1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
/**
* Contains semantic routines specific to ImportC
*
* Specification: C11
*
* Copyright: Copyright (C) 2021-2023 by The D Language Foundation, All Rights Reserved
* Authors: $(LINK2 https://www.digitalmars.com, Walter Bright)
* License: $(LINK2 https://www.boost.org/LICENSE_1_0.txt, Boost License 1.0)
* Source: $(LINK2 https://github.com/dlang/dmd/blob/master/src/dmd/importc.d, _importc.d)
* Documentation: https://dlang.org/phobos/dmd_importc.html
* Coverage: https://codecov.io/gh/dlang/dmd/src/master/src/dmd/importc.d
*/
module dmd.importc;
import core.stdc.stdio;
import dmd.astenums;
import dmd.dcast;
import dmd.declaration;
import dmd.dscope;
import dmd.dsymbol;
import dmd.expression;
import dmd.expressionsem;
import dmd.identifier;
import dmd.init;
import dmd.mtype;
import dmd.tokens;
import dmd.typesem;
/**************************************
* C11 does not allow array or function parameters.
* Hence, adjust those types per C11 6.7.6.3 rules.
* Params:
* t = parameter type to adjust
* sc = context
* Returns:
* adjusted type
*/
Type cAdjustParamType(Type t, Scope* sc)
{
if (!(sc.flags & SCOPE.Cfile))
return t;
Type tb = t.toBasetype();
/* C11 6.7.6.3-7 array of T is converted to pointer to T
*/
if (auto ta = tb.isTypeDArray())
{
t = ta.next.pointerTo();
}
else if (auto ts = tb.isTypeSArray())
{
t = ts.next.pointerTo();
}
/* C11 6.7.6.3-8 function is converted to pointer to function
*/
else if (tb.isTypeFunction())
{
t = tb.pointerTo();
}
return t;
}
/***********************************************
* C11 6.3.2.1-3 Convert expression that is an array of type to a pointer to type.
* C11 6.3.2.1-4 Convert expression that is a function to a pointer to a function.
* Params:
* e = ImportC expression to possibly convert
* sc = context
* Returns:
* converted expression
*/
Expression arrayFuncConv(Expression e, Scope* sc)
{
//printf("arrayFuncConv() %s\n", e.toChars());
if (!(sc.flags & SCOPE.Cfile))
return e;
auto t = e.type.toBasetype();
if (auto ta = t.isTypeDArray())
{
if (!checkAddressable(e, sc))
return ErrorExp.get();
e = e.castTo(sc, ta.next.pointerTo());
}
else if (auto ts = t.isTypeSArray())
{
if (!checkAddressable(e, sc))
return ErrorExp.get();
e = e.castTo(sc, ts.next.pointerTo());
}
else if (t.isTypeFunction())
{
e = new AddrExp(e.loc, e);
}
else
return e;
return e.expressionSemantic(sc);
}
/****************************************
* Run semantic on `e`.
* Expression `e` evaluates to an instance of a struct.
* Look up `ident` as a field of that struct.
* Params:
* e = evaluates to an instance of a struct
* sc = context
* id = identifier of a field in that struct
* Returns:
* if successful `e.ident`
* if not then `ErrorExp` and message is printed
*/
Expression fieldLookup(Expression e, Scope* sc, Identifier id)
{
e = e.expressionSemantic(sc);
if (e.isErrorExp())
return e;
Dsymbol s;
auto t = e.type;
if (t.isTypePointer())
{
t = t.isTypePointer().next;
e = new PtrExp(e.loc, e);
}
if (auto ts = t.isTypeStruct())
s = ts.sym.search(e.loc, id, 0);
if (!s)
{
e.error("`%s` is not a member of `%s`", id.toChars(), t.toChars());
return ErrorExp.get();
}
Expression ef = new DotVarExp(e.loc, e, s.isDeclaration());
return ef.expressionSemantic(sc);
}
/****************************************
* C11 6.5.2.1-2
* Apply C semantics to `E[I]` expression.
* E1[E2] is lowered to *(E1 + E2)
* Params:
* ae = ArrayExp to run semantics on
* sc = context
* Returns:
* Expression if this was a C expression with completed semantic, null if not
*/
Expression carraySemantic(ArrayExp ae, Scope* sc)
{
if (!(sc.flags & SCOPE.Cfile))
return null;
auto e1 = ae.e1.expressionSemantic(sc);
assert(ae.arguments.length == 1);
Expression e2 = (*ae.arguments)[0];
/* CTFE cannot do pointer arithmetic, but it can index arrays.
* So, rewrite as an IndexExp if we can.
*/
auto t1 = e1.type.toBasetype();
if (t1.isTypeDArray() || t1.isTypeSArray())
{
e2 = e2.expressionSemantic(sc).arrayFuncConv(sc);
// C doesn't do array bounds checking, so `true` turns it off
return new IndexExp(ae.loc, e1, e2, true).expressionSemantic(sc);
}
e1 = e1.arrayFuncConv(sc); // e1 might still be a function call
e2 = e2.expressionSemantic(sc);
auto t2 = e2.type.toBasetype();
if (t2.isTypeDArray() || t2.isTypeSArray())
{
return new IndexExp(ae.loc, e2, e1, true).expressionSemantic(sc); // swap operands
}
e2 = e2.arrayFuncConv(sc);
auto ep = new PtrExp(ae.loc, new AddExp(ae.loc, e1, e2));
return ep.expressionSemantic(sc);
}
/******************************************
* Determine default initializer for const global symbol.
*/
void addDefaultCInitializer(VarDeclaration dsym)
{
//printf("addDefaultCInitializer() %s\n", dsym.toChars());
if (!(dsym.storage_class & (STC.static_ | STC.gshared)))
return;
if (dsym.storage_class & (STC.extern_ | STC.field | STC.in_ | STC.foreach_ | STC.parameter | STC.result))
return;
Type t = dsym.type;
if (t.isTypeSArray() && t.isTypeSArray().isIncomplete())
{
dsym._init = new VoidInitializer(dsym.loc);
return; // incomplete arrays will be diagnosed later
}
if (t.isMutable())
return;
auto e = dsym.type.defaultInit(dsym.loc, true);
dsym._init = new ExpInitializer(dsym.loc, e);
}
/********************************************
* Resolve cast/call grammar ambiguity.
* Params:
* e = expression that might be a cast, might be a call
* sc = context
* Returns:
* null means leave as is, !=null means rewritten AST
*/
Expression castCallAmbiguity(Expression e, Scope* sc)
{
Expression* pe = &e;
while (1)
{
// Walk down the postfix expressions till we find a CallExp or something else
switch ((*pe).op)
{
case EXP.dotIdentifier:
pe = &(*pe).isDotIdExp().e1;
continue;
case EXP.plusPlus:
case EXP.minusMinus:
pe = &(*pe).isPostExp().e1;
continue;
case EXP.array:
pe = &(*pe).isArrayExp().e1;
continue;
case EXP.call:
auto ce = (*pe).isCallExp();
if (ce.e1.parens)
{
ce.e1 = expressionSemantic(ce.e1, sc);
if (ce.e1.op == EXP.type)
{
const numArgs = ce.arguments ? ce.arguments.length : 0;
if (numArgs >= 1)
{
ce.e1.parens = false;
Expression arg;
foreach (a; (*ce.arguments)[])
{
arg = arg ? new CommaExp(a.loc, arg, a) : a;
}
auto t = ce.e1.isTypeExp().type;
*pe = arg;
return new CastExp(ce.loc, e, t);
}
}
}
return null;
default:
return null;
}
}
}
/********************************************
* Implement the C11 notion of function equivalence,
* which allows prototyped functions to match K+R functions,
* even though they are different.
* Params:
* tf1 = type of first function
* tf2 = type of second function
* Returns:
* true if C11 considers them equivalent
*/
bool cFuncEquivalence(TypeFunction tf1, TypeFunction tf2)
{
//printf("cFuncEquivalence()\n %s\n %s\n", tf1.toChars(), tf2.toChars());
if (tf1.equals(tf2))
return true;
if (tf1.linkage != tf2.linkage)
return false;
// Allow func(void) to match func()
if (tf1.parameterList.length == 0 && tf2.parameterList.length == 0)
return true;
if (!cTypeEquivalence(tf1.next, tf2.next))
return false; // function return types don't match
if (tf1.parameterList.length != tf2.parameterList.length)
return false;
if (!tf1.parameterList.hasIdentifierList && !tf2.parameterList.hasIdentifierList) // if both are prototyped
{
if (tf1.parameterList.varargs != tf2.parameterList.varargs)
return false;
}
foreach (i, fparam ; tf1.parameterList)
{
Type t1 = fparam.type;
Type t2 = tf2.parameterList[i].type;
/* Strip off head const.
* Not sure if this is C11, but other compilers treat
* `void fn(int)` and `fn(const int x)`
* as equivalent.
*/
t1 = t1.mutableOf();
t2 = t2.mutableOf();
if (!t1.equals(t2))
return false;
}
//printf("t1: %s\n", tf1.toChars());
//printf("t2: %s\n", tf2.toChars());
return true;
}
/*******************************
* Types haven't been merged yet, because we haven't done
* semantic() yet.
* But we still need to see if t1 and t2 are the same type.
* Params:
* t1 = first type
* t2 = second type
* Returns:
* true if they are equivalent types
*/
bool cTypeEquivalence(Type t1, Type t2)
{
if (t1.equals(t2))
return true; // that was easy
if (t1.ty != t2.ty || t1.mod != t2.mod)
return false;
if (auto tp = t1.isTypePointer())
return cTypeEquivalence(tp.next, t2.nextOf());
if (auto ta = t1.isTypeSArray())
// Bug: should check array dimension
return cTypeEquivalence(ta.next, t2.nextOf());
if (auto ts = t1.isTypeStruct())
return ts.sym is t2.isTypeStruct().sym;
if (auto te = t1.isTypeEnum())
return te.sym is t2.isTypeEnum().sym;
if (auto tf = t1.isTypeFunction())
return cFuncEquivalence(tf, tf.isTypeFunction());
return false;
}
|