aboutsummaryrefslogtreecommitdiff
path: root/gcc/cppbuiltin.cc
blob: 8c918bee54a63d3c47b26c7493edecc843b73954 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/* Define builtin-in macros for all front ends that perform preprocessing
   Copyright (C) 2010-2022 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "memmodel.h"
#include "target.h"
#include "tree.h"
#include "version.h"
#include "flags.h"
#include "cpplib.h"
#include "cppbuiltin.h"


/* Parse a BASEVER version string of the format "major.minor.patchlevel"
   or "major.minor" to extract its components.  */
void
parse_basever (int *major, int *minor, int *patchlevel)
{
  static int s_major = -1, s_minor, s_patchlevel;

  if (s_major == -1)
    if (sscanf (BASEVER, "%d.%d.%d", &s_major, &s_minor, &s_patchlevel) != 3)
      {
	sscanf (BASEVER, "%d.%d", &s_major, &s_minor);
	s_patchlevel = 0;
      }

  if (major)
    *major = s_major;

  if (minor)
    *minor = s_minor;

  if (patchlevel)
    *patchlevel = s_patchlevel;
}


/* Define __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__ and __VERSION__.  */
static void
define__GNUC__ (cpp_reader *pfile)
{
  int major, minor, patchlevel;

  parse_basever (&major, &minor, &patchlevel);
  cpp_define_formatted (pfile, "__GNUC__=%d", major);
  cpp_define_formatted (pfile, "__GNUC_MINOR__=%d", minor);
  cpp_define_formatted (pfile, "__GNUC_PATCHLEVEL__=%d", patchlevel);
  cpp_define_formatted (pfile, "__VERSION__=\"%s\"", version_string);
  cpp_define_formatted (pfile, "__ATOMIC_RELAXED=%d", MEMMODEL_RELAXED);
  cpp_define_formatted (pfile, "__ATOMIC_SEQ_CST=%d", MEMMODEL_SEQ_CST);
  cpp_define_formatted (pfile, "__ATOMIC_ACQUIRE=%d", MEMMODEL_ACQUIRE);
  cpp_define_formatted (pfile, "__ATOMIC_RELEASE=%d", MEMMODEL_RELEASE);
  cpp_define_formatted (pfile, "__ATOMIC_ACQ_REL=%d", MEMMODEL_ACQ_REL);
  cpp_define_formatted (pfile, "__ATOMIC_CONSUME=%d", MEMMODEL_CONSUME);
}


/* Define various built-in CPP macros that depend on language-independent
   compilation flags.  */
static void
define_builtin_macros_for_compilation_flags (cpp_reader *pfile)
{
  if (flag_pic)
    {
      cpp_define_formatted (pfile, "__pic__=%d", flag_pic);
      cpp_define_formatted (pfile, "__PIC__=%d", flag_pic);
    }
  if (flag_pie)
    {
      cpp_define_formatted (pfile, "__pie__=%d", flag_pie);
      cpp_define_formatted (pfile, "__PIE__=%d", flag_pie);
    }

  if (flag_sanitize & SANITIZE_ADDRESS)
    cpp_define (pfile, "__SANITIZE_ADDRESS__");

  if (flag_sanitize & SANITIZE_HWADDRESS)
    cpp_define (pfile, "__SANITIZE_HWADDRESS__");

  if (flag_sanitize & SANITIZE_THREAD)
    cpp_define (pfile, "__SANITIZE_THREAD__");

  if (optimize_size)
    cpp_define (pfile, "__OPTIMIZE_SIZE__");
  if (optimize)
    cpp_define (pfile, "__OPTIMIZE__");

  if (fast_math_flags_set_p (&global_options))
    cpp_define (pfile, "__FAST_MATH__");
  if (flag_signaling_nans)
    cpp_define (pfile, "__SUPPORT_SNAN__");
  if (!flag_errno_math)
    cpp_define (pfile, "__NO_MATH_ERRNO__");
  if (flag_reciprocal_math)
    cpp_define (pfile, "__RECIPROCAL_MATH__");
  if (!flag_signed_zeros)
    cpp_define (pfile, "__NO_SIGNED_ZEROS__");
  if (!flag_trapping_math)
    cpp_define (pfile, "__NO_TRAPPING_MATH__");
  if (flag_associative_math)
    cpp_define (pfile, "__ASSOCIATIVE_MATH__");
  if (flag_rounding_math)
    cpp_define (pfile, "__ROUNDING_MATH__");

  cpp_define_formatted (pfile, "__FINITE_MATH_ONLY__=%d",
			flag_finite_math_only);
}


/* Define built-in macros for LP64 targets. */
static void
define_builtin_macros_for_lp64 (cpp_reader *pfile)
{
  if (TYPE_PRECISION (long_integer_type_node) == 64
      && POINTER_SIZE == 64
      && TYPE_PRECISION (integer_type_node) == 32)
    {
      cpp_define (pfile, "_LP64");
      cpp_define (pfile, "__LP64__");
    }
}


/* Define macros for size of basic C types.  */
static void
define_builtin_macros_for_type_sizes (cpp_reader *pfile)
{
#define define_type_sizeof(NAME, TYPE)                             \
    cpp_define_formatted (pfile, NAME"=" HOST_WIDE_INT_PRINT_DEC,   \
                          tree_to_uhwi (TYPE_SIZE_UNIT (TYPE)))

  define_type_sizeof ("__SIZEOF_INT__", integer_type_node);
  define_type_sizeof ("__SIZEOF_LONG__", long_integer_type_node);
  define_type_sizeof ("__SIZEOF_LONG_LONG__", long_long_integer_type_node);
  define_type_sizeof ("__SIZEOF_SHORT__", short_integer_type_node);
  define_type_sizeof ("__SIZEOF_FLOAT__", float_type_node);
  define_type_sizeof ("__SIZEOF_DOUBLE__", double_type_node);
  define_type_sizeof ("__SIZEOF_LONG_DOUBLE__", long_double_type_node);
  define_type_sizeof ("__SIZEOF_SIZE_T__", size_type_node);

#undef define_type_sizeof

  cpp_define_formatted (pfile, "__CHAR_BIT__=%u",
			TYPE_PRECISION (char_type_node));
  cpp_define_formatted (pfile, "__BIGGEST_ALIGNMENT__=%d",
			BIGGEST_ALIGNMENT / BITS_PER_UNIT);

  /* Define constants useful for implementing endian.h.  */
  cpp_define (pfile, "__ORDER_LITTLE_ENDIAN__=1234");
  cpp_define (pfile, "__ORDER_BIG_ENDIAN__=4321");
  cpp_define (pfile, "__ORDER_PDP_ENDIAN__=3412");

  if (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN)
    cpp_define_formatted (pfile, "__BYTE_ORDER__=%s",
			  (WORDS_BIG_ENDIAN
			   ? "__ORDER_BIG_ENDIAN__"
			   : "__ORDER_LITTLE_ENDIAN__"));
  else
    {
      /* Assert that we're only dealing with the PDP11 case.  */
      gcc_assert (!BYTES_BIG_ENDIAN);
      gcc_assert (WORDS_BIG_ENDIAN);

      cpp_define (pfile, "__BYTE_ORDER__=__ORDER_PDP_ENDIAN__");
    }

  cpp_define_formatted (pfile, "__FLOAT_WORD_ORDER__=%s",
                        (targetm.float_words_big_endian ()
                         ? "__ORDER_BIG_ENDIAN__"
                         : "__ORDER_LITTLE_ENDIAN__"));

  /* ptr_type_node can't be used here since ptr_mode is only set when
     toplev calls backend_init which is not done with -E switch.  */
  cpp_define_formatted (pfile, "__SIZEOF_POINTER__=%d",
			1 << ceil_log2 ((POINTER_SIZE + BITS_PER_UNIT - 1) / BITS_PER_UNIT));
}


/* Define macros builtins common to all language performing CPP
   preprocessing.  */
void
define_language_independent_builtin_macros (cpp_reader *pfile)
{
  define__GNUC__ (pfile);
  define_builtin_macros_for_compilation_flags (pfile);
  define_builtin_macros_for_lp64 (pfile);
  define_builtin_macros_for_type_sizes (pfile);
}
f='#n897'>897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
/*  Loop transformation code generation
    Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
    Contributed by Daniel Berlin <dberlin@dberlin.org>

    This file is part of GCC.
    
    GCC is free software; you can redistribute it and/or modify it under
    the terms of the GNU General Public License as published by the Free
    Software Foundation; either version 2, or (at your option) any later
    version.
    
    GCC is distributed in the hope that it will be useful, but WITHOUT ANY
    WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    for more details.
    
    You should have received a copy of the GNU General Public License
    along with GCC; see the file COPYING.  If not, write to the Free
    Software Foundation, 59 Temple Place - Suite 330, Boston, MA
    02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "errors.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "expr.h"
#include "optabs.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-pass.h"
#include "tree-scalar-evolution.h"
#include "vec.h"
#include "lambda.h"

/* This loop nest code generation is based on non-singular matrix
   math.
 
 A little terminology and a general sketch of the algorithm.  See "A singular
 loop transformation framework based on non-singular matrices" by Wei Li and
 Keshav Pingali for formal proofs that the various statements below are
 correct. 

 A loop iteration space represents the points traversed by the loop.  A point in the
 iteration space can be represented by a vector of size <loop depth>.  You can
 therefore represent the iteration space as an integral combinations of a set
 of basis vectors. 

 A loop iteration space is dense if every integer point between the loop
 bounds is a point in the iteration space.  Every loop with a step of 1
 therefore has a dense iteration space.

 for i = 1 to 3, step 1 is a dense iteration space.
   
 A loop iteration space is sparse if it is not dense.  That is, the iteration
 space skips integer points that are within the loop bounds.  

 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
 2 is skipped.

 Dense source spaces are easy to transform, because they don't skip any
 points to begin with.  Thus we can compute the exact bounds of the target
 space using min/max and floor/ceil.

 For a dense source space, we take the transformation matrix, decompose it
 into a lower triangular part (H) and a unimodular part (U). 
 We then compute the auxiliary space from the unimodular part (source loop
 nest . U = auxiliary space) , which has two important properties:
  1. It traverses the iterations in the same lexicographic order as the source
  space.
  2. It is a dense space when the source is a dense space (even if the target
  space is going to be sparse).
 
 Given the auxiliary space, we use the lower triangular part to compute the
 bounds in the target space by simple matrix multiplication.
 The gaps in the target space (IE the new loop step sizes) will be the
 diagonals of the H matrix.

 Sparse source spaces require another step, because you can't directly compute
 the exact bounds of the auxiliary and target space from the sparse space.
 Rather than try to come up with a separate algorithm to handle sparse source
 spaces directly, we just find a legal transformation matrix that gives you
 the sparse source space, from a dense space, and then transform the dense
 space.

 For a regular sparse space, you can represent the source space as an integer
 lattice, and the base space of that lattice will always be dense.  Thus, we
 effectively use the lattice to figure out the transformation from the lattice
 base space, to the sparse iteration space (IE what transform was applied to
 the dense space to make it sparse).  We then compose this transform with the
 transformation matrix specified by the user (since our matrix transformations
 are closed under composition, this is okay).  We can then use the base space
 (which is dense) plus the composed transformation matrix, to compute the rest
 of the transform using the dense space algorithm above.
 
 In other words, our sparse source space (B) is decomposed into a dense base
 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
 We then compute the composition of L and the user transformation matrix (T),
 so that T is now a transform from A to the result, instead of from B to the
 result. 
 IE A.(LT) = result instead of B.T = result
 Since A is now a dense source space, we can use the dense source space
 algorithm above to compute the result of applying transform (LT) to A.

 Fourier-Motzkin elimination is used to compute the bounds of the base space
 of the lattice.  */


DEF_VEC_GC_P(int);

static bool perfect_nestify (struct loops *, 
			     struct loop *, VEC (tree) *, 
			     VEC (tree) *, VEC (int) *, VEC (tree) *);
/* Lattice stuff that is internal to the code generation algorithm.  */

typedef struct
{
  /* Lattice base matrix.  */
  lambda_matrix base;
  /* Lattice dimension.  */
  int dimension;
  /* Origin vector for the coefficients.  */
  lambda_vector origin;
  /* Origin matrix for the invariants.  */
  lambda_matrix origin_invariants;
  /* Number of invariants.  */
  int invariants;
} *lambda_lattice;

#define LATTICE_BASE(T) ((T)->base)
#define LATTICE_DIMENSION(T) ((T)->dimension)
#define LATTICE_ORIGIN(T) ((T)->origin)
#define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
#define LATTICE_INVARIANTS(T) ((T)->invariants)

static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
		       int, int);
static lambda_lattice lambda_lattice_new (int, int);
static lambda_lattice lambda_lattice_compute_base (lambda_loopnest);

static tree find_induction_var_from_exit_cond (struct loop *);

/* Create a new lambda body vector.  */

lambda_body_vector
lambda_body_vector_new (int size)
{
  lambda_body_vector ret;

  ret = ggc_alloc (sizeof (*ret));
  LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
  LBV_SIZE (ret) = size;
  LBV_DENOMINATOR (ret) = 1;
  return ret;
}

/* Compute the new coefficients for the vector based on the
  *inverse* of the transformation matrix.  */

lambda_body_vector
lambda_body_vector_compute_new (lambda_trans_matrix transform,
				lambda_body_vector vect)
{
  lambda_body_vector temp;
  int depth;

  /* Make sure the matrix is square.  */
  gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));

  depth = LTM_ROWSIZE (transform);

  temp = lambda_body_vector_new (depth);
  LBV_DENOMINATOR (temp) =
    LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
  lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
			     LTM_MATRIX (transform), depth,
			     LBV_COEFFICIENTS (temp));
  LBV_SIZE (temp) = LBV_SIZE (vect);
  return temp;
}

/* Print out a lambda body vector.  */

void
print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
{
  print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
}

/* Return TRUE if two linear expressions are equal.  */

static bool
lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
	   int depth, int invariants)
{
  int i;

  if (lle1 == NULL || lle2 == NULL)
    return false;
  if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
    return false;
  if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
    return false;
  for (i = 0; i < depth; i++)
    if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
      return false;
  for (i = 0; i < invariants; i++)
    if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
	LLE_INVARIANT_COEFFICIENTS (lle2)[i])
      return false;
  return true;
}

/* Create a new linear expression with dimension DIM, and total number
   of invariants INVARIANTS.  */

lambda_linear_expression
lambda_linear_expression_new (int dim, int invariants)
{
  lambda_linear_expression ret;

  ret = ggc_alloc_cleared (sizeof (*ret));

  LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
  LLE_CONSTANT (ret) = 0;
  LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
  LLE_DENOMINATOR (ret) = 1;
  LLE_NEXT (ret) = NULL;

  return ret;
}

/* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
   The starting letter used for variable names is START.  */

static void
print_linear_expression (FILE * outfile, lambda_vector expr, int size,
			 char start)
{
  int i;
  bool first = true;
  for (i = 0; i < size; i++)
    {
      if (expr[i] != 0)
	{
	  if (first)
	    {
	      if (expr[i] < 0)
		fprintf (outfile, "-");
	      first = false;
	    }
	  else if (expr[i] > 0)
	    fprintf (outfile, " + ");
	  else
	    fprintf (outfile, " - ");
	  if (abs (expr[i]) == 1)
	    fprintf (outfile, "%c", start + i);
	  else
	    fprintf (outfile, "%d%c", abs (expr[i]), start + i);
	}
    }
}

/* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
   depth/number of coefficients is given by DEPTH, the number of invariants is
   given by INVARIANTS, and the character to start variable names with is given
   by START.  */

void
print_lambda_linear_expression (FILE * outfile,
				lambda_linear_expression expr,
				int depth, int invariants, char start)
{
  fprintf (outfile, "\tLinear expression: ");
  print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
  fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
  fprintf (outfile, "  invariants: ");
  print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
			   invariants, 'A');
  fprintf (outfile, "  denominator: %d\n", LLE_DENOMINATOR (expr));
}

/* Print a lambda loop structure LOOP to OUTFILE.  The depth/number of
   coefficients is given by DEPTH, the number of invariants is 
   given by INVARIANTS, and the character to start variable names with is given
   by START.  */

void
print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
		   int invariants, char start)
{
  int step;
  lambda_linear_expression expr;

  gcc_assert (loop);

  expr = LL_LINEAR_OFFSET (loop);
  step = LL_STEP (loop);
  fprintf (outfile, "  step size = %d \n", step);

  if (expr)
    {
      fprintf (outfile, "  linear offset: \n");
      print_lambda_linear_expression (outfile, expr, depth, invariants,
				      start);
    }

  fprintf (outfile, "  lower bound: \n");
  for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
    print_lambda_linear_expression (outfile, expr, depth, invariants, start);
  fprintf (outfile, "  upper bound: \n");
  for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
    print_lambda_linear_expression (outfile, expr, depth, invariants, start);
}

/* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
   number of invariants.  */

lambda_loopnest
lambda_loopnest_new (int depth, int invariants)
{
  lambda_loopnest ret;
  ret = ggc_alloc (sizeof (*ret));

  LN_LOOPS (ret) = ggc_alloc_cleared (depth * sizeof (lambda_loop));
  LN_DEPTH (ret) = depth;
  LN_INVARIANTS (ret) = invariants;

  return ret;
}

/* Print a lambda loopnest structure, NEST, to OUTFILE.  The starting
   character to use for loop names is given by START.  */

void
print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
{
  int i;
  for (i = 0; i < LN_DEPTH (nest); i++)
    {
      fprintf (outfile, "Loop %c\n", start + i);
      print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
			 LN_INVARIANTS (nest), 'i');
      fprintf (outfile, "\n");
    }
}

/* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
   of invariants.  */

static lambda_lattice
lambda_lattice_new (int depth, int invariants)
{
  lambda_lattice ret;
  ret = ggc_alloc (sizeof (*ret));
  LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
  LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
  LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
  LATTICE_DIMENSION (ret) = depth;
  LATTICE_INVARIANTS (ret) = invariants;
  return ret;
}

/* Compute the lattice base for NEST.  The lattice base is essentially a
   non-singular transform from a dense base space to a sparse iteration space.
   We use it so that we don't have to specially handle the case of a sparse
   iteration space in other parts of the algorithm.  As a result, this routine
   only does something interesting (IE produce a matrix that isn't the
   identity matrix) if NEST is a sparse space.  */

static lambda_lattice
lambda_lattice_compute_base (lambda_loopnest nest)
{
  lambda_lattice ret;
  int depth, invariants;
  lambda_matrix base;

  int i, j, step;
  lambda_loop loop;
  lambda_linear_expression expression;

  depth = LN_DEPTH (nest);
  invariants = LN_INVARIANTS (nest);

  ret = lambda_lattice_new (depth, invariants);
  base = LATTICE_BASE (ret);
  for (i = 0; i < depth; i++)
    {
      loop = LN_LOOPS (nest)[i];
      gcc_assert (loop);
      step = LL_STEP (loop);
      /* If we have a step of 1, then the base is one, and the
         origin and invariant coefficients are 0.  */
      if (step == 1)
	{
	  for (j = 0; j < depth; j++)
	    base[i][j] = 0;
	  base[i][i] = 1;
	  LATTICE_ORIGIN (ret)[i] = 0;
	  for (j = 0; j < invariants; j++)
	    LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
	}
      else
	{
	  /* Otherwise, we need the lower bound expression (which must
	     be an affine function)  to determine the base.  */
	  expression = LL_LOWER_BOUND (loop);
	  gcc_assert (expression && !LLE_NEXT (expression) 
		      && LLE_DENOMINATOR (expression) == 1);

	  /* The lower triangular portion of the base is going to be the
	     coefficient times the step */
	  for (j = 0; j < i; j++)
	    base[i][j] = LLE_COEFFICIENTS (expression)[j]
	      * LL_STEP (LN_LOOPS (nest)[j]);
	  base[i][i] = step;
	  for (j = i + 1; j < depth; j++)
	    base[i][j] = 0;

	  /* Origin for this loop is the constant of the lower bound
	     expression.  */
	  LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);

	  /* Coefficient for the invariants are equal to the invariant
	     coefficients in the expression.  */
	  for (j = 0; j < invariants; j++)
	    LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
	      LLE_INVARIANT_COEFFICIENTS (expression)[j];
	}
    }
  return ret;
}

/* Compute the greatest common denominator of two numbers (A and B) using
   Euclid's algorithm.  */

static int
gcd (int a, int b)
{

  int x, y, z;

  x = abs (a);
  y = abs (b);

  while (x > 0)
    {
      z = y % x;
      y = x;
      x = z;
    }

  return (y);
}

/* Compute the greatest common denominator of a VECTOR of SIZE numbers.  */

static int
gcd_vector (lambda_vector vector, int size)
{
  int i;
  int gcd1 = 0;

  if (size > 0)
    {
      gcd1 = vector[0];
      for (i = 1; i < size; i++)
	gcd1 = gcd (gcd1, vector[i]);
    }
  return gcd1;
}

/* Compute the least common multiple of two numbers A and B .  */

static int
lcm (int a, int b)
{
  return (abs (a) * abs (b) / gcd (a, b));
}

/* Perform Fourier-Motzkin elimination to calculate the bounds of the
   auxiliary nest.
   Fourier-Motzkin is a way of reducing systems of linear inequalities so that
   it is easy to calculate the answer and bounds.
   A sketch of how it works:
   Given a system of linear inequalities, ai * xj >= bk, you can always
   rewrite the constraints so they are all of the form
   a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
   in b1 ... bk, and some a in a1...ai)
   You can then eliminate this x from the non-constant inequalities by
   rewriting these as a <= b, x >= constant, and delete the x variable.
   You can then repeat this for any remaining x variables, and then we have
   an easy to use variable <= constant (or no variables at all) form that we
   can construct our bounds from. 
   
   In our case, each time we eliminate, we construct part of the bound from
   the ith variable, then delete the ith variable. 
   
   Remember the constant are in our vector a, our coefficient matrix is A,
   and our invariant coefficient matrix is B.
   
   SIZE is the size of the matrices being passed.
   DEPTH is the loop nest depth.
   INVARIANTS is the number of loop invariants.
   A, B, and a are the coefficient matrix, invariant coefficient, and a
   vector of constants, respectively.  */

static lambda_loopnest 
compute_nest_using_fourier_motzkin (int size,
				    int depth, 
				    int invariants,
				    lambda_matrix A,
				    lambda_matrix B,
				    lambda_vector a)
{

  int multiple, f1, f2;
  int i, j, k;
  lambda_linear_expression expression;
  lambda_loop loop;
  lambda_loopnest auxillary_nest;
  lambda_matrix swapmatrix, A1, B1;
  lambda_vector swapvector, a1;
  int newsize;

  A1 = lambda_matrix_new (128, depth);
  B1 = lambda_matrix_new (128, invariants);
  a1 = lambda_vector_new (128);

  auxillary_nest = lambda_loopnest_new (depth, invariants);

  for (i = depth - 1; i >= 0; i--)
    {
      loop = lambda_loop_new ();
      LN_LOOPS (auxillary_nest)[i] = loop;
      LL_STEP (loop) = 1;

      for (j = 0; j < size; j++)
	{
	  if (A[j][i] < 0)
	    {
	      /* Any linear expression in the matrix with a coefficient less
		 than 0 becomes part of the new lower bound.  */ 
	      expression = lambda_linear_expression_new (depth, invariants);

	      for (k = 0; k < i; k++)
		LLE_COEFFICIENTS (expression)[k] = A[j][k];

	      for (k = 0; k < invariants; k++)
		LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];

	      LLE_DENOMINATOR (expression) = -1 * A[j][i];
	      LLE_CONSTANT (expression) = -1 * a[j];

	      /* Ignore if identical to the existing lower bound.  */
	      if (!lle_equal (LL_LOWER_BOUND (loop),
			      expression, depth, invariants))
		{
		  LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
		  LL_LOWER_BOUND (loop) = expression;
		}

	    }
	  else if (A[j][i] > 0)
	    {
	      /* Any linear expression with a coefficient greater than 0
		 becomes part of the new upper bound.  */ 
	      expression = lambda_linear_expression_new (depth, invariants);
	      for (k = 0; k < i; k++)
		LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];

	      for (k = 0; k < invariants; k++)
		LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];

	      LLE_DENOMINATOR (expression) = A[j][i];
	      LLE_CONSTANT (expression) = a[j];

	      /* Ignore if identical to the existing upper bound.  */
	      if (!lle_equal (LL_UPPER_BOUND (loop),
			      expression, depth, invariants))
		{
		  LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
		  LL_UPPER_BOUND (loop) = expression;
		}

	    }
	}

      /* This portion creates a new system of linear inequalities by deleting
	 the i'th variable, reducing the system by one variable.  */
      newsize = 0;
      for (j = 0; j < size; j++)
	{
	  /* If the coefficient for the i'th variable is 0, then we can just
	     eliminate the variable straightaway.  Otherwise, we have to
	     multiply through by the coefficients we are eliminating.  */
	  if (A[j][i] == 0)
	    {
	      lambda_vector_copy (A[j], A1[newsize], depth);
	      lambda_vector_copy (B[j], B1[newsize], invariants);
	      a1[newsize] = a[j];
	      newsize++;
	    }
	  else if (A[j][i] > 0)
	    {
	      for (k = 0; k < size; k++)
		{
		  if (A[k][i] < 0)
		    {
		      multiple = lcm (A[j][i], A[k][i]);
		      f1 = multiple / A[j][i];
		      f2 = -1 * multiple / A[k][i];

		      lambda_vector_add_mc (A[j], f1, A[k], f2,
					    A1[newsize], depth);
		      lambda_vector_add_mc (B[j], f1, B[k], f2,
					    B1[newsize], invariants);
		      a1[newsize] = f1 * a[j] + f2 * a[k];
		      newsize++;
		    }
		}
	    }
	}

      swapmatrix = A;
      A = A1;
      A1 = swapmatrix;

      swapmatrix = B;
      B = B1;
      B1 = swapmatrix;

      swapvector = a;
      a = a1;
      a1 = swapvector;

      size = newsize;
    }

  return auxillary_nest;
}

/* Compute the loop bounds for the auxiliary space NEST.
   Input system used is Ax <= b.  TRANS is the unimodular transformation.  
   Given the original nest, this function will 
   1. Convert the nest into matrix form, which consists of a matrix for the
   coefficients, a matrix for the 
   invariant coefficients, and a vector for the constants.  
   2. Use the matrix form to calculate the lattice base for the nest (which is
   a dense space) 
   3. Compose the dense space transform with the user specified transform, to 
   get a transform we can easily calculate transformed bounds for.
   4. Multiply the composed transformation matrix times the matrix form of the
   loop.
   5. Transform the newly created matrix (from step 4) back into a loop nest
   using fourier motzkin elimination to figure out the bounds.  */

static lambda_loopnest
lambda_compute_auxillary_space (lambda_loopnest nest,
				lambda_trans_matrix trans)
{
  lambda_matrix A, B, A1, B1;
  lambda_vector a, a1;
  lambda_matrix invertedtrans;
  int depth, invariants, size;
  int i, j;
  lambda_loop loop;
  lambda_linear_expression expression;
  lambda_lattice lattice;

  depth = LN_DEPTH (nest);
  invariants = LN_INVARIANTS (nest);

  /* Unfortunately, we can't know the number of constraints we'll have
     ahead of time, but this should be enough even in ridiculous loop nest
     cases. We abort if we go over this limit.  */
  A = lambda_matrix_new (128, depth);
  B = lambda_matrix_new (128, invariants);
  a = lambda_vector_new (128);

  A1 = lambda_matrix_new (128, depth);
  B1 = lambda_matrix_new (128, invariants);
  a1 = lambda_vector_new (128);

  /* Store the bounds in the equation matrix A, constant vector a, and
     invariant matrix B, so that we have Ax <= a + B.
     This requires a little equation rearranging so that everything is on the
     correct side of the inequality.  */
  size = 0;
  for (i = 0; i < depth; i++)
    {
      loop = LN_LOOPS (nest)[i];

      /* First we do the lower bound.  */
      if (LL_STEP (loop) > 0)
	expression = LL_LOWER_BOUND (loop);
      else
	expression = LL_UPPER_BOUND (loop);

      for (; expression != NULL; expression = LLE_NEXT (expression))
	{
	  /* Fill in the coefficient.  */
	  for (j = 0; j < i; j++)
	    A[size][j] = LLE_COEFFICIENTS (expression)[j];

	  /* And the invariant coefficient.  */
	  for (j = 0; j < invariants; j++)
	    B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];

	  /* And the constant.  */
	  a[size] = LLE_CONSTANT (expression);

	  /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b.  IE put all
	     constants and single variables on   */
	  A[size][i] = -1 * LLE_DENOMINATOR (expression);
	  a[size] *= -1;
	  for (j = 0; j < invariants; j++)
	    B[size][j] *= -1;

	  size++;
	  /* Need to increase matrix sizes above.  */
	  gcc_assert (size <= 127);
	  
	}

      /* Then do the exact same thing for the upper bounds.  */
      if (LL_STEP (loop) > 0)
	expression = LL_UPPER_BOUND (loop);
      else
	expression = LL_LOWER_BOUND (loop);

      for (; expression != NULL; expression = LLE_NEXT (expression))
	{
	  /* Fill in the coefficient.  */
	  for (j = 0; j < i; j++)
	    A[size][j] = LLE_COEFFICIENTS (expression)[j];

	  /* And the invariant coefficient.  */
	  for (j = 0; j < invariants; j++)
	    B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];

	  /* And the constant.  */
	  a[size] = LLE_CONSTANT (expression);

	  /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b.  */
	  for (j = 0; j < i; j++)
	    A[size][j] *= -1;
	  A[size][i] = LLE_DENOMINATOR (expression);
	  size++;
	  /* Need to increase matrix sizes above.  */
	  gcc_assert (size <= 127);

	}
    }

  /* Compute the lattice base x = base * y + origin, where y is the
     base space.  */
  lattice = lambda_lattice_compute_base (nest);

  /* Ax <= a + B then becomes ALy <= a+B - A*origin.  L is the lattice base  */

  /* A1 = A * L */
  lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);

  /* a1 = a - A * origin constant.  */
  lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
  lambda_vector_add_mc (a, 1, a1, -1, a1, size);

  /* B1 = B - A * origin invariant.  */
  lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
		      invariants);
  lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);

  /* Now compute the auxiliary space bounds by first inverting U, multiplying
     it by A1, then performing fourier motzkin.  */

  invertedtrans = lambda_matrix_new (depth, depth);

  /* Compute the inverse of U.  */
  lambda_matrix_inverse (LTM_MATRIX (trans),
			 invertedtrans, depth);

  /* A = A1 inv(U).  */
  lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);

  return compute_nest_using_fourier_motzkin (size, depth, invariants,
					     A, B1, a1);
}

/* Compute the loop bounds for the target space, using the bounds of
   the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.  
   The target space loop bounds are computed by multiplying the triangular
   matrix H by the auxiliary nest, to get the new loop bounds.  The sign of
   the loop steps (positive or negative) is then used to swap the bounds if
   the loop counts downwards.
   Return the target loopnest.  */

static lambda_loopnest
lambda_compute_target_space (lambda_loopnest auxillary_nest,
			     lambda_trans_matrix H, lambda_vector stepsigns)
{
  lambda_matrix inverse, H1;
  int determinant, i, j;
  int gcd1, gcd2;
  int factor;

  lambda_loopnest target_nest;
  int depth, invariants;
  lambda_matrix target;

  lambda_loop auxillary_loop, target_loop;
  lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;

  depth = LN_DEPTH (auxillary_nest);
  invariants = LN_INVARIANTS (auxillary_nest);

  inverse = lambda_matrix_new (depth, depth);
  determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);

  /* H1 is H excluding its diagonal.  */
  H1 = lambda_matrix_new (depth, depth);
  lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);

  for (i = 0; i < depth; i++)
    H1[i][i] = 0;

  /* Computes the linear offsets of the loop bounds.  */
  target = lambda_matrix_new (depth, depth);
  lambda_matrix_mult (H1, inverse, target, depth, depth, depth);

  target_nest = lambda_loopnest_new (depth, invariants);

  for (i = 0; i < depth; i++)
    {

      /* Get a new loop structure.  */
      target_loop = lambda_loop_new ();
      LN_LOOPS (target_nest)[i] = target_loop;

      /* Computes the gcd of the coefficients of the linear part.  */
      gcd1 = gcd_vector (target[i], i);

      /* Include the denominator in the GCD.  */
      gcd1 = gcd (gcd1, determinant);

      /* Now divide through by the gcd.  */
      for (j = 0; j < i; j++)
	target[i][j] = target[i][j] / gcd1;

      expression = lambda_linear_expression_new (depth, invariants);
      lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
      LLE_DENOMINATOR (expression) = determinant / gcd1;
      LLE_CONSTANT (expression) = 0;
      lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
			   invariants);
      LL_LINEAR_OFFSET (target_loop) = expression;
    }

  /* For each loop, compute the new bounds from H.  */
  for (i = 0; i < depth; i++)
    {
      auxillary_loop = LN_LOOPS (auxillary_nest)[i];
      target_loop = LN_LOOPS (target_nest)[i];
      LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
      factor = LTM_MATRIX (H)[i][i];

      /* First we do the lower bound.  */
      auxillary_expr = LL_LOWER_BOUND (auxillary_loop);

      for (; auxillary_expr != NULL;
	   auxillary_expr = LLE_NEXT (auxillary_expr))
	{
	  target_expr = lambda_linear_expression_new (depth, invariants);
	  lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
				     depth, inverse, depth,
				     LLE_COEFFICIENTS (target_expr));
	  lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
				    LLE_COEFFICIENTS (target_expr), depth,
				    factor);

	  LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
	  lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
			      LLE_INVARIANT_COEFFICIENTS (target_expr),
			      invariants);
	  lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
				    LLE_INVARIANT_COEFFICIENTS (target_expr),
				    invariants, factor);
	  LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);

	  if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
	    {
	      LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
		* determinant;
	      lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
					(target_expr),
					LLE_INVARIANT_COEFFICIENTS
					(target_expr), invariants,
					determinant);
	      LLE_DENOMINATOR (target_expr) =
		LLE_DENOMINATOR (target_expr) * determinant;
	    }
	  /* Find the gcd and divide by it here, rather than doing it
	     at the tree level.  */
	  gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
	  gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
			     invariants);
	  gcd1 = gcd (gcd1, gcd2);
	  gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
	  gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
	  for (j = 0; j < depth; j++)
	    LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
	  for (j = 0; j < invariants; j++)
	    LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
	  LLE_CONSTANT (target_expr) /= gcd1;
	  LLE_DENOMINATOR (target_expr) /= gcd1;
	  /* Ignore if identical to existing bound.  */
	  if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
			  invariants))
	    {
	      LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
	      LL_LOWER_BOUND (target_loop) = target_expr;
	    }
	}
      /* Now do the upper bound.  */
      auxillary_expr = LL_UPPER_BOUND (auxillary_loop);

      for (; auxillary_expr != NULL;
	   auxillary_expr = LLE_NEXT (auxillary_expr))
	{
	  target_expr = lambda_linear_expression_new (depth, invariants);
	  lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
				     depth, inverse, depth,
				     LLE_COEFFICIENTS (target_expr));
	  lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
				    LLE_COEFFICIENTS (target_expr), depth,
				    factor);
	  LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
	  lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
			      LLE_INVARIANT_COEFFICIENTS (target_expr),
			      invariants);
	  lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
				    LLE_INVARIANT_COEFFICIENTS (target_expr),
				    invariants, factor);
	  LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);

	  if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
	    {
	      LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
		* determinant;
	      lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
					(target_expr),
					LLE_INVARIANT_COEFFICIENTS
					(target_expr), invariants,
					determinant);
	      LLE_DENOMINATOR (target_expr) =
		LLE_DENOMINATOR (target_expr) * determinant;
	    }
	  /* Find the gcd and divide by it here, instead of at the
	     tree level.  */
	  gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
	  gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
			     invariants);
	  gcd1 = gcd (gcd1, gcd2);
	  gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
	  gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
	  for (j = 0; j < depth; j++)
	    LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
	  for (j = 0; j < invariants; j++)
	    LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
	  LLE_CONSTANT (target_expr) /= gcd1;
	  LLE_DENOMINATOR (target_expr) /= gcd1;
	  /* Ignore if equal to existing bound.  */
	  if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
			  invariants))
	    {
	      LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
	      LL_UPPER_BOUND (target_loop) = target_expr;
	    }
	}
    }
  for (i = 0; i < depth; i++)
    {
      target_loop = LN_LOOPS (target_nest)[i];
      /* If necessary, exchange the upper and lower bounds and negate
         the step size.  */
      if (stepsigns[i] < 0)
	{
	  LL_STEP (target_loop) *= -1;
	  tmp_expr = LL_LOWER_BOUND (target_loop);
	  LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
	  LL_UPPER_BOUND (target_loop) = tmp_expr;
	}
    }
  return target_nest;
}

/* Compute the step signs of TRANS, using TRANS and stepsigns.  Return the new
   result.  */

static lambda_vector
lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
{
  lambda_matrix matrix, H;
  int size;
  lambda_vector newsteps;
  int i, j, factor, minimum_column;
  int temp;

  matrix = LTM_MATRIX (trans);
  size = LTM_ROWSIZE (trans);
  H = lambda_matrix_new (size, size);

  newsteps = lambda_vector_new (size);
  lambda_vector_copy (stepsigns, newsteps, size);

  lambda_matrix_copy (matrix, H, size, size);

  for (j = 0; j < size; j++)
    {
      lambda_vector row;
      row = H[j];
      for (i = j; i < size; i++)
	if (row[i] < 0)
	  lambda_matrix_col_negate (H, size, i);
      while (lambda_vector_first_nz (row, size, j + 1) < size)
	{
	  minimum_column = lambda_vector_min_nz (row, size, j);
	  lambda_matrix_col_exchange (H, size, j, minimum_column);

	  temp = newsteps[j];
	  newsteps[j] = newsteps[minimum_column];
	  newsteps[minimum_column] = temp;

	  for (i = j + 1; i < size; i++)
	    {
	      factor = row[i] / row[j];
	      lambda_matrix_col_add (H, size, j, i, -1 * factor);
	    }
	}
    }
  return newsteps;
}

/* Transform NEST according to TRANS, and return the new loopnest.
   This involves
   1. Computing a lattice base for the transformation
   2. Composing the dense base with the specified transformation (TRANS)
   3. Decomposing the combined transformation into a lower triangular portion,
   and a unimodular portion. 
   4. Computing the auxiliary nest using the unimodular portion.
   5. Computing the target nest using the auxiliary nest and the lower
   triangular portion.  */ 

lambda_loopnest
lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
{
  lambda_loopnest auxillary_nest, target_nest;

  int depth, invariants;
  int i, j;
  lambda_lattice lattice;
  lambda_trans_matrix trans1, H, U;
  lambda_loop loop;
  lambda_linear_expression expression;
  lambda_vector origin;
  lambda_matrix origin_invariants;
  lambda_vector stepsigns;
  int f;

  depth = LN_DEPTH (nest);
  invariants = LN_INVARIANTS (nest);

  /* Keep track of the signs of the loop steps.  */
  stepsigns = lambda_vector_new (depth);
  for (i = 0; i < depth; i++)
    {
      if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
	stepsigns[i] = 1;
      else
	stepsigns[i] = -1;
    }

  /* Compute the lattice base.  */
  lattice = lambda_lattice_compute_base (nest);
  trans1 = lambda_trans_matrix_new (depth, depth);

  /* Multiply the transformation matrix by the lattice base.  */

  lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
		      LTM_MATRIX (trans1), depth, depth, depth);

  /* Compute the Hermite normal form for the new transformation matrix.  */
  H = lambda_trans_matrix_new (depth, depth);
  U = lambda_trans_matrix_new (depth, depth);
  lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
			 LTM_MATRIX (U));

  /* Compute the auxiliary loop nest's space from the unimodular
     portion.  */
  auxillary_nest = lambda_compute_auxillary_space (nest, U);

  /* Compute the loop step signs from the old step signs and the
     transformation matrix.  */
  stepsigns = lambda_compute_step_signs (trans1, stepsigns);

  /* Compute the target loop nest space from the auxiliary nest and
     the lower triangular matrix H.  */
  target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns);
  origin = lambda_vector_new (depth);
  origin_invariants = lambda_matrix_new (depth, invariants);
  lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
			     LATTICE_ORIGIN (lattice), origin);
  lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
		      origin_invariants, depth, depth, invariants);

  for (i = 0; i < depth; i++)
    {
      loop = LN_LOOPS (target_nest)[i];
      expression = LL_LINEAR_OFFSET (loop);
      if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
	f = 1;
      else
	f = LLE_DENOMINATOR (expression);

      LLE_CONSTANT (expression) += f * origin[i];

      for (j = 0; j < invariants; j++)
	LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
	  f * origin_invariants[i][j];
    }

  return target_nest;

}

/* Convert a gcc tree expression EXPR to a lambda linear expression, and
   return the new expression.  DEPTH is the depth of the loopnest.
   OUTERINDUCTIONVARS is an array of the induction variables for outer loops
   in this nest.  INVARIANTS is the array of invariants for the loop.  EXTRA
   is the amount we have to add/subtract from the expression because of the
   type of comparison it is used in.  */

static lambda_linear_expression
gcc_tree_to_linear_expression (int depth, tree expr,
			       VEC(tree) *outerinductionvars,
			       VEC(tree) *invariants, int extra)
{
  lambda_linear_expression lle = NULL;
  switch (TREE_CODE (expr))
    {
    case INTEGER_CST:
      {
	lle = lambda_linear_expression_new (depth, 2 * depth);
	LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
	if (extra != 0)
	  LLE_CONSTANT (lle) += extra;

	LLE_DENOMINATOR (lle) = 1;
      }
      break;
    case SSA_NAME:
      {
	tree iv, invar;
	size_t i;
	for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
	  if (iv != NULL)
	    {
	      if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
		{
		  lle = lambda_linear_expression_new (depth, 2 * depth);
		  LLE_COEFFICIENTS (lle)[i] = 1;
		  if (extra != 0)
		    LLE_CONSTANT (lle) = extra;

		  LLE_DENOMINATOR (lle) = 1;
		}
	    }
	for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
	  if (invar != NULL)
	    {
	      if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
		{
		  lle = lambda_linear_expression_new (depth, 2 * depth);
		  LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
		  if (extra != 0)
		    LLE_CONSTANT (lle) = extra;
		  LLE_DENOMINATOR (lle) = 1;
		}
	    }
      }
      break;
    default:
      return NULL;
    }

  return lle;
}

/* Return the depth of the loopnest NEST */

static int 
depth_of_nest (struct loop *nest)
{
  size_t depth = 0;
  while (nest)
    {
      depth++;
      nest = nest->inner;
    }
  return depth;
}


/* Return true if OP is invariant in LOOP and all outer loops.  */

static bool
invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
{
  if (is_gimple_min_invariant (op))
    return true;
  if (loop->depth == 0)
    return true;
  if (!expr_invariant_in_loop_p (loop, op))
    return false;
  if (loop->outer 
      && !invariant_in_loop_and_outer_loops (loop->outer, op))
    return false;
  return true;
}

/* Generate a lambda loop from a gcc loop LOOP.  Return the new lambda loop,
   or NULL if it could not be converted.
   DEPTH is the depth of the loop.
   INVARIANTS is a pointer to the array of loop invariants.
   The induction variable for this loop should be stored in the parameter
   OURINDUCTIONVAR.
   OUTERINDUCTIONVARS is an array of induction variables for outer loops.  */

static lambda_loop
gcc_loop_to_lambda_loop (struct loop *loop, int depth,
			 VEC (tree) ** invariants,
			 tree * ourinductionvar,
			 VEC (tree) * outerinductionvars,
			 VEC (tree) ** lboundvars,
			 VEC (tree) ** uboundvars,
			 VEC (int) ** steps)
{
  tree phi;
  tree exit_cond;
  tree access_fn, inductionvar;
  tree step;
  lambda_loop lloop = NULL;
  lambda_linear_expression lbound, ubound;
  tree test;
  int stepint;
  int extra = 0;
  tree lboundvar, uboundvar, uboundresult;
  use_optype uses;

  /* Find out induction var and exit condition.  */
  inductionvar = find_induction_var_from_exit_cond (loop);
  exit_cond = get_loop_exit_condition (loop);

  if (inductionvar == NULL || exit_cond == NULL)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
      return NULL;
    }

  test = TREE_OPERAND (exit_cond, 0);

  if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
    {

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Cannot find PHI node for induction variable\n");

      return NULL;
    }

  phi = SSA_NAME_DEF_STMT (inductionvar);
  if (TREE_CODE (phi) != PHI_NODE)
    {
      uses = STMT_USE_OPS (phi);

      if (!uses)
	{

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file,
		     "Unable to convert loop: Cannot find PHI node for induction variable\n");

	  return NULL;
	}

      phi = USE_OP (uses, 0);
      phi = SSA_NAME_DEF_STMT (phi);
      if (TREE_CODE (phi) != PHI_NODE)
	{

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file,
		     "Unable to convert loop: Cannot find PHI node for induction variable\n");
	  return NULL;
	}

    }

  /* The induction variable name/version we want to put in the array is the
     result of the induction variable phi node.  */
  *ourinductionvar = PHI_RESULT (phi);
  access_fn = instantiate_parameters
    (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
  if (access_fn == chrec_dont_know)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Access function for induction variable phi is unknown\n");

      return NULL;
    }

  step = evolution_part_in_loop_num (access_fn, loop->num);
  if (!step || step == chrec_dont_know)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Cannot determine step of loop.\n");

      return NULL;
    }
  if (TREE_CODE (step) != INTEGER_CST)
    {

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Step of loop is not integer.\n");
      return NULL;
    }

  stepint = TREE_INT_CST_LOW (step);

  /* Only want phis for induction vars, which will have two
     arguments.  */
  if (PHI_NUM_ARGS (phi) != 2)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
      return NULL;
    }

  /* Another induction variable check. One argument's source should be
     in the loop, one outside the loop.  */
  if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src)
      && flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 1)->src))
    {

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");

      return NULL;
    }

  if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src))
    {
      lboundvar = PHI_ARG_DEF (phi, 1);
      lbound = gcc_tree_to_linear_expression (depth, lboundvar,
					      outerinductionvars, *invariants,
					      0);
    }
  else
    {
      lboundvar = PHI_ARG_DEF (phi, 0);
      lbound = gcc_tree_to_linear_expression (depth, lboundvar,
					      outerinductionvars, *invariants,
					      0);
    }
  
  if (!lbound)
    {

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Cannot convert lower bound to linear expression\n");

      return NULL;
    }
  /* One part of the test may be a loop invariant tree.  */
  if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
      && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 1)))
    VEC_safe_push (tree, *invariants, TREE_OPERAND (test, 1));
  else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
	   && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 0)))
    VEC_safe_push (tree, *invariants, TREE_OPERAND (test, 0));
  
  /* The non-induction variable part of the test is the upper bound variable.
   */
  if (TREE_OPERAND (test, 0) == inductionvar)
    uboundvar = TREE_OPERAND (test, 1);
  else
    uboundvar = TREE_OPERAND (test, 0);
    

  /* We only size the vectors assuming we have, at max, 2 times as many
     invariants as we do loops (one for each bound).
     This is just an arbitrary number, but it has to be matched against the
     code below.  */
  gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
  

  /* We might have some leftover.  */
  if (TREE_CODE (test) == LT_EXPR)
    extra = -1 * stepint;
  else if (TREE_CODE (test) == NE_EXPR)
    extra = -1 * stepint;
  else if (TREE_CODE (test) == GT_EXPR)
    extra = -1 * stepint;
  else if (TREE_CODE (test) == EQ_EXPR)
    extra = 1 * stepint;
  
  ubound = gcc_tree_to_linear_expression (depth, uboundvar,
					  outerinductionvars,
					  *invariants, extra);
  uboundresult = build (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
			build_int_cst (TREE_TYPE (uboundvar), extra));
  VEC_safe_push (tree, *uboundvars, uboundresult);
  VEC_safe_push (tree, *lboundvars, lboundvar);
  VEC_safe_push (int, *steps, stepint);
  if (!ubound)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
      return NULL;
    }

  lloop = lambda_loop_new ();
  LL_STEP (lloop) = stepint;
  LL_LOWER_BOUND (lloop) = lbound;
  LL_UPPER_BOUND (lloop) = ubound;
  return lloop;
}

/* Given a LOOP, find the induction variable it is testing against in the exit
   condition.  Return the induction variable if found, NULL otherwise.  */

static tree
find_induction_var_from_exit_cond (struct loop *loop)
{
  tree expr = get_loop_exit_condition (loop);
  tree ivarop;
  tree test;
  if (expr == NULL_TREE)
    return NULL_TREE;
  if (TREE_CODE (expr) != COND_EXPR)
    return NULL_TREE;
  test = TREE_OPERAND (expr, 0);
  if (!COMPARISON_CLASS_P (test))
    return NULL_TREE;

  /* Find the side that is invariant in this loop. The ivar must be the other
     side.  */
  
  if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 0)))
      ivarop = TREE_OPERAND (test, 1);
  else if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 1)))
      ivarop = TREE_OPERAND (test, 0);
  else
    return NULL_TREE;

  if (TREE_CODE (ivarop) != SSA_NAME)
    return NULL_TREE;
  return ivarop;
}

DEF_VEC_GC_P(lambda_loop);
/* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
   Return the new loop nest.  
   INDUCTIONVARS is a pointer to an array of induction variables for the
   loopnest that will be filled in during this process.
   INVARIANTS is a pointer to an array of invariants that will be filled in
   during this process.  */

lambda_loopnest
gcc_loopnest_to_lambda_loopnest (struct loops *currloops,
				 struct loop * loop_nest,
				 VEC (tree) **inductionvars,
				 VEC (tree) **invariants,
				 bool need_perfect_nest)
{
  lambda_loopnest ret;
  struct loop *temp;
  int depth = 0;
  size_t i;
  VEC (lambda_loop) *loops = NULL;
  VEC (tree) *uboundvars = NULL;
  VEC (tree) *lboundvars  = NULL;
  VEC (int) *steps = NULL;
  lambda_loop newloop;
  tree inductionvar = NULL;
  
  depth = depth_of_nest (loop_nest);
  temp = loop_nest;
  while (temp)
    {
      newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
					 &inductionvar, *inductionvars,
					 &lboundvars, &uboundvars,
					 &steps);
      if (!newloop)
	return NULL;
      VEC_safe_push (tree, *inductionvars, inductionvar);
      VEC_safe_push (lambda_loop, loops, newloop);
      temp = temp->inner;
    }
  if (need_perfect_nest)
    {
      if (!perfect_nestify (currloops, loop_nest, 
			    lboundvars, uboundvars, steps, *inductionvars))
	{
	  if (dump_file)
	    fprintf (dump_file, "Not a perfect loop nest and couldn't convert to one.\n");    
	  return NULL;
	}
      else if (dump_file)
	fprintf (dump_file, "Successfully converted loop nest to perfect loop nest.\n");

      
    }
  ret = lambda_loopnest_new (depth, 2 * depth);
  for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
    LN_LOOPS (ret)[i] = newloop;

  return ret;

}


/* Convert a lambda body vector LBV to a gcc tree, and return the new tree. 
   STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
   inserted for us are stored.  INDUCTION_VARS is the array of induction
   variables for the loop this LBV is from.  TYPE is the tree type to use for
   the variables and trees involved.  */

static tree
lbv_to_gcc_expression (lambda_body_vector lbv, 
		       tree type, VEC (tree) *induction_vars, 
		       tree * stmts_to_insert)
{
  tree stmts, stmt, resvar, name;
  tree iv;
  size_t i;
  tree_stmt_iterator tsi;

  /* Create a statement list and a linear expression temporary.  */
  stmts = alloc_stmt_list ();
  resvar = create_tmp_var (type, "lbvtmp");
  add_referenced_tmp_var (resvar);

  /* Start at 0.  */
  stmt = build (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
  name = make_ssa_name (resvar, stmt);
  TREE_OPERAND (stmt, 0) = name;
  tsi = tsi_last (stmts);
  tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);

  for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
    {
      if (LBV_COEFFICIENTS (lbv)[i] != 0)
	{
	  tree newname;
	  tree coeffmult;
	  
	  /* newname = coefficient * induction_variable */
	  coeffmult = build_int_cst (type, LBV_COEFFICIENTS (lbv)[i]);
	  stmt = build (MODIFY_EXPR, void_type_node, resvar,
			fold (build (MULT_EXPR, type, iv, coeffmult)));

	  newname = make_ssa_name (resvar, stmt);
	  TREE_OPERAND (stmt, 0) = newname;
	  fold_stmt (&stmt);
	  tsi = tsi_last (stmts);
	  tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);

	  /* name = name + newname */
	  stmt = build (MODIFY_EXPR, void_type_node, resvar,
			build (PLUS_EXPR, type, name, newname));
	  name = make_ssa_name (resvar, stmt);
	  TREE_OPERAND (stmt, 0) = name;
	  fold_stmt (&stmt);
	  tsi = tsi_last (stmts);
	  tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);

	}
    }

  /* Handle any denominator that occurs.  */
  if (LBV_DENOMINATOR (lbv) != 1)
    {
      tree denominator = build_int_cst (type, LBV_DENOMINATOR (lbv));
      stmt = build (MODIFY_EXPR, void_type_node, resvar,
		    build (CEIL_DIV_EXPR, type, name, denominator));
      name = make_ssa_name (resvar, stmt);
      TREE_OPERAND (stmt, 0) = name;
      fold_stmt (&stmt);
      tsi = tsi_last (stmts);
      tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
    }
  *stmts_to_insert = stmts;
  return name;
}

/* Convert a linear expression from coefficient and constant form to a
   gcc tree.
   Return the tree that represents the final value of the expression.
   LLE is the linear expression to convert.
   OFFSET is the linear offset to apply to the expression.
   TYPE is the tree type to use for the variables and math. 
   INDUCTION_VARS is a vector of induction variables for the loops.
   INVARIANTS is a vector of the loop nest invariants.
   WRAP specifies what tree code to wrap the results in, if there is more than
   one (it is either MAX_EXPR, or MIN_EXPR).
   STMTS_TO_INSERT Is a pointer to the statement list we fill in with
   statements that need to be inserted for the linear expression.  */

static tree
lle_to_gcc_expression (lambda_linear_expression lle,
		       lambda_linear_expression offset,
		       tree type,
		       VEC(tree) *induction_vars,
		       VEC(tree) *invariants,
		       enum tree_code wrap, tree * stmts_to_insert)
{
  tree stmts, stmt, resvar, name;
  size_t i;
  tree_stmt_iterator tsi;
  tree iv, invar;
  VEC(tree) *results = NULL;

  name = NULL_TREE;
  /* Create a statement list and a linear expression temporary.  */
  stmts = alloc_stmt_list ();
  resvar = create_tmp_var (type, "lletmp");
  add_referenced_tmp_var (resvar);

  /* Build up the linear expressions, and put the variable representing the
     result in the results array.  */
  for (; lle != NULL; lle = LLE_NEXT (lle))
    {
      /* Start at name = 0.  */
      stmt = build (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
      name = make_ssa_name (resvar, stmt);
      TREE_OPERAND (stmt, 0) = name;
      fold_stmt (&stmt);
      tsi = tsi_last (stmts);
      tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);

      /* First do the induction variables.  
         at the end, name = name + all the induction variables added
         together.  */
      for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
	{
	  if (LLE_COEFFICIENTS (lle)[i] != 0)
	    {
	      tree newname;
	      tree mult;
	      tree coeff;

	      /* mult = induction variable * coefficient.  */
	      if (LLE_COEFFICIENTS (lle)[i] == 1)
		{
		  mult = VEC_index (tree, induction_vars, i);
		}
	      else
		{
		  coeff = build_int_cst (type,
					 LLE_COEFFICIENTS (lle)[i]);
		  mult = fold (build (MULT_EXPR, type, iv, coeff));
		}

	      /* newname = mult */
	      stmt = build (MODIFY_EXPR, void_type_node, resvar, mult);
	      newname = make_ssa_name (resvar, stmt);
	      TREE_OPERAND (stmt, 0) = newname;
	      fold_stmt (&stmt);
	      tsi = tsi_last (stmts);
	      tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);

	      /* name = name + newname */
	      stmt = build (MODIFY_EXPR, void_type_node, resvar,
			    build (PLUS_EXPR, type, name, newname));
	      name = make_ssa_name (resvar, stmt);
	      TREE_OPERAND (stmt, 0) = name;
	      fold_stmt (&stmt);
	      tsi = tsi_last (stmts);
	      tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
	    }
	}

      /* Handle our invariants.
         At the end, we have name = name + result of adding all multiplied
         invariants.  */
      for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
	{
	  if (LLE_INVARIANT_COEFFICIENTS (lle)[i] != 0)
	    {
	      tree newname;
	      tree mult;
	      tree coeff;
	      int invcoeff = LLE_INVARIANT_COEFFICIENTS (lle)[i];
	      /* mult = invariant * coefficient  */
	      if (invcoeff == 1)
		{
		  mult = invar;
		}
	      else
		{
		  coeff = build_int_cst (type, invcoeff);
		  mult = fold (build (MULT_EXPR, type, invar, coeff));
		}

	      /* newname = mult */
	      stmt = build (MODIFY_EXPR, void_type_node, resvar, mult);
	      newname = make_ssa_name (resvar, stmt);
	      TREE_OPERAND (stmt, 0) = newname;
	      fold_stmt (&stmt);
	      tsi = tsi_last (stmts);
	      tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);

	      /* name = name + newname */
	      stmt = build (MODIFY_EXPR, void_type_node, resvar,
			    build (PLUS_EXPR, type, name, newname));
	      name = make_ssa_name (resvar, stmt);
	      TREE_OPERAND (stmt, 0) = name;
	      fold_stmt (&stmt);
	      tsi = tsi_last (stmts);
	      tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
	    }
	}

      /* Now handle the constant.
         name = name + constant.  */
      if (LLE_CONSTANT (lle) != 0)
	{
	  stmt = build (MODIFY_EXPR, void_type_node, resvar,
			build (PLUS_EXPR, type, name, 
			       build_int_cst (type, LLE_CONSTANT (lle))));
	  name = make_ssa_name (resvar, stmt);
	  TREE_OPERAND (stmt, 0) = name;
	  fold_stmt (&stmt);
	  tsi = tsi_last (stmts);
	  tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
	}

      /* Now handle the offset.
         name = name + linear offset.  */
      if (LLE_CONSTANT (offset) != 0)
	{
	  stmt = build (MODIFY_EXPR, void_type_node, resvar,
			build (PLUS_EXPR, type, name, 
			       build_int_cst (type, LLE_CONSTANT (offset))));
	  name = make_ssa_name (resvar, stmt);
	  TREE_OPERAND (stmt, 0) = name;
	  fold_stmt (&stmt);
	  tsi = tsi_last (stmts);
	  tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
	}

      /* Handle any denominator that occurs.  */
      if (LLE_DENOMINATOR (lle) != 1)
	{
	  if (wrap == MAX_EXPR)
	    stmt = build (MODIFY_EXPR, void_type_node, resvar,
			  build (CEIL_DIV_EXPR, type, name, 
				 build_int_cst (type, LLE_DENOMINATOR (lle))));
	  else if (wrap == MIN_EXPR)
	    stmt = build (MODIFY_EXPR, void_type_node, resvar,
			  build (FLOOR_DIV_EXPR, type, name, 
				 build_int_cst (type, LLE_DENOMINATOR (lle))));
	  else
	    gcc_unreachable();

	  /* name = {ceil, floor}(name/denominator) */
	  name = make_ssa_name (resvar, stmt);
	  TREE_OPERAND (stmt, 0) = name;
	  tsi = tsi_last (stmts);
	  tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
	}
      VEC_safe_push (tree, results, name);
    }

  /* Again, out of laziness, we don't handle this case yet.  It's not
     hard, it just hasn't occurred.  */
  gcc_assert (VEC_length (tree, results) <= 2);
  
  /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR.  */
  if (VEC_length (tree, results) > 1)
    {
      tree op1 = VEC_index (tree, results, 0);
      tree op2 = VEC_index (tree, results, 1);
      stmt = build (MODIFY_EXPR, void_type_node, resvar,
		    build (wrap, type, op1, op2));
      name = make_ssa_name (resvar, stmt);
      TREE_OPERAND (stmt, 0) = name;
      tsi = tsi_last (stmts);
      tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
    }

  *stmts_to_insert = stmts;
  return name;
}

/* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
   it, back into gcc code.  This changes the
   loops, their induction variables, and their bodies, so that they
   match the transformed loopnest.  
   OLD_LOOPNEST is the loopnest before we've replaced it with the new
   loopnest.
   OLD_IVS is a vector of induction variables from the old loopnest.
   INVARIANTS is a vector of loop invariants from the old loopnest.
   NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
   TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get 
   NEW_LOOPNEST.  */

void
lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
				 VEC(tree) *old_ivs,
				 VEC(tree) *invariants,
				 lambda_loopnest new_loopnest,
				 lambda_trans_matrix transform)
{

  struct loop *temp;
  size_t i = 0;
  size_t depth = 0;
  VEC(tree) *new_ivs = NULL;
  tree oldiv;
  
  block_stmt_iterator bsi;

  if (dump_file)
    {
      transform = lambda_trans_matrix_inverse (transform);
      fprintf (dump_file, "Inverse of transformation matrix:\n");
      print_lambda_trans_matrix (dump_file, transform);
    }
  depth = depth_of_nest (old_loopnest);
  temp = old_loopnest;

  while (temp)
    {
      lambda_loop newloop;
      basic_block bb;
      edge exit;
      tree ivvar, ivvarinced, exitcond, stmts;
      enum tree_code testtype;
      tree newupperbound, newlowerbound;
      lambda_linear_expression offset;
      tree type;
      bool insert_after;
      tree inc_stmt;

      oldiv = VEC_index (tree, old_ivs, i);
      type = TREE_TYPE (oldiv);

      /* First, build the new induction variable temporary  */

      ivvar = create_tmp_var (type, "lnivtmp");
      add_referenced_tmp_var (ivvar);

      VEC_safe_push (tree, new_ivs, ivvar);

      newloop = LN_LOOPS (new_loopnest)[i];

      /* Linear offset is a bit tricky to handle.  Punt on the unhandled
         cases for now.  */
      offset = LL_LINEAR_OFFSET (newloop);
      
      gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
		  lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
	    
      /* Now build the  new lower bounds, and insert the statements
         necessary to generate it on the loop preheader.  */
      newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
					     LL_LINEAR_OFFSET (newloop),
					     type,
					     new_ivs,
					     invariants, MAX_EXPR, &stmts);
      bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
      bsi_commit_edge_inserts ();
      /* Build the new upper bound and insert its statements in the
         basic block of the exit condition */
      newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
					     LL_LINEAR_OFFSET (newloop),
					     type,
					     new_ivs,
					     invariants, MIN_EXPR, &stmts);
      exit = temp->single_exit;
      exitcond = get_loop_exit_condition (temp);
      bb = bb_for_stmt (exitcond);
      bsi = bsi_start (bb);
      bsi_insert_after (&bsi, stmts, BSI_NEW_STMT);

      /* Create the new iv.  */

      standard_iv_increment_position (temp, &bsi, &insert_after);
      create_iv (newlowerbound,
		 build_int_cst (type, LL_STEP (newloop)),
		 ivvar, temp, &bsi, insert_after, &ivvar,
		 NULL);

      /* Unfortunately, the incremented ivvar that create_iv inserted may not
	 dominate the block containing the exit condition.
	 So we simply create our own incremented iv to use in the new exit
	 test,  and let redundancy elimination sort it out.  */
      inc_stmt = build (PLUS_EXPR, type, 
			ivvar, build_int_cst (type, LL_STEP (newloop)));
      inc_stmt = build (MODIFY_EXPR, void_type_node, SSA_NAME_VAR (ivvar),
			inc_stmt);
      ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
      TREE_OPERAND (inc_stmt, 0) = ivvarinced;
      bsi = bsi_for_stmt (exitcond);
      bsi_insert_before (&bsi, inc_stmt, BSI_SAME_STMT);

      /* Replace the exit condition with the new upper bound
         comparison.  */
      
      testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
      
      /* We want to build a conditional where true means exit the loop, and
	 false means continue the loop.
	 So swap the testtype if this isn't the way things are.*/

      if (exit->flags & EDGE_FALSE_VALUE)
	testtype = swap_tree_comparison (testtype);

      COND_EXPR_COND (exitcond) = build (testtype,
					 boolean_type_node,
					 newupperbound, ivvarinced);
      update_stmt (exitcond);
      VEC_replace (tree, new_ivs, i, ivvar);

      i++;
      temp = temp->inner;
    }

  /* Rewrite uses of the old ivs so that they are now specified in terms of
     the new ivs.  */

  for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
    {
      imm_use_iterator imm_iter;
      use_operand_p imm_use;
      tree oldiv_def;
      tree oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);

      gcc_assert (TREE_CODE (oldiv_stmt) == PHI_NODE
		  || NUM_DEFS (STMT_DEF_OPS (oldiv_stmt)) == 1);
      if (TREE_CODE (oldiv_stmt) == PHI_NODE)
	oldiv_def = PHI_RESULT (oldiv_stmt);
      else
	oldiv_def = DEF_OP (STMT_DEF_OPS (oldiv_stmt), 0);

      FOR_EACH_IMM_USE_SAFE (imm_use, imm_iter, oldiv_def)
	{
	  tree stmt = USE_STMT (imm_use);
	  use_operand_p use_p;
	  ssa_op_iter iter;
	  gcc_assert (TREE_CODE (stmt) != PHI_NODE);
	  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
	    {
	      if (USE_FROM_PTR (use_p) == oldiv)
		{
		  tree newiv, stmts;
		  lambda_body_vector lbv, newlbv;
		  /* Compute the new expression for the induction
		     variable.  */
		  depth = VEC_length (tree, new_ivs);
		  lbv = lambda_body_vector_new (depth);
		  LBV_COEFFICIENTS (lbv)[i] = 1;
		  
		  newlbv = lambda_body_vector_compute_new (transform, lbv);

		  newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
						 new_ivs, &stmts);
		  bsi = bsi_for_stmt (stmt);
		  /* Insert the statements to build that
		     expression.  */
		  bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
		  propagate_value (use_p, newiv);
		  update_stmt (stmt);
		  
		}
	    }
	}
    }
}


/* Returns true when the vector V is lexicographically positive, in
   other words, when the first nonzero element is positive.  */

static bool
lambda_vector_lexico_pos (lambda_vector v, 
			  unsigned n)
{
  unsigned i;
  for (i = 0; i < n; i++)
    {
      if (v[i] == 0)
	continue;
      if (v[i] < 0)
	return false;
      if (v[i] > 0)
	return true;
    }
  return true;
}


/* Return TRUE if this is not interesting statement from the perspective of
   determining if we have a perfect loop nest.  */

static bool
not_interesting_stmt (tree stmt)
{
  /* Note that COND_EXPR's aren't interesting because if they were exiting the
     loop, we would have already failed the number of exits tests.  */
  if (TREE_CODE (stmt) == LABEL_EXPR
      || TREE_CODE (stmt) == GOTO_EXPR
      || TREE_CODE (stmt) == COND_EXPR)
    return true;
  return false;
}

/* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP.  */

static bool
phi_loop_edge_uses_def (struct loop *loop, tree phi, tree def)
{
  int i;
  for (i = 0; i < PHI_NUM_ARGS (phi); i++)
    if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, i)->src))
      if (PHI_ARG_DEF (phi, i) == def)
	return true;
  return false;
}

/* Return TRUE if STMT is a use of PHI_RESULT.  */

static bool
stmt_uses_phi_result (tree stmt, tree phi_result)
{
  use_optype uses = STMT_USE_OPS (stmt);
  
  /* This is conservatively true, because we only want SIMPLE bumpers
     of the form x +- constant for our pass.  */
  if (NUM_USES (uses) != 1)
    return false;
  if (USE_OP (uses, 0) == phi_result)
    return true;
  
  return false;
}

/* STMT is a bumper stmt for LOOP if the version it defines is used in the
   in-loop-edge in a phi node, and the operand it uses is the result of that
   phi node. 
   I.E. i_29 = i_3 + 1
        i_3 = PHI (0, i_29);  */

static bool
stmt_is_bumper_for_loop (struct loop *loop, tree stmt)
{
  tree use;
  tree def;
  def_optype defs = STMT_DEF_OPS (stmt);
  imm_use_iterator iter;
  use_operand_p use_p;
  
  if (NUM_DEFS (defs) != 1)
    return false;
  def = DEF_OP (defs, 0);
  FOR_EACH_IMM_USE_FAST (use_p, iter, def)
    {
      use = USE_STMT (use_p);
      if (TREE_CODE (use) == PHI_NODE)
	{
	  if (phi_loop_edge_uses_def (loop, use, def))
	    if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
	      return true;
	} 
    }
  return false;
}


/* Return true if LOOP is a perfect loop nest.
   Perfect loop nests are those loop nests where all code occurs in the
   innermost loop body.
   If S is a program statement, then

   i.e. 
   DO I = 1, 20
       S1
       DO J = 1, 20
       ...
       END DO
   END DO
   is not a perfect loop nest because of S1.
   
   DO I = 1, 20
      DO J = 1, 20
        S1
	...
      END DO
   END DO 
   is a perfect loop nest.  

   Since we don't have high level loops anymore, we basically have to walk our
   statements and ignore those that are there because the loop needs them (IE
   the induction variable increment, and jump back to the top of the loop).  */

bool
perfect_nest_p (struct loop *loop)
{
  basic_block *bbs;
  size_t i;
  tree exit_cond;

  if (!loop->inner)
    return true;
  bbs = get_loop_body (loop);
  exit_cond = get_loop_exit_condition (loop);
  for (i = 0; i < loop->num_nodes; i++)
    {
      if (bbs[i]->loop_father == loop)
	{
	  block_stmt_iterator bsi;
	  for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
	    {
	      tree stmt = bsi_stmt (bsi);
	      if (stmt == exit_cond
		  || not_interesting_stmt (stmt)
		  || stmt_is_bumper_for_loop (loop, stmt))
		continue;
	      free (bbs);
	      return false;
	    }
	}
    }
  free (bbs);
  /* See if the inner loops are perfectly nested as well.  */
  if (loop->inner)    
    return perfect_nest_p (loop->inner);
  return true;
}

/* Replace the USES of tree X in STMT with tree Y */

static void
replace_uses_of_x_with_y (tree stmt, tree x, tree y)
{
  use_optype uses = STMT_USE_OPS (stmt);
  size_t i;
  for (i = 0; i < NUM_USES (uses); i++)
    {
      if (USE_OP (uses, i) == x)
	SET_USE_OP (uses, i, y);
    }
}

/* Return TRUE if STMT uses tree OP in it's uses.  */

static bool
stmt_uses_op (tree stmt, tree op)
{
  use_optype uses = STMT_USE_OPS (stmt);
  size_t i;
  for (i = 0; i < NUM_USES (uses); i++)
    {
      if (USE_OP (uses, i) == op)
	return true;
    }
  return false;
}

/* Return TRUE if LOOP is an imperfect nest that we can convert to a perfect
   one.  LOOPIVS is a vector of induction variables, one per loop.  
   ATM, we only handle imperfect nests of depth 2, where all of the statements
   occur after the inner loop.  */

static bool
can_convert_to_perfect_nest (struct loop *loop,
			     VEC (tree) *loopivs)
{
  basic_block *bbs;
  tree exit_condition, phi;
  size_t i;
  block_stmt_iterator bsi;
  basic_block exitdest;

  /* Can't handle triply nested+ loops yet.  */
  if (!loop->inner || loop->inner->inner)
    return false;
  
  /* We only handle moving the after-inner-body statements right now, so make
     sure all the statements we need to move are located in that position.  */
  bbs = get_loop_body (loop);
  exit_condition = get_loop_exit_condition (loop);
  for (i = 0; i < loop->num_nodes; i++)
    {
      if (bbs[i]->loop_father == loop)
	{
	  for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
	    { 
	      size_t j;
	      tree stmt = bsi_stmt (bsi);
	      if (stmt == exit_condition
		  || not_interesting_stmt (stmt)
		  || stmt_is_bumper_for_loop (loop, stmt))
		continue;
	      /* If the statement uses inner loop ivs, we == screwed.  */
	      for (j = 1; j < VEC_length (tree, loopivs); j++)
		if (stmt_uses_op (stmt, VEC_index (tree, loopivs, j)))
		  {
		    free (bbs);
		    return false;
		  }
	      
	      /* If the bb of a statement we care about isn't dominated by 
		 the header of the inner loop, then we are also screwed.  */
	      if (!dominated_by_p (CDI_DOMINATORS,
				   bb_for_stmt (stmt), 
				   loop->inner->header))
		{
		  free (bbs);
		  return false;
		}
	    }
	}
    }  

  /* We also need to make sure the loop exit only has simple copy phis in it,
     otherwise we don't know how to transform it into a perfect nest right
     now.  */
  exitdest = loop->single_exit->dest;
  
  for (phi = phi_nodes (exitdest); phi; phi = PHI_CHAIN (phi))
    if (PHI_NUM_ARGS (phi) != 1)
      return false;

  return true;
}

/* Transform the loop nest into a perfect nest, if possible.
   LOOPS is the current struct loops *
   LOOP is the loop nest to transform into a perfect nest
   LBOUNDS are the lower bounds for the loops to transform
   UBOUNDS are the upper bounds for the loops to transform
   STEPS is the STEPS for the loops to transform.
   LOOPIVS is the induction variables for the loops to transform.
   
   Basically, for the case of

   FOR (i = 0; i < 50; i++)
    {
     FOR (j =0; j < 50; j++)
     {
        <whatever>
     }
     <some code>
    }

   This function will transform it into a perfect loop nest by splitting the
   outer loop into two loops, like so:

   FOR (i = 0; i < 50; i++)
   {
     FOR (j = 0; j < 50; j++)
     {
         <whatever>
     }
   }
   
   FOR (i = 0; i < 50; i ++)
   {
    <some code>
   }

   Return FALSE if we can't make this loop into a perfect nest.  */
static bool
perfect_nestify (struct loops *loops,
		 struct loop *loop,
		 VEC (tree) *lbounds,
		 VEC (tree) *ubounds,
		 VEC (int) *steps,
		 VEC (tree) *loopivs)
{
  basic_block *bbs;
  tree exit_condition;
  tree then_label, else_label, cond_stmt;
  basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
  size_t i;
  block_stmt_iterator bsi;
  bool insert_after;
  edge e;
  struct loop *newloop;
  tree phi;
  tree uboundvar;
  tree stmt;
  tree oldivvar, ivvar, ivvarinced;
  VEC (tree) *phis = NULL;

  if (!can_convert_to_perfect_nest (loop, loopivs))
    return false;

  /* Create the new loop */

  olddest = loop->single_exit->dest;
  preheaderbb =  loop_split_edge_with (loop->single_exit, NULL);
  headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
  
  /* Push the exit phi nodes that we are moving.  */
  for (phi = phi_nodes (olddest); phi; phi = PHI_CHAIN (phi))
    {
      VEC_safe_push (tree, phis, PHI_RESULT (phi));
      VEC_safe_push (tree, phis, PHI_ARG_DEF (phi, 0));
    }
  e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);

  /* Remove the exit phis from the old basic block.  Make sure to set
     PHI_RESULT to null so it doesn't get released.  */
  while (phi_nodes (olddest) != NULL)
    {
      SET_PHI_RESULT (phi_nodes (olddest), NULL);
      remove_phi_node (phi_nodes (olddest), NULL);
    }      

  /* and add them back to the new basic block.  */
  while (VEC_length (tree, phis) != 0)
    {
      tree def;
      tree phiname;
      def = VEC_pop (tree, phis);
      phiname = VEC_pop (tree, phis);      
      phi = create_phi_node (phiname, preheaderbb);
      add_phi_arg (phi, def, single_pred_edge (preheaderbb));
    }       
  flush_pending_stmts (e);

  bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
  latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
  make_edge (headerbb, bodybb, EDGE_FALLTHRU); 
  then_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (latchbb));
  else_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (olddest));
  cond_stmt = build (COND_EXPR, void_type_node,
		     build (NE_EXPR, boolean_type_node, 
			    integer_one_node, 
			    integer_zero_node), 
		     then_label, else_label);
  bsi = bsi_start (bodybb);
  bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
  e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
  make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
  make_edge (latchbb, headerbb, EDGE_FALLTHRU);

  /* Update the loop structures.  */
  newloop = duplicate_loop (loops, loop, olddest->loop_father);  
  newloop->header = headerbb;
  newloop->latch = latchbb;
  newloop->single_exit = e;
  add_bb_to_loop (latchbb, newloop);
  add_bb_to_loop (bodybb, newloop);
  add_bb_to_loop (headerbb, newloop);
  set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
  set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
  set_immediate_dominator (CDI_DOMINATORS, preheaderbb, 
			   loop->single_exit->src);
  set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
  set_immediate_dominator (CDI_DOMINATORS, olddest, bodybb);
  /* Create the new iv.  */
  ivvar = create_tmp_var (integer_type_node, "perfectiv");
  add_referenced_tmp_var (ivvar);
  standard_iv_increment_position (newloop, &bsi, &insert_after);
  create_iv (VEC_index (tree, lbounds, 0),
	     build_int_cst (integer_type_node, VEC_index (int, steps, 0)),
	     ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);	     

  /* Create the new upper bound.  This may be not just a variable, so we copy
     it to one just in case.  */

  exit_condition = get_loop_exit_condition (newloop);
  uboundvar = create_tmp_var (integer_type_node, "uboundvar");
  add_referenced_tmp_var (uboundvar);
  stmt = build (MODIFY_EXPR, void_type_node, uboundvar, 
		VEC_index (tree, ubounds, 0));
  uboundvar = make_ssa_name (uboundvar, stmt);
  TREE_OPERAND (stmt, 0) = uboundvar;

  if (insert_after)
    bsi_insert_after (&bsi, stmt, BSI_SAME_STMT);
  else
    bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);

  COND_EXPR_COND (exit_condition) = build (GE_EXPR, 
					   boolean_type_node,
					   uboundvar,
					   ivvarinced);

  bbs = get_loop_body (loop); 
  /* Now replace the induction variable in the moved statements with the
     correct loop induction variable.  */
  oldivvar = VEC_index (tree, loopivs, 0);
  for (i = 0; i < loop->num_nodes; i++)
    {
      block_stmt_iterator tobsi = bsi_last (bodybb);
      if (bbs[i]->loop_father == loop)
	{
	  /* Note that the bsi only needs to be explicitly incremented
	     when we don't move something, since it is automatically
	     incremented when we do.  */
	  for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
	    { 
	      tree stmt = bsi_stmt (bsi);
	      if (stmt == exit_condition
		  || not_interesting_stmt (stmt)
		  || stmt_is_bumper_for_loop (loop, stmt))
		{
		  bsi_next (&bsi);
		  continue;
		}
	      replace_uses_of_x_with_y (stmt, oldivvar, ivvar);
	      bsi_move_before (&bsi, &tobsi);
	    }
	}
    }
  free (bbs);
  return perfect_nest_p (loop);
}

/* Return true if TRANS is a legal transformation matrix that respects
   the dependence vectors in DISTS and DIRS.  The conservative answer
   is false.

   "Wolfe proves that a unimodular transformation represented by the
   matrix T is legal when applied to a loop nest with a set of
   lexicographically non-negative distance vectors RDG if and only if
   for each vector d in RDG, (T.d >= 0) is lexicographically positive.
   i.e.: if and only if it transforms the lexicographically positive
   distance vectors to lexicographically positive vectors.  Note that
   a unimodular matrix must transform the zero vector (and only it) to
   the zero vector." S.Muchnick.  */

bool
lambda_transform_legal_p (lambda_trans_matrix trans, 
			  int nb_loops,
			  varray_type dependence_relations)
{
  unsigned int i;
  lambda_vector distres;
  struct data_dependence_relation *ddr;

#if defined ENABLE_CHECKING
  if (LTM_COLSIZE (trans) != nb_loops
      || LTM_ROWSIZE (trans) != nb_loops)
    abort ();
#endif

  /* When there is an unknown relation in the dependence_relations, we
     know that it is no worth looking at this loop nest: give up.  */
  ddr = (struct data_dependence_relation *) 
    VARRAY_GENERIC_PTR (dependence_relations, 0);
  if (ddr == NULL)
    return true;
  if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
    return false;

  distres = lambda_vector_new (nb_loops);

  /* For each distance vector in the dependence graph.  */
  for (i = 0; i < VARRAY_ACTIVE_SIZE (dependence_relations); i++)
    {
      ddr = (struct data_dependence_relation *) 
	VARRAY_GENERIC_PTR (dependence_relations, i);     

      /* Don't care about relations for which we know that there is no
	 dependence, nor about read-read (aka. output-dependences):
	 these data accesses can happen in any order.  */
      if (DDR_ARE_DEPENDENT (ddr) == chrec_known
	  || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
	continue;

      /* Conservatively answer: "this transformation is not valid".  */
      if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
	return false;
	  
      /* If the dependence could not be captured by a distance vector,
	 conservatively answer that the transform is not valid.  */
      if (DDR_DIST_VECT (ddr) == NULL)
	return false;

      /* Compute trans.dist_vect */
      lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops, 
				 DDR_DIST_VECT (ddr), distres);

      if (!lambda_vector_lexico_pos (distres, nb_loops))
	return false;
    }
  return true;
}