. @code{Relaxed} means that
strub contexts are only prevented from calling functions explicitly
associated with @code{strub} mode @code{disabled}. This option is only
useful to override other @option{-fstrub=*} options that precede it in
the command line.
@opindex fstrub=at-calls
@item -fstrub=at-calls
Enable @code{at-calls} @code{strub} mode where viable. The primary use
of this option is for testing. It exercises the @code{strub} machinery
in scenarios strictly local to a translation unit. This @code{strub}
mode modifies function interfaces, so any function that is visible to
other translation units, or that has its address taken, will @emph{not}
be affected by this option. Optimization options may also affect
viability. See the @code{strub} attribute documentation for details on
viability and eligibility requirements.
@opindex fstrub=internal
@item -fstrub=internal
Enable @code{internal} @code{strub} mode where viable. The primary use
of this option is for testing. This option is intended to exercise
thoroughly parts of the @code{strub} machinery that implement the less
efficient, but interface-preserving @code{strub} mode. Functions that
would not be affected by this option are quite uncommon.
@opindex fstrub=all
@item -fstrub=all
Enable some @code{strub} mode where viable. When both strub modes are
viable, @code{at-calls} is preferred. @option{-fdump-ipa-strubm} adds
function attributes that tell which mode was selected for each function.
The primary use of this option is for testing, to exercise thoroughly
the @code{strub} machinery.
@opindex fvtable-verify
@item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
This option is only available when compiling C++ code.
It turns on (or off, if using @option{-fvtable-verify=none}) the security
feature that verifies at run time, for every virtual call, that
the vtable pointer through which the call is made is valid for the type of
the object, and has not been corrupted or overwritten. If an invalid vtable
pointer is detected at run time, an error is reported and execution of the
program is immediately halted.
This option causes run-time data structures to be built at program startup,
which are used for verifying the vtable pointers.
The options @samp{std} and @samp{preinit}
control the timing of when these data structures are built. In both cases the
data structures are built before execution reaches @code{main}. Using
@option{-fvtable-verify=std} causes the data structures to be built after
shared libraries have been loaded and initialized.
@option{-fvtable-verify=preinit} causes them to be built before shared
libraries have been loaded and initialized.
If this option appears multiple times in the command line with different
values specified, @samp{none} takes highest priority over both @samp{std} and
@samp{preinit}; @samp{preinit} takes priority over @samp{std}.
@opindex fvtv-debug
@item -fvtv-debug
When used in conjunction with @option{-fvtable-verify=std} or
@option{-fvtable-verify=preinit}, causes debug versions of the
runtime functions for the vtable verification feature to be called.
This flag also causes the compiler to log information about which
vtable pointers it finds for each class.
This information is written to a file named @file{vtv_set_ptr_data.log}
in the directory named by the environment variable @env{VTV_LOGS_DIR}
if that is defined or the current working directory otherwise.
Note: This feature @emph{appends} data to the log file. If you want a fresh log
file, be sure to delete any existing one.
@opindex fvtv-counts
@item -fvtv-counts
This is a debugging flag. When used in conjunction with
@option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
causes the compiler to keep track of the total number of virtual calls
it encounters and the number of verifications it inserts. It also
counts the number of calls to certain run-time library functions
that it inserts and logs this information for each compilation unit.
The compiler writes this information to a file named
@file{vtv_count_data.log} in the directory named by the environment
variable @env{VTV_LOGS_DIR} if that is defined or the current working
directory otherwise. It also counts the size of the vtable pointer sets
for each class, and writes this information to @file{vtv_class_set_sizes.log}
in the same directory.
Note: This feature @emph{appends} data to the log files. To get fresh log
files, be sure to delete any existing ones.
@opindex finstrument-functions
@item -finstrument-functions
Generate instrumentation calls for entry and exit to functions. Just
after function entry and just before function exit, the following
profiling functions are called with the address of the current
function and its call site. (On some platforms,
@code{__builtin_return_address} does not work beyond the current
function, so the call site information may not be available to the
profiling functions otherwise.)
@smallexample
void __cyg_profile_func_enter (void *this_fn,
void *call_site);
void __cyg_profile_func_exit (void *this_fn,
void *call_site);
@end smallexample
The first argument is the address of the start of the current function,
which may be looked up exactly in the symbol table.
This instrumentation is also done for functions expanded inline in other
functions. The profiling calls indicate where, conceptually, the
inline function is entered and exited. This means that addressable
versions of such functions must be available. If all your uses of a
function are expanded inline, this may mean an additional expansion of
code size. If you use @code{extern inline} in your C code, an
addressable version of such functions must be provided. (This is
normally the case anyway, but if you get lucky and the optimizer always
expands the functions inline, you might have gotten away without
providing static copies.)
A function may be given the attribute @code{no_instrument_function}, in
which case this instrumentation is not done. This can be used, for
example, for the profiling functions listed above, high-priority
interrupt routines, and any functions from which the profiling functions
cannot safely be called (perhaps signal handlers, if the profiling
routines generate output or allocate memory).
@xref{Common Function Attributes}.
@opindex finstrument-functions-once
@item -finstrument-functions-once
This is similar to @option{-finstrument-functions}, but the profiling
functions are called only once per instrumented function, i.e. the first
profiling function is called after the first entry into the instrumented
function and the second profiling function is called before the exit
corresponding to this first entry.
The definition of @code{once} for the purpose of this option is a little
vague because the implementation is not protected against data races.
As a result, the implementation only guarantees that the profiling
functions are called at @emph{least} once per process and at @emph{most}
once per thread, but the calls are always paired, that is to say, if a
thread calls the first function, then it will call the second function,
unless it never reaches the exit of the instrumented function.
@opindex finstrument-functions-exclude-file-list
@item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
Set the list of functions that are excluded from instrumentation (see
the description of @option{-finstrument-functions}). If the file that
contains a function definition matches with one of @var{file}, then
that function is not instrumented. The match is done on substrings:
if the @var{file} parameter is a substring of the file name, it is
considered to be a match.
For example:
@smallexample
-finstrument-functions-exclude-file-list=/bits/stl,include/sys
@end smallexample
@noindent
excludes any inline function defined in files whose pathnames
contain @file{/bits/stl} or @file{include/sys}.
If, for some reason, you want to include letter @samp{,} in one of
@var{sym}, write @samp{\,}. For example,
@option{-finstrument-functions-exclude-file-list='\,\,tmp'}
(note the single quote surrounding the option).
@opindex finstrument-functions-exclude-function-list
@item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
This is similar to @option{-finstrument-functions-exclude-file-list},
but this option sets the list of function names to be excluded from
instrumentation. The function name to be matched is its user-visible
name, such as @code{vector<int> blah(const vector<int> &)}, not the
internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
match is done on substrings: if the @var{sym} parameter is a substring
of the function name, it is considered to be a match. For C99 and C++
extended identifiers, the function name must be given in UTF-8, not
using universal character names.
@opindex fpatchable-function-entry
@item -fpatchable-function-entry=@var{N}[,@var{M}]
Generate @var{N} NOPs right at the beginning
of each function, with the function entry point before the @var{M}th NOP.
If @var{M} is omitted, it defaults to @code{0} so the
function entry points to the address just at the first NOP.
The NOP instructions reserve extra space which can be used to patch in
any desired instrumentation at run time, provided that the code segment
is writable. The amount of space is controllable indirectly via
the number of NOPs; the NOP instruction used corresponds to the instruction
emitted by the internal GCC back-end interface @code{gen_nop}. This behavior
is target-specific and may also depend on the architecture variant and/or
other compilation options.
For run-time identification, the starting addresses of these areas,
which correspond to their respective function entries minus @var{M},
are additionally collected in the @code{__patchable_function_entries}
section of the resulting binary.
Note that the value of @code{__attribute__ ((patchable_function_entry
(N,M)))} takes precedence over command-line option
@option{-fpatchable-function-entry=N,M}. This can be used to increase
the area size or to remove it completely on a single function.
If @code{N=0}, no pad location is recorded.
The NOP instructions are inserted at---and maybe before, depending on
@var{M}---the function entry address, even before the prologue. On
PowerPC with the ELFv2 ABI, for a function with dual entry points,
the local entry point is this function entry address.
The maximum value of @var{N} and @var{M} is 65535. On PowerPC with the
ELFv2 ABI, for a function with dual entry points, the supported values
for @var{M} are 0, 2, 6 and 14.
@end table
@node Preprocessor Options
@section Options Controlling the Preprocessor
@cindex preprocessor options
@cindex options, preprocessor
These options control the C preprocessor, which is run on each C source
file before actual compilation.
If you use the @option{-E} option, nothing is done except preprocessing.
Some of these options make sense only together with @option{-E} because
they cause the preprocessor output to be unsuitable for actual
compilation.
In addition to the options listed here, there are a number of options
to control search paths for include files documented in
@ref{Directory Options}.
Options to control preprocessor diagnostics are listed in
@ref{Warning Options}.
@table @gcctabopt
@include cppopts.texi
@opindex Wp
@item -Wp,@var{option}
You can use @option{-Wp,@var{option}} to bypass the compiler driver
and pass @var{option} directly through to the preprocessor. If
@var{option} contains commas, it is split into multiple options at the
commas. However, many options are modified, translated or interpreted
by the compiler driver before being passed to the preprocessor, and
@option{-Wp} forcibly bypasses this phase. The preprocessor's direct
interface is undocumented and subject to change, so whenever possible
you should avoid using @option{-Wp} and let the driver handle the
options instead.
@opindex Xpreprocessor
@item -Xpreprocessor @var{option}
Pass @var{option} as an option to the preprocessor. You can use this to
supply system-specific preprocessor options that GCC does not
recognize.
If you want to pass an option that takes an argument, you must use
@option{-Xpreprocessor} twice, once for the option and once for the argument.
@opindex no-integrated-cpp
@item -no-integrated-cpp
Perform preprocessing as a separate pass before compilation.
By default, GCC performs preprocessing as an integrated part of
input tokenization and parsing.
If this option is provided, the appropriate language front end
(@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
and Objective-C, respectively) is instead invoked twice,
once for preprocessing only and once for actual compilation
of the preprocessed input.
This option may be useful in conjunction with the @option{-B} or
@option{-wrapper} options to specify an alternate preprocessor or
perform additional processing of the program source between
normal preprocessing and compilation.
@opindex flarge-source-files
@item -flarge-source-files
Adjust GCC to expect large source files, at the expense of slower
compilation and higher memory usage.
Specifically, GCC normally tracks both column numbers and line numbers
within source files and it normally prints both of these numbers in
diagnostics. However, once it has processed a certain number of source
lines, it stops tracking column numbers and only tracks line numbers.
This means that diagnostics for later lines do not include column numbers.
It also means that options like @option{-Wmisleading-indentation} cease to work
at that point, although the compiler prints a note if this happens.
Passing @option{-flarge-source-files} significantly increases the number
of source lines that GCC can process before it stops tracking columns.
@end table
@node Assembler Options
@section Passing Options to the Assembler
@c prevent bad page break with this line
You can pass options to the assembler.
@table @gcctabopt
@opindex Wa
@item -Wa,@var{option}
Pass @var{option} as an option to the assembler. If @var{option}
contains commas, it is split into multiple options at the commas.
@opindex Xassembler
@item -Xassembler @var{option}
Pass @var{option} as an option to the assembler. You can use this to
supply system-specific assembler options that GCC does not
recognize.
If you want to pass an option that takes an argument, you must use
@option{-Xassembler} twice, once for the option and once for the argument.
@end table
@node Link Options
@section Options for Linking
@cindex link options
@cindex options, linking
These options come into play when the compiler links object files into
an executable output file. They are meaningless if the compiler is
not doing a link step.
@table @gcctabopt
@cindex file names
@item @var{object-file-name}
A file name that does not end in a special recognized suffix is
considered to name an object file or library. (Object files are
distinguished from libraries by the linker according to the file
contents.) If linking is done, these object files are used as input
to the linker.
@opindex c
@opindex S
@opindex E
@item -c
@itemx -S
@itemx -E
If any of these options is used, then the linker is not run, and
object file names should not be used as arguments. @xref{Overall
Options}.
@opindex flinker-output
@item -flinker-output=@var{type}
This option controls code generation of the link-time optimizer. By
default the linker output is automatically determined by the linker
plugin. For debugging the compiler and if incremental linking with a
non-LTO object file is desired, it may be useful to control the type
manually.
If @var{type} is @samp{exec}, code generation produces a static
binary. In this case @option{-fpic} and @option{-fpie} are both
disabled.
If @var{type} is @samp{dyn}, code generation produces a shared
library. In this case @option{-fpic} or @option{-fPIC} is preserved,
but not enabled automatically. This allows to build shared libraries
without position-independent code on architectures where this is
possible, i.e.@: on x86.
If @var{type} is @samp{pie}, code generation produces an @option{-fpie}
executable. This results in similar optimizations as @samp{exec}
except that @option{-fpie} is not disabled if specified at compilation
time.
If @var{type} is @samp{rel}, the compiler assumes that incremental linking is
done. The sections containing intermediate code for link-time optimization are
merged, pre-optimized, and output to the resulting object file. In addition, if
@option{-ffat-lto-objects} is specified, binary code is produced for future
non-LTO linking. The object file produced by incremental linking is smaller
than a static library produced from the same object files. At link time the
result of incremental linking also loads faster than a static
library assuming that the majority of objects in the library are used.
Finally @samp{nolto-rel} configures the compiler for incremental linking where
code generation is forced, a final binary is produced, and the intermediate
code for later link-time optimization is stripped. When multiple object files
are linked together the resulting code is better optimized than with
link-time optimizations disabled (for example, cross-module inlining
happens), but most of benefits of whole program optimizations are lost.
During the incremental link (by @option{-r}) the linker plugin defaults to
@option{rel}. With current interfaces to GNU Binutils it is however not
possible to incrementally link LTO objects and non-LTO objects into a single
mixed object file. If any of object files in incremental link cannot
be used for link-time optimization, the linker plugin issues a warning and
uses @samp{nolto-rel}. To maintain whole program optimization, it is
recommended to link such objects into static library instead. Alternatively it
is possible to use H.J. Lu's binutils with support for mixed objects.
@opindex fuse-ld=bfd
@item -fuse-ld=bfd
Use the @command{bfd} linker instead of the default linker.
@opindex fuse-ld=gold
@item -fuse-ld=gold
Use the @command{gold} linker instead of the default linker.
@opindex fuse-ld=lld
@item -fuse-ld=lld
Use the LLVM @command{lld} linker instead of the default linker.
@opindex fuse-ld=mold
@item -fuse-ld=mold
Use the Modern Linker (@command{mold}) instead of the default linker.
@cindex Libraries
@opindex l
@item -l@var{library}
@itemx -l @var{library}
Search the library named @var{library} when linking. (The second
alternative with the library as a separate argument is only for
POSIX compliance and is not recommended.)
The @option{-l} option is passed directly to the linker by GCC. Refer
to your linker documentation for exact details. The general
description below applies to the GNU linker.
The linker searches a standard list of directories for the library.
The directories searched include several standard system directories
plus any that you specify with @option{-L}.
Static libraries are archives of object files, and have file names
like @file{lib@var{library}.a}. Some targets also support shared
libraries, which typically have names like @file{lib@var{library}.so}.
If both static and shared libraries are found, the linker gives
preference to linking with the shared library unless the
@option{-static} option is used.
It makes a difference where in the command you write this option; the
linker searches and processes libraries and object files in the order they
are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
to functions in @samp{z}, those functions may not be loaded.
@opindex lobjc
@item -lobjc
You need this special case of the @option{-l} option in order to
link an Objective-C or Objective-C++ program.
@opindex nostartfiles
@item -nostartfiles
Do not use the standard system startup files when linking.
The standard system libraries are used normally, unless @option{-nostdlib},
@option{-nolibc}, or @option{-nodefaultlibs} is used.
@opindex nodefaultlibs
@item -nodefaultlibs
Do not use the standard system libraries when linking.
Only the libraries you specify are passed to the linker, and options
specifying linkage of the system libraries, such as @option{-static-libgcc}
or @option{-shared-libgcc}, are ignored.
The standard startup files are used normally, unless @option{-nostartfiles}
is used.
The compiler may generate calls to @code{memcmp},
@code{memset}, @code{memcpy} and @code{memmove}.
These entries are usually resolved by entries in
libc. These entry points should be supplied through some other
mechanism when this option is specified.
@opindex nolibc
@item -nolibc
Do not use the C library or system libraries tightly coupled with it when
linking. Still link with the startup files, @file{libgcc} or toolchain
provided language support libraries such as @file{libgnat}, @file{libgfortran}
or @file{libstdc++} unless options preventing their inclusion are used as
well. This typically removes @option{-lc} from the link command line, as well
as system libraries that normally go with it and become meaningless when
absence of a C library is assumed, for example @option{-lpthread} or
@option{-lm} in some configurations. This is intended for bare-board
targets when there is indeed no C library available.
@opindex nostdlib
@item -nostdlib
Do not use the standard system startup files or libraries when linking.
No startup files and only the libraries you specify are passed to
the linker, and options specifying linkage of the system libraries, such as
@option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
The compiler may generate calls to @code{memcmp}, @code{memset},
@code{memcpy} and @code{memmove}.
These entries are usually resolved by entries in
libc. These entry points should be supplied through some other
mechanism when this option is specified.
@cindex @option{-lgcc}, use with @option{-nostdlib}
@cindex @option{-nostdlib} and unresolved references
@cindex unresolved references and @option{-nostdlib}
@cindex @option{-lgcc}, use with @option{-nodefaultlibs}
@cindex @option{-nodefaultlibs} and unresolved references
@cindex unresolved references and @option{-nodefaultlibs}
One of the standard libraries bypassed by @option{-nostdlib} and
@option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
which GCC uses to overcome shortcomings of particular machines, or special
needs for some languages.
(@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
Collection (GCC) Internals},
for more discussion of @file{libgcc.a}.)
In most cases, you need @file{libgcc.a} even when you want to avoid
other standard libraries. In other words, when you specify @option{-nostdlib}
or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
This ensures that you have no unresolved references to internal GCC
library subroutines.
(An example of such an internal subroutine is @code{__main}, used to ensure C++
constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
GNU Compiler Collection (GCC) Internals}.)
@opindex nostdlib++
@item -nostdlib++
Do not implicitly link with standard C++ libraries.
@opindex e
@opindex entry
@item -e @var{entry}
@itemx --entry=@var{entry}
Specify that the program entry point is @var{entry}. The argument is
interpreted by the linker; the GNU linker accepts either a symbol name
or an address.
@opindex pie
@item -pie
Produce a dynamically linked position independent executable on targets
that support it. For predictable results, you must also specify the same
set of options used for compilation (@option{-fpie}, @option{-fPIE},
or model suboptions) when you specify this linker option.
@opindex no-pie
@item -no-pie
Don't produce a dynamically linked position independent executable.
@opindex static-pie
@item -static-pie
Produce a static position independent executable on targets that support
it. A static position independent executable is similar to a static
executable, but can be loaded at any address without a dynamic linker.
For predictable results, you must also specify the same set of options
used for compilation (@option{-fpie}, @option{-fPIE}, or model
suboptions) when you specify this linker option.
@opindex pthread
@item -pthread
Link with the POSIX threads library. This option is supported on
GNU/Linux targets, most other Unix derivatives, and also on
x86 Cygwin and MinGW targets. On some targets this option also sets
flags for the preprocessor, so it should be used consistently for both
compilation and linking.
@opindex r
@item -r
Produce a relocatable object as output. This is also known as partial
linking.
@opindex rdynamic
@item -rdynamic
Pass the flag @option{-export-dynamic} to the ELF linker, on targets
that support it. This instructs the linker to add all symbols, not
only used ones, to the dynamic symbol table. This option is needed
for some uses of @code{dlopen} or to allow obtaining backtraces
from within a program.
@opindex s
@item -s
Remove all symbol table and relocation information from the executable.
@opindex static
@item -static
On systems that support dynamic linking, this overrides @option{-pie}
and prevents linking with the shared libraries. On other systems, this
option has no effect.
@opindex shared
@item -shared
Produce a shared object which can then be linked with other objects to
form an executable. Not all systems support this option. For predictable
results, you must also specify the same set of options used for compilation
(@option{-fpic}, @option{-fPIC}, or model suboptions) when
you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
needs to build supplementary stub code for constructors to work. On
multi-libbed systems, @samp{gcc -shared} must select the correct support
libraries to link against. Failing to supply the correct flags may lead
to subtle defects. Supplying them in cases where they are not necessary
is innocuous. @option{-shared} suppresses the addition of startup code
to alter the floating-point environment as done with @option{-ffast-math},
@option{-Ofast} or @option{-funsafe-math-optimizations} on some targets.}
@opindex shared-libgcc
@opindex static-libgcc
@item -shared-libgcc
@itemx -static-libgcc
On systems that provide @file{libgcc} as a shared library, these options
force the use of either the shared or static version, respectively.
If no shared version of @file{libgcc} was built when the compiler was
configured, these options have no effect.
There are several situations in which an application should use the
shared @file{libgcc} instead of the static version. The most common
of these is when the application wishes to throw and catch exceptions
across different shared libraries. In that case, each of the libraries
as well as the application itself should use the shared @file{libgcc}.
Therefore, the G++ driver automatically adds @option{-shared-libgcc}
whenever you build a shared library or a main executable, because C++
programs typically use exceptions, so this is the right thing to do.
If, instead, you use the GCC driver to create shared libraries, you may
find that they are not always linked with the shared @file{libgcc}.
If GCC finds, at its configuration time, that you have a non-GNU linker
or a GNU linker that does not support option @option{--eh-frame-hdr},
it links the shared version of @file{libgcc} into shared libraries
by default. Otherwise, it takes advantage of the linker and optimizes
away the linking with the shared version of @file{libgcc}, linking with
the static version of libgcc by default. This allows exceptions to
propagate through such shared libraries, without incurring relocation
costs at library load time.
However, if a library or main executable is supposed to throw or catch
exceptions, you must link it using the G++ driver, or using the option
@option{-shared-libgcc}, such that it is linked with the shared
@file{libgcc}.
@opindex static-libasan
@item -static-libasan
When the @option{-fsanitize=address} option is used to link a program,
the GCC driver automatically links against @option{libasan}. If
@file{libasan} is available as a shared library, and the @option{-static}
option is not used, then this links against the shared version of
@file{libasan}. The @option{-static-libasan} option directs the GCC
driver to link @file{libasan} statically, without necessarily linking
other libraries statically.
@opindex static-libtsan
@item -static-libtsan
When the @option{-fsanitize=thread} option is used to link a program,
the GCC driver automatically links against @option{libtsan}. If
@file{libtsan} is available as a shared library, and the @option{-static}
option is not used, then this links against the shared version of
@file{libtsan}. The @option{-static-libtsan} option directs the GCC
driver to link @file{libtsan} statically, without necessarily linking
other libraries statically.
@opindex static-liblsan
@item -static-liblsan
When the @option{-fsanitize=leak} option is used to link a program,
the GCC driver automatically links against @option{liblsan}. If
@file{liblsan} is available as a shared library, and the @option{-static}
option is not used, then this links against the shared version of
@file{liblsan}. The @option{-static-liblsan} option directs the GCC
driver to link @file{liblsan} statically, without necessarily linking
other libraries statically.
@opindex static-libubsan
@item -static-libubsan
When the @option{-fsanitize=undefined} option is used to link a program,
the GCC driver automatically links against @option{libubsan}. If
@file{libubsan} is available as a shared library, and the @option{-static}
option is not used, then this links against the shared version of
@file{libubsan}. The @option{-static-libubsan} option directs the GCC
driver to link @file{libubsan} statically, without necessarily linking
other libraries statically.
@opindex static-libstdc++
@item -static-libstdc++
When the @command{g++} program is used to link a C++ program, it
normally automatically links against @option{libstdc++}. If
@file{libstdc++} is available as a shared library, and the
@option{-static} option is not used, then this links against the
shared version of @file{libstdc++}. That is normally fine. However, it
is sometimes useful to freeze the version of @file{libstdc++} used by
the program without going all the way to a fully static link. The
@option{-static-libstdc++} option directs the @command{g++} driver to
link @file{libstdc++} statically, without necessarily linking other
libraries statically.
@opindex symbolic
@item -symbolic
Bind references to global symbols when building a shared object. Warn
about any unresolved references (unless overridden by the link editor
option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
this option.
@opindex T
@cindex linker script
@item -T @var{script}
Use @var{script} as the linker script. This option is supported by most
systems using the GNU linker. On some targets, such as bare-board
targets without an operating system, the @option{-T} option may be required
when linking to avoid references to undefined symbols.
@opindex Xlinker
@item -Xlinker @var{option}
Pass @var{option} as an option to the linker. You can use this to
supply system-specific linker options that GCC does not recognize.
If you want to pass an option that takes a separate argument, you must use
@option{-Xlinker} twice, once for the option and once for the argument.
For example, to pass @option{-assert definitions}, you must write
@option{-Xlinker -assert -Xlinker definitions}. It does not work to write
@option{-Xlinker "-assert definitions"}, because this passes the entire
string as a single argument, which is not what the linker expects.
When using the GNU linker, it is usually more convenient to pass
arguments to linker options using the @option{@var{option}=@var{value}}
syntax than as separate arguments. For example, you can specify
@option{-Xlinker -Map=output.map} rather than
@option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
this syntax for command-line options.
@opindex Wl
@item -Wl,@var{option}
Pass @var{option} as an option to the linker. If @var{option} contains
commas, it is split into multiple options at the commas. You can use this
syntax to pass an argument to the option.
For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
linker. When using the GNU linker, you can also get the same effect with
@option{-Wl,-Map=output.map}.
@opindex u
@item -u @var{symbol}
Pretend the symbol @var{symbol} is undefined, to force linking of
library modules to define it. You can use @option{-u} multiple times with
different symbols to force loading of additional library modules.
@opindex z
@item -z @var{keyword}
@option{-z} is passed directly on to the linker along with the keyword
@var{keyword}. See the section in the documentation of your linker for
permitted values and their meanings.
@end table
@node Directory Options
@section Options for Directory Search
@cindex directory options
@cindex options, directory search
@cindex search path
These options specify directories to search for header files, for
libraries and for parts of the compiler:
@table @gcctabopt
@include cppdiropts.texi
@opindex iplugindir=
@item -iplugindir=@var{dir}
Set the directory to search for plugins that are passed
by @option{-fplugin=@var{name}} instead of
@option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
to be used by the user, but only passed by the driver.
@opindex L
@item -L@var{dir}
Add directory @var{dir} to the list of directories to be searched
for @option{-l}.
@opindex B
@item -B@var{prefix}
This option specifies where to find the executables, libraries,
include files, and data files of the compiler itself.
The compiler driver program runs one or more of the subprograms
@command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
@var{prefix} as a prefix for each program it tries to run, both with and
without @samp{@var{machine}/@var{version}/} for the corresponding target
machine and compiler version.
For each subprogram to be run, the compiler driver first tries the
@option{-B} prefix, if any. If that name is not found, or if @option{-B}
is not specified, the driver tries two standard prefixes,
@file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
those results in a file name that is found, the unmodified program
name is searched for using the directories specified in your
@env{PATH} environment variable.
The compiler checks to see if the path provided by @option{-B}
refers to a directory, and if necessary it adds a directory
separator character at the end of the path.
@option{-B} prefixes that effectively specify directory names also apply
to libraries in the linker, because the compiler translates these
options into @option{-L} options for the linker. They also apply to
include files in the preprocessor, because the compiler translates these
options into @option{-isystem} options for the preprocessor. In this case,
the compiler appends @samp{include} to the prefix.
The runtime support file @file{libgcc.a} can also be searched for using
the @option{-B} prefix, if needed. If it is not found there, the two
standard prefixes above are tried, and that is all. The file is left
out of the link if it is not found by those means.
Another way to specify a prefix much like the @option{-B} prefix is to use
the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
Variables}.
As a special kludge, if the path provided by @option{-B} is
@file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
9, then it is replaced by @file{[dir/]include}. This is to help
with boot-strapping the compiler.
@opindex no-canonical-prefixes
@item -no-canonical-prefixes
Do not expand any symbolic links, resolve references to @samp{/../}
or @samp{/./}, or make the path absolute when generating a relative
prefix.
@opindex sysroot
@item --sysroot=@var{dir}
Use @var{dir} as the logical root directory for headers and libraries.
For example, if the compiler normally searches for headers in
@file{/usr/include} and libraries in @file{/usr/lib}, it instead
searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
If you use both this option and the @option{-isysroot} option, then
the @option{--sysroot} option applies to libraries, but the
@option{-isysroot} option applies to header files.
The GNU linker (beginning with version 2.16) has the necessary support
for this option. If your linker does not support this option, the
header file aspect of @option{--sysroot} still works, but the
library aspect does not.
@opindex no-sysroot-suffix
@item --no-sysroot-suffix
For some targets, a suffix is added to the root directory specified
with @option{--sysroot}, depending on the other options used, so that
headers may for example be found in
@file{@var{dir}/@var{suffix}/usr/include} instead of
@file{@var{dir}/usr/include}. This option disables the addition of
such a suffix.
@end table
@node Code Gen Options
@section Options for Code Generation Conventions
@cindex code generation conventions
@cindex options, code generation
@cindex run-time options
These machine-independent options control the interface conventions
used in code generation.
Most of them have both positive and negative forms; the negative form
of @option{-ffoo} is @option{-fno-foo}. In the table below, only
one of the forms is listed---the one that is not the default. You
can figure out the other form by either removing @samp{no-} or adding
it.
@table @gcctabopt
@opindex fstack_reuse
@item -fstack-reuse=@var{reuse-level}
This option controls stack space reuse for user declared local/auto variables
and compiler generated temporaries. @var{reuse_level} can be @samp{all},
@samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
local variables and temporaries, @samp{named_vars} enables the reuse only for
user defined local variables with names, and @samp{none} disables stack reuse
completely. The default value is @samp{all}. The option is needed when the
program extends the lifetime of a scoped local variable or a compiler generated
temporary beyond the end point defined by the language. When a lifetime of
a variable ends, and if the variable lives in memory, the optimizing compiler
has the freedom to reuse its stack space with other temporaries or scoped
local variables whose live range does not overlap with it. Legacy code extending
local lifetime is likely to break with the stack reuse optimization.
For example,
@smallexample
int *p;
@{
int local1;
p = &local1;
local1 = 10;
....
@}
@{
int local2;
local2 = 20;
...
@}
if (*p == 10) // out of scope use of local1
@{
@}
@end smallexample
Another example:
@smallexample
struct A
@{
A(int k) : i(k), j(k) @{ @}
int i;
int j;
@};
A *ap;
void foo(const A& ar)
@{
ap = &ar;
@}
void bar()
@{
foo(A(10)); // temp object's lifetime ends when foo returns
@{
A a(20);
....
@}
ap->i+= 10; // ap references out of scope temp whose space
// is reused with a. What is the value of ap->i?
@}
@end smallexample
The lifetime of a compiler generated temporary is well defined by the C++
standard. When a lifetime of a temporary ends, and if the temporary lives
in memory, the optimizing compiler has the freedom to reuse its stack
space with other temporaries or scoped local variables whose live range
does not overlap with it. However some of the legacy code relies on
the behavior of older compilers in which temporaries' stack space is
not reused, the aggressive stack reuse can lead to runtime errors. This
option is used to control the temporary stack reuse optimization.
@opindex ftrapv
@item -ftrapv
This option generates traps for signed overflow on addition, subtraction,
multiplication operations.
The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
@option{-ftrapv} @option{-fwrapv} on the command-line results in
@option{-fwrapv} being effective. Note that only active options override, so
using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
results in @option{-ftrapv} being effective.
@opindex fwrapv
@item -fwrapv
This option instructs the compiler to assume that signed arithmetic
overflow of addition, subtraction and multiplication wraps around
using twos-complement representation. This flag enables some optimizations
and disables others.
The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
@option{-ftrapv} @option{-fwrapv} on the command-line results in
@option{-fwrapv} being effective. Note that only active options override, so
using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
results in @option{-ftrapv} being effective.
@opindex fwrapv-pointer
@item -fwrapv-pointer
This option instructs the compiler to assume that pointer arithmetic
overflow on addition and subtraction wraps around using twos-complement
representation. This flag disables some optimizations which assume
pointer overflow is invalid.
@opindex fstrict-overflow
@item -fstrict-overflow
This option implies @option{-fno-wrapv} @option{-fno-wrapv-pointer} and when
negated implies @option{-fwrapv} @option{-fwrapv-pointer}.
@opindex fexceptions
@item -fexceptions
Enable exception handling. Generates extra code needed to propagate
exceptions. For some targets, this implies GCC generates frame
unwind information for all functions, which can produce significant data
size overhead, although it does not affect execution. If you do not
specify this option, GCC enables it by default for languages like
C++ that normally require exception handling, and disables it for
languages like C that do not normally require it. However, you may need
to enable this option when compiling C code that needs to interoperate
properly with exception handlers written in C++. You may also wish to
disable this option if you are compiling older C++ programs that don't
use exception handling.
@opindex fnon-call-exceptions
@item -fnon-call-exceptions
Generate code that allows trapping instructions to throw exceptions.
Note that this requires platform-specific runtime support that does
not exist everywhere. Moreover, it only allows @emph{trapping}
instructions to throw exceptions, i.e.@: memory references or floating-point
instructions. It does not allow exceptions to be thrown from
arbitrary signal handlers such as @code{SIGALRM}. This enables
@option{-fexceptions}.
@opindex fdelete-dead-exceptions
@item -fdelete-dead-exceptions
Consider that instructions that may throw exceptions but don't otherwise
contribute to the execution of the program can be optimized away.
This does not affect calls to functions except those with the
@code{pure} or @code{const} attributes.
This option is enabled by default for the Ada and C++ compilers, as permitted by
the language specifications.
Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
@opindex funwind-tables
@item -funwind-tables
Similar to @option{-fexceptions}, except that it just generates any needed
static data, but does not affect the generated code in any other way.
You normally do not need to enable this option; instead, a language processor
that needs this handling enables it on your behalf.
@opindex fasynchronous-unwind-tables
@item -fasynchronous-unwind-tables
Generate unwind table in DWARF format, if supported by target machine. The
table is exact at each instruction boundary, so it can be used for stack
unwinding from asynchronous events (such as debugger or garbage collector).
@opindex fno-gnu-unique
@opindex fgnu-unique
@item -fno-gnu-unique
On systems with recent GNU assembler and C library, the C++ compiler
uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
of template static data members and static local variables in inline
functions are unique even in the presence of @code{RTLD_LOCAL}; this
is necessary to avoid problems with a library used by two different
@code{RTLD_LOCAL} plugins depending on a definition in one of them and
therefore disagreeing with the other one about the binding of the
symbol. But this causes @code{dlclose} to be ignored for affected
DSOs; if your program relies on reinitialization of a DSO via
@code{dlclose} and @code{dlopen}, you can use
@option{-fno-gnu-unique}.
@opindex fpcc-struct-return
@item -fpcc-struct-return
Return ``short'' @code{struct} and @code{union} values in memory like
longer ones, rather than in registers. This convention is less
efficient, but it has the advantage of allowing intercallability between
GCC-compiled files and files compiled with other compilers, particularly
the Portable C Compiler (pcc).
The precise convention for returning structures in memory depends
on the target configuration macros.
Short structures and unions are those whose size and alignment match
that of some integer type.
@strong{Warning:} code compiled with the @option{-fpcc-struct-return}
switch is not binary compatible with code compiled with the
@option{-freg-struct-return} switch.
Use it to conform to a non-default application binary interface.
@opindex freg-struct-return
@item -freg-struct-return
Return @code{struct} and @code{union} values in registers when possible.
This is more efficient for small structures than
@option{-fpcc-struct-return}.
If you specify neither @option{-fpcc-struct-return} nor
@option{-freg-struct-return}, GCC defaults to whichever convention is
standard for the target. If there is no standard convention, GCC
defaults to @option{-fpcc-struct-return}, except on targets where GCC is
the principal compiler. In those cases, we can choose the standard, and
we chose the more efficient register return alternative.
@strong{Warning:} code compiled with the @option{-freg-struct-return}
switch is not binary compatible with code compiled with the
@option{-fpcc-struct-return} switch.
Use it to conform to a non-default application binary interface.
@opindex fshort-enums
@item -fshort-enums
Allocate to an @code{enum} type only as many bytes as it needs for the
declared range of possible values. Specifically, the @code{enum} type
is equivalent to the smallest integer type that has enough room.
This option has no effect for an enumeration type with a fixed underlying
type.
@strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
code that is not binary compatible with code generated without that switch.
Use it to conform to a non-default application binary interface.
@opindex fshort-wchar
@item -fshort-wchar
Override the underlying type for @code{wchar_t} to be @code{short
unsigned int} instead of the default for the target. This option is
useful for building programs to run under WINE@.
@strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
code that is not binary compatible with code generated without that switch.
Use it to conform to a non-default application binary interface.
@opindex fcommon
@opindex fno-common
@cindex tentative definitions
@item -fcommon
In C code, this option controls the placement of global variables
defined without an initializer, known as @dfn{tentative definitions}
in the C standard. Tentative definitions are distinct from declarations
of a variable with the @code{extern} keyword, which do not allocate storage.
The default is @option{-fno-common}, which specifies that the compiler places
uninitialized global variables in the BSS section of the object file.
This inhibits the merging of tentative definitions by the linker so you get a
multiple-definition error if the same variable is accidentally defined in more
than one compilation unit.
The @option{-fcommon} places uninitialized global variables in a common block.
This allows the linker to resolve all tentative definitions of the same variable
in different compilation units to the same object, or to a non-tentative
definition. This behavior is inconsistent with C++, and on many targets implies
a speed and code size penalty on global variable references. It is mainly
useful to enable legacy code to link without errors.
@opindex fno-ident
@opindex fident
@item -fno-ident
Ignore the @code{#ident} directive.
@opindex finhibit-size-directive
@item -finhibit-size-directive
Don't output a @code{.size} assembler directive, or anything else that
would cause trouble if the function is split in the middle, and the
two halves are placed at locations far apart in memory. This option is
used when compiling @file{crtstuff.c}; you should not need to use it
for anything else.
@opindex fverbose-asm
@item -fverbose-asm
Put extra commentary information in the generated assembly code to
make it more readable. This option is generally only of use to those
who actually need to read the generated assembly code (perhaps while
debugging the compiler itself).
@option{-fno-verbose-asm}, the default, causes the
extra information to be omitted and is useful when comparing two assembler
files.
The added comments include:
@itemize @bullet
@item
information on the compiler version and command-line options,
@item
the source code lines associated with the assembly instructions,
in the form FILENAME:LINENUMBER:CONTENT OF LINE,
@item
hints on which high-level expressions correspond to
the various assembly instruction operands.
@end itemize
For example, given this C source file:
@smallexample
int test (int n)
@{
int i;
int total = 0;
for (i = 0; i < n; i++)
total += i * i;
return total;
@}
@end smallexample
compiling to (x86_64) assembly via @option{-S} and emitting the result
direct to stdout via @option{-o} @option{-}
@smallexample
gcc -S test.c -fverbose-asm -Os -o -
@end smallexample
gives output similar to this:
@smallexample
.file "test.c"
# GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
[...snip...]
# options passed:
[...snip...]
.text
.globl test
.type test, @@function
test:
.LFB0:
.cfi_startproc
# test.c:4: int total = 0;
xorl %eax, %eax # <retval>
# test.c:6: for (i = 0; i < n; i++)
xorl %edx, %edx # i
.L2:
# test.c:6: for (i = 0; i < n; i++)
cmpl %edi, %edx # n, i
jge .L5 #,
# test.c:7: total += i * i;
movl %edx, %ecx # i, tmp92
imull %edx, %ecx # i, tmp92
# test.c:6: for (i = 0; i < n; i++)
incl %edx # i
# test.c:7: total += i * i;
addl %ecx, %eax # tmp92, <retval>
jmp .L2 #
.L5:
# test.c:10: @}
ret
.cfi_endproc
.LFE0:
.size test, .-test
.ident "GCC: (GNU) 7.0.0 20160809 (experimental)"
.section .note.GNU-stack,"",@@progbits
@end smallexample
The comments are intended for humans rather than machines and hence the
precise format of the comments is subject to change.
@opindex frecord-gcc-switches
@item -frecord-gcc-switches
This switch causes the command line used to invoke the
compiler to be recorded into the object file that is being created.
This switch is only implemented on some targets and the exact format
of the recording is target and binary file format dependent, but it
usually takes the form of a section containing ASCII text. This
switch is related to the @option{-fverbose-asm} switch, but that
switch only records information in the assembler output file as
comments, so it never reaches the object file.
See also @option{-grecord-gcc-switches} for another
way of storing compiler options into the object file.
@opindex fpic
@cindex global offset table
@cindex PIC
@item -fpic
Generate position-independent code (PIC) suitable for use in a shared
library, if supported for the target machine. Such code accesses all
constant addresses through a global offset table (GOT)@. The dynamic
loader resolves the GOT entries when the program starts (the dynamic
loader is not part of GCC; it is part of the operating system). If
the GOT size for the linked executable exceeds a machine-specific
maximum size, you get an error message from the linker indicating that
@option{-fpic} does not work; in that case, recompile with @option{-fPIC}
instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
on the m68k and RS/6000. The x86 has no such limit.)
Position-independent code requires special support, and therefore works
only on certain machines. For the x86, GCC supports PIC for System V
but not for the Sun 386i. Code generated for the IBM RS/6000 is always
position-independent.
When this flag is set, the macros @code{__pic__} and @code{__PIC__}
are defined to 1.
@opindex fPIC
@item -fPIC
If supported for the target machine, emit position-independent code,
suitable for dynamic linking and avoiding any limit on the size of the
global offset table. This option makes a difference on AArch64, m68k,
PowerPC and SPARC@.
Position-independent code requires special support, and therefore works
only on certain machines.
When this flag is set, the macros @code{__pic__} and @code{__PIC__}
are defined to 2.
@opindex fpie
@opindex fPIE
@item -fpie
@itemx -fPIE
These options are similar to @option{-fpic} and @option{-fPIC}, but the
generated position-independent code can be only linked into executables.
Usually these options are used to compile code that will be linked using
the @option{-pie} GCC option.
@option{-fpie} and @option{-fPIE} both define the macros
@code{__pie__} and @code{__PIE__}. The macros have the value 1
for @option{-fpie} and 2 for @option{-fPIE}.
@opindex fno-plt
@opindex fplt
@item -fno-plt
Do not use the PLT for external function calls in position-independent code.
Instead, load the callee address at call sites from the GOT and branch to it.
This leads to more efficient code by eliminating PLT stubs and exposing
GOT loads to optimizations. On architectures such as 32-bit x86 where
PLT stubs expect the GOT pointer in a specific register, this gives more
register allocation freedom to the compiler.
Lazy binding requires use of the PLT;
with @option{-fno-plt} all external symbols are resolved at load time.
Alternatively, the function attribute @code{noplt} can be used to avoid calls
through the PLT for specific external functions.
In position-dependent code, a few targets also convert calls to
functions that are marked to not use the PLT to use the GOT instead.
@opindex fno-jump-tables
@opindex fjump-tables
@item -fno-jump-tables
Do not use jump tables for switch statements even where it would be
more efficient than other code generation strategies. This option is
of use in conjunction with @option{-fpic} or @option{-fPIC} for
building code that forms part of a dynamic linker and cannot
reference the address of a jump table. On some targets, jump tables
do not require a GOT and this option is not needed.
@opindex fno-bit-tests
@opindex fbit-tests
@item -fno-bit-tests
Do not use bit tests for switch statements even where it would be
more efficient than other code generation strategies.
@opindex ffixed
@item -ffixed-@var{reg}
Treat the register named @var{reg} as a fixed register; generated code
should never refer to it (except perhaps as a stack pointer, frame
pointer or in some other fixed role).
@var{reg} must be the name of a register. The register names accepted
are machine-specific and are defined in the @code{REGISTER_NAMES}
macro in the machine description macro file.
This flag does not have a negative form, because it specifies a
three-way choice.
@opindex fcall-used
@item -fcall-used-@var{reg}
Treat the register named @var{reg} as an allocable register that is
clobbered by function calls. It may be allocated for temporaries or
variables that do not live across a call. Functions compiled this way
do not save and restore the register @var{reg}.
It is an error to use this flag with the frame pointer or stack pointer.
Use of this flag for other registers that have fixed pervasive roles in
the machine's execution model produces disastrous results.
This flag does not have a negative form, because it specifies a
three-way choice.
@opindex fcall-saved
@item -fcall-saved-@var{reg}
Treat the register named @var{reg} as an allocable register saved by
functions. It may be allocated even for temporaries or variables that
live across a call. Functions compiled this way save and restore
the register @var{reg} if they use it.
It is an error to use this flag with the frame pointer or stack pointer.
Use of this flag for other registers that have fixed pervasive roles in
the machine's execution model produces disastrous results.
A different sort of disaster results from the use of this flag for
a register in which function values may be returned.
This flag does not have a negative form, because it specifies a
three-way choice.
@opindex fpack-struct
@item -fpack-struct[=@var{n}]
Without a value specified, pack all structure members together without
holes. When a value is specified (which must be a small power of two), pack
structure members according to this value, representing the maximum
alignment (that is, objects with default alignment requirements larger than
this are output potentially unaligned at the next fitting location.
@strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
code that is not binary compatible with code generated without that switch.
Additionally, it makes the code suboptimal.
Use it to conform to a non-default application binary interface.
@opindex fleading-underscore
@item -fleading-underscore
This option and its counterpart, @option{-fno-leading-underscore}, forcibly
change the way C symbols are represented in the object file. One use
is to help link with legacy assembly code.
@strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
generate code that is not binary compatible with code generated without that
switch. Use it to conform to a non-default application binary interface.
Not all targets provide complete support for this switch.
@opindex ftls-model
@item -ftls-model=@var{model}
Alter the thread-local storage model to be used (@pxref{Thread-Local}).
The @var{model} argument should be one of @samp{global-dynamic},
@samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
Note that the choice is subject to optimization: the compiler may use
a more efficient model for symbols not visible outside of the translation
unit, or if @option{-fpic} is not given on the command line.
The default without @option{-fpic} is @samp{initial-exec}; with
@option{-fpic} the default is @samp{global-dynamic}.
@opindex ftrampolines
@item -ftrampolines
For targets that normally need trampolines for nested functions, always
generate them instead of using descriptors. Otherwise, for targets that
do not need them, like for example HP-PA or IA-64, do nothing.
A trampoline is a small piece of code that is created at run time on the
stack when the address of a nested function is taken, and is used to call
the nested function indirectly. Therefore, it requires the stack to be
made executable in order for the program to work properly.
@option{-fno-trampolines} is enabled by default on a language by language
basis to let the compiler avoid generating them, if it computes that this
is safe, and replace them with descriptors. Descriptors are made up of data
only, but the generated code must be prepared to deal with them. As of this
writing, @option{-fno-trampolines} is enabled by default only for Ada.
Moreover, code compiled with @option{-ftrampolines} and code compiled with
@option{-fno-trampolines} are not binary compatible if nested functions are
present. This option must therefore be used on a program-wide basis and be
manipulated with extreme care.
For languages other than Ada, the @code{-ftrampolines} and
@code{-fno-trampolines} options currently have no effect, and
trampolines are always generated on platforms that need them
for nested functions.
@opindex ftrampoline-impl
@item -ftrampoline-impl=@r{[}stack@r{|}heap@r{]}
By default, trampolines are generated on stack. However, certain platforms
(such as the Apple M1) do not permit an executable stack. Compiling with
@option{-ftrampoline-impl=heap} generate calls to
@code{__gcc_nested_func_ptr_created} and
@code{__gcc_nested_func_ptr_deleted} in order to allocate and
deallocate trampoline space on the executable heap. These functions are
implemented in libgcc, and will only be provided on specific targets:
x86_64 Darwin, x86_64 and aarch64 Linux. @emph{PLEASE NOTE}: Heap
trampolines are @emph{not} guaranteed to be correctly deallocated if you
@code{setjmp}, instantiate nested functions, and then @code{longjmp} back
to a state prior to having allocated those nested functions.
@opindex fvisibility
@item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
Set the default ELF image symbol visibility to the specified option---all
symbols are marked with this unless overridden within the code.
Using this feature can very substantially improve linking and
load times of shared object libraries, produce more optimized
code, provide near-perfect API export and prevent symbol clashes.
It is @strong{strongly} recommended that you use this in any shared objects
you distribute.
Despite the nomenclature, @samp{default} always means public; i.e.,
available to be linked against from outside the shared object.
@samp{protected} and @samp{internal} are pretty useless in real-world
usage so the only other commonly used option is @samp{hidden}.
The default if @option{-fvisibility} isn't specified is
@samp{default}, i.e., make every symbol public.
A good explanation of the benefits offered by ensuring ELF
symbols have the correct visibility is given by ``How To Write
Shared Libraries'' by Ulrich Drepper (which can be found at
@w{@uref{https://www.akkadia.org/drepper/}})---however a superior
solution made possible by this option to marking things hidden when
the default is public is to make the default hidden and mark things
public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
and @code{__attribute__ ((visibility("default")))} instead of
@code{__declspec(dllexport)} you get almost identical semantics with
identical syntax. This is a great boon to those working with
cross-platform projects.
For those adding visibility support to existing code, you may find
@code{#pragma GCC visibility} of use. This works by you enclosing
the declarations you wish to set visibility for with (for example)
@code{#pragma GCC visibility push(hidden)} and
@code{#pragma GCC visibility pop}.
Bear in mind that symbol visibility should be viewed @strong{as
part of the API interface contract} and thus all new code should
always specify visibility when it is not the default; i.e., declarations
only for use within the local DSO should @strong{always} be marked explicitly
as hidden as so to avoid PLT indirection overheads---making this
abundantly clear also aids readability and self-documentation of the code.
Note that due to ISO C++ specification requirements, @code{operator new} and
@code{operator delete} must always be of default visibility.
Be aware that headers from outside your project, in particular system
headers and headers from any other library you use, may not be
expecting to be compiled with visibility other than the default. You
may need to explicitly say @code{#pragma GCC visibility push(default)}
before including any such headers.
@code{extern} declarations are not affected by @option{-fvisibility}, so
a lot of code can be recompiled with @option{-fvisibility=hidden} with
no modifications. However, this means that calls to @code{extern}
functions with no explicit visibility use the PLT, so it is more
effective to use @code{__attribute ((visibility))} and/or
@code{#pragma GCC visibility} to tell the compiler which @code{extern}
declarations should be treated as hidden.
Note that @option{-fvisibility} does affect C++ vague linkage
entities. This means that, for instance, an exception class that is
be thrown between DSOs must be explicitly marked with default
visibility so that the @samp{type_info} nodes are unified between
the DSOs.
An overview of these techniques, their benefits and how to use them
is at @uref{https://gcc.gnu.org/@/wiki/@/Visibility}.
@opindex fstrict-volatile-bitfields
@item -fstrict-volatile-bitfields
This option should be used if accesses to volatile bit-fields (or other
structure fields, although the compiler usually honors those types
anyway) should use a single access of the width of the
field's type, aligned to a natural alignment if possible. For
example, targets with memory-mapped peripheral registers might require
all such accesses to be 16 bits wide; with this flag you can
declare all peripheral bit-fields as @code{unsigned short} (assuming short
is 16 bits on these targets) to force GCC to use 16-bit accesses
instead of, perhaps, a more efficient 32-bit access.
If this option is disabled, the compiler uses the most efficient
instruction. In the previous example, that might be a 32-bit load
instruction, even though that accesses bytes that do not contain
any portion of the bit-field, or memory-mapped registers unrelated to
the one being updated.
In some cases, such as when the @code{packed} attribute is applied to a
structure field, it may not be possible to access the field with a single
read or write that is correctly aligned for the target machine. In this
case GCC falls back to generating multiple accesses rather than code that
will fault or truncate the result at run time.
Note: Due to restrictions of the C/C++11 memory model, write accesses are
not allowed to touch non bit-field members. It is therefore recommended
to define all bits of the field's type as bit-field members.
The default value of this option is determined by the application binary
interface for the target processor.
@opindex fsync-libcalls
@item -fsync-libcalls
This option controls whether any out-of-line instance of the @code{__sync}
family of functions may be used to implement the C++11 @code{__atomic}
family of functions.
The default value of this option is enabled, thus the only useful form
of the option is @option{-fno-sync-libcalls}. This option is used in
the implementation of the @file{libatomic} runtime library.
@end table
@node Developer Options
@section GCC Developer Options
@cindex developer options
@cindex debugging GCC
@cindex debug dump options
@cindex dump options
@cindex compilation statistics
This section describes command-line options that are primarily of
interest to GCC developers, including options to support compiler
testing and investigation of compiler bugs and compile-time
performance problems. This includes options that produce debug dumps
at various points in the compilation; that print statistics such as
memory use and execution time; and that print information about GCC's
configuration, such as where it searches for libraries. You should
rarely need to use any of these options for ordinary compilation and
linking tasks.
Many developer options that cause GCC to dump output to a file take an
optional @samp{=@var{filename}} suffix. You can specify @samp{stdout}
or @samp{-} to dump to standard output, and @samp{stderr} for standard
error.
If @samp{=@var{filename}} is omitted, a default dump file name is
constructed by concatenating the base dump file name, a pass number,
phase letter, and pass name. The base dump file name is the name of
output file produced by the compiler if explicitly specified and not
an executable; otherwise it is the source file name.
The pass number is determined by the order passes are registered with
the compiler's pass manager.
This is generally the same as the order of execution, but passes
registered by plugins, target-specific passes, or passes that are
otherwise registered late are numbered higher than the pass named
@samp{final}, even if they are executed earlier. The phase letter is
one of @samp{i} (inter-procedural analysis), @samp{l}
(language-specific), @samp{r} (RTL), or @samp{t} (tree).
The files are created in the directory of the output file.
@table @gcctabopt
@opindex fcallgraph-info
@item -fcallgraph-info
@itemx -fcallgraph-info=@var{MARKERS}
Makes the compiler output callgraph information for the program, on a
per-object-file basis. The information is generated in the common VCG
format. It can be decorated with additional, per-node and/or per-edge
information, if a list of comma-separated markers is additionally
specified. When the @code{su} marker is specified, the callgraph is
decorated with stack usage information; it is equivalent to
@option{-fstack-usage}. When the @code{da} marker is specified, the
callgraph is decorated with information about dynamically allocated
objects.
When compiling with @option{-flto}, no callgraph information is output
along with the object file. At LTO link time, @option{-fcallgraph-info}
may generate multiple callgraph information files next to intermediate
LTO output files.
@opindex d
@opindex fdump-rtl-@var{pass}
@item -d@var{letters}
@itemx -fdump-rtl-@var{pass}
@itemx -fdump-rtl-@var{pass}=@var{filename}
Says to make debugging dumps during compilation at times specified by
@var{letters}. This is used for debugging the RTL-based passes of the
compiler.
Some @option{-d@var{letters}} switches have different meaning when
@option{-E} is used for preprocessing. @xref{Preprocessor Options},
for information about preprocessor-specific dump options.
Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
@option{-d} option @var{letters}. Here are the possible
letters for use in @var{pass} and @var{letters}, and their meanings:
@table @gcctabopt
@opindex fdump-rtl-alignments
@item -fdump-rtl-alignments
Dump after branch alignments have been computed.
@opindex fdump-rtl-asmcons
@item -fdump-rtl-asmcons
Dump after fixing rtl statements that have unsatisfied in/out constraints.
@opindex fdump-rtl-auto_inc_dec
@item -fdump-rtl-auto_inc_dec
Dump after auto-inc-dec discovery. This pass is only run on
architectures that have auto inc or auto dec instructions.
@opindex fdump-rtl-barriers
@item -fdump-rtl-barriers
Dump after cleaning up the barrier instructions.
@opindex fdump-rtl-bbpart
@item -fdump-rtl-bbpart
Dump after partitioning hot and cold basic blocks.
@opindex fdump-rtl-bbro
@item -fdump-rtl-bbro
Dump after block reordering.
@opindex fdump-rtl-btl2
@opindex fdump-rtl-btl2
@item -fdump-rtl-btl1
@itemx -fdump-rtl-btl2
@option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
after the two branch
target load optimization passes.
@opindex fdump-rtl-bypass
@item -fdump-rtl-bypass
Dump after jump bypassing and control flow optimizations.
@opindex fdump-rtl-combine
@item -fdump-rtl-combine
Dump after the RTL instruction combination pass.
@opindex fdump-rtl-compgotos
@item -fdump-rtl-compgotos
Dump after duplicating the computed gotos.
@opindex fdump-rtl-ce1
@opindex fdump-rtl-ce2
@opindex fdump-rtl-ce3
@item -fdump-rtl-ce1
@itemx -fdump-rtl-ce2
@itemx -fdump-rtl-ce3
@option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
@option{-fdump-rtl-ce3} enable dumping after the three
if conversion passes.
@opindex fdump-rtl-cprop_hardreg
@item -fdump-rtl-cprop_hardreg
Dump after hard register copy propagation.
@opindex fdump-rtl-csa
@item -fdump-rtl-csa
Dump after combining stack adjustments.
@opindex fdump-rtl-cse1
@opindex fdump-rtl-cse2
@item -fdump-rtl-cse1
@itemx -fdump-rtl-cse2
@option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
the two common subexpression elimination passes.
@opindex fdump-rtl-dce
@item -fdump-rtl-dce
Dump after the standalone dead code elimination passes.
@opindex fdump-rtl-dbr
@item -fdump-rtl-dbr
Dump after delayed branch scheduling.
@opindex fdump-rtl-dce1
@opindex fdump-rtl-dce2
@item -fdump-rtl-dce1
@itemx -fdump-rtl-dce2
@option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
the two dead store elimination passes.
@opindex fdump-rtl-eh
@item -fdump-rtl-eh
Dump after finalization of EH handling code.
@opindex fdump-rtl-eh_ranges
@item -fdump-rtl-eh_ranges
Dump after conversion of EH handling range regions.
@opindex fdump-rtl-expand
@item -fdump-rtl-expand
Dump after RTL generation.
@opindex fdump-rtl-fwprop1
@opindex fdump-rtl-fwprop2
@item -fdump-rtl-fwprop1
@itemx -fdump-rtl-fwprop2
@option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
dumping after the two forward propagation passes.
@opindex fdump-rtl-gcse1
@opindex fdump-rtl-gcse2
@item -fdump-rtl-gcse1
@itemx -fdump-rtl-gcse2
@option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
after global common subexpression elimination.
@opindex fdump-rtl-init-regs
@item -fdump-rtl-init-regs
Dump after the initialization of the registers.
@opindex fdump-rtl-initvals
@item -fdump-rtl-initvals
Dump after the computation of the initial value sets.
@opindex fdump-rtl-into_cfglayout
@item -fdump-rtl-into_cfglayout
Dump after converting to cfglayout mode.
@opindex fdump-rtl-ira
@item -fdump-rtl-ira
Dump after iterated register allocation.
@opindex fdump-rtl-jump
@item -fdump-rtl-jump
Dump after the second jump optimization.
@opindex fdump-rtl-loop2
@item -fdump-rtl-loop2
@option{-fdump-rtl-loop2} enables dumping after the rtl
loop optimization passes.
@opindex fdump-rtl-mach
@item -fdump-rtl-mach
Dump after performing the machine dependent reorganization pass, if that
pass exists.
@opindex fdump-rtl-mode_sw
@item -fdump-rtl-mode_sw
Dump after removing redundant mode switches.
@opindex fdump-rtl-rnreg
@item -fdump-rtl-rnreg
Dump after register renumbering.
@opindex fdump-rtl-outof_cfglayout
@item -fdump-rtl-outof_cfglayout
Dump after converting from cfglayout mode.
@opindex fdump-rtl-peephole2
@item -fdump-rtl-peephole2
Dump after the peephole pass.
@opindex fdump-rtl-postreload
@item -fdump-rtl-postreload
Dump after post-reload optimizations.
@opindex fdump-rtl-pro_and_epilogue
@item -fdump-rtl-pro_and_epilogue
Dump after generating the function prologues and epilogues.
@opindex fdump-rtl-sched1
@opindex fdump-rtl-sched2
@item -fdump-rtl-sched1
@itemx -fdump-rtl-sched2
@option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
after the basic block scheduling passes.
@opindex fdump-rtl-ree
@item -fdump-rtl-ree
Dump after sign/zero extension elimination.
@opindex fdump-rtl-seqabstr
@item -fdump-rtl-seqabstr
Dump after common sequence discovery.
@opindex fdump-rtl-shorten
@item -fdump-rtl-shorten
Dump after shortening branches.
@opindex fdump-rtl-sibling
@item -fdump-rtl-sibling
Dump after sibling call optimizations.
@opindex fdump-rtl-split1
@opindex fdump-rtl-split2
@opindex fdump-rtl-split3
@opindex fdump-rtl-split4
@opindex fdump-rtl-split5
@item -fdump-rtl-split1
@itemx -fdump-rtl-split2
@itemx -fdump-rtl-split3
@itemx -fdump-rtl-split4
@itemx -fdump-rtl-split5
These options enable dumping after five rounds of
instruction splitting.
@opindex fdump-rtl-sms
@item -fdump-rtl-sms
Dump after modulo scheduling. This pass is only run on some
architectures.
@opindex fdump-rtl-stack
@item -fdump-rtl-stack
Dump after conversion from GCC's ``flat register file'' registers to the
x87's stack-like registers. This pass is only run on x86 variants.
@opindex fdump-rtl-subreg1
@opindex fdump-rtl-subreg2
@item -fdump-rtl-subreg1
@itemx -fdump-rtl-subreg2
@option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
the two subreg expansion passes.
@opindex fdump-rtl-unshare
@item -fdump-rtl-unshare
Dump after all rtl has been unshared.
@opindex fdump-rtl-vartrack
@item -fdump-rtl-vartrack
Dump after variable tracking.
@opindex fdump-rtl-vregs
@item -fdump-rtl-vregs
Dump after converting virtual registers to hard registers.
@opindex fdump-rtl-web
@item -fdump-rtl-web
Dump after live range splitting.
@opindex fdump-rtl-regclass
@opindex fdump-rtl-subregs_of_mode_init
@opindex fdump-rtl-subregs_of_mode_finish
@opindex fdump-rtl-dfinit
@opindex fdump-rtl-dfinish
@item -fdump-rtl-regclass
@itemx -fdump-rtl-subregs_of_mode_init
@itemx -fdump-rtl-subregs_of_mode_finish
@itemx -fdump-rtl-dfinit
@itemx -fdump-rtl-dfinish
These dumps are defined but always produce empty files.
@opindex da
@opindex fdump-rtl-all
@item -da
@itemx -fdump-rtl-all
Produce all the dumps listed above.
@opindex dA
@item -dA
Annotate the assembler output with miscellaneous debugging information.
@opindex dD
@item -dD
Dump all macro definitions, at the end of preprocessing, in addition to
normal output.
@opindex dH
@item -dH
Produce a core dump whenever an error occurs.
@opindex dp
@item -dp
Annotate the assembler output with a comment indicating which
pattern and alternative is used. The length and cost of each instruction are
also printed.
@opindex dP
@item -dP
Dump the RTL in the assembler output as a comment before each instruction.
Also turns on @option{-dp} annotation.
@opindex dx
@item -dx
Just generate RTL for a function instead of compiling it. Usually used
with @option{-fdump-rtl-expand}.
@end table
@opindex fdump-debug
@item -fdump-debug
Dump debugging information generated during the debug
generation phase.
@opindex fdump-earlydebug
@item -fdump-earlydebug
Dump debugging information generated during the early debug
generation phase.
@opindex fdump-noaddr
@item -fdump-noaddr
When doing debugging dumps, suppress address output. This makes it more
feasible to use diff on debugging dumps for compiler invocations with
different compiler binaries and/or different
text / bss / data / heap / stack / dso start locations.
@opindex freport-bug
@item -freport-bug
Collect and dump debug information into a temporary file if an
internal compiler error (ICE) occurs.
@opindex fdump-unnumbered
@item -fdump-unnumbered
When doing debugging dumps, suppress instruction numbers and address output.
This makes it more feasible to use diff on debugging dumps for compiler
invocations with different options, in particular with and without
@option{-g}.
@opindex fdump-unnumbered-links
@item -fdump-unnumbered-links
When doing debugging dumps (see @option{-d} option above), suppress
instruction numbers for the links to the previous and next instructions
in a sequence.
@opindex fdump-ipa
@item -fdump-ipa-@var{switch}
@itemx -fdump-ipa-@var{switch}-@var{options}
Control the dumping at various stages of inter-procedural analysis
language tree to a file. The file name is generated by appending a
switch specific suffix to the source file name, and the file is created
in the same directory as the output file. The following dumps are
possible:
@table @samp
@item all
Enables all inter-procedural analysis dumps.
@item cgraph
Dumps information about call-graph optimization, unused function removal,
and inlining decisions.
@item inline
Dump after function inlining.
@item strubm
Dump after selecting @code{strub} modes, and recording the selections as
function attributes.
@item strub
Dump @code{strub} transformations: interface changes, function wrapping,
and insertion of builtin calls for stack scrubbing and watermarking.
@end table
Additionally, the options @option{-optimized}, @option{-missed},
@option{-note}, and @option{-all} can be provided, with the same meaning
as for @option{-fopt-info}, defaulting to @option{-optimized}.
For example, @option{-fdump-ipa-inline-optimized-missed} will emit
information on callsites that were inlined, along with callsites
that were not inlined.
By default, the dump will contain messages about successful
optimizations (equivalent to @option{-optimized}) together with
low-level details about the analysis.
@opindex fdump-lang
@item -fdump-lang
Dump language-specific information. The file name is made by appending
@file{.lang} to the source file name.
@opindex fdump-lang-all
@opindex fdump-lang
@item -fdump-lang-all
@itemx -fdump-lang-@var{switch}
@itemx -fdump-lang-@var{switch}-@var{options}
@itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
Control the dumping of language-specific information. The @var{options}
and @var{filename} portions behave as described in the
@option{-fdump-tree} option. The following @var{switch} values are
accepted:
@table @samp
@item all
Enable all language-specific dumps.
@item class
Dump class hierarchy information. Virtual table information is emitted
unless '@option{slim}' is specified. This option is applicable to C++ only.
@item module
Dump module information. Options @option{lineno} (locations),
@option{graph} (reachability), @option{blocks} (clusters),
@option{uid} (serialization), @option{alias} (mergeable),
@option{asmname} (Elrond), @option{eh} (mapper) & @option{vops}
(macros) may provide additional information. This option is
applicable to C++ only.
@item raw
Dump the raw internal tree data. This option is applicable to C++ only.
@end table
@opindex fdump-passes
@item -fdump-passes
Print on @file{stderr} the list of optimization passes that are turned
on and off by the current command-line options.
@opindex fdump-statistics
@item -fdump-statistics-@var{option}
Enable and control dumping of pass statistics in a separate file. The
file name is generated by appending a suffix ending in
@samp{.statistics} to the source file name, and the file is created in
the same directory as the output file. If the @samp{-@var{option}}
form is used, @samp{-stats} causes counters to be summed over the
whole compilation unit while @samp{-details} dumps every event as
the passes generate them. The default with no option is to sum
counters for each function compiled.
@opindex fdump-tree-all
@opindex fdump-tree
@item -fdump-tree-all
@itemx -fdump-tree-@var{switch}
@itemx -fdump-tree-@var{switch}-@var{options}
@itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
Control the dumping at various stages of processing the intermediate
language tree to a file. If the @samp{-@var{options}}
form is used, @var{options} is a list of @samp{-} separated options
which control the details of the dump. Not all options are applicable
to all dumps; those that are not meaningful are ignored. The
following options are available
@table @samp
@item address
Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary use
is for tying up a dump file with a debug environment.
@item asmname
If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
in the dump instead of @code{DECL_NAME}. Its primary use is ease of
use working backward from mangled names in the assembly file.
@item slim
When dumping front-end intermediate representations, inhibit dumping
of members of a scope or body of a function merely because that scope
has been reached. Only dump such items when they are directly reachable
by some other path.
When dumping pretty-printed trees, this option inhibits dumping the
bodies of control structures.
When dumping RTL, print the RTL in slim (condensed) form instead of
the default LISP-like representation.
@item raw
Print a raw representation of the tree. By default, trees are
pretty-printed into a C-like representation.
@item details
Enable more detailed dumps (not honored by every dump option). Also
include information from the optimization passes.
@item stats
Enable dumping various statistics about the pass (not honored by every dump
option).
@item blocks
Enable showing basic block boundaries (disabled in raw dumps).
@item graph
For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
dump a representation of the control flow graph suitable for viewing with
GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
the file is pretty-printed as a subgraph, so that GraphViz can render them
all in a single plot.
This option currently only works for RTL dumps, and the RTL is always
dumped in slim form.
@item vops
Enable showing virtual operands for every statement.
@item lineno
Enable showing line numbers for statements.
@item uid
Enable showing the unique ID (@code{DECL_UID}) for each variable.
@item verbose
Enable showing the tree dump for each statement.
@item eh
Enable showing the EH region number holding each statement.
@item scev
Enable showing scalar evolution analysis details.
@item optimized
Enable showing optimization information (only available in certain
passes).
@item missed
Enable showing missed optimization information (only available in certain
passes).
@item note
Enable other detailed optimization information (only available in
certain passes).
@item all
Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
and @option{lineno}.
@item optall
Turn on all optimization options, i.e., @option{optimized},
@option{missed}, and @option{note}.
@end table
To determine what tree dumps are available or find the dump for a pass
of interest follow the steps below.
@enumerate
@item
Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
look for a code that corresponds to the pass you are interested in.
For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
@code{tree-vrp2} correspond to the three Value Range Propagation passes.
The number at the end distinguishes distinct invocations of the same pass.
@item
To enable the creation of the dump file, append the pass code to
the @option{-fdump-} option prefix and invoke GCC with it. For example,
to enable the dump from the Early Value Range Propagation pass, invoke
GCC with the @option{-fdump-tree-evrp} option. Optionally, you may
specify the name of the dump file. If you don't specify one, GCC
creates as described below.
@item
Find the pass dump in a file whose name is composed of three components
separated by a period: the name of the source file GCC was invoked to
compile, a numeric suffix indicating the pass number followed by the
letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
and finally the pass code. For example, the Early VRP pass dump might
be in a file named @file{myfile.c.038t.evrp} in the current working
directory. Note that the numeric codes are not stable and may change
from one version of GCC to another.
@end enumerate
@opindex fopt-info
@item -fopt-info
@itemx -fopt-info-@var{options}
@itemx -fopt-info-@var{options}=@var{filename}
Controls optimization dumps from various optimization passes. If the
@samp{-@var{options}} form is used, @var{options} is a list of
@samp{-} separated option keywords to select the dump details and
optimizations.
The @var{options} can be divided into three groups:
@enumerate
@item
options describing what kinds of messages should be emitted,
@item
options describing the verbosity of the dump, and
@item
options describing which optimizations should be included.
@end enumerate
The options from each group can be freely mixed as they are
non-overlapping. However, in case of any conflicts,
the later options override the earlier options on the command
line.
The following options control which kinds of messages should be emitted:
@table @samp
@item optimized
Print information when an optimization is successfully applied. It is
up to a pass to decide which information is relevant. For example, the
vectorizer passes print the source location of loops which are
successfully vectorized.
@item missed
Print information about missed optimizations. Individual passes
control which information to include in the output.
@item note
Print verbose information about optimizations, such as certain
transformations, more detailed messages about decisions etc.
@item all
Print detailed optimization information. This includes
@samp{optimized}, @samp{missed}, and @samp{note}.
@end table
The following option controls the dump verbosity:
@table @samp
@item internals
By default, only ``high-level'' messages are emitted. This option enables
additional, more detailed, messages, which are likely to only be of interest
to GCC developers.
@end table
One or more of the following option keywords can be used to describe a
group of optimizations:
@table @samp
@item ipa
Enable dumps from all interprocedural optimizations.
@item loop
Enable dumps from all loop optimizations.
@item inline
Enable dumps from all inlining optimizations.
@item omp
Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
@item vec
Enable dumps from all vectorization optimizations.
@item optall
Enable dumps from all optimizations. This is a superset of
the optimization groups listed above.
@end table
If @var{options} is
omitted, it defaults to @samp{optimized-optall}, which means to dump messages
about successful optimizations from all the passes, omitting messages
that are treated as ``internals''.
If the @var{filename} is provided, then the dumps from all the
applicable optimizations are concatenated into the @var{filename}.
Otherwise the dump is output onto @file{stderr}. Though multiple
@option{-fopt-info} options are accepted, only one of them can include
a @var{filename}. If other filenames are provided then all but the
first such option are ignored.
Note that the output @var{filename} is overwritten
in case of multiple translation units. If a combined output from
multiple translation units is desired, @file{stderr} should be used
instead.
In the following example, the optimization info is output to
@file{stderr}:
@smallexample
gcc -O3 -fopt-info
@end smallexample
This example:
@smallexample
gcc -O3 -fopt-info-missed=missed.all
@end smallexample
@noindent
outputs missed optimization report from all the passes into
@file{missed.all}, and this one:
@smallexample
gcc -O2 -ftree-vectorize -fopt-info-vec-missed
@end smallexample
@noindent
prints information about missed optimization opportunities from
vectorization passes on @file{stderr}.
Note that @option{-fopt-info-vec-missed} is equivalent to
@option{-fopt-info-missed-vec}. The order of the optimization group
names and message types listed after @option{-fopt-info} does not matter.
As another example,
@smallexample
gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
@end smallexample
@noindent
outputs information about missed optimizations as well as
optimized locations from all the inlining passes into
@file{inline.txt}.
Finally, consider:
@smallexample
gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
@end smallexample
@noindent
Here the two output filenames @file{vec.miss} and @file{loop.opt} are
in conflict since only one output file is allowed. In this case, only
the first option takes effect and the subsequent options are
ignored. Thus only @file{vec.miss} is produced which contains
dumps from the vectorizer about missed opportunities.
@opindex fsave-optimization-record
@item -fsave-optimization-record
Write a SRCFILE.opt-record.json.gz file detailing what optimizations
were performed, for those optimizations that support @option{-fopt-info}.
This option is experimental and the format of the data within the
compressed JSON file is subject to change.
It is roughly equivalent to a machine-readable version of
@option{-fopt-info-all}, as a collection of messages with source file,
line number and column number, with the following additional data for
each message:
@itemize @bullet
@item
the execution count of the code being optimized, along with metadata about
whether this was from actual profile data, or just an estimate, allowing
consumers to prioritize messages by code hotness,
@item
the function name of the code being optimized, where applicable,
@item
the ``inlining chain'' for the code being optimized, so that when
a function is inlined into several different places (which might
themselves be inlined), the reader can distinguish between the copies,
@item
objects identifying those parts of the message that refer to expressions,
statements or symbol-table nodes, which of these categories they are, and,
when available, their source code location,
@item
the GCC pass that emitted the message, and
@item
the location in GCC's own code from which the message was emitted
@end itemize
Additionally, some messages are logically nested within other
messages, reflecting implementation details of the optimization
passes.
@opindex fsched-verbose
@item -fsched-verbose=@var{n}
On targets that use instruction scheduling, this option controls the
amount of debugging output the scheduler prints to the dump files.
For @var{n} greater than zero, @option{-fsched-verbose} outputs the
same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
For @var{n} greater than one, it also output basic block probabilities,
detailed ready list information and unit/insn info. For @var{n} greater
than two, it includes RTL at abort point, control-flow and regions info.
And for @var{n} over four, @option{-fsched-verbose} also includes
dependence info.
@opindex fdisable-
@opindex fenable-
@item -fenable-@var{kind}-@var{pass}
@itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
This is a set of options that are used to explicitly disable/enable
optimization passes. These options are intended for use for debugging GCC.
Compiler users should use regular options for enabling/disabling
passes instead.
@table @gcctabopt
@item -fdisable-ipa-@var{pass}
Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
statically invoked in the compiler multiple times, the pass name should be
appended with a sequential number starting from 1.
@item -fdisable-rtl-@var{pass}
@itemx -fdisable-rtl-@var{pass}=@var{range-list}
Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
statically invoked in the compiler multiple times, the pass name should be
appended with a sequential number starting from 1. @var{range-list} is a
comma-separated list of function ranges or assembler names. Each range is a number
pair separated by a colon. The range is inclusive in both ends. If the range
is trivial, the number pair can be simplified as a single number. If the
function's call graph node's @var{uid} falls within one of the specified ranges,
the @var{pass} is disabled for that function. The @var{uid} is shown in the
function header of a dump file, and the pass names can be dumped by using
option @option{-fdump-passes}.
@item -fdisable-tree-@var{pass}
@itemx -fdisable-tree-@var{pass}=@var{range-list}
Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
option arguments.
@item -fenable-ipa-@var{pass}
Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
statically invoked in the compiler multiple times, the pass name should be
appended with a sequential number starting from 1.
@item -fenable-rtl-@var{pass}
@itemx -fenable-rtl-@var{pass}=@var{range-list}
Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
description and examples.
@item -fenable-tree-@var{pass}
@itemx -fenable-tree-@var{pass}=@var{range-list}
Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
of option arguments.
@end table
Here are some examples showing uses of these options.
@smallexample
# disable ccp1 for all functions
-fdisable-tree-ccp1
# disable complete unroll for function whose cgraph node uid is 1
-fenable-tree-cunroll=1
# disable gcse2 for functions at the following ranges [1,1],
# [300,400], and [400,1000]
# disable gcse2 for functions foo and foo2
-fdisable-rtl-gcse2=foo,foo2
# disable early inlining
-fdisable-tree-einline
# disable ipa inlining
-fdisable-ipa-inline
# enable tree full unroll
-fenable-tree-unroll
@end smallexample
@opindex fchecking
@opindex fno-checking
@item -fchecking
@itemx -fchecking=@var{n}
Enable internal consistency checking. The default depends on
the compiler configuration. @option{-fchecking=2} enables further
internal consistency checking that might affect code generation.
@opindex frandom-seed
@item -frandom-seed=@var{string}
This option provides a seed that GCC uses in place of
random numbers in generating certain symbol names
that have to be different in every compiled file. It is also used to
place unique stamps in coverage data files and the object files that
produce them. You can use the @option{-frandom-seed} option to produce
reproducibly identical object files.
The @var{string} can either be a number (decimal, octal or hex) or an
arbitrary string (in which case it's converted to a number by
computing CRC32).
The @var{string} should be different for every file you compile.
@opindex save-temps
@item -save-temps
Store the usual ``temporary'' intermediate files permanently; name them
as auxiliary output files, as specified described under
@option{-dumpbase} and @option{-dumpdir}.
When used in combination with the @option{-x} command-line option,
@option{-save-temps} is sensible enough to avoid overwriting an
input source file with the same extension as an intermediate file.
The corresponding intermediate file may be obtained by renaming the
source file before using @option{-save-temps}.
@opindex save-temps=cwd
@item -save-temps=cwd
Equivalent to @option{-save-temps -dumpdir ./}.
@opindex save-temps=obj
@item -save-temps=obj
Equivalent to @option{-save-temps -dumpdir @file{outdir/}}, where
@file{outdir/} is the directory of the output file specified after the
@option{-o} option, including any directory separators. If the
@option{-o} option is not used, the @option{-save-temps=obj} switch
behaves like @option{-save-temps=cwd}.
@opindex time
@item -time@r{[}=@var{file}@r{]}
Report the CPU time taken by each subprocess in the compilation
sequence. For C source files, this is the compiler proper and assembler
(plus the linker if linking is done).
Without the specification of an output file, the output looks like this:
@smallexample
# cc1 0.12 0.01
# as 0.00 0.01
@end smallexample
The first number on each line is the ``user time'', that is time spent
executing the program itself. The second number is ``system time'',
time spent executing operating system routines on behalf of the program.
Both numbers are in seconds.
With the specification of an output file, the output is appended to the
named file, and it looks like this:
@smallexample
0.12 0.01 cc1 @var{options}
0.00 0.01 as @var{options}
@end smallexample
The ``user time'' and the ``system time'' are moved before the program
name, and the options passed to the program are displayed, so that one
can later tell what file was being compiled, and with which options.
@opindex fdump-final-insns
@item -fdump-final-insns@r{[}=@var{file}@r{]}
Dump the final internal representation (RTL) to @var{file}. If the
optional argument is omitted (or if @var{file} is @code{.}), the name
of the dump file is determined by appending @code{.gkd} to the
dump base name, see @option{-dumpbase}.
@opindex fcompare-debug
@opindex fno-compare-debug
@item -fcompare-debug@r{[}=@var{opts}@r{]}
If no error occurs during compilation, run the compiler a second time,
adding @var{opts} and @option{-fcompare-debug-second} to the arguments
passed to the second compilation. Dump the final internal
representation in both compilations, and print an error if they differ.
If the equal sign is omitted, the default @option{-gtoggle} is used.
The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
and nonzero, implicitly enables @option{-fcompare-debug}. If
@env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
then it is used for @var{opts}, otherwise the default @option{-gtoggle}
is used.
@option{-fcompare-debug=}, with the equal sign but without @var{opts},
is equivalent to @option{-fno-compare-debug}, which disables the dumping
of the final representation and the second compilation, preventing even
@env{GCC_COMPARE_DEBUG} from taking effect.
To verify full coverage during @option{-fcompare-debug} testing, set
@env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
which GCC rejects as an invalid option in any actual compilation
(rather than preprocessing, assembly or linking). To get just a
warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
not overridden} will do.
@opindex fcompare-debug-second
@item -fcompare-debug-second
This option is implicitly passed to the compiler for the second
compilation requested by @option{-fcompare-debug}, along with options to
silence warnings, and omitting other options that would cause the compiler
to produce output to files or to standard output as a side effect. Dump
files and preserved temporary files are renamed so as to contain the
@code{.gk} additional extension during the second compilation, to avoid
overwriting those generated by the first.
When this option is passed to the compiler driver, it causes the
@emph{first} compilation to be skipped, which makes it useful for little
other than debugging the compiler proper.
@opindex gtoggle
@item -gtoggle
Turn off generation of debug info, if leaving out this option
generates it, or turn it on at level 2 otherwise. The position of this
argument in the command line does not matter; it takes effect after all
other options are processed, and it does so only once, no matter how
many times it is given. This is mainly intended to be used with
@option{-fcompare-debug}.
@opindex fvar-tracking-assignments-toggle
@opindex fno-var-tracking-assignments-toggle
@item -fvar-tracking-assignments-toggle
Toggle @option{-fvar-tracking-assignments}, in the same way that
@option{-gtoggle} toggles @option{-g}.
@opindex Q
@item -Q
Makes the compiler print out each function name as it is compiled, and
print some statistics about each pass when it finishes.
@opindex ftime-report
@item -ftime-report
Makes the compiler print some statistics to stderr about the time consumed
by each pass when it finishes.
If SARIF output of diagnostics was requested via
@option{-fdiagnostics-format=sarif-file} or
@option{-fdiagnostics-format=sarif-stderr} then the @option{-ftime-report}
information is instead emitted in JSON form as part of SARIF output. The
precise format of this JSON data is subject to change, and the values may
not exactly match those emitted to stderr due to being written out at a
slightly different place within the compiler.
@opindex ftime-report-details
@item -ftime-report-details
Record the time consumed by infrastructure parts separately for each pass.
@opindex fira-verbose
@item -fira-verbose=@var{n}
Control the verbosity of the dump file for the integrated register allocator.
The default value is 5. If the value @var{n} is greater or equal to 10,
the dump output is sent to stderr using the same format as @var{n} minus 10.
@opindex flto-report
@item -flto-report
Prints a report with internal details on the workings of the link-time
optimizer. The contents of this report vary from version to version.
It is meant to be useful to GCC developers when processing object
files in LTO mode (via @option{-flto}).
Disabled by default.
@opindex flto-report-wpa
@item -flto-report-wpa
Like @option{-flto-report}, but only print for the WPA phase of link-time
optimization.
@opindex fmem-report
@item -fmem-report
Makes the compiler print some statistics about permanent memory
allocation when it finishes.
@opindex fmem-report-wpa
@item -fmem-report-wpa
Makes the compiler print some statistics about permanent memory
allocation for the WPA phase only.
@opindex fpre-ipa-mem-report
@opindex fpost-ipa-mem-report
@item -fpre-ipa-mem-report
@item -fpost-ipa-mem-report
Makes the compiler print some statistics about permanent memory
allocation before or after interprocedural optimization.
@opindex fmultiflags
@item -fmultiflags
This option enables multilib-aware @code{TFLAGS} to be used to build
target libraries with options different from those the compiler is
configured to use by default, through the use of specs (@pxref{Spec
Files}) set up by compiler internals, by the target, or by builders at
configure time.
Like @code{TFLAGS}, this allows the target libraries to be built for
portable baseline environments, while the compiler defaults to more
demanding ones. That's useful because users can easily override the
defaults the compiler is configured to use to build their own programs,
if the defaults are not ideal for their target environment, whereas
rebuilding the runtime libraries is usually not as easy or desirable.
Unlike @code{TFLAGS}, the use of specs enables different flags to be
selected for different multilibs. The way to accomplish that is to
build with @samp{make TFLAGS=-fmultiflags}, after configuring
@samp{--with-specs=%@{fmultiflags:...@}}.
This option is discarded by the driver once it's done processing driver
self spec.
It is also useful to check that @code{TFLAGS} are being used to build
all target libraries, by configuring a non-bootstrap compiler
@samp{--with-specs='%@{!fmultiflags:%emissing TFLAGS@}'} and building
the compiler and target libraries.
@opindex fprofile-report
@item -fprofile-report
Makes the compiler print some statistics about consistency of the
(estimated) profile and effect of individual passes.
@opindex fstack-usage
@item -fstack-usage
Makes the compiler output stack usage information for the program, on a
per-function basis. The filename for the dump is made by appending
@file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
the output file, if explicitly specified and it is not an executable,
otherwise it is the basename of the source file. An entry is made up
of three fields:
@itemize
@item
The name of the function.
@item
A number of bytes.
@item
One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
@end itemize
The qualifier @code{static} means that the function manipulates the stack
statically: a fixed number of bytes are allocated for the frame on function
entry and released on function exit; no stack adjustments are otherwise made
in the function. The second field is this fixed number of bytes.
The qualifier @code{dynamic} means that the function manipulates the stack
dynamically: in addition to the static allocation described above, stack
adjustments are made in the body of the function, for example to push/pop
arguments around function calls. If the qualifier @code{bounded} is also
present, the amount of these adjustments is bounded at compile time and
the second field is an upper bound of the total amount of stack used by
the function. If it is not present, the amount of these adjustments is
not bounded at compile time and the second field only represents the
bounded part.
@opindex fstats
@item -fstats
Emit statistics about front-end processing at the end of the compilation.
This option is supported only by the C++ front end, and
the information is generally only useful to the G++ development team.
@opindex fdbg-cnt-list
@item -fdbg-cnt-list
Print the name and the counter upper bound for all debug counters.
@opindex fdbg-cnt
@item -fdbg-cnt=@var{counter-value-list}
Set the internal debug counter lower and upper bound. @var{counter-value-list}
is a comma-separated list of @var{name}:@var{lower_bound1}-@var{upper_bound1}
[:@var{lower_bound2}-@var{upper_bound2}...] tuples which sets
the name of the counter and list of closed intervals.
The @var{lower_bound} is optional and is zero
initialized if not set.
For example, with @option{-fdbg-cnt=dce:2-4:10-11,tail_call:10},
@code{dbg_cnt(dce)} returns true only for second, third, fourth, tenth and
eleventh invocation.
For @code{dbg_cnt(tail_call)} true is returned for first 10 invocations.
@opindex print-file-name
@item -print-file-name=@var{library}
Print the full absolute name of the library file @var{library} that
would be used when linking---and don't do anything else. With this
option, GCC does not compile or link anything; it just prints the
file name.
@opindex print-multi-directory
@item -print-multi-directory
Print the directory name corresponding to the multilib selected by any
other switches present in the command line. This directory is supposed
to exist in @env{GCC_EXEC_PREFIX}.
@opindex print-multi-lib
@item -print-multi-lib
Print the mapping from multilib directory names to compiler switches
that enable them. The directory name is separated from the switches by
@samp{;}, and each switch starts with an @samp{@@} instead of the
@samp{-}, without spaces between multiple switches. This is supposed to
ease shell processing.
@opindex print-multi-os-directory
@item -print-multi-os-directory
Print the path to OS libraries for the selected
multilib, relative to some @file{lib} subdirectory. If OS libraries are
present in the @file{lib} subdirectory and no multilibs are used, this is
usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
@file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
@opindex print-multiarch
@item -print-multiarch
Print the path to OS libraries for the selected multiarch,
relative to some @file{lib} subdirectory.
@opindex print-prog-name
@item -print-prog-name=@var{program}
Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
@opindex print-libgcc-file-name
@item -print-libgcc-file-name
Same as @option{-print-file-name=libgcc.a}.
This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
but you do want to link with @file{libgcc.a}. You can do:
@smallexample
gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
@end smallexample
@opindex print-search-dirs
@item -print-search-dirs
Print the name of the configured installation directory and a list of
program and library directories @command{gcc} searches---and don't do anything else.
This is useful when @command{gcc} prints the error message
@samp{installation problem, cannot exec cpp0: No such file or directory}.
To resolve this you either need to put @file{cpp0} and the other compiler
components where @command{gcc} expects to find them, or you can set the environment
variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
Don't forget the trailing @samp{/}.
@xref{Environment Variables}.
@opindex print-sysroot
@item -print-sysroot
Print the target sysroot directory that is used during
compilation. This is the target sysroot specified either at configure
time or using the @option{--sysroot} option, possibly with an extra
suffix that depends on compilation options. If no target sysroot is
specified, the option prints nothing.
@opindex print-sysroot-headers-suffix
@item -print-sysroot-headers-suffix
Print the suffix added to the target sysroot when searching for
headers, or give an error if the compiler is not configured with such
a suffix---and don't do anything else.
@opindex dumpmachine
@item -dumpmachine
Print the compiler's target machine (for example,
@samp{i686-pc-linux-gnu})---and don't do anything else.
@opindex dumpversion
@item -dumpversion
Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
anything else. This is the compiler version used in filesystem paths and
specs. Depending on how the compiler has been configured it can be just
a single number (major version), two numbers separated by a dot (major and
minor version) or three numbers separated by dots (major, minor and patchlevel
version).
@opindex dumpfullversion
@item -dumpfullversion
Print the full compiler version---and don't do anything else. The output is
always three numbers separated by dots, major, minor and patchlevel version.
@opindex dumpspecs
@item -dumpspecs
Print the compiler's built-in specs---and don't do anything else. (This
is used when GCC itself is being built.) @xref{Spec Files}.
@end table
@node Submodel Options
@section Machine-Dependent Options
@cindex submodel options
@cindex specifying hardware config
@cindex hardware models and configurations, specifying
@cindex target-dependent options
@cindex machine-dependent options
Each target machine supported by GCC can have its own options---for
example, to allow you to compile for a particular processor variant or
ABI, or to control optimizations specific to that machine. By
convention, the names of machine-specific options start with
@samp{-m}.
Some configurations of the compiler also support additional target-specific
options, usually for compatibility with other compilers on the same
platform.
@c This list is ordered alphanumerically by subsection name.
@c It should be the same order and spelling as these options are listed
@c in Machine Dependent Options
@menu
* AArch64 Options::
* Adapteva Epiphany Options::
* AMD GCN Options::
* ARC Options::
* ARM Options::
* AVR Options::
* Blackfin Options::
* C6X Options::
* CRIS Options::
* C-SKY Options::
* Cygwin and MinGW Options::
* Darwin Options::
* DEC Alpha Options::
* eBPF Options::
* FR30 Options::
* FT32 Options::
* FRV Options::
* GNU/Linux Options::
* H8/300 Options::
* HPPA Options::
* IA-64 Options::
* LM32 Options::
* LoongArch Options::
* M32C Options::
* M32R/D Options::
* M680x0 Options::
* MCore Options::
* MicroBlaze Options::
* MIPS Options::
* MMIX Options::
* MN10300 Options::
* Moxie Options::
* MSP430 Options::
* NDS32 Options::
* Nios II Options::
* Nvidia PTX Options::
* OpenRISC Options::
* PDP-11 Options::
* PowerPC Options::
* PRU Options::
* RISC-V Options::
* RL78 Options::
* RS/6000 and PowerPC Options::
* RX Options::
* S/390 and zSeries Options::
* SH Options::
* Solaris 2 Options::
* SPARC Options::
* System V Options::
* V850 Options::
* VAX Options::
* Visium Options::
* VMS Options::
* VxWorks Options::
* x86 Options::
* x86 Windows Options::
* Xstormy16 Options::
* Xtensa Options::
* zSeries Options::
@end menu
@node AArch64 Options
@subsection AArch64 Options
@cindex AArch64 Options
These options are defined for AArch64 implementations:
@table @gcctabopt
@opindex mabi
@item -mabi=@var{name}
Generate code for the specified data model. Permissible values
are @samp{ilp32} for SysV-like data model where int, long int and pointers
are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
but long int and pointers are 64 bits.
The default depends on the specific target configuration. Note that
the LP64 and ILP32 ABIs are not link-compatible; you must compile your
entire program with the same ABI, and link with a compatible set of libraries.
@opindex mbig-endian
@item -mbig-endian
Generate big-endian code. This is the default when GCC is configured for an
@samp{aarch64_be-*-*} target.
@opindex mgeneral-regs-only
@item -mgeneral-regs-only
Generate code which uses only the general-purpose registers. This will prevent
the compiler from using floating-point and Advanced SIMD registers but will not
impose any restrictions on the assembler.
@opindex mlittle-endian
@item -mlittle-endian
Generate little-endian code. This is the default when GCC is configured for an
@samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
@opindex mcmodel=
@opindex mcmodel=tiny
@item -mcmodel=tiny
Generate code for the tiny code model. The program and its statically defined
symbols must be within 1MB of each other. Programs can be statically or
dynamically linked.
@opindex mcmodel=small
@item -mcmodel=small
Generate code for the small code model. The program and its statically defined
symbols must be within 4GB of each other. Programs can be statically or
dynamically linked. This is the default code model.
@opindex mcmodel=large
@item -mcmodel=large
Generate code for the large code model. This makes no assumptions about
addresses and sizes of sections. Programs can be statically linked only. The
@option{-mcmodel=large} option is incompatible with @option{-mabi=ilp32},
@option{-fpic} and @option{-fPIC}.
@item -mtp=@var{name}
@opindex mtp
Specify the system register to use as a thread pointer. The valid values
are @samp{tpidr_el0}, @samp{tpidrro_el0}, @samp{tpidr_el1}, @samp{tpidr_el2},
@samp{tpidr_el3}. For backwards compatibility the aliases @samp{el0},
@samp{el1}, @samp{el2}, @samp{el3} are also accepted.
The default setting is @samp{tpidr_el0}. It is recommended to compile all
code intended to interoperate with the same value of this option to avoid
accessing a different thread pointer from the wrong exception level.
@opindex mstrict-align
@opindex mno-strict-align
@item -mstrict-align
@itemx -mno-strict-align
Avoid or allow generating memory accesses that may not be aligned on a natural
object boundary as described in the architecture specification.
@opindex momit-leaf-frame-pointer
@opindex mno-omit-leaf-frame-pointer
@item -momit-leaf-frame-pointer
@itemx -mno-omit-leaf-frame-pointer
Omit or keep the frame pointer in leaf functions. The former behavior is the
default.
@opindex mstack-protector-guard
@opindex mstack-protector-guard-reg
@opindex mstack-protector-guard-offset
@item -mstack-protector-guard=@var{guard}
@itemx -mstack-protector-guard-reg=@var{reg}
@itemx -mstack-protector-guard-offset=@var{offset}
Generate stack protection code using canary at @var{guard}. Supported
locations are @samp{global} for a global canary or @samp{sysreg} for a
canary in an appropriate system register.
With the latter choice the options
@option{-mstack-protector-guard-reg=@var{reg}} and
@option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
which system register to use as base register for reading the canary,
and from what offset from that base register. There is no default
register or offset as this is entirely for use within the Linux
kernel.
@opindex mtls-dialect=desc
@item -mtls-dialect=desc
Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
of TLS variables. This is the default.
@opindex mtls-dialect=traditional
@item -mtls-dialect=traditional
Use traditional TLS as the thread-local storage mechanism for dynamic accesses
of TLS variables.
@opindex mtls-size
@item -mtls-size=@var{size}
Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
This option requires binutils 2.26 or newer.
@opindex mfix-cortex-a53-835769
@opindex mno-fix-cortex-a53-835769
@item -mfix-cortex-a53-835769
@itemx -mno-fix-cortex-a53-835769
Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
This involves inserting a NOP instruction between memory instructions and
64-bit integer multiply-accumulate instructions.
@opindex mfix-cortex-a53-843419
@opindex mno-fix-cortex-a53-843419
@item -mfix-cortex-a53-843419
@itemx -mno-fix-cortex-a53-843419
Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
This erratum workaround is made at link time and this will only pass the
corresponding flag to the linker.
@opindex mlow-precision-recip-sqrt
@opindex mno-low-precision-recip-sqrt
@item -mlow-precision-recip-sqrt
@itemx -mno-low-precision-recip-sqrt
Enable or disable the reciprocal square root approximation.
This option only has an effect if @option{-ffast-math} or
@option{-funsafe-math-optimizations} is used as well. Enabling this reduces
precision of reciprocal square root results to about 16 bits for
single precision and to 32 bits for double precision.
@opindex mlow-precision-sqrt
@opindex mno-low-precision-sqrt
@item -mlow-precision-sqrt
@itemx -mno-low-precision-sqrt
Enable or disable the square root approximation.
This option only has an effect if @option{-ffast-math} or
@option{-funsafe-math-optimizations} is used as well. Enabling this reduces
precision of square root results to about 16 bits for
single precision and to 32 bits for double precision.
If enabled, it implies @option{-mlow-precision-recip-sqrt}.
@opindex mlow-precision-div
@opindex mno-low-precision-div
@item -mlow-precision-div
@itemx -mno-low-precision-div
Enable or disable the division approximation.
This option only has an effect if @option{-ffast-math} or
@option{-funsafe-math-optimizations} is used as well. Enabling this reduces
precision of division results to about 16 bits for
single precision and to 32 bits for double precision.
@item -mtrack-speculation
@itemx -mno-track-speculation
Enable or disable generation of additional code to track speculative
execution through conditional branches. The tracking state can then
be used by the compiler when expanding calls to
@code{__builtin_speculation_safe_copy} to permit a more efficient code
sequence to be generated.
@item -moutline-atomics
@itemx -mno-outline-atomics
Enable or disable calls to out-of-line helpers to implement atomic operations.
These helpers will, at runtime, determine if the LSE instructions from
ARMv8.1-A can be used; if not, they will use the load/store-exclusive
instructions that are present in the base ARMv8.0 ISA.
This option is only applicable when compiling for the base ARMv8.0
instruction set. If using a later revision, e.g. @option{-march=armv8.1-a}
or @option{-march=armv8-a+lse}, the ARMv8.1-Atomics instructions will be
used directly. The same applies when using @option{-mcpu=} when the
selected cpu supports the @samp{lse} feature.
This option is on by default.
@opindex march
@item -march=@var{name}
Specify the name of the target architecture and, optionally, one or
more feature modifiers. This option has the form
@option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
The table below summarizes the permissible values for @var{arch}
and the features that they enable by default:
@multitable @columnfractions 0.20 0.20 0.60
@headitem @var{arch} value @tab Architecture @tab Includes by default
@item @samp{armv8-a} @tab Armv8-A @tab @samp{+fp}, @samp{+simd}
@item @samp{armv8.1-a} @tab Armv8.1-A @tab @samp{armv8-a}, @samp{+crc}, @samp{+lse}, @samp{+rdma}
@item @samp{armv8.2-a} @tab Armv8.2-A @tab @samp{armv8.1-a}
@item @samp{armv8.3-a} @tab Armv8.3-A @tab @samp{armv8.2-a}, @samp{+pauth}
@item @samp{armv8.4-a} @tab Armv8.4-A @tab @samp{armv8.3-a}, @samp{+flagm}, @samp{+fp16fml}, @samp{+dotprod}
@item @samp{armv8.5-a} @tab Armv8.5-A @tab @samp{armv8.4-a}, @samp{+sb}, @samp{+ssbs}, @samp{+predres}
@item @samp{armv8.6-a} @tab Armv8.6-A @tab @samp{armv8.5-a}, @samp{+bf16}, @samp{+i8mm}
@item @samp{armv8.7-a} @tab Armv8.7-A @tab @samp{armv8.6-a}, @samp{+ls64}
@item @samp{armv8.8-a} @tab Armv8.8-a @tab @samp{armv8.7-a}, @samp{+mops}
@item @samp{armv8.9-a} @tab Armv8.9-a @tab @samp{armv8.8-a}
@item @samp{armv9-a} @tab Armv9-A @tab @samp{armv8.5-a}, @samp{+sve}, @samp{+sve2}
@item @samp{armv9.1-a} @tab Armv9.1-A @tab @samp{armv9-a}, @samp{+bf16}, @samp{+i8mm}
@item @samp{armv9.2-a} @tab Armv9.2-A @tab @samp{armv9.1-a}, @samp{+ls64}
@item @samp{armv9.3-a} @tab Armv9.3-A @tab @samp{armv9.2-a}, @samp{+mops}
@item @samp{armv9.4-a} @tab Armv9.4-A @tab @samp{armv9.3-a}
@item @samp{armv8-r} @tab Armv8-R @tab @samp{armv8-r}
@end multitable
The value @samp{native} is available on native AArch64 GNU/Linux and
causes the compiler to pick the architecture of the host system. This
option has no effect if the compiler is unable to recognize the
architecture of the host system. When @option{-march=native} is given and
no other @option{-mcpu} or @option{-mtune} is given then GCC will pick
the host CPU as the CPU to tune for as well as select the architecture features
from. That is, @option{-march=native} is treated as @option{-mcpu=native}.
The permissible values for @var{feature} are listed in the sub-section
on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
Feature Modifiers}. Where conflicting feature modifiers are
specified, the right-most feature is used.
GCC uses @var{name} to determine what kind of instructions it can emit
when generating assembly code. If @option{-march} is specified
without either of @option{-mtune} or @option{-mcpu} also being
specified, the code is tuned to perform well across a range of target
processors implementing the target architecture.
@opindex mtune
@item -mtune=@var{name}
Specify the name of the target processor for which GCC should tune the
performance of the code. Permissible values for this option are:
@samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
@samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
@samp{cortex-a76}, @samp{cortex-a76ae}, @samp{cortex-a77},
@samp{cortex-a65}, @samp{cortex-a65ae}, @samp{cortex-a34},
@samp{cortex-a78}, @samp{cortex-a78ae}, @samp{cortex-a78c},
@samp{ares}, @samp{exynos-m1}, @samp{emag}, @samp{falkor},
@samp{oryon-1},
@samp{neoverse-512tvb}, @samp{neoverse-e1}, @samp{neoverse-n1},
@samp{neoverse-n2}, @samp{neoverse-v1}, @samp{neoverse-v2}, @samp{grace},
@samp{qdf24xx}, @samp{saphira}, @samp{phecda}, @samp{xgene1}, @samp{vulcan},
@samp{octeontx}, @samp{octeontx81}, @samp{octeontx83},
@samp{octeontx2}, @samp{octeontx2t98}, @samp{octeontx2t96}
@samp{octeontx2t93}, @samp{octeontx2f95}, @samp{octeontx2f95n},
@samp{octeontx2f95mm},
@samp{a64fx},
@samp{thunderx}, @samp{thunderxt88},
@samp{thunderxt88p1}, @samp{thunderxt81}, @samp{tsv110},
@samp{thunderxt83}, @samp{thunderx2t99}, @samp{thunderx3t110}, @samp{zeus},
@samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
@samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
@samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55},
@samp{cortex-r82}, @samp{cortex-x1}, @samp{cortex-x1c}, @samp{cortex-x2},
@samp{cortex-x3}, @samp{cortex-x4}, @samp{cortex-a510}, @samp{cortex-a520},
@samp{cortex-a710}, @samp{cortex-a715}, @samp{cortex-a720}, @samp{ampere1},
@samp{ampere1a}, @samp{ampere1b}, @samp{cobalt-100} and @samp{native}.
The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
@samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
@samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55} specify that GCC
should tune for a big.LITTLE system.
The value @samp{neoverse-512tvb} specifies that GCC should tune
for Neoverse cores that (a) implement SVE and (b) have a total vector
bandwidth of 512 bits per cycle. In other words, the option tells GCC to
tune for Neoverse cores that can execute 4 128-bit Advanced SIMD arithmetic
instructions a cycle and that can execute an equivalent number of SVE
arithmetic instructions per cycle (2 for 256-bit SVE, 4 for 128-bit SVE).
This is more general than tuning for a specific core like Neoverse V1
but is more specific than the default tuning described below.
Additionally on native AArch64 GNU/Linux systems the value
@samp{native} tunes performance to the host system. This option has no effect
if the compiler is unable to recognize the processor of the host system.
Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
are specified, the code is tuned to perform well across a range
of target processors.
This option cannot be suffixed by feature modifiers.
@opindex mcpu
@item -mcpu=@var{name}
Specify the name of the target processor, optionally suffixed by one
or more feature modifiers. This option has the form
@option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
the permissible values for @var{cpu} are the same as those available
for @option{-mtune}. The permissible values for @var{feature} are
documented in the sub-section on
@ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
Feature Modifiers}. Where conflicting feature modifiers are
specified, the right-most feature is used.
GCC uses @var{name} to determine what kind of instructions it can emit when
generating assembly code (as if by @option{-march}) and to determine
the target processor for which to tune for performance (as if
by @option{-mtune}). Where this option is used in conjunction
with @option{-march} or @option{-mtune}, those options take precedence
over the appropriate part of this option.
@option{-mcpu=neoverse-512tvb} is special in that it does not refer
to a specific core, but instead refers to all Neoverse cores that
(a) implement SVE and (b) have a total vector bandwidth of 512 bits
a cycle. Unless overridden by @option{-march},
@option{-mcpu=neoverse-512tvb} generates code that can run on a
Neoverse V1 core, since Neoverse V1 is the first Neoverse core with
these properties. Unless overridden by @option{-mtune},
@option{-mcpu=neoverse-512tvb} tunes code in the same way as for
@option{-mtune=neoverse-512tvb}.
@opindex moverride
@item -moverride=@var{string}
Override tuning decisions made by the back-end in response to a
@option{-mtune=} switch. The syntax, semantics, and accepted values
for @var{string} in this option are not guaranteed to be consistent
across releases.
This option is only intended to be useful when developing GCC.
@opindex mverbose-cost-dump
@item -mverbose-cost-dump
Enable verbose cost model dumping in the debug dump files. This option is
provided for use in debugging the compiler.
@opindex mpc-relative-literal-loads
@opindex mno-pc-relative-literal-loads
@item -mpc-relative-literal-loads
@itemx -mno-pc-relative-literal-loads
Enable or disable PC-relative literal loads. With this option literal pools are
accessed using a single instruction and emitted after each function. This
limits the maximum size of functions to 1MB. This is enabled by default for
@option{-mcmodel=tiny}.
@opindex msign-return-address
@item -msign-return-address=@var{scope}
Select the function scope on which return address signing will be applied.
Permissible values are @samp{none}, which disables return address signing,
@samp{non-leaf}, which enables pointer signing for functions which are not leaf
functions, and @samp{all}, which enables pointer signing for all functions. The
default value is @samp{none}. This option has been deprecated by
-mbranch-protection.
@opindex mbranch-protection
@item -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}+@var{b-key}]|@var{bti}
Select the branch protection features to use.
@samp{none} is the default and turns off all types of branch protection.
@samp{standard} turns on all types of branch protection features. If a feature
has additional tuning options, then @samp{standard} sets it to its standard
level.
@samp{pac-ret[+@var{leaf}]} turns on return address signing to its standard
level: signing functions that save the return address to memory (non-leaf
functions will practically always do this) using the a-key. The optional
argument @samp{leaf} can be used to extend the signing to include leaf
functions. The optional argument @samp{b-key} can be used to sign the functions
with the B-key instead of the A-key.
@samp{bti} turns on branch target identification mechanism.
@opindex mharden-sls
@item -mharden-sls=@var{opts}
Enable compiler hardening against straight line speculation (SLS).
@var{opts} is a comma-separated list of the following options:
@table @samp
@item retbr
@item blr
@end table
In addition, @samp{-mharden-sls=all} enables all SLS hardening while
@samp{-mharden-sls=none} disables all SLS hardening.
@opindex mearly-ra
@item -mearly-ra=@var{scope}
Determine when to enable an early register allocation pass. This pass runs
before instruction scheduling and tries to find a spill-free allocation of
floating-point and vector code. It also tries to make use of strided
multi-register instructions, such as SME2's strided LD1 and ST1.
The possible values of @var{scope} are: @var{all}, which runs the pass on
all functions; @var{strided}, which runs the pass on functions that have
access to strided multi-register instructions; and @var{none}, which
disables the pass.
@option{-mearly-ra=all} is the default for @option{-O2} and above, and for
@option{-Os}. @option{-mearly-ra=none} is the default otherwise.
@opindex mearly-ldp-fusion
@item -mearly-ldp-fusion
Enable the copy of the AArch64 load/store pair fusion pass that runs before
register allocation. Enabled by default at @samp{-O} and above.
@opindex mlate-ldp-fusion
@item -mlate-ldp-fusion
Enable the copy of the AArch64 load/store pair fusion pass that runs after
register allocation. Enabled by default at @samp{-O} and above.
@opindex msve-vector-bits
@item -msve-vector-bits=@var{bits}
Specify the number of bits in an SVE vector register. This option only has
an effect when SVE is enabled.
GCC supports two forms of SVE code generation: ``vector-length
agnostic'' output that works with any size of vector register and
``vector-length specific'' output that allows GCC to make assumptions
about the vector length when it is useful for optimization reasons.
The possible values of @samp{bits} are: @samp{scalable}, @samp{128},
@samp{256}, @samp{512}, @samp{1024} and @samp{2048}.
Specifying @samp{scalable} selects vector-length agnostic
output. At present @samp{-msve-vector-bits=128} also generates vector-length
agnostic output for big-endian targets. All other values generate
vector-length specific code. The behavior of these values may change
in future releases and no value except @samp{scalable} should be
relied on for producing code that is portable across different
hardware SVE vector lengths.
The default is @samp{-msve-vector-bits=scalable}, which produces
vector-length agnostic code.
@end table
@subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
@anchor{aarch64-feature-modifiers}
@cindex @option{-march} feature modifiers
@cindex @option{-mcpu} feature modifiers
Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
the following and their inverses @option{no@var{feature}}:
@table @samp
@item crc
Enable CRC extension. This is on by default for
@option{-march=armv8.1-a}.
@item crypto
Enable Crypto extension. This also enables Advanced SIMD and floating-point
instructions.
@item fp
Enable floating-point instructions. This is on by default for all possible
values for options @option{-march} and @option{-mcpu}.
@item simd
Enable Advanced SIMD instructions. This also enables floating-point
instructions. This is on by default for all possible values for options
@option{-march} and @option{-mcpu}.
@item sve
Enable Scalable Vector Extension instructions. This also enables Advanced
SIMD and floating-point instructions.
@item lse
Enable Large System Extension instructions. This is on by default for
@option{-march=armv8.1-a}.
@item rdma
Enable Round Double Multiply Accumulate instructions. This is on by default
for @option{-march=armv8.1-a}.
@item fp16
Enable FP16 extension. This also enables floating-point instructions.
@item fp16fml
Enable FP16 fmla extension. This also enables FP16 extensions and
floating-point instructions. This option is enabled by default for @option{-march=armv8.4-a}. Use of this option with architectures prior to Armv8.2-A is not supported.
@item rcpc
Enable the RCpc extension. This enables the use of the LDAPR instructions for
load-acquire atomic semantics, and passes it on to the assembler, enabling
inline asm statements to use instructions from the RCpc extension.
@item dotprod
Enable the Dot Product extension. This also enables Advanced SIMD instructions.
@item aes
Enable the Armv8-a aes and pmull crypto extension. This also enables Advanced
SIMD instructions.
@item sha2
Enable the Armv8-a sha2 crypto extension. This also enables Advanced SIMD instructions.
@item sha3
Enable the sha512 and sha3 crypto extension. This also enables Advanced SIMD
instructions. Use of this option with architectures prior to Armv8.2-A is not supported.
@item sm4
Enable the sm3 and sm4 crypto extension. This also enables Advanced SIMD instructions.
Use of this option with architectures prior to Armv8.2-A is not supported.
@item profile
Enable the Statistical Profiling extension. This option is only to enable the
extension at the assembler level and does not affect code generation.
@item rng
Enable the Armv8.5-a Random Number instructions. This option is only to
enable the extension at the assembler level and does not affect code
generation.
@item memtag
Enable the Armv8.5-a Memory Tagging Extensions.
Use of this option with architectures prior to Armv8.5-A is not supported.
@item sb
Enable the Armv8-a Speculation Barrier instruction. This option is only to
enable the extension at the assembler level and does not affect code
generation. This option is enabled by default for @option{-march=armv8.5-a}.
@item ssbs
Enable the Armv8-a Speculative Store Bypass Safe instruction. This option
is only to enable the extension at the assembler level and does not affect code
generation. This option is enabled by default for @option{-march=armv8.5-a}.
@item predres
Enable the Armv8-a Execution and Data Prediction Restriction instructions.
This option is only to enable the extension at the assembler level and does
not affect code generation. This option is enabled by default for
@option{-march=armv8.5-a}.
@item sve2
Enable the Armv8-a Scalable Vector Extension 2. This also enables SVE
instructions.
@item sve2-bitperm
Enable SVE2 bitperm instructions. This also enables SVE2 instructions.
@item sve2-sm4
Enable SVE2 sm4 instructions. This also enables SVE2 instructions.
@item sve2-aes
Enable SVE2 aes instructions. This also enables SVE2 instructions.
@item sve2-sha3
Enable SVE2 sha3 instructions. This also enables SVE2 instructions.
@item tme
Enable the Transactional Memory Extension.
@item i8mm
Enable 8-bit Integer Matrix Multiply instructions. This also enables
Advanced SIMD and floating-point instructions. This option is enabled by
default for @option{-march=armv8.6-a}. Use of this option with architectures
prior to Armv8.2-A is not supported.
@item f32mm
Enable 32-bit Floating point Matrix Multiply instructions. This also enables
SVE instructions. Use of this option with architectures prior to Armv8.2-A is
not supported.
@item f64mm
Enable 64-bit Floating point Matrix Multiply instructions. This also enables
SVE instructions. Use of this option with architectures prior to Armv8.2-A is
not supported.
@item bf16
Enable brain half-precision floating-point instructions. This also enables
Advanced SIMD and floating-point instructions. This option is enabled by
default for @option{-march=armv8.6-a}. Use of this option with architectures
prior to Armv8.2-A is not supported.
@item ls64
Enable the 64-byte atomic load and store instructions for accelerators.
This option is enabled by default for @option{-march=armv8.7-a}.
@item mops
Enable the instructions to accelerate memory operations like @code{memcpy},
@code{memmove}, @code{memset}. This option is enabled by default for
@option{-march=armv8.8-a}
@item flagm
Enable the Flag Manipulation instructions Extension.
@item pauth
Enable the Pointer Authentication Extension.
@item cssc
Enable the Common Short Sequence Compression instructions.
@item sme
Enable the Scalable Matrix Extension.
@item sme-i16i64
Enable the FEAT_SME_I16I64 extension to SME.
@item sme-f64f64
Enable the FEAT_SME_F64F64 extension to SME.
+@item sme2
Enable the Scalable Matrix Extension 2. This also enables SME instructions.
@item lse128
Enable the LSE128 128-bit atomic instructions extension. This also
enables LSE instructions.
@item d128
Enable support for 128-bit system register read/write instructions.
This also enables the LSE128 extension.
@item gcs
Enable support for Armv9.4-a Guarded Control Stack extension.
@item the
Enable support for Armv8.9-a/9.4-a translation hardening extension.
@item rcpc3
Enable the RCpc3 (Release Consistency) extension.
@end table
Feature @option{crypto} implies @option{aes}, @option{sha2}, and @option{simd},
which implies @option{fp}.
Conversely, @option{nofp} implies @option{nosimd}, which implies
@option{nocrypto}, @option{noaes} and @option{nosha2}.
@node Adapteva Epiphany Options
@subsection Adapteva Epiphany Options
These @samp{-m} options are defined for Adapteva Epiphany:
@table @gcctabopt
@opindex mhalf-reg-file
@item -mhalf-reg-file
Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
That allows code to run on hardware variants that lack these registers.
@opindex mprefer-short-insn-regs
@item -mprefer-short-insn-regs
Preferentially allocate registers that allow short instruction generation.
This can result in increased instruction count, so this may either reduce or
increase overall code size.
@opindex mbranch-cost
@item -mbranch-cost=@var{num}
Set the cost of branches to roughly @var{num} ``simple'' instructions.
This cost is only a heuristic and is not guaranteed to produce
consistent results across releases.
@opindex mcmove
@item -mcmove
Enable the generation of conditional moves.
@opindex mnops
@item -mnops=@var{num}
Emit @var{num} NOPs before every other generated instruction.
@opindex mno-soft-cmpsf
@opindex msoft-cmpsf
@item -mno-soft-cmpsf
For single-precision floating-point comparisons, emit an @code{fsub} instruction
and test the flags. This is faster than a software comparison, but can
get incorrect results in the presence of NaNs, or when two different small
numbers are compared such that their difference is calculated as zero.
The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
software comparisons.
@opindex mstack-offset
@item -mstack-offset=@var{num}
Set the offset between the top of the stack and the stack pointer.
E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
can be used by leaf functions without stack allocation.
Values other than @samp{8} or @samp{16} are untested and unlikely to work.
Note also that this option changes the ABI; compiling a program with a
different stack offset than the libraries have been compiled with
generally does not work.
This option can be useful if you want to evaluate if a different stack
offset would give you better code, but to actually use a different stack
offset to build working programs, it is recommended to configure the
toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
@opindex mno-round-nearest
@opindex mround-nearest
@item -mno-round-nearest
Make the scheduler assume that the rounding mode has been set to
truncating. The default is @option{-mround-nearest}.
@opindex mlong-calls
@item -mlong-calls
If not otherwise specified by an attribute, assume all calls might be beyond
the offset range of the @code{b} / @code{bl} instructions, and therefore load the
function address into a register before performing a (otherwise direct) call.
This is the default.
@opindex short-calls
@item -mshort-calls
If not otherwise specified by an attribute, assume all direct calls are
in the range of the @code{b} / @code{bl} instructions, so use these instructions
for direct calls. The default is @option{-mlong-calls}.
@opindex msmall16
@item -msmall16
Assume addresses can be loaded as 16-bit unsigned values. This does not
apply to function addresses for which @option{-mlong-calls} semantics
are in effect.
@opindex mfp-mode
@item -mfp-mode=@var{mode}
Set the prevailing mode of the floating-point unit.
This determines the floating-point mode that is provided and expected
at function call and return time. Making this mode match the mode you
predominantly need at function start can make your programs smaller and
faster by avoiding unnecessary mode switches.
@var{mode} can be set to one the following values:
@table @samp
@item caller
Any mode at function entry is valid, and retained or restored when
the function returns, and when it calls other functions.
This mode is useful for compiling libraries or other compilation units
you might want to incorporate into different programs with different
prevailing FPU modes, and the convenience of being able to use a single
object file outweighs the size and speed overhead for any extra
mode switching that might be needed, compared with what would be needed
with a more specific choice of prevailing FPU mode.
@item truncate
This is the mode used for floating-point calculations with
truncating (i.e.@: round towards zero) rounding mode. That includes
conversion from floating point to integer.
@item round-nearest
This is the mode used for floating-point calculations with
round-to-nearest-or-even rounding mode.
@item int
This is the mode used to perform integer calculations in the FPU, e.g.@:
integer multiply, or integer multiply-and-accumulate.
@end table
The default is @option{-mfp-mode=caller}
@opindex mno-split-lohi
@opindex msplit-lohi
@opindex mno-postinc
@opindex mpostinc
@opindex mno-postmodify
@opindex mpostmodify
@item -mno-split-lohi
@itemx -mno-postinc
@itemx -mno-postmodify
Code generation tweaks that disable, respectively, splitting of 32-bit
loads, generation of post-increment addresses, and generation of
post-modify addresses. The defaults are @option{msplit-lohi},
@option{-mpost-inc}, and @option{-mpost-modify}.
@opindex mno-vect-double
@opindex mvect-double
@item -mnovect-double
Change the preferred SIMD mode to SImode. The default is
@option{-mvect-double}, which uses DImode as preferred SIMD mode.
@opindex max-vect-align
@item -max-vect-align=@var{num}
The maximum alignment for SIMD vector mode types.
@var{num} may be 4 or 8. The default is 8.
Note that this is an ABI change, even though many library function
interfaces are unaffected if they don't use SIMD vector modes
in places that affect size and/or alignment of relevant types.
@opindex msplit-vecmove-early
@item -msplit-vecmove-early
Split vector moves into single word moves before reload. In theory this
can give better register allocation, but so far the reverse seems to be
generally the case.
@opindex m1reg-
@item -m1reg-@var{reg}
Specify a register to hold the constant @minus{}1, which makes loading small negative
constants and certain bitmasks faster.
Allowable values for @var{reg} are @samp{r43} and @samp{r63},
which specify use of that register as a fixed register,
and @samp{none}, which means that no register is used for this
purpose. The default is @option{-m1reg-none}.
@end table
@node AMD GCN Options
@subsection AMD GCN Options
@cindex AMD GCN Options
These options are defined specifically for the AMD GCN port.
@table @gcctabopt
@opindex march
@opindex mtune
@item -march=@var{gpu}
@itemx -mtune=@var{gpu}
Set architecture type or tuning for @var{gpu}. Supported values for @var{gpu}
are
@table @samp
@item fiji
Compile for GCN3 Fiji devices (gfx803). Support deprecated; availablility
depends on how GCC has been configured, see @option{--with-arch} and
@option{--with-multilib-list}.
@item gfx900
Compile for GCN5 Vega 10 devices (gfx900).
@item gfx906
Compile for GCN5 Vega 20 devices (gfx906).
@item gfx908
Compile for CDNA1 Instinct MI100 series devices (gfx908).
@item gfx90a
Compile for CDNA2 Instinct MI200 series devices (gfx90a).
@item gfx90c
Compile for GCN5 Vega 7 devices (gfx90c).
@item gfx1030
Compile for RDNA2 gfx1030 devices (GFX10 series).
@item gfx1036
Compile for RDNA2 gfx1036 devices (GFX10 series).
@item gfx1100
Compile for RDNA3 gfx1100 devices (GFX11 series).
@item gfx1103
Compile for RDNA3 gfx1103 devices (GFX11 series).
@end table
@opindex msram-ecc
@item -msram-ecc=on
@itemx -msram-ecc=off
@itemx -msram-ecc=any
Compile binaries suitable for devices with the SRAM-ECC feature enabled,
disabled, or either mode. This feature can be enabled per-process on some
devices. The compiled code must match the device mode. The default is
@samp{any}, for devices that support it.
@opindex mstack-size
@item -mstack-size=@var{bytes}
Specify how many @var{bytes} of stack space will be requested for each GPU
thread (wave-front). Beware that there may be many threads and limited memory
available. The size of the stack allocation may also have an impact on
run-time performance. The default is 32KB when using OpenACC or OpenMP, and
1MB otherwise.
@opindex mxnack
@item -mxnack=on
@itemx -mxnack=off
@itemx -mxnack=any
Compile binaries suitable for devices with the XNACK feature enabled, disabled,
or either mode. Some devices always require XNACK and some allow the user to
configure XNACK. The compiled code must match the device mode.
The default is @samp{-mxnack=any} on devices that support Unified Shared
Memory, and @samp{-mxnack=no} otherwise.
@end table
@node ARC Options
@subsection ARC Options
@cindex ARC options
The following options control the architecture variant for which code
is being compiled:
@c architecture variants
@table @gcctabopt
@opindex mbarrel-shifter
@item -mbarrel-shifter
Generate instructions supported by barrel shifter. This is the default
unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
@opindex mjli-always
@item -mjli-always
Force to call a function using jli_s instruction. This option is
valid only for ARCv2 architecture.
@opindex mcpu
@item -mcpu=@var{cpu}
Set architecture type, register usage, and instruction scheduling
parameters for @var{cpu}. There are also shortcut alias options
available for backward compatibility and convenience. Supported
values for @var{cpu} are
@table @samp
@opindex mA6
@opindex mARC600
@item arc600
Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
@opindex mARC601
@item arc601
Compile for ARC601. Alias: @option{-mARC601}.
@opindex mA7
@opindex mARC700
@item arc700
Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
This is the default when configured with @option{--with-cpu=arc700}@.
@item arcem
Compile for ARC EM.
@item archs
Compile for ARC HS.
@item em
Compile for ARC EM CPU with no hardware extensions.
@item em4
Compile for ARC EM4 CPU.
@item em4_dmips
Compile for ARC EM4 DMIPS CPU.
@item em4_fpus
Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
extension.
@item em4_fpuda
Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
double assist instructions.
@item hs
Compile for ARC HS CPU with no hardware extensions except the atomic
instructions.
@item hs34
Compile for ARC HS34 CPU.
@item hs38
Compile for ARC HS38 CPU.
@item hs38_linux
Compile for ARC HS38 CPU with all hardware extensions on.
@item hs4x
Compile for ARC HS4x CPU.
@item hs4xd
Compile for ARC HS4xD CPU.
@item hs4x_rel31
Compile for ARC HS4x CPU release 3.10a.
@item arc600_norm
Compile for ARC 600 CPU with @code{norm} instructions enabled.
@item arc600_mul32x16
Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply
instructions enabled.
@item arc600_mul64
Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family
instructions enabled.
@item arc601_norm
Compile for ARC 601 CPU with @code{norm} instructions enabled.
@item arc601_mul32x16
Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
instructions enabled.
@item arc601_mul64
Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
instructions enabled.
@item nps400
Compile for ARC 700 on NPS400 chip.
@item em_mini
Compile for ARC EM minimalist configuration featuring reduced register
set.
@end table
@opindex mdpfp
@opindex mdpfp-compact
@item -mdpfp
@itemx -mdpfp-compact
Generate double-precision FPX instructions, tuned for the compact
implementation.
@opindex mdpfp-fast
@item -mdpfp-fast
Generate double-precision FPX instructions, tuned for the fast
implementation.
@opindex mno-dpfp-lrsr
@item -mno-dpfp-lrsr
Disable @code{lr} and @code{sr} instructions from using FPX extension
aux registers.
@opindex mea
@item -mea
Generate extended arithmetic instructions. Currently only
@code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
supported. Only valid for @option{-mcpu=ARC700}.
@opindex mno-mpy
@opindex mmpy
@item -mno-mpy
Do not generate @code{mpy}-family instructions for ARC700. This option is
deprecated.
@opindex mmul32x16
@item -mmul32x16
Generate 32x16-bit multiply and multiply-accumulate instructions.
@opindex mmul64
@item -mmul64
Generate @code{mul64} and @code{mulu64} instructions.
Only valid for @option{-mcpu=ARC600}.
@opindex mnorm
@item -mnorm
Generate @code{norm} instructions. This is the default if @option{-mcpu=ARC700}
is in effect.
@opindex mspfp
@opindex mspfp-compact
@item -mspfp
@itemx -mspfp-compact
Generate single-precision FPX instructions, tuned for the compact
implementation.
@opindex mspfp-fast
@item -mspfp-fast
Generate single-precision FPX instructions, tuned for the fast
implementation.
@opindex msimd
@item -msimd
Enable generation of ARC SIMD instructions via target-specific
builtins. Only valid for @option{-mcpu=ARC700}.
@opindex msoft-float
@item -msoft-float
This option ignored; it is provided for compatibility purposes only.
Software floating-point code is emitted by default, and this default
can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
@option{-mspfp-fast} for single precision, and @option{-mdpfp},
@option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
@opindex mswap
@item -mswap
Generate @code{swap} instructions.
@opindex matomic
@item -matomic
This enables use of the locked load/store conditional extension to implement
atomic memory built-in functions. Not available for ARC 6xx or ARC
EM cores.
@opindex mdiv-rem
@item -mdiv-rem
Enable @code{div} and @code{rem} instructions for ARCv2 cores.
@opindex mcode-density
@item -mcode-density
Enable code density instructions for ARC EM.
This option is on by default for ARC HS.
@opindex mll64
@item -mll64
Enable double load/store operations for ARC HS cores.
@opindex mtp-regno
@item -mtp-regno=@var{regno}
Specify thread pointer register number.
@opindex mmpy-option
@item -mmpy-option=@var{multo}
Compile ARCv2 code with a multiplier design option. You can specify
the option using either a string or numeric value for @var{multo}.
@samp{wlh1} is the default value. The recognized values are:
@table @samp
@item 0
@itemx none
No multiplier available.
@item 1
@itemx w
16x16 multiplier, fully pipelined.
The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
@item 2
@itemx wlh1
32x32 multiplier, fully
pipelined (1 stage). The following instructions are additionally
enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
@item 3
@itemx wlh2
32x32 multiplier, fully pipelined
(2 stages). The following instructions are additionally enabled: @code{mpy},
@code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
@item 4
@itemx wlh3
Two 16x16 multipliers, blocking,
sequential. The following instructions are additionally enabled: @code{mpy},
@code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
@item 5
@itemx wlh4
One 16x16 multiplier, blocking,
sequential. The following instructions are additionally enabled: @code{mpy},
@code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
@item 6
@itemx wlh5
One 32x4 multiplier, blocking,
sequential. The following instructions are additionally enabled: @code{mpy},
@code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
@item 7
@itemx plus_dmpy
ARC HS SIMD support.
@item 8
@itemx plus_macd
ARC HS SIMD support.
@item 9
@itemx plus_qmacw
ARC HS SIMD support.
@end table
This option is only available for ARCv2 cores@.
@opindex mfpu
@item -mfpu=@var{fpu}
Enables support for specific floating-point hardware extensions for ARCv2
cores. Supported values for @var{fpu} are:
@table @samp
@item fpus
Enables support for single-precision floating-point hardware
extensions@.
@item fpud
Enables support for double-precision floating-point hardware
extensions. The single-precision floating-point extension is also
enabled. Not available for ARC EM@.
@item fpuda
Enables support for double-precision floating-point hardware
extensions using double-precision assist instructions. The single-precision
floating-point extension is also enabled. This option is
only available for ARC EM@.
@item fpuda_div
Enables support for double-precision floating-point hardware
extensions using double-precision assist instructions.
The single-precision floating-point, square-root, and divide
extensions are also enabled. This option is
only available for ARC EM@.
@item fpuda_fma
Enables support for double-precision floating-point hardware
extensions using double-precision assist instructions.
The single-precision floating-point and fused multiply and add
hardware extensions are also enabled. This option is
only available for ARC EM@.
@item fpuda_all
Enables support for double-precision floating-point hardware
extensions using double-precision assist instructions.
All single-precision floating-point hardware extensions are also
enabled. This option is only available for ARC EM@.
@item fpus_div
Enables support for single-precision floating-point, square-root and divide
hardware extensions@.
@item fpud_div
Enables support for double-precision floating-point, square-root and divide
hardware extensions. This option
includes option @samp{fpus_div}. Not available for ARC EM@.
@item fpus_fma
Enables support for single-precision floating-point and
fused multiply and add hardware extensions@.
@item fpud_fma
Enables support for double-precision floating-point and
fused multiply and add hardware extensions. This option
includes option @samp{fpus_fma}. Not available for ARC EM@.
@item fpus_all
Enables support for all single-precision floating-point hardware
extensions@.
@item fpud_all
Enables support for all single- and double-precision floating-point
hardware extensions. Not available for ARC EM@.
@end table
@opindex mirq-ctrl-saved
@item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
Specifies general-purposes registers that the processor automatically
saves/restores on interrupt entry and exit. @var{register-range} is
specified as two registers separated by a dash. The register range
always starts with @code{r0}, the upper limit is @code{fp} register.
@var{blink} and @var{lp_count} are optional. This option is only
valid for ARC EM and ARC HS cores.
@opindex mrgf-banked-regs
@item -mrgf-banked-regs=@var{number}
Specifies the number of registers replicated in second register bank
on entry to fast interrupt. Fast interrupts are interrupts with the
highest priority level P0. These interrupts save only PC and STATUS32
registers to avoid memory transactions during interrupt entry and exit
sequences. Use this option when you are using fast interrupts in an
ARC V2 family processor. Permitted values are 4, 8, 16, and 32.
@opindex mlpc-width
@item -mlpc-width=@var{width}
Specify the width of the @code{lp_count} register. Valid values for
@var{width} are 8, 16, 20, 24, 28 and 32 bits. The default width is
fixed to 32 bits. If the width is less than 32, the compiler does not
attempt to transform loops in your program to use the zero-delay loop
mechanism unless it is known that the @code{lp_count} register can
hold the required loop-counter value. Depending on the width
specified, the compiler and run-time library might continue to use the
loop mechanism for various needs. This option defines macro
@code{__ARC_LPC_WIDTH__} with the value of @var{width}.
@opindex mrf16
@item -mrf16
This option instructs the compiler to generate code for a 16-entry
register file. This option defines the @code{__ARC_RF16__}
preprocessor macro.
@opindex mbranch-index
@item -mbranch-index
Enable use of @code{bi} or @code{bih} instructions to implement jump
tables.
@end table
The following options are passed through to the assembler, and also
define preprocessor macro symbols.
@c Flags used by the assembler, but for which we define preprocessor
@c macro symbols as well.
@table @gcctabopt
@opindex mdsp-packa
@item -mdsp-packa
Passed down to the assembler to enable the DSP Pack A extensions.
Also sets the preprocessor symbol @code{__Xdsp_packa}. This option is
deprecated.
@opindex mdvbf
@item -mdvbf
Passed down to the assembler to enable the dual Viterbi butterfly
extension. Also sets the preprocessor symbol @code{__Xdvbf}. This
option is deprecated.
@c ARC700 4.10 extension instruction
@opindex mlock
@item -mlock
Passed down to the assembler to enable the locked load/store
conditional extension. Also sets the preprocessor symbol
@code{__Xlock}.
@opindex mmac-d16
@item -mmac-d16
Passed down to the assembler. Also sets the preprocessor symbol
@code{__Xxmac_d16}. This option is deprecated.
@opindex mmac-24
@item -mmac-24
Passed down to the assembler. Also sets the preprocessor symbol
@code{__Xxmac_24}. This option is deprecated.
@c ARC700 4.10 extension instruction
@opindex mrtsc
@item -mrtsc
Passed down to the assembler to enable the 64-bit time-stamp counter
extension instruction. Also sets the preprocessor symbol
@code{__Xrtsc}. This option is deprecated.
@c ARC700 4.10 extension instruction
@opindex mswape
@item -mswape
Passed down to the assembler to enable the swap byte ordering
extension instruction. Also sets the preprocessor symbol
@code{__Xswape}.
@opindex mtelephony
@item -mtelephony
Passed down to the assembler to enable dual- and single-operand
instructions for telephony. Also sets the preprocessor symbol
@code{__Xtelephony}. This option is deprecated.
@opindex mxy
@item -mxy
Passed down to the assembler to enable the XY memory extension. Also
sets the preprocessor symbol @code{__Xxy}.
@end table
The following options control how the assembly code is annotated:
@c Assembly annotation options
@table @gcctabopt
@opindex misize
@item -misize
Annotate assembler instructions with estimated addresses.
@opindex mannotate-align
@item -mannotate-align
Does nothing. Preserved for backward compatibility.
@end table
The following options are passed through to the linker:
@c options passed through to the linker
@table @gcctabopt
@opindex marclinux
@item -marclinux
Passed through to the linker, to specify use of the @code{arclinux} emulation.
This option is enabled by default in tool chains built for
@w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
when profiling is not requested.
@opindex marclinux_prof
@item -marclinux_prof
Passed through to the linker, to specify use of the
@code{arclinux_prof} emulation. This option is enabled by default in
tool chains built for @w{@code{arc-linux-uclibc}} and
@w{@code{arceb-linux-uclibc}} targets when profiling is requested.
@end table
The following options control the semantics of generated code:
@c semantically relevant code generation options
@table @gcctabopt
@opindex mlong-calls
@item -mlong-calls
Generate calls as register indirect calls, thus providing access
to the full 32-bit address range.
@opindex mmedium-calls
@item -mmedium-calls
Don't use less than 25-bit addressing range for calls, which is the
offset available for an unconditional branch-and-link
instruction. Conditional execution of function calls is suppressed, to
allow use of the 25-bit range, rather than the 21-bit range with
conditional branch-and-link. This is the default for tool chains built
for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
@opindex G
@item -G @var{num}
Put definitions of externally-visible data in a small data section if
that data is no bigger than @var{num} bytes. The default value of
@var{num} is 4 for any ARC configuration, or 8 when we have double
load/store operations.
@opindex mno-sdata
@opindex msdata
@item -mno-sdata
Do not generate sdata references. This is the default for tool chains
built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
targets.
@opindex mvolatile-cache
@item -mvolatile-cache
Use ordinarily cached memory accesses for volatile references. This is the
default.
@opindex mno-volatile-cache
@opindex mvolatile-cache
@item -mno-volatile-cache
Enable cache bypass for volatile references.
@end table
The following options fine tune code generation:
@c code generation tuning options
@table @gcctabopt
@opindex malign-call
@item -malign-call
Does nothing. Preserved for backward compatibility.
@opindex mauto-modify-reg
@item -mauto-modify-reg
Enable the use of pre/post modify with register displacement.
@opindex mbbit-peephole
@item -mbbit-peephole
Does nothing. Preserved for backward compatibility.
@opindex mno-brcc
@item -mno-brcc
This option disables a target-specific pass in @file{arc_reorg} to
generate compare-and-branch (@code{br@var{cc}}) instructions.
It has no effect on
generation of these instructions driven by the combiner pass.
@opindex mcase-vector-pcrel
@item -mcase-vector-pcrel
Use PC-relative switch case tables to enable case table shortening.
This is the default for @option{-Os}.
@opindex mcompact-casesi
@item -mcompact-casesi
Enable compact @code{casesi} pattern. This is the default for @option{-Os},
and only available for ARCv1 cores. This option is deprecated.
@opindex mno-cond-exec
@item -mno-cond-exec
Disable the ARCompact-specific pass to generate conditional
execution instructions.
Due to delay slot scheduling and interactions between operand numbers,
literal sizes, instruction lengths, and the support for conditional execution,
the target-independent pass to generate conditional execution is often lacking,
so the ARC port has kept a special pass around that tries to find more
conditional execution generation opportunities after register allocation,
branch shortening, and delay slot scheduling have been done. This pass
generally, but not always, improves performance and code size, at the cost of
extra compilation time, which is why there is an option to switch it off.
If you have a problem with call instructions exceeding their allowable
offset range because they are conditionalized, you should consider using
@option{-mmedium-calls} instead.
@opindex mearly-cbranchsi
@item -mearly-cbranchsi
Enable pre-reload use of the @code{cbranchsi} pattern.
@opindex mexpand-adddi
@item -mexpand-adddi
Expand @code{adddi3} and @code{subdi3} at RTL generation time into
@code{add.f}, @code{adc} etc. This option is deprecated.
@opindex mindexed-loads
@item -mindexed-loads
Enable the use of indexed loads. This can be problematic because some
optimizers then assume that indexed stores exist, which is not
the case.
@opindex mlra
@item -mlra
Enable Local Register Allocation. This is still experimental for ARC,
so by default the compiler uses standard reload
(i.e.@: @option{-mno-lra}).
@opindex mlra-priority-none
@item -mlra-priority-none
Don't indicate any priority for target registers.
@opindex mlra-priority-compact
@item -mlra-priority-compact
Indicate target register priority for r0..r3 / r12..r15.
@opindex mlra-priority-noncompact
@item -mlra-priority-noncompact
Reduce target register priority for r0..r3 / r12..r15.
@opindex mmillicode
@item -mmillicode
When optimizing for size (using @option{-Os}), prologues and epilogues
that have to save or restore a large number of registers are often
shortened by using call to a special function in libgcc; this is
referred to as a @emph{millicode} call. As these calls can pose
performance issues, and/or cause linking issues when linking in a
nonstandard way, this option is provided to turn on or off millicode
call generation.
@opindex mcode-density-frame
@item -mcode-density-frame
This option enable the compiler to emit @code{enter} and @code{leave}
instructions. These instructions are only valid for CPUs with
code-density feature.
@opindex mmixed-code
@item -mmixed-code
Does nothing. Preserved for backward compatibility.
@opindex mq-class
@item -mq-class
Ths option is deprecated. Enable @samp{q} instruction alternatives.
This is the default for @option{-Os}.
@opindex mRcq
@item -mRcq
Does nothing. Preserved for backward compatibility.
@opindex mRcw
@item -mRcw
Does nothing. Preserved for backward compatibility.
@opindex msize-level
@item -msize-level=@var{level}
Fine-tune size optimization with regards to instruction lengths and alignment.
The recognized values for @var{level} are:
@table @samp
@item 0
No size optimization. This level is deprecated and treated like @samp{1}.
@item 1
Short instructions are used opportunistically.
@item 2
In addition, alignment of loops and of code after barriers are dropped.
@item 3
In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
@end table
This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
the behavior when this is not set is equivalent to level @samp{1}.
@opindex mtune
@item -mtune=@var{cpu}
Set instruction scheduling parameters for @var{cpu}, overriding any implied
by @option{-mcpu=}.
Supported values for @var{cpu} are
@table @samp
@item ARC600
Tune for ARC600 CPU.
@item ARC601
Tune for ARC601 CPU.
@item ARC700
Tune for ARC700 CPU with standard multiplier block.
@item ARC700-xmac
Tune for ARC700 CPU with XMAC block.
@item ARC725D
Tune for ARC725D CPU.
@item ARC750D
Tune for ARC750D CPU.
@item core3
Tune for ARCv2 core3 type CPU. This option enable usage of
@code{dbnz} instruction.
@item release31a
Tune for ARC4x release 3.10a.
@end table
@opindex mmultcost
@item -mmultcost=@var{num}
Cost to assume for a multiply instruction, with @samp{4} being equal to a
normal instruction.
@opindex munalign-prob-threshold
@item -munalign-prob-threshold=@var{probability}
Does nothing. Preserved for backward compatibility.
@end table
The following options are maintained for backward compatibility, but
are now deprecated and will be removed in a future release:
@c Deprecated options
@table @gcctabopt
@opindex margonaut
@item -margonaut
Obsolete FPX.
@opindex mbig-endian
@opindex EB
@item -mbig-endian
@itemx -EB
Compile code for big-endian targets. Use of these options is now
deprecated. Big-endian code is supported by configuring GCC to build
@w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
for which big endian is the default.
@opindex mlittle-endian
@opindex EL
@item -mlittle-endian
@itemx -EL
Compile code for little-endian targets. Use of these options is now
deprecated. Little-endian code is supported by configuring GCC to build
@w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
for which little endian is the default.
@opindex mbarrel_shifter
@item -mbarrel_shifter
Replaced by @option{-mbarrel-shifter}.
@opindex mdpfp_compact
@item -mdpfp_compact
Replaced by @option{-mdpfp-compact}.
@opindex mdpfp_fast
@item -mdpfp_fast
Replaced by @option{-mdpfp-fast}.
@opindex mdsp_packa
@item -mdsp_packa
Replaced by @option{-mdsp-packa}.
@opindex mEA
@item -mEA
Replaced by @option{-mea}.
@opindex mmac_24
@item -mmac_24
Replaced by @option{-mmac-24}.
@opindex mmac_d16
@item -mmac_d16
Replaced by @option{-mmac-d16}.
@opindex mspfp_compact
@item -mspfp_compact
Replaced by @option{-mspfp-compact}.
@opindex mspfp_fast
@item -mspfp_fast
Replaced by @option{-mspfp-fast}.
@opindex mtune
@item -mtune=@var{cpu}
Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
@samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
@samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
@opindex multcost
@item -multcost=@var{num}
Replaced by @option{-mmultcost}.
@end table
@node ARM Options
@subsection ARM Options
@cindex ARM options
These @samp{-m} options are defined for the ARM port:
@table @gcctabopt
@opindex mabi
@item -mabi=@var{name}
Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
@samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
@opindex mapcs-frame
@item -mapcs-frame
Generate a stack frame that is compliant with the ARM Procedure Call
Standard for all functions, even if this is not strictly necessary for
correct execution of the code. Specifying @option{-fomit-frame-pointer}
with this option causes the stack frames not to be generated for
leaf functions. The default is @option{-mno-apcs-frame}.
This option is deprecated.
@opindex mapcs
@item -mapcs
This is a synonym for @option{-mapcs-frame} and is deprecated.
@ignore
@c not currently implemented
@opindex mapcs-stack-check
@item -mapcs-stack-check
Generate code to check the amount of stack space available upon entry to
every function (that actually uses some stack space). If there is
insufficient space available then either the function
@code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
called, depending upon the amount of stack space required. The runtime
system is required to provide these functions. The default is
@option{-mno-apcs-stack-check}, since this produces smaller code.
@c not currently implemented
@opindex mapcs-reentrant
@item -mapcs-reentrant
Generate reentrant, position-independent code. The default is
@option{-mno-apcs-reentrant}.
@end ignore
@opindex mthumb-interwork
@item -mthumb-interwork
Generate code that supports calling between the ARM and Thumb
instruction sets. Without this option, on pre-v5 architectures, the
two instruction sets cannot be reliably used inside one program. The
default is @option{-mno-thumb-interwork}, since slightly larger code
is generated when @option{-mthumb-interwork} is specified. In AAPCS
configurations this option is meaningless.
@opindex mno-sched-prolog
@opindex msched-prolog
@item -mno-sched-prolog
Prevent the reordering of instructions in the function prologue, or the
merging of those instruction with the instructions in the function's
body. This means that all functions start with a recognizable set
of instructions (or in fact one of a choice from a small set of
different function prologues), and this information can be used to
locate the start of functions inside an executable piece of code. The
default is @option{-msched-prolog}.
@opindex mfloat-abi
@item -mfloat-abi=@var{name}
Specifies which floating-point ABI to use. Permissible values
are: @samp{soft}, @samp{softfp} and @samp{hard}.
Specifying @samp{soft} causes GCC to generate output containing
library calls for floating-point operations.
@samp{softfp} allows the generation of code using hardware floating-point
instructions, but still uses the soft-float calling conventions.
@samp{hard} allows generation of floating-point instructions
and uses FPU-specific calling conventions.
The default depends on the specific target configuration. Note that
the hard-float and soft-float ABIs are not link-compatible; you must
compile your entire program with the same ABI, and link with a
compatible set of libraries.
@opindex mgeneral-regs-only
@item -mgeneral-regs-only
Generate code which uses only the general-purpose registers. This will prevent
the compiler from using floating-point and Advanced SIMD registers but will not
impose any restrictions on the assembler.
@opindex mlittle-endian
@item -mlittle-endian
Generate code for a processor running in little-endian mode. This is
the default for all standard configurations.
@opindex mbig-endian
@item -mbig-endian
Generate code for a processor running in big-endian mode; the default is
to compile code for a little-endian processor.
@opindex mbe8
@item -mbe8
@itemx -mbe32
When linking a big-endian image select between BE8 and BE32 formats.
The option has no effect for little-endian images and is ignored. The
default is dependent on the selected target architecture. For ARMv6
and later architectures the default is BE8, for older architectures
the default is BE32. BE32 format has been deprecated by ARM.
@opindex march
@item -march=@var{name}@r{[}+extension@dots{}@r{]}
This specifies the name of the target ARM architecture. GCC uses this
name to determine what kind of instructions it can emit when generating
assembly code. This option can be used in conjunction with or instead
of the @option{-mcpu=} option.
Permissible names are:
@samp{armv4t},
@samp{armv5t}, @samp{armv5te},
@samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
@samp{armv6z}, @samp{armv6zk},
@samp{armv7}, @samp{armv7-a}, @samp{armv7ve},
@samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a},
@samp{armv8.4-a},
@samp{armv8.5-a},
@samp{armv8.6-a},
@samp{armv9-a},
@samp{armv7-r},
@samp{armv8-r},
@samp{armv6-m}, @samp{armv6s-m},
@samp{armv7-m}, @samp{armv7e-m},
@samp{armv8-m.base}, @samp{armv8-m.main},
@samp{armv8.1-m.main},
@samp{armv9-a},
@samp{iwmmxt} and @samp{iwmmxt2}.
Additionally, the following architectures, which lack support for the
Thumb execution state, are recognized but support is deprecated: @samp{armv4}.
Many of the architectures support extensions. These can be added by
appending @samp{+@var{extension}} to the architecture name. Extension
options are processed in order and capabilities accumulate. An extension
will also enable any necessary base extensions
upon which it depends. For example, the @samp{+crypto} extension
will always enable the @samp{+simd} extension. The exception to the
additive construction is for extensions that are prefixed with
@samp{+no@dots{}}: these extensions disable the specified option and
any other extensions that may depend on the presence of that
extension.
For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
entirely disabled by the @samp{+nofp} option that follows it.
Most extension names are generically named, but have an effect that is
dependent upon the architecture to which it is applied. For example,
the @samp{+simd} option can be applied to both @samp{armv7-a} and
@samp{armv8-a} architectures, but will enable the original ARMv7-A
Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-A
variant for @samp{armv8-a}.
The table below lists the supported extensions for each architecture.
Architectures not mentioned do not support any extensions.
@table @samp
@item armv5te
@itemx armv6
@itemx armv6j
@itemx armv6k
@itemx armv6kz
@itemx armv6t2
@itemx armv6z
@itemx armv6zk
@table @samp
@item +fp
The VFPv2 floating-point instructions. The extension @samp{+vfpv2} can be
used as an alias for this extension.
@item +nofp
Disable the floating-point instructions.
@end table
@item armv7
The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
@table @samp
@item +fp
The VFPv3 floating-point instructions, with 16 double-precision
registers. The extension @samp{+vfpv3-d16} can be used as an alias
for this extension. Note that floating-point is not supported by the
base ARMv7-M architecture, but is compatible with both the ARMv7-A and
ARMv7-R architectures.
@item +nofp
Disable the floating-point instructions.
@end table
@item armv7-a
@table @samp
@item +mp
The multiprocessing extension.
@item +sec
The security extension.
@item +fp
The VFPv3 floating-point instructions, with 16 double-precision
registers. The extension @samp{+vfpv3-d16} can be used as an alias
for this extension.
@item +simd
The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
for this extension.
@item +vfpv3
The VFPv3 floating-point instructions, with 32 double-precision
registers.
@item +vfpv3-d16-fp16
The VFPv3 floating-point instructions, with 16 double-precision
registers and the half-precision floating-point conversion operations.
@item +vfpv3-fp16
The VFPv3 floating-point instructions, with 32 double-precision
registers and the half-precision floating-point conversion operations.
@item +vfpv4-d16
The VFPv4 floating-point instructions, with 16 double-precision
registers.
@item +vfpv4
The VFPv4 floating-point instructions, with 32 double-precision
registers.
@item +neon-fp16
The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
the half-precision floating-point conversion operations.
@item +neon-vfpv4
The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
@item +nosimd
Disable the Advanced SIMD instructions (does not disable floating point).
@item +nofp
Disable the floating-point and Advanced SIMD instructions.
@end table
@item armv7ve
The extended version of the ARMv7-A architecture with support for
virtualization.
@table @samp
@item +fp
The VFPv4 floating-point instructions, with 16 double-precision registers.
The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
@item +simd
The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions. The
extension @samp{+neon-vfpv4} can be used as an alias for this extension.
@item +vfpv3-d16
The VFPv3 floating-point instructions, with 16 double-precision
registers.
@item +vfpv3
The VFPv3 floating-point instructions, with 32 double-precision
registers.
@item +vfpv3-d16-fp16
The VFPv3 floating-point instructions, with 16 double-precision
registers and the half-precision floating-point conversion operations.
@item +vfpv3-fp16
The VFPv3 floating-point instructions, with 32 double-precision
registers and the half-precision floating-point conversion operations.
@item +vfpv4-d16
The VFPv4 floating-point instructions, with 16 double-precision
registers.
@item +vfpv4
The VFPv4 floating-point instructions, with 32 double-precision
registers.
@item +neon
The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
@item +neon-fp16
The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
the half-precision floating-point conversion operations.
@item +nosimd
Disable the Advanced SIMD instructions (does not disable floating point).
@item +nofp
Disable the floating-point and Advanced SIMD instructions.
@end table
@item armv8-a
@table @samp
@item +crc
The Cyclic Redundancy Check (CRC) instructions.
@item +simd
The ARMv8-A Advanced SIMD and floating-point instructions.
@item +crypto
The cryptographic instructions.
@item +nocrypto
Disable the cryptographic instructions.
@item +nofp
Disable the floating-point, Advanced SIMD and cryptographic instructions.
@item +sb
Speculation Barrier Instruction.
@item +predres
Execution and Data Prediction Restriction Instructions.
@end table
@item armv8.1-a
@table @samp
@item +simd
The ARMv8.1-A Advanced SIMD and floating-point instructions.
@item +crypto
The cryptographic instructions. This also enables the Advanced SIMD and
floating-point instructions.
@item +nocrypto
Disable the cryptographic instructions.
@item +nofp
Disable the floating-point, Advanced SIMD and cryptographic instructions.
@item +sb
Speculation Barrier Instruction.
@item +predres
Execution and Data Prediction Restriction Instructions.
@end table
@item armv8.2-a
@itemx armv8.3-a
@table @samp
@item +fp16
The half-precision floating-point data processing instructions.
This also enables the Advanced SIMD and floating-point instructions.
@item +fp16fml
The half-precision floating-point fmla extension. This also enables
the half-precision floating-point extension and Advanced SIMD and
floating-point instructions.
@item +simd
The ARMv8.1-A Advanced SIMD and floating-point instructions.
@item +crypto
The cryptographic instructions. This also enables the Advanced SIMD and
floating-point instructions.
@item +dotprod
Enable the Dot Product extension. This also enables Advanced SIMD instructions.
@item +nocrypto
Disable the cryptographic extension.
@item +nofp
Disable the floating-point, Advanced SIMD and cryptographic instructions.
@item +sb
Speculation Barrier Instruction.
@item +predres
Execution and Data Prediction Restriction Instructions.
@item +i8mm
8-bit Integer Matrix Multiply instructions.
This also enables Advanced SIMD and floating-point instructions.
@item +bf16
Brain half-precision floating-point instructions.
This also enables Advanced SIMD and floating-point instructions.
@end table
@item armv8.4-a
@table @samp
@item +fp16
The half-precision floating-point data processing instructions.
This also enables the Advanced SIMD and floating-point instructions as well
as the Dot Product extension and the half-precision floating-point fmla
extension.
@item +simd
The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
Dot Product extension.
@item +crypto
The cryptographic instructions. This also enables the Advanced SIMD and
floating-point instructions as well as the Dot Product extension.
@item +nocrypto
Disable the cryptographic extension.
@item +nofp
Disable the floating-point, Advanced SIMD and cryptographic instructions.
@item +sb
Speculation Barrier Instruction.
@item +predres
Execution and Data Prediction Restriction Instructions.
@item +i8mm
8-bit Integer Matrix Multiply instructions.
This also enables Advanced SIMD and floating-point instructions.
@item +bf16
Brain half-precision floating-point instructions.
This also enables Advanced SIMD and floating-point instructions.
@end table
@item armv8.5-a
@table @samp
@item +fp16
The half-precision floating-point data processing instructions.
This also enables the Advanced SIMD and floating-point instructions as well
as the Dot Product extension and the half-precision floating-point fmla
extension.
@item +simd
The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
Dot Product extension.
@item +crypto
The cryptographic instructions. This also enables the Advanced SIMD and
floating-point instructions as well as the Dot Product extension.
@item +nocrypto
Disable the cryptographic extension.
@item +nofp
Disable the floating-point, Advanced SIMD and cryptographic instructions.
@item +i8mm
8-bit Integer Matrix Multiply instructions.
This also enables Advanced SIMD and floating-point instructions.
@item +bf16
Brain half-precision floating-point instructions.
This also enables Advanced SIMD and floating-point instructions.
@end table
@item armv8.6-a
@table @samp
@item +fp16
The half-precision floating-point data processing instructions.
This also enables the Advanced SIMD and floating-point instructions as well
as the Dot Product extension and the half-precision floating-point fmla
extension.
@item +simd
The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
Dot Product extension.
@item +crypto
The cryptographic instructions. This also enables the Advanced SIMD and
floating-point instructions as well as the Dot Product extension.
@item +nocrypto
Disable the cryptographic extension.
@item +nofp
Disable the floating-point, Advanced SIMD and cryptographic instructions.
@item +i8mm
8-bit Integer Matrix Multiply instructions.
This also enables Advanced SIMD and floating-point instructions.
@item +bf16
Brain half-precision floating-point instructions.
This also enables Advanced SIMD and floating-point instructions.
@end table
@item armv7-r
@table @samp
@item +fp.sp
The single-precision VFPv3 floating-point instructions. The extension
@samp{+vfpv3xd} can be used as an alias for this extension.
@item +fp
The VFPv3 floating-point instructions with 16 double-precision registers.
The extension +vfpv3-d16 can be used as an alias for this extension.
@item +vfpv3xd-d16-fp16
The single-precision VFPv3 floating-point instructions with 16 double-precision
registers and the half-precision floating-point conversion operations.
@item +vfpv3-d16-fp16
The VFPv3 floating-point instructions with 16 double-precision
registers and the half-precision floating-point conversion operations.
@item +nofp
Disable the floating-point extension.
@item +idiv
The ARM-state integer division instructions.
@item +noidiv
Disable the ARM-state integer division extension.
@end table
@item armv7e-m
@table @samp
@item +fp
The single-precision VFPv4 floating-point instructions.
@item +fpv5
The single-precision FPv5 floating-point instructions.
@item +fp.dp
The single- and double-precision FPv5 floating-point instructions.
@item +nofp
Disable the floating-point extensions.
@end table
@item armv8.1-m.main
@table @samp
@item +dsp
The DSP instructions.
@item +mve
The M-Profile Vector Extension (MVE) integer instructions.
@item +mve.fp
The M-Profile Vector Extension (MVE) integer and single precision
floating-point instructions.
@item +fp
The single-precision floating-point instructions.
@item +fp.dp
The single- and double-precision floating-point instructions.
@item +nofp
Disable the floating-point extension.
@item +cdecp0, +cdecp1, ... , +cdecp7
Enable the Custom Datapath Extension (CDE) on selected coprocessors according
to the numbers given in the options in the range 0 to 7.
@item +pacbti
Enable the Pointer Authentication and Branch Target Identification Extension.
@end table
@item armv8-m.main
@table @samp
@item +dsp
The DSP instructions.
@item +nodsp
Disable the DSP extension.
@item +fp
The single-precision floating-point instructions.
@item +fp.dp
The single- and double-precision floating-point instructions.
@item +nofp
Disable the floating-point extension.
@item +cdecp0, +cdecp1, ... , +cdecp7
Enable the Custom Datapath Extension (CDE) on selected coprocessors according
to the numbers given in the options in the range 0 to 7.
@end table
@item armv8-r
@table @samp
@item +crc
The Cyclic Redundancy Check (CRC) instructions.
@item +fp.sp
The single-precision FPv5 floating-point instructions.
@item +simd
The ARMv8-A Advanced SIMD and floating-point instructions.
@item +crypto
The cryptographic instructions.
@item +nocrypto
Disable the cryptographic instructions.
@item +nofp
Disable the floating-point, Advanced SIMD and cryptographic instructions.
@end table
@end table
@option{-march=native} causes the compiler to auto-detect the architecture
of the build computer. At present, this feature is only supported on
GNU/Linux, and not all architectures are recognized. If the auto-detect
is unsuccessful the option has no effect.
@opindex mtune
@item -mtune=@var{name}
This option specifies the name of the target ARM processor for
which GCC should tune the performance of the code.
For some ARM implementations better performance can be obtained by using
this option.
Permissible names are: @samp{arm7tdmi}, @samp{arm7tdmi-s}, @samp{arm710t},
@samp{arm720t}, @samp{arm740t}, @samp{strongarm}, @samp{strongarm110},
@samp{strongarm1100}, @samp{strongarm1110}, @samp{arm8}, @samp{arm810},
@samp{arm9}, @samp{arm9e}, @samp{arm920}, @samp{arm920t}, @samp{arm922t},
@samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm926ej-s},
@samp{arm940t}, @samp{arm9tdmi}, @samp{arm10tdmi}, @samp{arm1020t},
@samp{arm1026ej-s}, @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
@samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
@samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
@samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
@samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
@samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
@samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
@samp{cortex-a76}, @samp{cortex-a76ae}, @samp{cortex-a77},
@samp{cortex-a78}, @samp{cortex-a78ae}, @samp{cortex-a78c}, @samp{cortex-a710},
@samp{ares}, @samp{cortex-r4}, @samp{cortex-r4f}, @samp{cortex-r5},
@samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52}, @samp{cortex-r52plus},
@samp{cortex-m0}, @samp{cortex-m0plus}, @samp{cortex-m1}, @samp{cortex-m3},
@samp{cortex-m4}, @samp{cortex-m7}, @samp{cortex-m23}, @samp{cortex-m33},
@samp{cortex-m35p}, @samp{cortex-m52}, @samp{cortex-m55}, @samp{cortex-m85}, @samp{cortex-x1},
@samp{cortex-x1c}, @samp{cortex-m1.small-multiply}, @samp{cortex-m0.small-multiply},
@samp{cortex-m0plus.small-multiply}, @samp{exynos-m1}, @samp{marvell-pj4},
@samp{neoverse-n1}, @samp{neoverse-n2}, @samp{neoverse-v1}, @samp{xscale},
@samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}, @samp{fa526}, @samp{fa626},
@samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te}, @samp{star-mc1},
@samp{xgene1}.
Additionally, this option can specify that GCC should tune the performance
of the code for a big.LITTLE system. Permissible names are:
@samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
@samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
@samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53},
@samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}.
@option{-mtune=generic-@var{arch}} specifies that GCC should tune the
performance for a blend of processors within architecture @var{arch}.
The aim is to generate code that run well on the current most popular
processors, balancing between optimizations that benefit some CPUs in the
range, and avoiding performance pitfalls of other CPUs. The effects of
this option may change in future GCC versions as CPU models come and go.
@option{-mtune} permits the same extension options as @option{-mcpu}, but
the extension options do not affect the tuning of the generated code.
@option{-mtune=native} causes the compiler to auto-detect the CPU
of the build computer. At present, this feature is only supported on
GNU/Linux, and not all architectures are recognized. If the auto-detect is
unsuccessful the option has no effect.
@opindex mcpu
@item -mcpu=@var{name}@r{[}+extension@dots{}@r{]}
This specifies the name of the target ARM processor. GCC uses this name
to derive the name of the target ARM architecture (as if specified
by @option{-march}) and the ARM processor type for which to tune for
performance (as if specified by @option{-mtune}). Where this option
is used in conjunction with @option{-march} or @option{-mtune},
those options take precedence over the appropriate part of this option.
Many of the supported CPUs implement optional architectural
extensions. Where this is so the architectural extensions are
normally enabled by default. If implementations that lack the
extension exist, then the extension syntax can be used to disable
those extensions that have been omitted. For floating-point and
Advanced SIMD (Neon) instructions, the settings of the options
@option{-mfloat-abi} and @option{-mfpu} must also be considered:
floating-point and Advanced SIMD instructions will only be used if
@option{-mfloat-abi} is not set to @samp{soft}; and any setting of
@option{-mfpu} other than @samp{auto} will override the available
floating-point and SIMD extension instructions.
For example, @samp{cortex-a9} can be found in three major
configurations: integer only, with just a floating-point unit or with
floating-point and Advanced SIMD. The default is to enable all the
instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
be used to disable just the SIMD or both the SIMD and floating-point
instructions respectively.
Permissible names for this option are the same as those for
@option{-mtune}.
The following extension options are common to the listed CPUs:
@table @samp
@item +nodsp
Disable the DSP instructions on @samp{cortex-m33}, @samp{cortex-m35p},
@samp{cortex-m52}, @samp{cortex-m55} and @samp{cortex-m85}.
Also disable the M-Profile Vector Extension (MVE) integer and
single precision floating-point instructions on
@samp{cortex-m52}, @samp{cortex-m55} and @samp{cortex-m85}.
@item +nopacbti
Disable the Pointer Authentication and Branch Target Identification Extension
on @samp{cortex-m52} and @samp{cortex-m85}.
@item +nomve
Disable the M-Profile Vector Extension (MVE) integer and single precision
floating-point instructions on @samp{cortex-m52}, @samp{cortex-m55} and @samp{cortex-m85}.
@item +nomve.fp
Disable the M-Profile Vector Extension (MVE) single precision floating-point
instructions on @samp{cortex-m52}, @samp{cortex-m55} and @samp{cortex-m85}.
@item +cdecp0, +cdecp1, ... , +cdecp7
Enable the Custom Datapath Extension (CDE) on selected coprocessors according
to the numbers given in the options in the range 0 to 7 on @samp{cortex-m52} and @samp{cortex-m55}.
@item +nofp
Disables the floating-point instructions on @samp{arm9e},
@samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
@samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
@samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
@samp{cortex-m4}, @samp{cortex-m7}, @samp{cortex-m33}, @samp{cortex-m35p},
@samp{cortex-m52}, @samp{cortex-m55} and @samp{cortex-m85}.
Disables the floating-point and SIMD instructions on
@samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
@samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
@samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
@samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35},
@samp{cortex-a53} and @samp{cortex-a55}.
@item +nofp.dp
Disables the double-precision component of the floating-point instructions
on @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52},
@samp{cortex-r52plus} and @samp{cortex-m7}.
@item +nosimd
Disables the SIMD (but not floating-point) instructions on
@samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
and @samp{cortex-a9}.
@item +crypto
Enables the cryptographic instructions on @samp{cortex-a32},
@samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55}, @samp{cortex-a57},
@samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75}, @samp{exynos-m1},
@samp{xgene1}, @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
@samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53} and
@samp{cortex-a75.cortex-a55}.
@end table
Additionally the @samp{generic-armv7-a} pseudo target defaults to
VFPv3 with 16 double-precision registers. It supports the following
extension options: @samp{mp}, @samp{sec}, @samp{vfpv3-d16},
@samp{vfpv3}, @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16},
@samp{vfpv4-d16}, @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3},
@samp{neon-fp16}, @samp{neon-vfpv4}. The meanings are the same as for
the extensions to @option{-march=armv7-a}.
@option{-mcpu=generic-@var{arch}} is also permissible, and is
equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
See @option{-mtune} for more information.
@option{-mcpu=native} causes the compiler to auto-detect the CPU
of the build computer. At present, this feature is only supported on
GNU/Linux, and not all architectures are recognized. If the auto-detect
is unsuccessful the option has no effect.
@opindex mfpu
@item -mfpu=@var{name}
This specifies what floating-point hardware (or hardware emulation) is
available on the target. Permissible names are: @samp{auto}, @samp{vfpv2},
@samp{vfpv3},
@samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
@samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
@samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
@samp{fpv5-d16}, @samp{fpv5-sp-d16},
@samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
is an alias for @samp{vfpv2}.
The setting @samp{auto} is the default and is special. It causes the
compiler to select the floating-point and Advanced SIMD instructions
based on the settings of @option{-mcpu} and @option{-march}.
If the selected floating-point hardware includes the NEON extension
(e.g.@: @option{-mfpu=neon}), note that floating-point
operations are not generated by GCC's auto-vectorization pass unless
@option{-funsafe-math-optimizations} is also specified. This is
because NEON hardware does not fully implement the IEEE 754 standard for
floating-point arithmetic (in particular denormal values are treated as
zero), so the use of NEON instructions may lead to a loss of precision.
You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
@opindex mfp16-format
@item -mfp16-format=@var{name}
Specify the format of the @code{__fp16} half-precision floating-point type.
Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
the default is @samp{none}, in which case the @code{__fp16} type is not
defined. @xref{Half-Precision}, for more information.
@opindex mstructure-size-boundary
@item -mstructure-size-boundary=@var{n}
The sizes of all structures and unions are rounded up to a multiple
of the number of bits set by this option. Permissible values are 8, 32
and 64. The default value varies for different toolchains. For the COFF
targeted toolchain the default value is 8. A value of 64 is only allowed
if the underlying ABI supports it.
Specifying a larger number can produce faster, more efficient code, but
can also increase the size of the program. Different values are potentially
incompatible. Code compiled with one value cannot necessarily expect to
work with code or libraries compiled with another value, if they exchange
information using structures or unions.
This option is deprecated.
@opindex mabort-on-noreturn
@item -mabort-on-noreturn
Generate a call to the function @code{abort} at the end of a
@code{noreturn} function. It is executed if the function tries to
return.
@opindex mlong-calls
@opindex mno-long-calls
@item -mlong-calls
@itemx -mno-long-calls
Tells the compiler to perform function calls by first loading the
address of the function into a register and then performing a subroutine
call on this register. This switch is needed if the target function
lies outside of the 64-megabyte addressing range of the offset-based
version of subroutine call instruction.
Even if this switch is enabled, not all function calls are turned
into long calls. The heuristic is that static functions, functions
that have the @code{short_call} attribute, functions that are inside
the scope of a @code{#pragma no_long_calls} directive, and functions whose
definitions have already been compiled within the current compilation
unit are not turned into long calls. The exceptions to this rule are
that weak function definitions, functions with the @code{long_call}
attribute or the @code{section} attribute, and functions that are within
the scope of a @code{#pragma long_calls} directive are always
turned into long calls.
This feature is not enabled by default. Specifying
@option{-mno-long-calls} restores the default behavior, as does
placing the function calls within the scope of a @code{#pragma
long_calls_off} directive. Note these switches have no effect on how
the compiler generates code to handle function calls via function
pointers.
@opindex msingle-pic-base
@item -msingle-pic-base
Treat the register used for PIC addressing as read-only, rather than
loading it in the prologue for each function. The runtime system is
responsible for initializing this register with an appropriate value
before execution begins.
@opindex mpic-register
@item -mpic-register=@var{reg}
Specify the register to be used for PIC addressing.
For standard PIC base case, the default is any suitable register
determined by compiler. For single PIC base case, the default is
@samp{R9} if target is EABI based or stack-checking is enabled,
otherwise the default is @samp{R10}.
@opindex mpic-data-is-text-relative
@item -mpic-data-is-text-relative
Assume that the displacement between the text and data segments is fixed
at static link time. This permits using PC-relative addressing
operations to access data known to be in the data segment. For
non-VxWorks RTP targets, this option is enabled by default. When
disabled on such targets, it will enable @option{-msingle-pic-base} by
default.
@opindex mpoke-function-name
@item -mpoke-function-name
Write the name of each function into the text section, directly
preceding the function prologue. The generated code is similar to this:
@smallexample
t0
.ascii "arm_poke_function_name", 0
.align
t1
.word 0xff000000 + (t1 - t0)
arm_poke_function_name
mov ip, sp
stmfd sp!, @{fp, ip, lr, pc@}
sub fp, ip, #4
@end smallexample
When performing a stack backtrace, code can inspect the value of
@code{pc} stored at @code{fp + 0}. If the trace function then looks at
location @code{pc - 12} and the top 8 bits are set, then we know that
there is a function name embedded immediately preceding this location
and has length @code{((pc[-3]) & 0xff000000)}.
@opindex marm
@opindex mthumb
@item -mthumb
@itemx -marm
Select between generating code that executes in ARM and Thumb
states. The default for most configurations is to generate code
that executes in ARM state, but the default can be changed by
configuring GCC with the @option{--with-mode=}@var{state}
configure option.
You can also override the ARM and Thumb mode for each function
by using the @code{target("thumb")} and @code{target("arm")} function attributes
(@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
@opindex mflip-thumb
@item -mflip-thumb
Switch ARM/Thumb modes on alternating functions.
This option is provided for regression testing of mixed Thumb/ARM code
generation, and is not intended for ordinary use in compiling code.
@opindex mtpcs-frame
@item -mtpcs-frame
Generate a stack frame that is compliant with the Thumb Procedure Call
Standard for all non-leaf functions. (A leaf function is one that does
not call any other functions.) The default is @option{-mno-tpcs-frame}.
@opindex mtpcs-leaf-frame
@item -mtpcs-leaf-frame
Generate a stack frame that is compliant with the Thumb Procedure Call
Standard for all leaf functions. (A leaf function is one that does
not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
@opindex mcallee-super-interworking
@item -mcallee-super-interworking
Gives all externally visible functions in the file being compiled an ARM
instruction set header which switches to Thumb mode before executing the
rest of the function. This allows these functions to be called from
non-interworking code. This option is not valid in AAPCS configurations
because interworking is enabled by default.
@opindex mcaller-super-interworking
@item -mcaller-super-interworking
Allows calls via function pointers (including virtual functions) to
execute correctly regardless of whether the target code has been
compiled for interworking or not. There is a small overhead in the cost
of executing a function pointer if this option is enabled. This option
is not valid in AAPCS configurations because interworking is enabled
by default.
@opindex mtp
@item -mtp=@var{name}
Specify the access model for the thread local storage pointer. The model
@samp{soft} generates calls to @code{__aeabi_read_tp}. Other accepted
models are @samp{tpidrurw}, @samp{tpidruro} and @samp{tpidrprw} which fetch
the thread pointer from the corresponding system register directly
(supported from the arm6k architecture and later). These system registers
are accessed through the CP15 co-processor interface and the argument
@samp{cp15} is also accepted as a convenience alias of @samp{tpidruro}.
The argument @samp{auto} uses the best available method for the selected
processor. The default setting is @samp{auto}.
@opindex mtls-dialect
@item -mtls-dialect=@var{dialect}
Specify the dialect to use for accessing thread local storage. Two
@var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
@samp{gnu} dialect selects the original GNU scheme for supporting
local and global dynamic TLS models. The @samp{gnu2} dialect
selects the GNU descriptor scheme, which provides better performance
for shared libraries. The GNU descriptor scheme is compatible with
the original scheme, but does require new assembler, linker and
library support. Initial and local exec TLS models are unaffected by
this option and always use the original scheme.
@opindex mword-relocations
@item -mword-relocations
Only generate absolute relocations on word-sized values (i.e.@: R_ARM_ABS32).
This is enabled by default on targets (uClinux, SymbianOS) where the runtime
loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
is specified. This option conflicts with @option{-mslow-flash-data}.
@opindex mfix-cortex-m3-ldrd
@item -mfix-cortex-m3-ldrd
Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
with overlapping destination and base registers are used. This option avoids
generating these instructions. This option is enabled by default when
@option{-mcpu=cortex-m3} is specified.
@item -mfix-cortex-a57-aes-1742098
@itemx -mno-fix-cortex-a57-aes-1742098
@itemx -mfix-cortex-a72-aes-1655431
@itemx -mno-fix-cortex-a72-aes-1655431
Enable (disable) mitigation for an erratum on Cortex-A57 and
Cortex-A72 that affects the AES cryptographic instructions. This
option is enabled by default when either @option{-mcpu=cortex-a57} or
@option{-mcpu=cortex-a72} is specified.
@opindex munaligned-access
@opindex mno-unaligned-access
@item -munaligned-access
@itemx -mno-unaligned-access
Enables (or disables) reading and writing of 16- and 32- bit values
from addresses that are not 16- or 32- bit aligned. By default
unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
ARMv8-M Baseline architectures, and enabled for all other
architectures. If unaligned access is not enabled then words in packed
data structures are accessed a byte at a time.
The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
generated object file to either true or false, depending upon the
setting of this option. If unaligned access is enabled then the
preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
defined.
@opindex mneon-for-64bits
@item -mneon-for-64bits
This option is deprecated and has no effect.
@opindex mslow-flash-data
@item -mslow-flash-data
Assume loading data from flash is slower than fetching instruction.
Therefore literal load is minimized for better performance.
This option is only supported when compiling for ARMv7 M-profile and
off by default. It conflicts with @option{-mword-relocations}.
@opindex masm-syntax-unified
@item -masm-syntax-unified
Assume inline assembler is using unified asm syntax. The default is
currently off which implies divided syntax. This option has no impact
on Thumb2. However, this may change in future releases of GCC.
Divided syntax should be considered deprecated.
@opindex mrestrict-it
@item -mrestrict-it
Restricts generation of IT blocks to conform to the rules of ARMv8-A.
IT blocks can only contain a single 16-bit instruction from a select
set of instructions. This option is on by default for ARMv8-A Thumb mode.
@opindex mprint-tune-info
@item -mprint-tune-info
Print CPU tuning information as comment in assembler file. This is
an option used only for regression testing of the compiler and not
intended for ordinary use in compiling code. This option is disabled
by default.
@opindex mverbose-cost-dump
@item -mverbose-cost-dump
Enable verbose cost model dumping in the debug dump files. This option is
provided for use in debugging the compiler.
@opindex mpure-code
@item -mpure-code
Do not allow constant data to be placed in code sections.
Additionally, when compiling for ELF object format give all text sections the
ELF processor-specific section attribute @code{SHF_ARM_PURECODE}. This option
is only available when generating non-pic code for M-profile targets.
@opindex mcmse
@item -mcmse
Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
Development Tools Engineering Specification", which can be found on
@url{https://developer.arm.com/documentation/ecm0359818/latest/}.
@opindex mfix-cmse-cve-2021-35465
@item -mfix-cmse-cve-2021-35465
Mitigate against a potential security issue with the @code{VLLDM} instruction
in some M-profile devices when using CMSE (CVE-2021-365465). This option is
enabled by default when the option @option{-mcpu=} is used with
@code{cortex-m33}, @code{cortex-m35p}, @code{cortex-m52}, @code{cortex-m55},
@code{cortex-m85} or @code{star-mc1}. The option @option{-mno-fix-cmse-cve-2021-35465}
can be used to disable the mitigation.
@opindex mstack-protector-guard
@opindex mstack-protector-guard-offset
@item -mstack-protector-guard=@var{guard}
@itemx -mstack-protector-guard-offset=@var{offset}
Generate stack protection code using canary at @var{guard}. Supported
locations are @samp{global} for a global canary or @samp{tls} for a
canary accessible via the TLS register. The option
@option{-mstack-protector-guard-offset=} is for use with
@option{-fstack-protector-guard=tls} and not for use in user-land code.
@opindex mfdpic
@opindex mno-fdpic
@item -mfdpic
@itemx -mno-fdpic
Select the FDPIC ABI, which uses 64-bit function descriptors to
represent pointers to functions. When the compiler is configured for
@code{arm-*-uclinuxfdpiceabi} targets, this option is on by default
and implies @option{-fPIE} if none of the PIC/PIE-related options is
provided. On other targets, it only enables the FDPIC-specific code
generation features, and the user should explicitly provide the
PIC/PIE-related options as needed.
Note that static linking is not supported because it would still
involve the dynamic linker when the program self-relocates. If such
behavior is acceptable, use -static and -Wl,-dynamic-linker options.
The opposite @option{-mno-fdpic} option is useful (and required) to
build the Linux kernel using the same (@code{arm-*-uclinuxfdpiceabi})
toolchain as the one used to build the userland programs.
@opindex mbranch-protection
@item -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}][+@var{bti}]|@var{bti}[+@var{pac-ret}[+@var{leaf}]]
Enable branch protection features (armv8.1-m.main only).
@samp{none} generate code without branch protection or return address
signing.
@samp{standard[+@var{leaf}]} generate code with all branch protection
features enabled at their standard level.
@samp{pac-ret[+@var{leaf}]} generate code with return address signing
set to its standard level, which is to sign all functions that save
the return address to memory.
@samp{leaf} When return address signing is enabled, also sign leaf
functions even if they do not write the return address to memory.
+@samp{bti} Add landing-pad instructions at the permitted targets of
indirect branch instructions.
If the @samp{+pacbti} architecture extension is not enabled, then all
branch protection and return address signing operations are
constrained to use only the instructions defined in the
architectural-NOP space. The generated code will remain
backwards-compatible with earlier versions of the architecture, but
the additional security can be enabled at run time on processors that
support the @samp{PACBTI} extension.
Branch target enforcement using BTI can only be enabled at runtime if
all code in the application has been compiled with at least
@samp{-mbranch-protection=bti}.
Any setting other than @samp{none} is supported only on armv8-m.main
or later.
The default is to generate code without branch protection or return
address signing.
@end table
@node AVR Options
@subsection AVR Options
@cindex AVR Options
These options are defined for AVR implementations:
@table @gcctabopt
@opindex mmcu
@item -mmcu=@var{mcu}
Specify the AVR instruction set architecture (ISA) or device type.
The default for this option is@tie{}@code{avr2}.
The following AVR devices and ISAs are supported.
@emph{Note:} A complete device support consists of
startup code @code{crt@var{mcu}.o}, a device header @code{avr/io*.h},
a device library @code{lib@var{mcu}.a} and a
@uref{https://gcc.gnu.org/wiki/avr-gcc#spec-files,device-specs} file
@code{specs-@var{mcu}}. Only the latter is provided by the compiler
according the supported @code{@var{mcu}}s below. The rest is supported
by @w{@uref{https://www.nongnu.org/avr-libc/,AVR-LibC}}, or by means of
@uref{https://gcc.gnu.org/wiki/avr-gcc#atpack,@code{atpack}} files
from the hardware manufacturer.
@c Auto-generated. Re-build when new devices are added to avr-mcus.def
@c by running "make avr-mcus" in $builddir/gcc.
@include avr-mmcu.texi
@opindex mabsdata
@item -mabsdata
Assume that all data in static storage can be accessed by LDS / STS
instructions. This option has only an effect on reduced Tiny devices like
ATtiny40. See also the @code{absdata}
@ref{AVR Variable Attributes,variable attribute}.
@opindex maccumulate-args
@item -maccumulate-args
Accumulate outgoing function arguments and acquire/release the needed
stack space for outgoing function arguments once in function
prologue/epilogue. Without this option, outgoing arguments are pushed
before calling a function and popped afterwards.
Popping the arguments after the function call can be expensive on
AVR so that accumulating the stack space might lead to smaller
executables because arguments need not be removed from the
stack after such a function call.
This option can lead to reduced code size for functions that perform
several calls to functions that get their arguments on the stack like
calls to printf-like functions.
@opindex mbranch-cost
@item -mbranch-cost=@var{cost}
Set the branch costs for conditional branch instructions to
@var{cost}. Reasonable values for @var{cost} are small, non-negative
integers. The default branch cost is 0.
@opindex mcall-prologues
@item -mcall-prologues
Functions prologues/epilogues are expanded as calls to appropriate
subroutines. Code size is smaller.
@opindex mfuse-add
@item -mfuse-add
@itemx -mno-fuse-add
@itemx -mfuse-add=@var{level}
Optimize indirect memory accesses on reduced Tiny devices.
The default uses @code{@var{level}=1} for optimizations @option{-Og}
and @option{-O1}, and @code{@var{level}=2} for higher optimizations.
Valid values for @var{level} are @code{0}, @code{1} and @code{2}.
@opindex mdouble
@opindex mlong-double
@item -mdouble=@var{bits}
@itemx -mlong-double=@var{bits}
Set the size (in bits) of the @code{double} or @code{long double} type,
respectively. Possible values for @var{bits} are 32 and 64.
Whether or not a specific value for @var{bits} is allowed depends on
the @code{--with-double=} and @code{--with-long-double=}
@w{@uref{https://gcc.gnu.org/install/configure.html#avr,configure options}},
and the same applies for the default values of the options.
@opindex mgas-isr-prologues
@item -mgas-isr-prologues
Interrupt service routines (ISRs) may use the @code{__gcc_isr} pseudo
instruction supported by GNU Binutils.
If this option is on, the feature can still be disabled for individual
ISRs by means of the @ref{AVR Function Attributes,,@code{no_gccisr}}
function attribute. This feature is activated per default
if optimization is on (but not with @option{-Og}, @pxref{Optimize Options}),
and if GNU Binutils support @w{@uref{https://sourceware.org/PR21683,PR21683}}.
@opindex mint8
@item -mint8
Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
@code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
and @code{long long} is 4 bytes. Please note that this option does not
conform to the C standards, but it results in smaller code
size.
@opindex mmain-is-OS_task
@item -mmain-is-OS_task
Do not save registers in @code{main}. The effect is the same like
attaching attribute @ref{AVR Function Attributes,,@code{OS_task}}
to @code{main}. It is activated per default if optimization is on.
@opindex mno-interrupts
@item -mno-interrupts
Generated code is not compatible with hardware interrupts.
Code size is smaller.
@opindex mrelax
@item -mrelax
Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
@code{RCALL} resp.@: @code{RJMP} instruction if applicable.
Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
the assembler's command line and the @option{--relax} option to the
linker's command line.
Jump relaxing is performed by the linker because jump offsets are not
known before code is located. Therefore, the assembler code generated by the
compiler is the same, but the instructions in the executable may
differ from instructions in the assembler code.
Relaxing must be turned on if linker stubs are needed, see the
section on @code{EIND} and linker stubs below.
@opindex mrodata-in-ram
@item -mrodata-in-ram
@itemx -mno-rodata-in-ram
Locate the @code{.rodata} sections for read-only data in RAM resp.@:
in program memory.
For most devices, there is no choice and this option acts rather
like an assertion.
Since v14 and for the AVR64* and AVR128* devices, @code{.rodata}
is located in flash memory per default, provided the required GNU Binutils
support (@w{@uref{https://sourceware.org/PR31124,PR31124}}) is available.
In that case, @option{-mrodata-in-ram} can be used to return to the old
layout with @code{.rodata} in RAM.
@opindex mstrict-X
@item -mstrict-X
Use address register @code{X} in a way proposed by the hardware. This means
that @code{X} is only used in indirect, post-increment or
pre-decrement addressing.
Without this option, the @code{X} register may be used in the same way
as @code{Y} or @code{Z} which then is emulated by additional
instructions.
For example, loading a value with @code{X+const} addressing with a
small non-negative @code{const < 64} to a register @var{Rn} is
performed as
@example
adiw r26, const ; X += const
ld @var{Rn}, X ; @var{Rn} = *X
sbiw r26, const ; X -= const
@end example
@opindex mtiny-stack
@item -mtiny-stack
Only change the lower 8@tie{}bits of the stack pointer.
@opindex mfract-convert-truncate
@item -mfract-convert-truncate
Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
@opindex nodevicelib
@item -nodevicelib
Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
@opindex nodevicespecs
@item -nodevicespecs
Don't add @option{-specs=device-specs/specs-@var{mcu}} to the compiler driver's
command line. The user takes responsibility for supplying the sub-processes
like compiler proper, assembler and linker with appropriate command line
options. This means that the user has to supply her private device specs
file by means of @option{-specs=@var{path-to-specs-file}}. There is no
more need for option @option{-mmcu=@var{mcu}}.
This option can also serve as a replacement for the older way of
specifying custom device-specs files that needed @option{-B @var{some-path}} to point to a directory
which contains a folder named @code{device-specs} which contains a specs file named
@code{specs-@var{mcu}}, where @var{mcu} was specified by @option{-mmcu=@var{mcu}}.
@opindex Waddr-space-convert
@opindex Wno-addr-space-convert
@item -Waddr-space-convert
Warn about conversions between address spaces in the case where the
resulting address space is not contained in the incoming address space.
@opindex Wmisspelled-isr
@opindex Wno-misspelled-isr
@item -Wmisspelled-isr
Warn if the ISR is misspelled, i.e.@: without __vector prefix.
Enabled by default.
@end table
@anchor{eind}
@subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
@cindex @code{EIND}
Pointers in the implementation are 16@tie{}bits wide.
The address of a function or label is represented as word address so
that indirect jumps and calls can target any code address in the
range of 64@tie{}Ki words.
In order to facilitate indirect jump on devices with more than 128@tie{}Ki
bytes of program memory space, there is a special function register called
@code{EIND} that serves as most significant part of the target address
when @code{EICALL} or @code{EIJMP} instructions are used.
Indirect jumps and calls on these devices are handled as follows by
the compiler and are subject to some limitations:
@itemize @bullet
@item
The compiler never sets @code{EIND}.
@item
The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
instructions or might read @code{EIND} directly in order to emulate an
indirect call/jump by means of a @code{RET} instruction.
@item
The compiler assumes that @code{EIND} never changes during the startup
code or during the application. In particular, @code{EIND} is not
saved/restored in function or interrupt service routine
prologue/epilogue.
@item
For indirect calls to functions and computed goto, the linker
generates @emph{stubs}. Stubs are jump pads sometimes also called
@emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
The stub contains a direct jump to the desired address.
@item
Linker relaxation must be turned on so that the linker generates
the stubs correctly in all situations. See the compiler option
@option{-mrelax} and the linker option @option{--relax}.
There are corner cases where the linker is supposed to generate stubs
but aborts without relaxation and without a helpful error message.
@item
The default linker script is arranged for code with @code{EIND = 0}.
If code is supposed to work for a setup with @code{EIND != 0}, a custom
linker script has to be used in order to place the sections whose
name start with @code{.trampolines} into the segment where @code{EIND}
points to.
@item
The startup code from libgcc never sets @code{EIND}.
Notice that startup code is a blend of code from libgcc and AVR-LibC.
For the impact of AVR-LibC on @code{EIND}, see the
@w{@uref{https://www.nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
@item
It is legitimate for user-specific startup code to set up @code{EIND}
early, for example by means of initialization code located in
section @code{.init3}. Such code runs prior to general startup code
that initializes RAM and calls constructors, but after the bit
of startup code from AVR-LibC that sets @code{EIND} to the segment
where the vector table is located.
@example
#include <avr/io.h>
static void
__attribute__((section(".init3"),naked,used,no_instrument_function))
init3_set_eind (void)
@{
__asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
"out %i0,r24" :: "n" (&EIND) : "r24","memory");
@}
@end example
@noindent
The @code{__trampolines_start} symbol is defined in the linker script.
@item
Stubs are generated automatically by the linker if
the following two conditions are met:
@itemize @minus
@item The address of a label is taken by means of the @code{gs} modifier
(short for @emph{generate stubs}) like so:
@example
LDI r24, lo8(gs(@var{func}))
LDI r25, hi8(gs(@var{func}))
@end example
@item The final location of that label is in a code segment
@emph{outside} the segment where the stubs are located.
@end itemize
@item
The compiler emits such @code{gs} modifiers for code labels in the
following situations:
@itemize @minus
@item Taking address of a function or code label.
@item Computed goto.
@item If prologue-save function is used, see @option{-mcall-prologues}
command-line option.
@item Switch/case dispatch tables. If you do not want such dispatch
tables you can specify the @option{-fno-jump-tables} command-line option.
@item C and C++ constructors/destructors called during startup/shutdown.
@item If the tools hit a @code{gs()} modifier explained above.
@end itemize
@item
Jumping to non-symbolic addresses like so is @emph{not} supported:
@example
int main (void)
@{
/* Call function at word address 0x2 */
return ((int(*)(void)) 0x2)();
@}
@end example
Instead, a stub has to be set up, i.e.@: the function has to be called
through a symbol (@code{func_4} in the example):
@example
int main (void)
@{
extern int func_4 (void);
/* Call function at byte address 0x4 */
return func_4();
@}
@end example
and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
Alternatively, @code{func_4} can be defined in the linker script.
@end itemize
@anchor{ramp}
@subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
@cindex @code{RAMPD}
@cindex @code{RAMPX}
@cindex @code{RAMPY}
@cindex @code{RAMPZ}
Some AVR devices support memories larger than the 64@tie{}KiB range
that can be accessed with 16-bit pointers. To access memory locations
outside this 64@tie{}KiB range, the content of a @code{RAMP}
register is used as high part of the address:
The @code{X}, @code{Y}, @code{Z} address register is concatenated
with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
register, respectively, to get a wide address. Similarly,
@code{RAMPD} is used together with direct addressing.
@itemize
@item
The startup code initializes the @code{RAMP} special function
registers with zero.
@item
If a @ref{AVR Named Address Spaces,named address space} other than
generic or @code{__flash} is used, then @code{RAMPZ} is set
as needed before the operation.
@item
If the device supports RAM larger than 64@tie{}KiB and the compiler
needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
is reset to zero after the operation.
@item
If the device comes with a specific @code{RAMP} register, the ISR
prologue/epilogue saves/restores that SFR and initializes it with
zero in case the ISR code might (implicitly) use it.
@item
RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
If you use inline assembler to read from locations outside the
16-bit address range and change one of the @code{RAMP} registers,
you must reset it to zero after the access.
@end itemize
@anchor{avr-macros}
@subsubsection AVR Built-in Macros
GCC defines several built-in macros so that the user code can test
for the presence or absence of features. Almost any of the following
built-in macros are deduced from device capabilities and thus
triggered by the @option{-mmcu=} command-line option.
For even more AVR-specific built-in macros see
@ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
@table @code
@item __AVR_ARCH__
Build-in macro that resolves to a decimal number that identifies the
architecture and depends on the @option{-mmcu=@var{mcu}} option.
Possible values are:
@code{2}, @code{25}, @code{3}, @code{31}, @code{35},
@code{4}, @code{5}, @code{51}, @code{6}
for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
@code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
respectively and
@code{100},
@code{102}, @code{103}, @code{104},
@code{105}, @code{106}, @code{107}
for @var{mcu}=@code{avrtiny},
@code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
@code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
If @var{mcu} specifies a device, this built-in macro is set
accordingly. For example, with @option{-mmcu=atmega8} the macro is
defined to @code{4}.
@item __AVR_@var{Device}__
Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
the device's name. For example, @option{-mmcu=atmega8} defines the
built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
@code{__AVR_ATtiny261A__}, etc.
The built-in macros' names follow
the scheme @code{__AVR_@var{Device}__} where @var{Device} is
the device name as from the AVR user manual. The difference between
@var{Device} in the built-in macro and @var{device} in
@option{-mmcu=@var{device}} is that the latter is always lowercase.
If @var{device} is not a device but only a core architecture like
@samp{avr51}, this macro is not defined.
@item __AVR_DEVICE_NAME__
Setting @option{-mmcu=@var{device}} defines this built-in macro to
the device's name. For example, with @option{-mmcu=atmega8} the macro
is defined to @code{atmega8}.
If @var{device} is not a device but only a core architecture like
@samp{avr51}, this macro is not defined.
@item __AVR_XMEGA__
The device / architecture belongs to the XMEGA family of devices.
@item __AVR_HAVE_ADIW__
The device has the @code{ADIW} and @code{SBIW} instructions.
@item __AVR_HAVE_ELPM__
The device has the @code{ELPM} instruction.
@item __AVR_HAVE_ELPMX__
The device has the @code{ELPM R@var{n},Z} and @code{ELPM
R@var{n},Z+} instructions.
@item __AVR_HAVE_LPMX__
The device has the @code{LPM R@var{n},Z} and
@code{LPM R@var{n},Z+} instructions.
@item __AVR_HAVE_MOVW__
The device has the @code{MOVW} instruction to perform 16-bit
register-register moves.
@item __AVR_HAVE_MUL__
The device has a hardware multiplier.
@item __AVR_HAVE_JMP_CALL__
The device has the @code{JMP} and @code{CALL} instructions.
This is the case for devices with more than 8@tie{}KiB of program
memory.
@item __AVR_HAVE_EIJMP_EICALL__
@itemx __AVR_3_BYTE_PC__
The device has the @code{EIJMP} and @code{EICALL} instructions.
This is the case for devices with more than 128@tie{}KiB of program memory.
This also means that the program counter
(PC) is 3@tie{}bytes wide.
@item __AVR_2_BYTE_PC__
The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
with up to 128@tie{}KiB of program memory.
@item __AVR_HAVE_8BIT_SP__
@itemx __AVR_HAVE_16BIT_SP__
The stack pointer (SP) register is treated as 8-bit respectively
16-bit register by the compiler.
The definition of these macros is affected by @option{-mtiny-stack}.
@item __AVR_HAVE_SPH__
@itemx __AVR_SP8__
The device has the SPH (high part of stack pointer) special function
register or has an 8-bit stack pointer, respectively.
The definition of these macros is affected by @option{-mmcu=} and
in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
by @option{-msp8}.
@item __AVR_HAVE_RAMPD__
@itemx __AVR_HAVE_RAMPX__
@itemx __AVR_HAVE_RAMPY__
@itemx __AVR_HAVE_RAMPZ__
The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
@code{RAMPZ} special function register, respectively.
@item __NO_INTERRUPTS__
This macro reflects the @option{-mno-interrupts} command-line option.
@item __AVR_ERRATA_SKIP__
@itemx __AVR_ERRATA_SKIP_JMP_CALL__
Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
instructions because of a hardware erratum. Skip instructions are
@code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
set.
@item __AVR_ISA_RMW__
The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
@item __AVR_SFR_OFFSET__=@var{offset}
Instructions that can address I/O special function registers directly
like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
address as if addressed by an instruction to access RAM like @code{LD}
or @code{STS}. This offset depends on the device architecture and has
to be subtracted from the RAM address in order to get the
respective I/O@tie{}address.
@item __AVR_SHORT_CALLS__
The @option{-mshort-calls} command line option is set.
@item __AVR_PM_BASE_ADDRESS__=@var{addr}
Some devices support reading from flash memory by means of @code{LD*}
instructions. The flash memory is seen in the data address space
at an offset of @code{__AVR_PM_BASE_ADDRESS__}. If this macro
is not defined, this feature is not available. If defined,
the address space is linear and there is no need to put
@code{.rodata} into RAM. This is handled by the default linker
description file, and is currently available for
@code{avrtiny} and @code{avrxmega3}. Even more convenient,
there is no need to use address spaces like @code{__flash} or
features like attribute @code{progmem} and @code{pgm_read_*}.
@item __AVR_HAVE_FLMAP__
This macro is defined provided the following conditions are met:
@itemize @bullet
@item The device has the @code{NVMCTRL_CTRLB.FLMAP} bitfield.
This applies to the AVR64* and AVR128* devices.
@item It's not known at assembler-time which emulation will be used.
@end itemize
This implies the compiler was configured with GNU Binutils that implement
@w{@uref{https://sourceware.org/PR31124,PR31124}}.
@item __AVR_RODATA_IN_RAM__
This macro is undefined when the code is compiled for a core architecture.
When the code is compiled for a device, the macro is defined to@tie{}1
when the @code{.rodata} sections for read-only data is located in RAM;
and defined to@tie{}0, otherwise.
@item __WITH_AVRLIBC__
The compiler is configured to be used together with AVR-Libc.
See the @option{--with-avrlibc} configure option.
@item __HAVE_DOUBLE_MULTILIB__
Defined if @option{-mdouble=} acts as a multilib option.
@item __HAVE_DOUBLE32__
@itemx __HAVE_DOUBLE64__
Defined if the compiler supports 32-bit double resp. 64-bit double.
The actual layout is specified by option @option{-mdouble=}.
@item __DEFAULT_DOUBLE__
The size in bits of @code{double} if @option{-mdouble=} is not set.
To test the layout of @code{double} in a program, use the built-in
macro @code{__SIZEOF_DOUBLE__}.
@item __HAVE_LONG_DOUBLE32__
@itemx __HAVE_LONG_DOUBLE64__
@itemx __HAVE_LONG_DOUBLE_MULTILIB__
@itemx __DEFAULT_LONG_DOUBLE__
Same as above, but for @code{long double} instead of @code{double}.
@item __WITH_DOUBLE_COMPARISON__
Reflects the @code{--with-double-comparison=@{tristate|bool|libf7@}}
@w{@uref{https://gcc.gnu.org/install/configure.html#avr,configure option}}
and is defined to @code{2} or @code{3}.
@item __WITH_LIBF7_LIBGCC__
@itemx __WITH_LIBF7_MATH__
@itemx __WITH_LIBF7_MATH_SYMBOLS__
Reflects the @code{--with-libf7=@{libgcc|math|math-symbols@}}
@w{@uref{https://gcc.gnu.org/install/configure.html#avr,configure option}}.
@end table
@subsubsection AVR Internal Options
The following options are used internally by the compiler and to communicate
between device specs files and the compiler proper. You don't need to set these
options by hand, in particular they are not optimization options.
Using these options in the wrong way may lead to sub-optimal or wrong code.
They are documented for completeness, and in order to get a better
understanding of
@w{@uref{https://gcc.gnu.org/wiki/avr-gcc#spec-files,device specs}}
files.
@table @gcctabopt
@opindex mn-flash
@item -mn-flash=@var{num}
Assume that the flash memory has a size of @var{num} times 64@tie{}KiB.
This determines which @code{__flash@var{N}} address spaces are available.
@opindex mflmap
@item -mflmap
The device has the @code{FLMAP} bit field located in special function
register @code{NVMCTRL_CTRLB}.
@opindex mrmw
@item -mrmw
Assume that the device supports the Read-Modify-Write
instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
@opindex mshort-calls
@item -mshort-calls
Assume that @code{RJMP} and @code{RCALL} can target the whole
program memory. This option is used for multilib generation and selection
for the devices from architecture @code{avrxmega3}.
@opindex mskip-bug
@item -mskip-bug
Generate code without skips (@code{CPSE}, @code{SBRS},
@code{SBRC}, @code{SBIS}, @code{SBIC}) over 32-bit instructions.
@opindex msp8
@item -msp8
Treat the stack pointer register as an 8-bit register,
i.e.@: assume the high byte of the stack pointer is zero.
This option is used by the compiler to select and
build multilibs for architectures @code{avr2} and @code{avr25}.
These architectures mix devices with and without @code{SPH}.
@end table
@node Blackfin Options
@subsection Blackfin Options
@cindex Blackfin Options
@table @gcctabopt
@opindex mcpu=
@item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
Specifies the name of the target Blackfin processor. Currently, @var{cpu}
can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
@samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
@samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
@samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
@samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
@samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
@samp{bf561}, @samp{bf592}.
The optional @var{sirevision} specifies the silicon revision of the target
Blackfin processor. Any workarounds available for the targeted silicon revision
are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
are enabled. The @code{__SILICON_REVISION__} macro is defined to two
hexadecimal digits representing the major and minor numbers in the silicon
revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
is not defined. If @var{sirevision} is @samp{any}, the
@code{__SILICON_REVISION__} is defined to be @code{0xffff}.
If this optional @var{sirevision} is not used, GCC assumes the latest known
silicon revision of the targeted Blackfin processor.
GCC defines a preprocessor macro for the specified @var{cpu}.
For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
provided by libgloss to be linked in if @option{-msim} is not given.
Without this option, @samp{bf532} is used as the processor by default.
Note that support for @samp{bf561} is incomplete. For @samp{bf561},
only the preprocessor macro is defined.
@opindex msim
@item -msim
Specifies that the program will be run on the simulator. This causes
the simulator BSP provided by libgloss to be linked in. This option
has effect only for @samp{bfin-elf} toolchain.
Certain other options, such as @option{-mid-shared-library} and
@option{-mfdpic}, imply @option{-msim}.
@opindex momit-leaf-frame-pointer
@item -momit-leaf-frame-pointer
Don't keep the frame pointer in a register for leaf functions. This
avoids the instructions to save, set up and restore frame pointers and
makes an extra register available in leaf functions.
@opindex mspecld-anomaly
@item -mspecld-anomaly
When enabled, the compiler ensures that the generated code does not
contain speculative loads after jump instructions. If this option is used,
@code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
@opindex mno-specld-anomaly
@opindex mspecld-anomaly
@item -mno-specld-anomaly
Don't generate extra code to prevent speculative loads from occurring.
@opindex mcsync-anomaly
@item -mcsync-anomaly
When enabled, the compiler ensures that the generated code does not
contain CSYNC or SSYNC instructions too soon after conditional branches.
If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
@opindex mno-csync-anomaly
@opindex mcsync-anomaly
@item -mno-csync-anomaly
Don't generate extra code to prevent CSYNC or SSYNC instructions from
occurring too soon after a conditional branch.
@opindex mlow64k
@item -mlow64k
When enabled, the compiler is free to take advantage of the knowledge that
the entire program fits into the low 64k of memory.
@opindex mno-low64k
@item -mno-low64k
Assume that the program is arbitrarily large. This is the default.
@opindex mstack-check-l1
@item -mstack-check-l1
Do stack checking using information placed into L1 scratchpad memory by the
uClinux kernel.
@opindex mid-shared-library
@item -mid-shared-library
Generate code that supports shared libraries via the library ID method.
This allows for execute in place and shared libraries in an environment
without virtual memory management. This option implies @option{-fPIC}.
With a @samp{bfin-elf} target, this option implies @option{-msim}.
@opindex mno-id-shared-library
@opindex mid-shared-library
@item -mno-id-shared-library
Generate code that doesn't assume ID-based shared libraries are being used.
This is the default.
@opindex mleaf-id-shared-library
@item -mleaf-id-shared-library
Generate code that supports shared libraries via the library ID method,
but assumes that this library or executable won't link against any other
ID shared libraries. That allows the compiler to use faster code for jumps
and calls.
@opindex mno-leaf-id-shared-library
@opindex mleaf-id-shared-library
@item -mno-leaf-id-shared-library
Do not assume that the code being compiled won't link against any ID shared
libraries. Slower code is generated for jump and call insns.
@opindex mshared-library-id
@item -mshared-library-id=n
Specifies the identification number of the ID-based shared library being
compiled. Specifying a value of 0 generates more compact code; specifying
other values forces the allocation of that number to the current
library but is no more space- or time-efficient than omitting this option.
@opindex msep-data
@item -msep-data
Generate code that allows the data segment to be located in a different
area of memory from the text segment. This allows for execute in place in
an environment without virtual memory management by eliminating relocations
against the text section.
@opindex mno-sep-data
@opindex msep-data
@item -mno-sep-data
Generate code that assumes that the data segment follows the text segment.
This is the default.
@opindex mlong-calls
@opindex mno-long-calls
@item -mlong-calls
@itemx -mno-long-calls
Tells the compiler to perform function calls by first loading the
address of the function into a register and then performing a subroutine
call on this register. This switch is needed if the target function
lies outside of the 24-bit addressing range of the offset-based
version of subroutine call instruction.
This feature is not enabled by default. Specifying
@option{-mno-long-calls} restores the default behavior. Note these
switches have no effect on how the compiler generates code to handle
function calls via function pointers.
@opindex mfast-fp
@item -mfast-fp
Link with the fast floating-point library. This library relaxes some of
the IEEE floating-point standard's rules for checking inputs against
Not-a-Number (NAN), in the interest of performance.
@opindex minline-plt
@item -minline-plt
Enable inlining of PLT entries in function calls to functions that are
not known to bind locally. It has no effect without @option{-mfdpic}.
@opindex mmulticore
@item -mmulticore
Build a standalone application for multicore Blackfin processors.
This option causes proper start files and link scripts supporting
multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
This option can be used with @option{-mcorea} or @option{-mcoreb}, which
selects the one-application-per-core programming model. Without
@option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
programming model is used. In this model, the main function of Core B
should be named as @code{coreb_main}.
If this option is not used, the single-core application programming
model is used.
@opindex mcorea
@item -mcorea
Build a standalone application for Core A of BF561 when using
the one-application-per-core programming model. Proper start files
and link scripts are used to support Core A, and the macro
@code{__BFIN_COREA} is defined.
This option can only be used in conjunction with @option{-mmulticore}.
@opindex mcoreb
@item -mcoreb
Build a standalone application for Core B of BF561 when using
the one-application-per-core programming model. Proper start files
and link scripts are used to support Core B, and the macro
@code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
should be used instead of @code{main}.
This option can only be used in conjunction with @option{-mmulticore}.
@opindex msdram
@item -msdram
Build a standalone application for SDRAM. Proper start files and
link scripts are used to put the application into SDRAM, and the macro
@code{__BFIN_SDRAM} is defined.
The loader should initialize SDRAM before loading the application.
@opindex micplb
@item -micplb
Assume that ICPLBs are enabled at run time. This has an effect on certain
anomaly workarounds. For Linux targets, the default is to assume ICPLBs
are enabled; for standalone applications the default is off.
@end table
@node C6X Options
@subsection C6X Options
@cindex C6X Options
@table @gcctabopt
@opindex march
@item -march=@var{name}
This specifies the name of the target architecture. GCC uses this
name to determine what kind of instructions it can emit when generating
assembly code. Permissible names are: @samp{c62x},
@samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
@opindex mbig-endian
@item -mbig-endian
Generate code for a big-endian target.
@opindex mlittle-endian
@item -mlittle-endian
Generate code for a little-endian target. This is the default.
@opindex msim
@item -msim
Choose startup files and linker script suitable for the simulator.
@opindex msdata=default
@item -msdata=default
Put small global and static data in the @code{.neardata} section,
which is pointed to by register @code{B14}. Put small uninitialized
global and static data in the @code{.bss} section, which is adjacent
to the @code{.neardata} section. Put small read-only data into the
@code{.rodata} section. The corresponding sections used for large
pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
@opindex msdata=all
@item -msdata=all
Put all data, not just small objects, into the sections reserved for
small data, and use addressing relative to the @code{B14} register to
access them.
@opindex msdata=none
@item -msdata=none
Make no use of the sections reserved for small data, and use absolute
addresses to access all data. Put all initialized global and static
data in the @code{.fardata} section, and all uninitialized data in the
@code{.far} section. Put all constant data into the @code{.const}
section.
@end table
@node CRIS Options
@subsection CRIS Options
@cindex CRIS Options
These options are defined specifically for the CRIS ports.
@table @gcctabopt
@opindex march
@opindex mcpu
@item -march=@var{architecture-type}
@itemx -mcpu=@var{architecture-type}
Generate code for the specified architecture. The choices for
@var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
Default is @samp{v0}.
@opindex mtune
@item -mtune=@var{architecture-type}
Tune to @var{architecture-type} everything applicable about the generated
code, except for the ABI and the set of available instructions. The
choices for @var{architecture-type} are the same as for
@option{-march=@var{architecture-type}}.
@opindex mmax-stack-frame
@item -mmax-stack-frame=@var{n}
Warn when the stack frame of a function exceeds @var{n} bytes.
@opindex metrax4
@opindex metrax100
@item -metrax4
@itemx -metrax100
The options @option{-metrax4} and @option{-metrax100} are synonyms for
@option{-march=v3} and @option{-march=v8} respectively.
@opindex mmul-bug-workaround
@opindex mno-mul-bug-workaround
@item -mmul-bug-workaround
@itemx -mno-mul-bug-workaround
Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
models where it applies. This option is disabled by default.
@opindex mpdebug
@item -mpdebug
Enable CRIS-specific verbose debug-related information in the assembly
code. This option also has the effect of turning off the @samp{#NO_APP}
formatted-code indicator to the assembler at the beginning of the
assembly file.
@opindex mcc-init
@item -mcc-init
Do not use condition-code results from previous instruction; always emit
compare and test instructions before use of condition codes.
@opindex mno-side-effects
@opindex mside-effects
@item -mno-side-effects
Do not emit instructions with side effects in addressing modes other than
post-increment.
@opindex mstack-align
@opindex mno-stack-align
@opindex mdata-align
@opindex mno-data-align
@opindex mconst-align
@opindex mno-const-align
@item -mstack-align
@itemx -mno-stack-align
@itemx -mdata-align
@itemx -mno-data-align
@itemx -mconst-align
@itemx -mno-const-align
These options (@samp{no-} options) arrange (eliminate arrangements) for the
stack frame, individual data and constants to be aligned for the maximum
single data access size for the chosen CPU model. The default is to
arrange for 32-bit alignment. ABI details such as structure layout are
not affected by these options.
@opindex m32-bit
@opindex m16-bit
@opindex m8-bit
@item -m32-bit
@itemx -m16-bit
@itemx -m8-bit
Similar to the stack- data- and const-align options above, these options
arrange for stack frame, writable data and constants to all be 32-bit,
16-bit or 8-bit aligned. The default is 32-bit alignment.
@opindex mno-prologue-epilogue
@opindex mprologue-epilogue
@item -mno-prologue-epilogue
@itemx -mprologue-epilogue
With @option{-mno-prologue-epilogue}, the normal function prologue and
epilogue which set up the stack frame are omitted and no return
instructions or return sequences are generated in the code. Use this
option only together with visual inspection of the compiled code: no
warnings or errors are generated when call-saved registers must be saved,
or storage for local variables needs to be allocated.
@opindex melf
@item -melf
Legacy no-op option.
@opindex sim
@item -sim
This option arranges
to link with input-output functions from a simulator library. Code,
initialized data and zero-initialized data are allocated consecutively.
@opindex sim2
@item -sim2
Like @option{-sim}, but pass linker options to locate initialized data at
0x40000000 and zero-initialized data at 0x80000000.
@end table
@node C-SKY Options
@subsection C-SKY Options
@cindex C-SKY Options
GCC supports these options when compiling for C-SKY V2 processors.
@table @gcctabopt
@opindex march=
@item -march=@var{arch}
Specify the C-SKY target architecture. Valid values for @var{arch} are:
@samp{ck801}, @samp{ck802}, @samp{ck803}, @samp{ck807}, and @samp{ck810}.
The default is @samp{ck810}.
@opindex mcpu=
@item -mcpu=@var{cpu}
Specify the C-SKY target processor. Valid values for @var{cpu} are:
@samp{ck801}, @samp{ck801t},
@samp{ck802}, @samp{ck802t}, @samp{ck802j},
@samp{ck803}, @samp{ck803h}, @samp{ck803t}, @samp{ck803ht},
@samp{ck803f}, @samp{ck803fh}, @samp{ck803e}, @samp{ck803eh},
@samp{ck803et}, @samp{ck803eht}, @samp{ck803ef}, @samp{ck803efh},
@samp{ck803ft}, @samp{ck803eft}, @samp{ck803efht}, @samp{ck803r1},
@samp{ck803hr1}, @samp{ck803tr1}, @samp{ck803htr1}, @samp{ck803fr1},
@samp{ck803fhr1}, @samp{ck803er1}, @samp{ck803ehr1}, @samp{ck803etr1},
@samp{ck803ehtr1}, @samp{ck803efr1}, @samp{ck803efhr1}, @samp{ck803ftr1},
@samp{ck803eftr1}, @samp{ck803efhtr1},
@samp{ck803s}, @samp{ck803st}, @samp{ck803se}, @samp{ck803sf},
@samp{ck803sef}, @samp{ck803seft},
@samp{ck807e}, @samp{ck807ef}, @samp{ck807}, @samp{ck807f},
@samp{ck810e}, @samp{ck810et}, @samp{ck810ef}, @samp{ck810eft},
@samp{ck810}, @samp{ck810v}, @samp{ck810f}, @samp{ck810t}, @samp{ck810fv},
@samp{ck810tv}, @samp{ck810ft}, and @samp{ck810ftv}.
@opindex mbig-endian
@opindex EB
@opindex mlittle-endian
@opindex EL
@item -mbig-endian
@itemx -EB
@itemx -mlittle-endian
@itemx -EL
Select big- or little-endian code. The default is little-endian.
@opindex mfloat-abi
@item -mfloat-abi=@var{name}
Specifies which floating-point ABI to use. Permissible values
are: @samp{soft}, @samp{softfp} and @samp{hard}.
Specifying @samp{soft} causes GCC to generate output containing
library calls for floating-point operations.
@samp{softfp} allows the generation of code using hardware floating-point
instructions, but still uses the soft-float calling conventions.
@samp{hard} allows generation of floating-point instructions
and uses FPU-specific calling conventions.
The default depends on the specific target configuration. Note that
the hard-float and soft-float ABIs are not link-compatible; you must
compile your entire program with the same ABI, and link with a
compatible set of libraries.
@opindex mhard-float
@opindex msoft-float
@item -mhard-float
@itemx -msoft-float
Select hardware or software floating-point implementations.
The default is soft float.
@opindex mdouble-float
@item -mdouble-float
@itemx -mno-double-float
When @option{-mhard-float} is in effect, enable generation of
double-precision float instructions. This is the default except
when compiling for CK803.
@opindex mfdivdu
@item -mfdivdu
@itemx -mno-fdivdu
When @option{-mhard-float} is in effect, enable generation of
@code{frecipd}, @code{fsqrtd}, and @code{fdivd} instructions.
This is the default except when compiling for CK803.
@opindex mfpu=
@item -mfpu=@var{fpu}
Select the floating-point processor. This option can only be used with
@option{-mhard-float}.
Values for @var{fpu} are
@samp{fpv2_sf} (equivalent to @samp{-mno-double-float -mno-fdivdu}),
@samp{fpv2} (@samp{-mdouble-float -mno-divdu}), and
@samp{fpv2_divd} (@samp{-mdouble-float -mdivdu}).
@opindex melrw
@item -melrw
@itemx -mno-elrw
Enable the extended @code{lrw} instruction. This option defaults to on
for CK801 and off otherwise.
@opindex mistack
@item -mistack
@itemx -mno-istack
Enable interrupt stack instructions; the default is off.
The @option{-mistack} option is required to handle the
@code{interrupt} and @code{isr} function attributes
(@pxref{C-SKY Function Attributes}).
@opindex mmp
@item -mmp
Enable multiprocessor instructions; the default is off.
@opindex mcp
@item -mcp
Enable coprocessor instructions; the default is off.
@opindex mcache
@item -mcache
Enable coprocessor instructions; the default is off.
@opindex msecurity
@item -msecurity
Enable C-SKY security instructions; the default is off.
@opindex mtrust
@item -mtrust
Enable C-SKY trust instructions; the default is off.
@opindex mdsp
@opindex medsp
@opindex mvdsp
@item -mdsp
@itemx -medsp
@itemx -mvdsp
Enable C-SKY DSP, Enhanced DSP, or Vector DSP instructions, respectively.
All of these options default to off.
@opindex mdiv
@item -mdiv
@itemx -mno-div
Generate divide instructions. Default is off.
@opindex msmart
@item -msmart
@itemx -mno-smart
Generate code for Smart Mode, using only registers numbered 0-7 to allow
use of 16-bit instructions. This option is ignored for CK801 where this
is the required behavior, and it defaults to on for CK802.
For other targets, the default is off.
@opindex mhigh-registers
@item -mhigh-registers
@itemx -mno-high-registers
Generate code using the high registers numbered 16-31. This option
is not supported on CK801, CK802, or CK803, and is enabled by default
for other processors.
@opindex manchor
@item -manchor
@itemx -mno-anchor
Generate code using global anchor symbol addresses.
@opindex mpushpop
@item -mpushpop
@itemx -mno-pushpop
Generate code using @code{push} and @code{pop} instructions. This option
defaults to on.
@opindex mmultiple-stld
@item -mmultiple-stld
@itemx -mstm
@itemx -mno-multiple-stld
@itemx -mno-stm
Generate code using @code{stm} and @code{ldm} instructions. This option
isn't supported on CK801 but is enabled by default on other processors.
@opindex mconstpool
@item -mconstpool
@itemx -mno-constpool
Create constant pools in the compiler instead of deferring it to the
assembler. This option is the default and required for correct code
generation on CK801 and CK802, and is optional on other processors.
@opindex mstack-size
@item -mstack-size
@item -mno-stack-size
Emit @code{.stack_size} directives for each function in the assembly
output. This option defaults to off.
@opindex mccrt
@item -mccrt
@itemx -mno-ccrt
Generate code for the C-SKY compiler runtime instead of libgcc. This
option defaults to off.
@opindex mbranch-cost=
@item -mbranch-cost=@var{n}
Set the branch costs to roughly @code{n} instructions. The default is 1.
@opindex msched-prolog
@item -msched-prolog
@itemx -mno-sched-prolog
Permit scheduling of function prologue and epilogue sequences. Using
this option can result in code that is not compliant with the C-SKY V2 ABI
prologue requirements and that cannot be debugged or backtraced.
It is disabled by default.
@opindex msim
@item -msim
Links the library libsemi.a which is in compatible with simulator. Applicable
to ELF compiler only.
@end table
@node Darwin Options
@subsection Darwin Options
@cindex Darwin options
These options are defined for all architectures running the Darwin operating
system.
FSF GCC on Darwin does not create ``fat'' object files; it creates
an object file for the single architecture that GCC was built to
target. Apple's GCC on Darwin does create ``fat'' files if multiple
@option{-arch} options are used; it does so by running the compiler or
linker multiple times and joining the results together with
@file{lipo}.
The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
@samp{i686}) is determined by the flags that specify the ISA
that GCC is targeting, like @option{-mcpu} or @option{-march}. The
@option{-force_cpusubtype_ALL} option can be used to override this.
The Darwin tools vary in their behavior when presented with an ISA
mismatch. The assembler, @file{as}, only permits instructions to
be used that are valid for the subtype of the file it is generating,
so you cannot put 64-bit instructions in a @samp{ppc750} object file.
The linker for shared libraries, @file{/usr/bin/libtool}, fails
and prints an error if asked to create a shared library with a less
restrictive subtype than its input files (for instance, trying to put
a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
for executables, @command{ld}, quietly gives the executable the most
restrictive subtype of any of its input files.
@table @gcctabopt
@opindex F
@item -F@var{dir}
Add the framework directory @var{dir} to the head of the list of
directories to be searched for header files. These directories are
interleaved with those specified by @option{-I} options and are
scanned in a left-to-right order.
A framework directory is a directory with frameworks in it. A
framework is a directory with a @file{Headers} and/or
@file{PrivateHeaders} directory contained directly in it that ends
in @file{.framework}. The name of a framework is the name of this
directory excluding the @file{.framework}. Headers associated with
the framework are found in one of those two directories, with
@file{Headers} being searched first. A subframework is a framework
directory that is in a framework's @file{Frameworks} directory.
Includes of subframework headers can only appear in a header of a
framework that contains the subframework, or in a sibling subframework
header. Two subframeworks are siblings if they occur in the same
framework. A subframework should not have the same name as a
framework; a warning is issued if this is violated. Currently a
subframework cannot have subframeworks; in the future, the mechanism
may be extended to support this. The standard frameworks can be found
in @file{/System/Library/Frameworks} and
@file{/Library/Frameworks}. An example include looks like
@code{#include <Framework/header.h>}, where @file{Framework} denotes
the name of the framework and @file{header.h} is found in the
@file{PrivateHeaders} or @file{Headers} directory.
@opindex iframework
@item -iframework@var{dir}
Like @option{-F} except the directory is a treated as a system
directory. The main difference between this @option{-iframework} and
@option{-F} is that with @option{-iframework} the compiler does not
warn about constructs contained within header files found via
@var{dir}. This option is valid only for the C family of languages.
@opindex gused
@item -gused
Emit debugging information for symbols that are used. For stabs
debugging format, this enables @option{-feliminate-unused-debug-symbols}.
This is by default ON@.
@opindex gfull
@item -gfull
Emit debugging information for all symbols and types.
@opindex fconstant-cfstrings
@item -fconstant-cfstrings
The @option{-fconstant-cfstrings} is an alias for @option{-mconstant-cfstrings}.
@opindex mconstant-cfstrings
@item -mconstant-cfstrings
When the NeXT runtime is being used (the default on these systems), override
any @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"}
literals to be laid out as constant CoreFoundation strings.
@opindex mmacosx-version-min
@item -mmacosx-version-min=@var{version}
The earliest version of MacOS X that this executable will run on is
@var{version}. Typical values supported for @var{version} include @code{12},
@code{10.12}, and @code{10.5.8}.
If the compiler was built to use the system's headers by default,
then the default for this option is the system version on which the
compiler is running, otherwise the default is to make choices that
are compatible with as many systems and code bases as possible.
@opindex mkernel
@item -mkernel
Enable kernel development mode. The @option{-mkernel} option sets
@option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
@option{-fno-exceptions}, @option{-fno-non-call-exceptions},
@option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
applicable. This mode also sets @option{-mno-altivec},
@option{-msoft-float}, @option{-fno-builtin} and
@option{-mlong-branch} for PowerPC targets.
@opindex mone-byte-bool
@item -mone-byte-bool
Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
By default @code{sizeof(bool)} is @code{4} when compiling for
Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
option has no effect on x86.
@strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
to generate code that is not binary compatible with code generated
without that switch. Using this switch may require recompiling all
other modules in a program, including system libraries. Use this
switch to conform to a non-default data model.
@opindex mfix-and-continue
@opindex ffix-and-continue
@opindex findirect-data
@item -mfix-and-continue
@itemx -ffix-and-continue
@itemx -findirect-data
Generate code suitable for fast turnaround development, such as to
allow GDB to dynamically load @file{.o} files into already-running
programs. @option{-findirect-data} and @option{-ffix-and-continue}
are provided for backwards compatibility.
@opindex all_load
@item -all_load
Loads all members of static archive libraries.
See man ld(1) for more information.
@opindex arch_errors_fatal
@item -arch_errors_fatal
Cause the errors having to do with files that have the wrong architecture
to be fatal.
@opindex bind_at_load
@item -bind_at_load
Causes the output file to be marked such that the dynamic linker will
bind all undefined references when the file is loaded or launched.
@opindex bundle
@item -bundle
Produce a Mach-o bundle format file.
See man ld(1) for more information.
@opindex bundle_loader
@item -bundle_loader @var{executable}
This option specifies the @var{executable} that will load the build
output file being linked. See man ld(1) for more information.
@opindex dynamiclib
@item -dynamiclib
When passed this option, GCC produces a dynamic library instead of
an executable when linking, using the Darwin @file{libtool} command.
@opindex force_cpusubtype_ALL
@item -force_cpusubtype_ALL
This causes GCC's output file to have the @samp{ALL} subtype, instead of
one controlled by the @option{-mcpu} or @option{-march} option.
@opindex nodefaultrpaths
@item -nodefaultrpaths
Do not add default run paths for the compiler library directories to
executables, modules or dynamic libraries. On macOS 10.5 and later,
the embedded runpath is added by default unless the user adds
@option{-nodefaultrpaths} to the link line. Run paths are needed
(and therefore enforced) to build on macOS version 10.11 or later.
@item -allowable_client @var{client_name}
@itemx -client_name
@itemx -compatibility_version
@itemx -current_version
@itemx -dead_strip
@itemx -dependency-file
@itemx -dylib_file
@itemx -dylinker_install_name
@itemx -dynamic
@itemx -exported_symbols_list
@itemx -filelist
@need 800
@itemx -flat_namespace
@itemx -force_flat_namespace
@itemx -headerpad_max_install_names
@itemx -image_base
@itemx -init
@itemx -install_name
@itemx -keep_private_externs
@itemx -multi_module
@itemx -multiply_defined
@itemx -multiply_defined_unused
@need 800
@itemx -noall_load
@itemx -no_dead_strip_inits_and_terms
@itemx -nofixprebinding
@itemx -nomultidefs
@itemx -noprebind
@itemx -noseglinkedit
@itemx -pagezero_size
@itemx -prebind
@itemx -prebind_all_twolevel_modules
@itemx -private_bundle
@need 800
@itemx -read_only_relocs
@itemx -sectalign
@itemx -sectobjectsymbols
@itemx -whyload
@itemx -seg1addr
@itemx -sectcreate
@itemx -sectobjectsymbols
@itemx -sectorder
@itemx -segaddr
@itemx -segs_read_only_addr
@need 800
@itemx -segs_read_write_addr
@itemx -seg_addr_table
@itemx -seg_addr_table_filename
@itemx -seglinkedit
@itemx -segprot
@itemx -segs_read_only_addr
@itemx -segs_read_write_addr
@itemx -single_module
@itemx -static
@itemx -sub_library
@need 800
@opindex allowable_client
@opindex client_name
@opindex compatibility_version
@opindex current_version
@opindex dead_strip
@opindex dependency-file
@opindex dylib_file
@opindex dylinker_install_name
@opindex dynamic
@opindex exported_symbols_list
@opindex filelist
@opindex flat_namespace
@opindex force_flat_namespace
@opindex headerpad_max_install_names
@opindex image_base
@opindex init
@opindex install_name
@opindex keep_private_externs
@opindex multi_module
@opindex multiply_defined
@opindex multiply_defined_unused
@opindex noall_load
@opindex no_dead_strip_inits_and_terms
@opindex nofixprebinding
@opindex nomultidefs
@opindex noprebind
@opindex noseglinkedit
@opindex pagezero_size
@opindex prebind
@opindex prebind_all_twolevel_modules
@opindex private_bundle
@opindex read_only_relocs
@opindex sectalign
@opindex sectobjectsymbols
@opindex whyload
@opindex seg1addr
@opindex sectcreate
@opindex sectobjectsymbols
@opindex sectorder
@opindex segaddr
@opindex segs_read_only_addr
@opindex segs_read_write_addr
@opindex seg_addr_table
@opindex seg_addr_table_filename
@opindex seglinkedit
@opindex segprot
@opindex segs_read_only_addr
@opindex segs_read_write_addr
@opindex single_module
@opindex static
@opindex sub_library
@opindex sub_umbrella
@opindex twolevel_namespace
@opindex umbrella
@opindex undefined
@opindex unexported_symbols_list
@opindex weak_reference_mismatches
@opindex whatsloaded
@itemx -sub_umbrella
@itemx -twolevel_namespace
@itemx -umbrella
@itemx -undefined
@itemx -unexported_symbols_list
@itemx -weak_reference_mismatches
@itemx -whatsloaded
These options are passed to the Darwin linker. The Darwin linker man page
describes them in detail.
@end table
@node DEC Alpha Options
@subsection DEC Alpha Options
These @samp{-m} options are defined for the DEC Alpha implementations:
@table @gcctabopt
@opindex mno-soft-float
@opindex msoft-float
@item -mno-soft-float
@itemx -msoft-float
Use (do not use) the hardware floating-point instructions for
floating-point operations. When @option{-msoft-float} is specified,
functions in @file{libgcc.a} are used to perform floating-point
operations. Unless they are replaced by routines that emulate the
floating-point operations, or compiled in such a way as to call such
emulations routines, these routines issue floating-point
operations. If you are compiling for an Alpha without floating-point
operations, you must ensure that the library is built so as not to call
them.
Note that Alpha implementations without floating-point operations are
required to have floating-point registers.
@opindex mfp-reg
@opindex mno-fp-regs
@item -mfp-reg
@itemx -mno-fp-regs
Generate code that uses (does not use) the floating-point register set.
@option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
register set is not used, floating-point operands are passed in integer
registers as if they were integers and floating-point results are passed
in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
so any function with a floating-point argument or return value called by code
compiled with @option{-mno-fp-regs} must also be compiled with that
option.
A typical use of this option is building a kernel that does not use,
and hence need not save and restore, any floating-point registers.
@opindex mieee
@item -mieee
The Alpha architecture implements floating-point hardware optimized for
maximum performance. It is mostly compliant with the IEEE floating-point
standard. However, for full compliance, software assistance is
required. This option generates code fully IEEE-compliant code
@emph{except} that the @var{inexact-flag} is not maintained (see below).
If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
defined during compilation. The resulting code is less efficient but is
able to correctly support denormalized numbers and exceptional IEEE
values such as not-a-number and plus/minus infinity. Other Alpha
compilers call this option @option{-ieee_with_no_inexact}.
@opindex mieee-with-inexact
@item -mieee-with-inexact
This is like @option{-mieee} except the generated code also maintains
the IEEE @var{inexact-flag}. Turning on this option causes the
generated code to implement fully-compliant IEEE math. In addition to
@code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
macro. On some Alpha implementations the resulting code may execute
significantly slower than the code generated by default. Since there is
very little code that depends on the @var{inexact-flag}, you should
normally not specify this option. Other Alpha compilers call this
option @option{-ieee_with_inexact}.
@opindex mfp-trap-mode
@item -mfp-trap-mode=@var{trap-mode}
This option controls what floating-point related traps are enabled.
Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
The trap mode can be set to one of four values:
@table @samp
@item n
This is the default (normal) setting. The only traps that are enabled
are the ones that cannot be disabled in software (e.g., division by zero
trap).
@item u
In addition to the traps enabled by @samp{n}, underflow traps are enabled
as well.
@item su
Like @samp{u}, but the instructions are marked to be safe for software
completion (see Alpha architecture manual for details).
@item sui
Like @samp{su}, but inexact traps are enabled as well.
@end table
@opindex mfp-rounding-mode
@item -mfp-rounding-mode=@var{rounding-mode}
Selects the IEEE rounding mode. Other Alpha compilers call this option
@option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
of:
@table @samp
@item n
Normal IEEE rounding mode. Floating-point numbers are rounded towards
the nearest machine number or towards the even machine number in case
of a tie.
@item m
Round towards minus infinity.
@item c
Chopped rounding mode. Floating-point numbers are rounded towards zero.
@item d
Dynamic rounding mode. A field in the floating-point control register
(@var{fpcr}, see Alpha architecture reference manual) controls the
rounding mode in effect. The C library initializes this register for
rounding towards plus infinity. Thus, unless your program modifies the
@var{fpcr}, @samp{d} corresponds to round towards plus infinity.
@end table
@opindex mtrap-precision
@item -mtrap-precision=@var{trap-precision}
In the Alpha architecture, floating-point traps are imprecise. This
means without software assistance it is impossible to recover from a
floating trap and program execution normally needs to be terminated.
GCC can generate code that can assist operating system trap handlers
in determining the exact location that caused a floating-point trap.
Depending on the requirements of an application, different levels of
precisions can be selected:
@table @samp
@item p
Program precision. This option is the default and means a trap handler
can only identify which program caused a floating-point exception.
@item f
Function precision. The trap handler can determine the function that
caused a floating-point exception.
@item i
Instruction precision. The trap handler can determine the exact
instruction that caused a floating-point exception.
@end table
Other Alpha compilers provide the equivalent options called
@option{-scope_safe} and @option{-resumption_safe}.
@opindex mieee-conformant
@item -mieee-conformant
This option marks the generated code as IEEE conformant. You must not
use this option unless you also specify @option{-mtrap-precision=i} and either
@option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
is to emit the line @samp{.eflag 48} in the function prologue of the
generated assembly file.
@opindex mbuild-constants
@item -mbuild-constants
Normally GCC examines a 32- or 64-bit integer constant to
see if it can construct it from smaller constants in two or three
instructions. If it cannot, it outputs the constant as a literal and
generates code to load it from the data segment at run time.
Use this option to require GCC to construct @emph{all} integer constants
using code, even if it takes more instructions (the maximum is six).
You typically use this option to build a shared library dynamic
loader. Itself a shared library, it must relocate itself in memory
before it can find the variables and constants in its own data segment.
@opindex mbwx
@opindex mno-bwx
@opindex mcix
@opindex mno-cix
@opindex mfix
@opindex mno-fix
@opindex mmax
@opindex mno-max
@item -mbwx
@itemx -mno-bwx
@itemx -mcix
@itemx -mno-cix
@itemx -mfix
@itemx -mno-fix
@itemx -mmax
@itemx -mno-max
Indicate whether GCC should generate code to use the optional BWX,
CIX, FIX and MAX instruction sets. The default is to use the instruction
sets supported by the CPU type specified via @option{-mcpu=} option or that
of the CPU on which GCC was built if none is specified.
@opindex mfloat-vax
@opindex mfloat-ieee
@item -mfloat-vax
@itemx -mfloat-ieee
Generate code that uses (does not use) VAX F and G floating-point
arithmetic instead of IEEE single and double precision.
@opindex mexplicit-relocs
@opindex mno-explicit-relocs
@item -mexplicit-relocs
@itemx -mno-explicit-relocs
Older Alpha assemblers provided no way to generate symbol relocations
except via assembler macros. Use of these macros does not allow
optimal instruction scheduling. GNU binutils as of version 2.12
supports a new syntax that allows the compiler to explicitly mark
which relocations should apply to which instructions. This option
is mostly useful for debugging, as GCC detects the capabilities of
the assembler when it is built and sets the default accordingly.
@opindex msmall-data
@opindex mlarge-data
@item -msmall-data
@itemx -mlarge-data
When @option{-mexplicit-relocs} is in effect, static data is
accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
(the @code{.sdata} and @code{.sbss} sections) and are accessed via
16-bit relocations off of the @code{$gp} register. This limits the
size of the small data area to 64KB, but allows the variables to be
directly accessed via a single instruction.
The default is @option{-mlarge-data}. With this option the data area
is limited to just below 2GB@. Programs that require more than 2GB of
data must use @code{malloc} or @code{mmap} to allocate the data in the
heap instead of in the program's data segment.
When generating code for shared libraries, @option{-fpic} implies
@option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
@opindex msmall-text
@opindex mlarge-text
@item -msmall-text
@itemx -mlarge-text
When @option{-msmall-text} is used, the compiler assumes that the
code of the entire program (or shared library) fits in 4MB, and is
thus reachable with a branch instruction. When @option{-msmall-data}
is used, the compiler can assume that all local symbols share the
same @code{$gp} value, and thus reduce the number of instructions
required for a function call from 4 to 1.
The default is @option{-mlarge-text}.
@opindex mcpu
@item -mcpu=@var{cpu_type}
Set the instruction set and instruction scheduling parameters for
machine type @var{cpu_type}. You can specify either the @samp{EV}
style name or the corresponding chip number. GCC supports scheduling
parameters for the EV4, EV5 and EV6 family of processors and
chooses the default values for the instruction set from the processor
you specify. If you do not specify a processor type, GCC defaults
to the processor on which the compiler was built.
Supported values for @var{cpu_type} are
@table @samp
@item ev4
@itemx ev45
@itemx 21064
Schedules as an EV4 and has no instruction set extensions.
@item ev5
@itemx 21164
Schedules as an EV5 and has no instruction set extensions.
@item ev56
@itemx 21164a
Schedules as an EV5 and supports the BWX extension.
@item pca56
@itemx 21164pc
@itemx 21164PC
Schedules as an EV5 and supports the BWX and MAX extensions.
@item ev6
@itemx 21264
Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
@item ev67
@itemx 21264a
Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
@end table
Native toolchains also support the value @samp{native},
which selects the best architecture option for the host processor.
@option{-mcpu=native} has no effect if GCC does not recognize
the processor.
@opindex mtune
@item -mtune=@var{cpu_type}
Set only the instruction scheduling parameters for machine type
@var{cpu_type}. The instruction set is not changed.
Native toolchains also support the value @samp{native},
which selects the best architecture option for the host processor.
@option{-mtune=native} has no effect if GCC does not recognize
the processor.
@opindex mmemory-latency
@item -mmemory-latency=@var{time}
Sets the latency the scheduler should assume for typical memory
references as seen by the application. This number is highly
dependent on the memory access patterns used by the application
and the size of the external cache on the machine.
Valid options for @var{time} are
@table @samp
@item @var{number}
A decimal number representing clock cycles.
@item L1
@itemx L2
@itemx L3
@itemx main
The compiler contains estimates of the number of clock cycles for
``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
(also called Dcache, Scache, and Bcache), as well as to main memory.
Note that L3 is only valid for EV5.
@end table
@end table
@node eBPF Options
@subsection eBPF Options
@cindex eBPF Options
@table @gcctabopt
@item -mframe-limit=@var{bytes}
This specifies the hard limit for frame sizes, in bytes. Currently,
the value that can be specified should be less than or equal to
@samp{32767}. Defaults to whatever limit is imposed by the version of
the Linux kernel targeted.
@opindex mbig-endian
@item -mbig-endian
Generate code for a big-endian target.
@opindex mlittle-endian
@item -mlittle-endian
Generate code for a little-endian target. This is the default.
@opindex mjmpext
@item -mjmpext
@itemx -mno-jmpext
Enable or disable generation of extra conditional-branch instructions.
Enabled for CPU v2 and above.
@opindex mjmp32
@item -mjmp32
@itemx -mno-jmp32
Enable or disable generation of 32-bit jump instructions.
Enabled for CPU v3 and above.
@opindex malu32
@item -malu32
@itemx -mno-alu32
Enable or disable generation of 32-bit ALU instructions.
Enabled for CPU v3 and above.
@opindex mv3-atomics
@item -mv3-atomics
@itemx -mno-v3-atomics
Enable or disable instructions for general atomic operations introduced
in CPU v3. Enabled for CPU v3 and above.
@opindex mbswap
@item -mbswap
@itemx -mno-bswap
Enable or disable byte swap instructions. Enabled for CPU v4 and above.
@opindex msdiv
@item -msdiv
@itemx -mno-sdiv
Enable or disable signed division and modulus instructions. Enabled for
CPU v4 and above.
@opindex msmov
@item -msmov
@itemx -mno-smov
Enable or disable sign-extending move and memory load instructions.
Enabled for CPU v4 and above.
@opindex mcpu
@item -mcpu=@var{version}
This specifies which version of the eBPF ISA to target. Newer versions
may not be supported by all kernels. The default is @samp{v4}.
Supported values for @var{version} are:
@table @samp
@item v1
The first stable eBPF ISA with no special features or extensions.
@item v2
Supports the jump extensions, as in @option{-mjmpext}.
@item v3
All features of v2, plus:
@itemize @minus
@item 32-bit jump operations, as in @option{-mjmp32}
@item 32-bit ALU operations, as in @option{-malu32}
@item general atomic operations, as in @option{-mv3-atomics}
@end itemize
@item v4
All features of v3, plus:
@itemize @minus
@item Byte swap instructions, as in @option{-mbswap}
@item Signed division and modulus instructions, as in @option{-msdiv}
@item Sign-extending move and memory load instructions, as in @option{-msmov}
@end itemize
@end table
@opindex mco-re
@item -mco-re
Enable BPF Compile Once - Run Everywhere (CO-RE) support. Requires and
is implied by @option{-gbtf}.
@opindex mno-co-re
@item -mno-co-re
Disable BPF Compile Once - Run Everywhere (CO-RE) support. BPF CO-RE
support is enabled by default when generating BTF debug information for
the BPF target.
@item -mxbpf
Generate code for an expanded version of BPF, which relaxes some of
the restrictions imposed by the BPF architecture:
@itemize @minus
@item Save and restore callee-saved registers at function entry and
exit, respectively.
@end itemize
@opindex masm=@var{dialect}
@item -masm=@var{dialect}
Outputs assembly instructions using eBPF selected @var{dialect}. The default
is @samp{pseudoc}.
Supported values for @var{dialect} are:
@table @samp
@item normal
Outputs normal assembly dialect.
@item pseudoc
Outputs pseudo-c assembly dialect.
@end table
@opindex minline-memops-threshold
@item -minline-memops-threshold=@var{bytes}
Specifies a size threshold in bytes at or below which memmove, memcpy
and memset shall always be expanded inline. Operations dealing with
sizes larger than this threshold would have to be implemented using
a library call instead of being expanded inline, but since BPF doesn't
allow libcalls, exceeding this threshold results in a compile-time
error. The default is @samp{1024} bytes.
@end table
@node FR30 Options
@subsection FR30 Options
@cindex FR30 Options
These options are defined specifically for the FR30 port.
@table @gcctabopt
@opindex msmall-model
@item -msmall-model
Use the small address space model. This can produce smaller code, but
it does assume that all symbolic values and addresses fit into a
20-bit range.
@opindex mno-lsim
@item -mno-lsim
Assume that runtime support has been provided and so there is no need
to include the simulator library (@file{libsim.a}) on the linker
command line.
@end table
@node FT32 Options
@subsection FT32 Options
@cindex FT32 Options
These options are defined specifically for the FT32 port.
@table @gcctabopt
@opindex msim
@item -msim
Specifies that the program will be run on the simulator. This causes
an alternate runtime startup and library to be linked.
You must not use this option when generating programs that will run on
real hardware; you must provide your own runtime library for whatever
I/O functions are needed.
@opindex mlra
@item -mlra
Enable Local Register Allocation. This is still experimental for FT32,
so by default the compiler uses standard reload.
@opindex mnodiv
@item -mnodiv
Do not use div and mod instructions.
@opindex mft32b
@item -mft32b
Enable use of the extended instructions of the FT32B processor.
@opindex mcompress
@item -mcompress
Compress all code using the Ft32B code compression scheme.
@opindex mnopm
@item -mnopm
Do not generate code that reads program memory.
@end table
@node FRV Options
@subsection FRV Options
@cindex FRV Options
@table @gcctabopt
@opindex mgpr-32
@item -mgpr-32
Only use the first 32 general-purpose registers.
@opindex mgpr-64
@item -mgpr-64
Use all 64 general-purpose registers.
@opindex mfpr-32
@item -mfpr-32
Use only the first 32 floating-point registers.
@opindex mfpr-64
@item -mfpr-64
Use all 64 floating-point registers.
@opindex mhard-float
@item -mhard-float
Use hardware instructions for floating-point operations.
@opindex msoft-float
@item -msoft-float
Use library routines for floating-point operations.
@opindex malloc-cc
@item -malloc-cc
Dynamically allocate condition code registers.
@opindex mfixed-cc
@item -mfixed-cc
Do not try to dynamically allocate condition code registers, only
use @code{icc0} and @code{fcc0}.
@opindex mdword
@item -mdword
Change ABI to use double word insns.
@opindex mno-dword
@opindex mdword
@item -mno-dword
Do not use double word instructions.
@opindex mdouble
@item -mdouble
Use floating-point double instructions.
@opindex mno-double
@item -mno-double
Do not use floating-point double instructions.
@opindex mmedia
@item -mmedia
Use media instructions.
@opindex mno-media
@item -mno-media
Do not use media instructions.
@opindex mmuladd
@item -mmuladd
Use multiply and add/subtract instructions.
@opindex mno-muladd
@item -mno-muladd
Do not use multiply and add/subtract instructions.
@opindex mfdpic
@item -mfdpic
Select the FDPIC ABI, which uses function descriptors to represent
pointers to functions. Without any PIC/PIE-related options, it
implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
assumes GOT entries and small data are within a 12-bit range from the
GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
are computed with 32 bits.
With a @samp{bfin-elf} target, this option implies @option{-msim}.
@opindex minline-plt
@item -minline-plt
Enable inlining of PLT entries in function calls to functions that are
not known to bind locally. It has no effect without @option{-mfdpic}.
It's enabled by default if optimizing for speed and compiling for
shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
optimization option such as @option{-O3} or above is present in the
command line.
@opindex mTLS
@item -mTLS
Assume a large TLS segment when generating thread-local code.
@opindex mtls
@item -mtls
Do not assume a large TLS segment when generating thread-local code.
@opindex mgprel-ro
@item -mgprel-ro
Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
that is known to be in read-only sections. It's enabled by default,
except for @option{-fpic} or @option{-fpie}: even though it may help
make the global offset table smaller, it trades 1 instruction for 4.
With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
one of which may be shared by multiple symbols, and it avoids the need
for a GOT entry for the referenced symbol, so it's more likely to be a
win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
@opindex multilib-library-pic
@item -multilib-library-pic
Link with the (library, not FD) pic libraries. It's implied by
@option{-mlibrary-pic}, as well as by @option{-fPIC} and
@option{-fpic} without @option{-mfdpic}. You should never have to use
it explicitly.
@opindex mlinked-fp
@item -mlinked-fp
Follow the EABI requirement of always creating a frame pointer whenever
a stack frame is allocated. This option is enabled by default and can
be disabled with @option{-mno-linked-fp}.
@opindex mlong-calls
@item -mlong-calls
Use indirect addressing to call functions outside the current
compilation unit. This allows the functions to be placed anywhere
within the 32-bit address space.
@opindex malign-labels
@item -malign-labels
Try to align labels to an 8-byte boundary by inserting NOPs into the
previous packet. This option only has an effect when VLIW packing
is enabled. It doesn't create new packets; it merely adds NOPs to
existing ones.
@opindex mlibrary-pic
@item -mlibrary-pic
Generate position-independent EABI code.
@opindex macc-4
@item -macc-4
Use only the first four media accumulator registers.
@opindex macc-8
@item -macc-8
Use all eight media accumulator registers.
@opindex mpack
@item -mpack
Pack VLIW instructions.
@opindex mno-pack
@item -mno-pack
Do not pack VLIW instructions.
@opindex mno-eflags
@item -mno-eflags
Do not mark ABI switches in e_flags.
@opindex mcond-move
@item -mcond-move
Enable the use of conditional-move instructions (default).
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@opindex mno-cond-move
@item -mno-cond-move
Disable the use of conditional-move instructions.
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@opindex mscc
@item -mscc
Enable the use of conditional set instructions (default).
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@opindex mno-scc
@item -mno-scc
Disable the use of conditional set instructions.
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@opindex mcond-exec
@item -mcond-exec
Enable the use of conditional execution (default).
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@opindex mno-cond-exec
@item -mno-cond-exec
Disable the use of conditional execution.
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@opindex mvliw-branch
@item -mvliw-branch
Run a pass to pack branches into VLIW instructions (default).
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@opindex mno-vliw-branch
@item -mno-vliw-branch
Do not run a pass to pack branches into VLIW instructions.
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@opindex mmulti-cond-exec
@item -mmulti-cond-exec
Enable optimization of @code{&&} and @code{||} in conditional execution
(default).
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@opindex mno-multi-cond-exec
@item -mno-multi-cond-exec
Disable optimization of @code{&&} and @code{||} in conditional execution.
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@opindex mnested-cond-exec
@item -mnested-cond-exec
Enable nested conditional execution optimizations (default).
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@opindex mno-nested-cond-exec
@item -mno-nested-cond-exec
Disable nested conditional execution optimizations.
This switch is mainly for debugging the compiler and will likely be removed
in a future version.
@opindex moptimize-membar
@item -moptimize-membar
This switch removes redundant @code{membar} instructions from the
compiler-generated code. It is enabled by default.
@opindex mno-optimize-membar
@opindex moptimize-membar
@item -mno-optimize-membar
This switch disables the automatic removal of redundant @code{membar}
instructions from the generated code.
@opindex mtomcat-stats
@item -mtomcat-stats
Cause gas to print out tomcat statistics.
@opindex mcpu
@item -mcpu=@var{cpu}
Select the processor type for which to generate code. Possible values are
@samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
@samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
@end table
@node GNU/Linux Options
@subsection GNU/Linux Options
These @samp{-m} options are defined for GNU/Linux targets:
@table @gcctabopt
@opindex mglibc
@item -mglibc
Use the GNU C library. This is the default except
on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
@samp{*-*-linux-*android*} targets.
@opindex muclibc
@item -muclibc
Use uClibc C library. This is the default on
@samp{*-*-linux-*uclibc*} targets.
@opindex mmusl
@item -mmusl
Use the musl C library. This is the default on
@samp{*-*-linux-*musl*} targets.
@opindex mbionic
@item -mbionic
Use Bionic C library. This is the default on
@samp{*-*-linux-*android*} targets.
@opindex mandroid
@item -mandroid
Compile code compatible with Android platform. This is the default on
@samp{*-*-linux-*android*} targets.
When compiling, this option enables @option{-mbionic}, @option{-fPIC},
@option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
this option makes the GCC driver pass Android-specific options to the linker.
Finally, this option causes the preprocessor macro @code{__ANDROID__}
to be defined.
@opindex tno-android-cc
@item -tno-android-cc
Disable compilation effects of @option{-mandroid}, i.e., do not enable
@option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
@option{-fno-rtti} by default.
@opindex tno-android-ld
@item -tno-android-ld
Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
linking options to the linker.
@end table
@node H8/300 Options
@subsection H8/300 Options
These @samp{-m} options are defined for the H8/300 implementations:
@table @gcctabopt
@opindex mrelax
@item -mrelax
Shorten some address references at link time, when possible; uses the
linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
ld, Using ld}, for a fuller description.
@opindex mh
@item -mh
Generate code for the H8/300H@.
@opindex ms
@item -ms
Generate code for the H8S@.
@opindex mn
@item -mn
Generate code for the H8S and H8/300H in the normal mode. This switch
must be used either with @option{-mh} or @option{-ms}.
@opindex ms2600
@item -ms2600
Generate code for the H8S/2600. This switch must be used with @option{-ms}.
@opindex mexr
@item -mexr
Extended registers are stored on stack before execution of function
with monitor attribute. Default option is @option{-mexr}.
This option is valid only for H8S targets.
@opindex mno-exr
@opindex mexr
@item -mno-exr
Extended registers are not stored on stack before execution of function
with monitor attribute. Default option is @option{-mno-exr}.
This option is valid only for H8S targets.
@opindex mint32
@item -mint32
Make @code{int} data 32 bits by default.
@opindex malign-300
@item -malign-300
On the H8/300H and H8S, use the same alignment rules as for the H8/300.
The default for the H8/300H and H8S is to align longs and floats on
4-byte boundaries.
@option{-malign-300} causes them to be aligned on 2-byte boundaries.
This option has no effect on the H8/300.
@end table
@node HPPA Options
@subsection HPPA Options
@cindex HPPA Options
These @samp{-m} options are defined for the HPPA family of computers:
@table @gcctabopt
@opindex march
@item -march=@var{architecture-type}
Generate code for the specified architecture. The choices for
@var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
1.1, and @samp{2.0} for PA 2.0 processors. Refer to
@file{/usr/lib/sched.models} on an HP-UX system to determine the proper
architecture option for your machine. Code compiled for lower numbered
architectures runs on higher numbered architectures, but not the
other way around.
@opindex mpa-risc-1-0
@opindex mpa-risc-1-1
@opindex mpa-risc-2-0
@item -mpa-risc-1-0
@itemx -mpa-risc-1-1
@itemx -mpa-risc-2-0
Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
@opindex matomic-libcalls
@opindex mno-atomic-libcalls
@item -matomic-libcalls
Generate libcalls for atomic loads and stores when sync libcalls are disabled.
This option is enabled by default. It only affects the generation of
atomic libcalls by the HPPA backend.
Both the sync and @file{libatomic} libcall implementations use locking.
As a result, processor stores are not atomic with respect to other
atomic operations. Processor loads up to DImode are atomic with
respect to other atomic operations provided they are implemented as
a single access.
The PA-RISC architecture does not support any atomic operations in
hardware except for the @code{ldcw} instruction. Thus, all atomic
support is implemented using sync and atomic libcalls. Sync libcall
support is in @file{libgcc.a}. Atomic libcall support is in
@file{libatomic}.
This option generates @code{__atomic_exchange} calls for atomic stores.
It also provides special handling for atomic DImode accesses on 32-bit
targets.
@opindex mbig-switch
@item -mbig-switch
Does nothing. Preserved for backward compatibility.
@opindex mcaller-copies
@item -mcaller-copies
The caller copies function arguments passed by hidden reference. This
option should be used with care as it is not compatible with the default
32-bit runtime. However, only aggregates larger than eight bytes are
passed by hidden reference and the option provides better compatibility
with OpenMP.
@opindex mcoherent-ldcw
@item -mcoherent-ldcw
Use ldcw/ldcd coherent cache-control hint.
@opindex mdisable-fpregs
@item -mdisable-fpregs
Disable floating-point registers. Equivalent to @code{-msoft-float}.
@opindex mdisable-indexing
@item -mdisable-indexing
Prevent the compiler from using indexing address modes. This avoids some
rather obscure problems when compiling MIG generated code under MACH@.
@opindex mfast-indirect-calls
@item -mfast-indirect-calls
Generate code that assumes calls never cross space boundaries. This
allows GCC to emit code that performs faster indirect calls.
This option does not work in the presence of shared libraries or nested
functions.
@opindex mfixed-range
@item -mfixed-range=@var{register-range}
Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator cannot use. This is
useful when compiling kernel code. A register range is specified as
two registers separated by a dash. Multiple register ranges can be
specified separated by a comma.
@opindex mgas
@item -mgas
Enable the use of assembler directives only GAS understands.
@opindex mgnu-ld
@item -mgnu-ld
Use options specific to GNU @command{ld}.
This passes @option{-shared} to @command{ld} when
building a shared library. It is the default when GCC is configured,
explicitly or implicitly, with the GNU linker. This option does not
affect which @command{ld} is called; it only changes what parameters
are passed to that @command{ld}.
The @command{ld} that is called is determined by the
@option{--with-ld} configure option, GCC's program search path, and
finally by the user's @env{PATH}. The linker used by GCC can be printed
using @samp{which `gcc -print-prog-name=ld`}. This option is only available
on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
@opindex mhp-ld
@item -mhp-ld
Use options specific to HP @command{ld}.
This passes @option{-b} to @command{ld} when building
a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
links. It is the default when GCC is configured, explicitly or
implicitly, with the HP linker. This option does not affect
which @command{ld} is called; it only changes what parameters are passed to that
@command{ld}.
The @command{ld} that is called is determined by the @option{--with-ld}
configure option, GCC's program search path, and finally by the user's
@env{PATH}. The linker used by GCC can be printed using @samp{which
`gcc -print-prog-name=ld`}. This option is only available on the 64-bit
HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
@opindex mlinker-opt
@item -mlinker-opt
Enable the optimization pass in the HP-UX linker. Note this makes symbolic
debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
linkers in which they give bogus error messages when linking some programs.
@opindex mno-long-calls
@opindex mlong-calls
@item -mlong-calls
Generate code that uses long call sequences. This ensures that a call
is always able to reach linker generated stubs. The default is to generate
long calls only when the distance from the call site to the beginning
of the function or translation unit, as the case may be, exceeds a
predefined limit set by the branch type being used. The limits for
normal calls are 7,600,000 and 240,000 bytes, respectively for the
PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
240,000 bytes.
Distances are measured from the beginning of functions when using the
@option{-ffunction-sections} option, or when using the @option{-mgas}
and @option{-mno-portable-runtime} options together under HP-UX with
the SOM linker.
It is normally not desirable to use this option as it degrades
performance. However, it may be useful in large applications,
particularly when partial linking is used to build the application.
The types of long calls used depends on the capabilities of the
assembler and linker, and the type of code being generated. The
impact on systems that support long absolute calls, and long pic
symbol-difference or pc-relative calls should be relatively small.
However, an indirect call is used on 32-bit ELF systems in pic code
and it is quite long.
@opindex mlong-load-store
@item -mlong-load-store
Generate 3-instruction load and store sequences as sometimes required by
the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
the HP compilers.
@opindex mjump-in-delay
@item -mjump-in-delay
This option is ignored and provided for compatibility purposes only.
@opindex mno-space-regs
@opindex mspace-regs
@item -mno-space-regs
Generate code that assumes the target has no space registers. This allows
GCC to generate faster indirect calls and use unscaled index address modes.
Such code is suitable for level 0 PA systems and kernels.
@opindex mordered
@item -mordered
Assume memory references are ordered and barriers are not needed.
@opindex mportable-runtime
@item -mportable-runtime
Use the portable calling conventions proposed by HP for ELF systems.
@opindex mschedule
@item -mschedule=@var{cpu-type}
Schedule code according to the constraints for the machine type
@var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
@samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
to @file{/usr/lib/sched.models} on an HP-UX system to determine the
proper scheduling option for your machine. The default scheduling is
@samp{8000}.
@opindex msio
@item -msio
Generate the predefine, @code{_SIO}, for server IO@. The default is
@option{-mwsio}. This generates the predefines, @code{__hp9000s700},
@code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
options are available under HP-UX and HI-UX@.
@opindex msoft-float
@item -msoft-float
Generate output containing library calls for floating point.
@strong{Warning:} the requisite libraries are not available for all HPPA
targets. Normally the facilities of the machine's usual C compiler are
used, but this cannot be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for
cross-compilation.
@option{-msoft-float} changes the calling convention in the output file;
therefore, it is only useful if you compile @emph{all} of a program with
this option. In particular, you need to compile @file{libgcc.a}, the
library that comes with GCC, with @option{-msoft-float} in order for
this to work.
@opindex msoft-mult
@item -msoft-mult
Use software integer multiplication.
This disables the use of the @code{xmpyu} instruction.
@opindex march
@item -munix=@var{unix-std}
Generate compiler predefines and select a startfile for the specified
UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
11.11 and later. The default values are @samp{93} for HP-UX 10.00,
@samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
and later.
@option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
@option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
@option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
@code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
@code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
It is @emph{important} to note that this option changes the interfaces
for various library routines. It also affects the operational behavior
of the C library. Thus, @emph{extreme} care is needed in using this
option.
Library code that is intended to operate with more than one UNIX
standard must test, set and restore the variable @code{__xpg4_extended_mask}
as appropriate. Most GNU software doesn't provide this capability.
@opindex nolibdld
@item -nolibdld
Suppress the generation of link options to search libdld.sl when the
@option{-static} option is specified on HP-UX 10 and later.
@opindex static
@item -static
The HP-UX implementation of setlocale in libc has a dependency on
libdld.sl. There isn't an archive version of libdld.sl. Thus,
when the @option{-static} option is specified, special link options
are needed to resolve this dependency.
On HP-UX 10 and later, the GCC driver adds the necessary options to
link with libdld.sl when the @option{-static} option is specified.
This causes the resulting binary to be dynamic. On the 64-bit port,
the linkers generate dynamic binaries by default in any case. The
@option{-nolibdld} option can be used to prevent the GCC driver from
adding these link options.
@opindex threads
@item -threads
Add support for multithreading with the @dfn{dce thread} library
under HP-UX@. This option sets flags for both the preprocessor and
linker.
@end table
@node IA-64 Options
@subsection IA-64 Options
@cindex IA-64 Options
These are the @samp{-m} options defined for the Intel IA-64 architecture.
@table @gcctabopt
@opindex mbig-endian
@item -mbig-endian
Generate code for a big-endian target. This is the default for HP-UX@.
@opindex mlittle-endian
@item -mlittle-endian
Generate code for a little-endian target. This is the default for AIX5
and GNU/Linux.
@opindex mgnu-as
@opindex mno-gnu-as
@item -mgnu-as
@itemx -mno-gnu-as
Generate (or don't) code for the GNU assembler. This is the default.
@c Also, this is the default if the configure option @option{--with-gnu-as}
@c is used.
@opindex mgnu-ld
@opindex mno-gnu-ld
@item -mgnu-ld
@itemx -mno-gnu-ld
Generate (or don't) code for the GNU linker. This is the default.
@c Also, this is the default if the configure option @option{--with-gnu-ld}
@c is used.
@opindex mno-pic
@item -mno-pic
Generate code that does not use a global pointer register. The result
is not position independent code, and violates the IA-64 ABI@.
@opindex mvolatile-asm-stop
@opindex mno-volatile-asm-stop
@item -mvolatile-asm-stop
@itemx -mno-volatile-asm-stop
Generate (or don't) a stop bit immediately before and after volatile asm
statements.
@opindex mregister-names
@opindex mno-register-names
@item -mregister-names
@itemx -mno-register-names
Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
the stacked registers. This may make assembler output more readable.
@opindex mno-sdata
@opindex msdata
@item -mno-sdata
@itemx -msdata
Disable (or enable) optimizations that use the small data section. This may
be useful for working around optimizer bugs.
@opindex mconstant-gp
@item -mconstant-gp
Generate code that uses a single constant global pointer value. This is
useful when compiling kernel code.
@opindex mauto-pic
@item -mauto-pic
Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
This is useful when compiling firmware code.
@opindex minline-float-divide-min-latency
@item -minline-float-divide-min-latency
Generate code for inline divides of floating-point values
using the minimum latency algorithm.
@opindex minline-float-divide-max-throughput
@item -minline-float-divide-max-throughput
Generate code for inline divides of floating-point values
using the maximum throughput algorithm.
@opindex mno-inline-float-divide
@item -mno-inline-float-divide
Do not generate inline code for divides of floating-point values.
@opindex minline-int-divide-min-latency
@item -minline-int-divide-min-latency
Generate code for inline divides of integer values
using the minimum latency algorithm.
@opindex minline-int-divide-max-throughput
@item -minline-int-divide-max-throughput
Generate code for inline divides of integer values
using the maximum throughput algorithm.
@opindex mno-inline-int-divide
@opindex minline-int-divide
@item -mno-inline-int-divide
Do not generate inline code for divides of integer values.
@opindex minline-sqrt-min-latency
@item -minline-sqrt-min-latency
Generate code for inline square roots
using the minimum latency algorithm.
@opindex minline-sqrt-max-throughput
@item -minline-sqrt-max-throughput
Generate code for inline square roots
using the maximum throughput algorithm.
@opindex mno-inline-sqrt
@item -mno-inline-sqrt
Do not generate inline code for @code{sqrt}.
@opindex mfused-madd
@opindex mno-fused-madd
@item -mfused-madd
@itemx -mno-fused-madd
Do (don't) generate code that uses the fused multiply/add or multiply/subtract
instructions. The default is to use these instructions.
@opindex mno-dwarf2-asm
@opindex mdwarf2-asm
@item -mno-dwarf2-asm
@itemx -mdwarf2-asm
Don't (or do) generate assembler code for the DWARF line number debugging
info. This may be useful when not using the GNU assembler.
@opindex mearly-stop-bits
@opindex mno-early-stop-bits
@item -mearly-stop-bits
@itemx -mno-early-stop-bits
Allow stop bits to be placed earlier than immediately preceding the
instruction that triggered the stop bit. This can improve instruction
scheduling, but does not always do so.
@opindex mfixed-range
@item -mfixed-range=@var{register-range}
Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator cannot use. This is
useful when compiling kernel code. A register range is specified as
two registers separated by a dash. Multiple register ranges can be
specified separated by a comma.
@opindex mtls-size
@item -mtls-size=@var{tls-size}
Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
64.
@opindex mtune
@item -mtune=@var{cpu-type}
Tune the instruction scheduling for a particular CPU, Valid values are
@samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
and @samp{mckinley}.
@opindex milp32
@opindex mlp64
@item -milp32
@itemx -mlp64
Generate code for a 32-bit or 64-bit environment.
The 32-bit environment sets int, long and pointer to 32 bits.
The 64-bit environment sets int to 32 bits and long and pointer
to 64 bits. These are HP-UX specific flags.
@opindex mno-sched-br-data-spec
@opindex msched-br-data-spec
@item -mno-sched-br-data-spec
@itemx -msched-br-data-spec
(Dis/En)able data speculative scheduling before reload.
This results in generation of @code{ld.a} instructions and
the corresponding check instructions (@code{ld.c} / @code{chk.a}).
The default setting is disabled.
@opindex msched-ar-data-spec
@opindex mno-sched-ar-data-spec
@item -msched-ar-data-spec
@itemx -mno-sched-ar-data-spec
(En/Dis)able data speculative scheduling after reload.
This results in generation of @code{ld.a} instructions and
the corresponding check instructions (@code{ld.c} / @code{chk.a}).
The default setting is enabled.
@opindex mno-sched-control-spec
@opindex msched-control-spec
@item -mno-sched-control-spec
@itemx -msched-control-spec
(Dis/En)able control speculative scheduling. This feature is
available only during region scheduling (i.e.@: before reload).
This results in generation of the @code{ld.s} instructions and
the corresponding check instructions @code{chk.s}.
The default setting is disabled.
@opindex msched-br-in-data-spec
@opindex mno-sched-br-in-data-spec
@item -msched-br-in-data-spec
@itemx -mno-sched-br-in-data-spec
(En/Dis)able speculative scheduling of the instructions that
are dependent on the data speculative loads before reload.
This is effective only with @option{-msched-br-data-spec} enabled.
The default setting is enabled.
@opindex msched-ar-in-data-spec
@opindex mno-sched-ar-in-data-spec
@item -msched-ar-in-data-spec
@itemx -mno-sched-ar-in-data-spec
(En/Dis)able speculative scheduling of the instructions that
are dependent on the data speculative loads after reload.
This is effective only with @option{-msched-ar-data-spec} enabled.
The default setting is enabled.
@opindex msched-in-control-spec
@opindex mno-sched-in-control-spec
@item -msched-in-control-spec
@itemx -mno-sched-in-control-spec
(En/Dis)able speculative scheduling of the instructions that
are dependent on the control speculative loads.
This is effective only with @option{-msched-control-spec} enabled.
The default setting is enabled.
@opindex mno-sched-prefer-non-data-spec-insns
@opindex msched-prefer-non-data-spec-insns
@item -mno-sched-prefer-non-data-spec-insns
@itemx -msched-prefer-non-data-spec-insns
If enabled, data-speculative instructions are chosen for schedule
only if there are no other choices at the moment. This makes
the use of the data speculation much more conservative.
The default setting is disabled.
@opindex mno-sched-prefer-non-control-spec-insns
@opindex msched-prefer-non-control-spec-insns
@item -mno-sched-prefer-non-control-spec-insns
@itemx -msched-prefer-non-control-spec-insns
If enabled, control-speculative instructions are chosen for schedule
only if there are no other choices at the moment. This makes
the use of the control speculation much more conservative.
The default setting is disabled.
@opindex mno-sched-count-spec-in-critical-path
@opindex msched-count-spec-in-critical-path
@item -mno-sched-count-spec-in-critical-path
@itemx -msched-count-spec-in-critical-path
If enabled, speculative dependencies are considered during
computation of the instructions priorities. This makes the use of the
speculation a bit more conservative.
The default setting is disabled.
@opindex msched-spec-ldc
@item -msched-spec-ldc
Use a simple data speculation check. This option is on by default.
@opindex msched-spec-ldc
@item -msched-control-spec-ldc
Use a simple check for control speculation. This option is on by default.
@opindex msched-stop-bits-after-every-cycle
@item -msched-stop-bits-after-every-cycle
Place a stop bit after every cycle when scheduling. This option is on
by default.
@opindex msched-fp-mem-deps-zero-cost
@item -msched-fp-mem-deps-zero-cost
Assume that floating-point stores and loads are not likely to cause a conflict
when placed into the same instruction group. This option is disabled by
default.
@opindex msel-sched-dont-check-control-spec
@item -msel-sched-dont-check-control-spec
Generate checks for control speculation in selective scheduling.
This flag is disabled by default.
@opindex msched-max-memory-insns
@item -msched-max-memory-insns=@var{max-insns}
Limit on the number of memory insns per instruction group, giving lower
priority to subsequent memory insns attempting to schedule in the same
instruction group. Frequently useful to prevent cache bank conflicts.
The default value is 1.
@opindex msched-max-memory-insns-hard-limit
@item -msched-max-memory-insns-hard-limit
Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
disallowing more than that number in an instruction group.
Otherwise, the limit is ``soft'', meaning that non-memory operations
are preferred when the limit is reached, but memory operations may still
be scheduled.
@end table
@node LM32 Options
@subsection LM32 Options
@cindex LM32 options
These @option{-m} options are defined for the LatticeMico32 architecture:
@table @gcctabopt
@opindex mbarrel-shift-enabled
@item -mbarrel-shift-enabled
Enable barrel-shift instructions.
@opindex mdivide-enabled
@item -mdivide-enabled
Enable divide and modulus instructions.
@opindex multiply-enabled
@item -mmultiply-enabled
Enable multiply instructions.
@opindex msign-extend-enabled
@item -msign-extend-enabled
Enable sign extend instructions.
@opindex muser-enabled
@item -muser-enabled
Enable user-defined instructions.
@end table
@node LoongArch Options
@subsection LoongArch Options
@cindex LoongArch Options
These command-line options are defined for LoongArch targets:
@table @gcctabopt
@opindex march
@item -march=@var{arch-type}
Generate instructions for the machine type @var{arch-type}.
@option{-march=@var{arch-type}} allows GCC to generate code that
may not run at all on processors other than the one indicated.
The choices for @var{arch-type} are:
@table @samp
@item native
Local processor type detected by the native compiler.
@item loongarch64
Generic LoongArch 64-bit processor.
@item la464
LoongArch LA464-based processor with LSX, LASX.
@item la664
LoongArch LA664-based processor with LSX, LASX
and all LoongArch v1.1 instructions.
@item la64v1.0
LoongArch64 ISA version 1.0.
@item la64v1.1
LoongArch64 ISA version 1.1.
@end table
More information about LoongArch ISA versions can be found at
@uref{https://github.com/loongson/la-toolchain-conventions}.
@opindex mtune
@item -mtune=@var{tune-type}
Optimize the generated code for the given processor target.
The choices for @var{tune-type} are:
@table @samp
@item native
Local processor type detected by the native compiler.
@item generic
Generic LoongArch processor.
@item loongarch64
Generic LoongArch 64-bit processor.
@item la464
LoongArch LA464 core.
@item la664
LoongArch LA664 core.
@end table
@opindex mabi
@item -mabi=@var{base-abi-type}
Generate code for the specified calling convention.
@var{base-abi-type} can be one of:
@table @samp
@item lp64d
Uses 64-bit general purpose registers and 32/64-bit floating-point
registers for parameter passing. Data model is LP64, where @samp{int}
is 32 bits, while @samp{long int} and pointers are 64 bits.
@item lp64f
Uses 64-bit general purpose registers and 32-bit floating-point
registers for parameter passing. Data model is LP64, where @samp{int}
is 32 bits, while @samp{long int} and pointers are 64 bits.
@item lp64s
Uses 64-bit general purpose registers and no floating-point
registers for parameter passing. Data model is LP64, where @samp{int}
is 32 bits, while @samp{long int} and pointers are 64 bits.
@end table
@opindex mfpu
@item -mfpu=@var{fpu-type}
Generate code for the specified FPU type, which can be one of:
@table @samp
@item 64
Allow the use of hardware floating-point instructions for 32-bit
and 64-bit operations.
@item 32
Allow the use of hardware floating-point instructions for 32-bit
operations.
@item none
@item 0
Prevent the use of hardware floating-point instructions.
@end table
@opindex msimd
@item -msimd=@var{simd-type}
Enable generation of LoongArch SIMD instructions for vectorization
and via builtin functions. The value can be one of:
@table @samp
@item lasx
Enable generating instructions from the 256-bit LoongArch Advanced
SIMD Extension (LASX) and the 128-bit LoongArch SIMD Extension (LSX).
@item lsx
Enable generating instructions from the 128-bit LoongArch SIMD
Extension (LSX).
@item none
No LoongArch SIMD instruction may be generated.
@end table
@opindex msoft-float
@item -msoft-float
Force @option{-mfpu=none} and prevents the use of floating-point
registers for parameter passing. This option may change the target
ABI.
@opindex msingle-float
@item -msingle-float
Force @option{-mfpu=32} and allow the use of 32-bit floating-point
registers for parameter passing. This option may change the target
ABI.
@opindex mdouble-float
@item -mdouble-float
Force @option{-mfpu=64} and allow the use of 32/64-bit floating-point
registers for parameter passing. This option may change the target
ABI.
@opindex ml[a]sx
@item -mlasx
@itemx -mno-lasx
@item -mlsx
@itemx -mno-lsx
Incrementally adjust the scope of the SIMD extensions (none / LSX / LASX)
that can be used by the compiler for code generation. Enabling LASX with
@option{mlasx} automatically enables LSX, and diabling LSX with @option{mno-lsx}
automatically disables LASX. These driver-only options act upon the final
@option{msimd} configuration state and make incremental chagnes in the order
they appear on the GCC driver's command line, deriving the final / canonicalized
@option{msimd} option that is passed to the compiler proper.
@opindex mbranch-cost
@item -mbranch-cost=@var{n}
Set the cost of branches to roughly @var{n} instructions.
@opindex mcheck-zero-division
@item -mcheck-zero-division
@itemx -mno-check-zero-divison
Trap (do not trap) on integer division by zero. The default is
@option{-mcheck-zero-division} for @option{-O0} or @option{-Og}, and
@option{-mno-check-zero-division} for other optimization levels.
@opindex mcond-move-int
@item -mcond-move-int
@itemx -mno-cond-move-int
Conditional moves for integral data in general-purpose registers
are enabled (disabled). The default is @option{-mcond-move-int}.
@opindex mcond-move-float
@item -mcond-move-float
@itemx -mno-cond-move-float
Conditional moves for floating-point registers are enabled (disabled).
The default is @option{-mcond-move-float}.
@opindex mmemcpy
@item -mmemcpy
@itemx -mno-memcpy
Force (do not force) the use of @code{memcpy} for non-trivial block moves.
The default is @option{-mno-memcpy}, which allows GCC to inline most
constant-sized copies. Setting optimization level to @option{-Os} also
forces the use of @code{memcpy}, but @option{-mno-memcpy} may override this
behavior if explicitly specified, regardless of the order these options on
the command line.
@opindex mstrict-align
@item -mstrict-align
@itemx -mno-strict-align
Avoid or allow generating memory accesses that may not be aligned on a natural
object boundary as described in the architecture specification. The default is
@option{-mno-strict-align}.
@opindex msmall-data-limit
@item -msmall-data-limit=@var{number}
Put global and static data smaller than @var{number} bytes into a special
section (on some targets). The default value is 0.
@opindex mmax-inline-memcpy-size
@item -mmax-inline-memcpy-size=@var{n}
Inline all block moves (such as calls to @code{memcpy} or structure copies)
less than or equal to @var{n} bytes. The default value of @var{n} is 1024.
@opindex mcmodel=
@item -mcmodel=@var{code-model}
Set the code model to one of:
@table @samp
@item tiny-static (Not implemented yet)
@item tiny (Not implemented yet)
@item normal
The text segment must be within 128MB addressing space. The data segment must
be within 2GB addressing space.
@item medium
The text segment and data segment must be within 2GB addressing space.
@item large (Not implemented yet)
@item extreme
This mode does not limit the size of the code segment and data segment.
The @option{-mcmodel=extreme} option is incompatible with @option{-fplt}
and/or @option{-mexplicit-relocs=none}.
@end table
The default code model is @code{normal}.
@item -mexplicit-relocs=@var{style}
Set when to use assembler relocation operators when dealing with symbolic
addresses. The alternative is to use assembler macros instead, which may
limit instruction scheduling but allow linker relaxation.
with @option{-mexplicit-relocs=none} the assembler macros are always used,
with @option{-mexplicit-relocs=always} the assembler relocation operators
are always used, with @option{-mexplicit-relocs=auto} the compiler will
use the relocation operators where the linker relaxation is impossible to
improve the code quality, and macros elsewhere. The default
value for the option is determined with the assembler capability detected
during GCC build-time and the setting of @option{-mrelax}:
@option{-mexplicit-relocs=none} if the assembler does not support
relocation operators at all,
@option{-mexplicit-relocs=always} if the assembler supports relocation
operators but @option{-mrelax} is not enabled,
@option{-mexplicit-relocs=auto} if the assembler supports relocation
operators and @option{-mrelax} is enabled.
@opindex mexplicit-relocs
@item -mexplicit-relocs
An alias of @option{-mexplicit-relocs=always} for backward compatibility.
@opindex mno-explicit-relocs
@item -mno-explicit-relocs
An alias of @option{-mexplicit-relocs=none} for backward compatibility.
@opindex mdirect-extern-access
@item -mdirect-extern-access
@itemx -mno-direct-extern-access
Do not use or use GOT to access external symbols. The default is
@option{-mno-direct-extern-access}: GOT is used for external symbols with
default visibility, but not used for other external symbols.
With @option{-mdirect-extern-access}, GOT is not used and all external
symbols are PC-relatively addressed. It is @strong{only} suitable for
environments where no dynamic link is performed, like firmwares, OS
kernels, executables linked with @option{-static} or @option{-static-pie}.
@option{-mdirect-extern-access} is not compatible with @option{-fPIC} or
@option{-fpic}.
@opindex mrelax
@opindex mno-relax
@item -mrelax
@itemx -mno-relax
Take (do not take) advantage of linker relaxations. If
@option{-mpass-mrelax-to-as} is enabled, this option is also passed to
the assembler. The default is determined during GCC build-time by
detecting corresponding assembler support:
@option{-mrelax} if the assembler supports both the @option{-mrelax}
option and the conditional branch relaxation (it's required or the
@code{.align} directives and conditional branch instructions in the
assembly code outputted by GCC may be rejected by the assembler because
of a relocation overflow), @option{-mno-relax} otherwise.
@opindex mpass-mrelax-to-as
@opindex mno-pass-mrelax-to-as
@item -mpass-mrelax-to-as
@itemx -mno-pass-mrelax-to-as
Pass (do not pass) the @option{-mrelax} or @option{-mno-relax} option
to the assembler. The default is determined during GCC build-time by
detecting corresponding assembler support:
@option{-mpass-mrelax-to-as} if the assembler supports the
@option{-mrelax} option, @option{-mno-pass-mrelax-to-as} otherwise.
This option is mostly useful for debugging, or interoperation with
assemblers different from the build-time one.
@opindex mrecip
@item -mrecip
This option enables use of the reciprocal estimate and reciprocal square
root estimate instructions with additional Newton-Raphson steps to increase
precision instead of doing a divide or square root and divide for
floating-point arguments.
These instructions are generated only when @option{-funsafe-math-optimizations}
is enabled together with @option{-ffinite-math-only} and
@option{-fno-trapping-math}.
This option is off by default. Before you can use this option, you must sure the
target CPU supports frecipe and frsqrte instructions.
Note that while the throughput of the sequence is higher than the throughput of
the non-reciprocal instruction, the precision of the sequence can be decreased
by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
@opindex mrecip=opt
@item -mrecip=@var{opt}
This option controls which reciprocal estimate instructions
may be used. @var{opt} is a comma-separated list of options, which may
be preceded by a @samp{!} to invert the option:
@table @samp
@item all
Enable all estimate instructions.
@item default
Enable the default instructions, equivalent to @option{-mrecip}.
@item none
Disable all estimate instructions, equivalent to @option{-mno-recip}.
@item div
Enable the approximation for scalar division.
@item vec-div
Enable the approximation for vectorized division.
@item sqrt
Enable the approximation for scalar square root.
@item vec-sqrt
Enable the approximation for vectorized square root.
@item rsqrt
Enable the approximation for scalar reciprocal square root.
@item vec-rsqrt
Enable the approximation for vectorized reciprocal square root.
@end table
So, for example, @option{-mrecip=all,!sqrt} enables
all of the reciprocal approximations, except for scalar square root.
@opindex mfrecipe
@opindex mno-frecipe
@item -mfrecipe
@itemx -mno-frecipe
Use (do not use) @code{frecipe.@{s/d@}} and @code{frsqrte.@{s/d@}}
instructions. When build with @option{-march=la664}, it is enabled by default.
The default is @option{-mno-frecipe}.
@opindex mdiv32
@opindex mno-div32
@item -mdiv32
@itemx -mno-div32
Use (do not use) @code{div.w[u]} and @code{mod.w[u]} instructions with input
not sign-extended. When build with @option{-march=la664}, it is enabled by
default. The default is @option{-mno-div32}.
@opindex mlam-bh
@opindex mno-lam-bh
@item -mlam-bh
@itemx -mno-lam-bh
Use (do not use) @code{am@{swap/add@}[_db].@{b/h@}} instructions. When build
with @option{-march=la664}, it is enabled by default. The default is
@option{-mno-lam-bh}.
@opindex mlamcas
@opindex mno-lamcas
@item -mlamcas
@itemx -mno-lamcas
Use (do not use) @code{amcas[_db].@{b/h/w/d@}} instructions. When build with
@option{-march=la664}, it is enabled by default. The default is
@option{-mno-lamcas}.
@opindex mld-seq-sa
@opindex mno-ld-seq-sa
@item -mld-seq-sa
@itemx -mno-ld-seq-sa
Whether a load-load barrier (@code{dbar 0x700}) is needed. When build with
@option{-march=la664}, it is enabled by default. The default is
@option{-mno-ld-seq-sa}, the load-load barrier is needed.
@opindex mtls-dialect
@item -mtls-dialect=@var{opt}
This option controls which tls dialect may be used for general dynamic and
local dynamic TLS models.
@table @samp
@item trad
Use traditional TLS. This is the default.
@item desc
Use TLS descriptors.
@end table
@item --param loongarch-vect-unroll-limit=@var{n}
The vectorizer will use available tuning information to determine whether it
would be beneficial to unroll the main vectorized loop and by how much. This
parameter set's the upper bound of how much the vectorizer will unroll the main
loop. The default value is six.
@end table
@node M32C Options
@subsection M32C Options
@cindex M32C options
@table @gcctabopt
@opindex mcpu=
@item -mcpu=@var{name}
Select the CPU for which code is generated. @var{name} may be one of
@samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
/60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
the M32C/80 series.
@opindex msim
@item -msim
Specifies that the program will be run on the simulator. This causes
an alternate runtime library to be linked in which supports, for
example, file I/O@. You must not use this option when generating
programs that will run on real hardware; you must provide your own
runtime library for whatever I/O functions are needed.
@opindex memregs=
@item -memregs=@var{number}
Specifies the number of memory-based pseudo-registers GCC uses
during code generation. These pseudo-registers are used like real
registers, so there is a tradeoff between GCC's ability to fit the
code into available registers, and the performance penalty of using
memory instead of registers. Note that all modules in a program must
be compiled with the same value for this option. Because of that, you
must not use this option with GCC's default runtime libraries.
@end table
@node M32R/D Options
@subsection M32R/D Options
@cindex M32R/D options
These @option{-m} options are defined for Renesas M32R/D architectures:
@table @gcctabopt
@opindex m32r2
@item -m32r2
Generate code for the M32R/2@.
@opindex m32rx
@item -m32rx
Generate code for the M32R/X@.
@opindex m32r
@item -m32r
Generate code for the M32R@. This is the default.
@opindex mmodel=small
@item -mmodel=small
Assume all objects live in the lower 16MB of memory (so that their addresses
can be loaded with the @code{ld24} instruction), and assume all subroutines
are reachable with the @code{bl} instruction.
This is the default.
The addressability of a particular object can be set with the
@code{model} attribute.
@opindex mmodel=medium
@item -mmodel=medium
Assume objects may be anywhere in the 32-bit address space (the compiler
generates @code{seth/add3} instructions to load their addresses), and
assume all subroutines are reachable with the @code{bl} instruction.
@opindex mmodel=large
@item -mmodel=large
Assume objects may be anywhere in the 32-bit address space (the compiler
generates @code{seth/add3} instructions to load their addresses), and
assume subroutines may not be reachable with the @code{bl} instruction
(the compiler generates the much slower @code{seth/add3/jl}
instruction sequence).
@opindex msdata=none
@item -msdata=none
Disable use of the small data area. Variables are put into
one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
@code{section} attribute has been specified).
This is the default.
The small data area consists of sections @code{.sdata} and @code{.sbss}.
Objects may be explicitly put in the small data area with the
@code{section} attribute using one of these sections.
@opindex msdata=sdata
@item -msdata=sdata
Put small global and static data in the small data area, but do not
generate special code to reference them.
@opindex msdata=use
@item -msdata=use
Put small global and static data in the small data area, and generate
special instructions to reference them.
@opindex G
@cindex smaller data references
@item -G @var{num}
Put global and static objects less than or equal to @var{num} bytes
into the small data or BSS sections instead of the normal data or BSS
sections. The default value of @var{num} is 8.
The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
for this option to have any effect.
All modules should be compiled with the same @option{-G @var{num}} value.
Compiling with different values of @var{num} may or may not work; if it
doesn't the linker gives an error message---incorrect code is not
generated.
@opindex mdebug
@item -mdebug
Makes the M32R-specific code in the compiler display some statistics
that might help in debugging programs.
@opindex malign-loops
@item -malign-loops
Align all loops to a 32-byte boundary.
@opindex mno-align-loops
@item -mno-align-loops
Do not enforce a 32-byte alignment for loops. This is the default.
@opindex missue-rate=@var{number}
@item -missue-rate=@var{number}
Issue @var{number} instructions per cycle. @var{number} can only be 1
or 2.
@opindex mbranch-cost=@var{number}
@item -mbranch-cost=@var{number}
@var{number} can only be 1 or 2. If it is 1 then branches are
preferred over conditional code, if it is 2, then the opposite applies.
@opindex mflush-trap=@var{number}
@item -mflush-trap=@var{number}
Specifies the trap number to use to flush the cache. The default is
12. Valid numbers are between 0 and 15 inclusive.
@opindex mno-flush-trap
@item -mno-flush-trap
Specifies that the cache cannot be flushed by using a trap.
@opindex mflush-func=@var{name}
@item -mflush-func=@var{name}
Specifies the name of the operating system function to call to flush
the cache. The default is @samp{_flush_cache}, but a function call
is only used if a trap is not available.
@opindex mno-flush-func
@item -mno-flush-func
Indicates that there is no OS function for flushing the cache.
@end table
@node M680x0 Options
@subsection M680x0 Options
@cindex M680x0 options
These are the @samp{-m} options defined for M680x0 and ColdFire processors.
The default settings depend on which architecture was selected when
the compiler was configured; the defaults for the most common choices
are given below.
@table @gcctabopt
@opindex march
@item -march=@var{arch}
Generate code for a specific M680x0 or ColdFire instruction set
architecture. Permissible values of @var{arch} for M680x0
architectures are: @samp{68000}, @samp{68010}, @samp{68020},
@samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
architectures are selected according to Freescale's ISA classification
and the permissible values are: @samp{isaa}, @samp{isaaplus},
@samp{isab} and @samp{isac}.
GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
code for a ColdFire target. The @var{arch} in this macro is one of the
@option{-march} arguments given above.
When used together, @option{-march} and @option{-mtune} select code
that runs on a family of similar processors but that is optimized
for a particular microarchitecture.
@opindex mcpu
@item -mcpu=@var{cpu}
Generate code for a specific M680x0 or ColdFire processor.
The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
@samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
below, which also classifies the CPUs into families:
@multitable @columnfractions 0.20 0.80
@headitem @strong{Family} @tab @strong{@samp{-mcpu} arguments}
@item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
@item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
@item @samp{5206e} @tab @samp{5206e}
@item @samp{5208} @tab @samp{5207} @samp{5208}
@item @samp{5211a} @tab @samp{5210a} @samp{5211a}
@item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
@item @samp{5216} @tab @samp{5214} @samp{5216}
@item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
@item @samp{5225} @tab @samp{5224} @samp{5225}
@item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
@item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
@item @samp{5249} @tab @samp{5249}
@item @samp{5250} @tab @samp{5250}
@item @samp{5271} @tab @samp{5270} @samp{5271}
@item @samp{5272} @tab @samp{5272}
@item @samp{5275} @tab @samp{5274} @samp{5275}
@item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
@item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
@item @samp{5307} @tab @samp{5307}
@item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
@item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
@item @samp{5407} @tab @samp{5407}
@item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
@end multitable
@option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
@var{arch} is compatible with @var{cpu}. Other combinations of
@option{-mcpu} and @option{-march} are rejected.
GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
@var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
where the value of @var{family} is given by the table above.
@opindex mtune
@item -mtune=@var{tune}
Tune the code for a particular microarchitecture within the
constraints set by @option{-march} and @option{-mcpu}.
The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
@samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
and @samp{cpu32}. The ColdFire microarchitectures
are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
You can also use @option{-mtune=68020-40} for code that needs
to run relatively well on 68020, 68030 and 68040 targets.
@option{-mtune=68020-60} is similar but includes 68060 targets
as well. These two options select the same tuning decisions as
@option{-m68020-40} and @option{-m68020-60} respectively.
GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
when tuning for 680x0 architecture @var{arch}. It also defines
@code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
option is used. If GCC is tuning for a range of architectures,
as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
it defines the macros for every architecture in the range.
GCC also defines the macro @code{__m@var{uarch}__} when tuning for
ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
of the arguments given above.
@opindex m68000
@opindex mc68000
@item -m68000
@itemx -mc68000
Generate output for a 68000. This is the default
when the compiler is configured for 68000-based systems.
It is equivalent to @option{-march=68000}.
Use this option for microcontrollers with a 68000 or EC000 core,
including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
@opindex m68010
@item -m68010
Generate output for a 68010. This is the default
when the compiler is configured for 68010-based systems.
It is equivalent to @option{-march=68010}.
@opindex m68020
@opindex mc68020
@item -m68020
@itemx -mc68020
Generate output for a 68020. This is the default
when the compiler is configured for 68020-based systems.
It is equivalent to @option{-march=68020}.
@opindex m68030
@item -m68030
Generate output for a 68030. This is the default when the compiler is
configured for 68030-based systems. It is equivalent to
@option{-march=68030}.
@opindex m68040
@item -m68040
Generate output for a 68040. This is the default when the compiler is
configured for 68040-based systems. It is equivalent to
@option{-march=68040}.
This option inhibits the use of 68881/68882 instructions that have to be
emulated by software on the 68040. Use this option if your 68040 does not
have code to emulate those instructions.
@opindex m68060
@item -m68060
Generate output for a 68060. This is the default when the compiler is
configured for 68060-based systems. It is equivalent to
@option{-march=68060}.
This option inhibits the use of 68020 and 68881/68882 instructions that
have to be emulated by software on the 68060. Use this option if your 68060
does not have code to emulate those instructions.
@opindex mcpu32
@item -mcpu32
Generate output for a CPU32. This is the default
when the compiler is configured for CPU32-based systems.
It is equivalent to @option{-march=cpu32}.
Use this option for microcontrollers with a
CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
68336, 68340, 68341, 68349 and 68360.
@opindex m5200
@item -m5200
Generate output for a 520X ColdFire CPU@. This is the default
when the compiler is configured for 520X-based systems.
It is equivalent to @option{-mcpu=5206}, and is now deprecated
in favor of that option.
Use this option for microcontroller with a 5200 core, including
the MCF5202, MCF5203, MCF5204 and MCF5206.
@opindex m5206e
@item -m5206e
Generate output for a 5206e ColdFire CPU@. The option is now
deprecated in favor of the equivalent @option{-mcpu=5206e}.
@opindex m528x
@item -m528x
Generate output for a member of the ColdFire 528X family.
The option is now deprecated in favor of the equivalent
@option{-mcpu=528x}.
@opindex m5307
@item -m5307
Generate output for a ColdFire 5307 CPU@. The option is now deprecated
in favor of the equivalent @option{-mcpu=5307}.
@opindex m5407
@item -m5407
Generate output for a ColdFire 5407 CPU@. The option is now deprecated
in favor of the equivalent @option{-mcpu=5407}.
@opindex mcfv4e
@item -mcfv4e
Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
This includes use of hardware floating-point instructions.
The option is equivalent to @option{-mcpu=547x}, and is now
deprecated in favor of that option.
@opindex m68020-40
@item -m68020-40
Generate output for a 68040, without using any of the new instructions.
This results in code that can run relatively efficiently on either a
68020/68881 or a 68030 or a 68040. The generated code does use the
68881 instructions that are emulated on the 68040.
The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
@opindex m68020-60
@item -m68020-60
Generate output for a 68060, without using any of the new instructions.
This results in code that can run relatively efficiently on either a
68020/68881 or a 68030 or a 68040. The generated code does use the
68881 instructions that are emulated on the 68060.
The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
@opindex mhard-float
@opindex m68881
@item -mhard-float
@itemx -m68881
Generate floating-point instructions. This is the default for 68020
and above, and for ColdFire devices that have an FPU@. It defines the
macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
on ColdFire targets.
@opindex msoft-float
@item -msoft-float
Do not generate floating-point instructions; use library calls instead.
This is the default for 68000, 68010, and 68832 targets. It is also
the default for ColdFire devices that have no FPU.
@opindex mdiv
@opindex mno-div
@item -mdiv
@itemx -mno-div
Generate (do not generate) ColdFire hardware divide and remainder
instructions. If @option{-march} is used without @option{-mcpu},
the default is ``on'' for ColdFire architectures and ``off'' for M680x0
architectures. Otherwise, the default is taken from the target CPU
(either the default CPU, or the one specified by @option{-mcpu}). For
example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
@option{-mcpu=5206e}.
GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
@opindex mshort
@item -mshort
Consider type @code{int} to be 16 bits wide, like @code{short int}.
Additionally, parameters passed on the stack are also aligned to a
16-bit boundary even on targets whose API mandates promotion to 32-bit.
@opindex mno-short
@item -mno-short
Do not consider type @code{int} to be 16 bits wide. This is the default.
@opindex mnobitfield
@opindex mno-bitfield
@item -mnobitfield
@itemx -mno-bitfield
Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
and @option{-m5200} options imply @w{@option{-mnobitfield}}.
@opindex mbitfield
@item -mbitfield
Do use the bit-field instructions. The @option{-m68020} option implies
@option{-mbitfield}. This is the default if you use a configuration
designed for a 68020.
@opindex mrtd
@item -mrtd
Use a different function-calling convention, in which functions
that take a fixed number of arguments return with the @code{rtd}
instruction, which pops their arguments while returning. This
saves one instruction in the caller since there is no need to pop
the arguments there.
This calling convention is incompatible with the one normally
used on Unix, so you cannot use it if you need to call libraries
compiled with the Unix compiler.
Also, you must provide function prototypes for all functions that
take variable numbers of arguments (including @code{printf});
otherwise incorrect code is generated for calls to those
functions.
In addition, seriously incorrect code results if you call a
function with too many arguments. (Normally, extra arguments are
harmlessly ignored.)
The @code{rtd} instruction is supported by the 68010, 68020, 68030,
68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
The default is @option{-mno-rtd}.
@opindex malign-int
@opindex mno-align-int
@item -malign-int
@itemx -mno-align-int
Control whether GCC aligns @code{int}, @code{long}, @code{long long},
@code{float}, @code{double}, and @code{long double} variables on a 32-bit
boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
Aligning variables on 32-bit boundaries produces code that runs somewhat
faster on processors with 32-bit busses at the expense of more memory.
@strong{Warning:} if you use the @option{-malign-int} switch, GCC
aligns structures containing the above types differently than
most published application binary interface specifications for the m68k.
@opindex mpcrel
Use the pc-relative addressing mode of the 68000 directly, instead of
using a global offset table. At present, this option implies @option{-fpic},
allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
not presently supported with @option{-mpcrel}, though this could be supported for
68020 and higher processors.
@opindex mno-strict-align
@opindex mstrict-align
@item -mno-strict-align
@itemx -mstrict-align
Do not (do) assume that unaligned memory references are handled by
the system.
@item -msep-data
Generate code that allows the data segment to be located in a different
area of memory from the text segment. This allows for execute-in-place in
an environment without virtual memory management. This option implies
@option{-fPIC}.
@item -mno-sep-data
Generate code that assumes that the data segment follows the text segment.
This is the default.
@item -mid-shared-library
Generate code that supports shared libraries via the library ID method.
This allows for execute-in-place and shared libraries in an environment
without virtual memory management. This option implies @option{-fPIC}.
@item -mno-id-shared-library
Generate code that doesn't assume ID-based shared libraries are being used.
This is the default.
@item -mshared-library-id=n
Specifies the identification number of the ID-based shared library being
compiled. Specifying a value of 0 generates more compact code; specifying
other values forces the allocation of that number to the current
library, but is no more space- or time-efficient than omitting this option.
@opindex mxgot
@opindex mno-xgot
@item -mxgot
@itemx -mno-xgot
When generating position-independent code for ColdFire, generate code
that works if the GOT has more than 8192 entries. This code is
larger and slower than code generated without this option. On M680x0
processors, this option is not needed; @option{-fPIC} suffices.
GCC normally uses a single instruction to load values from the GOT@.
While this is relatively efficient, it only works if the GOT
is smaller than about 64k. Anything larger causes the linker
to report an error such as:
@cindex relocation truncated to fit (ColdFire)
@smallexample
relocation truncated to fit: R_68K_GOT16O foobar
@end smallexample
If this happens, you should recompile your code with @option{-mxgot}.
It should then work with very large GOTs. However, code generated with
@option{-mxgot} is less efficient, since it takes 4 instructions to fetch
the value of a global symbol.
Note that some linkers, including newer versions of the GNU linker,
can create multiple GOTs and sort GOT entries. If you have such a linker,
you should only need to use @option{-mxgot} when compiling a single
object file that accesses more than 8192 GOT entries. Very few do.
These options have no effect unless GCC is generating
position-independent code.
@opindex mlong-jump-table-offsets
@item -mlong-jump-table-offsets
Use 32-bit offsets in @code{switch} tables. The default is to use
16-bit offsets.
@end table
@node MCore Options
@subsection MCore Options
@cindex MCore options
These are the @samp{-m} options defined for the Motorola M*Core
processors.
@table @gcctabopt
@opindex mhardlit
@opindex mno-hardlit
@item -mhardlit
@itemx -mno-hardlit
Inline constants into the code stream if it can be done in two
instructions or less.
@opindex mdiv
@opindex mno-div
@item -mdiv
@itemx -mno-div
Use the divide instruction. (Enabled by default).
@opindex mrelax-immediate
@opindex mno-relax-immediate
@item -mrelax-immediate
@itemx -mno-relax-immediate
Allow arbitrary-sized immediates in bit operations.
@opindex mwide-bitfields
@opindex mno-wide-bitfields
@item -mwide-bitfields
@itemx -mno-wide-bitfields
Always treat bit-fields as @code{int}-sized.
@opindex m4byte-functions
@opindex mno-4byte-functions
@item -m4byte-functions
@itemx -mno-4byte-functions
Force all functions to be aligned to a 4-byte boundary.
@opindex mcallgraph-data
@opindex mno-callgraph-data
@item -mcallgraph-data
@itemx -mno-callgraph-data
Emit callgraph information.
@opindex mslow-bytes
@opindex mno-slow-bytes
@item -mslow-bytes
@itemx -mno-slow-bytes
Prefer word access when reading byte quantities.
@opindex mlittle-endian
@opindex mbig-endian
@item -mlittle-endian
@itemx -mbig-endian
Generate code for a little-endian target.
@opindex m210
@opindex m340
@item -m210
@itemx -m340
Generate code for the 210 processor.
@opindex mno-lsim
@item -mno-lsim
Assume that runtime support has been provided and so omit the
simulator library (@file{libsim.a)} from the linker command line.
@opindex mstack-increment
@item -mstack-increment=@var{size}
Set the maximum amount for a single stack increment operation. Large
values can increase the speed of programs that contain functions
that need a large amount of stack space, but they can also trigger a
segmentation fault if the stack is extended too much. The default
value is 0x1000.
@end table
@node MicroBlaze Options
@subsection MicroBlaze Options
@cindex MicroBlaze Options
@table @gcctabopt
@opindex msoft-float
@item -msoft-float
Use software emulation for floating point (default).
@opindex mhard-float
@item -mhard-float
Use hardware floating-point instructions.
@opindex mmemcpy
@item -mmemcpy
Do not optimize block moves, use @code{memcpy}.
@opindex mno-clearbss
@item -mno-clearbss
This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
@opindex mcpu=
@item -mcpu=@var{cpu-type}
Use features of, and schedule code for, the given CPU.
Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
where @var{X} is a major version, @var{YY} is the minor version, and
@var{Z} is compatibility code. Example values are @samp{v3.00.a},
@samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v6.00.a}.
@opindex mxl-soft-mul
@item -mxl-soft-mul
Use software multiply emulation (default).
@opindex mxl-soft-div
@item -mxl-soft-div
Use software emulation for divides (default).
@opindex mxl-barrel-shift
@item -mxl-barrel-shift
Use the hardware barrel shifter.
@opindex mxl-pattern-compare
@item -mxl-pattern-compare
Use pattern compare instructions.
@opindex msmall-divides
@item -msmall-divides
Use table lookup optimization for small signed integer divisions.
@opindex mxl-stack-check
@item -mxl-stack-check
This option is deprecated. Use @option{-fstack-check} instead.
@opindex mxl-gp-opt
@item -mxl-gp-opt
Use GP-relative @code{.sdata}/@code{.sbss} sections.
@opindex mxl-multiply-high
@item -mxl-multiply-high
Use multiply high instructions for high part of 32x32 multiply.
@opindex mxl-float-convert
@item -mxl-float-convert
Use hardware floating-point conversion instructions.
@opindex mxl-float-sqrt
@item -mxl-float-sqrt
Use hardware floating-point square root instruction.
@opindex mbig-endian
@item -mbig-endian
Generate code for a big-endian target.
@opindex mlittle-endian
@item -mlittle-endian
Generate code for a little-endian target.
@opindex mxl-reorder
@item -mxl-reorder
Use reorder instructions (swap and byte reversed load/store).
@item -mxl-mode-@var{app-model}
Select application model @var{app-model}. Valid models are
@table @samp
@item executable
normal executable (default), uses startup code @file{crt0.o}.
@item xmdstub
for use with Xilinx Microprocessor Debugger (XMD) based
software intrusive debug agent called xmdstub. This uses startup file
@file{crt1.o} and sets the start address of the program to 0x800.
@item bootstrap
for applications that are loaded using a bootloader.
This model uses startup file @file{crt2.o} which does not contain a processor
reset vector handler. This is suitable for transferring control on a
processor reset to the bootloader rather than the application.
@item novectors
for applications that do not require any of the
MicroBlaze vectors. This option may be useful for applications running
within a monitoring application. This model uses @file{crt3.o} as a startup file.
@end table
Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
@option{-mxl-mode-@var{app-model}}.
@opindex mpic-data-is-text-relative
@item -mpic-data-is-text-relative
Assume that the displacement between the text and data segments is fixed
at static link time. This allows data to be referenced by offset from start of
text address instead of GOT since PC-relative addressing is not supported.
@end table
@node MIPS Options
@subsection MIPS Options
@cindex MIPS options
@table @gcctabopt
@opindex EB
@item -EB
Generate big-endian code.
@opindex EL
@item -EL
Generate little-endian code. This is the default for @samp{mips*el-*-*}
configurations.
@opindex march
@item -march=@var{arch}
Generate code that runs on @var{arch}, which can be the name of a
generic MIPS ISA, or the name of a particular processor.
The ISA names are:
@samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
@samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
@samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
@samp{mips64r5} and @samp{mips64r6}.
The processor names are:
@samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
@samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
@samp{5kc}, @samp{5kf},
@samp{20kc},
@samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
@samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
@samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
@samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
@samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
@samp{i6400}, @samp{i6500},
@samp{interaptiv},
@samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a}, @samp{gs464},
@samp{gs464e}, @samp{gs264e},
@samp{m4k},
@samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
@samp{m5100}, @samp{m5101},
@samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
@samp{orion},
@samp{p5600}, @samp{p6600},
@samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
@samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r5900},
@samp{r6000}, @samp{r8000},
@samp{rm7000}, @samp{rm9000},
@samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
@samp{sb1},
@samp{sr71000},
@samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
@samp{vr5000}, @samp{vr5400}, @samp{vr5500},
@samp{xlr} and @samp{xlp}.
The special value @samp{from-abi} selects the
most compatible architecture for the selected ABI (that is,
@samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
The native Linux/GNU toolchain also supports the value @samp{native},
which selects the best architecture option for the host processor.
@option{-march=native} has no effect if GCC does not recognize
the processor.
In processor names, a final @samp{000} can be abbreviated as @samp{k}
(for example, @option{-march=r2k}). Prefixes are optional, and
@samp{vr} may be written @samp{r}.
Names of the form @samp{@var{n}f2_1} refer to processors with
FPUs clocked at half the rate of the core, names of the form
@samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
rate as the core, and names of the form @samp{@var{n}f3_2} refer to
processors with FPUs clocked a ratio of 3:2 with respect to the core.
For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
accepted as synonyms for @samp{@var{n}f1_1}.
GCC defines two macros based on the value of this option. The first
is @code{_MIPS_ARCH}, which gives the name of target architecture, as
a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
Note that the @code{_MIPS_ARCH} macro uses the processor names given
above. In other words, it has the full prefix and does not
abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
the macro names the resolved architecture (either @code{"mips1"} or
@code{"mips3"}). It names the default architecture when no
@option{-march} option is given.
@opindex mtune
@item -mtune=@var{arch}
Optimize for @var{arch}. Among other things, this option controls
the way instructions are scheduled, and the perceived cost of arithmetic
operations. The list of @var{arch} values is the same as for
@option{-march}.
When this option is not used, GCC optimizes for the processor
specified by @option{-march}. By using @option{-march} and
@option{-mtune} together, it is possible to generate code that
runs on a family of processors, but optimize the code for one
particular member of that family.
@option{-mtune} defines the macros @code{_MIPS_TUNE} and
@code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
@option{-march} ones described above.
@opindex mips1
@item -mips1
Equivalent to @option{-march=mips1}.
@opindex mips2
@item -mips2
Equivalent to @option{-march=mips2}.
@opindex mips3
@item -mips3
Equivalent to @option{-march=mips3}.
@opindex mips4
@item -mips4
Equivalent to @option{-march=mips4}.
@opindex mips32
@item -mips32
Equivalent to @option{-march=mips32}.
@opindex mips32r3
@item -mips32r3
Equivalent to @option{-march=mips32r3}.
@opindex mips32r5
@item -mips32r5
Equivalent to @option{-march=mips32r5}.
@opindex mips32r6
@item -mips32r6
Equivalent to @option{-march=mips32r6}.
@opindex mips64
@item -mips64
Equivalent to @option{-march=mips64}.
@opindex mips64r2
@item -mips64r2
Equivalent to @option{-march=mips64r2}.
@opindex mips64r3
@item -mips64r3
Equivalent to @option{-march=mips64r3}.
@opindex mips64r5
@item -mips64r5
Equivalent to @option{-march=mips64r5}.
@opindex mips64r6
@item -mips64r6
Equivalent to @option{-march=mips64r6}.
@opindex mips16
@opindex mno-mips16
@item -mips16
@itemx -mno-mips16
Generate (do not generate) MIPS16 code. If GCC is targeting a
MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
MIPS16 code generation can also be controlled on a per-function basis
by means of @code{mips16} and @code{nomips16} attributes.
@xref{Function Attributes}, for more information.
@opindex mmips16e2
@opindex mno-mips16e2
@item -mmips16e2
@itemx -mno-mips16e2
Use (do not use) the MIPS16e2 ASE. This option modifies the behavior
of the @option{-mips16} option such that it targets the MIPS16e2 ASE@.
@opindex mflip-mips16
@item -mflip-mips16
Generate MIPS16 code on alternating functions. This option is provided
for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
not intended for ordinary use in compiling user code.
@opindex minterlink-compressed
@opindex mno-interlink-compressed
@item -minterlink-compressed
@itemx -mno-interlink-compressed
Require (do not require) that code using the standard (uncompressed) MIPS ISA
be link-compatible with MIPS16 and microMIPS code, and vice versa.
For example, code using the standard ISA encoding cannot jump directly
to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
@option{-minterlink-compressed} therefore disables direct jumps unless GCC
knows that the target of the jump is not compressed.
@opindex minterlink-mips16
@opindex mno-interlink-mips16
@item -minterlink-mips16
@itemx -mno-interlink-mips16
Aliases of @option{-minterlink-compressed} and
@option{-mno-interlink-compressed}. These options predate the microMIPS ASE
and are retained for backwards compatibility.
@opindex mabi
@item -mabi=32
@itemx -mabi=o64
@itemx -mabi=n32
@itemx -mabi=64
@itemx -mabi=eabi
Generate code for the given ABI@.
Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
generates 64-bit code when you select a 64-bit architecture, but you
can use @option{-mgp32} to get 32-bit code instead.
For information about the O64 ABI, see
@uref{https://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
GCC supports a variant of the o32 ABI in which floating-point registers
are 64 rather than 32 bits wide. You can select this combination with
@option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
and @code{mfhc1} instructions and is therefore only supported for
MIPS32R2, MIPS32R3 and MIPS32R5 processors.
The register assignments for arguments and return values remain the
same, but each scalar value is passed in a single 64-bit register
rather than a pair of 32-bit registers. For example, scalar
floating-point values are returned in @samp{$f0} only, not a
@samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
remains the same in that the even-numbered double-precision registers
are saved.
Two additional variants of the o32 ABI are supported to enable
a transition from 32-bit to 64-bit registers. These are FPXX
(@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
The FPXX extension mandates that all code must execute correctly
when run using 32-bit or 64-bit registers. The code can be interlinked
with either FP32 or FP64, but not both.
The FP64A extension is similar to the FP64 extension but forbids the
use of odd-numbered single-precision registers. This can be used
in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
processors and allows both FP32 and FP64A code to interlink and
run in the same process without changing FPU modes.
@opindex mabicalls
@opindex mno-abicalls
@item -mabicalls
@itemx -mno-abicalls
Generate (do not generate) code that is suitable for SVR4-style
dynamic objects. @option{-mabicalls} is the default for SVR4-based
systems.
@item -mshared
@itemx -mno-shared
Generate (do not generate) code that is fully position-independent,
and that can therefore be linked into shared libraries. This option
only affects @option{-mabicalls}.
All @option{-mabicalls} code has traditionally been position-independent,
regardless of options like @option{-fPIC} and @option{-fpic}. However,
as an extension, the GNU toolchain allows executables to use absolute
accesses for locally-binding symbols. It can also use shorter GP
initialization sequences and generate direct calls to locally-defined
functions. This mode is selected by @option{-mno-shared}.
@option{-mno-shared} depends on binutils 2.16 or higher and generates
objects that can only be linked by the GNU linker. However, the option
does not affect the ABI of the final executable; it only affects the ABI
of relocatable objects. Using @option{-mno-shared} generally makes
executables both smaller and quicker.
@option{-mshared} is the default.
@opindex mplt
@opindex mno-plt
@item -mplt
@itemx -mno-plt
Assume (do not assume) that the static and dynamic linkers
support PLTs and copy relocations. This option only affects
@option{-mno-shared -mabicalls}. For the n64 ABI, this option
has no effect without @option{-msym32}.
You can make @option{-mplt} the default by configuring
GCC with @option{--with-mips-plt}. The default is
@option{-mno-plt} otherwise.
@opindex mxgot
@opindex mno-xgot
@item -mxgot
@itemx -mno-xgot
Lift (do not lift) the usual restrictions on the size of the global
offset table.
GCC normally uses a single instruction to load values from the GOT@.
While this is relatively efficient, it only works if the GOT
is smaller than about 64k. Anything larger causes the linker
to report an error such as:
@cindex relocation truncated to fit (MIPS)
@smallexample
relocation truncated to fit: R_MIPS_GOT16 foobar
@end smallexample
If this happens, you should recompile your code with @option{-mxgot}.
This works with very large GOTs, although the code is also
less efficient, since it takes three instructions to fetch the
value of a global symbol.
Note that some linkers can create multiple GOTs. If you have such a
linker, you should only need to use @option{-mxgot} when a single object
file accesses more than 64k's worth of GOT entries. Very few do.
These options have no effect unless GCC is generating position
independent code.
@opindex mgp32
@item -mgp32
Assume that general-purpose registers are 32 bits wide.
@opindex mgp64
@item -mgp64
Assume that general-purpose registers are 64 bits wide.
@opindex mfp32
@item -mfp32
Assume that floating-point registers are 32 bits wide.
@opindex mfp64
@item -mfp64
Assume that floating-point registers are 64 bits wide.
@opindex mfpxx
@item -mfpxx
Do not assume the width of floating-point registers.
@opindex mhard-float
@item -mhard-float
Use floating-point coprocessor instructions.
@opindex msoft-float
@item -msoft-float
Do not use floating-point coprocessor instructions. Implement
floating-point calculations using library calls instead.
@opindex mno-float
@item -mno-float
Equivalent to @option{-msoft-float}, but additionally asserts that the
program being compiled does not perform any floating-point operations.
This option is presently supported only by some bare-metal MIPS
configurations, where it may select a special set of libraries
that lack all floating-point support (including, for example, the
floating-point @code{printf} formats).
If code compiled with @option{-mno-float} accidentally contains
floating-point operations, it is likely to suffer a link-time
or run-time failure.
@opindex msingle-float
@item -msingle-float
Assume that the floating-point coprocessor only supports single-precision
operations.
@opindex mdouble-float
@item -mdouble-float
Assume that the floating-point coprocessor supports double-precision
operations. This is the default.
@opindex modd-spreg
@opindex mno-odd-spreg
@item -modd-spreg
@itemx -mno-odd-spreg
Enable the use of odd-numbered single-precision floating-point registers
for the o32 ABI. This is the default for processors that are known to
support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
is set by default.
@opindex mabs=2008
@opindex mabs=legacy
@item -mabs=2008
@itemx -mabs=legacy
These options control the treatment of the special not-a-number (NaN)
IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
@code{neg.@i{fmt}} machine instructions.
By default or when @option{-mabs=legacy} is used the legacy
treatment is selected. In this case these instructions are considered
arithmetic and avoided where correct operation is required and the
input operand might be a NaN. A longer sequence of instructions that
manipulate the sign bit of floating-point datum manually is used
instead unless the @option{-ffinite-math-only} option has also been
specified.
The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
this case these instructions are considered non-arithmetic and therefore
operating correctly in all cases, including in particular where the
input operand is a NaN. These instructions are therefore always used
for the respective operations.
@opindex mnan=2008
@opindex mnan=legacy
@item -mnan=2008
@itemx -mnan=legacy
These options control the encoding of the special not-a-number (NaN)
IEEE 754 floating-point data.
The @option{-mnan=legacy} option selects the legacy encoding. In this
case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
significand field being 0, whereas signaling NaNs (sNaNs) are denoted
by the first bit of their trailing significand field being 1.
The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
this case qNaNs are denoted by the first bit of their trailing
significand field being 1, whereas sNaNs are denoted by the first bit of
their trailing significand field being 0.
The default is @option{-mnan=legacy} unless GCC has been configured with
@option{--with-nan=2008}.
@opindex mllsc
@opindex mno-llsc
@item -mllsc
@itemx -mno-llsc
Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
implement atomic memory built-in functions. When neither option is
specified, GCC uses the instructions if the target architecture
supports them.
@option{-mllsc} is useful if the runtime environment can emulate the
instructions and @option{-mno-llsc} can be useful when compiling for
nonstandard ISAs. You can make either option the default by
configuring GCC with @option{--with-llsc} and @option{--without-llsc}
respectively. @option{--with-llsc} is the default for some
configurations; see the installation documentation for details.
@opindex mdsp
@opindex mno-dsp
@item -mdsp
@itemx -mno-dsp
Use (do not use) revision 1 of the MIPS DSP ASE@.
@xref{MIPS DSP Built-in Functions}. This option defines the
preprocessor macro @code{__mips_dsp}. It also defines
@code{__mips_dsp_rev} to 1.
@opindex mdspr2
@opindex mno-dspr2
@item -mdspr2
@itemx -mno-dspr2
Use (do not use) revision 2 of the MIPS DSP ASE@.
@xref{MIPS DSP Built-in Functions}. This option defines the
preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
It also defines @code{__mips_dsp_rev} to 2.
@opindex msmartmips
@opindex mno-smartmips
@item -msmartmips
@itemx -mno-smartmips
Use (do not use) the MIPS SmartMIPS ASE.
@opindex mpaired-single
@opindex mno-paired-single
@item -mpaired-single
@itemx -mno-paired-single
Use (do not use) paired-single floating-point instructions.
@xref{MIPS Paired-Single Support}. This option requires
hardware floating-point support to be enabled.
@opindex mdmx
@opindex mno-mdmx
@item -mdmx
@itemx -mno-mdmx
Use (do not use) MIPS Digital Media Extension instructions.
This option can only be used when generating 64-bit code and requires
hardware floating-point support to be enabled.
@opindex mips3d
@opindex mno-mips3d
@item -mips3d
@itemx -mno-mips3d
Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
The option @option{-mips3d} implies @option{-mpaired-single}.
@opindex mmicromips
@opindex mno-mmicromips
@item -mmicromips
@itemx -mno-micromips
Generate (do not generate) microMIPS code.
MicroMIPS code generation can also be controlled on a per-function basis
by means of @code{micromips} and @code{nomicromips} attributes.
@xref{Function Attributes}, for more information.
@opindex mmt
@opindex mno-mt
@item -mmt
@itemx -mno-mt
Use (do not use) MT Multithreading instructions.
@opindex mmcu
@opindex mno-mcu
@item -mmcu
@itemx -mno-mcu
Use (do not use) the MIPS MCU ASE instructions.
@opindex meva
@opindex mno-eva
@item -meva
@itemx -mno-eva
Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
@opindex mvirt
@opindex mno-virt
@item -mvirt
@itemx -mno-virt
Use (do not use) the MIPS Virtualization (VZ) instructions.
@opindex mxpa
@opindex mno-xpa
@item -mxpa
@itemx -mno-xpa
Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
@opindex mcrc
@opindex mno-crc
@item -mcrc
@itemx -mno-crc
Use (do not use) the MIPS Cyclic Redundancy Check (CRC) instructions.
@opindex mginv
@opindex mno-ginv
@item -mginv
@itemx -mno-ginv
Use (do not use) the MIPS Global INValidate (GINV) instructions.
@opindex mloongson-mmi
@opindex mno-loongson-mmi
@item -mloongson-mmi
@itemx -mno-loongson-mmi
Use (do not use) the MIPS Loongson MultiMedia extensions Instructions (MMI).
@opindex mloongson-ext
@opindex mno-loongson-ext
@item -mloongson-ext
@itemx -mno-loongson-ext
Use (do not use) the MIPS Loongson EXTensions (EXT) instructions.
@opindex mloongson-ext2
@opindex mno-loongson-ext2
@item -mloongson-ext2
@itemx -mno-loongson-ext2
Use (do not use) the MIPS Loongson EXTensions r2 (EXT2) instructions.
@opindex mlong64
@item -mlong64
Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
an explanation of the default and the way that the pointer size is
determined.
@opindex mlong32
@item -mlong32
Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
The default size of @code{int}s, @code{long}s and pointers depends on
the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
32-bit @code{long}s. Pointers are the same size as @code{long}s,
or the same size as integer registers, whichever is smaller.
@opindex msym32
@opindex mno-sym32
@item -msym32
@itemx -mno-sym32
Assume (do not assume) that all symbols have 32-bit values, regardless
of the selected ABI@. This option is useful in combination with
@option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
to generate shorter and faster references to symbolic addresses.
@opindex G
@item -G @var{num}
Put definitions of externally-visible data in a small data section
if that data is no bigger than @var{num} bytes. GCC can then generate
more efficient accesses to the data; see @option{-mgpopt} for details.
The default @option{-G} option depends on the configuration.
@opindex mlocal-sdata
@opindex mno-local-sdata
@item -mlocal-sdata
@itemx -mno-local-sdata
Extend (do not extend) the @option{-G} behavior to local data too,
such as to static variables in C@. @option{-mlocal-sdata} is the
default for all configurations.
If the linker complains that an application is using too much small data,
you might want to try rebuilding the less performance-critical parts with
@option{-mno-local-sdata}. You might also want to build large
libraries with @option{-mno-local-sdata}, so that the libraries leave
more room for the main program.
@opindex mextern-sdata
@opindex mno-extern-sdata
@item -mextern-sdata
@itemx -mno-extern-sdata
Assume (do not assume) that externally-defined data is in
a small data section if the size of that data is within the @option{-G} limit.
@option{-mextern-sdata} is the default for all configurations.
If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
@var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
that is no bigger than @var{num} bytes, you must make sure that @var{Var}
is placed in a small data section. If @var{Var} is defined by another
module, you must either compile that module with a high-enough
@option{-G} setting or attach a @code{section} attribute to @var{Var}'s
definition. If @var{Var} is common, you must link the application
with a high-enough @option{-G} setting.
The easiest way of satisfying these restrictions is to compile
and link every module with the same @option{-G} option. However,
you may wish to build a library that supports several different
small data limits. You can do this by compiling the library with
the highest supported @option{-G} setting and additionally using
@option{-mno-extern-sdata} to stop the library from making assumptions
about externally-defined data.
@opindex mgpopt
@opindex mno-gpopt
@item -mgpopt
@itemx -mno-gpopt
Use (do not use) GP-relative accesses for symbols that are known to be
in a small data section; see @option{-G}, @option{-mlocal-sdata} and
@option{-mextern-sdata}. @option{-mgpopt} is the default for all
configurations.
@option{-mno-gpopt} is useful for cases where the @code{$gp} register
might not hold the value of @code{_gp}. For example, if the code is
part of a library that might be used in a boot monitor, programs that
call boot monitor routines pass an unknown value in @code{$gp}.
(In such situations, the boot monitor itself is usually compiled
with @option{-G0}.)
@option{-mno-gpopt} implies @option{-mno-local-sdata} and
@option{-mno-extern-sdata}.
@opindex membedded-data
@opindex mno-embedded-data
@item -membedded-data
@itemx -mno-embedded-data
Allocate variables to the read-only data section first if possible, then
next in the small data section if possible, otherwise in data. This gives
slightly slower code than the default, but reduces the amount of RAM required
when executing, and thus may be preferred for some embedded systems.
@opindex muninit-const-in-rodata
@opindex mno-uninit-const-in-rodata
@item -muninit-const-in-rodata
@itemx -mno-uninit-const-in-rodata
Put uninitialized @code{const} variables in the read-only data section.
This option is only meaningful in conjunction with @option{-membedded-data}.
@opindex mcode-readable
@item -mcode-readable=@var{setting}
Specify whether GCC may generate code that reads from executable sections.
There are three possible settings:
@table @gcctabopt
@item -mcode-readable=yes
Instructions may freely access executable sections. This is the
default setting.
@item -mcode-readable=pcrel
MIPS16 PC-relative load instructions can access executable sections,
but other instructions must not do so. This option is useful on 4KSc
and 4KSd processors when the code TLBs have the Read Inhibit bit set.
It is also useful on processors that can be configured to have a dual
instruction/data SRAM interface and that, like the M4K, automatically
redirect PC-relative loads to the instruction RAM.
@item -mcode-readable=no
Instructions must not access executable sections. This option can be
useful on targets that are configured to have a dual instruction/data
SRAM interface but that (unlike the M4K) do not automatically redirect
PC-relative loads to the instruction RAM.
@end table
@opindex msplit-addresses
@opindex mno-split-addresses
@item -msplit-addresses
@itemx -mno-split-addresses
Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
relocation operators. This option has been superseded by
@option{-mexplicit-relocs} but is retained for backwards compatibility.
@opindex mexplicit-relocs
@opindex mno-explicit-relocs
@item -mexplicit-relocs=none
@itemx -mexplicit-relocs=base
@itemx -mexplicit-relocs=pcrel
@itemx -mexplicit-relocs
@itemx -mno-explicit-relocs
These options control whether explicit relocs (such as %gp_rel) are used.
The default value depends on the version of GAS when GCC itself was built.
The @code{base} explicit-relocs support introdunced into GAS in 2001.
The @code{pcrel} explicit-relocs support introdunced into GAS in 2014,
which supports @code{%pcrel_hi} and @code{%pcrel_lo}.
@opindex mcheck-zero-division
@opindex mno-check-zero-division
@item -mcheck-zero-division
@itemx -mno-check-zero-division
Trap (do not trap) on integer division by zero.
The default is @option{-mcheck-zero-division}.
@opindex mdivide-traps
@opindex mdivide-breaks
@item -mdivide-traps
@itemx -mdivide-breaks
MIPS systems check for division by zero by generating either a
conditional trap or a break instruction. Using traps results in
smaller code, but is only supported on MIPS II and later. Also, some
versions of the Linux kernel have a bug that prevents trap from
generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
allow conditional traps on architectures that support them and
@option{-mdivide-breaks} to force the use of breaks.
The default is usually @option{-mdivide-traps}, but this can be
overridden at configure time using @option{--with-divide=breaks}.
Divide-by-zero checks can be completely disabled using
@option{-mno-check-zero-division}.
@opindex mload-store-pairs
@opindex mno-load-store-pairs
@item -mload-store-pairs
@itemx -mno-load-store-pairs
Enable (disable) an optimization that pairs consecutive load or store
instructions to enable load/store bonding. This option is enabled by
default but only takes effect when the selected architecture is known
to support bonding.
@opindex mstrict-align
@opindex mno-strict-align
@opindex munaligned-access
@opindex mno-unaligned-access
@item -mstrict-align
@itemx -mno-strict-align
@itemx -munaligned-access
@itemx -mno-unaligned-access
Disable (enable) direct unaligned access for MIPS Release 6.
MIPSr6 requires load/store unaligned-access support, by hardware or
trap&emulate. So @option{-mstrict-align} may be needed by kernel. The
options @option{-munaligned-access} and @option{-mno-unaligned-access}
are obsoleted, and only for backward-compatible.
@opindex mmemcpy
@opindex mno-memcpy
@item -mmemcpy
@itemx -mno-memcpy
Force (do not force) the use of @code{memcpy} for non-trivial block
moves. The default is @option{-mno-memcpy}, which allows GCC to inline
most constant-sized copies.
@opindex mlong-calls
@opindex mno-long-calls
@item -mlong-calls
@itemx -mno-long-calls
Disable (do not disable) use of the @code{jal} instruction. Calling
functions using @code{jal} is more efficient but requires the caller
and callee to be in the same 256 megabyte segment.
This option has no effect on abicalls code. The default is
@option{-mno-long-calls}.
@opindex mmad
@opindex mno-mad
@item -mmad
@itemx -mno-mad
Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
instructions, as provided by the R4650 ISA@.
@opindex mimadd
@opindex mno-imadd
@item -mimadd
@itemx -mno-imadd
Enable (disable) use of the @code{madd} and @code{msub} integer
instructions. The default is @option{-mimadd} on architectures
that support @code{madd} and @code{msub} except for the 74k
architecture where it was found to generate slower code.
@opindex mfused-madd
@opindex mno-fused-madd
@item -mfused-madd
@itemx -mno-fused-madd
Enable (disable) use of the floating-point multiply-accumulate
instructions, when they are available. The default is
@option{-mfused-madd}.
On the R8000 CPU when multiply-accumulate instructions are used,
the intermediate product is calculated to infinite precision
and is not subject to the FCSR Flush to Zero bit. This may be
undesirable in some circumstances. On other processors the result
is numerically identical to the equivalent computation using
separate multiply, add, subtract and negate instructions.
@opindex nocpp
@item -nocpp
Tell the MIPS assembler to not run its preprocessor over user
assembler files (with a @samp{.s} suffix) when assembling them.
@opindex mfix-24k
@opindex mno-fix-24k
@item -mfix-24k
@itemx -mno-fix-24k
Work around the 24K E48 (lost data on stores during refill) errata.
The workarounds are implemented by the assembler rather than by GCC@.
@opindex mfix-r4000
@opindex mno-fix-r4000
@item -mfix-r4000
@itemx -mno-fix-r4000
Work around certain R4000 CPU errata:
@itemize @minus
@item
A double-word or a variable shift may give an incorrect result if executed
immediately after starting an integer division.
@item
A double-word or a variable shift may give an incorrect result if executed
while an integer multiplication is in progress.
@item
An integer division may give an incorrect result if started in a delay slot
of a taken branch or a jump.
@end itemize
@opindex mfix-r4400
@opindex mno-fix-r4400
@item -mfix-r4400
@itemx -mno-fix-r4400
Work around certain R4400 CPU errata:
@itemize @minus
@item
A double-word or a variable shift may give an incorrect result if executed
immediately after starting an integer division.
@end itemize
@opindex mfix-r10000
@opindex mno-fix-r10000
@item -mfix-r10000
@itemx -mno-fix-r10000
Work around certain R10000 errata:
@itemize @minus
@item
@code{ll}/@code{sc} sequences may not behave atomically on revisions
prior to 3.0. They may deadlock on revisions 2.6 and earlier.
@end itemize
This option can only be used if the target architecture supports
branch-likely instructions. @option{-mfix-r10000} is the default when
@option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
otherwise.
@opindex mfix-r5900
@item -mfix-r5900
@itemx -mno-fix-r5900
Do not attempt to schedule the preceding instruction into the delay slot
of a branch instruction placed at the end of a short loop of six
instructions or fewer and always schedule a @code{nop} instruction there
instead. The short loop bug under certain conditions causes loops to
execute only once or twice, due to a hardware bug in the R5900 chip. The
workaround is implemented by the assembler rather than by GCC@.
@opindex mfix-rm7000
@item -mfix-rm7000
@itemx -mno-fix-rm7000
Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
workarounds are implemented by the assembler rather than by GCC@.
@opindex mfix-vr4120
@item -mfix-vr4120
@itemx -mno-fix-vr4120
Work around certain VR4120 errata:
@itemize @minus
@item
@code{dmultu} does not always produce the correct result.
@item
@code{div} and @code{ddiv} do not always produce the correct result if one
of the operands is negative.
@end itemize
The workarounds for the division errata rely on special functions in
@file{libgcc.a}. At present, these functions are only provided by
the @code{mips64vr*-elf} configurations.
Other VR4120 errata require a NOP to be inserted between certain pairs of
instructions. These errata are handled by the assembler, not by GCC itself.
@opindex mfix-vr4130
@item -mfix-vr4130
Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
workarounds are implemented by the assembler rather than by GCC,
although GCC avoids using @code{mflo} and @code{mfhi} if the
VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
instructions are available instead.
@opindex mfix-sb1
@item -mfix-sb1
@itemx -mno-fix-sb1
Work around certain SB-1 CPU core errata.
(This flag currently works around the SB-1 revision 2
``F1'' and ``F2'' floating-point errata.)
@opindex mr10k-cache-barrier
@item -mr10k-cache-barrier=@var{setting}
Specify whether GCC should insert cache barriers to avoid the
side effects of speculation on R10K processors.
In common with many processors, the R10K tries to predict the outcome
of a conditional branch and speculatively executes instructions from
the ``taken'' branch. It later aborts these instructions if the
predicted outcome is wrong. However, on the R10K, even aborted
instructions can have side effects.
This problem only affects kernel stores and, depending on the system,
kernel loads. As an example, a speculatively-executed store may load
the target memory into cache and mark the cache line as dirty, even if
the store itself is later aborted. If a DMA operation writes to the
same area of memory before the ``dirty'' line is flushed, the cached
data overwrites the DMA-ed data. See the R10K processor manual
for a full description, including other potential problems.
One workaround is to insert cache barrier instructions before every memory
access that might be speculatively executed and that might have side
effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
controls GCC's implementation of this workaround. It assumes that
aborted accesses to any byte in the following regions does not have
side effects:
@enumerate
@item
the memory occupied by the current function's stack frame;
@item
the memory occupied by an incoming stack argument;
@item
the memory occupied by an object with a link-time-constant address.
@end enumerate
It is the kernel's responsibility to ensure that speculative
accesses to these regions are indeed safe.
If the input program contains a function declaration such as:
@smallexample
void foo (void);
@end smallexample
then the implementation of @code{foo} must allow @code{j foo} and
@code{jal foo} to be executed speculatively. GCC honors this
restriction for functions it compiles itself. It expects non-GCC
functions (such as hand-written assembly code) to do the same.
The option has three forms:
@table @gcctabopt
@item -mr10k-cache-barrier=load-store
Insert a cache barrier before a load or store that might be
speculatively executed and that might have side effects even
if aborted.
@item -mr10k-cache-barrier=store
Insert a cache barrier before a store that might be speculatively
executed and that might have side effects even if aborted.
@item -mr10k-cache-barrier=none
Disable the insertion of cache barriers. This is the default setting.
@end table
@opindex mflush-func
@opindex mno-flush-func
@item -mflush-func=@var{func}
@itemx -mno-flush-func
Specifies the function to call to flush the I and D caches, or to not
call any such function. If called, the function must take the same
arguments as the common @code{_flush_func}, that is, the address of the
memory range for which the cache is being flushed, the size of the
memory range, and the number 3 (to flush both caches). The default
depends on the target GCC was configured for, but commonly is either
@code{_flush_func} or @code{__cpu_flush}.
@opindex mbranch-cost
@item -mbranch-cost=@var{num}
Set the cost of branches to roughly @var{num} ``simple'' instructions.
This cost is only a heuristic and is not guaranteed to produce
consistent results across releases. A zero cost redundantly selects
the default, which is based on the @option{-mtune} setting.
@opindex mbranch-likely
@opindex mno-branch-likely
@item -mbranch-likely
@itemx -mno-branch-likely
Enable or disable use of Branch Likely instructions, regardless of the
default for the selected architecture. By default, Branch Likely
instructions may be generated if they are supported by the selected
architecture. An exception is for the MIPS32 and MIPS64 architectures
and processors that implement those architectures; for those, Branch
Likely instructions are not be generated by default because the MIPS32
and MIPS64 architectures specifically deprecate their use.
@opindex mcompact-branches=never
@opindex mcompact-branches=optimal
@opindex mcompact-branches=always
@item -mcompact-branches=never
@itemx -mcompact-branches=optimal
@itemx -mcompact-branches=always
These options control which form of branches will be generated. The
default is @option{-mcompact-branches=optimal}.
The @option{-mcompact-branches=never} option ensures that compact branch
instructions will never be generated.
The @option{-mcompact-branches=always} option ensures that a compact
branch instruction will be generated if available for MIPS Release 6 onwards.
If a compact branch instruction is not available (or pre-R6),
a delay slot form of the branch will be used instead.
If it is used for MIPS16/microMIPS targets, it will be just ignored now.
The behaviour for MIPS16/microMIPS may change in future,
since they do have some compact branch instructions.
The @option{-mcompact-branches=optimal} option will cause a delay slot
branch to be used if one is available in the current ISA and the delay
slot is successfully filled. If the delay slot is not filled, a compact
branch will be chosen if one is available.
@opindex mfp-exceptions
@item -mfp-exceptions
@itemx -mno-fp-exceptions
Specifies whether FP exceptions are enabled. This affects how
FP instructions are scheduled for some processors.
The default is that FP exceptions are
enabled.
For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
64-bit code, then we can use both FP pipes. Otherwise, we can only use one
FP pipe.
@opindex mvr4130-align
@item -mvr4130-align
@itemx -mno-vr4130-align
The VR4130 pipeline is two-way superscalar, but can only issue two
instructions together if the first one is 8-byte aligned. When this
option is enabled, GCC aligns pairs of instructions that it
thinks should execute in parallel.
This option only has an effect when optimizing for the VR4130.
It normally makes code faster, but at the expense of making it bigger.
It is enabled by default at optimization level @option{-O3}.
@opindex msynci
@item -msynci
@itemx -mno-synci
Enable (disable) generation of @code{synci} instructions on
architectures that support it. The @code{synci} instructions (if
enabled) are generated when @code{__builtin___clear_cache} is
compiled.
This option defaults to @option{-mno-synci}, but the default can be
overridden by configuring GCC with @option{--with-synci}.
When compiling code for single processor systems, it is generally safe
to use @code{synci}. However, on many multi-core (SMP) systems, it
does not invalidate the instruction caches on all cores and may lead
to undefined behavior.
@opindex mrelax-pic-calls
@item -mrelax-pic-calls
@itemx -mno-relax-pic-calls
Try to turn PIC calls that are normally dispatched via register
@code{$25} into direct calls. This is only possible if the linker can
resolve the destination at link time and if the destination is within
range for a direct call.
@option{-mrelax-pic-calls} is the default if GCC was configured to use
an assembler and a linker that support the @code{.reloc} assembly
directive and @option{-mexplicit-relocs} is in effect. With
@option{-mno-explicit-relocs}, this optimization can be performed by the
assembler and the linker alone without help from the compiler.
@opindex mmcount-ra-address
@opindex mno-mcount-ra-address
@item -mmcount-ra-address
@itemx -mno-mcount-ra-address
Emit (do not emit) code that allows @code{_mcount} to modify the
calling function's return address. When enabled, this option extends
the usual @code{_mcount} interface with a new @var{ra-address}
parameter, which has type @code{intptr_t *} and is passed in register
@code{$12}. @code{_mcount} can then modify the return address by
doing both of the following:
@itemize
@item
Returning the new address in register @code{$31}.
@item
Storing the new address in @code{*@var{ra-address}},
if @var{ra-address} is nonnull.
@end itemize
The default is @option{-mno-mcount-ra-address}.
@opindex mframe-header-opt
@item -mframe-header-opt
@itemx -mno-frame-header-opt
Enable (disable) frame header optimization in the o32 ABI. When using the
o32 ABI, calling functions will allocate 16 bytes on the stack for the called
function to write out register arguments. When enabled, this optimization
will suppress the allocation of the frame header if it can be determined that
it is unused.
This optimization is off by default at all optimization levels.
@opindex mlxc1-sxc1
@item -mlxc1-sxc1
@itemx -mno-lxc1-sxc1
When applicable, enable (disable) the generation of @code{lwxc1},
@code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions. Enabled by default.
@opindex mmadd4
@item -mmadd4
@itemx -mno-madd4
When applicable, enable (disable) the generation of 4-operand @code{madd.s},
@code{madd.d} and related instructions. Enabled by default.
@end table
@node MMIX Options
@subsection MMIX Options
@cindex MMIX Options
These options are defined for the MMIX:
@table @gcctabopt
@opindex mlibfuncs
@opindex mno-libfuncs
@item -mlibfuncs
@itemx -mno-libfuncs
Specify that intrinsic library functions are being compiled, passing all
values in registers, no matter the size.
@opindex mepsilon
@opindex mno-epsilon
@item -mepsilon
@itemx -mno-epsilon
Generate floating-point comparison instructions that compare with respect
to the @code{rE} epsilon register.
@opindex mabi=mmixware
@opindex mabi=gnu
@item -mabi=mmixware
@itemx -mabi=gnu
Generate code that passes function parameters and return values that (in
the called function) are seen as registers @code{$0} and up, as opposed to
the GNU ABI which uses global registers @code{$231} and up.
@opindex mzero-extend
@opindex mno-zero-extend
@item -mzero-extend
@itemx -mno-zero-extend
When reading data from memory in sizes shorter than 64 bits, use (do not
use) zero-extending load instructions by default, rather than
sign-extending ones.
@opindex mknuthdiv
@opindex mno-knuthdiv
@item -mknuthdiv
@itemx -mno-knuthdiv
Make the result of a division yielding a remainder have the same sign as
the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
remainder follows the sign of the dividend. Both methods are
arithmetically valid, the latter being almost exclusively used.
@opindex mtoplevel-symbols
@opindex mno-toplevel-symbols
@item -mtoplevel-symbols
@itemx -mno-toplevel-symbols
Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
code can be used with the @code{PREFIX} assembly directive.
@opindex melf
@item -melf
Generate an executable in the ELF format, rather than the default
@samp{mmo} format used by the @command{mmix} simulator.
@opindex mbranch-predict
@opindex mno-branch-predict
@item -mbranch-predict
@itemx -mno-branch-predict
Use (do not use) the probable-branch instructions, when static branch
prediction indicates a probable branch.
@opindex mbase-addresses
@opindex mno-base-addresses
@item -mbase-addresses
@itemx -mno-base-addresses
Generate (do not generate) code that uses @emph{base addresses}. Using a
base address automatically generates a request (handled by the assembler
and the linker) for a constant to be set up in a global register. The
register is used for one or more base address requests within the range 0
to 255 from the value held in the register. The generally leads to short
and fast code, but the number of different data items that can be
addressed is limited. This means that a program that uses lots of static
data may require @option{-mno-base-addresses}.
@opindex msingle-exit
@opindex mno-single-exit
@item -msingle-exit
@itemx -mno-single-exit
Force (do not force) generated code to have a single exit point in each
function.
@end table
@node MN10300 Options
@subsection MN10300 Options
@cindex MN10300 options
These @option{-m} options are defined for Matsushita MN10300 architectures:
@table @gcctabopt
@opindex mmult-bug
@item -mmult-bug
Generate code to avoid bugs in the multiply instructions for the MN10300
processors. This is the default.
@opindex mno-mult-bug
@item -mno-mult-bug
Do not generate code to avoid bugs in the multiply instructions for the
MN10300 processors.
@opindex mam33
@item -mam33
Generate code using features specific to the AM33 processor.
@opindex mno-am33
@item -mno-am33
Do not generate code using features specific to the AM33 processor. This
is the default.
@opindex mam33-2
@item -mam33-2
Generate code using features specific to the AM33/2.0 processor.
@opindex mam34
@item -mam34
Generate code using features specific to the AM34 processor.
@opindex mtune
@item -mtune=@var{cpu-type}
Use the timing characteristics of the indicated CPU type when
scheduling instructions. This does not change the targeted processor
type. The CPU type must be one of @samp{mn10300}, @samp{am33},
@samp{am33-2} or @samp{am34}.
@opindex mreturn-pointer-on-d0
@item -mreturn-pointer-on-d0
When generating a function that returns a pointer, return the pointer
in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
only in @code{a0}, and attempts to call such functions without a prototype
result in errors. Note that this option is on by default; use
@option{-mno-return-pointer-on-d0} to disable it.
@opindex mno-crt0
@item -mno-crt0
Do not link in the C run-time initialization object file.
@opindex mrelax
@item -mrelax
Indicate to the linker that it should perform a relaxation optimization pass
to shorten branches, calls and absolute memory addresses. This option only
has an effect when used on the command line for the final link step.
This option makes symbolic debugging impossible.
@opindex mliw
@item -mliw
Allow the compiler to generate @emph{Long Instruction Word}
instructions if the target is the @samp{AM33} or later. This is the
default. This option defines the preprocessor macro @code{__LIW__}.
@opindex mno-liw
@item -mno-liw
Do not allow the compiler to generate @emph{Long Instruction Word}
instructions. This option defines the preprocessor macro
@code{__NO_LIW__}.
@opindex msetlb
@item -msetlb
Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
instructions if the target is the @samp{AM33} or later. This is the
default. This option defines the preprocessor macro @code{__SETLB__}.
@opindex mno-setlb
@item -mno-setlb
Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
instructions. This option defines the preprocessor macro
@code{__NO_SETLB__}.
@end table
@node Moxie Options
@subsection Moxie Options
@cindex Moxie Options
@table @gcctabopt
@opindex meb
@item -meb
Generate big-endian code. This is the default for @samp{moxie-*-*}
configurations.
@opindex mel
@item -mel
Generate little-endian code.
@opindex mmul.x
@item -mmul.x
Generate mul.x and umul.x instructions. This is the default for
@samp{moxiebox-*-*} configurations.
@opindex mno-crt0
@item -mno-crt0
Do not link in the C run-time initialization object file.
@end table
@node MSP430 Options
@subsection MSP430 Options
@cindex MSP430 Options
These options are defined for the MSP430:
@table @gcctabopt
@opindex masm-hex
@item -masm-hex
Force assembly output to always use hex constants. Normally such
constants are signed decimals, but this option is available for
testsuite and/or aesthetic purposes.
@opindex mmcu=
@item -mmcu=
Select the MCU to target. This is used to create a C preprocessor
symbol based upon the MCU name, converted to upper case and pre- and
post-fixed with @samp{__}. This in turn is used by the
@file{msp430.h} header file to select an MCU-specific supplementary
header file.
The option also sets the ISA to use. If the MCU name is one that is
known to only support the 430 ISA then that is selected, otherwise the
430X ISA is selected. A generic MCU name of @samp{msp430} can also be
used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
name selects the 430X ISA.
In addition an MCU-specific linker script is added to the linker
command line. The script's name is the name of the MCU with
@file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
command line defines the C preprocessor symbol @code{__XXX__} and
cause the linker to search for a script called @file{xxx.ld}.
The ISA and hardware multiply supported for the different MCUs is hard-coded
into GCC. However, an external @samp{devices.csv} file can be used to
extend device support beyond those that have been hard-coded.
GCC searches for the @samp{devices.csv} file using the following methods in the
given precedence order, where the first method takes precendence over the
second which takes precedence over the third.
@table @asis
@item Include path specified with @code{-I} and @code{-L}
@samp{devices.csv} will be searched for in each of the directories specified by
include paths and linker library search paths.
@item Path specified by the environment variable @samp{MSP430_GCC_INCLUDE_DIR}
Define the value of the global environment variable
@samp{MSP430_GCC_INCLUDE_DIR}
to the full path to the directory containing devices.csv, and GCC will search
this directory for devices.csv. If devices.csv is found, this directory will
also be registered as an include path, and linker library path. Header files
and linker scripts in this directory can therefore be used without manually
specifying @code{-I} and @code{-L} on the command line.
@item The @samp{msp430-elf@{,bare@}/include/devices} directory
Finally, GCC will examine @samp{msp430-elf@{,bare@}/include/devices} from the
toolchain root directory. This directory does not exist in a default
installation, but if the user has created it and copied @samp{devices.csv}
there, then the MCU data will be read. As above, this directory will
also be registered as an include path, and linker library path.
@end table
If none of the above search methods find @samp{devices.csv}, then the
hard-coded MCU data is used.
@opindex mwarn-mcu
@opindex mno-warn-mcu
@item -mwarn-mcu
@itemx -mno-warn-mcu
This option enables or disables warnings about conflicts between the
MCU name specified by the @option{-mmcu} option and the ISA set by the
@option{-mcpu} option and/or the hardware multiply support set by the
@option{-mhwmult} option. It also toggles warnings about unrecognized
MCU names. This option is on by default.
@opindex mcpu=
@item -mcpu=
Specifies the ISA to use. Accepted values are @samp{msp430},
@samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
@option{-mmcu=} option should be used to select the ISA.
@opindex msim
@item -msim
Link to the simulator runtime libraries and linker script. Overrides
any scripts that would be selected by the @option{-mmcu=} option.
@opindex mlarge
@item -mlarge
Use large-model addressing (20-bit pointers, 20-bit @code{size_t}).
@opindex msmall
@item -msmall
Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
@opindex mrelax
@item -mrelax
This option is passed to the assembler and linker, and allows the
linker to perform certain optimizations that cannot be done until
the final link.
@opindex mhwmult=
@item mhwmult=
Describes the type of hardware multiply supported by the target.
Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
for the original 16-bit-only multiply supported by early MCUs.
@samp{32bit} for the 16/32-bit multiply supported by later MCUs and
@samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
A value of @samp{auto} can also be given. This tells GCC to deduce
the hardware multiply support based upon the MCU name provided by the
@option{-mmcu} option. If no @option{-mmcu} option is specified or if
the MCU name is not recognized then no hardware multiply support is
assumed. @code{auto} is the default setting.
Hardware multiplies are normally performed by calling a library
routine. This saves space in the generated code. When compiling at
@option{-O3} or higher however the hardware multiplier is invoked
inline. This makes for bigger, but faster code.
The hardware multiply routines disable interrupts whilst running and
restore the previous interrupt state when they finish. This makes
them safe to use inside interrupt handlers as well as in normal code.
@opindex minrt
@item -minrt
Enable the use of a minimum runtime environment - no static
initializers or constructors. This is intended for memory-constrained
devices. The compiler includes special symbols in some objects
that tell the linker and runtime which code fragments are required.
@opindex mtiny-printf
@item -mtiny-printf
Enable reduced code size @code{printf} and @code{puts} library functions.
The @samp{tiny} implementations of these functions are not reentrant, so
must be used with caution in multi-threaded applications.
Support for streams has been removed and the string to be printed will
always be sent to stdout via the @code{write} syscall. The string is not
buffered before it is sent to write.
This option requires Newlib Nano IO, so GCC must be configured with
@samp{--enable-newlib-nano-formatted-io}.
@opindex mmax-inline-shift=
@item -mmax-inline-shift=
This option takes an integer between 0 and 64 inclusive, and sets
the maximum number of inline shift instructions which should be emitted to
perform a shift operation by a constant amount. When this value needs to be
exceeded, an mspabi helper function is used instead. The default value is 4.
This only affects cases where a shift by multiple positions cannot be
completed with a single instruction (e.g. all shifts >1 on the 430 ISA).
Shifts of a 32-bit value are at least twice as costly, so the value passed for
this option is divided by 2 and the resulting value used instead.
@opindex mcode-region
@opindex mdata-region
@item -mcode-region=
@itemx -mdata-region=
These options tell the compiler where to place functions and data that
do not have one of the @code{lower}, @code{upper}, @code{either} or
@code{section} attributes. Possible values are @code{lower},
@code{upper}, @code{either} or @code{any}. The first three behave
like the corresponding attribute. The fourth possible value -
@code{any} - is the default. It leaves placement entirely up to the
linker script and how it assigns the standard sections
(@code{.text}, @code{.data}, etc) to the memory regions.
@opindex msilicon-errata
@item -msilicon-errata=
This option passes on a request to assembler to enable the fixes for
the named silicon errata.
@opindex msilicon-errata-warn
@item -msilicon-errata-warn=
This option passes on a request to the assembler to enable warning
messages when a silicon errata might need to be applied.
@opindex mwarn-devices-csv
@opindex mno-warn-devices-csv
@item -mwarn-devices-csv
@itemx -mno-warn-devices-csv
Warn if @samp{devices.csv} is not found or there are problem parsing it
(default: on).
@end table
@node NDS32 Options
@subsection NDS32 Options
@cindex NDS32 Options
These options are defined for NDS32 implementations:
@table @gcctabopt
@opindex mbig-endian
@item -mbig-endian
Generate code in big-endian mode.
@opindex mlittle-endian
@item -mlittle-endian
Generate code in little-endian mode.
@opindex mreduced-regs
@item -mreduced-regs
Use reduced-set registers for register allocation.
@opindex mfull-regs
@item -mfull-regs
Use full-set registers for register allocation.
@opindex mcmov
@item -mcmov
Generate conditional move instructions.
@opindex mno-cmov
@item -mno-cmov
Do not generate conditional move instructions.
@opindex mext-perf
@item -mext-perf
Generate performance extension instructions.
@opindex mno-ext-perf
@item -mno-ext-perf
Do not generate performance extension instructions.
@opindex mext-perf2
@item -mext-perf2
Generate performance extension 2 instructions.
@opindex mno-ext-perf2
@item -mno-ext-perf2
Do not generate performance extension 2 instructions.
@opindex mext-string
@item -mext-string
Generate string extension instructions.
@opindex mno-ext-string
@item -mno-ext-string
Do not generate string extension instructions.
@opindex mv3push
@item -mv3push
Generate v3 push25/pop25 instructions.
@opindex mno-v3push
@item -mno-v3push
Do not generate v3 push25/pop25 instructions.
@opindex m16-bit
@item -m16-bit
Generate 16-bit instructions.
@opindex mno-16-bit
@item -mno-16-bit
Do not generate 16-bit instructions.
@opindex misr-vector-size
@item -misr-vector-size=@var{num}
Specify the size of each interrupt vector, which must be 4 or 16.
@opindex mcache-block-size
@item -mcache-block-size=@var{num}
Specify the size of each cache block,
which must be a power of 2 between 4 and 512.
@opindex march
@item -march=@var{arch}
Specify the name of the target architecture.
@opindex mcmodel=
@item -mcmodel=@var{code-model}
Set the code model to one of
@table @asis
@item @samp{small}
All the data and read-only data segments must be within 512KB addressing space.
The text segment must be within 16MB addressing space.
@item @samp{medium}
The data segment must be within 512KB while the read-only data segment can be
within 4GB addressing space. The text segment should be still within 16MB
addressing space.
@item @samp{large}
All the text and data segments can be within 4GB addressing space.
@end table
@opindex mctor-dtor
@item -mctor-dtor
Enable constructor/destructor feature.
@opindex mrelax
@item -mrelax
Guide linker to relax instructions.
@end table
@node Nios II Options
@subsection Nios II Options
@cindex Nios II options
@cindex Altera Nios II options
These are the options defined for the Altera Nios II processor.
@table @gcctabopt
@opindex G
@cindex smaller data references
@item -G @var{num}
Put global and static objects less than or equal to @var{num} bytes
into the small data or BSS sections instead of the normal data or BSS
sections. The default value of @var{num} is 8.
@opindex mgpopt
@opindex mno-gpopt
@item -mgpopt=@var{option}
@itemx -mgpopt
@itemx -mno-gpopt
Generate (do not generate) GP-relative accesses. The following
@var{option} names are recognized:
@table @samp
@item none
Do not generate GP-relative accesses.
@item local
Generate GP-relative accesses for small data objects that are not
external, weak, or uninitialized common symbols.
Also use GP-relative addressing for objects that
have been explicitly placed in a small data section via a @code{section}
attribute.
@item global
As for @samp{local}, but also generate GP-relative accesses for
small data objects that are external, weak, or common. If you use this option,
you must ensure that all parts of your program (including libraries) are
compiled with the same @option{-G} setting.
@item data
Generate GP-relative accesses for all data objects in the program. If you
use this option, the entire data and BSS segments
of your program must fit in 64K of memory and you must use an appropriate
linker script to allocate them within the addressable range of the
global pointer.
@item all
Generate GP-relative addresses for function pointers as well as data
pointers. If you use this option, the entire text, data, and BSS segments
of your program must fit in 64K of memory and you must use an appropriate
linker script to allocate them within the addressable range of the
global pointer.
@end table
@option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
@option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
The default is @option{-mgpopt} except when @option{-fpic} or
@option{-fPIC} is specified to generate position-independent code.
Note that the Nios II ABI does not permit GP-relative accesses from
shared libraries.
You may need to specify @option{-mno-gpopt} explicitly when building
programs that include large amounts of small data, including large
GOT data sections. In this case, the 16-bit offset for GP-relative
addressing may not be large enough to allow access to the entire
small data section.
@opindex mgprel-sec
@item -mgprel-sec=@var{regexp}
This option specifies additional section names that can be accessed via
GP-relative addressing. It is most useful in conjunction with
@code{section} attributes on variable declarations
(@pxref{Common Variable Attributes}) and a custom linker script.
The @var{regexp} is a POSIX Extended Regular Expression.
This option does not affect the behavior of the @option{-G} option, and
the specified sections are in addition to the standard @code{.sdata}
and @code{.sbss} small-data sections that are recognized by @option{-mgpopt}.
@opindex mr0rel-sec
@item -mr0rel-sec=@var{regexp}
This option specifies names of sections that can be accessed via a
16-bit offset from @code{r0}; that is, in the low 32K or high 32K
of the 32-bit address space. It is most useful in conjunction with
@code{section} attributes on variable declarations
(@pxref{Common Variable Attributes}) and a custom linker script.
The @var{regexp} is a POSIX Extended Regular Expression.
In contrast to the use of GP-relative addressing for small data,
zero-based addressing is never generated by default and there are no
conventional section names used in standard linker scripts for sections
in the low or high areas of memory.
@opindex mel
@opindex meb
@item -mel
@itemx -meb
Generate little-endian (default) or big-endian (experimental) code,
respectively.
@opindex march
@item -march=@var{arch}
This specifies the name of the target Nios II architecture. GCC uses this
name to determine what kind of instructions it can emit when generating
assembly code. Permissible names are: @samp{r1}, @samp{r2}.
The preprocessor macro @code{__nios2_arch__} is available to programs,
with value 1 or 2, indicating the targeted ISA level.
@opindex mno-bypass-cache
@opindex mbypass-cache
@item -mbypass-cache
@itemx -mno-bypass-cache
Force all load and store instructions to always bypass cache by
using I/O variants of the instructions. The default is not to
bypass the cache.
@opindex mcache-volatile
@opindex mno-cache-volatile
@item -mno-cache-volatile
@itemx -mcache-volatile
Volatile memory access bypass the cache using the I/O variants of
the load and store instructions. The default is not to bypass the cache.
@opindex mno-fast-sw-div
@opindex mfast-sw-div
@item -mno-fast-sw-div
@itemx -mfast-sw-div
Do not use table-based fast divide for small numbers. The default
is to use the fast divide at @option{-O3} and above.
@opindex mno-hw-mul
@opindex mhw-mul
@opindex mno-hw-mulx
@opindex mhw-mulx
@opindex mno-hw-div
@opindex mhw-div
@item -mno-hw-mul
@itemx -mhw-mul
@itemx -mno-hw-mulx
@itemx -mhw-mulx
@itemx -mno-hw-div
@itemx -mhw-div
Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
instructions by the compiler. The default is to emit @code{mul}
and not emit @code{div} and @code{mulx}.
@item -mbmx
@itemx -mno-bmx
@itemx -mcdx
@itemx -mno-cdx
Enable or disable generation of Nios II R2 BMX (bit manipulation) and
CDX (code density) instructions. Enabling these instructions also
requires @option{-march=r2}. Since these instructions are optional
extensions to the R2 architecture, the default is not to emit them.
@opindex mcustom-@var{insn}
@opindex mno-custom-@var{insn}
@item -mcustom-@var{insn}=@var{N}
@itemx -mno-custom-@var{insn}
Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
custom instruction with encoding @var{N} when generating code that uses
@var{insn}. For example, @option{-mcustom-fadds=253} generates custom
instruction 253 for single-precision floating-point add operations instead
of the default behavior of using a library call.
The following values of @var{insn} are supported. Except as otherwise
noted, floating-point operations are expected to be implemented with
normal IEEE 754 semantics and correspond directly to the C operators or the
equivalent GCC built-in functions (@pxref{Other Builtins}).
Single-precision floating point:
@table @asis
@item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
Binary arithmetic operations.
@item @samp{fnegs}
Unary negation.
@item @samp{fabss}
Unary absolute value.
@item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
Comparison operations.
@item @samp{fmins}, @samp{fmaxs}
Floating-point minimum and maximum. These instructions are only
generated if @option{-ffinite-math-only} is specified.
@item @samp{fsqrts}
Unary square root operation.
@item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
Floating-point trigonometric and exponential functions. These instructions
are only generated if @option{-funsafe-math-optimizations} is also specified.
@end table
Double-precision floating point:
@table @asis
@item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
Binary arithmetic operations.
@item @samp{fnegd}
Unary negation.
@item @samp{fabsd}
Unary absolute value.
@item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
Comparison operations.
@item @samp{fmind}, @samp{fmaxd}
Double-precision minimum and maximum. These instructions are only
generated if @option{-ffinite-math-only} is specified.
@item @samp{fsqrtd}
Unary square root operation.
@item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
Double-precision trigonometric and exponential functions. These instructions
are only generated if @option{-funsafe-math-optimizations} is also specified.
@end table
Conversions:
@table @asis
@item @samp{fextsd}
Conversion from single precision to double precision.
@item @samp{ftruncds}
Conversion from double precision to single precision.
@item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
Conversion from floating point to signed or unsigned integer types, with
truncation towards zero.
@item @samp{round}
Conversion from single-precision floating point to signed integer,
rounding to the nearest integer and ties away from zero.
This corresponds to the @code{__builtin_lroundf} function when
@option{-fno-math-errno} is used.
@item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
Conversion from signed or unsigned integer types to floating-point types.
@end table
In addition, all of the following transfer instructions for internal
registers X and Y must be provided to use any of the double-precision
floating-point instructions. Custom instructions taking two
double-precision source operands expect the first operand in the
64-bit register X. The other operand (or only operand of a unary
operation) is given to the custom arithmetic instruction with the
least significant half in source register @var{src1} and the most
significant half in @var{src2}. A custom instruction that returns a
double-precision result returns the most significant 32 bits in the
destination register and the other half in 32-bit register Y.
GCC automatically generates the necessary code sequences to write
register X and/or read register Y when double-precision floating-point
instructions are used.
@table @asis
@item @samp{fwrx}
Write @var{src1} into the least significant half of X and @var{src2} into
the most significant half of X.
@item @samp{fwry}
Write @var{src1} into Y.
@item @samp{frdxhi}, @samp{frdxlo}
Read the most or least (respectively) significant half of X and store it in
@var{dest}.
@item @samp{frdy}
Read the value of Y and store it into @var{dest}.
@end table
Note that you can gain more local control over generation of Nios II custom
instructions by using the @code{target("custom-@var{insn}=@var{N}")}
and @code{target("no-custom-@var{insn}")} function attributes
(@pxref{Function Attributes})
or pragmas (@pxref{Function Specific Option Pragmas}).
@opindex mcustom-fpu-cfg
@item -mcustom-fpu-cfg=@var{name}
This option enables a predefined, named set of custom instruction encodings
(see @option{-mcustom-@var{insn}} above).
Currently, the following sets are defined:
@option{-mcustom-fpu-cfg=60-1} is equivalent to:
@gccoptlist{-mcustom-fmuls=252
-mcustom-fadds=253
-mcustom-fsubs=254
-fsingle-precision-constant}
@option{-mcustom-fpu-cfg=60-2} is equivalent to:
@gccoptlist{-mcustom-fmuls=252
-mcustom-fadds=253
-mcustom-fsubs=254
-mcustom-fdivs=255
-fsingle-precision-constant}
@option{-mcustom-fpu-cfg=72-3} is equivalent to:
@gccoptlist{-mcustom-floatus=243
-mcustom-fixsi=244
-mcustom-floatis=245
-mcustom-fcmpgts=246
-mcustom-fcmples=249
-mcustom-fcmpeqs=250
-mcustom-fcmpnes=251
-mcustom-fmuls=252
-mcustom-fadds=253
-mcustom-fsubs=254
-mcustom-fdivs=255
-fsingle-precision-constant}
@option{-mcustom-fpu-cfg=fph2} is equivalent to:
@gccoptlist{-mcustom-fabss=224
-mcustom-fnegs=225
-mcustom-fcmpnes=226
-mcustom-fcmpeqs=227
-mcustom-fcmpges=228
-mcustom-fcmpgts=229
-mcustom-fcmples=230
-mcustom-fcmplts=231
-mcustom-fmaxs=232
-mcustom-fmins=233
-mcustom-round=248
-mcustom-fixsi=249
-mcustom-floatis=250
-mcustom-fsqrts=251
-mcustom-fmuls=252
-mcustom-fadds=253
-mcustom-fsubs=254
-mcustom-fdivs=255}
Custom instruction assignments given by individual
@option{-mcustom-@var{insn}=} options override those given by
@option{-mcustom-fpu-cfg=}, regardless of the
order of the options on the command line.
Note that you can gain more local control over selection of a FPU
configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
function attribute (@pxref{Function Attributes})
or pragma (@pxref{Function Specific Option Pragmas}).
The name @var{fph2} is an abbreviation for @emph{Nios II Floating Point
Hardware 2 Component}. Please note that the custom instructions enabled by
@option{-mcustom-fmins=233} and @option{-mcustom-fmaxs=234} are only generated
if @option{-ffinite-math-only} is specified. The custom instruction enabled by
@option{-mcustom-round=248} is only generated if @option{-fno-math-errno} is
specified. In contrast to the other configurations,
@option{-fsingle-precision-constant} is not set.
@end table
These additional @samp{-m} options are available for the Altera Nios II
ELF (bare-metal) target:
@table @gcctabopt
@opindex mhal
@item -mhal
Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
startup and termination code, and is typically used in conjunction with
@option{-msys-crt0=} to specify the location of the alternate startup code
provided by the HAL BSP.
@opindex msmallc
@item -msmallc
Link with a limited version of the C library, @option{-lsmallc}, rather than
Newlib.
@opindex msys-crt0
@item -msys-crt0=@var{startfile}
@var{startfile} is the file name of the startfile (crt0) to use
when linking. This option is only useful in conjunction with @option{-mhal}.
@opindex msys-lib
@item -msys-lib=@var{systemlib}
@var{systemlib} is the library name of the library that provides
low-level system calls required by the C library,
e.g.@: @code{read} and @code{write}.
This option is typically used to link with a library provided by a HAL BSP.
@end table
@node Nvidia PTX Options
@subsection Nvidia PTX Options
@cindex Nvidia PTX options
@cindex nvptx options
These options are defined for Nvidia PTX:
@table @gcctabopt
@opindex m64
@item -m64
Ignored, but preserved for backward compatibility. Only 64-bit ABI is
supported.
@opindex march
@item -march=@var{architecture-string}
Generate code for the specified PTX ISA target architecture
(e.g.@: @samp{sm_35}). Valid architecture strings are @samp{sm_30},
@samp{sm_35}, @samp{sm_53}, @samp{sm_70}, @samp{sm_75} and
@samp{sm_80}.
The default depends on how the compiler has been configured, see
@option{--with-arch}.
This option sets the value of the preprocessor macro
@code{__PTX_SM__}; for instance, for @samp{sm_35}, it has the value
@samp{350}.
@opindex misa
@item -misa=@var{architecture-string}
Alias of @option{-march=}.
@opindex march
@item -march-map=@var{architecture-string}
Select the closest available @option{-march=} value that is not more
capable. For instance, for @option{-march-map=sm_50} select
@option{-march=sm_35}, and for @option{-march-map=sm_53} select
@option{-march=sm_53}.
@opindex mptx
@item -mptx=@var{version-string}
Generate code for the specified PTX ISA version (e.g.@: @samp{7.0}).
Valid version strings include @samp{3.1}, @samp{6.0}, @samp{6.3}, and
@samp{7.0}. The default PTX ISA version is 6.0, unless a higher
version is required for specified PTX ISA target architecture via
option @option{-march=}.
This option sets the values of the preprocessor macros
@code{__PTX_ISA_VERSION_MAJOR__} and @code{__PTX_ISA_VERSION_MINOR__};
for instance, for @samp{3.1} the macros have the values @samp{3} and
@samp{1}, respectively.
@opindex mmainkernel
@item -mmainkernel
Link in code for a __main kernel. This is for stand-alone instead of
offloading execution.
@opindex moptimize
@item -moptimize
Apply partitioned execution optimizations. This is the default when any
level of optimization is selected.
@opindex msoft-stack
@item -msoft-stack
Generate code that does not use @code{.local} memory
directly for stack storage. Instead, a per-warp stack pointer is
maintained explicitly. This enables variable-length stack allocation (with
variable-length arrays or @code{alloca}), and when global memory is used for
underlying storage, makes it possible to access automatic variables from other
threads, or with atomic instructions. This code generation variant is used
for OpenMP offloading, but the option is exposed on its own for the purpose
of testing the compiler; to generate code suitable for linking into programs
using OpenMP offloading, use option @option{-mgomp}.
@opindex muniform-simt
@item -muniform-simt
Switch to code generation variant that allows to execute all threads in each
warp, while maintaining memory state and side effects as if only one thread
in each warp was active outside of OpenMP SIMD regions. All atomic operations
and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
current lane index equals the master lane index), and the register being
assigned is copied via a shuffle instruction from the master lane. Outside of
SIMD regions lane 0 is the master; inside, each thread sees itself as the
master. Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
regions). Each thread can bitwise-and the bitmask at position @code{tid.y}
with current lane index to compute the master lane index.
@opindex mgomp
@item -mgomp
Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
@option{-muniform-simt} options, and selects corresponding multilib variant.
@end table
@node OpenRISC Options
@subsection OpenRISC Options
@cindex OpenRISC Options
These options are defined for OpenRISC:
@table @gcctabopt
@opindex mboard
@item -mboard=@var{name}
Configure a board specific runtime. This will be passed to the linker for
newlib board library linking. The default is @code{or1ksim}.
@opindex mnewlib
@item -mnewlib
This option is ignored; it is for compatibility purposes only. This used to
select linker and preprocessor options for use with newlib.
@opindex msoft-div
@opindex mhard-div
@item -msoft-div
@itemx -mhard-div
Select software or hardware divide (@code{l.div}, @code{l.divu}) instructions.
This default is hardware divide.
@opindex msoft-mul
@opindex mhard-mul
@item -msoft-mul
@itemx -mhard-mul
Select software or hardware multiply (@code{l.mul}, @code{l.muli}) instructions.
This default is hardware multiply.
@opindex msoft-float
@opindex mhard-float
@item -msoft-float
@itemx -mhard-float
Select software or hardware for floating point operations.
The default is software.
@opindex mdouble-float
@item -mdouble-float
When @option{-mhard-float} is selected, enables generation of double-precision
floating point instructions. By default functions from @file{libgcc} are used
to perform double-precision floating point operations.
@opindex munordered-float
@item -munordered-float
When @option{-mhard-float} is selected, enables generation of unordered
floating point compare and set flag (@code{lf.sfun*}) instructions. By default
functions from @file{libgcc} are used to perform unordered floating point
compare and set flag operations.
@opindex mcmov
@item -mcmov
Enable generation of conditional move (@code{l.cmov}) instructions. By
default the equivalent will be generated using set and branch.
@opindex mror
@item -mror
Enable generation of rotate right (@code{l.ror}) instructions. By default
functions from @file{libgcc} are used to perform rotate right operations.
@opindex mrori
@item -mrori
Enable generation of rotate right with immediate (@code{l.rori}) instructions.
By default functions from @file{libgcc} are used to perform rotate right with
immediate operations.
@opindex msext
@item -msext
Enable generation of sign extension (@code{l.ext*}) instructions. By default
memory loads are used to perform sign extension.
@opindex msfimm
@item -msfimm
Enable generation of compare and set flag with immediate (@code{l.sf*i})
instructions. By default extra instructions will be generated to store the
immediate to a register first.
@opindex mshftimm
@item -mshftimm
Enable generation of shift with immediate (@code{l.srai}, @code{l.srli},
@code{l.slli}) instructions. By default extra instructions will be generated
to store the immediate to a register first.
@opindex mcmodel=
@opindex mcmodel=small
@item -mcmodel=small
Generate OpenRISC code for the small model: The GOT is limited to 64k. This is
the default model.
@opindex mcmodel=large
@item -mcmodel=large
Generate OpenRISC code for the large model: The GOT may grow up to 4G in size.
@end table
@node PDP-11 Options
@subsection PDP-11 Options
@cindex PDP-11 Options
These options are defined for the PDP-11:
@table @gcctabopt
@opindex mfpu
@item -mfpu
Use hardware FPP floating point. This is the default. (FIS floating
point on the PDP-11/40 is not supported.) Implies -m45.
@opindex msoft-float
@item -msoft-float
Do not use hardware floating point.
@opindex mac0
@item -mac0
Return floating-point results in ac0 (fr0 in Unix assembler syntax).
@opindex mno-ac0
@item -mno-ac0
Return floating-point results in memory. This is the default.
@opindex m40
@item -m40
Generate code for a PDP-11/40. Implies -msoft-float -mno-split.
@opindex m45
@item -m45
Generate code for a PDP-11/45. This is the default.
@opindex m10
@item -m10
Generate code for a PDP-11/10. Implies -msoft-float -mno-split.
@opindex mint16
@opindex mno-int32
@item -mint16
@itemx -mno-int32
Use 16-bit @code{int}. This is the default.
@opindex mint32
@opindex mno-int16
@item -mint32
@itemx -mno-int16
Use 32-bit @code{int}.
@opindex msplit
@item -msplit
Target has split instruction and data space. Implies -m45.
@opindex munix-asm
@item -munix-asm
Use Unix assembler syntax.
@opindex mdec-asm
@item -mdec-asm
Use DEC assembler syntax.
@opindex mgnu-asm
@item -mgnu-asm
Use GNU assembler syntax. This is the default.
@opindex mlra
@item -mlra
Use the new LRA register allocator. By default, the old ``reload''
allocator is used.
@end table
@node PowerPC Options
@subsection PowerPC Options
@cindex PowerPC options
These are listed under @xref{RS/6000 and PowerPC Options}.
@node PRU Options
@subsection PRU Options
@cindex PRU Options
These command-line options are defined for PRU target:
@table @gcctabopt
@opindex minrt
@item -minrt
Link with a minimum runtime environment. This can significantly reduce
the size of the final ELF binary, but some standard C runtime features
are removed.
This option disables support for static initializers and constructors.
Beware that the compiler could still generate code with static initializers
and constructors. It is up to the programmer to ensure that the source
program will not use those features.
The minimal startup code would not pass @code{argc} and @code{argv} arguments
to @code{main}, so the latter must be declared as @code{int main (void)}.
This is already the norm for most firmware projects.
@opindex mmcu
@item -mmcu=@var{mcu}
Specify the PRU hardware variant to use. A correspondingly named
spec file would be loaded, passing the memory region sizes to
the linker and defining hardware-specific C macros.
Newlib provides only the @code{sim} spec, intended for running
regression tests using a simulator. Specs for real hardware can be
obtained by installing the
@w{@uref{https://github.com/dinuxbg/gnuprumcu/,GnuPruMcu}} package.
@opindex mno-relax
@item -mno-relax
Make GCC pass the @option{--no-relax} command-line option to the linker
instead of the @option{--relax} option.
@opindex mloop
@item -mloop
Allow (or do not allow) GCC to use the LOOP instruction.
@opindex mabi
@item -mabi=@var{variant}
Specify the ABI variant to output code for. @option{-mabi=ti} selects the
unmodified TI ABI while @option{-mabi=gnu} selects a GNU variant that copes
more naturally with certain GCC assumptions. These are the differences:
@table @samp
@item Function Pointer Size
TI ABI specifies that function (code) pointers are 16-bit, whereas GNU
supports only 32-bit data and code pointers.
@item Optional Return Value Pointer
Function return values larger than 64 bits are passed by using a hidden
pointer as the first argument of the function. TI ABI, though, mandates that
the pointer can be NULL in case the caller is not using the returned value.
GNU always passes and expects a valid return value pointer.
@end table
The current @option{-mabi=ti} implementation simply raises a compile error
when any of the above code constructs is detected. As a consequence
the standard C library cannot be built and it is omitted when linking with
@option{-mabi=ti}.
Relaxation is a GNU feature and for safety reasons is disabled when using
@option{-mabi=ti}. The TI toolchain does not emit relocations for QBBx
instructions, so the GNU linker cannot adjust them when shortening adjacent
LDI32 pseudo instructions.
@end table
@node RISC-V Options
@subsection RISC-V Options
@cindex RISC-V Options
These command-line options are defined for RISC-V targets:
@table @gcctabopt
@opindex mbranch-cost
@item -mbranch-cost=@var{n}
Set the cost of branches to roughly @var{n} instructions.
@opindex plt
@item -mplt
@itemx -mno-plt
When generating PIC code, do or don't allow the use of PLTs. Ignored for
non-PIC. The default is @option{-mplt}.
@opindex mabi
@item -mabi=@var{ABI-string}
Specify integer and floating-point calling convention. @var{ABI-string}
contains two parts: the size of integer types and the registers used for
floating-point types. For example @samp{-march=rv64ifd -mabi=lp64d} means that
@samp{long} and pointers are 64-bit (implicitly defining @samp{int} to be
32-bit), and that floating-point values up to 64 bits wide are passed in F
registers. Contrast this with @samp{-march=rv64ifd -mabi=lp64f}, which still
allows the compiler to generate code that uses the F and D extensions but only
allows floating-point values up to 32 bits long to be passed in registers; or
@samp{-march=rv64ifd -mabi=lp64}, in which no floating-point arguments will be
passed in registers.
The default for this argument is system dependent, users who want a specific
calling convention should specify one explicitly. The valid calling
conventions are: @samp{ilp32}, @samp{ilp32f}, @samp{ilp32d}, @samp{lp64},
@samp{lp64f}, and @samp{lp64d}. Some calling conventions are impossible to
implement on some ISAs: for example, @samp{-march=rv32if -mabi=ilp32d} is
invalid because the ABI requires 64-bit values be passed in F registers, but F
registers are only 32 bits wide. There are also the @samp{ilp32e} ABI that can
only be used with the @samp{rv32e} architecture and the @samp{lp64e} ABI that
can only be used with the @samp{rv64e}. Those ABIs are not well specified at
present, and are subject to change.
@opindex mfdiv
@item -mfdiv
@itemx -mno-fdiv
Do or don't use hardware floating-point divide and square root instructions.
This requires the F or D extensions for floating-point registers. The default
is to use them if the specified architecture has these instructions.
@opindex mfence-tso
@item -mfence-tso
@itemx -mno-fence-tso
Do or don't use the @samp{fence.tso} instruction, which is unimplemented on
some processors (including those from T-Head). If the @samp{fence.tso}
instruction is not availiable then a stronger fence will be used instead.
@opindex mdiv
@item -mdiv
@itemx -mno-div
Do or don't use hardware instructions for integer division. This requires the
M extension. The default is to use them if the specified architecture has
these instructions.
@opindex misa-spec
@item -misa-spec=@var{ISA-spec-string}
Specify the version of the RISC-V Unprivileged (formerly User-Level)
ISA specification to produce code conforming to. The possibilities
for @var{ISA-spec-string} are:
@table @code
@item 2.2
Produce code conforming to version 2.2.
@item 20190608
Produce code conforming to version 20190608.
@item 20191213
Produce code conforming to version 20191213.
@end table
The default is @option{-misa-spec=20191213} unless GCC has been configured
with @option{--with-isa-spec=} specifying a different default version.
@opindex march
@item -march=@var{ISA-string}
Generate code for given RISC-V ISA (e.g.@: @samp{rv64im}). ISA strings must be
lower-case. Examples include @samp{rv64i}, @samp{rv32g}, @samp{rv32e}, and
@samp{rv32imaf}. Additionally, a special value @option{help}
(@option{-march=help}) is accepted to list all supported extensions.
The syntax of the ISA string is defined as follows:
@table @code
@item The string must start with @samp{rv32} or @samp{rv64}, followed by
@samp{i}, @samp{e}, or @samp{g}, referred to as the base ISA.
@item The subsequent part of the string is a list of extension names. Extension
names can be categorized as multi-letter (e.g.@: @samp{zba}) and single-letter
(e.g.@: @samp{v}). Single-letter extensions can appear consecutively,
but multi-letter extensions must be separated by underscores.
@item An underscore can appear anywhere after the base ISA. It has no specific
effect but is used to improve readability and can act as a separator.
@item Extension names may include an optional version number, following the
syntax @samp{<major>p<minor>} or @samp{<major>}, (e.g.@: @samp{m2p1} or
@samp{m2}).
@end table
Supported extension are listed below:
@multitable @columnfractions .10 .10 .80
@headitem Extension Name @tab Supported Version @tab Description
@item i
@tab 2.0, 2.1
@tab Base integer extension.
@item e
@tab 2.0
@tab Reduced base integer extension.
@item g
@tab -
@tab General-purpose computing base extension, @samp{g} will expand to
@samp{i}, @samp{m}, @samp{a}, @samp{f}, @samp{d}, @samp{zicsr} and
@samp{zifencei}.
@item m
@tab 2.0
@tab Integer multiplication and division extension.
@item a
@tab 2.0, 2.1
@tab Atomic extension.
@item f
@tab 2.0, 2.2
@tab Single-precision floating-point extension.
@item d
@tab 2.0, 2.2
@tab Double-precision floating-point extension.
@item c
@tab 2.0
@tab Compressed extension.
@item h
@tab 1.0
@tab Hypervisor extension.
@item v
@tab 1.0
@tab Vector extension.
@item zicsr
@tab 2.0
@tab Control and status register access extension.
@item zifencei
@tab 2.0
@tab Instruction-fetch fence extension.
@item zicond
@tab 1.0
@tab Integer conditional operations extension.
@item za64rs
@tab 1.0
@tab Reservation set size of 64 bytes.
@item za128rs
@tab 1.0
@tab Reservation set size of 128 bytes.
@item zawrs
@tab 1.0
@tab Wait-on-reservation-set extension.
@item zba
@tab 1.0
@tab Address calculation extension.
@item zbb
@tab 1.0
@tab Basic bit manipulation extension.
@item zbc
@tab 1.0
@tab Carry-less multiplication extension.
@item zbs
@tab 1.0
@tab Single-bit operation extension.
@item zfinx
@tab 1.0
@tab Single-precision floating-point in integer registers extension.
@item zdinx
@tab 1.0
@tab Double-precision floating-point in integer registers extension.
@item zhinx
@tab 1.0
@tab Half-precision floating-point in integer registers extension.
@item zhinxmin
@tab 1.0
@tab Minimal half-precision floating-point in integer registers extension.
@item zbkb
@tab 1.0
@tab Cryptography bit-manipulation extension.
@item zbkc
@tab 1.0
@tab Cryptography carry-less multiply extension.
@item zbkx
@tab 1.0
@tab Cryptography crossbar permutation extension.
@item zkne
@tab 1.0
@tab AES Encryption extension.
@item zknd
@tab 1.0
@tab AES Decryption extension.
@item zknh
@tab 1.0
@tab Hash function extension.
@item zkr
@tab 1.0
@tab Entropy source extension.
@item zksed
@tab 1.0
@tab SM4 block cipher extension.
@item zksh
@tab 1.0
@tab SM3 hash function extension.
@item zkt
@tab 1.0
@tab Data independent execution latency extension.
@item zk
@tab 1.0
@tab Standard scalar cryptography extension.
@item zkn
@tab 1.0
@tab NIST algorithm suite extension.
@item zks
@tab 1.0
@tab ShangMi algorithm suite extension.
@item zihintntl
@tab 1.0
@tab Non-temporal locality hints extension.
@item zihintpause
@tab 1.0
@tab Pause hint extension.
@item zicboz
@tab 1.0
@tab Cache-block zero extension.
@item zicbom
@tab 1.0
@tab Cache-block management extension.
@item zicbop
@tab 1.0
@tab Cache-block prefetch extension.
@item zic64b
@tab 1.0
@tab Cache block size isf 64 bytes.
@item ziccamoa
@tab 1.0
@tab Main memory supports all atomics in A.
@item ziccif
@tab 1.0
@tab Main memory supports instruction fetch with atomicity requirement.
@item zicclsm
@tab 1.0
@tab Main memory supports misaligned loads/stores.
@item ziccrse
@tab 1.0
@tab Main memory supports forward progress on LR/SC sequences.
@item zicntr
@tab 2.0
@tab Standard extension for base counters and timers.
@item zihpm
@tab 2.0
@tab Standard extension for hardware performance counters.
@item ztso
@tab 1.0
@tab Total store ordering extension.
@item zve32x
@tab 1.0
@tab Vector extensions for embedded processors.
@item zve32f
@tab 1.0
@tab Vector extensions for embedded processors.
@item zve64x
@tab 1.0
@tab Vector extensions for embedded processors.
@item zve64f
@tab 1.0
@tab Vector extensions for embedded processors.
@item zve64d
@tab 1.0
@tab Vector extensions for embedded processors.
@item zvl32b
@tab 1.0
@tab Minimum vector length standard extensions
@item zvl64b
@tab 1.0
@tab Minimum vector length standard extensions
@item zvl128b
@tab 1.0
@tab Minimum vector length standard extensions
@item zvl256b
@tab 1.0
@tab Minimum vector length standard extensions
@item zvl512b
@tab 1.0
@tab Minimum vector length standard extensions
@item zvl1024b
@tab 1.0
@tab Minimum vector length standard extensions
@item zvl2048b
@tab 1.0
@tab Minimum vector length standard extensions
@item zvl4096b
@tab 1.0
@tab Minimum vector length standard extensions
@item zvbb
@tab 1.0
@tab Vector basic bit-manipulation extension.
@item zvbc
@tab 1.0
@tab Vector carryless multiplication extension.
@item zvkb
@tab 1.0
@tab Vector cryptography bit-manipulation extension.
@item zvkg
@tab 1.0
@tab Vector GCM/GMAC extension.
@item zvkned
@tab 1.0
@tab Vector AES block cipher extension.
@item zvknha
@tab 1.0
@tab Vector SHA-2 secure hash extension.
@item zvknhb
@tab 1.0
@tab Vector SHA-2 secure hash extension.
@item zvksed
@tab 1.0
@tab Vector SM4 Block Cipher extension.
@item zvksh
@tab 1.0
@tab Vector SM3 Secure Hash extension.
@item zvkn
@tab 1.0
@tab Vector NIST Algorithm Suite extension, @samp{zvkn} will expand to
@samp{zvkned}, @samp{zvknhb}, @samp{zvkb} and @samp{zvkt}.
@item zvknc
@tab 1.0
@tab Vector NIST Algorithm Suite with carryless multiply extension, @samp{zvknc}
will expand to @samp{zvkn} and @samp{zvbc}.
@item zvkng
@tab 1.0
@tab Vector NIST Algorithm Suite with GCM extension, @samp{zvkng} will expand
to @samp{zvkn} and @samp{zvkg}.
@item zvks
@tab 1.0
@tab Vector ShangMi algorithm suite extension, @samp{zvks} will expand
to @samp{zvksed}, @samp{zvksh}, @samp{zvkb} and @samp{zvkt}.
@item zvksc
@tab 1.0
@tab Vector ShangMi algorithm suite with carryless multiplication extension,
@samp{zvksc} will expand to @samp{zvks} and @samp{zvbc}.
@item zvksg
@tab 1.0
@tab Vector ShangMi algorithm suite with GCM extension, @samp{zvksg} will expand
to @samp{zvks} and @samp{zvkg}.
@item zvkt
@tab 1.0
@tab Vector data independent execution latency extension.
@item zfh
@tab 1.0
@tab Half-precision floating-point extension.
@item zfhmin
@tab 1.0
@tab Minimal half-precision floating-point extension.
@item zvfh
@tab 1.0
@tab Vector half-precision floating-point extension.
@item zvfhmin
@tab 1.0
@tab Vector minimal half-precision floating-point extension.
@item zvfbfmin
@tab 1.0
@tab Vector BF16 converts extension.
@item zfa
@tab 1.0
@tab Additional floating-point extension.
@item zmmul
@tab 1.0
@tab Integer multiplication extension.
@item zca
@tab 1.0
@tab Integer compressed instruction extension.
@item zcf
@tab 1.0
@tab Compressed single-precision floating point loads and stores extension.
@item zcd
@tab 1.0
@tab Compressed double-precision floating point loads and stores extension.
@item zcb
@tab 1.0
@tab Simple compressed instruction extension.
@item zce
@tab 1.0
@tab Compressed instruction extensions for embedded processors.
@item zcmp
@tab 1.0
@tab Compressed push pop extension.
@item zcmt
@tab 1.0
@tab Table jump instruction extension.
@item smaia
@tab 1.0
@tab Advanced interrupt architecture extension.
@item smepmp
@tab 1.0
@tab PMP Enhancements for memory access and execution prevention on Machine mode.
@item smstateen
@tab 1.0
@tab State enable extension.
@item ssaia
@tab 1.0
@tab Advanced interrupt architecture extension for supervisor-mode.
@item sscofpmf
@tab 1.0
@tab Count overflow & filtering extension.
@item ssstateen
@tab 1.0
@tab State-enable extension for supervisor-mode.
@item sstc
@tab 1.0
@tab Supervisor-mode timer interrupts extension.
@item svinval
@tab 1.0
@tab Fine-grained address-translation cache invalidation extension.
@item svnapot
@tab 1.0
@tab NAPOT translation contiguity extension.
@item svpbmt
@tab 1.0
@tab Page-based memory types extension.
@item xcvmac
@tab 1.0
@tab Core-V multiply-accumulate extension.
@item xcvalu
@tab 1.0
@tab Core-V miscellaneous ALU extension.
@item xcvelw
@tab 1.0
@tab Core-V event load word extension.
@item xtheadba
@tab 1.0
@tab T-head address calculation extension.
@item xtheadbb
@tab 1.0
@tab T-head basic bit-manipulation extension.
@item xtheadbs
@tab 1.0
@tab T-head single-bit instructions extension.
@item xtheadcmo
@tab 1.0
@tab T-head cache management operations extension.
@item xtheadcondmov
@tab 1.0
@tab T-head conditional move extension.
@item xtheadfmemidx
@tab 1.0
@tab T-head indexed memory operations for floating-point registers extension.
@item xtheadfmv
@tab 1.0
@tab T-head double floating-point high-bit data transmission extension.
@item xtheadint
@tab 1.0
@tab T-head acceleration interruption extension.
@item xtheadmac
@tab 1.0
@tab T-head multiply-accumulate extension.
@item xtheadmemidx
@tab 1.0
@tab T-head indexed memory operation extension.
@item xtheadmempair
@tab 1.0
@tab T-head two-GPR memory operation extension.
@item xtheadsync
@tab 1.0
@tab T-head multi-core synchronization extension.
@item xventanacondops
@tab 1.0
@tab Ventana integer conditional operations extension.
@end multitable
When @option{-march=} is not specified, use the setting from @option{-mcpu}.
If both @option{-march} and @option{-mcpu=} are not specified, the default for
this argument is system dependent, users who want a specific architecture
extensions should specify one explicitly.
When the RISC-V specifications define an extension as depending on other
extensions, GCC will implicitly add the dependent extensions to the enabled
extension set if they weren't added explicitly.
@opindex mcpu
@item -mcpu=@var{processor-string}
Use architecture of and optimize the output for the given processor, specified
by particular CPU name.
Permissible values for this option are: @samp{sifive-e20}, @samp{sifive-e21},
@samp{sifive-e24}, @samp{sifive-e31}, @samp{sifive-e34}, @samp{sifive-e76},
@samp{sifive-s21}, @samp{sifive-s51}, @samp{sifive-s54}, @samp{sifive-s76},
@samp{sifive-u54}, @samp{sifive-u74}, @samp{sifive-x280}, @samp{sifive-xp450},
@samp{sifive-x670}.
Note that @option{-mcpu} does not override @option{-march} or @option{-mtune}.
@opindex mtune
@item -mtune=@var{processor-string}
Optimize the output for the given processor, specified by microarchitecture or
particular CPU name. Permissible values for this option are: @samp{rocket},
@samp{sifive-3-series}, @samp{sifive-5-series}, @samp{sifive-7-series},
@samp{thead-c906}, @samp{size}, @samp{sifive-p400-series},
@samp{sifive-p600-series}, and all valid options for @option{-mcpu=}.
When @option{-mtune=} is not specified, use the setting from @option{-mcpu},
the default is @samp{rocket} if both are not specified.
The @samp{size} choice is not intended for use by end-users. This is used
when @option{-Os} is specified. It overrides the instruction cost info
provided by @option{-mtune=}, but does not override the pipeline info. This
helps reduce code size while still giving good performance.
@opindex mpreferred-stack-boundary
@item -mpreferred-stack-boundary=@var{num}
Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
the default is 4 (16 bytes or 128-bits).
@strong{Warning:} If you use this switch, then you must build all modules with
the same value, including any libraries. This includes the system libraries
and startup modules.
@opindex msmall-data-limit
@item -msmall-data-limit=@var{n}
Put global and static data smaller than @var{n} bytes into a special section
(on some targets).
@opindex msave-restore
@item -msave-restore
@itemx -mno-save-restore
Do or don't use smaller but slower prologue and epilogue code that uses
library function calls. The default is to use fast inline prologues and
epilogues.
@opindex mmovcc
@item -mmovcc
@itemx -mno-movcc
Do or don't produce branchless conditional-move code sequences even with
targets that do not have specific instructions for conditional operations.
If enabled, sequences of ALU operations are produced using base integer
ISA instructions where profitable.
@opindex minline-atomics
@item -minline-atomics
@itemx -mno-inline-atomics
Do or don't use smaller but slower subword atomic emulation code that uses
libatomic function calls. The default is to use fast inline subword atomics
that do not require libatomic.
@opindex minline-strlen
@item -minline-strlen
@itemx -mno-inline-strlen
Do or do not attempt to inline strlen calls if possible.
Inlining will only be done if the string is properly aligned
and instructions for accelerated processing are available.
The default is to not inline strlen calls.
@opindex minline-strcmp
@item -minline-strcmp
@itemx -mno-inline-strcmp
Do or do not attempt to inline strcmp calls if possible.
Inlining will only be done if the strings are properly aligned
and instructions for accelerated processing are available.
The default is to not inline strcmp calls.
The @option{--param riscv-strcmp-inline-limit=@var{n}} parameter controls
the maximum number of bytes compared by the inlined code.
The default value is 64.
@opindex minline-strncmp
@item -minline-strncmp
@itemx -mno-inline-strncmp
Do or do not attempt to inline strncmp calls if possible.
Inlining will only be done if the strings are properly aligned
and instructions for accelerated processing are available.
The default is to not inline strncmp calls.
The @option{--param riscv-strcmp-inline-limit=@var{n}} parameter controls
the maximum number of bytes compared by the inlined code.
The default value is 64.
@opindex mshorten-memrefs
@item -mshorten-memrefs
@itemx -mno-shorten-memrefs
Do or do not attempt to make more use of compressed load/store instructions by
replacing a load/store of 'base register + large offset' with a new load/store
of 'new base + small offset'. If the new base gets stored in a compressed
register, then the new load/store can be compressed. Currently targets 32-bit
integer load/stores only.
@opindex mstrict-align
@item -mstrict-align
@itemx -mno-strict-align
Do not or do generate unaligned memory accesses. The default is set depending
on whether the processor we are optimizing for supports fast unaligned access
or not.
@opindex mscalar-strict-align
@opindex mno-scalar-strict-align
@item -mscalar-strict-align
@itemx -mno-scalar-strict-align
Do not or do generate unaligned memory accesses. The default is set depending
on whether the processor we are optimizing for supports fast unaligned access
or not. This is an alias for @option{-mstrict-align}.
@opindex mvector-strict-align
@opindex mno-vector-strict-align
@item -mvector-strict-align
@itemx -mno-vector-strict-align
Do not or do generate unaligned vector memory accesses. The default is set
to off unless the processor we are optimizing for explicitly supports
element-misaligned vector memory access.
@opindex mcmodel=
@opindex mcmodel=medlow
@item -mcmodel=medlow
Generate code for the medium-low code model. The program and its statically
defined symbols must lie within a single 2 GiB address range and must lie
between absolute addresses @minus{}2 GiB and +2 GiB. Programs can be
statically or dynamically linked. This is the default code model.
@opindex mcmodel=medany
@item -mcmodel=medany
Generate code for the medium-any code model. The program and its statically
defined symbols must be within any single 2 GiB address range. Programs can be
statically or dynamically linked.
The code generated by the medium-any code model is position-independent, but is
not guaranteed to function correctly when linked into position-independent
executables or libraries.
@opindex mcmodel=large
@item -mcmodel=large
Generate code for a large code model, which has no restrictions on size or
placement of symbols.
@item -mexplicit-relocs
@itemx -mno-exlicit-relocs
Use or do not use assembler relocation operators when dealing with symbolic
addresses. The alternative is to use assembler macros instead, which may
limit optimization.
@opindex mrelax
@item -mrelax
@itemx -mno-relax
Take advantage of linker relaxations to reduce the number of instructions
required to materialize symbol addresses. The default is to take advantage of
linker relaxations.
@opindex mriscv-attribute
@item -mriscv-attribute
@itemx -mno-riscv-attribute
Emit (do not emit) RISC-V attribute to record extra information into ELF
objects. This feature requires at least binutils 2.32.
@opindex mcsr-check
@item -mcsr-check
@itemx -mno-csr-check
Enables or disables the CSR checking.
@opindex malign-data
@item -malign-data=@var{type}
Control how GCC aligns variables and constants of array, structure, or union
types. Supported values for @var{type} are @samp{xlen} which uses x register
width as the alignment value, and @samp{natural} which uses natural alignment.
@samp{xlen} is the default.
@opindex mbig-endian
@item -mbig-endian
Generate big-endian code. This is the default when GCC is configured for a
@samp{riscv64be-*-*} or @samp{riscv32be-*-*} target.
@opindex mlittle-endian
@item -mlittle-endian
Generate little-endian code. This is the default when GCC is configured for a
@samp{riscv64-*-*} or @samp{riscv32-*-*} but not a @samp{riscv64be-*-*} or
@samp{riscv32be-*-*} target.
@opindex mstack-protector-guard
@opindex mstack-protector-guard-reg
@opindex mstack-protector-guard-offset
@item -mstack-protector-guard=@var{guard}
@itemx -mstack-protector-guard-reg=@var{reg}
@itemx -mstack-protector-guard-offset=@var{offset}
Generate stack protection code using canary at @var{guard}. Supported
locations are @samp{global} for a global canary or @samp{tls} for per-thread
canary in the TLS block.
With the latter choice the options
@option{-mstack-protector-guard-reg=@var{reg}} and
@option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
which register to use as base register for reading the canary,
and from what offset from that base register. There is no default
register or offset as this is entirely for use within the Linux
kernel.
@opindex mtls-dialect=desc
@item -mtls-dialect=desc
Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
of TLS variables.
@opindex mtls-dialect=trad
@item -mtls-dialect=trad
Use traditional TLS as the thread-local storage mechanism for dynamic accesses
of TLS variables. This is the default.
@end table
@node RL78 Options
@subsection RL78 Options
@cindex RL78 Options
@table @gcctabopt
@opindex msim
@item -msim
Links in additional target libraries to support operation within a
simulator.
@opindex mmul
@item -mmul=none
@itemx -mmul=g10
@itemx -mmul=g13
@itemx -mmul=g14
@itemx -mmul=rl78
Specifies the type of hardware multiplication and division support to
be used. The simplest is @code{none}, which uses software for both
multiplication and division. This is the default. The @code{g13}
value is for the hardware multiply/divide peripheral found on the
RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
the multiplication and division instructions supported by the RL78/G14
(S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
the value @code{mg10} is an alias for @code{none}.
In addition a C preprocessor macro is defined, based upon the setting
of this option. Possible values are: @code{__RL78_MUL_NONE__},
@code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
@opindex mcpu
@item -mcpu=g10
@itemx -mcpu=g13
@itemx -mcpu=g14
@itemx -mcpu=rl78
Specifies the RL78 core to target. The default is the G14 core, also
known as an S3 core or just RL78. The G13 or S2 core does not have
multiply or divide instructions, instead it uses a hardware peripheral
for these operations. The G10 or S1 core does not have register
banks, so it uses a different calling convention.
If this option is set it also selects the type of hardware multiply
support to use, unless this is overridden by an explicit
@option{-mmul=none} option on the command line. Thus specifying
@option{-mcpu=g13} enables the use of the G13 hardware multiply
peripheral and specifying @option{-mcpu=g10} disables the use of
hardware multiplications altogether.
Note, although the RL78/G14 core is the default target, specifying
@option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
change the behavior of the toolchain since it also enables G14
hardware multiply support. If these options are not specified on the
command line then software multiplication routines will be used even
though the code targets the RL78 core. This is for backwards
compatibility with older toolchains which did not have hardware
multiply and divide support.
In addition a C preprocessor macro is defined, based upon the setting
of this option. Possible values are: @code{__RL78_G10__},
@code{__RL78_G13__} or @code{__RL78_G14__}.
@opindex mg10
@opindex mg13
@opindex mg14
@opindex mrl78
@item -mg10
@itemx -mg13
@itemx -mg14
@itemx -mrl78
These are aliases for the corresponding @option{-mcpu=} option. They
are provided for backwards compatibility.
@opindex mallregs
@item -mallregs
Allow the compiler to use all of the available registers. By default
registers @code{r24..r31} are reserved for use in interrupt handlers.
With this option enabled these registers can be used in ordinary
functions as well.
@opindex m64bit-doubles
@opindex m32bit-doubles
@item -m64bit-doubles
@itemx -m32bit-doubles
Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
or 32 bits (@option{-m32bit-doubles}) in size. The default is
@option{-m32bit-doubles}.
@opindex msave-mduc-in-interrupts
@opindex mno-save-mduc-in-interrupts
@item -msave-mduc-in-interrupts
@itemx -mno-save-mduc-in-interrupts
Specifies that interrupt handler functions should preserve the
MDUC registers. This is only necessary if normal code might use
the MDUC registers, for example because it performs multiplication
and division operations. The default is to ignore the MDUC registers
as this makes the interrupt handlers faster. The target option -mg13
needs to be passed for this to work as this feature is only available
on the G13 target (S2 core). The MDUC registers will only be saved
if the interrupt handler performs a multiplication or division
operation or it calls another function.
@end table
@node RS/6000 and PowerPC Options
@subsection IBM RS/6000 and PowerPC Options
@cindex RS/6000 and PowerPC Options
@cindex IBM RS/6000 and PowerPC Options
These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
@table @gcctabopt
@item -mpowerpc-gpopt
@itemx -mno-powerpc-gpopt
@itemx -mpowerpc-gfxopt
@itemx -mno-powerpc-gfxopt
@need 800
@itemx -mpowerpc64
@itemx -mno-powerpc64
@itemx -mmfcrf
@itemx -mno-mfcrf
@itemx -mpopcntb
@itemx -mno-popcntb
@itemx -mpopcntd
@itemx -mno-popcntd
@itemx -mfprnd
@itemx -mno-fprnd
@need 800
@opindex mpowerpc-gpopt
@opindex mno-powerpc-gpopt
@opindex mpowerpc-gfxopt
@opindex mno-powerpc-gfxopt
@opindex mpowerpc64
@opindex mno-powerpc64
@opindex mmfcrf
@opindex mno-mfcrf
@opindex mpopcntb
@opindex mno-popcntb
@opindex mpopcntd
@opindex mno-popcntd
@opindex mfprnd
@opindex mno-fprnd
@opindex mcmpb
@opindex mno-cmpb
@opindex mhard-dfp
@opindex mno-hard-dfp
@itemx -mcmpb
@itemx -mno-cmpb
@itemx -mhard-dfp
@itemx -mno-hard-dfp
You use these options to specify which instructions are available on the
processor you are using. The default value of these options is
determined when configuring GCC@. Specifying the
@option{-mcpu=@var{cpu_type}} overrides the specification of these
options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
rather than the options listed above.
Specifying @option{-mpowerpc-gpopt} allows
GCC to use the optional PowerPC architecture instructions in the
General Purpose group, including floating-point square root. Specifying
@option{-mpowerpc-gfxopt} allows GCC to
use the optional PowerPC architecture instructions in the Graphics
group, including floating-point select.
The @option{-mmfcrf} option allows GCC to generate the move from
condition register field instruction implemented on the POWER4
processor and other processors that support the PowerPC V2.01
architecture.
The @option{-mpopcntb} option allows GCC to generate the popcount and
double-precision FP reciprocal estimate instruction implemented on the
POWER5 processor and other processors that support the PowerPC V2.02
architecture.
The @option{-mpopcntd} option allows GCC to generate the popcount
instruction implemented on the POWER7 processor and other processors
that support the PowerPC V2.06 architecture.
The @option{-mfprnd} option allows GCC to generate the FP round to
integer instructions implemented on the POWER5+ processor and other
processors that support the PowerPC V2.03 architecture.
The @option{-mcmpb} option allows GCC to generate the compare bytes
instruction implemented on the POWER6 processor and other processors
that support the PowerPC V2.05 architecture.
The @option{-mhard-dfp} option allows GCC to generate the decimal
floating-point instructions implemented on some POWER processors.
The @option{-mpowerpc64} option allows GCC to generate the additional
64-bit instructions that are found in the full PowerPC64 architecture
and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
@option{-mno-powerpc64}.
@opindex mcpu
@item -mcpu=@var{cpu_type}
Set architecture type, register usage, and
instruction scheduling parameters for machine type @var{cpu_type}.
Supported values for @var{cpu_type} are @samp{401}, @samp{403},
@samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
@samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
@samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
@samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
@samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
@samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
@samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
@samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
@samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
@samp{power9}, @samp{power10}, @samp{power11}, @samp{powerpc}, @samp{powerpc64},
@samp{powerpc64le}, @samp{rs64}, and @samp{native}.
@option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
@option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
architecture machine types, with an appropriate, generic processor
model assumed for scheduling purposes.
Specifying @samp{native} as cpu type detects and selects the
architecture option that corresponds to the host processor of the
system performing the compilation.
@option{-mcpu=native} has no effect if GCC does not recognize the
processor.
The other options specify a specific processor. Code generated under
those options runs best on that processor, and may not run at all on
others.
The @option{-mcpu} options automatically enable or disable the
following options:
@gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple
-mpopcntb -mpopcntd -mpowerpc64
-mpowerpc-gpopt -mpowerpc-gfxopt
-mmulhw -mdlmzb -mmfpgpr -mvsx
-mcrypto -mhtm -mpower8-fusion
-mquad-memory -mquad-memory-atomic -mfloat128
-mfloat128-hardware -mprefixed -mpcrel -mmma
-mrop-protect}
The particular options set for any particular CPU varies between
compiler versions, depending on what setting seems to produce optimal
code for that CPU; it doesn't necessarily reflect the actual hardware's
capabilities. If you wish to set an individual option to a particular
value, you may specify it after the @option{-mcpu} option, like
@option{-mcpu=970 -mno-altivec}.
On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
not enabled or disabled by the @option{-mcpu} option at present because
AIX does not have full support for these options. You may still
enable or disable them individually if you're sure it'll work in your
environment.
@opindex mtune
@item -mtune=@var{cpu_type}
Set the instruction scheduling parameters for machine type
@var{cpu_type}, but do not set the architecture type or register usage,
as @option{-mcpu=@var{cpu_type}} does. The same
values for @var{cpu_type} are used for @option{-mtune} as for
@option{-mcpu}. If both are specified, the code generated uses the
architecture and registers set by @option{-mcpu}, but the
scheduling parameters set by @option{-mtune}.
@opindex mcmodel=
@opindex mcmodel=small
@item -mcmodel=small
Generate PowerPC64 code for the small model: The TOC is limited to
64k.
@opindex mcmodel=medium
@item -mcmodel=medium
Generate PowerPC64 code for the medium model: The TOC and other static
data may be up to a total of 4G in size. This is the default for 64-bit
Linux.
@opindex mcmodel=large
@item -mcmodel=large
Generate PowerPC64 code for the large model: The TOC may be up to 4G
in size. Other data and code is only limited by the 64-bit address
space.
@opindex maltivec
@opindex mno-altivec
@item -maltivec
@itemx -mno-altivec
Generate code that uses (does not use) AltiVec instructions, and also
enable the use of built-in functions that allow more direct access to
the AltiVec instruction set. You may also need to set
@option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
enhancements.
When @option{-maltivec} is used, the element order for AltiVec intrinsics
such as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
match array element order corresponding to the endianness of the
target. That is, element zero identifies the leftmost element in a
vector register when targeting a big-endian platform, and identifies
the rightmost element in a vector register when targeting a
little-endian platform.
@opindex mvrsave
@opindex mno-vrsave
@item -mvrsave
@itemx -mno-vrsave
Generate VRSAVE instructions when generating AltiVec code.
@opindex msecure-plt
@item -msecure-plt
Generate code that allows @command{ld} and @command{ld.so}
to build executables and shared
libraries with non-executable @code{.plt} and @code{.got} sections.
This is a PowerPC
32-bit SYSV ABI option.
@opindex mbss-plt
@item -mbss-plt
Generate code that uses a BSS @code{.plt} section that @command{ld.so}
fills in, and
requires @code{.plt} and @code{.got}
sections that are both writable and executable.
This is a PowerPC 32-bit SYSV ABI option.
@opindex misel
@opindex mno-isel
@item -misel
@itemx -mno-isel
This switch enables or disables the generation of ISEL instructions.
@opindex mvsx
@opindex mno-vsx
@item -mvsx
@itemx -mno-vsx
Generate code that uses (does not use) vector/scalar (VSX)
instructions, and also enable the use of built-in functions that allow
more direct access to the VSX instruction set.
@opindex mcrypto
@opindex mno-crypto
@item -mcrypto
@itemx -mno-crypto
Enable the use (disable) of the built-in functions that allow direct
access to the cryptographic instructions that were added in version
2.07 of the PowerPC ISA.
@opindex mhtm
@opindex mno-htm
@item -mhtm
@itemx -mno-htm
Enable (disable) the use of the built-in functions that allow direct
access to the Hardware Transactional Memory (HTM) instructions that
were added in version 2.07 of the PowerPC ISA.
@opindex mpower8-fusion
@opindex mno-power8-fusion
@item -mpower8-fusion
@itemx -mno-power8-fusion
Generate code that keeps (does not keeps) some integer operations
adjacent so that the instructions can be fused together on power8 and
later processors.
@opindex mquad-memory
@opindex mno-quad-memory
@item -mquad-memory
@itemx -mno-quad-memory
Generate code that uses (does not use) the non-atomic quad word memory
instructions. The @option{-mquad-memory} option requires use of
64-bit mode.
@opindex mquad-memory-atomic
@opindex mno-quad-memory-atomic
@item -mquad-memory-atomic
@itemx -mno-quad-memory-atomic
Generate code that uses (does not use) the atomic quad word memory
instructions. The @option{-mquad-memory-atomic} option requires use of
64-bit mode.
@opindex mfloat128
@opindex mno-float128
@item -mfloat128
@itemx -mno-float128
Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
and use either software emulation for IEEE 128-bit floating point or
hardware instructions.
The VSX instruction set (@option{-mvsx}) must be enabled to use the IEEE
128-bit floating point support. The IEEE 128-bit floating point is only
supported on Linux.
The default for @option{-mfloat128} is enabled on PowerPC Linux
systems using the VSX instruction set, and disabled on other systems.
If you use the ISA 3.0 instruction set (@option{-mcpu=power9}) on a
64-bit system, the IEEE 128-bit floating point support will also enable
the generation of ISA 3.0 IEEE 128-bit floating point instructions.
Otherwise, if you do not specify to generate ISA 3.0 instructions or you
are targeting a 32-bit big endian system, IEEE 128-bit floating point
will be done with software emulation.
@opindex mfloat128-hardware
@opindex mno-float128-hardware
@item -mfloat128-hardware
@itemx -mno-float128-hardware
Enable/disable using ISA 3.0 hardware instructions to support the
@var{__float128} data type.
The default for @option{-mfloat128-hardware} is enabled on PowerPC
Linux systems using the ISA 3.0 instruction set, and disabled on other
systems.
@opindex m32
@opindex m64
@item -m32
@itemx -m64
Generate code for 32-bit or 64-bit environments of Darwin and SVR4
targets (including GNU/Linux). The 32-bit environment sets int, long
and pointer to 32 bits and generates code that runs on any PowerPC
variant. The 64-bit environment sets int to 32 bits and long and
pointer to 64 bits, and generates code for PowerPC64, as for
@option{-mpowerpc64}.
@opindex mfull-toc
@opindex mno-fp-in-toc
@opindex mno-sum-in-toc
@opindex mminimal-toc
@item -mfull-toc
@itemx -mno-fp-in-toc
@itemx -mno-sum-in-toc
@itemx -mminimal-toc
Modify generation of the TOC (Table Of Contents), which is created for
every executable file. The @option{-mfull-toc} option is selected by
default. In that case, GCC allocates at least one TOC entry for
each unique non-automatic variable reference in your program. GCC
also places floating-point constants in the TOC@. However, only
16,384 entries are available in the TOC@.
If you receive a linker error message that saying you have overflowed
the available TOC space, you can reduce the amount of TOC space used
with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
@option{-mno-fp-in-toc} prevents GCC from putting floating-point
constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
generate code to calculate the sum of an address and a constant at
run time instead of putting that sum into the TOC@. You may specify one
or both of these options. Each causes GCC to produce very slightly
slower and larger code at the expense of conserving TOC space.
If you still run out of space in the TOC even when you specify both of
these options, specify @option{-mminimal-toc} instead. This option causes
GCC to make only one TOC entry for every file. When you specify this
option, GCC produces code that is slower and larger but which
uses extremely little TOC space. You may wish to use this option
only on files that contain less frequently-executed code.
@opindex maix64
@opindex maix32
@item -maix64
@itemx -maix32
Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
@code{long} type, and the infrastructure needed to support them.
Specifying @option{-maix64} implies @option{-mpowerpc64},
while @option{-maix32} disables the 64-bit ABI and
implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
@opindex mxl-compat
@opindex mno-xl-compat
@item -mxl-compat
@itemx -mno-xl-compat
Produce code that conforms more closely to IBM XL compiler semantics
when using AIX-compatible ABI@. Pass floating-point arguments to
prototyped functions beyond the register save area (RSA) on the stack
in addition to argument FPRs. Do not assume that most significant
double in 128-bit long double value is properly rounded when comparing
values and converting to double. Use XL symbol names for long double
support routines.
The AIX calling convention was extended but not initially documented to
handle an obscure K&R C case of calling a function that takes the
address of its arguments with fewer arguments than declared. IBM XL
compilers access floating-point arguments that do not fit in the
RSA from the stack when a subroutine is compiled without
optimization. Because always storing floating-point arguments on the
stack is inefficient and rarely needed, this option is not enabled by
default and only is necessary when calling subroutines compiled by IBM
XL compilers without optimization.
@opindex mpe
@item -mpe
Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
application written to use message passing with special startup code to
enable the application to run. The system must have PE installed in the
standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
must be overridden with the @option{-specs=} option to specify the
appropriate directory location. The Parallel Environment does not
support threads, so the @option{-mpe} option and the @option{-pthread}
option are incompatible.
@opindex malign-natural
@opindex malign-power
@item -malign-natural
@itemx -malign-power
On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
@option{-malign-natural} overrides the ABI-defined alignment of larger
types, such as floating-point doubles, on their natural size-based boundary.
The option @option{-malign-power} instructs GCC to follow the ABI-specified
alignment rules. GCC defaults to the standard alignment defined in the ABI@.
On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
is not supported.
@opindex msoft-float
@opindex mhard-float
@item -msoft-float
@itemx -mhard-float
Generate code that does not use (uses) the floating-point register set.
Software floating-point emulation is provided if you use the
@option{-msoft-float} option, and pass the option to GCC when linking.
@opindex mmultiple
@opindex mno-multiple
@item -mmultiple
@itemx -mno-multiple
Generate code that uses (does not use) the load multiple word
instructions and the store multiple word instructions. These
instructions are generated by default on POWER systems, and not
generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
PowerPC systems, since those instructions do not work when the
processor is in little-endian mode. The exceptions are PPC740 and
PPC750 which permit these instructions in little-endian mode.
@opindex mupdate
@opindex mno-update
@item -mupdate
@itemx -mno-update
Generate code that uses (does not use) the load or store instructions
that update the base register to the address of the calculated memory
location. These instructions are generated by default. If you use
@option{-mno-update}, there is a small window between the time that the
stack pointer is updated and the address of the previous frame is
stored, which means code that walks the stack frame across interrupts or
signals may get corrupted data.
@opindex mavoid-indexed-addresses
@opindex mno-avoid-indexed-addresses
@item -mavoid-indexed-addresses
@itemx -mno-avoid-indexed-addresses
Generate code that tries to avoid (not avoid) the use of indexed load
or store instructions. These instructions can incur a performance
penalty on Power6 processors in certain situations, such as when
stepping through large arrays that cross a 16M boundary. This option
is enabled by default when targeting Power6 and disabled otherwise.
@opindex mfused-madd
@opindex mno-fused-madd
@item -mfused-madd
@itemx -mno-fused-madd
Generate code that uses (does not use) the floating-point multiply and
accumulate instructions. These instructions are generated by default
if hardware floating point is used. The machine-dependent
@option{-mfused-madd} option is now mapped to the machine-independent
@option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
mapped to @option{-ffp-contract=off}.
@opindex mmulhw
@opindex mno-mulhw
@item -mmulhw
@itemx -mno-mulhw
Generate code that uses (does not use) the half-word multiply and
multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
These instructions are generated by default when targeting those
processors.
@opindex mdlmzb
@opindex mno-dlmzb
@item -mdlmzb
@itemx -mno-dlmzb
Generate code that uses (does not use) the string-search @samp{dlmzb}
instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
generated by default when targeting those processors.
@opindex mno-bit-align
@opindex mbit-align
@item -mno-bit-align
@itemx -mbit-align
On System V.4 and embedded PowerPC systems do not (do) force structures
and unions that contain bit-fields to be aligned to the base type of the
bit-field.
For example, by default a structure containing nothing but 8
@code{unsigned} bit-fields of length 1 is aligned to a 4-byte
boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
the structure is aligned to a 1-byte boundary and is 1 byte in
size.
@opindex mno-strict-align
@opindex mstrict-align
@item -mno-strict-align
@itemx -mstrict-align
On System V.4 and embedded PowerPC systems do not (do) assume that
unaligned memory references are handled by the system.
@opindex mrelocatable
@opindex mno-relocatable
@item -mrelocatable
@itemx -mno-relocatable
Generate code that allows (does not allow) a static executable to be
relocated to a different address at run time. A simple embedded
PowerPC system loader should relocate the entire contents of
@code{.got2} and 4-byte locations listed in the @code{.fixup} section,
a table of 32-bit addresses generated by this option. For this to
work, all objects linked together must be compiled with
@option{-mrelocatable} or @option{-mrelocatable-lib}.
@option{-mrelocatable} code aligns the stack to an 8-byte boundary.
@opindex mrelocatable-lib
@opindex mno-relocatable-lib
@item -mrelocatable-lib
@itemx -mno-relocatable-lib
Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
@code{.fixup} section to allow static executables to be relocated at
run time, but @option{-mrelocatable-lib} does not use the smaller stack
alignment of @option{-mrelocatable}. Objects compiled with
@option{-mrelocatable-lib} may be linked with objects compiled with
any combination of the @option{-mrelocatable} options.
@opindex mno-toc
@opindex mtoc
@item -mno-toc
@itemx -mtoc
On System V.4 and embedded PowerPC systems do not (do) assume that
register 2 contains a pointer to a global area pointing to the addresses
used in the program.
@opindex mlittle
@opindex mlittle-endian
@item -mlittle
@itemx -mlittle-endian
On System V.4 and embedded PowerPC systems compile code for the
processor in little-endian mode. The @option{-mlittle-endian} option is
the same as @option{-mlittle}.
@opindex mbig
@opindex mbig-endian
@item -mbig
@itemx -mbig-endian
On System V.4 and embedded PowerPC systems compile code for the
processor in big-endian mode. The @option{-mbig-endian} option is
the same as @option{-mbig}.
@opindex mdynamic-no-pic
@item -mdynamic-no-pic
On Darwin / macOS systems, compile code so that it is not
relocatable, but that its external references are relocatable. The
resulting code is suitable for applications, but not shared
libraries.
@opindex msingle-pic-base
@item -msingle-pic-base
Treat the register used for PIC addressing as read-only, rather than
loading it in the prologue for each function. The runtime system is
responsible for initializing this register with an appropriate value
before execution begins.
@opindex mprioritize-restricted-insns
@item -mprioritize-restricted-insns=@var{priority}
This option controls the priority that is assigned to
dispatch-slot restricted instructions during the second scheduling
pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
or @samp{2} to assign no, highest, or second-highest (respectively)
priority to dispatch-slot restricted
instructions.
@opindex msched-costly-dep
@item -msched-costly-dep=@var{dependence_type}
This option controls which dependences are considered costly
by the target during instruction scheduling. The argument
@var{dependence_type} takes one of the following values:
@table @asis
@item @samp{no}
No dependence is costly.
@item @samp{all}
All dependences are costly.
@item @samp{true_store_to_load}
A true dependence from store to load is costly.
@item @samp{store_to_load}
Any dependence from store to load is costly.
@item @var{number}
Any dependence for which the latency is greater than or equal to
@var{number} is costly.
@end table
@opindex minsert-sched-nops
@item -minsert-sched-nops=@var{scheme}
This option controls which NOP insertion scheme is used during
the second scheduling pass. The argument @var{scheme} takes one of the
following values:
@table @asis
@item @samp{no}
Don't insert NOPs.
@item @samp{pad}
Pad with NOPs any dispatch group that has vacant issue slots,
according to the scheduler's grouping.
@item @samp{regroup_exact}
Insert NOPs to force costly dependent insns into
separate groups. Insert exactly as many NOPs as needed to force an insn
to a new group, according to the estimated processor grouping.
@item @var{number}
Insert NOPs to force costly dependent insns into
separate groups. Insert @var{number} NOPs to force an insn to a new group.
@end table
@opindex mcall-sysv
@item -mcall-sysv
On System V.4 and embedded PowerPC systems compile code using calling
conventions that adhere to the March 1995 draft of the System V
Application Binary Interface, PowerPC processor supplement. This is the
default unless you configured GCC using @samp{powerpc-*-eabiaix}.
@opindex mcall-sysv-eabi
@opindex mcall-eabi
@item -mcall-sysv-eabi
@itemx -mcall-eabi
Specify both @option{-mcall-sysv} and @option{-meabi} options.
@opindex mcall-sysv-noeabi
@item -mcall-sysv-noeabi
Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
@opindex mcall-aixdesc
@item -mcall-aixdesc
On System V.4 and embedded PowerPC systems compile code for the AIX
operating system.
@opindex mcall-linux
@item -mcall-linux
On System V.4 and embedded PowerPC systems compile code for the
Linux-based GNU system.
@opindex mcall-freebsd
@item -mcall-freebsd
On System V.4 and embedded PowerPC systems compile code for the
FreeBSD operating system.
@opindex mcall-netbsd
@item -mcall-netbsd
On System V.4 and embedded PowerPC systems compile code for the
NetBSD operating system.
@opindex mcall-openbsd
@item -mcall-openbsd
On System V.4 and embedded PowerPC systems compile code for the
OpenBSD operating system.
@opindex mtraceback
@item -mtraceback=@var{traceback_type}
Select the type of traceback table. Valid values for @var{traceback_type}
are @samp{full}, @samp{part}, and @samp{no}.
@opindex maix-struct-return
@item -maix-struct-return
Return all structures in memory (as specified by the AIX ABI)@.
@opindex msvr4-struct-return
@item -msvr4-struct-return
Return structures smaller than 8 bytes in registers (as specified by the
SVR4 ABI)@.
@opindex mabi
@item -mabi=@var{abi-type}
Extend the current ABI with a particular extension, or remove such extension.
Valid values are: @samp{altivec}, @samp{no-altivec},
@samp{ibmlongdouble}, @samp{ieeelongdouble},
@samp{elfv1}, @samp{elfv2},
and for AIX: @samp{vec-extabi}, @samp{vec-default}@.
@opindex mabi=ibmlongdouble
@item -mabi=ibmlongdouble
Change the current ABI to use IBM extended-precision long double.
This is not likely to work if your system defaults to using IEEE
extended-precision long double. If you change the long double type
from IEEE extended-precision, the compiler will issue a warning unless
you use the @option{-Wno-psabi} option. Requires @option{-mlong-double-128}
to be enabled.
@opindex mabi=ieeelongdouble
@item -mabi=ieeelongdouble
Change the current ABI to use IEEE extended-precision long double.
This is not likely to work if your system defaults to using IBM
extended-precision long double. If you change the long double type
from IBM extended-precision, the compiler will issue a warning unless
you use the @option{-Wno-psabi} option. Requires @option{-mlong-double-128}
to be enabled.
@opindex mabi=elfv1
@item -mabi=elfv1
Change the current ABI to use the ELFv1 ABI.
This is the default ABI for big-endian PowerPC 64-bit Linux.
Overriding the default ABI requires special system support and is
likely to fail in spectacular ways.
@opindex mabi=elfv2
@item -mabi=elfv2
Change the current ABI to use the ELFv2 ABI.
This is the default ABI for little-endian PowerPC 64-bit Linux.
Overriding the default ABI requires special system support and is
likely to fail in spectacular ways.
@opindex mgnu-attribute
@opindex mno-gnu-attribute
@item -mgnu-attribute
@itemx -mno-gnu-attribute
Emit .gnu_attribute assembly directives to set tag/value pairs in a
.gnu.attributes section that specify ABI variations in function
parameters or return values.
@opindex mprototype
@opindex mno-prototype
@item -mprototype
@itemx -mno-prototype
On System V.4 and embedded PowerPC systems assume that all calls to
variable argument functions are properly prototyped. Otherwise, the
compiler must insert an instruction before every non-prototyped call to
set or clear bit 6 of the condition code register (@code{CR}) to
indicate whether floating-point values are passed in the floating-point
registers in case the function takes variable arguments. With
@option{-mprototype}, only calls to prototyped variable argument functions
set or clear the bit.
@opindex msim
@item -msim
On embedded PowerPC systems, assume that the startup module is called
@file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
@file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
configurations.
@opindex mmvme
@item -mmvme
On embedded PowerPC systems, assume that the startup module is called
@file{crt0.o} and the standard C libraries are @file{libmvme.a} and
@file{libc.a}.
@opindex mads
@item -mads
On embedded PowerPC systems, assume that the startup module is called
@file{crt0.o} and the standard C libraries are @file{libads.a} and
@file{libc.a}.
@opindex myellowknife
@item -myellowknife
On embedded PowerPC systems, assume that the startup module is called
@file{crt0.o} and the standard C libraries are @file{libyk.a} and
@file{libc.a}.
@opindex mvxworks
@item -mvxworks
On System V.4 and embedded PowerPC systems, specify that you are
compiling for a VxWorks system.
@opindex memb
@item -memb
On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
header to indicate that @samp{eabi} extended relocations are used.
@opindex meabi
@opindex mno-eabi
@item -meabi
@itemx -mno-eabi
On System V.4 and embedded PowerPC systems do (do not) adhere to the
Embedded Applications Binary Interface (EABI), which is a set of
modifications to the System V.4 specifications. Selecting @option{-meabi}
means that the stack is aligned to an 8-byte boundary, a function
@code{__eabi} is called from @code{main} to set up the EABI
environment, and the @option{-msdata} option can use both @code{r2} and
@code{r13} to point to two separate small data areas. Selecting
@option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
no EABI initialization function is called from @code{main}, and the
@option{-msdata} option only uses @code{r13} to point to a single
small data area. The @option{-meabi} option is on by default if you
configured GCC using one of the @samp{powerpc*-*-eabi*} options.
@opindex msdata=eabi
@item -msdata=eabi
On System V.4 and embedded PowerPC systems, put small initialized
@code{const} global and static data in the @code{.sdata2} section, which
is pointed to by register @code{r2}. Put small initialized
non-@code{const} global and static data in the @code{.sdata} section,
which is pointed to by register @code{r13}. Put small uninitialized
global and static data in the @code{.sbss} section, which is adjacent to
the @code{.sdata} section. The @option{-msdata=eabi} option is
incompatible with the @option{-mrelocatable} option. The
@option{-msdata=eabi} option also sets the @option{-memb} option.
@opindex msdata=sysv
@item -msdata=sysv
On System V.4 and embedded PowerPC systems, put small global and static
data in the @code{.sdata} section, which is pointed to by register
@code{r13}. Put small uninitialized global and static data in the
@code{.sbss} section, which is adjacent to the @code{.sdata} section.
The @option{-msdata=sysv} option is incompatible with the
@option{-mrelocatable} option.
@opindex msdata=default
@opindex msdata
@item -msdata=default
@itemx -msdata
On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
compile code the same as @option{-msdata=eabi}, otherwise compile code the
same as @option{-msdata=sysv}.
@opindex msdata=data
@item -msdata=data
On System V.4 and embedded PowerPC systems, put small global
data in the @code{.sdata} section. Put small uninitialized global
data in the @code{.sbss} section. Do not use register @code{r13}
to address small data however. This is the default behavior unless
other @option{-msdata} options are used.
@opindex msdata=none
@opindex mno-sdata
@item -msdata=none
@itemx -mno-sdata
On embedded PowerPC systems, put all initialized global and static data
in the @code{.data} section, and all uninitialized data in the
@code{.bss} section.
@opindex mreadonly-in-sdata
@opindex mno-readonly-in-sdata
@item -mreadonly-in-sdata
Put read-only objects in the @code{.sdata} section as well. This is the
default.
@opindex mblock-move-inline-limit
@item -mblock-move-inline-limit=@var{num}
Inline all block moves (such as calls to @code{memcpy} or structure
copies) less than or equal to @var{num} bytes. The minimum value for
@var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
targets. The default value is target-specific.
@opindex mblock-compare-inline-limit
@item -mblock-compare-inline-limit=@var{num}
Generate non-looping inline code for all block compares (such as calls
to @code{memcmp} or structure compares) less than or equal to @var{num}
bytes. If @var{num} is 0, all inline expansion (non-loop and loop) of
block compare is disabled. The default value is target-specific.
@opindex mblock-compare-inline-loop-limit
@item -mblock-compare-inline-loop-limit=@var{num}
Generate an inline expansion using loop code for all block compares that
are less than or equal to @var{num} bytes, but greater than the limit
for non-loop inline block compare expansion. If the block length is not
constant, at most @var{num} bytes will be compared before @code{memcmp}
is called to compare the remainder of the block. The default value is
target-specific.
@opindex mstring-compare-inline-limit
@item -mstring-compare-inline-limit=@var{num}
Compare at most @var{num} string bytes with inline code.
If the difference or end of string is not found at the
end of the inline compare a call to @code{strcmp} or @code{strncmp} will
take care of the rest of the comparison. The default is 64 bytes.
@opindex G
@cindex smaller data references (PowerPC)
@cindex .sdata/.sdata2 references (PowerPC)
@item -G @var{num}
On embedded PowerPC systems, put global and static items less than or
equal to @var{num} bytes into the small data or BSS sections instead of
the normal data or BSS section. By default, @var{num} is 8. The
@option{-G @var{num}} switch is also passed to the linker.
All modules should be compiled with the same @option{-G @var{num}} value.
@opindex mregnames
@opindex mno-regnames
@item -mregnames
@itemx -mno-regnames
On System V.4 and embedded PowerPC systems do (do not) emit register
names in the assembly language output using symbolic forms.
@opindex mlongcall
@opindex mno-longcall
@item -mlongcall
@itemx -mno-longcall
By default assume that all calls are far away so that a longer and more
expensive calling sequence is required. This is required for calls
farther than 32 megabytes (33,554,432 bytes) from the current location.
A short call is generated if the compiler knows
the call cannot be that far away. This setting can be overridden by
the @code{shortcall} function attribute, or by @code{#pragma
longcall(0)}.
Some linkers are capable of detecting out-of-range calls and generating
glue code on the fly. On these systems, long calls are unnecessary and
generate slower code. As of this writing, the AIX linker can do this,
as can the GNU linker for PowerPC/64. It is planned to add this feature
to the GNU linker for 32-bit PowerPC systems as well.
On PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU linkers,
GCC can generate long calls using an inline PLT call sequence (see
@option{-mpltseq}). PowerPC with @option{-mbss-plt} and PowerPC64
ELFv1 (big-endian) do not support inline PLT calls.
On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
callee, L42}, plus a @dfn{branch island} (glue code). The two target
addresses represent the callee and the branch island. The
Darwin/PPC linker prefers the first address and generates a @code{bl
callee} if the PPC @code{bl} instruction reaches the callee directly;
otherwise, the linker generates @code{bl L42} to call the branch
island. The branch island is appended to the body of the
calling function; it computes the full 32-bit address of the callee
and jumps to it.
On Mach-O (Darwin) systems, this option directs the compiler emit to
the glue for every direct call, and the Darwin linker decides whether
to use or discard it.
In the future, GCC may ignore all longcall specifications
when the linker is known to generate glue.
@opindex mpltseq
@opindex mno-pltseq
@item -mpltseq
@itemx -mno-pltseq
Implement (do not implement) -fno-plt and long calls using an inline
PLT call sequence that supports lazy linking and long calls to
functions in dlopen'd shared libraries. Inline PLT calls are only
supported on PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU
linkers, and are enabled by default if the support is detected when
configuring GCC, and, in the case of 32-bit PowerPC, if GCC is
configured with @option{--enable-secureplt}. @option{-mpltseq} code
and @option{-mbss-plt} 32-bit PowerPC relocatable objects may not be
linked together.
@opindex mtls-markers
@opindex mno-tls-markers
@item -mtls-markers
@itemx -mno-tls-markers
Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
specifying the function argument. The relocation allows the linker to
reliably associate function call with argument setup instructions for
TLS optimization, which in turn allows GCC to better schedule the
sequence.
@opindex mrecip
@item -mrecip
@itemx -mno-recip
This option enables use of the reciprocal estimate and
reciprocal square root estimate instructions with additional
Newton-Raphson steps to increase precision instead of doing a divide or
square root and divide for floating-point arguments. You should use
the @option{-ffast-math} option when using @option{-mrecip} (or at
least @option{-funsafe-math-optimizations},
@option{-ffinite-math-only}, @option{-freciprocal-math} and
@option{-fno-trapping-math}). Note that while the throughput of the
sequence is generally higher than the throughput of the non-reciprocal
instruction, the precision of the sequence can be decreased by up to 2
ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
roots.
@opindex mrecip=opt
@item -mrecip=@var{opt}
This option controls which reciprocal estimate instructions
may be used. @var{opt} is a comma-separated list of options, which may
be preceded by a @code{!} to invert the option:
@table @samp
@item all
Enable all estimate instructions.
@item default
Enable the default instructions, equivalent to @option{-mrecip}.
@item none
Disable all estimate instructions, equivalent to @option{-mno-recip}.
@item div
Enable the reciprocal approximation instructions for both
single and double precision.
@item divf
Enable the single-precision reciprocal approximation instructions.
@item divd
Enable the double-precision reciprocal approximation instructions.
@item rsqrt
Enable the reciprocal square root approximation instructions for both
single and double precision.
@item rsqrtf
Enable the single-precision reciprocal square root approximation instructions.
@item rsqrtd
Enable the double-precision reciprocal square root approximation instructions.
@end table
So, for example, @option{-mrecip=all,!rsqrtd} enables
all of the reciprocal estimate instructions, except for the
@code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
which handle the double-precision reciprocal square root calculations.
@opindex mrecip-precision
@item -mrecip-precision
@itemx -mno-recip-precision
Assume (do not assume) that the reciprocal estimate instructions
provide higher-precision estimates than is mandated by the PowerPC
ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
@option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
The double-precision square root estimate instructions are not generated by
default on low-precision machines, since they do not provide an
estimate that converges after three steps.
@opindex mveclibabi
@item -mveclibabi=@var{type}
Specifies the ABI type to use for vectorizing intrinsics using an
external library. The only type supported at present is @samp{mass},
which specifies to use IBM's Mathematical Acceleration Subsystem
(MASS) libraries for vectorizing intrinsics using external libraries.
GCC currently emits calls to @code{acosd2}, @code{acosf4},
@code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
@code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
@code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
@code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
@code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
@code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
@code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
@code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
@code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
@code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
@code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
@code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
@code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
for power7. Both @option{-ftree-vectorize} and
@option{-funsafe-math-optimizations} must also be enabled. The MASS
libraries must be specified at link time.
@opindex mfriz
@item -mfriz
@itemx -mno-friz
Generate (do not generate) the @code{friz} instruction when the
@option{-funsafe-math-optimizations} option is used to optimize
rounding of floating-point values to 64-bit integer and back to floating
point. The @code{friz} instruction does not return the same value if
the floating-point number is too large to fit in an integer.
@opindex mpointers-to-nested-functions
@item -mpointers-to-nested-functions
@itemx -mno-pointers-to-nested-functions
Generate (do not generate) code to load up the static chain register
(@code{r11}) when calling through a pointer on AIX and 64-bit Linux
systems where a function pointer points to a 3-word descriptor giving
the function address, TOC value to be loaded in register @code{r2}, and
static chain value to be loaded in register @code{r11}. The
@option{-mpointers-to-nested-functions} is on by default. You cannot
call through pointers to nested functions or pointers
to functions compiled in other languages that use the static chain if
you use @option{-mno-pointers-to-nested-functions}.
@opindex msave-toc-indirect
@item -msave-toc-indirect
@itemx -mno-save-toc-indirect
Generate (do not generate) code to save the TOC value in the reserved
stack location in the function prologue if the function calls through
a pointer on AIX and 64-bit Linux systems. If the TOC value is not
saved in the prologue, it is saved just before the call through the
pointer. The @option{-mno-save-toc-indirect} option is the default.
@opindex mcompat-align-parm
@item -mcompat-align-parm
@itemx -mno-compat-align-parm
Generate (do not generate) code to pass structure parameters with a
maximum alignment of 64 bits, for compatibility with older versions
of GCC.
Older versions of GCC (prior to 4.9.0) incorrectly did not align a
structure parameter on a 128-bit boundary when that structure contained
a member requiring 128-bit alignment. This is corrected in more
recent versions of GCC. This option may be used to generate code
that is compatible with functions compiled with older versions of
GCC.
The @option{-mno-compat-align-parm} option is the default.
@opindex mstack-protector-guard
@opindex mstack-protector-guard-reg
@opindex mstack-protector-guard-offset
@opindex mstack-protector-guard-symbol
@item -mstack-protector-guard=@var{guard}
@itemx -mstack-protector-guard-reg=@var{reg}
@itemx -mstack-protector-guard-offset=@var{offset}
@itemx -mstack-protector-guard-symbol=@var{symbol}
Generate stack protection code using canary at @var{guard}. Supported
locations are @samp{global} for global canary or @samp{tls} for per-thread
canary in the TLS block (the default with GNU libc version 2.4 or later).
With the latter choice the options
@option{-mstack-protector-guard-reg=@var{reg}} and
@option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
which register to use as base register for reading the canary, and from what
offset from that base register. The default for those is as specified in the
relevant ABI. @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
the offset with a symbol reference to a canary in the TLS block.
@opindex mpcrel
@opindex mno-pcrel
@item -mpcrel
@itemx -mno-pcrel
Generate (do not generate) pc-relative addressing. The @option{-mpcrel}
option requires that the medium code model (@option{-mcmodel=medium})
and prefixed addressing (@option{-mprefixed}) options are enabled.
@opindex mprefixed
@opindex mno-prefixed
@item -mprefixed
@itemx -mno-prefixed
Generate (do not generate) addressing modes using prefixed load and
store instructions. The @option{-mprefixed} option requires that
the option @option{-mcpu=power10} (or later) is enabled.
@opindex mmma
@opindex mno-mma
@item -mmma
@itemx -mno-mma
Generate (do not generate) the MMA instructions. The @option{-mma}
option requires that the option @option{-mcpu=power10} (or later)
is enabled.
@opindex mrop-protect
@opindex mno-rop-protect
@item -mrop-protect
@itemx -mno-rop-protect
Generate (do not generate) ROP protection instructions when the target
processor supports them. Currently this option disables the shrink-wrap
optimization (@option{-fshrink-wrap}).
@opindex mprivileged
@opindex mno-privileged
@item -mprivileged
@itemx -mno-privileged
Generate (do not generate) code that will run in privileged state.
@opindex block-ops-unaligned-vsx
@opindex no-block-ops-unaligned-vsx
@item -mblock-ops-unaligned-vsx
@itemx -mno-block-ops-unaligned-vsx
Generate (do not generate) unaligned vsx loads and stores for
inline expansion of @code{memcpy} and @code{memmove}.
@item --param rs6000-vect-unroll-limit=
The vectorizer will check with target information to determine whether it
would be beneficial to unroll the main vectorized loop and by how much. This
parameter sets the upper bound of how much the vectorizer will unroll the main
loop. The default value is four.
@end table
@node RX Options
@subsection RX Options
@cindex RX Options
These command-line options are defined for RX targets:
@table @gcctabopt
@opindex m64bit-doubles
@opindex m32bit-doubles
@item -m64bit-doubles
@itemx -m32bit-doubles
Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
or 32 bits (@option{-m32bit-doubles}) in size. The default is
@option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
works on 32-bit values, which is why the default is
@option{-m32bit-doubles}.
@opindex fpu
@opindex nofpu
@item -fpu
@itemx -nofpu
Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
floating-point hardware. The default is enabled for the RX600
series and disabled for the RX200 series.
Floating-point instructions are only generated for 32-bit floating-point
values, however, so the FPU hardware is not used for doubles if the
@option{-m64bit-doubles} option is used.
@emph{Note} If the @option{-fpu} option is enabled then
@option{-funsafe-math-optimizations} is also enabled automatically.
This is because the RX FPU instructions are themselves unsafe.
@opindex mcpu
@item -mcpu=@var{name}
Selects the type of RX CPU to be targeted. Currently three types are
supported, the generic @samp{RX600} and @samp{RX200} series hardware and
the specific @samp{RX610} CPU. The default is @samp{RX600}.
The only difference between @samp{RX600} and @samp{RX610} is that the
@samp{RX610} does not support the @code{MVTIPL} instruction.
The @samp{RX200} series does not have a hardware floating-point unit
and so @option{-nofpu} is enabled by default when this type is
selected.
@opindex mbig-endian-data
@opindex mlittle-endian-data
@item -mbig-endian-data
@itemx -mlittle-endian-data
Store data (but not code) in the big-endian format. The default is
@option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
format.
@opindex msmall-data-limit
@item -msmall-data-limit=@var{N}
Specifies the maximum size in bytes of global and static variables
which can be placed into the small data area. Using the small data
area can lead to smaller and faster code, but the size of area is
limited and it is up to the programmer to ensure that the area does
not overflow. Also when the small data area is used one of the RX's
registers (usually @code{r13}) is reserved for use pointing to this
area, so it is no longer available for use by the compiler. This
could result in slower and/or larger code if variables are pushed onto
the stack instead of being held in this register.
Note, common variables (variables that have not been initialized) and
constants are not placed into the small data area as they are assigned
to other sections in the output executable.
The default value is zero, which disables this feature. Note, this
feature is not enabled by default with higher optimization levels
(@option{-O2} etc) because of the potentially detrimental effects of
reserving a register. It is up to the programmer to experiment and
discover whether this feature is of benefit to their program. See the
description of the @option{-mpid} option for a description of how the
actual register to hold the small data area pointer is chosen.
@opindex msim
@opindex mno-sim
@item -msim
@itemx -mno-sim
Use the simulator runtime. The default is to use the libgloss
board-specific runtime.
@opindex mas100-syntax
@opindex mno-as100-syntax
@item -mas100-syntax
@itemx -mno-as100-syntax
When generating assembler output use a syntax that is compatible with
Renesas's AS100 assembler. This syntax can also be handled by the GAS
assembler, but it has some restrictions so it is not generated by default.
@opindex mmax-constant-size
@item -mmax-constant-size=@var{N}
Specifies the maximum size, in bytes, of a constant that can be used as
an operand in a RX instruction. Although the RX instruction set does
allow constants of up to 4 bytes in length to be used in instructions,
a longer value equates to a longer instruction. Thus in some
circumstances it can be beneficial to restrict the size of constants
that are used in instructions. Constants that are too big are instead
placed into a constant pool and referenced via register indirection.
The value @var{N} can be between 0 and 4. A value of 0 (the default)
or 4 means that constants of any size are allowed.
@opindex mrelax
@item -mrelax
Enable linker relaxation. Linker relaxation is a process whereby the
linker attempts to reduce the size of a program by finding shorter
versions of various instructions. Disabled by default.
@opindex mint-register
@item -mint-register=@var{N}
Specify the number of registers to reserve for fast interrupt handler
functions. The value @var{N} can be between 0 and 4. A value of 1
means that register @code{r13} is reserved for the exclusive use
of fast interrupt handlers. A value of 2 reserves @code{r13} and
@code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
@code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
A value of 0, the default, does not reserve any registers.
@opindex msave-acc-in-interrupts
@item -msave-acc-in-interrupts
Specifies that interrupt handler functions should preserve the
accumulator register. This is only necessary if normal code might use
the accumulator register, for example because it performs 64-bit
multiplications. The default is to ignore the accumulator as this
makes the interrupt handlers faster.
@opindex mpid
@opindex mno-pid
@item -mpid
@itemx -mno-pid
Enables the generation of position independent data. When enabled any
access to constant data is done via an offset from a base address
held in a register. This allows the location of constant data to be
determined at run time without requiring the executable to be
relocated, which is a benefit to embedded applications with tight
memory constraints. Data that can be modified is not affected by this
option.
Note, using this feature reserves a register, usually @code{r13}, for
the constant data base address. This can result in slower and/or
larger code, especially in complicated functions.
The actual register chosen to hold the constant data base address
depends upon whether the @option{-msmall-data-limit} and/or the
@option{-mint-register} command-line options are enabled. Starting
with register @code{r13} and proceeding downwards, registers are
allocated first to satisfy the requirements of @option{-mint-register},
then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
is possible for the small data area register to be @code{r8} if both
@option{-mint-register=4} and @option{-mpid} are specified on the
command line.
By default this feature is not enabled. The default can be restored
via the @option{-mno-pid} command-line option.
@opindex mno-warn-multiple-fast-interrupts
@opindex mwarn-multiple-fast-interrupts
@item -mno-warn-multiple-fast-interrupts
@itemx -mwarn-multiple-fast-interrupts
Prevents GCC from issuing a warning message if it finds more than one
fast interrupt handler when it is compiling a file. The default is to
issue a warning for each extra fast interrupt handler found, as the RX
only supports one such interrupt.
@opindex mallow-string-insns
@opindex mno-allow-string-insns
@item -mallow-string-insns
@itemx -mno-allow-string-insns
Enables or disables the use of the string manipulation instructions
@code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
@code{SWHILE} and also the @code{RMPA} instruction. These
instructions may prefetch data, which is not safe to do if accessing
an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
for more information).
The default is to allow these instructions, but it is not possible for
GCC to reliably detect all circumstances where a string instruction
might be used to access an I/O register, so their use cannot be
disabled automatically. Instead it is reliant upon the programmer to
use the @option{-mno-allow-string-insns} option if their program
accesses I/O space.
When the instructions are enabled GCC defines the C preprocessor
symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
symbol @code{__RX_DISALLOW_STRING_INSNS__}.
@opindex mjsr
@opindex mno-jsr
@item -mjsr
@itemx -mno-jsr
Use only (or not only) @code{JSR} instructions to access functions.
This option can be used when code size exceeds the range of @code{BSR}
instructions. Note that @option{-mno-jsr} does not mean to not use
@code{JSR} but instead means that any type of branch may be used.
@end table
@emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
has special significance to the RX port when used with the
@code{interrupt} function attribute. This attribute indicates a
function intended to process fast interrupts. GCC ensures
that it only uses the registers @code{r10}, @code{r11}, @code{r12}
and/or @code{r13} and only provided that the normal use of the
corresponding registers have been restricted via the
@option{-ffixed-@var{reg}} or @option{-mint-register} command-line
options.
@node S/390 and zSeries Options
@subsection S/390 and zSeries Options
@cindex S/390 and zSeries Options
These are the @samp{-m} options defined for the S/390 and zSeries architecture.
@table @gcctabopt
@opindex mhard-float
@opindex msoft-float
@item -mhard-float
@itemx -msoft-float
Use (do not use) the hardware floating-point instructions and registers
for floating-point operations. When @option{-msoft-float} is specified,
functions in @file{libgcc.a} are used to perform floating-point
operations. When @option{-mhard-float} is specified, the compiler
generates IEEE floating-point instructions. This is the default.
@opindex mhard-dfp
@opindex mno-hard-dfp
@item -mhard-dfp
@itemx -mno-hard-dfp
Use (do not use) the hardware decimal-floating-point instructions for
decimal-floating-point operations. When @option{-mno-hard-dfp} is
specified, functions in @file{libgcc.a} are used to perform
decimal-floating-point operations. When @option{-mhard-dfp} is
specified, the compiler generates decimal-floating-point hardware
instructions. This is the default for @option{-march=z9-ec} or higher.
@opindex mlong-double-64
@opindex mlong-double-128
@item -mlong-double-64
@itemx -mlong-double-128
These switches control the size of @code{long double} type. A size
of 64 bits makes the @code{long double} type equivalent to the @code{double}
type. This is the default.
@opindex mbackchain
@opindex mno-backchain
@item -mbackchain
@itemx -mno-backchain
Store (do not store) the address of the caller's frame as backchain pointer
into the callee's stack frame.
A backchain may be needed to allow debugging using tools that do not understand
DWARF call frame information.
When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
the backchain is placed into the topmost word of the 96/160 byte register
save area.
In general, code compiled with @option{-mbackchain} is call-compatible with
code compiled with @option{-mno-backchain}; however, use of the backchain
for debugging purposes usually requires that the whole binary is built with
@option{-mbackchain}. Note that the combination of @option{-mbackchain},
@option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
to build a linux kernel use @option{-msoft-float}.
The default is to not maintain the backchain.
@opindex mpacked-stack
@opindex mno-packed-stack
@item -mpacked-stack
@itemx -mno-packed-stack
Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
specified, the compiler uses the all fields of the 96/160 byte register save
area only for their default purpose; unused fields still take up stack space.
When @option{-mpacked-stack} is specified, register save slots are densely
packed at the top of the register save area; unused space is reused for other
purposes, allowing for more efficient use of the available stack space.
However, when @option{-mbackchain} is also in effect, the topmost word of
the save area is always used to store the backchain, and the return address
register is always saved two words below the backchain.
As long as the stack frame backchain is not used, code generated with
@option{-mpacked-stack} is call-compatible with code generated with
@option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
S/390 or zSeries generated code that uses the stack frame backchain at run
time, not just for debugging purposes. Such code is not call-compatible
with code compiled with @option{-mpacked-stack}. Also, note that the
combination of @option{-mbackchain},
@option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
to build a linux kernel use @option{-msoft-float}.
The default is to not use the packed stack layout.
@opindex msmall-exec
@opindex mno-small-exec
@item -msmall-exec
@itemx -mno-small-exec
Generate (or do not generate) code using the @code{bras} instruction
to do subroutine calls.
This only works reliably if the total executable size does not
exceed 64k. The default is to use the @code{basr} instruction instead,
which does not have this limitation.
@opindex m64
@opindex m31
@item -m64
@itemx -m31
When @option{-m31} is specified, generate code compliant to the
GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
particular to generate 64-bit instructions. For the @samp{s390}
targets, the default is @option{-m31}, while the @samp{s390x}
targets default to @option{-m64}.
@opindex mzarch
@opindex mesa
@item -mzarch
@itemx -mesa
When @option{-mzarch} is specified, generate code using the
instructions available on z/Architecture.
When @option{-mesa} is specified, generate code using the
instructions available on ESA/390. Note that @option{-mesa} is
not possible with @option{-m64}.
When generating code compliant to the GNU/Linux for S/390 ABI,
the default is @option{-mesa}. When generating code compliant
to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
@opindex mhtm
@opindex mno-htm
@item -mhtm
@itemx -mno-htm
The @option{-mhtm} option enables a set of builtins making use of
instructions available with the transactional execution facility
introduced with the IBM zEnterprise EC12 machine generation
@ref{S/390 System z Built-in Functions}.
@option{-mhtm} is enabled by default when using @option{-march=zEC12}.
@opindex mvx
@opindex mno-vx
@item -mvx
@itemx -mno-vx
When @option{-mvx} is specified, generate code using the instructions
available with the vector extension facility introduced with the IBM
z13 machine generation.
This option changes the ABI for some vector type values with regard to
alignment and calling conventions. In case vector type values are
being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
command will be added to mark the resulting binary with the ABI used.
@option{-mvx} is enabled by default when using @option{-march=z13}.
@opindex mzvector
@opindex mno-zvector
@item -mzvector
@itemx -mno-zvector
The @option{-mzvector} option enables vector language extensions and
builtins using instructions available with the vector extension
facility introduced with the IBM z13 machine generation.
This option adds support for @samp{vector} to be used as a keyword to
define vector type variables and arguments. @samp{vector} is only
available when GNU extensions are enabled. It will not be expanded
when requesting strict standard compliance e.g.@: with @option{-std=c99}.
In addition to the GCC low-level builtins @option{-mzvector} enables
a set of builtins added for compatibility with AltiVec-style
implementations like Power and Cell. In order to make use of these
builtins the header file @file{vecintrin.h} needs to be included.
@option{-mzvector} is disabled by default.
@opindex mmvcle
@opindex mno-mvcle
@item -mmvcle
@itemx -mno-mvcle
Generate (or do not generate) code using the @code{mvcle} instruction
to perform block moves. When @option{-mno-mvcle} is specified,
use a @code{mvc} loop instead. This is the default unless optimizing for
size.
@opindex mdebug
@opindex mno-debug
@item -mdebug
@itemx -mno-debug
Print (or do not print) additional debug information when compiling.
The default is to not print debug information.
@opindex march
@item -march=@var{cpu-type}
Generate code that runs on @var{cpu-type}, which is the name of a
system representing a certain processor type. Possible values for
@var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
@samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
@samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11},
@samp{z14}/@samp{arch12}, @samp{z15}/@samp{arch13},
@samp{z16}/@samp{arch14}, and @samp{native}.
The default is @option{-march=z900}.
Specifying @samp{native} as cpu type can be used to select the best
architecture option for the host processor.
@option{-march=native} has no effect if GCC does not recognize the
processor.
@opindex mtune
@item -mtune=@var{cpu-type}
Tune to @var{cpu-type} everything applicable about the generated code,
except for the ABI and the set of available instructions.
The list of @var{cpu-type} values is the same as for @option{-march}.
The default is the value used for @option{-march}.
@opindex mtpf-trace
@opindex mno-tpf-trace
@item -mtpf-trace
@itemx -mno-tpf-trace
Generate code that adds (does not add) in TPF OS specific branches to trace
routines in the operating system. This option is off by default, even
when compiling for the TPF OS@.
@opindex mtpf-trace-skip
@opindex mno-tpf-trace-skip
@item -mtpf-trace-skip
@itemx -mno-tpf-trace-skip
Generate code that changes (does not change) the default branch
targets enabled by @option{-mtpf-trace} to point to specialized trace
routines providing the ability of selectively skipping function trace
entries for the TPF OS. This option is off by default, even when
compiling for the TPF OS and specifying @option{-mtpf-trace}.
@opindex mfused-madd
@opindex mno-fused-madd
@item -mfused-madd
@itemx -mno-fused-madd
Generate code that uses (does not use) the floating-point multiply and
accumulate instructions. These instructions are generated by default if
hardware floating point is used.
@opindex mwarn-framesize
@item -mwarn-framesize=@var{framesize}
Emit a warning if the current function exceeds the given frame size. Because
this is a compile-time check it doesn't need to be a real problem when the program
runs. It is intended to identify functions that most probably cause
a stack overflow. It is useful to be used in an environment with limited stack
size e.g.@: the linux kernel.
@opindex mwarn-dynamicstack
@item -mwarn-dynamicstack
Emit a warning if the function calls @code{alloca} or uses dynamically-sized
arrays. This is generally a bad idea with a limited stack size.
@opindex mstack-guard
@opindex mstack-size
@item -mstack-guard=@var{stack-guard}
@itemx -mstack-size=@var{stack-size}
If these options are provided the S/390 back end emits additional instructions in
the function prologue that trigger a trap if the stack size is @var{stack-guard}
bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
If the @var{stack-guard} option is omitted the smallest power of 2 larger than
the frame size of the compiled function is chosen.
These options are intended to be used to help debugging stack overflow problems.
The additionally emitted code causes only little overhead and hence can also be
used in production-like systems without greater performance degradation. The given
values have to be exact powers of 2 and @var{stack-size} has to be greater than
@var{stack-guard} without exceeding 64k.
In order to be efficient the extra code makes the assumption that the stack starts
at an address aligned to the value given by @var{stack-size}.
The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
@opindex mhotpatch
@item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
If the hotpatch option is enabled, a ``hot-patching'' function
prologue is generated for all functions in the compilation unit.
The funtion label is prepended with the given number of two-byte
NOP instructions (@var{pre-halfwords}, maximum 1000000). After
the label, 2 * @var{post-halfwords} bytes are appended, using the
largest NOP like instructions the architecture allows (maximum
1000000).
If both arguments are zero, hotpatching is disabled.
This option can be overridden for individual functions with the
@code{hotpatch} attribute.
@end table
@node SH Options
@subsection SH Options
These @samp{-m} options are defined for the SH implementations:
@table @gcctabopt
@opindex m1
@item -m1
Generate code for the SH1.
@opindex m2
@item -m2
Generate code for the SH2.
@item -m2e
Generate code for the SH2e.
@opindex m2a-nofpu
@item -m2a-nofpu
Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
that the floating-point unit is not used.
@opindex m2a-single-only
@item -m2a-single-only
Generate code for the SH2a-FPU, in such a way that no double-precision
floating-point operations are used.
@opindex m2a-single
@item -m2a-single
Generate code for the SH2a-FPU assuming the floating-point unit is in
single-precision mode by default.
@opindex m2a
@item -m2a
Generate code for the SH2a-FPU assuming the floating-point unit is in
double-precision mode by default.
@opindex m3
@item -m3
Generate code for the SH3.
@opindex m3e
@item -m3e
Generate code for the SH3e.
@opindex m4-nofpu
@item -m4-nofpu
Generate code for the SH4 without a floating-point unit.
@opindex m4-single-only
@item -m4-single-only
Generate code for the SH4 with a floating-point unit that only
supports single-precision arithmetic.
@opindex m4-single
@item -m4-single
Generate code for the SH4 assuming the floating-point unit is in
single-precision mode by default.
@opindex m4
@item -m4
Generate code for the SH4.
@opindex m4-100
@item -m4-100
Generate code for SH4-100.
@opindex m4-100-nofpu
@item -m4-100-nofpu
Generate code for SH4-100 in such a way that the
floating-point unit is not used.
@opindex m4-100-single
@item -m4-100-single
Generate code for SH4-100 assuming the floating-point unit is in
single-precision mode by default.
@opindex m4-100-single-only
@item -m4-100-single-only
Generate code for SH4-100 in such a way that no double-precision
floating-point operations are used.
@opindex m4-200
@item -m4-200
Generate code for SH4-200.
@opindex m4-200-nofpu
@item -m4-200-nofpu
Generate code for SH4-200 without in such a way that the
floating-point unit is not used.
@opindex m4-200-single
@item -m4-200-single
Generate code for SH4-200 assuming the floating-point unit is in
single-precision mode by default.
@opindex m4-200-single-only
@item -m4-200-single-only
Generate code for SH4-200 in such a way that no double-precision
floating-point operations are used.
@opindex m4-300
@item -m4-300
Generate code for SH4-300.
@opindex m4-300-nofpu
@item -m4-300-nofpu
Generate code for SH4-300 without in such a way that the
floating-point unit is not used.
@opindex m4-300-single
@item -m4-300-single
Generate code for SH4-300 in such a way that no double-precision
floating-point operations are used.
@opindex m4-300-single-only
@item -m4-300-single-only
Generate code for SH4-300 in such a way that no double-precision
floating-point operations are used.
@opindex m4-340
@item -m4-340
Generate code for SH4-340 (no MMU, no FPU).
@opindex m4-500
@item -m4-500
Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
assembler.
@opindex m4a-nofpu
@item -m4a-nofpu
Generate code for the SH4al-dsp, or for a SH4a in such a way that the
floating-point unit is not used.
@opindex m4a-single-only
@item -m4a-single-only
Generate code for the SH4a, in such a way that no double-precision
floating-point operations are used.
@opindex m4a-single
@item -m4a-single
Generate code for the SH4a assuming the floating-point unit is in
single-precision mode by default.
@opindex m4a
@item -m4a
Generate code for the SH4a.
@opindex m4al
@item -m4al
Same as @option{-m4a-nofpu}, except that it implicitly passes
@option{-dsp} to the assembler. GCC doesn't generate any DSP
instructions at the moment.
@opindex mb
@item -mb
Compile code for the processor in big-endian mode.
@opindex ml
@item -ml
Compile code for the processor in little-endian mode.
@opindex mdalign
@item -mdalign
Align doubles at 64-bit boundaries. Note that this changes the calling
conventions, and thus some functions from the standard C library do
not work unless you recompile it first with @option{-mdalign}.
@opindex mrelax
@item -mrelax
Shorten some address references at link time, when possible; uses the
linker option @option{-relax}.
@opindex mbigtable
@item -mbigtable
Use 32-bit offsets in @code{switch} tables. The default is to use
16-bit offsets.
@opindex mbitops
@item -mbitops
Enable the use of bit manipulation instructions on SH2A.
@opindex mfmovd
@item -mfmovd
Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
alignment constraints.
@opindex mrenesas
@item -mrenesas
Comply with the calling conventions defined by Renesas.
@opindex mno-renesas
@item -mno-renesas
Comply with the calling conventions defined for GCC before the Renesas
conventions were available. This option is the default for all
targets of the SH toolchain.
@opindex mnomacsave
@item -mnomacsave
Mark the @code{MAC} register as call-clobbered, even if
@option{-mrenesas} is given.
@opindex mieee
@opindex mno-ieee
@item -mieee
@itemx -mno-ieee
Control the IEEE compliance of floating-point comparisons, which affects the
handling of cases where the result of a comparison is unordered. By default
@option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
enabled @option{-mno-ieee} is implicitly set, which results in faster
floating-point greater-equal and less-equal comparisons. The implicit settings
can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
@opindex minline-ic_invalidate
@item -minline-ic_invalidate
Inline code to invalidate instruction cache entries after setting up
nested function trampolines.
This option has no effect if @option{-musermode} is in effect and the selected
code generation option (e.g.@: @option{-m4}) does not allow the use of the @code{icbi}
instruction.
If the selected code generation option does not allow the use of the @code{icbi}
instruction, and @option{-musermode} is not in effect, the inlined code
manipulates the instruction cache address array directly with an associative
write. This not only requires privileged mode at run time, but it also
fails if the cache line had been mapped via the TLB and has become unmapped.
@opindex misize
@item -misize
Dump instruction size and location in the assembly code.
@opindex mpadstruct
@item -mpadstruct
This option is deprecated. It pads structures to multiple of 4 bytes,
which is incompatible with the SH ABI@.
@opindex matomic-model=@var{model}
@item -matomic-model=@var{model}
Sets the model of atomic operations and additional parameters as a comma
separated list. For details on the atomic built-in functions see
@ref{__atomic Builtins}. The following models and parameters are supported:
@table @samp
@item none
Disable compiler generated atomic sequences and emit library calls for atomic
operations. This is the default if the target is not @code{sh*-*-linux*}.
@item soft-gusa
Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
built-in functions. The generated atomic sequences require additional support
from the interrupt/exception handling code of the system and are only suitable
for SH3* and SH4* single-core systems. This option is enabled by default when
the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
this option also partially utilizes the hardware atomic instructions
@code{movli.l} and @code{movco.l} to create more efficient code, unless
@samp{strict} is specified.
@item soft-tcb
Generate software atomic sequences that use a variable in the thread control
block. This is a variation of the gUSA sequences which can also be used on
SH1* and SH2* targets. The generated atomic sequences require additional
support from the interrupt/exception handling code of the system and are only
suitable for single-core systems. When using this model, the @samp{gbr-offset=}
parameter has to be specified as well.
@item soft-imask
Generate software atomic sequences that temporarily disable interrupts by
setting @code{SR.IMASK = 1111}. This model works only when the program runs
in privileged mode and is only suitable for single-core systems. Additional
support from the interrupt/exception handling code of the system is not
required. This model is enabled by default when the target is
@code{sh*-*-linux*} and SH1* or SH2*.
@item hard-llcs
Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
instructions only. This is only available on SH4A and is suitable for
multi-core systems. Since the hardware instructions support only 32 bit atomic
variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
Code compiled with this option is also compatible with other software
atomic model interrupt/exception handling systems if executed on an SH4A
system. Additional support from the interrupt/exception handling code of the
system is not required for this model.
@item gbr-offset=
This parameter specifies the offset in bytes of the variable in the thread
control block structure that should be used by the generated atomic sequences
when the @samp{soft-tcb} model has been selected. For other models this
parameter is ignored. The specified value must be an integer multiple of four
and in the range 0-1020.
@item strict
This parameter prevents mixed usage of multiple atomic models, even if they
are compatible, and makes the compiler generate atomic sequences of the
specified model only.
@end table
@opindex mtas
@item -mtas
Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
Notice that depending on the particular hardware and software configuration
this can degrade overall performance due to the operand cache line flushes
that are implied by the @code{tas.b} instruction. On multi-core SH4A
processors the @code{tas.b} instruction must be used with caution since it
can result in data corruption for certain cache configurations.
@opindex mprefergot
@item -mprefergot
When generating position-independent code, emit function calls using
the Global Offset Table instead of the Procedure Linkage Table.
@opindex musermode
@opindex mno-usermode
@item -musermode
@itemx -mno-usermode
Don't allow (allow) the compiler generating privileged mode code. Specifying
@option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
inlined code would not work in user mode. @option{-musermode} is the default
when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
@option{-musermode} has no effect, since there is no user mode.
@opindex multcost=@var{number}
@item -multcost=@var{number}
Set the cost to assume for a multiply insn.
@opindex mdiv=@var{strategy}
@item -mdiv=@var{strategy}
Set the division strategy to be used for integer division operations.
@var{strategy} can be one of:
@table @samp
@item call-div1
Calls a library function that uses the single-step division instruction
@code{div1} to perform the operation. Division by zero calculates an
unspecified result and does not trap. This is the default except for SH4,
SH2A and SHcompact.
@item call-fp
Calls a library function that performs the operation in double precision
floating point. Division by zero causes a floating-point exception. This is
the default for SHcompact with FPU. Specifying this for targets that do not
have a double precision FPU defaults to @code{call-div1}.
@item call-table
Calls a library function that uses a lookup table for small divisors and
the @code{div1} instruction with case distinction for larger divisors. Division
by zero calculates an unspecified result and does not trap. This is the default
for SH4. Specifying this for targets that do not have dynamic shift
instructions defaults to @code{call-div1}.
@end table
When a division strategy has not been specified the default strategy is
selected based on the current target. For SH2A the default strategy is to
use the @code{divs} and @code{divu} instructions instead of library function
calls.
@opindex maccumulate-outgoing-args
@item -maccumulate-outgoing-args
Reserve space once for outgoing arguments in the function prologue rather
than around each call. Generally beneficial for performance and size. Also
needed for unwinding to avoid changing the stack frame around conditional code.
@opindex mdivsi3_libfunc=@var{name}
@item -mdivsi3_libfunc=@var{name}
Set the name of the library function used for 32-bit signed division to
@var{name}.
This only affects the name used in the @samp{call} division strategies, and
the compiler still expects the same sets of input/output/clobbered registers as
if this option were not present.
@opindex mfixed-range
@item -mfixed-range=@var{register-range}
Generate code treating the given register range as fixed registers.
A fixed register is one that the register allocator cannot use. This is
useful when compiling kernel code. A register range is specified as
two registers separated by a dash. Multiple register ranges can be
specified separated by a comma.
@opindex mbranch-cost=@var{num}
@item -mbranch-cost=@var{num}
Assume @var{num} to be the cost for a branch instruction. Higher numbers
make the compiler try to generate more branch-free code if possible.
If not specified the value is selected depending on the processor type that
is being compiled for.
@opindex mzdcbranch
@opindex mno-zdcbranch
@item -mzdcbranch
@itemx -mno-zdcbranch
Assume (do not assume) that zero displacement conditional branch instructions
@code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
compiler prefers zero displacement branch code sequences. This is
enabled by default when generating code for SH4 and SH4A. It can be explicitly
disabled by specifying @option{-mno-zdcbranch}.
@opindex mcbranch-force-delay-slot
@item -mcbranch-force-delay-slot
Force the usage of delay slots for conditional branches, which stuffs the delay
slot with a @code{nop} if a suitable instruction cannot be found. By default
this option is disabled. It can be enabled to work around hardware bugs as
found in the original SH7055.
@opindex mfused-madd
@opindex mno-fused-madd
@item -mfused-madd
@itemx -mno-fused-madd
Generate code that uses (does not use) the floating-point multiply and
accumulate instructions. These instructions are generated by default
if hardware floating point is used. The machine-dependent
@option{-mfused-madd} option is now mapped to the machine-independent
@option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
mapped to @option{-ffp-contract=off}.
@opindex mfsca
@opindex mno-fsca
@item -mfsca
@itemx -mno-fsca
Allow or disallow the compiler to emit the @code{fsca} instruction for sine
and cosine approximations. The option @option{-mfsca} must be used in
combination with @option{-funsafe-math-optimizations}. It is enabled by default
when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
approximations even if @option{-funsafe-math-optimizations} is in effect.
@opindex mfsrra
@opindex mno-fsrra
@item -mfsrra
@itemx -mno-fsrra
Allow or disallow the compiler to emit the @code{fsrra} instruction for
reciprocal square root approximations. The option @option{-mfsrra} must be used
in combination with @option{-funsafe-math-optimizations} and
@option{-ffinite-math-only}. It is enabled by default when generating code for
SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
in effect.
@opindex mpretend-cmove
@item -mpretend-cmove
Prefer zero-displacement conditional branches for conditional move instruction
patterns. This can result in faster code on the SH4 processor.
@opindex fdpic
@item -mfdpic
Generate code using the FDPIC ABI.
@end table
@node Solaris 2 Options
@subsection Solaris 2 Options
@cindex Solaris 2 options
These @samp{-m} options are supported on Solaris 2:
@table @gcctabopt
@opindex mclear-hwcap
@item -mclear-hwcap
@option{-mclear-hwcap} tells the compiler to remove the hardware
capabilities generated by the Solaris assembler. This is only necessary
when object files use ISA extensions not supported by the current
machine, but check at runtime whether or not to use them.
@opindex mimpure-text
@item -mimpure-text
@option{-mimpure-text}, used in addition to @option{-shared}, tells
the compiler to not pass @option{-z text} to the linker when linking a
shared object. Using this option, you can link position-dependent
code into a shared object.
@option{-mimpure-text} suppresses the ``relocations remain against
allocatable but non-writable sections'' linker error message.
However, the necessary relocations trigger copy-on-write, and the
shared object is not actually shared across processes. Instead of
using @option{-mimpure-text}, you should compile all source code with
@option{-fpic} or @option{-fPIC}.
@end table
These switches are supported in addition to the above on Solaris 2:
@table @gcctabopt
@opindex pthreads
@item -pthreads
This is a synonym for @option{-pthread}.
@end table
@node SPARC Options
@subsection SPARC Options
@cindex SPARC options
These @samp{-m} options are supported on the SPARC:
@table @gcctabopt
@opindex mno-app-regs
@opindex mapp-regs
@item -mno-app-regs
@itemx -mapp-regs
Specify @option{-mapp-regs} to generate output using the global registers
2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
global register 1, each global register 2 through 4 is then treated as an
allocable register that is clobbered by function calls. This is the default.
To be fully SVR4 ABI-compliant at the cost of some performance loss,
specify @option{-mno-app-regs}. You should compile libraries and system
software with this option.
@opindex mflat
@opindex mno-flat
@item -mflat
@itemx -mno-flat
With @option{-mflat}, the compiler does not generate save/restore instructions
and uses a ``flat'' or single register window model. This model is compatible
with the regular register window model. The local registers and the input
registers (0--5) are still treated as ``call-saved'' registers and are
saved on the stack as needed.
With @option{-mno-flat} (the default), the compiler generates save/restore
instructions (except for leaf functions). This is the normal operating mode.
@opindex mfpu
@opindex mhard-float
@item -mfpu
@itemx -mhard-float
Generate output containing floating-point instructions. This is the
default.
@opindex mno-fpu
@opindex msoft-float
@item -mno-fpu
@itemx -msoft-float
Generate output containing library calls for floating point.
@strong{Warning:} the requisite libraries are not available for all SPARC
targets. Normally the facilities of the machine's usual C compiler are
used, but this cannot be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for
cross-compilation. The embedded targets @samp{sparc-*-aout} and
@samp{sparclite-*-*} do provide software floating-point support.
@option{-msoft-float} changes the calling convention in the output file;
therefore, it is only useful if you compile @emph{all} of a program with
this option. In particular, you need to compile @file{libgcc.a}, the
library that comes with GCC, with @option{-msoft-float} in order for
this to work.
@opindex mhard-quad-float
@item -mhard-quad-float
Generate output containing quad-word (long double) floating-point
instructions.
@opindex msoft-quad-float
@item -msoft-quad-float
Generate output containing library calls for quad-word (long double)
floating-point instructions. The functions called are those specified
in the SPARC ABI@. This is the default.
As of this writing, there are no SPARC implementations that have hardware
support for the quad-word floating-point instructions. They all invoke
a trap handler for one of these instructions, and then the trap handler
emulates the effect of the instruction. Because of the trap handler overhead,
this is much slower than calling the ABI library routines. Thus the
@option{-msoft-quad-float} option is the default.
@opindex mno-unaligned-doubles
@opindex munaligned-doubles
@item -mno-unaligned-doubles
@itemx -munaligned-doubles
Assume that doubles have 8-byte alignment. This is the default.
With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
alignment only if they are contained in another type, or if they have an
absolute address. Otherwise, it assumes they have 4-byte alignment.
Specifying this option avoids some rare compatibility problems with code
generated by other compilers. It is not the default because it results
in a performance loss, especially for floating-point code.
@opindex muser-mode
@opindex mno-user-mode
@item -muser-mode
@itemx -mno-user-mode
Do not generate code that can only run in supervisor mode. This is relevant
only for the @code{casa} instruction emitted for the LEON3 processor. This
is the default.
@opindex mfaster-structs
@opindex mno-faster-structs
@item -mfaster-structs
@itemx -mno-faster-structs
With @option{-mfaster-structs}, the compiler assumes that structures
should have 8-byte alignment. This enables the use of pairs of
@code{ldd} and @code{std} instructions for copies in structure
assignment, in place of twice as many @code{ld} and @code{st} pairs.
However, the use of this changed alignment directly violates the SPARC
ABI@. Thus, it's intended only for use on targets where the developer
acknowledges that their resulting code is not directly in line with
the rules of the ABI@.
@opindex mstd-struct-return
@opindex mno-std-struct-return
@item -mstd-struct-return
@itemx -mno-std-struct-return
With @option{-mstd-struct-return}, the compiler generates checking code
in functions returning structures or unions to detect size mismatches
between the two sides of function calls, as per the 32-bit ABI@.
The default is @option{-mno-std-struct-return}. This option has no effect
in 64-bit mode.
@opindex mlra
@opindex mno-lra
@item -mlra
@itemx -mno-lra
Enable Local Register Allocation. This is the default for SPARC since GCC 7
so @option{-mno-lra} needs to be passed to get old Reload.
@opindex mcpu
@item -mcpu=@var{cpu_type}
Set the instruction set, register set, and instruction scheduling parameters
for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
@samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
@samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{leon5}, @samp{sparclite},
@samp{f930}, @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701},
@samp{v9}, @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara},
@samp{niagara2}, @samp{niagara3}, @samp{niagara4}, @samp{niagara7} and
@samp{m8}.
Native Solaris and GNU/Linux toolchains also support the value @samp{native},
which selects the best architecture option for the host processor.
@option{-mcpu=native} has no effect if GCC does not recognize
the processor.
Default instruction scheduling parameters are used for values that select
an architecture and not an implementation. These are @samp{v7}, @samp{v8},
@samp{sparclite}, @samp{sparclet}, @samp{v9}.
Here is a list of each supported architecture and their supported
implementations.
@table @asis
@item v7
cypress, leon3v7
@item v8
supersparc, hypersparc, leon, leon3, leon5
@item sparclite
f930, f934, sparclite86x
@item sparclet
tsc701
@item v9
ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
niagara7, m8
@end table
By default (unless configured otherwise), GCC generates code for the V7
variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
additionally optimizes it for the Cypress CY7C602 chip, as used in the
SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
SPARCStation 1, 2, IPX etc.
With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
architecture. The only difference from V7 code is that the compiler emits
the integer multiply and integer divide instructions which exist in SPARC-V8
but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
2000 series.
With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
the SPARC architecture. This adds the integer multiply, integer divide step
and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
With @option{-mcpu=f930}, the compiler additionally optimizes it for the
Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
@option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
MB86934 chip, which is the more recent SPARClite with FPU@.
With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
the SPARC architecture. This adds the integer multiply, multiply/accumulate,
integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
optimizes it for the TEMIC SPARClet chip.
With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
architecture. This adds 64-bit integer and floating-point move instructions,
3 additional floating-point condition code registers and conditional move
instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
optimizes it for the Sun UltraSPARC I/II/IIi chips. With
@option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
@option{-mcpu=niagara}, the compiler additionally optimizes it for
Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
additionally optimizes it for Sun UltraSPARC T2 chips. With
@option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
additionally optimizes it for Sun UltraSPARC T4 chips. With
@option{-mcpu=niagara7}, the compiler additionally optimizes it for
Oracle SPARC M7 chips. With @option{-mcpu=m8}, the compiler
additionally optimizes it for Oracle M8 chips.
@opindex mtune
@item -mtune=@var{cpu_type}
Set the instruction scheduling parameters for machine type
@var{cpu_type}, but do not set the instruction set or register set that the
option @option{-mcpu=@var{cpu_type}} does.
The same values for @option{-mcpu=@var{cpu_type}} can be used for
@option{-mtune=@var{cpu_type}}, but the only useful values are those
that select a particular CPU implementation. Those are
@samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
@samp{leon3}, @samp{leon3v7}, @samp{leon5}, @samp{f930}, @samp{f934},
@samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
@samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
@samp{niagara4}, @samp{niagara7} and @samp{m8}. With native Solaris
and GNU/Linux toolchains, @samp{native} can also be used.
@opindex mv8plus
@opindex mno-v8plus
@item -mv8plus
@itemx -mno-v8plus
With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
difference from the V8 ABI is that the global and out registers are
considered 64 bits wide. This is enabled by default on Solaris in 32-bit
mode for all SPARC-V9 processors.
@opindex mvis
@opindex mno-vis
@item -mvis
@itemx -mno-vis
With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
Visual Instruction Set extensions. The default is @option{-mno-vis}.
@opindex mvis2
@opindex mno-vis2
@item -mvis2
@itemx -mno-vis2
With @option{-mvis2}, GCC generates code that takes advantage of
version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
default is @option{-mvis2} when targeting a cpu that supports such
instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
also sets @option{-mvis}.
@opindex mvis3
@opindex mno-vis3
@item -mvis3
@itemx -mno-vis3
With @option{-mvis3}, GCC generates code that takes advantage of
version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
default is @option{-mvis3} when targeting a cpu that supports such
instructions, such as niagara-3 and later. Setting @option{-mvis3}
also sets @option{-mvis2} and @option{-mvis}.
@opindex mvis4
@opindex mno-vis4
@item -mvis4
@itemx -mno-vis4
With @option{-mvis4}, GCC generates code that takes advantage of
version 4.0 of the UltraSPARC Visual Instruction Set extensions. The
default is @option{-mvis4} when targeting a cpu that supports such
instructions, such as niagara-7 and later. Setting @option{-mvis4}
also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
@opindex mvis4b
@opindex mno-vis4b
@item -mvis4b
@itemx -mno-vis4b
With @option{-mvis4b}, GCC generates code that takes advantage of
version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
the additional VIS instructions introduced in the Oracle SPARC
Architecture 2017. The default is @option{-mvis4b} when targeting a
cpu that supports such instructions, such as m8 and later. Setting
@option{-mvis4b} also sets @option{-mvis4}, @option{-mvis3},
@option{-mvis2} and @option{-mvis}.
@opindex mcbcond
@opindex mno-cbcond
@item -mcbcond
@itemx -mno-cbcond
With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
Compare-and-Branch-on-Condition instructions. The default is @option{-mcbcond}
when targeting a CPU that supports such instructions, such as Niagara-4 and
later.
@opindex mfmaf
@opindex mno-fmaf
@item -mfmaf
@itemx -mno-fmaf
With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
Fused Multiply-Add Floating-point instructions. The default is @option{-mfmaf}
when targeting a CPU that supports such instructions, such as Niagara-3 and
later.
@opindex mfsmuld
@opindex mno-fsmuld
@item -mfsmuld
@itemx -mno-fsmuld
With @option{-mfsmuld}, GCC generates code that takes advantage of the
Floating-point Multiply Single to Double (FsMULd) instruction. The default is
@option{-mfsmuld} when targeting a CPU supporting the architecture versions V8
or V9 with FPU except @option{-mcpu=leon}.
@opindex mpopc
@opindex mno-popc
@item -mpopc
@itemx -mno-popc
With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
Population Count instruction. The default is @option{-mpopc}
when targeting a CPU that supports such an instruction, such as Niagara-2 and
later.
@opindex msubxc
@opindex mno-subxc
@item -msubxc
@itemx -mno-subxc
With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
Subtract-Extended-with-Carry instruction. The default is @option{-msubxc}
when targeting a CPU that supports such an instruction, such as Niagara-7 and
later.
@opindex mfix-at697f
@item -mfix-at697f
Enable the documented workaround for the single erratum of the Atmel AT697F
processor (which corresponds to erratum #13 of the AT697E processor).
@opindex mfix-ut699
@item -mfix-ut699
Enable the documented workarounds for the floating-point errata and the data
cache nullify errata of the UT699 processor.
@opindex mfix-ut700
@item -mfix-ut700
Enable the documented workaround for the back-to-back store errata of
the UT699E/UT700 processor.
@opindex mfix-gr712rc
@item -mfix-gr712rc
Enable the documented workaround for the back-to-back store errata of
the GR712RC processor.
@end table
These @samp{-m} options are supported in addition to the above
on SPARC-V9 processors in 64-bit environments:
@table @gcctabopt
@opindex m32
@opindex m64
@item -m32
@itemx -m64
Generate code for a 32-bit or 64-bit environment.
The 32-bit environment sets int, long and pointer to 32 bits.
The 64-bit environment sets int to 32 bits and long and pointer
to 64 bits.
@opindex mcmodel=
@item -mcmodel=@var{which}
Set the code model to one of
@table @samp
@item medlow
The Medium/Low code model: 64-bit addresses, programs
must be linked in the low 32 bits of memory. Programs can be statically
or dynamically linked.
@item medmid
The Medium/Middle code model: 64-bit addresses, programs
must be linked in the low 44 bits of memory, the text and data segments must
be less than 2GB in size and the data segment must be located within 2GB of
the text segment.
@item medany
The Medium/Anywhere code model: 64-bit addresses, programs
may be linked anywhere in memory, the text and data segments must be less
than 2GB in size and the data segment must be located within 2GB of the
text segment.
@item embmedany
The Medium/Anywhere code model for embedded systems:
64-bit addresses, the text and data segments must be less than 2GB in
size, both starting anywhere in memory (determined at link time). The
global register %g4 points to the base of the data segment. Programs
are statically linked and PIC is not supported.
@end table
@opindex mmemory-model
@item -mmemory-model=@var{mem-model}
Set the memory model in force on the processor to one of
@table @samp
@item default
The default memory model for the processor and operating system.
@item rmo
Relaxed Memory Order
@item pso
Partial Store Order
@item tso
Total Store Order
@item sc
Sequential Consistency
@end table
These memory models are formally defined in Appendix D of the SPARC-V9
architecture manual, as set in the processor's @code{PSTATE.MM} field.
@opindex mstack-bias
@opindex mno-stack-bias
@item -mstack-bias
@itemx -mno-stack-bias
With @option{-mstack-bias}, GCC assumes that the stack pointer, and
frame pointer if present, are offset by @minus{}2047 which must be added back
when making stack frame references. This is the default in 64-bit mode.
Otherwise, assume no such offset is present.
@end table
@node System V Options
@subsection Options for System V
These additional options are available on System V Release 4 for
compatibility with other compilers on those systems:
@table @gcctabopt
@opindex G
@item -G
Create a shared object.
It is recommended that @option{-symbolic} or @option{-shared} be used instead.
@opindex Qy
@item -Qy
Identify the versions of each tool used by the compiler, in a
@code{.ident} assembler directive in the output.
@opindex Qn
@item -Qn
Refrain from adding @code{.ident} directives to the output file (this is
the default).
@opindex YP
@item -YP,@var{dirs}
Search the directories @var{dirs}, and no others, for libraries
specified with @option{-l}.
@opindex Ym
@item -Ym,@var{dir}
Look in the directory @var{dir} to find the M4 preprocessor.
The assembler uses this option.
@c This is supposed to go with a -Yd for predefined M4 macro files, but
@c the generic assembler that comes with Solaris takes just -Ym.
@end table
@node V850 Options
@subsection V850 Options
@cindex V850 Options
These @samp{-m} options are defined for V850 implementations:
@table @gcctabopt
@opindex mlong-calls
@opindex mno-long-calls
@item -mlong-calls
@itemx -mno-long-calls
Treat all calls as being far away (near). If calls are assumed to be
far away, the compiler always loads the function's address into a
register, and calls indirect through the pointer.
@opindex mno-ep
@opindex mep
@item -mno-ep
@itemx -mep
Do not optimize (do optimize) basic blocks that use the same index
pointer 4 or more times to copy pointer into the @code{ep} register, and
use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
option is on by default if you optimize.
@opindex mno-prolog-function
@opindex mprolog-function
@item -mno-prolog-function
@itemx -mprolog-function
Do not use (do use) external functions to save and restore registers
at the prologue and epilogue of a function. The external functions
are slower, but use less code space if more than one function saves
the same number of registers. The @option{-mprolog-function} option
is on by default if you optimize.
@opindex mspace
@item -mspace
Try to make the code as small as possible. At present, this just turns
on the @option{-mep} and @option{-mprolog-function} options.
@opindex mtda
@item -mtda=@var{n}
Put static or global variables whose size is @var{n} bytes or less into
the tiny data area that register @code{ep} points to. The tiny data
area can hold up to 256 bytes in total (128 bytes for byte references).
@opindex msda
@item -msda=@var{n}
Put static or global variables whose size is @var{n} bytes or less into
the small data area that register @code{gp} points to. The small data
area can hold up to 64 kilobytes.
@opindex mzda
@item -mzda=@var{n}
Put static or global variables whose size is @var{n} bytes or less into
the first 32 kilobytes of memory.
@opindex mv850
@item -mv850
Specify that the target processor is the V850.
@opindex mv850e3v5
@item -mv850e3v5
Specify that the target processor is the V850E3V5. The preprocessor
constant @code{__v850e3v5__} is defined if this option is used.
@opindex mv850e2v4
@item -mv850e2v4
Specify that the target processor is the V850E3V5. This is an alias for
the @option{-mv850e3v5} option.
@opindex mv850e2v3
@item -mv850e2v3
Specify that the target processor is the V850E2V3. The preprocessor
constant @code{__v850e2v3__} is defined if this option is used.
@opindex mv850e2
@item -mv850e2
Specify that the target processor is the V850E2. The preprocessor
constant @code{__v850e2__} is defined if this option is used.
@opindex mv850e1
@item -mv850e1
Specify that the target processor is the V850E1. The preprocessor
constants @code{__v850e1__} and @code{__v850e__} are defined if
this option is used.
@opindex mv850es
@item -mv850es
Specify that the target processor is the V850ES. This is an alias for
the @option{-mv850e1} option.
@opindex mv850e
@item -mv850e
Specify that the target processor is the V850E@. The preprocessor
constant @code{__v850e__} is defined if this option is used.
If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
are defined then a default target processor is chosen and the
relevant @samp{__v850*__} preprocessor constant is defined.
The preprocessor constants @code{__v850} and @code{__v851__} are always
defined, regardless of which processor variant is the target.
@opindex mdisable-callt
@opindex mno-disable-callt
@item -mdisable-callt
@itemx -mno-disable-callt
This option suppresses generation of the @code{CALLT} instruction for the
v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
architecture.
This option is enabled by default when the RH850 ABI is
in use (see @option{-mrh850-abi}), and disabled by default when the
GCC ABI is in use. If @code{CALLT} instructions are being generated
then the C preprocessor symbol @code{__V850_CALLT__} is defined.
@opindex mrelax
@opindex mno-relax
@item -mrelax
@itemx -mno-relax
Pass on (or do not pass on) the @option{-mrelax} command-line option
to the assembler.
@opindex mlong-jumps
@opindex mno-long-jumps
@item -mlong-jumps
@itemx -mno-long-jumps
Disable (or re-enable) the generation of PC-relative jump instructions.
@opindex msoft-float
@opindex mhard-float
@item -msoft-float
@itemx -mhard-float
Disable (or re-enable) the generation of hardware floating point
instructions. This option is only significant when the target
architecture is @samp{V850E2V3} or higher. If hardware floating point
instructions are being generated then the C preprocessor symbol
@code{__FPU_OK__} is defined, otherwise the symbol
@code{__NO_FPU__} is defined.
@opindex mloop
@item -mloop
Enables the use of the e3v5 LOOP instruction. The use of this
instruction is not enabled by default when the e3v5 architecture is
selected because its use is still experimental.
@opindex mrh850-abi
@opindex mghs
@item -mrh850-abi
@itemx -mghs
Enables support for the RH850 version of the V850 ABI. This is the
default. With this version of the ABI the following rules apply:
@itemize
@item
Integer sized structures and unions are returned via a memory pointer
rather than a register.
@item
Large structures and unions (more than 8 bytes in size) are passed by
value.
@item
Functions are aligned to 16-bit boundaries.
@item
The @option{-m8byte-align} command-line option is supported.
@item
The @option{-mdisable-callt} command-line option is enabled by
default. The @option{-mno-disable-callt} command-line option is not
supported.
@end itemize
When this version of the ABI is enabled the C preprocessor symbol
@code{__V850_RH850_ABI__} is defined.
@opindex mgcc-abi
@item -mgcc-abi
Enables support for the old GCC version of the V850 ABI. With this
version of the ABI the following rules apply:
@itemize
@item
Integer sized structures and unions are returned in register @code{r10}.
@item
Large structures and unions (more than 8 bytes in size) are passed by
reference.
@item
Functions are aligned to 32-bit boundaries, unless optimizing for
size.
@item
The @option{-m8byte-align} command-line option is not supported.
@item
The @option{-mdisable-callt} command-line option is supported but not
enabled by default.
@end itemize
When this version of the ABI is enabled the C preprocessor symbol
@code{__V850_GCC_ABI__} is defined.
@opindex m8byte-align
@opindex mno-8byte-align
@item -m8byte-align
@itemx -mno-8byte-align
Enables support for @code{double} and @code{long long} types to be
aligned on 8-byte boundaries. The default is to restrict the
alignment of all objects to at most 4-bytes. When
@option{-m8byte-align} is in effect the C preprocessor symbol
@code{__V850_8BYTE_ALIGN__} is defined.
@opindex mbig-switch
@item -mbig-switch
Generate code suitable for big switch tables. Use this option only if
the assembler/linker complain about out of range branches within a switch
table.
@opindex mapp-regs
@item -mapp-regs
This option causes r2 and r5 to be used in the code generated by
the compiler. This setting is the default.
@opindex mno-app-regs
@item -mno-app-regs
This option causes r2 and r5 to be treated as fixed registers.
@end table
@node VAX Options
@subsection VAX Options
@cindex VAX options
These @samp{-m} options are defined for the VAX:
@table @gcctabopt
@opindex munix
@item -munix
Do not output certain jump instructions (@code{aobleq} and so on)
that the Unix assembler for the VAX cannot handle across long
ranges.
@opindex mgnu
@item -mgnu
Do output those jump instructions, on the assumption that the
GNU assembler is being used.
@opindex md
@opindex md-float
@item -md
@itemx -md-float
Use the D_floating data format for double-precision floating-point numbers
instead of G_floating.
@opindex mg
@opindex mg-float
@item -mg
@itemx -mg-float
Use the G_floating data format for double-precision floating-point numbers
instead of D_floating.
@opindex mlra
@opindex mno-lra
@item -mlra
@itemx -mno-lra
Enable Local Register Allocation. This is still experimental for the VAX,
so by default the compiler uses standard reload.
@end table
@node Visium Options
@subsection Visium Options
@cindex Visium options
@table @gcctabopt
@opindex mdebug
@item -mdebug
A program which performs file I/O and is destined to run on an MCM target
should be linked with this option. It causes the libraries libc.a and
libdebug.a to be linked. The program should be run on the target under
the control of the GDB remote debugging stub.
@opindex msim
@item -msim
A program which performs file I/O and is destined to run on the simulator
should be linked with option. This causes libraries libc.a and libsim.a to
be linked.
@opindex mfpu
@opindex mhard-float
@item -mfpu
@itemx -mhard-float
Generate code containing floating-point instructions. This is the
default.
@opindex mno-fpu
@opindex msoft-float
@item -mno-fpu
@itemx -msoft-float
Generate code containing library calls for floating-point.
@option{-msoft-float} changes the calling convention in the output file;
therefore, it is only useful if you compile @emph{all} of a program with
this option. In particular, you need to compile @file{libgcc.a}, the
library that comes with GCC, with @option{-msoft-float} in order for
this to work.
@opindex mcpu
@item -mcpu=@var{cpu_type}
Set the instruction set, register set, and instruction scheduling parameters
for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
@samp{mcm}, @samp{gr5} and @samp{gr6}.
@samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
By default (unless configured otherwise), GCC generates code for the GR5
variant of the Visium architecture.
With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
architecture. The only difference from GR5 code is that the compiler will
generate block move instructions.
@opindex mtune
@item -mtune=@var{cpu_type}
Set the instruction scheduling parameters for machine type @var{cpu_type},
but do not set the instruction set or register set that the option
@option{-mcpu=@var{cpu_type}} would.
@opindex msv-mode
@item -msv-mode
Generate code for the supervisor mode, where there are no restrictions on
the access to general registers. This is the default.
@opindex muser-mode
@item -muser-mode
Generate code for the user mode, where the access to some general registers
is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
mode; on the GR6, only registers r29 to r31 are affected.
@end table
@node VMS Options
@subsection VMS Options
These @samp{-m} options are defined for the VMS implementations:
@table @gcctabopt
@opindex mvms-return-codes
@item -mvms-return-codes
Return VMS condition codes from @code{main}. The default is to return POSIX-style
condition (e.g.@: error) codes.
@opindex mdebug-main=@var{prefix}
@item -mdebug-main=@var{prefix}
Flag the first routine whose name starts with @var{prefix} as the main
routine for the debugger.
@opindex mmalloc64
@item -mmalloc64
Default to 64-bit memory allocation routines.
@opindex mpointer-size=@var{size}
@item -mpointer-size=@var{size}
Set the default size of pointers. Possible options for @var{size} are
@samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
The later option disables @code{pragma pointer_size}.
@end table
@node VxWorks Options
@subsection VxWorks Options
@cindex VxWorks Options
The options in this section are defined for all VxWorks targets.
Options specific to the target hardware are listed with the other
options for that target.
@table @gcctabopt
@opindex mrtp
@item -mrtp
GCC can generate code for both VxWorks kernels and real time processes
(RTPs). This option switches from the former to the latter. It also
defines the preprocessor macro @code{__RTP__}.
@opindex msmp
@item -msmp
Select SMP runtimes for linking. Not available on architectures other
than PowerPC, nor on VxWorks version 7 or later, in which the selection
is part of the VxWorks build configuration and the library paths are the
same for either choice.
@opindex non-static
@item -non-static
Link an RTP executable against shared libraries rather than static
libraries. The options @option{-static} and @option{-shared} can
also be used for RTPs (@pxref{Link Options}); @option{-static}
is the default.
@opindex Bstatic
@opindex Bdynamic
@item -Bstatic
@itemx -Bdynamic
These options are passed down to the linker. They are defined for
compatibility with Diab.
@opindex Xbind-lazy
@item -Xbind-lazy
Enable lazy binding of function calls. This option is equivalent to
@option{-Wl,-z,now} and is defined for compatibility with Diab.
@opindex Xbind-now
@item -Xbind-now
Disable lazy binding of function calls. This option is the default and
is defined for compatibility with Diab.
@end table
@node x86 Options
@subsection x86 Options
@cindex x86 Options
These @samp{-m} options are defined for the x86 family of computers.
@table @gcctabopt
@opindex march
@item -march=@var{cpu-type}
Generate instructions for the machine type @var{cpu-type}. In contrast to
@option{-mtune=@var{cpu-type}}, which merely tunes the generated code
for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
to generate code that may not run at all on processors other than the one
indicated. Specifying @option{-march=@var{cpu-type}} implies
@option{-mtune=@var{cpu-type}}, except where noted otherwise.
The choices for @var{cpu-type} are:
@table @samp
@item native
This selects the CPU to generate code for at compilation time by determining
the processor type of the compiling machine. Using @option{-march=native}
enables all instruction subsets supported by the local machine (hence
the result might not run on different machines). Using @option{-mtune=native}
produces code optimized for the local machine under the constraints
of the selected instruction set.
@item x86-64
A generic CPU with 64-bit extensions.
@item x86-64-v2
@itemx x86-64-v3
@itemx x86-64-v4
These choices for @var{cpu-type} select the corresponding
micro-architecture level from the x86-64 psABI. On ABIs other than
the x86-64 psABI they select the same CPU features as the x86-64 psABI
documents for the particular micro-architecture level.
Since these @var{cpu-type} values do not have a corresponding
@option{-mtune} setting, using @option{-march} with these values enables
generic tuning. Specific tuning can be enabled using the
@option{-mtune=@var{other-cpu-type}} option with an appropriate
@var{other-cpu-type} value.
@item i386
Original Intel i386 CPU@.
@item i486
Intel i486 CPU@. (No scheduling is implemented for this chip.)
@item i586
@itemx pentium
Intel Pentium CPU with no MMX support.
@item lakemont
Intel Lakemont MCU, based on Intel Pentium CPU.
@item pentium-mmx
Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
@item pentiumpro
Intel Pentium Pro CPU@.
@item i686
When used with @option{-march}, the Pentium Pro
instruction set is used, so the code runs on all i686 family chips.
When used with @option{-mtune}, it has the same meaning as @samp{generic}.
@item pentium2
Intel Pentium II CPU, based on Pentium Pro core with MMX and FXSR instruction
set support.
@item pentium3
@itemx pentium3m
Intel Pentium III CPU, based on Pentium Pro core with MMX, FXSR and SSE
instruction set support.
@item pentium-m
Intel Pentium M; low-power version of Intel Pentium III CPU
with MMX, SSE, SSE2 and FXSR instruction set support. Used by Centrino
notebooks.
@item pentium4
@itemx pentium4m
Intel Pentium 4 CPU with MMX, SSE, SSE2 and FXSR instruction set support.
@item prescott
Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2, SSE3 and FXSR
instruction set support.
@item nocona
Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
SSE2, SSE3 and FXSR instruction set support.
@item core2
Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, CX16,
SAHF and FXSR instruction set support.
@item nehalem
Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, CX16, SAHF and FXSR instruction set support.
@item westmere
Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR and PCLMUL instruction set support.
@item sandybridge
Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE and PCLMUL instruction set
support.
@item ivybridge
Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND
and F16C instruction set support.
@item haswell
Intel Haswell CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND,
F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE and HLE instruction set support.
@item broadwell
Intel Broadwell CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND,
F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX and PREFETCHW
instruction set support.
@item skylake
Intel Skylake CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND,
F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW, AES,
CLFLUSHOPT, XSAVEC, XSAVES and SGX instruction set support.
@item bonnell
Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support.
@item silvermont
Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, PCLMUL, PREFETCHW and RDRND
instruction set support.
@item goldmont
Intel Goldmont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, PCLMUL, PREFETCHW, RDRND, AES, SHA,
RDSEED, XSAVE, XSAVEC, XSAVES, XSAVEOPT, CLFLUSHOPT and FSGSBASE instruction
set support.
@item goldmont-plus
Intel Goldmont Plus CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, PCLMUL, PREFETCHW, RDRND, AES,
SHA, RDSEED, XSAVE, XSAVEC, XSAVES, XSAVEOPT, CLFLUSHOPT, FSGSBASE, PTWRITE,
RDPID and SGX instruction set support.
@item tremont
Intel Tremont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, PCLMUL, PREFETCHW, RDRND, AES, SHA,
RDSEED, XSAVE, XSAVEC, XSAVES, XSAVEOPT, CLFLUSHOPT, FSGSBASE, PTWRITE, RDPID,
SGX, CLWB, GFNI-SSE, MOVDIRI, MOVDIR64B, CLDEMOTE and WAITPKG instruction set
support.
@item sierraforest
Intel Sierra Forest CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC,
XSAVES, XSAVEOPT, FSGSBASE, PTWRITE, RDPID, SGX, GFNI-SSE, CLWB, MOVDIRI,
MOVDIR64B, CLDEMOTE, WAITPKG, ADCX, AVX, AVX2, BMI, BMI2, F16C, FMA, LZCNT,
PCONFIG, PKU, VAES, VPCLMULQDQ, SERIALIZE, HRESET, KL, WIDEKL, AVX-VNNI,
AVXIFMA, AVXVNNIINT8, AVXNECONVERT, CMPCCXADD, ENQCMD and UINTR instruction set
support.
@item grandridge
Intel Grand Ridge CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC,
XSAVES, XSAVEOPT, FSGSBASE, PTWRITE, RDPID, SGX, GFNI-SSE, CLWB, MOVDIRI,
MOVDIR64B, CLDEMOTE, WAITPKG, ADCX, AVX, AVX2, BMI, BMI2, F16C, FMA, LZCNT,
PCONFIG, PKU, VAES, VPCLMULQDQ, SERIALIZE, HRESET, KL, WIDEKL, AVX-VNNI,
AVXIFMA, AVXVNNIINT8, AVXNECONVERT, CMPCCXADD, ENQCMD and UINTR instruction set
support.
@item clearwaterforest
Intel Clearwater Forest CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE,
XSAVEC, XSAVES, XSAVEOPT, FSGSBASE, PTWRITE, RDPID, SGX, GFNI-SSE, CLWB,
MOVDIRI, MOVDIR64B, CLDEMOTE, WAITPKG, ADCX, AVX, AVX2, BMI, BMI2, F16C, FMA,
LZCNT, PCONFIG, PKU, VAES, VPCLMULQDQ, SERIALIZE, HRESET, KL, WIDEKL, AVX-VNNI,
ENQCMD, UINTR, AVXIFMA, AVXVNNIINT8, AVXNECONVERT, CMPCCXADD, AVXVNNIINT16,
SHA512, SM3, SM4, USER_MSR and PREFETCHI instruction set support.
@item skylake-avx512
Intel Skylake Server CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE,
RDRND, F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW,
AES, CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, CLWB, AVX512VL, AVX512BW,
AVX512DQ and AVX512CD instruction set support.
@item cannonlake
Intel Cannonlake Server CPU with 64-bit extensions, MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL,
FSGSBASE, RDRND, F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX,
PREFETCHW, AES, CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, AVX512VL, AVX512BW,
AVX512DQ, AVX512CD, PKU, AVX512VBMI, AVX512IFMA and SHA instruction set
support.
@item icelake-client
Intel Icelake Client CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE,
RDRND, F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW,
AES, CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, AVX512VL, AVX512BW, AVX512DQ,
AVX512CD, PKU, AVX512VBMI, AVX512IFMA, SHA, AVX512VNNI, GFNI, VAES, AVX512VBMI2
, VPCLMULQDQ, AVX512BITALG, RDPID and AVX512VPOPCNTDQ instruction set support.
@item icelake-server
Intel Icelake Server CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE,
RDRND, F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW,
AES, CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, AVX512VL, AVX512BW, AVX512DQ,
AVX512CD, PKU, AVX512VBMI, AVX512IFMA, SHA, AVX512VNNI, GFNI, VAES, AVX512VBMI2
, VPCLMULQDQ, AVX512BITALG, RDPID, AVX512VPOPCNTDQ, PCONFIG, WBNOINVD and CLWB
instruction set support.
@item cascadelake
Intel Cascadelake CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND,
F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW, AES,
CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, CLWB, AVX512VL, AVX512BW, AVX512DQ,
AVX512CD and AVX512VNNI instruction set support.
@item cooperlake
Intel cooperlake CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND,
F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW, AES,
CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, CLWB, AVX512VL, AVX512BW, AVX512DQ,
AVX512CD, AVX512VNNI and AVX512BF16 instruction set support.
@item tigerlake
Intel Tigerlake CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND,
F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW, AES,
CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD
PKU, AVX512VBMI, AVX512IFMA, SHA, AVX512VNNI, GFNI, VAES, AVX512VBMI2,
VPCLMULQDQ, AVX512BITALG, RDPID, AVX512VPOPCNTDQ, MOVDIRI, MOVDIR64B, CLWB,
AVX512VP2INTERSECT and KEYLOCKER instruction set support.
@item sapphirerapids
Intel sapphirerapids CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE,
RDRND, F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW,
AES, CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, AVX512VL, AVX512BW, AVX512DQ,
AVX512CD, PKU, AVX512VBMI, AVX512IFMA, SHA, AVX512VNNI, GFNI, VAES, AVX512VBMI2,
VPCLMULQDQ, AVX512BITALG, RDPID, AVX512VPOPCNTDQ, PCONFIG, WBNOINVD, CLWB,
MOVDIRI, MOVDIR64B, ENQCMD, CLDEMOTE, PTWRITE, WAITPKG, SERIALIZE, TSXLDTRK,
UINTR, AMX-BF16, AMX-TILE, AMX-INT8, AVX-VNNI, AVX512-FP16 and AVX512BF16
instruction set support.
@item alderlake
Intel Alderlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC, XSAVES,
XSAVEOPT, FSGSBASE, PTWRITE, RDPID, SGX, GFNI-SSE, CLWB, MOVDIRI, MOVDIR64B,
CLDEMOTE, WAITPKG, ADCX, AVX, AVX2, BMI, BMI2, F16C, FMA, LZCNT, PCONFIG, PKU,
VAES, VPCLMULQDQ, SERIALIZE, HRESET, KL, WIDEKL and AVX-VNNI instruction set
support.
@item rocketlake
Intel Rocketlake CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3
, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND,
F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW, AES,
CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD
PKU, AVX512VBMI, AVX512IFMA, SHA, AVX512VNNI, GFNI, VAES, AVX512VBMI2,
VPCLMULQDQ, AVX512BITALG, RDPID and AVX512VPOPCNTDQ instruction set support.
@item graniterapids
Intel graniterapids CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE,
RDRND, F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW,
AES, CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, AVX512VL, AVX512BW, AVX512DQ,
AVX512CD, PKU, AVX512VBMI, AVX512IFMA, SHA, AVX512VNNI, GFNI, VAES, AVX512VBMI2,
VPCLMULQDQ, AVX512BITALG, RDPID, AVX512VPOPCNTDQ, PCONFIG, WBNOINVD, CLWB,
MOVDIRI, MOVDIR64B, ENQCMD, CLDEMOTE, PTWRITE, WAITPKG, SERIALIZE, TSXLDTRK,
UINTR, AMX-BF16, AMX-TILE, AMX-INT8, AVX-VNNI, AVX512-FP16, AVX512BF16, AMX-FP16
and PREFETCHI instruction set support.
@item graniterapids-d
Intel graniterapids D CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE,
RDRND, F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW,
AES, CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, AVX512VL, AVX512BW, AVX512DQ,
AVX512CD, PKU, AVX512VBMI, AVX512IFMA, SHA, AVX512VNNI, GFNI, VAES, AVX512VBMI2,
VPCLMULQDQ, AVX512BITALG, RDPID, AVX512VPOPCNTDQ, PCONFIG, WBNOINVD, CLWB,
MOVDIRI, MOVDIR64B, ENQCMD, CLDEMOTE, PTWRITE, WAITPKG, SERIALIZE, TSXLDTRK,
UINTR, AMX-BF16, AMX-TILE, AMX-INT8, AVX-VNNI, AVX512FP16, AVX512BF16, AMX-FP16,
PREFETCHI and AMX-COMPLEX instruction set support.
@item arrowlake
Intel Arrow Lake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC,
XSAVES, XSAVEOPT, FSGSBASE, PTWRITE, RDPID, SGX, GFNI-SSE, CLWB, MOVDIRI,
MOVDIR64B, CLDEMOTE, WAITPKG, ADCX, AVX, AVX2, BMI, BMI2, F16C, FMA, LZCNT,
PCONFIG, PKU, VAES, VPCLMULQDQ, SERIALIZE, HRESET, KL, WIDEKL, AVX-VNNI,
UINTR, AVXIFMA, AVXVNNIINT8, AVXNECONVERT and CMPCCXADD instruction set
support.
@item arrowlake-s
Intel Arrow Lake S CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC,
XSAVES, XSAVEOPT, FSGSBASE, PTWRITE, RDPID, SGX, GFNI-SSE, CLWB, MOVDIRI,
MOVDIR64B, CLDEMOTE, WAITPKG, ADCX, AVX, AVX2, BMI, BMI2, F16C, FMA, LZCNT,
PCONFIG, PKU, VAES, VPCLMULQDQ, SERIALIZE, HRESET, KL, WIDEKL, AVX-VNNI,
UINTR, AVXIFMA, AVXVNNIINT8, AVXNECONVERT, CMPCCXADD, AVXVNNIINT16, SHA512,
SM3 and SM4 instruction set support.
@item pantherlake
Intel Panther Lake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC,
XSAVES, XSAVEOPT, FSGSBASE, PTWRITE, RDPID, SGX, GFNI-SSE, CLWB, MOVDIRI,
MOVDIR64B, CLDEMOTE, WAITPKG, ADCX, AVX, AVX2, BMI, BMI2, F16C, FMA, LZCNT,
PCONFIG, PKU, VAES, VPCLMULQDQ, SERIALIZE, HRESET, KL, WIDEKL, AVX-VNNI,
UINTR, AVXIFMA, AVXVNNIINT8, AVXNECONVERT, CMPCCXADD, AVXVNNIINT16, SHA512,
SM3, SM4 and PREFETCHI instruction set support.
@item k6
AMD K6 CPU with MMX instruction set support.
@item k6-2
@itemx k6-3
Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
@item athlon
@itemx athlon-tbird
AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
support.
@item athlon-4
@itemx athlon-xp
@itemx athlon-mp
Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
instruction set support.
@item k8
@itemx opteron
@itemx athlon64
@itemx athlon-fx
Processors based on the AMD K8 core with x86-64 instruction set support,
including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
(This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
instruction set extensions.)
@item k8-sse3
@itemx opteron-sse3
@itemx athlon64-sse3
Improved versions of AMD K8 cores with SSE3 instruction set support.
@item amdfam10
@itemx barcelona
CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
instruction set extensions.)
@item bdver1
CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
supersets FMA4, AVX, XOP, LWP, AES, PCLMUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
@item bdver2
AMD Family 15h core based CPUs with x86-64 instruction set support. (This
supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCLMUL, CX16, MMX,
SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
extensions.)
@item bdver3
AMD Family 15h core based CPUs with x86-64 instruction set support. (This
supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
PCLMUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
64-bit instruction set extensions.)
@item bdver4
AMD Family 15h core based CPUs with x86-64 instruction set support. (This
supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
SSE4.2, ABM and 64-bit instruction set extensions.)
@item znver1
AMD Family 17h core based CPUs with x86-64 instruction set support. (This
supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
instruction set extensions.)
@item znver2
AMD Family 17h core based CPUs with x86-64 instruction set support. (This
supersets BMI, BMI2, CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED,
MWAITX, SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, RDPID,
WBNOINVD, and 64-bit instruction set extensions.)
@item znver3
AMD Family 19h core based CPUs with x86-64 instruction set support. (This
supersets BMI, BMI2, CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED,
MWAITX, SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, RDPID,
WBNOINVD, PKU, VPCLMULQDQ, VAES, and 64-bit instruction set extensions.)
@item znver4
AMD Family 19h core based CPUs with x86-64 instruction set support. (This
supersets BMI, BMI2, CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED,
MWAITX, SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, RDPID,
WBNOINVD, PKU, VPCLMULQDQ, VAES, AVX512F, AVX512DQ, AVX512IFMA, AVX512CD,
AVX512BW, AVX512VL, AVX512BF16, AVX512VBMI, AVX512VBMI2, AVX512VNNI,
AVX512BITALG, AVX512VPOPCNTDQ, GFNI and 64-bit instruction set extensions.)
@item znver5
AMD Family 1ah core based CPUs with x86-64 instruction set support. (This
supersets BMI, BMI2, CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED,
MWAITX, SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, RDPID,
WBNOINVD, PKU, VPCLMULQDQ, VAES, AVX512F, AVX512DQ, AVX512IFMA, AVX512CD,
AVX512BW, AVX512VL, AVX512BF16, AVX512VBMI, AVX512VBMI2, AVX512VNNI,
AVX512BITALG, AVX512VPOPCNTDQ, GFNI, AVXVNNI, MOVDIRI, MOVDIR64B,
AVX512VP2INTERSECT, PREFETCHI and 64-bit instruction set extensions.)
@item btver1
CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
instruction set extensions.)
@item btver2
CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
includes MOVBE, F16C, BMI, AVX, PCLMUL, AES, SSE4.2, SSE4.1, CX16, ABM,
SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
@item winchip-c6
IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
set support.
@item winchip2
IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
instruction set support.
@item c3
VIA C3 CPU with MMX and 3DNow!@: instruction set support.
(No scheduling is implemented for this chip.)
@item c3-2
VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
(No scheduling is implemented for this chip.)
@item c7
VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
(No scheduling is implemented for this chip.)
@item samuel-2
VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
(No scheduling is implemented for this chip.)
@item nehemiah
VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
(No scheduling is implemented for this chip.)
@item esther
VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
(No scheduling is implemented for this chip.)
@item eden-x2
VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
(No scheduling is implemented for this chip.)
@item eden-x4
VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
AVX and AVX2 instruction set support.
(No scheduling is implemented for this chip.)
@item nano
Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support.
(No scheduling is implemented for this chip.)
@item nano-1000
VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support.
(No scheduling is implemented for this chip.)
@item nano-2000
VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
instruction set support.
(No scheduling is implemented for this chip.)
@item nano-3000
VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
instruction set support.
(No scheduling is implemented for this chip.)
@item nano-x2
VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
instruction set support.
(No scheduling is implemented for this chip.)
@item nano-x4
VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
instruction set support.
(No scheduling is implemented for this chip.)
@item lujiazui
ZHAOXIN lujiazui CPU with x86-64, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1,
SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE, CX16,
ABM, BMI, BMI2, FXSR, RDSEED instruction set support. While the CPUs
do support AVX and F16C, these aren't enabled by @code{-march=lujiazui}
for performance reasons.
@item yongfeng
ZHAOXIN yongfeng CPU with x86-64, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1,
SSE4.2, AVX, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE, CX16,
ABM, BMI, BMI2, F16C, FXSR, RDSEED, AVX2, FMA, SHA, LZCNT
instruction set support.
@item shijidadao
ZHAOXIN shijidadao CPU with x86-64, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1,
SSE4.2, AVX, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE, CX16,
ABM, BMI, BMI2, F16C, FXSR, RDSEED, AVX2, FMA, SHA, LZCNT
instruction set support.
@item geode
AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
@end table
@opindex mtune
@item -mtune=@var{cpu-type}
Tune to @var{cpu-type} everything applicable about the generated code, except
for the ABI and the set of available instructions.
While picking a specific @var{cpu-type} schedules things appropriately
for that particular chip, the compiler does not generate any code that
cannot run on the default machine type unless you use a
@option{-march=@var{cpu-type}} option.
For example, if GCC is configured for i686-pc-linux-gnu
then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
but still runs on i686 machines.
The choices for @var{cpu-type} are the same as for @option{-march}.
In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
@table @samp
@item generic
Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
If you know the CPU on which your code will run, then you should use
the corresponding @option{-mtune} or @option{-march} option instead of
@option{-mtune=generic}. But, if you do not know exactly what CPU users
of your application will have, then you should use this option.
As new processors are deployed in the marketplace, the behavior of this
option will change. Therefore, if you upgrade to a newer version of
GCC, code generation controlled by this option will change to reflect
the processors
that are most common at the time that version of GCC is released.
There is no @option{-march=generic} option because @option{-march}
indicates the instruction set the compiler can use, and there is no
generic instruction set applicable to all processors. In contrast,
@option{-mtune} indicates the processor (or, in this case, collection of
processors) for which the code is optimized.
@item intel
Produce code optimized for the most current Intel processors, which are
Haswell and Silvermont for this version of GCC. If you know the CPU
on which your code will run, then you should use the corresponding
@option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
But, if you want your application performs better on both Haswell and
Silvermont, then you should use this option.
As new Intel processors are deployed in the marketplace, the behavior of
this option will change. Therefore, if you upgrade to a newer version of
GCC, code generation controlled by this option will change to reflect
the most current Intel processors at the time that version of GCC is
released.
There is no @option{-march=intel} option because @option{-march} indicates
the instruction set the compiler can use, and there is no common
instruction set applicable to all processors. In contrast,
@option{-mtune} indicates the processor (or, in this case, collection of
processors) for which the code is optimized.
@end table
@opindex mcpu
@item -mcpu=@var{cpu-type}
A deprecated synonym for @option{-mtune}.
@opindex mfpmath
@item -mfpmath=@var{unit}
Generate floating-point arithmetic for selected unit @var{unit}. The choices
for @var{unit} are:
@table @samp
@item 387
Use the standard 387 floating-point coprocessor present on the majority of chips and
emulated otherwise. Code compiled with this option runs almost everywhere.
The temporary results are computed in 80-bit precision instead of the precision
specified by the type, resulting in slightly different results compared to most
of other chips. See @option{-ffloat-store} for more detailed description.
This is the default choice for non-Darwin x86-32 targets.
@item sse
Use scalar floating-point instructions present in the SSE instruction set.
This instruction set is supported by Pentium III and newer chips,
and in the AMD line
by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
instruction set supports only single-precision arithmetic, thus the double and
extended-precision arithmetic are still done using 387. A later version, present
only in Pentium 4 and AMD x86-64 chips, supports double-precision
arithmetic too.
For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
or @option{-msse2} switches to enable SSE extensions and make this option
effective. For the x86-64 compiler, these extensions are enabled by default.
The resulting code should be considerably faster in the majority of cases and avoid
the numerical instability problems of 387 code, but may break some existing
code that expects temporaries to be 80 bits.
This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
and the default choice for x86-32 targets with the SSE2 instruction set
when @option{-ffast-math} is enabled.
@item sse,387
@itemx sse+387
@itemx both
Attempt to utilize both instruction sets at once. This effectively doubles the
amount of available registers, and on chips with separate execution units for
387 and SSE the execution resources too. Use this option with care, as it is
still experimental, because the GCC register allocator does not model separate
functional units well, resulting in unstable performance.
@end table
@opindex masm=@var{dialect}
@item -masm=@var{dialect}
Output assembly instructions using selected @var{dialect}. Also affects
which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
not support @samp{intel}.
@opindex mieee-fp
@opindex mno-ieee-fp
@item -mieee-fp
@itemx -mno-ieee-fp
Control whether or not the compiler uses IEEE floating-point
comparisons. These correctly handle the case where the result of a
comparison is unordered.
@opindex m80387
@opindex mhard-float
@item -m80387
@itemx -mhard-float
Generate output containing 80387 instructions for floating point.
@opindex no-80387
@opindex msoft-float
@item -mno-80387
@itemx -msoft-float
Generate output containing library calls for floating point.
@strong{Warning:} the requisite libraries are not part of GCC@.
Normally the facilities of the machine's usual C compiler are used, but
this cannot be done directly in cross-compilation. You must make your
own arrangements to provide suitable library functions for
cross-compilation.
On machines where a function returns floating-point results in the 80387
register stack, some floating-point opcodes may be emitted even if
@option{-msoft-float} is used.
@opindex mno-fp-ret-in-387
@opindex mfp-ret-in-387
@item -mno-fp-ret-in-387
Do not use the FPU registers for return values of functions.
The usual calling convention has functions return values of types
@code{float} and @code{double} in an FPU register, even if there
is no FPU@. The idea is that the operating system should emulate
an FPU@.
The option @option{-mno-fp-ret-in-387} causes such values to be returned
in ordinary CPU registers instead.
@opindex mno-fancy-math-387
@opindex mfancy-math-387
@item -mno-fancy-math-387
Some 387 emulators do not support the @code{sin}, @code{cos} and
@code{sqrt} instructions for the 387. Specify this option to avoid
generating those instructions.
This option is overridden when @option{-march}
indicates that the target CPU always has an FPU and so the
instruction does not need emulation. These
instructions are not generated unless you also use the
@option{-funsafe-math-optimizations} switch.
@opindex malign-double
@opindex mno-align-double
@item -malign-double
@itemx -mno-align-double
Control whether GCC aligns @code{double}, @code{long double}, and
@code{long long} variables on a two-word boundary or a one-word
boundary. Aligning @code{double} variables on a two-word boundary
produces code that runs somewhat faster on a Pentium at the
expense of more memory.
On x86-64, @option{-malign-double} is enabled by default.
@strong{Warning:} if you use the @option{-malign-double} switch,
structures containing the above types are aligned differently than
the published application binary interface specifications for the x86-32
and are not binary compatible with structures in code compiled
without that switch.
@opindex m96bit-long-double
@opindex m128bit-long-double
@item -m96bit-long-double
@itemx -m128bit-long-double
These switches control the size of @code{long double} type. The x86-32
application binary interface specifies the size to be 96 bits,
so @option{-m96bit-long-double} is the default in 32-bit mode.
Modern architectures (Pentium and newer) prefer @code{long double}
to be aligned to an 8- or 16-byte boundary. In arrays or structures
conforming to the ABI, this is not possible. So specifying
@option{-m128bit-long-double} aligns @code{long double}
to a 16-byte boundary by padding the @code{long double} with an additional
32-bit zero.
In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
its ABI specifies that @code{long double} is aligned on 16-byte boundary.
Notice that neither of these options enable any extra precision over the x87
standard of 80 bits for a @code{long double}.
@strong{Warning:} if you override the default value for your target ABI, this
changes the size of
structures and arrays containing @code{long double} variables,
as well as modifying the function calling convention for functions taking
@code{long double}. Hence they are not binary-compatible
with code compiled without that switch.
@opindex mlong-double-64
@opindex mlong-double-80
@opindex mlong-double-128
@item -mlong-double-64
@itemx -mlong-double-80
@itemx -mlong-double-128
These switches control the size of @code{long double} type. A size
of 64 bits makes the @code{long double} type equivalent to the @code{double}
type. This is the default for 32-bit Bionic C library. A size
of 128 bits makes the @code{long double} type equivalent to the
@code{__float128} type. This is the default for 64-bit Bionic C library.
@strong{Warning:} if you override the default value for your target ABI, this
changes the size of
structures and arrays containing @code{long double} variables,
as well as modifying the function calling convention for functions taking
@code{long double}. Hence they are not binary-compatible
with code compiled without that switch.
@opindex malign-data
@item -malign-data=@var{type}
Control how GCC aligns variables. Supported values for @var{type} are
@samp{compat} uses increased alignment value compatible uses GCC 4.8
and earlier, @samp{abi} uses alignment value as specified by the
psABI, and @samp{cacheline} uses increased alignment value to match
the cache line size. @samp{compat} is the default.
@opindex mlarge-data-threshold
@item -mlarge-data-threshold=@var{threshold}
When @option{-mcmodel=medium} or @option{-mcmodel=large} is specified, data
objects larger than @var{threshold} are placed in large data sections. The
default is 65535.
@opindex mrtd
@item -mrtd
Use a different function-calling convention, in which functions that
take a fixed number of arguments return with the @code{ret @var{num}}
instruction, which pops their arguments while returning. This saves one
instruction in the caller since there is no need to pop the arguments
there.
You can specify that an individual function is called with this calling
sequence with the function attribute @code{stdcall}. You can also
override the @option{-mrtd} option by using the function attribute
@code{cdecl}. @xref{Function Attributes}.
@strong{Warning:} this calling convention is incompatible with the one
normally used on Unix, so you cannot use it if you need to call
libraries compiled with the Unix compiler.
Also, you must provide function prototypes for all functions that
take variable numbers of arguments (including @code{printf});
otherwise incorrect code is generated for calls to those
functions.
In addition, seriously incorrect code results if you call a
function with too many arguments. (Normally, extra arguments are
harmlessly ignored.)
@opindex mregparm
@item -mregparm=@var{num}
Control how many registers are used to pass integer arguments. By
default, no registers are used to pass arguments, and at most 3
registers can be used. You can control this behavior for a specific
function by using the function attribute @code{regparm}.
@xref{Function Attributes}.
@strong{Warning:} if you use this switch, and
@var{num} is nonzero, then you must build all modules with the same
value, including any libraries. This includes the system libraries and
startup modules.
@opindex msseregparm
@item -msseregparm
Use SSE register passing conventions for float and double arguments
and return values. You can control this behavior for a specific
function by using the function attribute @code{sseregparm}.
@xref{Function Attributes}.
@strong{Warning:} if you use this switch then you must build all
modules with the same value, including any libraries. This includes
the system libraries and startup modules.
@opindex mvect8-ret-in-mem
@item -mvect8-ret-in-mem
Return 8-byte vectors in memory instead of MMX registers. This is the
default on VxWorks to match the ABI of the Sun Studio compilers until
version 12. @emph{Only} use this option if you need to remain
compatible with existing code produced by those previous compiler
versions or older versions of GCC@.
@opindex mpc32
@opindex mpc64
@opindex mpc80
@item -mpc32
@itemx -mpc64
@itemx -mpc80
Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
is specified, the significands of results of floating-point operations are
rounded to 24 bits (single precision); @option{-mpc64} rounds the
significands of results of floating-point operations to 53 bits (double
precision) and @option{-mpc80} rounds the significands of results of
floating-point operations to 64 bits (extended double precision), which is
the default. When this option is used, floating-point operations in higher
precisions are not available to the programmer without setting the FPU
control word explicitly.
Setting the rounding of floating-point operations to less than the default
80 bits can speed some programs by 2% or more. Note that some mathematical
libraries assume that extended-precision (80-bit) floating-point operations
are enabled by default; routines in such libraries could suffer significant
loss of accuracy, typically through so-called ``catastrophic cancellation'',
when this option is used to set the precision to less than extended precision.
@opindex mdaz-ftz
@item -mdaz-ftz
The flush-to-zero (FTZ) and denormals-are-zero (DAZ) flags in the MXCSR register
are used to control floating-point calculations.SSE and AVX instructions
including scalar and vector instructions could benefit from enabling the FTZ
and DAZ flags when @option{-mdaz-ftz} is specified. Don't set FTZ/DAZ flags
when @option{-mno-daz-ftz} or @option{-shared} is specified, @option{-mdaz-ftz}
will set FTZ/DAZ flags even with @option{-shared}.
@opindex mstackrealign
@item -mstackrealign
Realign the stack at entry. On the x86, the @option{-mstackrealign}
option generates an alternate prologue and epilogue that realigns the
run-time stack if necessary. This supports mixing legacy codes that keep
4-byte stack alignment with modern codes that keep 16-byte stack alignment for
SSE compatibility. See also the attribute @code{force_align_arg_pointer},
applicable to individual functions.
@opindex mpreferred-stack-boundary
@item -mpreferred-stack-boundary=@var{num}
Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
the default is 4 (16 bytes or 128 bits).
@strong{Warning:} When generating code for the x86-64 architecture with
SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
used to keep the stack boundary aligned to 8 byte boundary. Since
x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
intended to be used in controlled environment where stack space is
important limitation. This option leads to wrong code when functions
compiled with 16 byte stack alignment (such as functions from a standard
library) are called with misaligned stack. In this case, SSE
instructions may lead to misaligned memory access traps. In addition,
variable arguments are handled incorrectly for 16 byte aligned
objects (including x87 long double and __int128), leading to wrong
results. You must build all modules with
@option{-mpreferred-stack-boundary=3}, including any libraries. This
includes the system libraries and startup modules.
@opindex mincoming-stack-boundary
@item -mincoming-stack-boundary=@var{num}
Assume the incoming stack is aligned to a 2 raised to @var{num} byte
boundary. If @option{-mincoming-stack-boundary} is not specified,
the one specified by @option{-mpreferred-stack-boundary} is used.
On Pentium and Pentium Pro, @code{double} and @code{long double} values
should be aligned to an 8-byte boundary (see @option{-malign-double}) or
suffer significant run time performance penalties. On Pentium III, the
Streaming SIMD Extension (SSE) data type @code{__m128} may not work
properly if it is not 16-byte aligned.
To ensure proper alignment of this values on the stack, the stack boundary
must be as aligned as that required by any value stored on the stack.
Further, every function must be generated such that it keeps the stack
aligned. Thus calling a function compiled with a higher preferred
stack boundary from a function compiled with a lower preferred stack
boundary most likely misaligns the stack. It is recommended that
libraries that use callbacks always use the default setting.
This extra alignment does consume extra stack space, and generally
increases code size. Code that is sensitive to stack space usage, such
as embedded systems and operating system kernels, may want to reduce the
preferred alignment to @option{-mpreferred-stack-boundary=2}.
@need 200
@opindex mmmx
@item -mmmx
@need 200
@opindex msse
@itemx -msse
@need 200
@opindex msse2
@itemx -msse2
@need 200
@opindex msse3
@itemx -msse3
@need 200
@opindex mssse3
@itemx -mssse3
@need 200
@opindex msse4
@itemx -msse4
@need 200
@opindex msse4a
@itemx -msse4a
@need 200
@opindex msse4.1
@itemx -msse4.1
@need 200
@opindex msse4.2
@itemx -msse4.2
@need 200
@opindex mavx
@itemx -mavx
@need 200
@opindex mavx2
@itemx -mavx2
@need 200
@opindex mavx512f
@itemx -mavx512f
@need 200
@opindex mavx512cd
@itemx -mavx512cd
@need 200
@opindex mavx512vl
@itemx -mavx512vl
@need 200
@opindex mavx512bw
@itemx -mavx512bw
@need 200
@opindex mavx512dq
@itemx -mavx512dq
@need 200
@opindex mavx512ifma
@itemx -mavx512ifma
@need 200
@opindex mavx512vbmi
@itemx -mavx512vbmi
@need 200
@opindex msha
@itemx -msha
@need 200
@opindex maes
@itemx -maes
@need 200
@opindex mpclmul
@itemx -mpclmul
@need 200
@opindex mclflushopt
@itemx -mclflushopt
@need 200
@opindex mclwb
@itemx -mclwb
@need 200
@opindex mfsgsbase
@itemx -mfsgsbase
@need 200
@opindex mptwrite
@itemx -mptwrite
@need 200
@opindex mrdrnd
@itemx -mrdrnd
@need 200
@opindex mf16c
@itemx -mf16c
@need 200
@opindex mfma
@itemx -mfma
@need 200
@opindex mpconfig
@itemx -mpconfig
@need 200
@opindex mwbnoinvd
@itemx -mwbnoinvd
@need 200
@opindex mfma4
@itemx -mfma4
@need 200
@opindex mprfchw
@itemx -mprfchw
@need 200
@opindex mrdpid
@itemx -mrdpid
@need 200
@opindex mrdseed
@itemx -mrdseed
@need 200
@opindex msgx
@itemx -msgx
@need 200
@opindex mxop
@itemx -mxop
@need 200
@opindex mlwp
@itemx -mlwp
@need 200
@opindex m3dnow
@itemx -m3dnow
@need 200
@opindex m3dnowa
@itemx -m3dnowa
@need 200
@opindex mpopcnt
@itemx -mpopcnt
@need 200
@opindex mabm
@itemx -mabm
@need 200
@opindex madx
@itemx -madx
@need 200
@opindex mbmi
@itemx -mbmi
@need 200
@opindex mbmi2
@itemx -mbmi2
@need 200
@opindex mlzcnt
@itemx -mlzcnt
@need 200
@opindex mfxsr
@itemx -mfxsr
@need 200
@opindex mxsave
@itemx -mxsave
@need 200
@opindex mxsaveopt
@itemx -mxsaveopt
@need 200
@opindex mxsavec
@itemx -mxsavec
@need 200
@opindex mxsaves
@itemx -mxsaves
@need 200
@opindex mrtm
@itemx -mrtm
@need 200
@opindex mhle
@itemx -mhle
@need 200
@opindex mtbm
@itemx -mtbm
@need 200
@opindex mmwaitx
@itemx -mmwaitx
@need 200
@opindex mclzero
@itemx -mclzero
@need 200
@opindex mpku
@itemx -mpku
@need 200
@opindex mavx512vbmi2
@itemx -mavx512vbmi2
@need 200
@opindex mavx512bf16
@itemx -mavx512bf16
@need 200
@opindex mavx512fp16
@itemx -mavx512fp16
@need 200
@opindex mgfni
@itemx -mgfni
@need 200
@opindex mvaes
@itemx -mvaes
@need 200
@opindex mwaitpkg
@itemx -mwaitpkg
@need 200
@opindex mvpclmulqdq
@itemx -mvpclmulqdq
@need 200
@opindex mavx512bitalg
@itemx -mavx512bitalg
@need 200
@opindex mmovdiri
@itemx -mmovdiri
@need 200
@opindex mmovdir64b
@itemx -mmovdir64b
@need 200
@opindex menqcmd
@opindex muintr
@itemx -menqcmd
@itemx -muintr
@need 200
@opindex mtsxldtrk
@itemx -mtsxldtrk
@need 200
@opindex mavx512vpopcntdq
@itemx -mavx512vpopcntdq
@need 200
@opindex mavx512vp2intersect
@itemx -mavx512vp2intersect
@need 200
@opindex mavx512vnni
@itemx -mavx512vnni
@need 200
@opindex mavxvnni
@itemx -mavxvnni
@need 200
@opindex mcldemote
@itemx -mcldemote
@need 200
@opindex mserialize
@itemx -mserialize
@need 200
@opindex mamx-tile
@itemx -mamx-tile
@need 200
@opindex mamx-int8
@itemx -mamx-int8
@need 200
@opindex mamx-bf16
@itemx -mamx-bf16
@need 200
@opindex mhreset
@opindex mkl
@itemx -mhreset
@itemx -mkl
@need 200
@opindex mwidekl
@itemx -mwidekl
@need 200
@opindex mavxifma
@itemx -mavxifma
@need 200
@opindex mavxvnniint8
@itemx -mavxvnniint8
@need 200
@opindex mavxneconvert
@itemx -mavxneconvert
@need 200
@opindex mcmpccxadd
@itemx -mcmpccxadd
@need 200
@opindex mamx-fp16
@itemx -mamx-fp16
@need 200
@opindex mprefetchi
@itemx -mprefetchi
@need 200
@opindex mraoint
@itemx -mraoint
@need 200
@opindex mamx-complex
@itemx -mamx-complex
@need 200
@opindex mavxvnniint16
@itemx -mavxvnniint16
@need 200
@opindex msm3
@itemx -msm3
@need 200
@opindex msha512
@itemx -msha512
@need 200
@opindex msm4
@itemx -msm4
@need 200
@opindex mapxf
@itemx -mapxf
@need 200
@opindex musermsr
@itemx -musermsr
@need 200
@opindex mavx10.1
@itemx -mavx10.1
@need 200
@opindex mavx10.1-256
@itemx -mavx10.1-256
@need 200
@opindex mavx10.1-512
@itemx -mavx10.1-512
These switches enable the use of instructions in the MMX, SSE,
AVX512CD, AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, SHA, AES,
PCLMUL, CLFLUSHOPT, CLWB, FSGSBASE, PTWRITE, RDRND, F16C, FMA, PCONFIG,
WBNOINVD, FMA4, PREFETCHW, RDPID, RDSEED, SGX, XOP, LWP, 3DNow!@:,
enhanced 3DNow!@:, POPCNT, ABM, ADX, BMI, BMI2, LZCNT, FXSR, XSAVE, XSAVEOPT,
XSAVEC, XSAVES, RTM, HLE, TBM, MWAITX, CLZERO, PKU, AVX512VBMI2, GFNI, VAES,
WAITPKG, VPCLMULQDQ, AVX512BITALG, MOVDIRI, MOVDIR64B, AVX512BF16, ENQCMD,
AVX512VPOPCNTDQ, AVX512VNNI, SERIALIZE, UINTR, HRESET, AMXTILE, AMXINT8,
AMXBF16, KL, WIDEKL, AVXVNNI, AVX512-FP16, AVXIFMA, AVXVNNIINT8, AVXNECONVERT,
CMPCCXADD, AMX-FP16, PREFETCHI, RAOINT, AMX-COMPLEX, AVXVNNIINT16, SM3, SHA512,
SM4, APX_F, USER_MSR, AVX10.1 or CLDEMOTE extended instruction sets. Each has
a corresponding @option{-mno-} option to disable use of these instructions.
These extensions are also available as built-in functions: see
@ref{x86 Built-in Functions}, for details of the functions enabled and
disabled by these switches.
To generate SSE/SSE2 instructions automatically from floating-point
code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
generates new AVX instructions or AVX equivalence for all SSEx instructions
when needed.
These options enable GCC to use these extended instructions in
generated code, even without @option{-mfpmath=sse}. Applications that
perform run-time CPU detection must compile separate files for each
supported architecture, using the appropriate flags. In particular,
the file containing the CPU detection code should be compiled without
these options.
@opindex mdump-tune-features
@item -mdump-tune-features
This option instructs GCC to dump the names of the x86 performance
tuning features and default settings. The names can be used in
@option{-mtune-ctrl=@var{feature-list}}.
@opindex mtune-ctrl=@var{feature-list}
@item -mtune-ctrl=@var{feature-list}
This option is used to do fine grain control of x86 code generation features.
@var{feature-list} is a comma separated list of @var{feature} names. See also
@option{-mdump-tune-features}. When specified, the @var{feature} is turned
on if it is not preceded with @samp{^}, otherwise, it is turned off.
@option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
developers. Using it may lead to code paths not covered by testing and can
potentially result in compiler ICEs or runtime errors.
@opindex mno-default
@item -mno-default
This option instructs GCC to turn off all tunable features. See also
@option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
@opindex mcld
@item -mcld
This option instructs GCC to emit a @code{cld} instruction in the prologue
of functions that use string instructions. String instructions depend on
the DF flag to select between autoincrement or autodecrement mode. While the
ABI specifies the DF flag to be cleared on function entry, some operating
systems violate this specification by not clearing the DF flag in their
exception dispatchers. The exception handler can be invoked with the DF flag
set, which leads to wrong direction mode when string instructions are used.
This option can be enabled by default on 32-bit x86 targets by configuring
GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
instructions can be suppressed with the @option{-mno-cld} compiler option
in this case.
@opindex mvzeroupper
@item -mvzeroupper
This option instructs GCC to emit a @code{vzeroupper} instruction
before a transfer of control flow out of the function to minimize
the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
intrinsics.
@opindex mprefer-avx128
@item -mprefer-avx128
This option instructs GCC to use 128-bit AVX instructions instead of
256-bit AVX instructions in the auto-vectorizer.
@opindex mprefer-vector-width
@item -mprefer-vector-width=@var{opt}
This option instructs GCC to use @var{opt}-bit vector width in instructions
instead of default on the selected platform.
@opindex mpartial-vector-fp-math
@item -mpartial-vector-fp-math
This option enables GCC to generate floating-point operations that might
affect the set of floating-point status flags on partial vectors, where
vector elements reside in the low part of the 128-bit SSE register. Unless
@option{-fno-trapping-math} is specified, the compiler guarantees correct
behavior by sanitizing all input operands to have zeroes in the unused
upper part of the vector register. Note that by using built-in functions
or inline assembly with partial vector arguments, NaNs, denormal or invalid
values can leak into the upper part of the vector, causing possible
performance issues when @option{-fno-trapping-math} is in effect. These
issues can be mitigated by manually sanitizing the upper part of the partial
vector argument register or by using @option{-mdaz-ftz} to set
denormals-are-zero (DAZ) flag in the MXCSR register.
This option is enabled by default.
@opindex mmove-max
@item -mmove-max=@var{bits}
This option instructs GCC to set the maximum number of bits can be
moved from memory to memory efficiently to @var{bits}. The valid
@var{bits} are 128, 256 and 512.
@opindex mstore-max
@item -mstore-max=@var{bits}
This option instructs GCC to set the maximum number of bits can be
stored to memory efficiently to @var{bits}. The valid @var{bits} are
128, 256 and 512.
@table @samp
@item none
No extra limitations applied to GCC other than defined by the selected platform.
@item 128
Prefer 128-bit vector width for instructions.
@item 256
Prefer 256-bit vector width for instructions.
@item 512
Prefer 512-bit vector width for instructions.
@end table
@opindex mnoreturn-no-callee-saved-registers
@item -mnoreturn-no-callee-saved-registers
This option optimizes functions with @code{noreturn} attribute or
@code{_Noreturn} specifier by not saving in the function prologue callee-saved
registers which are used in the function (except for the @code{BP}
register). This option can interfere with debugging of the caller of the
@code{noreturn} function or any function further up in the call stack, so it
is not enabled by default.
@opindex mcx16
@item -mcx16
This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
code to implement compare-and-exchange operations on 16-byte aligned 128-bit
objects. This is useful for atomic updates of data structures exceeding one
machine word in size. The compiler uses this instruction to implement
@ref{__sync Builtins}. However, for @ref{__atomic Builtins} operating on
128-bit integers, a library call is always used.
@opindex msahf
@item -msahf
This option enables generation of @code{SAHF} instructions in 64-bit code.
Early Intel Pentium 4 CPUs with Intel 64 support,
prior to the introduction of Pentium 4 G1 step in December 2005,
lacked the @code{LAHF} and @code{SAHF} instructions
which are supported by AMD64.
These are load and store instructions, respectively, for certain status flags.
In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
@code{drem}, and @code{remainder} built-in functions;
see @ref{Other Builtins} for details.
@opindex mmovbe
@item -mmovbe
This option enables use of the @code{movbe} instruction to optimize
byte swapping of four and eight byte entities.
@opindex mshstk
@item -mshstk
The @option{-mshstk} option enables shadow stack built-in functions
from x86 Control-flow Enforcement Technology (CET).
@opindex mcrc32
@item -mcrc32
This option enables built-in functions @code{__builtin_ia32_crc32qi},
@code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
@code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
@opindex mmwait
@item -mmwait
This option enables built-in functions @code{__builtin_ia32_monitor},
and @code{__builtin_ia32_mwait} to generate the @code{monitor} and
@code{mwait} machine instructions.
@opindex mrecip
@item -mrecip
This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
(and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
with an additional Newton-Raphson step
to increase precision instead of @code{DIVSS} and @code{SQRTSS}
(and their vectorized
variants) for single-precision floating-point arguments. These instructions
are generated only when @option{-funsafe-math-optimizations} is enabled
together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
Note that while the throughput of the sequence is higher than the throughput
of the non-reciprocal instruction, the precision of the sequence can be
decreased by up to 2 ulp (i.e.@: the inverse of 1.0 equals 0.99999994).
Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
(or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
combination), and doesn't need @option{-mrecip}.
Also note that GCC emits the above sequence with additional Newton-Raphson step
for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
already with @option{-ffast-math} (or the above option combination), and
doesn't need @option{-mrecip}.
@opindex mrecip=opt
@item -mrecip=@var{opt}
This option controls which reciprocal estimate instructions
may be used. @var{opt} is a comma-separated list of options, which may
be preceded by a @samp{!} to invert the option:
@table @samp
@item all
Enable all estimate instructions.
@item default
Enable the default instructions, equivalent to @option{-mrecip}.
@item none
Disable all estimate instructions, equivalent to @option{-mno-recip}.
@item div
Enable the approximation for scalar division.
@item vec-div
Enable the approximation for vectorized division.
@item sqrt
Enable the approximation for scalar square root.
@item vec-sqrt
Enable the approximation for vectorized square root.
@end table
So, for example, @option{-mrecip=all,!sqrt} enables
all of the reciprocal approximations, except for square root.
@opindex mveclibabi
@item -mveclibabi=@var{type}
Specifies the ABI type to use for vectorizing intrinsics using an
external library. Supported values for @var{type} are @samp{svml}
for the Intel short
vector math library and @samp{acml} for the AMD math core library.
To use this option, both @option{-ftree-vectorize} and
@option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
ABI-compatible library must be specified at link time.
GCC currently emits calls to @code{vmldExp2},
@code{vmldLn2}, @code{vmldLog102}, @code{vmldPow2},
@code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
@code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
@code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
@code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4},
@code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
@code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
@code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
@code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
@code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
@code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
@code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
@code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
when @option{-mveclibabi=acml} is used.
@opindex mabi
@item -mabi=@var{name}
Generate code for the specified calling convention. Permissible values
are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
@samp{ms} for the Microsoft ABI. The default is to use the Microsoft
ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
You can control this behavior for specific functions by
using the function attributes @code{ms_abi} and @code{sysv_abi}.
@xref{Function Attributes}.
@opindex mforce-indirect-call
@item -mforce-indirect-call
Force all calls to functions to be indirect. This is useful
when using Intel Processor Trace where it generates more precise timing
information for function calls.
@opindex mmanual-endbr
@item -mmanual-endbr
Insert ENDBR instruction at function entry only via the @code{cf_check}
function attribute. This is useful when used with the option
@option{-fcf-protection=branch} to control ENDBR insertion at the
function entry.
@opindex mcet-switch
@item -mcet-switch
By default, CET instrumentation is turned off on switch statements that
use a jump table and indirect branch track is disabled. Since jump
tables are stored in read-only memory, this does not result in a direct
loss of hardening. But if the jump table index is attacker-controlled,
the indirect jump may not be constrained by CET. This option turns on
CET instrumentation to enable indirect branch track for switch statements
with jump tables which leads to the jump targets reachable via any indirect
jumps.
@opindex mcall-ms2sysv-xlogues
@opindex mno-call-ms2sysv-xlogues
@item -mcall-ms2sysv-xlogues
Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
System V ABI function must consider RSI, RDI and XMM6-15 as clobbered. By
default, the code for saving and restoring these registers is emitted inline,
resulting in fairly lengthy prologues and epilogues. Using
@option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
use stubs in the static portion of libgcc to perform these saves and restores,
thus reducing function size at the cost of a few extra instructions.
@opindex mtls-dialect
@item -mtls-dialect=@var{type}
Generate code to access thread-local storage using the @samp{gnu} or
@samp{gnu2} conventions. @samp{gnu} is the conservative default;
@samp{gnu2} is more efficient, but it may add compile- and run-time
requirements that cannot be satisfied on all systems.
@opindex mpush-args
@opindex mno-push-args
@item -mpush-args
@itemx -mno-push-args
Use PUSH operations to store outgoing parameters. This method is shorter
and usually equally fast as method using SUB/MOV operations and is enabled
by default. In some cases disabling it may improve performance because of
improved scheduling and reduced dependencies.
@opindex maccumulate-outgoing-args
@item -maccumulate-outgoing-args
If enabled, the maximum amount of space required for outgoing arguments is
computed in the function prologue. This is faster on most modern CPUs
because of reduced dependencies, improved scheduling and reduced stack usage
when the preferred stack boundary is not equal to 2. The drawback is a notable
increase in code size. This switch implies @option{-mno-push-args}.
@opindex mthreads
@item -mthreads
Support thread-safe exception handling on MinGW. Programs that rely
on thread-safe exception handling must compile and link all code with the
@option{-mthreads} option. When compiling, @option{-mthreads} defines
@option{-D_MT}; when linking, it links in a special thread helper library
@option{-lmingwthrd} which cleans up per-thread exception-handling data.
@opindex mms-bitfields
@opindex mno-ms-bitfields
@item -mms-bitfields
@itemx -mno-ms-bitfields
Enable/disable bit-field layout compatible with the native Microsoft
Windows compiler.
If @code{packed} is used on a structure, or if bit-fields are used,
it may be that the Microsoft ABI lays out the structure differently
than the way GCC normally does. Particularly when moving packed
data between functions compiled with GCC and the native Microsoft compiler
(either via function call or as data in a file), it may be necessary to access
either format.
This option is enabled by default for Microsoft Windows
targets. This behavior can also be controlled locally by use of variable
or type attributes. For more information, see @ref{x86 Variable Attributes}
and @ref{x86 Type Attributes}.
The Microsoft structure layout algorithm is fairly simple with the exception
of the bit-field packing.
The padding and alignment of members of structures and whether a bit-field
can straddle a storage-unit boundary are determine by these rules:
@enumerate
@item Structure members are stored sequentially in the order in which they are
declared: the first member has the lowest memory address and the last member
the highest.
@item Every data object has an alignment requirement. The alignment requirement
for all data except structures, unions, and arrays is either the size of the
object or the current packing size (specified with either the
@code{aligned} attribute or the @code{pack} pragma),
whichever is less. For structures, unions, and arrays,
the alignment requirement is the largest alignment requirement of its members.
Every object is allocated an offset so that:
@smallexample
offset % alignment_requirement == 0
@end smallexample
@item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
unit if the integral types are the same size and if the next bit-field fits
into the current allocation unit without crossing the boundary imposed by the
common alignment requirements of the bit-fields.
@end enumerate
MSVC interprets zero-length bit-fields in the following ways:
@enumerate
@item If a zero-length bit-field is inserted between two bit-fields that
are normally coalesced, the bit-fields are not coalesced.
For example:
@smallexample
struct
@{
unsigned long bf_1 : 12;
unsigned long : 0;
unsigned long bf_2 : 12;
@} t1;
@end smallexample
@noindent
The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
@item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
alignment of the zero-length bit-field is greater than the member that follows it,
@code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
For example:
@smallexample
struct
@{
char foo : 4;
short : 0;
char bar;
@} t2;
struct
@{
char foo : 4;
short : 0;
double bar;
@} t3;
@end smallexample
@noindent
For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
bit-field does not affect the alignment of @code{bar} or, as a result, the size
of the structure.
Taking this into account, it is important to note the following:
@enumerate
@item If a zero-length bit-field follows a normal bit-field, the type of the
zero-length bit-field may affect the alignment of the structure as whole. For
example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
normal bit-field, and is of type short.
@item Even if a zero-length bit-field is not followed by a normal bit-field, it may
still affect the alignment of the structure:
@smallexample
struct
@{
char foo : 6;
long : 0;
@} t4;
@end smallexample
@noindent
Here, @code{t4} takes up 4 bytes.
@end enumerate
@item Zero-length bit-fields following non-bit-field members are ignored:
@smallexample
struct
@{
char foo;
long : 0;
char bar;
@} t5;
@end smallexample
@noindent
Here, @code{t5} takes up 2 bytes.
@end enumerate
@opindex mno-align-stringops
@opindex malign-stringops
@item -mno-align-stringops
Do not align the destination of inlined string operations. This switch reduces
code size and improves performance in case the destination is already aligned,
but GCC doesn't know about it.
@opindex minline-all-stringops
@item -minline-all-stringops
By default GCC inlines string operations only when the destination is
known to be aligned to least a 4-byte boundary.
This enables more inlining and increases code
size, but may improve performance of code that depends on fast
@code{memcpy} and @code{memset} for short lengths.
The option enables inline expansion of @code{strlen} for all
pointer alignments.
@opindex minline-stringops-dynamically
@item -minline-stringops-dynamically
For string operations of unknown size, use run-time checks with
inline code for small blocks and a library call for large blocks.
@opindex mstringop-strategy=@var{alg}
@item -mstringop-strategy=@var{alg}
Override the internal decision heuristic for the particular algorithm to use
for inlining string operations. The allowed values for @var{alg} are:
@table @samp
@item rep_byte
@itemx rep_4byte
@itemx rep_8byte
Expand using i386 @code{rep} prefix of the specified size.
@item byte_loop
@itemx loop
@itemx unrolled_loop
Expand into an inline loop.
@item libcall
Always use a library call.
@end table
@opindex mmemcpy-strategy=@var{strategy}
@item -mmemcpy-strategy=@var{strategy}
Override the internal decision heuristic to decide if @code{__builtin_memcpy}
should be inlined and what inline algorithm to use when the expected size
of the copy operation is known. @var{strategy}
is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
@var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
the max byte size with which inline algorithm @var{alg} is allowed. For the last
triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
in the list must be specified in increasing order. The minimal byte size for
@var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
preceding range.
@opindex mmemset-strategy=@var{strategy}
@item -mmemset-strategy=@var{strategy}
The option is similar to @option{-mmemcpy-strategy=} except that it is to control
@code{__builtin_memset} expansion.
@opindex momit-leaf-frame-pointer
@item -momit-leaf-frame-pointer
Don't keep the frame pointer in a register for leaf functions. This
avoids the instructions to save, set up, and restore frame pointers and
makes an extra register available in leaf functions. The option
@option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
which might make debugging harder.
@opindex mtls-direct-seg-refs
@item -mtls-direct-seg-refs
@itemx -mno-tls-direct-seg-refs
Controls whether TLS variables may be accessed with offsets from the
TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
or whether the thread base pointer must be added. Whether or not this
is valid depends on the operating system, and whether it maps the
segment to cover the entire TLS area.
For systems that use the GNU C Library, the default is on.
@opindex msse2avx
@item -msse2avx
@itemx -mno-sse2avx
Specify that the assembler should encode SSE instructions with VEX
prefix. The option @option{-mavx} turns this on by default.
@opindex mfentry
@item -mfentry
@itemx -mno-fentry
If profiling is active (@option{-pg}), put the profiling
counter call before the prologue.
Note: On x86 architectures the attribute @code{ms_hook_prologue}
isn't possible at the moment for @option{-mfentry} and @option{-pg}.
@opindex mrecord-mcount
@item -mrecord-mcount
@itemx -mno-record-mcount
If profiling is active (@option{-pg}), generate a __mcount_loc section
that contains pointers to each profiling call. This is useful for
automatically patching and out calls.
@opindex mnop-mcount
@item -mnop-mcount
@itemx -mno-nop-mcount
If profiling is active (@option{-pg}), generate the calls to
the profiling functions as NOPs. This is useful when they
should be patched in later dynamically. This is likely only
useful together with @option{-mrecord-mcount}.
@opindex minstrument-return
@item -minstrument-return=@var{type}
Instrument function exit in -pg -mfentry instrumented functions with
call to specified function. This only instruments true returns ending
with ret, but not sibling calls ending with jump. Valid types
are @var{none} to not instrument, @var{call} to generate a call to __return__,
or @var{nop5} to generate a 5 byte nop.
@opindex mrecord-return
@item -mrecord-return
@itemx -mno-record-return
Generate a __return_loc section pointing to all return instrumentation code.
@opindex mfentry-name
@item -mfentry-name=@var{name}
Set name of __fentry__ symbol called at function entry for -pg -mfentry functions.
@opindex mfentry-section
@item -mfentry-section=@var{name}
Set name of section to record -mrecord-mcount calls (default __mcount_loc).
@opindex mskip-rax-setup
@item -mskip-rax-setup
@itemx -mno-skip-rax-setup
When generating code for the x86-64 architecture with SSE extensions
disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
register when there are no variable arguments passed in vector registers.
@strong{Warning:} Since RAX register is used to avoid unnecessarily
saving vector registers on stack when passing variable arguments, the
impacts of this option are callees may waste some stack space,
misbehave or jump to a random location. GCC 4.4 or newer don't have
those issues, regardless the RAX register value.
@opindex m8bit-idiv
@item -m8bit-idiv
@itemx -mno-8bit-idiv
On some processors, like Intel Atom, 8-bit unsigned integer divide is
much faster than 32-bit/64-bit integer divide. This option generates a
run-time check. If both dividend and divisor are within range of 0
to 255, 8-bit unsigned integer divide is used instead of
32-bit/64-bit integer divide.
@opindex mavx256-split-unaligned-load
@opindex mavx256-split-unaligned-store
@item -mavx256-split-unaligned-load
@itemx -mavx256-split-unaligned-store
Split 32-byte AVX unaligned load and store.
@opindex mstack-protector-guard
@opindex mstack-protector-guard-reg
@opindex mstack-protector-guard-offset
@item -mstack-protector-guard=@var{guard}
@itemx -mstack-protector-guard-reg=@var{reg}
@itemx -mstack-protector-guard-offset=@var{offset}
Generate stack protection code using canary at @var{guard}. Supported
locations are @samp{global} for global canary or @samp{tls} for per-thread
canary in the TLS block (the default). This option has effect only when
@option{-fstack-protector} or @option{-fstack-protector-all} is specified.
With the latter choice the options
@option{-mstack-protector-guard-reg=@var{reg}} and
@option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
which segment register (@code{%fs} or @code{%gs}) to use as base register
for reading the canary, and from what offset from that base register.
The default for those is as specified in the relevant ABI.
@opindex mgeneral-regs-only
@item -mgeneral-regs-only
Generate code that uses only the general-purpose registers. This
prevents the compiler from using floating-point, vector, mask and bound
registers.
@opindex mrelax-cmpxchg-loop
@item -mrelax-cmpxchg-loop
When emitting a compare-and-swap loop for @ref{__sync Builtins}
and @ref{__atomic Builtins} lacking a native instruction, optimize
for the highly contended case by issuing an atomic load before the
@code{CMPXCHG} instruction, and using the @code{PAUSE} instruction
to save CPU power when restarting the loop.
@opindex mindirect-branch
@item -mindirect-branch=@var{choice}
Convert indirect call and jump with @var{choice}. The default is
@samp{keep}, which keeps indirect call and jump unmodified.
@samp{thunk} converts indirect call and jump to call and return thunk.
@samp{thunk-inline} converts indirect call and jump to inlined call
and return thunk. @samp{thunk-extern} converts indirect call and jump
to external call and return thunk provided in a separate object file.
You can control this behavior for a specific function by using the
function attribute @code{indirect_branch}. @xref{Function Attributes}.
Note that @option{-mcmodel=large} is incompatible with
@option{-mindirect-branch=thunk} and
@option{-mindirect-branch=thunk-extern} since the thunk function may
not be reachable in the large code model.
Note that @option{-mindirect-branch=thunk-extern} is compatible with
@option{-fcf-protection=branch} since the external thunk can be made
to enable control-flow check.
@opindex mfunction-return
@item -mfunction-return=@var{choice}
Convert function return with @var{choice}. The default is @samp{keep},
which keeps function return unmodified. @samp{thunk} converts function
return to call and return thunk. @samp{thunk-inline} converts function
return to inlined call and return thunk. @samp{thunk-extern} converts
function return to external call and return thunk provided in a separate
object file. You can control this behavior for a specific function by
using the function attribute @code{function_return}.
@xref{Function Attributes}.
Note that @option{-mindirect-return=thunk-extern} is compatible with
@option{-fcf-protection=branch} since the external thunk can be made
to enable control-flow check.
Note that @option{-mcmodel=large} is incompatible with
@option{-mfunction-return=thunk} and
@option{-mfunction-return=thunk-extern} since the thunk function may
not be reachable in the large code model.
@opindex mindirect-branch-register
@item -mindirect-branch-register
Force indirect call and jump via register.
@opindex mharden-sls
@item -mharden-sls=@var{choice}
Generate code to mitigate against straight line speculation (SLS) with
@var{choice}. The default is @samp{none} which disables all SLS
hardening. @samp{return} enables SLS hardening for function returns.
@samp{indirect-jmp} enables SLS hardening for indirect jumps.
@samp{all} enables all SLS hardening.
@opindex mindirect-branch-cs-prefix
@item -mindirect-branch-cs-prefix
Add CS prefix to call and jmp to indirect thunk with branch target in
r8-r15 registers so that the call and jmp instruction length is 6 bytes
to allow them to be replaced with @samp{lfence; call *%r8-r15} or
@samp{lfence; jmp *%r8-r15} at run-time.
@opindex mapx-inline-asm-use-gpr32
@item -mapx-inline-asm-use-gpr32
For inline asm support with APX, by default the EGPR feature was
disabled to prevent potential illegal instruction with EGPR occurs.
To invoke egpr usage in inline asm, use new compiler option
-mapx-inline-asm-use-gpr32 and user should ensure the instruction
supports EGPR.
@opindex mevex512
@item -mevex512
@itemx -mno-evex512
Enables/disables 512-bit vector. It will be default on if AVX512F is enabled.
@end table
These @samp{-m} switches are supported in addition to the above
on x86-64 processors in 64-bit environments.
@table @gcctabopt
@opindex m32
@opindex m64
@opindex mx32
@opindex m16
@opindex miamcu
@item -m32
@itemx -m64
@itemx -mx32
@itemx -m16
@itemx -miamcu
Generate code for a 16-bit, 32-bit or 64-bit environment.
The @option{-m32} option sets @code{int}, @code{long}, and pointer types
to 32 bits, and
generates code that runs in 32-bit mode.
The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
types to 64 bits, and generates code for the x86-64 architecture.
For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
and @option{-mdynamic-no-pic} options.
The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
to 32 bits, and
generates code for the x86-64 architecture.
The @option{-m16} option is the same as @option{-m32}, except for that
it outputs the @code{.code16gcc} assembly directive at the beginning of
the assembly output so that the binary can run in 16-bit mode.
The @option{-miamcu} option generates code which conforms to Intel MCU
psABI. It requires the @option{-m32} option to be turned on.
@opindex mno-red-zone
@opindex mred-zone
@item -mno-red-zone
Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
by the x86-64 ABI; it is a 128-byte area beyond the location of the
stack pointer that is not modified by signal or interrupt handlers
and therefore can be used for temporary data without adjusting the stack
pointer. The flag @option{-mno-red-zone} disables this red zone.
@opindex mcmodel=
@opindex mcmodel=small
@item -mcmodel=small
Generate code for the small code model: the program and its symbols must
be linked in the lower 2 GB of the address space. Pointers are 64 bits.
Programs can be statically or dynamically linked. This is the default
code model.
@opindex mcmodel=kernel
@item -mcmodel=kernel
Generate code for the kernel code model. The kernel runs in the
negative 2 GB of the address space.
This model has to be used for Linux kernel code.
@opindex mcmodel=medium
@item -mcmodel=medium
Generate code for the medium model: the program is linked in the lower 2
GB of the address space. Small symbols are also placed there. Symbols
with sizes larger than @option{-mlarge-data-threshold} are put into
large data or BSS sections and can be located above 2GB. Programs can
be statically or dynamically linked.
@opindex mcmodel=large
@item -mcmodel=large
Generate code for the large model. This model makes no assumptions
about addresses and sizes of sections.
@opindex maddress-mode=long
@item -maddress-mode=long
Generate code for long address mode. This is only supported for 64-bit
and x32 environments. It is the default address mode for 64-bit
environments.
@opindex maddress-mode=short
@item -maddress-mode=short
Generate code for short address mode. This is only supported for 32-bit
and x32 environments. It is the default address mode for 32-bit and
x32 environments.
@opindex mneeded
@item -mneeded
@itemx -mno-needed
Emit GNU_PROPERTY_X86_ISA_1_NEEDED GNU property for Linux target to
indicate the micro-architecture ISA level required to execute the binary.
@opindex mno-direct-extern-access
@opindex mdirect-extern-access
@item -mno-direct-extern-access
Without @option{-fpic} nor @option{-fPIC}, always use the GOT pointer
to access external symbols. With @option{-fpic} or @option{-fPIC},
treat access to protected symbols as local symbols. The default is
@option{-mdirect-extern-access}.
@strong{Warning:} shared libraries compiled with
@option{-mno-direct-extern-access} and executable compiled with
@option{-mdirect-extern-access} may not be binary compatible if
protected symbols are used in shared libraries and executable.
@opindex munroll-only-small-loops
@opindex mno-unroll-only-small-loops
@item -munroll-only-small-loops
Controls conservative small loop unrolling. It is default enabled by
O2, and unrolls loop with less than 4 insns by 1 time. Explicit
-f[no-]unroll-[all-]loops would disable this flag to avoid any
unintended unrolling behavior that user does not want.
@opindex mlam
@item -mlam=@var{choice}
LAM(linear-address masking) allows special bits in the pointer to be used
for metadata. The default is @samp{none}. With @samp{u48}, pointer bits in
positions 62:48 can be used for metadata; With @samp{u57}, pointer bits in
positions 62:57 can be used for metadata.
@end table
@node x86 Windows Options
@subsection x86 Windows Options
@cindex x86 Windows Options
@cindex Windows Options for x86
@xref{Cygwin and MinGW Options}.
@node Cygwin and MinGW Options
@subsection Cygwin and MinGW Options
@cindex Cygwin and MinGW Options
@cindex Options for Cygwin and MinGW
These additional options are available for Microsoft Windows targets:
@table @gcctabopt
@opindex mconsole
@item -mconsole
This option
specifies that a console application is to be generated, by
instructing the linker to set the PE header subsystem type
required for console applications.
This option is available for Cygwin and MinGW targets and is
enabled by default on those targets.
@opindex mcrtdll
@item -mcrtdll=@var{library}
Preprocess, compile or link with specified C RunTime DLL @var{library}.
This option adjust predefined macros @code{__CRTDLL__}, @code{__MSVCRT__},
@code{_UCRT} and @code{__MSVCRT_VERSION__} for specified CRT @var{library},
choose start file for CRT @var{library} and link with CRT @var{library}.
Recognized CRT library names for proprocessor are:
@code{crtdll*}, @code{msvcrt10*}, @code{msvcrt20*}, @code{msvcrt40*},
@code{msvcr40*}, @code{msvcrtd*}, @code{msvcrt-os*},
@code{msvcr70*}, @code{msvcr71*}, @code{msvcr80*}, @code{msvcr90*},
@code{msvcr100*}, @code{msvcr110*}, @code{msvcr120*} and @code{ucrt*}.
If this options is not specified then the default MinGW import library
@code{msvcrt} is used for linking and no other adjustment for
preprocessor is done. MinGW import library @code{msvcrt} is just a
symlink to (or a copy of) another MinGW CRT import library
chosen during MinGW compilation. MinGW import library @code{msvcrt-os}
is for Windows system CRT DLL library @code{msvcrt.dll} and
in most cases is the default MinGW import library.
Generally speaking, changing the CRT DLL requires recompiling
the entire MinGW CRT. This option is for experimental and testing
purposes only.
This option is available for MinGW targets.
@opindex mdll
@item -mdll
This option is available for Cygwin and MinGW targets. It
specifies that a DLL---a dynamic link library---is to be
generated, enabling the selection of the required runtime
startup object and entry point.
@opindex mnop-fun-dllimport
@item -mnop-fun-dllimport
This option is available for Cygwin and MinGW targets. It
specifies that the @code{dllimport} attribute should be ignored.
@opindex mthreads
@item -mthreads
This option is available for MinGW targets. It specifies
that MinGW-specific thread support is to be used.
@opindex municode
@item -municode
This option is available for MinGW-w64 targets. It causes
the @code{UNICODE} preprocessor macro to be predefined, and
chooses Unicode-capable runtime startup code.
@opindex mwin32
@item -mwin32
This option is available for Cygwin and MinGW targets. It
specifies that the typical Microsoft Windows predefined macros are to
be set in the pre-processor, but does not influence the choice
of runtime library/startup code.
@opindex mwindows
@item -mwindows
This option is available for Cygwin and MinGW targets. It
specifies that a GUI application is to be generated by
instructing the linker to set the PE header subsystem type
appropriately.
@opindex fno-set-stack-executable
@opindex fset-stack-executable
@item -fno-set-stack-executable
This option is available for MinGW targets. It specifies that
the executable flag for the stack used by nested functions isn't
set. This is necessary for binaries running in kernel mode of
Microsoft Windows, as there the User32 API, which is used to set executable
privileges, isn't available.
@opindex fno-writable-relocated-rdata
@opindex fwritable-relocated-rdata
@item -fwritable-relocated-rdata
This option is available for MinGW and Cygwin targets. It specifies
that relocated-data in read-only section is put into the @code{.data}
section. This is a necessary for older runtimes not supporting
modification of @code{.rdata} sections for pseudo-relocation.
@opindex mpe-aligned-commons
@item -mpe-aligned-commons
This option is available for Cygwin and MinGW targets. It
specifies that the GNU extension to the PE file format that
permits the correct alignment of COMMON variables should be
used when generating code. It is enabled by default if
GCC detects that the target assembler found during configuration
supports the feature.
@end table
See also under @ref{x86 Options} for standard options.
@node Xstormy16 Options
@subsection Xstormy16 Options
@cindex Xstormy16 Options
These options are defined for Xstormy16:
@table @gcctabopt
@opindex msim
@item -msim
Choose startup files and linker script suitable for the simulator.
@end table
@node Xtensa Options
@subsection Xtensa Options
@cindex Xtensa Options
These options are supported for Xtensa targets:
@table @gcctabopt
@opindex mconst16
@opindex mno-const16
@item -mconst16
@itemx -mno-const16
Enable or disable use of @code{CONST16} instructions for loading
constant values. The @code{CONST16} instruction is currently not a
standard option from Tensilica. When enabled, @code{CONST16}
instructions are always used in place of the standard @code{L32R}
instructions. The use of @code{CONST16} is enabled by default only if
the @code{L32R} instruction is not available.
@opindex mfused-madd
@opindex mno-fused-madd
@item -mfused-madd
@itemx -mno-fused-madd
Enable or disable use of fused multiply/add and multiply/subtract
instructions in the floating-point option. This has no effect if the
floating-point option is not also enabled. Disabling fused multiply/add
and multiply/subtract instructions forces the compiler to use separate
instructions for the multiply and add/subtract operations. This may be
desirable in some cases where strict IEEE 754-compliant results are
required: the fused multiply add/subtract instructions do not round the
intermediate result, thereby producing results with @emph{more} bits of
precision than specified by the IEEE standard. Disabling fused multiply
add/subtract instructions also ensures that the program output is not
sensitive to the compiler's ability to combine multiply and add/subtract
operations.
@opindex mserialize-volatile
@opindex mno-serialize-volatile
@item -mserialize-volatile
@itemx -mno-serialize-volatile
When this option is enabled, GCC inserts @code{MEMW} instructions before
@code{volatile} memory references to guarantee sequential consistency.
The default is @option{-mserialize-volatile}. Use
@option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
@opindex mforce-no-pic
@item -mforce-no-pic
For targets, like GNU/Linux, where all user-mode Xtensa code must be
position-independent code (PIC), this option disables PIC for compiling
kernel code.
@opindex mtext-section-literals
@opindex mno-text-section-literals
@item -mtext-section-literals
@itemx -mno-text-section-literals
These options control the treatment of literal pools. The default is
@option{-mno-text-section-literals}, which places literals in a separate
section in the output file. This allows the literal pool to be placed
in a data RAM/ROM, and it also allows the linker to combine literal
pools from separate object files to remove redundant literals and
improve code size. With @option{-mtext-section-literals}, the literals
are interspersed in the text section in order to keep them as close as
possible to their references. This may be necessary for large assembly
files. Literals for each function are placed right before that function.
@opindex mauto-litpools
@opindex mno-auto-litpools
@item -mauto-litpools
@itemx -mno-auto-litpools
These options control the treatment of literal pools. The default is
@option{-mno-auto-litpools}, which places literals in a separate
section in the output file unless @option{-mtext-section-literals} is
used. With @option{-mauto-litpools} the literals are interspersed in
the text section by the assembler. Compiler does not produce explicit
@code{.literal} directives and loads literals into registers with
@code{MOVI} instructions instead of @code{L32R} to let the assembler
do relaxation and place literals as necessary. This option allows
assembler to create several literal pools per function and assemble
very big functions, which may not be possible with
@option{-mtext-section-literals}.
@opindex mtarget-align
@opindex mno-target-align
@item -mtarget-align
@itemx -mno-target-align
When this option is enabled, GCC instructs the assembler to
automatically align instructions to reduce branch penalties at the
expense of some code density. The assembler attempts to widen density
instructions to align branch targets and the instructions following call
instructions. If there are not enough preceding safe density
instructions to align a target, no widening is performed. The
default is @option{-mtarget-align}. These options do not affect the
treatment of auto-aligned instructions like @code{LOOP}, which the
assembler always aligns, either by widening density instructions or
by inserting NOP instructions.
@opindex mlongcalls
@opindex mno-longcalls
@item -mlongcalls
@itemx -mno-longcalls
When this option is enabled, GCC instructs the assembler to translate
direct calls to indirect calls unless it can determine that the target
of a direct call is in the range allowed by the call instruction. This
translation typically occurs for calls to functions in other source
files. Specifically, the assembler translates a direct @code{CALL}
instruction into an @code{L32R} followed by a @code{CALLX} instruction.
The default is @option{-mno-longcalls}. This option should be used in
programs where the call target can potentially be out of range. This
option is implemented in the assembler, not the compiler, so the
assembly code generated by GCC still shows direct call
instructions---look at the disassembled object code to see the actual
instructions. Note that the assembler uses an indirect call for
every cross-file call, not just those that really are out of range.
@opindex mabi
@item -mabi=@var{name}
Generate code for the specified ABI@. Permissible values are: @samp{call0},
@samp{windowed}. Default ABI is chosen by the Xtensa core configuration.
@opindex mabi=call0
@item -mabi=call0
When this option is enabled function parameters are passed in registers
@code{a2} through @code{a7}, registers @code{a12} through @code{a15} are
caller-saved, and register @code{a15} may be used as a frame pointer.
When this version of the ABI is enabled the C preprocessor symbol
@code{__XTENSA_CALL0_ABI__} is defined.
@opindex mabi=windowed
@item -mabi=windowed
When this option is enabled function parameters are passed in registers
@code{a10} through @code{a15}, and called function rotates register window
by 8 registers on entry so that its arguments are found in registers
@code{a2} through @code{a7}. Register @code{a7} may be used as a frame
pointer. Register window is rotated 8 registers back upon return.
When this version of the ABI is enabled the C preprocessor symbol
@code{__XTENSA_WINDOWED_ABI__} is defined.
@opindex mextra-l32r-costs
@item -mextra-l32r-costs=@var{n}
Specify an extra cost of instruction RAM/ROM access for @code{L32R}
instructions, in clock cycles. This affects, when optimizing for speed,
whether loading a constant from literal pool using @code{L32R} or
synthesizing the constant from a small one with a couple of arithmetic
instructions. The default value is 0.
@opindex mstrict-align
@opindex mno-strict-align
@item -mstrict-align
@itemx -mno-strict-align
Avoid or allow generating memory accesses that may not be aligned on a natural
object boundary as described in the architecture specification.
The default is @option{-mno-strict-align} for cores that support both
unaligned loads and stores in hardware and @option{-mstrict-align} for all
other cores.
@end table
@node zSeries Options
@subsection zSeries Options
@cindex zSeries options
These are listed under @xref{S/390 and zSeries Options}.
@c man end
@node Spec Files
@section Specifying Subprocesses and the Switches to Pass to Them
@cindex Spec Files
@command{gcc} is a driver program. It performs its job by invoking a
sequence of other programs to do the work of compiling, assembling and
linking. GCC interprets its command-line parameters and uses these to
deduce which programs it should invoke, and which command-line options
it ought to place on their command lines. This behavior is controlled
by @dfn{spec strings}. In most cases there is one spec string for each
program that GCC can invoke, but a few programs have multiple spec
strings to control their behavior. The spec strings built into GCC can
be overridden by using the @option{-specs=} command-line switch to specify
a spec file.
@dfn{Spec files} are plain-text files that are used to construct spec
strings. They consist of a sequence of directives separated by blank
lines. The type of directive is determined by the first non-whitespace
character on the line, which can be one of the following:
@table @code
@item %@var{command}
Issues a @var{command} to the spec file processor. The commands that can
appear here are:
@table @code
@cindex @code{%include}
@item %include <@var{file}>
Search for @var{file} and insert its text at the current point in the
specs file.
@cindex @code{%include_noerr}
@item %include_noerr <@var{file}>
Just like @samp{%include}, but do not generate an error message if the include
file cannot be found.
@cindex @code{%rename}
@item %rename @var{old_name} @var{new_name}
Rename the spec string @var{old_name} to @var{new_name}.
@end table
@item *[@var{spec_name}]:
This tells the compiler to create, override or delete the named spec
string. All lines after this directive up to the next directive or
blank line are considered to be the text for the spec string. If this
results in an empty string then the spec is deleted. (Or, if the
spec did not exist, then nothing happens.) Otherwise, if the spec
does not currently exist a new spec is created. If the spec does
exist then its contents are overridden by the text of this
directive, unless the first character of that text is the @samp{+}
character, in which case the text is appended to the spec.
@item [@var{suffix}]:
Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
and up to the next directive or blank line are considered to make up the
spec string for the indicated suffix. When the compiler encounters an
input file with the named suffix, it processes the spec string in
order to work out how to compile that file. For example:
@smallexample
.ZZ:
z-compile -input %i
@end smallexample
This says that any input file whose name ends in @samp{.ZZ} should be
passed to the program @samp{z-compile}, which should be invoked with the
command-line switch @option{-input} and with the result of performing the
@samp{%i} substitution. (See below.)
As an alternative to providing a spec string, the text following a
suffix directive can be one of the following:
@table @code
@item @@@var{language}
This says that the suffix is an alias for a known @var{language}. This is
similar to using the @option{-x} command-line switch to GCC to specify a
language explicitly. For example:
@smallexample
.ZZ:
@@c++
@end smallexample
Says that .ZZ files are, in fact, C++ source files.
@item #@var{name}
This causes an error messages saying:
@smallexample
@var{name} compiler not installed on this system.
@end smallexample
@end table
GCC already has an extensive list of suffixes built into it.
This directive adds an entry to the end of the list of suffixes, but
since the list is searched from the end backwards, it is effectively
possible to override earlier entries using this technique.
@end table
GCC has the following spec strings built into it. Spec files can
override these strings or create their own. Note that individual
targets can also add their own spec strings to this list.
@smallexample
asm Options to pass to the assembler
asm_final Options to pass to the assembler post-processor
cpp Options to pass to the C preprocessor
cc1 Options to pass to the C compiler
cc1plus Options to pass to the C++ compiler
endfile Object files to include at the end of the link
link Options to pass to the linker
lib Libraries to include on the command line to the linker
libgcc Decides which GCC support library to pass to the linker
linker Sets the name of the linker
startfile Object files to include at the start of the link
@end smallexample
Here is a small example of a spec file:
@smallexample
%rename lib old_lib
*lib:
--start-group -lgcc -lc -leval1 --end-group %(old_lib)
@end smallexample
This example renames the spec called @samp{lib} to @samp{old_lib} and
then overrides the previous definition of @samp{lib} with a new one.
The new definition adds in some extra command-line options before
including the text of the old definition.
@dfn{Spec strings} are a list of command-line options to be passed to their
corresponding program. In addition, the spec strings can contain
@samp{%}-prefixed sequences to substitute variable text or to
conditionally insert text into the command line. Using these constructs
it is possible to generate quite complex command lines.
Here is a table of all defined @samp{%}-sequences for spec
strings. Note that spaces are not generated automatically around the
results of expanding these sequences. Therefore you can concatenate them
together or combine them with constant text in a single argument.
@table @code
@item %%
Substitute one @samp{%} into the program name or argument.
@item %"
Substitute an empty argument.
@item %i
Substitute the name of the input file being processed.
@item %b
Substitute the basename for outputs related with the input file being
processed. This is often the substring up to (and not including) the
last period and not including the directory but, unless %w is active, it
expands to the basename for auxiliary outputs, which may be influenced
by an explicit output name, and by various other options that control
how auxiliary outputs are named.
@item %B
This is the same as @samp{%b}, but include the file suffix (text after
the last period). Without %w, it expands to the basename for dump
outputs.
@item %d
Marks the argument containing or following the @samp{%d} as a
temporary file name, so that that file is deleted if GCC exits
successfully. Unlike @samp{%g}, this contributes no text to the
argument.
@item %g@var{suffix}
Substitute a file name that has suffix @var{suffix} and is chosen
once per compilation, and mark the argument in the same way as
@samp{%d}. To reduce exposure to denial-of-service attacks, the file
name is now chosen in a way that is hard to predict even when previously
chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
was simply substituted with a file name chosen once per compilation,
without regard to any appended suffix (which was therefore treated
just like ordinary text), making such attacks more likely to succeed.
@item %u@var{suffix}
Like @samp{%g}, but generates a new temporary file name
each time it appears instead of once per compilation.
@item %U@var{suffix}
Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
new one if there is no such last file name. In the absence of any
@samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
involves the generation of two distinct file names, one
for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
simply substituted with a file name chosen for the previous @samp{%u},
without regard to any appended suffix.
@item %j@var{suffix}
Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
writable, and if @option{-save-temps} is not used;
otherwise, substitute the name
of a temporary file, just like @samp{%u}. This temporary file is not
meant for communication between processes, but rather as a junk
disposal mechanism.
@item %|@var{suffix}
@itemx %m@var{suffix}
Like @samp{%g}, except if @option{-pipe} is in effect. In that case
@samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
all. These are the two most common ways to instruct a program that it
should read from standard input or write to standard output. If you
need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
construct: see for example @file{gcc/fortran/lang-specs.h}.
@item %.@var{SUFFIX}
Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
when it is subsequently output with @samp{%*}. @var{SUFFIX} is
terminated by the next space or %.
@item %w
Marks the argument containing or following the @samp{%w} as the
designated output file of this compilation. This puts the argument
into the sequence of arguments that @samp{%o} substitutes.
@item %V
Indicates that this compilation produces no output file.
@item %o
Substitutes the names of all the output files, with spaces
automatically placed around them. You should write spaces
around the @samp{%o} as well or the results are undefined.
@samp{%o} is for use in the specs for running the linker.
Input files whose names have no recognized suffix are not compiled
at all, but they are included among the output files, so they are
linked.
@item %O
Substitutes the suffix for object files. Note that this is
handled specially when it immediately follows @samp{%g, %u, or %U},
because of the need for those to form complete file names. The
handling is such that @samp{%O} is treated exactly as if it had already
been substituted, except that @samp{%g, %u, and %U} do not currently
support additional @var{suffix} characters following @samp{%O} as they do
following, for example, @samp{.o}.
@item %I
Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
@option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
@option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
and @option{-imultilib} as necessary.
@item %s
Current argument is the name of a library or startup file of some sort.
Search for that file in a standard list of directories and substitute
the full name found. The current working directory is included in the
list of directories scanned.
@item %T
Current argument is the name of a linker script. Search for that file
in the current list of directories to scan for libraries. If the file
is located insert a @option{--script} option into the command line
followed by the full path name found. If the file is not found then
generate an error message. Note: the current working directory is not
searched.
@item %e@var{str}
Print @var{str} as an error message. @var{str} is terminated by a newline.
Use this when inconsistent options are detected.
@item %n@var{str}
Print @var{str} as a notice. @var{str} is terminated by a newline.
@item %(@var{name})
Substitute the contents of spec string @var{name} at this point.
@item %x@{@var{option}@}
Accumulate an option for @samp{%X}.
@item %X
Output the accumulated linker options specified by a @samp{%x} spec string.
@item %Y
Output the accumulated assembler options specified by @option{-Wa}.
@item %Z
Output the accumulated preprocessor options specified by @option{-Wp}.
@item %M
Output @code{multilib_os_dir}.
@item %R
Output the concatenation of @code{target_system_root} and @code{target_sysroot_suffix}.
@item %a
Process the @code{asm} spec. This is used to compute the
switches to be passed to the assembler.
@item %A
Process the @code{asm_final} spec. This is a spec string for
passing switches to an assembler post-processor, if such a program is
needed.
@item %l
Process the @code{link} spec. This is the spec for computing the
command line passed to the linker. Typically it makes use of the
@samp{%L %G %S %D and %E} sequences.
@item %D
Dump out a @option{-L} option for each directory that GCC believes might
contain startup files. If the target supports multilibs then the
current multilib directory is prepended to each of these paths.
@item %L
Process the @code{lib} spec. This is a spec string for deciding which
libraries are included on the command line to the linker.
@item %G
Process the @code{libgcc} spec. This is a spec string for deciding
which GCC support library is included on the command line to the linker.
@item %S
Process the @code{startfile} spec. This is a spec for deciding which
object files are the first ones passed to the linker. Typically
this might be a file named @file{crt0.o}.
@item %E
Process the @code{endfile} spec. This is a spec string that specifies
the last object files that are passed to the linker.
@item %C
Process the @code{cpp} spec. This is used to construct the arguments
to be passed to the C preprocessor.
@item %1
Process the @code{cc1} spec. This is used to construct the options to be
passed to the actual C compiler (@command{cc1}).
@item %2
Process the @code{cc1plus} spec. This is used to construct the options to be
passed to the actual C++ compiler (@command{cc1plus}).
@item %*
Substitute the variable part of a matched option. See below.
Note that each comma in the substituted string is replaced by
a single space.
@item %<@var{S}
Remove all occurrences of @code{-@var{S}} from the command line. Note---this
command is position dependent. @samp{%} commands in the spec string
before this one see @code{-@var{S}}, @samp{%} commands in the spec string
after this one do not.
@item %<@var{S}*
Similar to @samp{%<@var{S}}, but match all switches beginning with @code{-@var{S}}.
@item %>@var{S}
Similar to @samp{%<@var{S}}, but keep @code{-@var{S}} in the GCC command line.
@item %:@var{function}(@var{args})
Call the named function @var{function}, passing it @var{args}.
@var{args} is first processed as a nested spec string, then split
into an argument vector in the usual fashion. The function returns
a string which is processed as if it had appeared literally as part
of the current spec.
The following built-in spec functions are provided:
@table @code
@item @code{getenv}
The @code{getenv} spec function takes two arguments: an environment
variable name and a string. If the environment variable is not
defined, a fatal error is issued. Otherwise, the return value is the
value of the environment variable concatenated with the string. For
example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
@smallexample
%:getenv(TOPDIR /include)
@end smallexample
expands to @file{/path/to/top/include}.
@item @code{if-exists}
The @code{if-exists} spec function takes one argument, an absolute
pathname to a file. If the file exists, @code{if-exists} returns the
pathname. Here is a small example of its usage:
@smallexample
*startfile:
crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
@end smallexample
@item @code{if-exists-else}
The @code{if-exists-else} spec function is similar to the @code{if-exists}
spec function, except that it takes two arguments. The first argument is
an absolute pathname to a file. If the file exists, @code{if-exists-else}
returns the pathname. If it does not exist, it returns the second argument.
This way, @code{if-exists-else} can be used to select one file or another,
based on the existence of the first. Here is a small example of its usage:
@smallexample
*startfile:
crt0%O%s %:if-exists(crti%O%s) \
%:if-exists-else(crtbeginT%O%s crtbegin%O%s)
@end smallexample
@item @code{if-exists-then-else}
The @code{if-exists-then-else} spec function takes at least two arguments
and an optional third one. The first argument is an absolute pathname to a
file. If the file exists, the function returns the second argument.
If the file does not exist, the function returns the third argument if there
is one, or NULL otherwise. This can be used to expand one text, or optionally
another, based on the existence of a file. Here is a small example of its
usage:
@smallexample
-l%:if-exists-then-else(%:getenv(VSB_DIR rtnet.h) rtnet net)
@end smallexample
@item @code{sanitize}
The @code{sanitize} spec function takes no arguments. It returns non-NULL if
any address, thread or undefined behavior sanitizers are active.
@smallexample
%@{%:sanitize(address):-funwind-tables@}
@end smallexample
@item @code{replace-outfile}
The @code{replace-outfile} spec function takes two arguments. It looks for the
first argument in the outfiles array and replaces it with the second argument. Here
is a small example of its usage:
@smallexample
%@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
@end smallexample
@item @code{remove-outfile}
The @code{remove-outfile} spec function takes one argument. It looks for the
first argument in the outfiles array and removes it. Here is a small example
its usage:
@smallexample
%:remove-outfile(-lm)
@end smallexample
@item @code{version-compare}
The @code{version-compare} spec function takes four or five arguments of the following
form:
@smallexample
<comparison-op> <arg1> [<arg2>] <switch> <result>
@end smallexample
It returns @code{result} if the comparison evaluates to true, and NULL if it doesn't.
The supported @code{comparison-op} values are:
@table @code
@item >=
True if @code{switch} is a later (or same) version than @code{arg1}
@item !>
Opposite of @code{>=}
@item <
True if @code{switch} is an earlier version than @code{arg1}
@item !<
Opposite of @code{<}
@item ><
True if @code{switch} is @code{arg1} or later, and earlier than @code{arg2}
@item <>
True if @code{switch} is earlier than @code{arg1}, or is @code{arg2} or later
@end table
If the @code{switch} is not present at all, the condition is false unless the first character
of the @code{comparison-op} is @code{!}.
@smallexample
%:version-compare(>= 10.3 mmacosx-version-min= -lmx)
@end smallexample
The above example would add @option{-lmx} if @option{-mmacosx-version-min=10.3.9} was
passed.
@item @code{include}
The @code{include} spec function behaves much like @code{%include}, with the advantage
that it can be nested inside a spec and thus be conditionalized. It takes one argument,
the filename, and looks for it in the startfile path. It always returns NULL.
@smallexample
%@{static-libasan|static:%:include(libsanitizer.spec)%(link_libasan)@}
@end smallexample
@item @code{pass-through-libs}
The @code{pass-through-libs} spec function takes any number of arguments. It
finds any @option{-l} options and any non-options ending in @file{.a} (which it
assumes are the names of linker input library archive files) and returns a
result containing all the found arguments each prepended by
@option{-plugin-opt=-pass-through=} and joined by spaces. This list is
intended to be passed to the LTO linker plugin.
@smallexample
%:pass-through-libs(%G %L %G)
@end smallexample
@item @code{print-asm-header}
The @code{print-asm-header} function takes no arguments and simply
prints a banner like:
@smallexample
Assembler options
=================
Use "-Wa,OPTION" to pass "OPTION" to the assembler.
@end smallexample
It is used to separate compiler options from assembler options
in the @option{--target-help} output.
@item @code{gt}
The @code{gt} spec function takes two or more arguments. It returns @code{""} (the
empty string) if the second-to-last argument is greater than the last argument, and NULL
otherwise. The following example inserts the @code{link_gomp} spec if the last
@option{-ftree-parallelize-loops=} option given on the command line is greater than 1:
@smallexample
%@{%:gt(%@{ftree-parallelize-loops=*:%*@} 1):%:include(libgomp.spec)%(link_gomp)@}
@end smallexample
@item @code{debug-level-gt}
The @code{debug-level-gt} spec function takes one argument and returns @code{""} (the
empty string) if @code{debug_info_level} is greater than the specified number, and NULL
otherwise.
@smallexample
%@{%:debug-level-gt(0):%@{gdwarf*:--gdwarf2@}@}
@end smallexample
@end table
@item %@{@var{S}@}
Substitutes the @code{-@var{S}} switch, if that switch is given to GCC@.
If that switch is not specified, this substitutes nothing. Note that
the leading dash is omitted when specifying this option, and it is
automatically inserted if the substitution is performed. Thus the spec
string @samp{%@{foo@}} matches the command-line option @option{-foo}
and outputs the command-line option @option{-foo}.
@item %W@{@var{S}@}
Like %@{@code{@var{S}}@} but mark last argument supplied within as a file to be
deleted on failure.
@item %@@@{@var{S}@}
Like %@{@code{@var{S}}@} but puts the result into a @code{FILE} and substitutes
@code{@@FILE} if an @code{@@file} argument has been supplied.
@item %@{@var{S}*@}
Substitutes all the switches specified to GCC whose names start
with @code{-@var{S}}, but which also take an argument. This is used for
switches like @option{-o}, @option{-D}, @option{-I}, etc.
GCC considers @option{-o foo} as being
one switch whose name starts with @samp{o}. %@{o*@} substitutes this
text, including the space. Thus two arguments are generated.
@item %@{@var{S}*&@var{T}*@}
Like %@{@code{@var{S}}*@}, but preserve order of @code{@var{S}} and @code{@var{T}} options
(the order of @code{@var{S}} and @code{@var{T}} in the spec is not significant).
There can be any number of ampersand-separated variables; for each the
wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
@item %@{@var{S}:@var{X}@}
Substitutes @code{@var{X}}, if the @option{-@var{S}} switch is given to GCC@.
@item %@{!@var{S}:@var{X}@}
Substitutes @code{@var{X}}, if the @option{-@var{S}} switch is @emph{not} given to GCC@.
@item %@{@var{S}*:@var{X}@}
Substitutes @code{@var{X}} if one or more switches whose names start with
@code{-@var{S}} are specified to GCC@. Normally @code{@var{X}} is substituted only
once, no matter how many such switches appeared. However, if @code{%*}
appears somewhere in @code{@var{X}}, then @code{@var{X}} is substituted once
for each matching switch, with the @code{%*} replaced by the part of
that switch matching the @code{*}.
If @code{%*} appears as the last part of a spec sequence then a space
is added after the end of the last substitution. If there is more
text in the sequence, however, then a space is not generated. This
allows the @code{%*} substitution to be used as part of a larger
string. For example, a spec string like this:
@smallexample
%@{mcu=*:--script=%*/memory.ld@}
@end smallexample
@noindent
when matching an option like @option{-mcu=newchip} produces:
@smallexample
--script=newchip/memory.ld
@end smallexample
@item %@{.@var{S}:@var{X}@}
Substitutes @code{@var{X}}, if processing a file with suffix @code{@var{S}}.
@item %@{!.@var{S}:@var{X}@}
Substitutes @code{@var{X}}, if @emph{not} processing a file with suffix @code{@var{S}}.
@item %@{,@var{S}:@var{X}@}
Substitutes @code{@var{X}}, if processing a file for language @code{@var{S}}.
@item %@{!,@var{S}:@var{X}@}
Substitutes @code{@var{X}}, if not processing a file for language @code{@var{S}}.
@item %@{@var{S}|@var{P}:@var{X}@}
Substitutes @code{@var{X}} if either @code{-@var{S}} or @code{-@var{P}} is given to
GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
@code{*} sequences as well, although they have a stronger binding than
the @samp{|}. If @code{%*} appears in @code{@var{X}}, all of the
alternatives must be starred, and only the first matching alternative
is substituted.
For example, a spec string like this:
@smallexample
%@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
@end smallexample
@noindent
outputs the following command-line options from the following input
command-line options:
@smallexample
fred.c -foo -baz
jim.d -bar -boggle
-d fred.c -foo -baz -boggle
-d jim.d -bar -baz -boggle
@end smallexample
@item %@{%:@var{function}(@var{args}):@var{X}@}
Call function named @var{function} with args @var{args}. If the
function returns non-NULL, then @code{@var{X}} is substituted, if it returns
NULL, it isn't substituted.
@item %@{@var{S}:@var{X}; @var{T}:@var{Y}; :@var{D}@}
If @code{@var{S}} is given to GCC, substitutes @code{@var{X}}; else if @code{@var{T}} is
given to GCC, substitutes @code{@var{Y}}; else substitutes @code{@var{D}}. There can
be as many clauses as you need. This may be combined with @code{.},
@code{,}, @code{!}, @code{|}, and @code{*} as needed.
@end table
The switch matching text @code{@var{S}} in a @samp{%@{@var{S}@}}, @samp{%@{@var{S}:@var{X}@}}
or similar construct can use a backslash to ignore the special meaning
of the character following it, thus allowing literal matching of a
character that is otherwise specially treated. For example,
@samp{%@{std=iso9899\:1999:@var{X}@}} substitutes @code{@var{X}} if the
@option{-std=iso9899:1999} option is given.
The conditional text @code{@var{X}} in a @samp{%@{@var{S}:@var{X}@}} or similar
construct may contain other nested @samp{%} constructs or spaces, or
even newlines. They are processed as usual, as described above.
Trailing white space in @code{@var{X}} is ignored. White space may also
appear anywhere on the left side of the colon in these constructs,
except between @code{.} or @code{*} and the corresponding word.
The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
handled specifically in these constructs. If another value of
@option{-O} or the negated form of a @option{-f}, @option{-m}, or
@option{-W} switch is found later in the command line, the earlier
switch value is ignored, except with @{@code{@var{S}}*@} where @code{@var{S}} is
just one letter, which passes all matching options.
The character @samp{|} at the beginning of the predicate text is used to
indicate that a command should be piped to the following command, but
only if @option{-pipe} is specified.
It is built into GCC which switches take arguments and which do not.
(You might think it would be useful to generalize this to allow each
compiler's spec to say which switches take arguments. But this cannot
be done in a consistent fashion. GCC cannot even decide which input
files have been specified without knowing which switches take arguments,
and it must know which input files to compile in order to tell which
compilers to run).
GCC also knows implicitly that arguments starting in @option{-l} are to be
treated as compiler output files, and passed to the linker in their
proper position among the other output files.
@node Environment Variables
@section Environment Variables Affecting GCC
@cindex environment variables
@c man begin ENVIRONMENT
This section describes several environment variables that affect how GCC
operates. Some of them work by specifying directories or prefixes to use
when searching for various kinds of files. Some are used to specify other
aspects of the compilation environment.
Note that you can also specify places to search using options such as
@option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
take precedence over places specified using environment variables, which
in turn take precedence over those specified by the configuration of GCC@.
@xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
GNU Compiler Collection (GCC) Internals}.
@table @env
@vindex LANG
@vindex LC_CTYPE
@c @vindex LC_COLLATE
@vindex LC_MESSAGES
@c @vindex LC_MONETARY
@c @vindex LC_NUMERIC
@c @vindex LC_TIME
@vindex LC_ALL
@cindex locale
@item LANG
@itemx LC_CTYPE
@c @itemx LC_COLLATE
@itemx LC_MESSAGES
@c @itemx LC_MONETARY
@c @itemx LC_NUMERIC
@c @itemx LC_TIME
@itemx LC_ALL
These environment variables control the way that GCC uses
localization information which allows GCC to work with different
national conventions. GCC inspects the locale categories
@env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
so. These locale categories can be set to any value supported by your
installation. A typical value is @samp{en_GB.UTF-8} for English in the United
Kingdom encoded in UTF-8.
The @env{LC_CTYPE} environment variable specifies character
classification. GCC uses it to determine the character boundaries in
a string; this is needed for some multibyte encodings that contain quote
and escape characters that are otherwise interpreted as a string
end or escape.
The @env{LC_MESSAGES} environment variable specifies the language to
use in diagnostic messages.
If the @env{LC_ALL} environment variable is set, it overrides the value
of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
and @env{LC_MESSAGES} default to the value of the @env{LANG}
environment variable. If none of these variables are set, GCC
defaults to traditional C English behavior.
@vindex TMPDIR
@item TMPDIR
If @env{TMPDIR} is set, it specifies the directory to use for temporary
files. GCC uses temporary files to hold the output of one stage of
compilation which is to be used as input to the next stage: for example,
the output of the preprocessor, which is the input to the compiler
proper.
@vindex GCC_COMPARE_DEBUG
@item GCC_COMPARE_DEBUG
Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
@option{-fcompare-debug} to the compiler driver. See the documentation
of this option for more details.
@vindex GCC_EXEC_PREFIX
@item GCC_EXEC_PREFIX
If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
names of the subprograms executed by the compiler. No slash is added
when this prefix is combined with the name of a subprogram, but you can
specify a prefix that ends with a slash if you wish.
If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
an appropriate prefix to use based on the pathname it is invoked with.
If GCC cannot find the subprogram using the specified prefix, it
tries looking in the usual places for the subprogram.
The default value of @env{GCC_EXEC_PREFIX} is
@file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
the installed compiler. In many cases @var{prefix} is the value
of @code{prefix} when you ran the @file{configure} script.
Other prefixes specified with @option{-B} take precedence over this prefix.
This prefix is also used for finding files such as @file{crt0.o} that are
used for linking.
In addition, the prefix is used in an unusual way in finding the
directories to search for header files. For each of the standard
directories whose name normally begins with @samp{/usr/local/lib/gcc}
(more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
replacing that beginning with the specified prefix to produce an
alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
@file{foo/bar} just before it searches the standard directory
@file{/usr/local/lib/bar}.
If a standard directory begins with the configured
@var{prefix} then the value of @var{prefix} is replaced by
@env{GCC_EXEC_PREFIX} when looking for header files.
@vindex COMPILER_PATH
@item COMPILER_PATH
The value of @env{COMPILER_PATH} is a colon-separated list of
directories, much like @env{PATH}. GCC tries the directories thus
specified when searching for subprograms, if it cannot find the
subprograms using @env{GCC_EXEC_PREFIX}.
@vindex LIBRARY_PATH
@item LIBRARY_PATH
The value of @env{LIBRARY_PATH} is a colon-separated list of
directories, much like @env{PATH}. When configured as a native compiler,
GCC tries the directories thus specified when searching for special
linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}. Linking
using GCC also uses these directories when searching for ordinary
libraries for the @option{-l} option (but directories specified with
@option{-L} come first).
@vindex LANG
@cindex locale definition
@item LANG
This variable is used to pass locale information to the compiler. One way in
which this information is used is to determine the character set to be used
when character literals, string literals and comments are parsed in C and C++.
When the compiler is configured to allow multibyte characters,
the following values for @env{LANG} are recognized:
@table @samp
@item C-JIS
Recognize JIS characters.
@item C-SJIS
Recognize SJIS characters.
@item C-EUCJP
Recognize EUCJP characters.
@end table
If @env{LANG} is not defined, or if it has some other value, then the
compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
recognize and translate multibyte characters.
@vindex GCC_EXTRA_DIAGNOSTIC_OUTPUT
@item GCC_EXTRA_DIAGNOSTIC_OUTPUT
If @env{GCC_EXTRA_DIAGNOSTIC_OUTPUT} is set to one of the following values,
then additional text will be emitted to stderr when fix-it hints are
emitted. @option{-fdiagnostics-parseable-fixits} and
@option{-fno-diagnostics-parseable-fixits} take precedence over this
environment variable.
@table @samp
@item fixits-v1
Emit parseable fix-it hints, equivalent to
@option{-fdiagnostics-parseable-fixits}. In particular, columns are
expressed as a count of bytes, starting at byte 1 for the initial column.
@item fixits-v2
As @code{fixits-v1}, but columns are expressed as display columns,
as per @option{-fdiagnostics-column-unit=display}.
@end table
@end table
@noindent
Some additional environment variables affect the behavior of the
preprocessor.
@include cppenv.texi
@c man end
@node Precompiled Headers
@section Using Precompiled Headers
@cindex precompiled headers
@cindex speed of compilation
Often large projects have many header files that are included in every
source file. The time the compiler takes to process these header files
over and over again can account for nearly all of the time required to
build the project. To make builds faster, GCC allows you to
@dfn{precompile} a header file.
To create a precompiled header file, simply compile it as you would any
other file, if necessary using the @option{-x} option to make the driver
treat it as a C or C++ header file. You may want to use a
tool like @command{make} to keep the precompiled header up-to-date when
the headers it contains change.
A precompiled header file is searched for when @code{#include} is
seen in the compilation. As it searches for the included file
(@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
compiler looks for a precompiled header in each directory just before it
looks for the include file in that directory. The name searched for is
the name specified in the @code{#include} with @samp{.gch} appended. If
the precompiled header file cannot be used, it is ignored.
For instance, if you have @code{#include "all.h"}, and you have
@file{all.h.gch} in the same directory as @file{all.h}, then the
precompiled header file is used if possible, and the original
header is used otherwise.
Alternatively, you might decide to put the precompiled header file in a
directory and use @option{-I} to ensure that directory is searched
before (or instead of) the directory containing the original header.
Then, if you want to check that the precompiled header file is always
used, you can put a file of the same name as the original header in this
directory containing an @code{#error} command.
This also works with @option{-include}. So yet another way to use
precompiled headers, good for projects not designed with precompiled
header files in mind, is to simply take most of the header files used by
a project, include them from another header file, precompile that header
file, and @option{-include} the precompiled header. If the header files
have guards against multiple inclusion, they are skipped because
they've already been included (in the precompiled header).
If you need to precompile the same header file for different
languages, targets, or compiler options, you can instead make a
@emph{directory} named like @file{all.h.gch}, and put each precompiled
header in the directory, perhaps using @option{-o}. It doesn't matter
what you call the files in the directory; every precompiled header in
the directory is considered. The first precompiled header
encountered in the directory that is valid for this compilation is
used; they're searched in no particular order.
There are many other possibilities, limited only by your imagination,
good sense, and the constraints of your build system.
A precompiled header file can be used only when these conditions apply:
@itemize
@item
Only one precompiled header can be used in a particular compilation.
@item
A precompiled header cannot be used once the first C token is seen. You
can have preprocessor directives before a precompiled header; you cannot
include a precompiled header from inside another header.
@item
The precompiled header file must be produced for the same language as
the current compilation. You cannot use a C precompiled header for a C++
compilation.
@item
The precompiled header file must have been produced by the same compiler
binary as the current compilation is using.
@item
Any macros defined before the precompiled header is included must
either be defined in the same way as when the precompiled header was
generated, or must not affect the precompiled header, which usually
means that they don't appear in the precompiled header at all.
The @option{-D} option is one way to define a macro before a
precompiled header is included; using a @code{#define} can also do it.
There are also some options that define macros implicitly, like
@option{-O} and @option{-Wdeprecated}; the same rule applies to macros
defined this way.
@item If debugging information is output when using the precompiled
header, using @option{-g} or similar, the same kind of debugging information
must have been output when building the precompiled header. However,
a precompiled header built using @option{-g} can be used in a compilation
when no debugging information is being output.
@item The same @option{-m} options must generally be used when building
and using the precompiled header. @xref{Submodel Options},
for any cases where this rule is relaxed.
@item Each of the following options must be the same when building and using
the precompiled header:
@gccoptlist{-fexceptions}
@item
Some other command-line options starting with @option{-f},
@option{-p}, or @option{-O} must be defined in the same way as when
the precompiled header was generated. At present, it's not clear
which options are safe to change and which are not; the safest choice
is to use exactly the same options when generating and using the
precompiled header. The following are known to be safe:
@gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock
-fsched-spec -fsched-spec-load -fsched-spec-load-dangerous
-fsched-verbose=@var{number} -fschedule-insns -fvisibility=
-pedantic-errors}
@item Address space layout randomization (ASLR) can lead to not binary identical
PCH files. If you rely on stable PCH file contents disable ASLR when generating
PCH files.
@end itemize
For all of these except the last, the compiler automatically
ignores the precompiled header if the conditions aren't met. If you
find an option combination that doesn't work and doesn't cause the
precompiled header to be ignored, please consider filing a bug report,
see @ref{Bugs}.
If you do use differing options when generating and using the
precompiled header, the actual behavior is a mixture of the
behavior for the options. For instance, if you use @option{-g} to
generate the precompiled header but not when using it, you may or may
not get debugging information for routines in the precompiled header.
@node C++ Modules
@section C++ Modules
@cindex speed of compilation
Modules are a C++20 language feature. As the name suggests, they
provide a modular compilation system, intending to provide both
faster builds and better library isolation. The ``Merging Modules''
paper @uref{https://wg21.link/p1103}, provides the easiest to read set
of changes to the standard, although it does not capture later
changes.
@emph{G++'s modules support is not complete.} Other than bugs, the
known missing pieces are:
@table @emph
@item Private Module Fragment
The Private Module Fragment is recognized, but an error is emitted.
@item Partition definition visibility rules
Entities may be defined in implementation partitions, and those
definitions are not available outside of the module. This is not
implemented, and the definitions are available to extra-module use.
@item Textual merging of reachable GM entities
Entities may be multiply defined across different header-units.
These must be de-duplicated, and this is implemented across imports,
or when an import redefines a textually-defined entity. However the
reverse is not implemented---textually redefining an entity that has
been defined in an imported header-unit. A redefinition error is
emitted.
@item Translation-Unit local referencing rules
Papers p1815 (@uref{https://wg21.link/p1815}) and p2003
(@uref{https://wg21.link/p2003}) add limitations on which entities an
exported region may reference (for instance, the entities an exported
template definition may reference). These are not fully implemented.
@item Standard Library Header Units
The Standard Library is not provided as importable header units. If
you want to import such units, you must explicitly build them first.
If you do not do this with care, you may have multiple declarations,
which the module machinery must merge---compiler resource usage can be
affected by how you partition header files into header units.
@end table
Modular compilation is @emph{not} enabled with just the
@option{-std=c++20} option. You must explicitly enable it with the
@option{-fmodules-ts} option. It is independent of the language
version selected, although in pre-C++20 versions, it is of course an
extension.
No new source file suffixes are required. A few suffixes preferred
for module interface units by other compilers (e.g. @samp{.ixx},
@samp{.cppm}) are supported, but files with these suffixes are treated
the same as any other C++ source file.
Compiling a module interface unit produces an additional output (to
the assembly or object file), called a Compiled Module Interface
(CMI). This encodes the exported declarations of the module.
Importing a module reads in the CMI. The import graph is a Directed
Acyclic Graph (DAG). You must build imports before the importer.
Header files may themselves be compiled to header units, which are a
transitional ability aiming at faster compilation. The
@option{-fmodule-header} option is used to enable this, and implies
the @option{-fmodules-ts} option. These CMIs are named by the fully
resolved underlying header file, and thus may be a complete pathname
containing subdirectories. If the header file is found at an absolute
pathname, the CMI location is still relative to a CMI root directory.
As header files often have no suffix, you commonly have to specify a
@option{-x} option to tell the compiler the source is a header file.
You may use @option{-x c++-header}, @option{-x c++-user-header} or
@option{-x c++-system-header}. When used in conjunction with
@option{-fmodules-ts}, these all imply an appropriate
@option{-fmodule-header} option. The latter two variants use the
user or system include path to search for the file specified. This
allows you to, for instance, compile standard library header files as
header units, without needing to know exactly where they are
installed. Specifying the language as one of these variants also
inhibits output of the object file, as header files have no associated
object file.
Header units can be used in much the same way as precompiled headers
(@pxref{Precompiled Headers}), but with fewer restrictions: an
#include that is translated to a header unit import can appear at any
point in the source file, and multiple header units can be used
together. In particular, the @option{-include} strategy works: with
the bits/stdc++.h header used for libstdc++ precompiled headers you
can
@smallexample
g++ -fmodules-ts -x c++-system-header -c bits/stdc++.h
g++ -fmodules-ts -include bits/stdc++.h mycode.C
@end smallexample
and any standard library #includes in mycode.C will be skipped,
because the import brought in the whole library. This can be a simple
way to use modules to speed up compilation without any code changes.
The @option{-fmodule-only} option disables generation of the
associated object file for compiling a module interface. Only the CMI
is generated. This option is implied when using the
@option{-fmodule-header} option.
The @option{-flang-info-include-translate} and
@option{-flang-info-include-translate-not} options notes whether
include translation occurs or not. With no argument, the first will
note all include translation. The second will note all
non-translations of include files not known to intentionally be
textual. With an argument, queries about include translation of a
header files with that particular trailing pathname are noted. You
may repeat this form to cover several different header files. This
option may be helpful in determining whether include translation is
happening---if it is working correctly, it behaves as if it isn't
there at all.
The @option{-flang-info-module-cmi} option can be used to determine
where the compiler is reading a CMI from. Without the option, the
compiler is silent when such a read is successful. This option has an
optional argument, which will restrict the notification to just the
set of named modules or header units specified.
The @option{-Winvalid-imported-macros} option causes all imported macros
to be resolved at the end of compilation. Without this, imported
macros are only resolved when expanded or (re)defined. This option
detects conflicting import definitions for all macros.
For details of the @option{-fmodule-mapper} family of options,
@pxref{C++ Module Mapper}.
@menu
* C++ Module Mapper:: Module Mapper
* C++ Module Preprocessing:: Module Preprocessing
* C++ Compiled Module Interface:: Compiled Module Interface
@end menu
@node C++ Module Mapper
@subsection Module Mapper
@cindex C++ Module Mapper
A module mapper provides a server or file that the compiler queries to
determine the mapping between module names and CMI files. It is also
used to build CMIs on demand. @emph{Mapper functionality is in its
infancy and is intended for experimentation with build system
interactions.}
You can specify a mapper with the @option{-fmodule-mapper=@var{val}}
option or @env{CXX_MODULE_MAPPER} environment variable. The value may
have one of the following forms:
@table @gcctabopt
@item @r{[}@var{hostname}@r{]}:@var{port}@r{[}?@var{ident}@r{]}
An optional hostname and a numeric port number to connect to. If the
hostname is omitted, the loopback address is used. If the hostname
corresponds to multiple IPV6 addresses, these are tried in turn, until
one is successful. If your host lacks IPv6, this form is
non-functional. If you must use IPv4 use
@option{-fmodule-mapper='|ncat @var{ipv4host} @var{port}'}.
@item =@var{socket}@r{[}?@var{ident}@r{]}
A local domain socket. If your host lacks local domain sockets, this
form is non-functional.
@item |@var{program}@r{[}?@var{ident}@r{]} @r{[}@var{args...}@r{]}
A program to spawn, and communicate with on its stdin/stdout streams.
Your @var{PATH} environment variable is searched for the program.
Arguments are separated by space characters, (it is not possible for
one of the arguments delivered to the program to contain a space). An
exception is if @var{program} begins with @@. In that case
@var{program} (sans @@) is looked for in the compiler's internal
binary directory. Thus the sample mapper-server can be specified
with @code{@@g++-mapper-server}.
@item <>@r{[}?@var{ident}@r{]}
@item <>@var{inout}@r{[}?@var{ident}@r{]}
@item <@var{in}>@var{out}@r{[}?@var{ident}@r{]}
Named pipes or file descriptors to communicate over. The first form,
@option{<>}, communicates over stdin and stdout. The other forms
allow you to specify a file descriptor or name a pipe. A numeric value
is interpreted as a file descriptor, otherwise named pipe is opened.
The second form specifies a bidirectional pipe and the last form
allows specifying two independent pipes. Using file descriptors
directly in this manner is fragile in general, as it can require the
cooperation of intermediate processes. In particular using stdin &
stdout is fraught with danger as other compiler options might also
cause the compiler to read stdin or write stdout, and it can have
unfortunate interactions with signal delivery from the terminal.
@item @var{file}@r{[}?@var{ident}@r{]}
A mapping file consisting of space-separated module-name, filename
pairs, one per line. Only the mappings for the direct imports and any
module export name need be provided. If other mappings are provided,
they override those stored in any imported CMI files. A repository
root may be specified in the mapping file by using @samp{$root} as the
module name in the first active line. Use of this option will disable
any default module->CMI name mapping.
@end table
As shown, an optional @var{ident} may suffix the first word of the
option, indicated by a @samp{?} prefix. The value is used in the
initial handshake with the module server, or to specify a prefix on
mapping file lines. In the server case, the main source file name is
used if no @var{ident} is specified. In the file case, all non-blank
lines are significant, unless a value is specified, in which case only
lines beginning with @var{ident} are significant. The @var{ident}
must be separated by whitespace from the module name. Be aware that
@samp{<}, @samp{>}, @samp{?}, and @samp{|} characters are often
significant to the shell, and therefore may need quoting.
The mapper is connected to or loaded lazily, when the first module
mapping is required. The networking protocols are only supported on
hosts that provide networking. If no mapper is specified a default is
provided.
A project-specific mapper is expected to be provided by the build
system that invokes the compiler. It is not expected that a
general-purpose server is provided for all compilations. As such, the
server will know the build configuration, the compiler it invoked, and
the environment (such as working directory) in which that is
operating. As it may parallelize builds, several compilations may
connect to the same socket.
The default mapper generates CMI files in a @samp{gcm.cache}
directory. CMI files have a @samp{.gcm} suffix. The module unit name
is used directly to provide the basename. Header units construct a
relative path using the underlying header file name. If the path is
already relative, a @samp{,} directory is prepended. Internal
@samp{..} components are translated to @samp{,,}. No attempt is made
to canonicalize these filenames beyond that done by the preprocessor's
include search algorithm, as in general it is ambiguous when symbolic
links are present.
The mapper protocol was published as ``A Module Mapper''
@uref{https://wg21.link/p1184}. The implementation is provided by
@command{libcody}, @uref{https://github.com/urnathan/libcody},
which specifies the canonical protocol definition. A proof of concept
server implementation embedded in @command{make} was described in
''Make Me A Module'', @uref{https://wg21.link/p1602}.
@node C++ Module Preprocessing
@subsection Module Preprocessing
@cindex C++ Module Preprocessing
Modules affect preprocessing because of header units and include
translation. Some uses of the preprocessor as a separate step either
do not produce a correct output, or require CMIs to be available.
Header units import macros. These macros can affect later conditional
inclusion, which therefore can cascade to differing import sets. When
preprocessing, it is necessary to load the CMI. If a header unit is
unavailable, the preprocessor issues a warning and continue (when
not just preprocessing, an error is emitted). Detecting such imports
requires preprocessor tokenization of the input stream to phase 4
(macro expansion).
Include translation converts @code{#include}, @code{#include_next} and
@code{#import} directives to internal @code{import} declarations.
Whether a particular directive is translated is controlled by the
module mapper. Header unit names are canonicalized during
preprocessing.
Dependency information can be emitted for macro import, extending the
functionality of @option{-MD} and @option{-MMD} options. Detection of
import declarations also requires phase 4 preprocessing, and thus
requires full preprocessing (or compilation).
The @option{-M}, @option{-MM} and @option{-E -fdirectives-only} options halt
preprocessing before phase 4.
The @option{-save-temps} option uses @option{-fdirectives-only} for
preprocessing, and preserve the macro definitions in the preprocessed
output. Usually you also want to use this option when explicitly
preprocessing a header-unit, or consuming such preprocessed output:
@smallexample
g++ -fmodules-ts -E -fdirectives-only my-header.hh -o my-header.ii
g++ -x c++-header -fmodules-ts -fpreprocessed -fdirectives-only my-header.ii
@end smallexample
@node C++ Compiled Module Interface
@subsection Compiled Module Interface
@cindex C++ Compiled Module Interface
CMIs are an additional artifact when compiling named module
interfaces, partitions or header units. These are read when
importing. CMI contents are implementation-specific, and in GCC's
case tied to the compiler version. Consider them a rebuildable cache
artifact, not a distributable object.
When creating an output CMI, any missing directory components are
created in a manner that is safe for concurrent builds creating
multiple, different, CMIs within a common subdirectory tree.
CMI contents are written to a temporary file, which is then atomically
renamed. Observers either see old contents (if there is an
existing file), or complete new contents. They do not observe the
CMI during its creation. This is unlike object file writing, which
may be observed by an external process.
CMIs are read in lazily, if the host OS provides @code{mmap}
functionality. Generally blocks are read when name lookup or template
instantiation occurs. To inhibit this, the @option{-fno-module-lazy}
option may be used.
The @option{--param lazy-modules=@var{n}} parameter controls the limit
on the number of concurrently open module files during lazy loading.
Should more modules be imported, an LRU algorithm is used to determine
which files to close---until that file is needed again. This limit
may be exceeded with deep module dependency hierarchies. With large
code bases there may be more imports than the process limit of file
descriptors. By default, the limit is a few less than the per-process
file descriptor hard limit, if that is determinable.@footnote{Where
applicable the soft limit is incremented as needed towards the hard limit.}
GCC CMIs use ELF32 as an architecture-neutral encapsulation mechanism.
You may use @command{readelf} to inspect them, although section
contents are largely undecipherable. There is a section named
@code{.gnu.c++.README}, which contains human-readable text. Other
than the first line, each line consists of @code{@var{tag}: @code{value}}
tuples.
@smallexample
> @command{readelf -p.gnu.c++.README gcm.cache/foo.gcm}
String dump of section '.gnu.c++.README':
[ 0] GNU C++ primary module interface
[ 21] compiler: 11.0.0 20201116 (experimental) [c++-modules revision 20201116-0454]
[ 6f] version: 2020/11/16-04:54
[ 89] module: foo
[ 95] source: c_b.ii
[ a4] dialect: C++20/coroutines
[ be] cwd: /data/users/nathans/modules/obj/x86_64/gcc
[ ee] repository: gcm.cache
[ 104] buildtime: 2020/11/16 15:03:21 UTC
[ 127] localtime: 2020/11/16 07:03:21 PST
[ 14a] export: foo:part1 foo-part1.gcm
@end smallexample
Amongst other things, this lists the source that was built, C++
dialect used and imports of the module.@footnote{The precise contents
of this output may change.} The timestamp is the same value as that
provided by the @code{__DATE__} & @code{__TIME__} macros, and may be
explicitly specified with the environment variable
@code{SOURCE_DATE_EPOCH}. For further details
@pxref{Environment Variables}.
A set of related CMIs may be copied, provided the relative pathnames
are preserved.
The @code{.gnu.c++.README} contents do not affect CMI integrity, and
it may be removed or altered. The section numbering of the sections
whose names do not begin with @code{.gnu.c++.}, or are not the string
section is significant and must not be altered.
|