aboutsummaryrefslogtreecommitdiff
path: root/gcc/cp/semantics.c
blob: 6e15e61131750b6ff14979e762d9cd0147e5cd66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
/* Perform the semantic phase of parsing, i.e., the process of
   building tree structure, checking semantic consistency, and
   building RTL.  These routines are used both during actual parsing
   and during the instantiation of template functions. 

   Copyright (C) 1998, 1999, 2000, 2001, 2002,
   2003, 2004 Free Software Foundation, Inc.
   Written by Mark Mitchell (mmitchell@usa.net) based on code found
   formerly in parse.y and pt.c.  

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.
   
   GCC is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.
   
   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING.  If not, write to the Free
   Software Foundation, 59 Temple Place - Suite 330, Boston, MA
   02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "cp-tree.h"
#include "tree-inline.h"
#include "except.h"
#include "lex.h"
#include "toplev.h"
#include "flags.h"
#include "rtl.h"
#include "expr.h"
#include "output.h"
#include "timevar.h"
#include "debug.h"
#include "cgraph.h"

/* There routines provide a modular interface to perform many parsing
   operations.  They may therefore be used during actual parsing, or
   during template instantiation, which may be regarded as a
   degenerate form of parsing.  Since the current g++ parser is
   lacking in several respects, and will be reimplemented, we are
   attempting to move most code that is not directly related to
   parsing into this file; that will make implementing the new parser
   much easier since it will be able to make use of these routines.  */

static tree maybe_convert_cond (tree);
static tree simplify_aggr_init_exprs_r (tree *, int *, void *);
static void emit_associated_thunks (tree);
static void genrtl_try_block (tree);
static void genrtl_eh_spec_block (tree);
static void genrtl_handler (tree);
static void cp_expand_stmt (tree);


/* Finish processing the COND, the SUBSTMT condition for STMT.  */

#define FINISH_COND(COND, STMT, SUBSTMT) 		\
  do {							\
    if (last_tree != (STMT))				\
      {							\
        RECHAIN_STMTS (STMT, SUBSTMT);			\
        if (!processing_template_decl)			\
          {						\
	    (COND) = build_tree_list (SUBSTMT, COND);	\
	    (SUBSTMT) = (COND);				\
          }						\
      }							\
    else						\
      (SUBSTMT) = (COND);				\
  } while (0)

/* Deferred Access Checking Overview
   ---------------------------------

   Most C++ expressions and declarations require access checking
   to be performed during parsing.  However, in several cases,
   this has to be treated differently.

   For member declarations, access checking has to be deferred
   until more information about the declaration is known.  For
   example:

     class A {
         typedef int X;
       public:
         X f();
     };

     A::X A::f();
     A::X g();

   When we are parsing the function return type `A::X', we don't
   really know if this is allowed until we parse the function name.

   Furthermore, some contexts require that access checking is
   never performed at all.  These include class heads, and template
   instantiations.

   Typical use of access checking functions is described here:
   
   1. When we enter a context that requires certain access checking
      mode, the function `push_deferring_access_checks' is called with
      DEFERRING argument specifying the desired mode.  Access checking
      may be performed immediately (dk_no_deferred), deferred
      (dk_deferred), or not performed (dk_no_check).

   2. When a declaration such as a type, or a variable, is encountered,
      the function `perform_or_defer_access_check' is called.  It
      maintains a TREE_LIST of all deferred checks.

   3. The global `current_class_type' or `current_function_decl' is then
      setup by the parser.  `enforce_access' relies on these information
      to check access.

   4. Upon exiting the context mentioned in step 1,
      `perform_deferred_access_checks' is called to check all declaration
      stored in the TREE_LIST.   `pop_deferring_access_checks' is then
      called to restore the previous access checking mode.

      In case of parsing error, we simply call `pop_deferring_access_checks'
      without `perform_deferred_access_checks'.  */

/* Data for deferred access checking.  */
static GTY(()) deferred_access *deferred_access_stack;
static GTY(()) deferred_access *deferred_access_free_list;

/* Save the current deferred access states and start deferred
   access checking iff DEFER_P is true.  */

void
push_deferring_access_checks (deferring_kind deferring)
{
  deferred_access *d;

  /* For context like template instantiation, access checking
     disabling applies to all nested context.  */
  if (deferred_access_stack
      && deferred_access_stack->deferring_access_checks_kind == dk_no_check)
    deferring = dk_no_check;

  /* Recycle previously used free store if available.  */
  if (deferred_access_free_list)
    {
      d = deferred_access_free_list;
      deferred_access_free_list = d->next;
    }
  else
    d = ggc_alloc (sizeof (deferred_access));

  d->next = deferred_access_stack;
  d->deferred_access_checks = NULL_TREE;
  d->deferring_access_checks_kind = deferring;
  deferred_access_stack = d;
}

/* Resume deferring access checks again after we stopped doing
   this previously.  */

void
resume_deferring_access_checks (void)
{
  if (deferred_access_stack->deferring_access_checks_kind == dk_no_deferred)
    deferred_access_stack->deferring_access_checks_kind = dk_deferred;
}

/* Stop deferring access checks.  */

void
stop_deferring_access_checks (void)
{
  if (deferred_access_stack->deferring_access_checks_kind == dk_deferred)
    deferred_access_stack->deferring_access_checks_kind = dk_no_deferred;
}

/* Discard the current deferred access checks and restore the
   previous states.  */

void
pop_deferring_access_checks (void)
{
  deferred_access *d = deferred_access_stack;
  deferred_access_stack = d->next;

  /* Remove references to access checks TREE_LIST.  */
  d->deferred_access_checks = NULL_TREE;

  /* Store in free list for later use.  */
  d->next = deferred_access_free_list;
  deferred_access_free_list = d;
}

/* Returns a TREE_LIST representing the deferred checks.  
   The TREE_PURPOSE of each node is the type through which the 
   access occurred; the TREE_VALUE is the declaration named.
   */

tree
get_deferred_access_checks (void)
{
  return deferred_access_stack->deferred_access_checks;
}

/* Take current deferred checks and combine with the
   previous states if we also defer checks previously.
   Otherwise perform checks now.  */

void
pop_to_parent_deferring_access_checks (void)
{
  tree deferred_check = get_deferred_access_checks ();
  deferred_access *d1 = deferred_access_stack;
  deferred_access *d2 = deferred_access_stack->next;
  deferred_access *d3 = deferred_access_stack->next->next;

  /* Temporary swap the order of the top two states, just to make
     sure the garbage collector will not reclaim the memory during 
     processing below.  */
  deferred_access_stack = d2;
  d2->next = d1;
  d1->next = d3;

  for ( ; deferred_check; deferred_check = TREE_CHAIN (deferred_check))
    /* Perform deferred check if required.  */
    perform_or_defer_access_check (TREE_PURPOSE (deferred_check), 
				   TREE_VALUE (deferred_check));

  deferred_access_stack = d1;
  d1->next = d2;
  d2->next = d3;
  pop_deferring_access_checks ();
}

/* Perform the deferred access checks.

   After performing the checks, we still have to keep the list
   `deferred_access_stack->deferred_access_checks' since we may want
   to check access for them again later in a different context.
   For example:

     class A {
       typedef int X;
       static X a;
     };
     A::X A::a, x;	// No error for `A::a', error for `x'

   We have to perform deferred access of `A::X', first with `A::a',
   next with `x'.  */

void
perform_deferred_access_checks (void)
{
  tree deferred_check;
  for (deferred_check = deferred_access_stack->deferred_access_checks;
       deferred_check;
       deferred_check = TREE_CHAIN (deferred_check))
    /* Check access.  */
    enforce_access (TREE_PURPOSE (deferred_check), 
		    TREE_VALUE (deferred_check));
}

/* Defer checking the accessibility of DECL, when looked up in
   BINFO.  */

void
perform_or_defer_access_check (tree binfo, tree decl)
{
  tree check;

  my_friendly_assert (TREE_CODE (binfo) == TREE_VEC, 20030623);
  
  /* If we are not supposed to defer access checks, just check now.  */
  if (deferred_access_stack->deferring_access_checks_kind == dk_no_deferred)
    {
      enforce_access (binfo, decl);
      return;
    }
  /* Exit if we are in a context that no access checking is performed.  */
  else if (deferred_access_stack->deferring_access_checks_kind == dk_no_check)
    return;

  /* See if we are already going to perform this check.  */
  for (check = deferred_access_stack->deferred_access_checks;
       check;
       check = TREE_CHAIN (check))
    if (TREE_VALUE (check) == decl && TREE_PURPOSE (check) == binfo)
      return;
  /* If not, record the check.  */
  deferred_access_stack->deferred_access_checks
    = tree_cons (binfo, decl,
		 deferred_access_stack->deferred_access_checks);
}

/* Returns nonzero if the current statement is a full expression,
   i.e. temporaries created during that statement should be destroyed
   at the end of the statement.  */

int
stmts_are_full_exprs_p (void)
{
  return current_stmt_tree ()->stmts_are_full_exprs_p;
}

/* Returns the stmt_tree (if any) to which statements are currently
   being added.  If there is no active statement-tree, NULL is
   returned.  */

stmt_tree
current_stmt_tree (void)
{
  return (cfun 
	  ? &cfun->language->base.x_stmt_tree 
	  : &scope_chain->x_stmt_tree);
}

/* Nonzero if TYPE is an anonymous union or struct type.  We have to use a
   flag for this because "A union for which objects or pointers are
   declared is not an anonymous union" [class.union].  */

int
anon_aggr_type_p (tree node)
{
  return ANON_AGGR_TYPE_P (node);
}

/* Finish a scope.  */

tree
do_poplevel (void)
{
  tree block = NULL_TREE;

  if (stmts_are_full_exprs_p ())
    {
      tree scope_stmts = NULL_TREE;

      block = poplevel (kept_level_p (), 1, 0);
      if (!processing_template_decl)
	{
	  /* This needs to come after the poplevel so that partial scopes
	     are properly nested.  */
	  scope_stmts = add_scope_stmt (/*begin_p=*/0, /*partial_p=*/0);
	  if (block)
	    {
	      SCOPE_STMT_BLOCK (TREE_PURPOSE (scope_stmts)) = block;
	      SCOPE_STMT_BLOCK (TREE_VALUE (scope_stmts)) = block;
	    }
	}
    }

  return block;
}

/* Begin a new scope.  */ 

void
do_pushlevel (scope_kind sk)
{
  if (stmts_are_full_exprs_p ())
    {
      if (!processing_template_decl)
	add_scope_stmt (/*begin_p=*/1, /*partial_p=*/0);
      begin_scope (sk, NULL);
    }
}

/* Finish a goto-statement.  */

tree
finish_goto_stmt (tree destination)
{
  if (TREE_CODE (destination) == IDENTIFIER_NODE)
    destination = lookup_label (destination);

  /* We warn about unused labels with -Wunused.  That means we have to
     mark the used labels as used.  */
  if (TREE_CODE (destination) == LABEL_DECL)
    TREE_USED (destination) = 1;
  else
    {
      /* The DESTINATION is being used as an rvalue.  */
      if (!processing_template_decl)
	destination = decay_conversion (destination);
      /* We don't inline calls to functions with computed gotos.
	 Those functions are typically up to some funny business,
	 and may be depending on the labels being at particular
	 addresses, or some such.  */
      DECL_UNINLINABLE (current_function_decl) = 1;
    }
  
  check_goto (destination);

  return add_stmt (build_stmt (GOTO_STMT, destination));
}

/* COND is the condition-expression for an if, while, etc.,
   statement.  Convert it to a boolean value, if appropriate.  */

static tree
maybe_convert_cond (tree cond)
{
  /* Empty conditions remain empty.  */
  if (!cond)
    return NULL_TREE;

  /* Wait until we instantiate templates before doing conversion.  */
  if (processing_template_decl)
    return cond;

  /* Do the conversion.  */
  cond = convert_from_reference (cond);
  return condition_conversion (cond);
}

/* Finish an expression-statement, whose EXPRESSION is as indicated.  */

tree
finish_expr_stmt (tree expr)
{
  tree r = NULL_TREE;

  if (expr != NULL_TREE)
    {
      if (!processing_template_decl)
	expr = convert_to_void (expr, "statement");
      else if (!type_dependent_expression_p (expr))
	convert_to_void (build_non_dependent_expr (expr), "statement");
      
      r = add_stmt (build_stmt (EXPR_STMT, expr));
    }

  finish_stmt ();

  return r;
}


/* Begin an if-statement.  Returns a newly created IF_STMT if
   appropriate.  */

tree
begin_if_stmt (void)
{
  tree r;
  do_pushlevel (sk_block);
  r = build_stmt (IF_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
  add_stmt (r);
  return r;
}

/* Process the COND of an if-statement, which may be given by
   IF_STMT.  */

void 
finish_if_stmt_cond (tree cond, tree if_stmt)
{
  cond = maybe_convert_cond (cond);
  FINISH_COND (cond, if_stmt, IF_COND (if_stmt));
}

/* Finish the then-clause of an if-statement, which may be given by
   IF_STMT.  */

tree
finish_then_clause (tree if_stmt)
{
  RECHAIN_STMTS (if_stmt, THEN_CLAUSE (if_stmt));
  return if_stmt;
}

/* Begin the else-clause of an if-statement.  */

void 
begin_else_clause (void)
{
}

/* Finish the else-clause of an if-statement, which may be given by
   IF_STMT.  */

void
finish_else_clause (tree if_stmt)
{
  RECHAIN_STMTS (if_stmt, ELSE_CLAUSE (if_stmt));
}

/* Finish an if-statement.  */

void 
finish_if_stmt (void)
{
  finish_stmt ();
  do_poplevel ();
}

/* Begin a while-statement.  Returns a newly created WHILE_STMT if
   appropriate.  */

tree
begin_while_stmt (void)
{
  tree r;
  r = build_stmt (WHILE_STMT, NULL_TREE, NULL_TREE);
  add_stmt (r);
  do_pushlevel (sk_block);
  return r;
}

/* Process the COND of a while-statement, which may be given by
   WHILE_STMT.  */

void 
finish_while_stmt_cond (tree cond, tree while_stmt)
{
  cond = maybe_convert_cond (cond);
  if (processing_template_decl)
    /* Don't mess with condition decls in a template.  */
    FINISH_COND (cond, while_stmt, WHILE_COND (while_stmt));
  else if (getdecls () == NULL_TREE)
    /* It was a simple condition; install it.  */
    WHILE_COND (while_stmt) = cond;
  else
    {
      /* If there was a declaration in the condition, we can't leave it
	 there; transform
	    while (A x = 42) { }
	 to
	    while (true) { A x = 42; if (!x) break; }  */
      tree if_stmt;
      WHILE_COND (while_stmt) = boolean_true_node;

      if_stmt = begin_if_stmt ();
      cond = build_unary_op (TRUTH_NOT_EXPR, cond, 0);
      finish_if_stmt_cond (cond, if_stmt);
      finish_break_stmt ();
      finish_then_clause (if_stmt);
      finish_if_stmt ();
    }
}

/* Finish a while-statement, which may be given by WHILE_STMT.  */

void 
finish_while_stmt (tree while_stmt)
{
  do_poplevel ();
  RECHAIN_STMTS (while_stmt, WHILE_BODY (while_stmt));
  finish_stmt ();
}

/* Begin a do-statement.  Returns a newly created DO_STMT if
   appropriate.  */

tree
begin_do_stmt (void)
{
  tree r = build_stmt (DO_STMT, NULL_TREE, NULL_TREE);
  add_stmt (r);
  return r;
}

/* Finish the body of a do-statement, which may be given by DO_STMT.  */

void
finish_do_body (tree do_stmt)
{
  RECHAIN_STMTS (do_stmt, DO_BODY (do_stmt));
}

/* Finish a do-statement, which may be given by DO_STMT, and whose
   COND is as indicated.  */

void
finish_do_stmt (tree cond, tree do_stmt)
{
  cond = maybe_convert_cond (cond);
  DO_COND (do_stmt) = cond;
  finish_stmt ();
}

/* Finish a return-statement.  The EXPRESSION returned, if any, is as
   indicated.  */

tree
finish_return_stmt (tree expr)
{
  tree r;

  expr = check_return_expr (expr);
  if (!processing_template_decl)
    {
      if (DECL_DESTRUCTOR_P (current_function_decl))
	{
	  /* Similarly, all destructors must run destructors for
	     base-classes before returning.  So, all returns in a
	     destructor get sent to the DTOR_LABEL; finish_function emits
	     code to return a value there.  */
	  return finish_goto_stmt (dtor_label);
	}
    }
  r = add_stmt (build_stmt (RETURN_STMT, expr));
  finish_stmt ();

  return r;
}

/* Begin a for-statement.  Returns a new FOR_STMT if appropriate.  */

tree
begin_for_stmt (void)
{
  tree r;

  r = build_stmt (FOR_STMT, NULL_TREE, NULL_TREE, 
		  NULL_TREE, NULL_TREE);
  NEW_FOR_SCOPE_P (r) = flag_new_for_scope > 0;
  if (NEW_FOR_SCOPE_P (r))
    do_pushlevel (sk_for);
  add_stmt (r);

  return r;
}

/* Finish the for-init-statement of a for-statement, which may be
   given by FOR_STMT.  */

void
finish_for_init_stmt (tree for_stmt)
{
  if (last_tree != for_stmt)
    RECHAIN_STMTS (for_stmt, FOR_INIT_STMT (for_stmt));
  do_pushlevel (sk_block);
}

/* Finish the COND of a for-statement, which may be given by
   FOR_STMT.  */

void
finish_for_cond (tree cond, tree for_stmt)
{
  cond = maybe_convert_cond (cond);
  if (processing_template_decl)
    /* Don't mess with condition decls in a template.  */
    FINISH_COND (cond, for_stmt, FOR_COND (for_stmt));
  else if (getdecls () == NULL_TREE)
    /* It was a simple condition; install it.  */
    FOR_COND (for_stmt) = cond;
  else
    {
      /* If there was a declaration in the condition, we can't leave it
	 there; transform
	    for (; A x = 42;) { }
	 to
	    for (;;) { A x = 42; if (!x) break; }  */
      tree if_stmt;
      FOR_COND (for_stmt) = NULL_TREE;

      if_stmt = begin_if_stmt ();
      cond = build_unary_op (TRUTH_NOT_EXPR, cond, 0);
      finish_if_stmt_cond (cond, if_stmt);
      finish_break_stmt ();
      finish_then_clause (if_stmt);
      finish_if_stmt ();
    }
}

/* Finish the increment-EXPRESSION in a for-statement, which may be
   given by FOR_STMT.  */

void
finish_for_expr (tree expr, tree for_stmt)
{
  /* If EXPR is an overloaded function, issue an error; there is no
     context available to use to perform overload resolution.  */
  if (expr && type_unknown_p (expr))
    {
      cxx_incomplete_type_error (expr, TREE_TYPE (expr));
      expr = error_mark_node;
    }
  FOR_EXPR (for_stmt) = expr;
}

/* Finish the body of a for-statement, which may be given by
   FOR_STMT.  The increment-EXPR for the loop must be
   provided.  */

void
finish_for_stmt (tree for_stmt)
{
  /* Pop the scope for the body of the loop.  */
  do_poplevel ();
  RECHAIN_STMTS (for_stmt, FOR_BODY (for_stmt));
  if (NEW_FOR_SCOPE_P (for_stmt))
    do_poplevel ();
  finish_stmt (); 
}

/* Finish a break-statement.  */

tree
finish_break_stmt (void)
{
  return add_stmt (build_break_stmt ());
}

/* Finish a continue-statement.  */

tree
finish_continue_stmt (void)
{
  return add_stmt (build_continue_stmt ());
}

/* Begin a switch-statement.  Returns a new SWITCH_STMT if
   appropriate.  */

tree
begin_switch_stmt (void)
{
  tree r;
  do_pushlevel (sk_block);
  r = build_stmt (SWITCH_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
  add_stmt (r);
  return r;
}

/* Finish the cond of a switch-statement.  */

void
finish_switch_cond (tree cond, tree switch_stmt)
{
  tree orig_type = NULL;
  if (!processing_template_decl)
    {
      tree index;

      /* Convert the condition to an integer or enumeration type.  */
      cond = build_expr_type_conversion (WANT_INT | WANT_ENUM, cond, true);
      if (cond == NULL_TREE)
	{
	  error ("switch quantity not an integer");
	  cond = error_mark_node;
	}
      orig_type = TREE_TYPE (cond);
      if (cond != error_mark_node)
	{
	  /* [stmt.switch]

	     Integral promotions are performed.  */
	  cond = perform_integral_promotions (cond);
	  cond = fold (build1 (CLEANUP_POINT_EXPR, TREE_TYPE (cond), cond));
	}

      if (cond != error_mark_node)
	{
	  index = get_unwidened (cond, NULL_TREE);
	  /* We can't strip a conversion from a signed type to an unsigned,
	     because if we did, int_fits_type_p would do the wrong thing
	     when checking case values for being in range,
	     and it's too hard to do the right thing.  */
	  if (TYPE_UNSIGNED (TREE_TYPE (cond))
	      == TYPE_UNSIGNED (TREE_TYPE (index)))
	    cond = index;
	}
    }
  FINISH_COND (cond, switch_stmt, SWITCH_COND (switch_stmt));
  SWITCH_TYPE (switch_stmt) = orig_type;
  push_switch (switch_stmt);
}

/* Finish the body of a switch-statement, which may be given by
   SWITCH_STMT.  The COND to switch on is indicated.  */

void
finish_switch_stmt (tree switch_stmt)
{
  RECHAIN_STMTS (switch_stmt, SWITCH_BODY (switch_stmt));
  pop_switch (); 
  finish_stmt ();
  do_poplevel ();
}

/* Generate the RTL for T, which is a TRY_BLOCK.  */

static void 
genrtl_try_block (tree t)
{
  if (CLEANUP_P (t))
    {
      expand_eh_region_start ();
      expand_stmt (TRY_STMTS (t));
      expand_eh_region_end_cleanup (TRY_HANDLERS (t));
    }
  else
    {
      if (!FN_TRY_BLOCK_P (t)) 
	emit_line_note (input_location);

      expand_eh_region_start ();
      expand_stmt (TRY_STMTS (t));

      if (FN_TRY_BLOCK_P (t))
	{
	  expand_start_all_catch ();
	  in_function_try_handler = 1;
	  expand_stmt (TRY_HANDLERS (t));
	  in_function_try_handler = 0;
	  expand_end_all_catch ();
	}
      else 
	{
	  expand_start_all_catch ();  
	  expand_stmt (TRY_HANDLERS (t));
	  expand_end_all_catch ();
	}
    }
}

/* Generate the RTL for T, which is an EH_SPEC_BLOCK.  */

static void 
genrtl_eh_spec_block (tree t)
{
  expand_eh_region_start ();
  expand_stmt (EH_SPEC_STMTS (t));
  expand_eh_region_end_allowed (EH_SPEC_RAISES (t),
				build_call (call_unexpected_node,
					    tree_cons (NULL_TREE,
						       build_exc_ptr (),
						       NULL_TREE)));
}

/* Begin a try-block.  Returns a newly-created TRY_BLOCK if
   appropriate.  */

tree
begin_try_block (void)
{
  tree r = build_stmt (TRY_BLOCK, NULL_TREE, NULL_TREE);
  add_stmt (r);
  return r;
}

/* Likewise, for a function-try-block.  */

tree
begin_function_try_block (void)
{
  tree r = build_stmt (TRY_BLOCK, NULL_TREE, NULL_TREE);
  FN_TRY_BLOCK_P (r) = 1;
  add_stmt (r);
  return r;
}

/* Finish a try-block, which may be given by TRY_BLOCK.  */

void
finish_try_block (tree try_block)
{
  RECHAIN_STMTS (try_block, TRY_STMTS (try_block));
}

/* Finish the body of a cleanup try-block, which may be given by
   TRY_BLOCK.  */

void
finish_cleanup_try_block (tree try_block)
{
  RECHAIN_STMTS (try_block, TRY_STMTS (try_block));
}

/* Finish an implicitly generated try-block, with a cleanup is given
   by CLEANUP.  */

void
finish_cleanup (tree cleanup, tree try_block)
{
  TRY_HANDLERS (try_block) = cleanup;
  CLEANUP_P (try_block) = 1;
}

/* Likewise, for a function-try-block.  */

void
finish_function_try_block (tree try_block)
{
  if (TREE_CHAIN (try_block) 
      && TREE_CODE (TREE_CHAIN (try_block)) == CTOR_INITIALIZER)
    {
      /* Chain the compound statement after the CTOR_INITIALIZER.  */
      TREE_CHAIN (TREE_CHAIN (try_block)) = last_tree;
      /* And make the CTOR_INITIALIZER the body of the try-block.  */
      RECHAIN_STMTS (try_block, TRY_STMTS (try_block));
    }
  else
    RECHAIN_STMTS (try_block, TRY_STMTS (try_block));
  in_function_try_handler = 1;
}

/* Finish a handler-sequence for a try-block, which may be given by
   TRY_BLOCK.  */

void
finish_handler_sequence (tree try_block)
{
  RECHAIN_STMTS (try_block, TRY_HANDLERS (try_block));
  check_handlers (TRY_HANDLERS (try_block));
}

/* Likewise, for a function-try-block.  */

void
finish_function_handler_sequence (tree try_block)
{
  in_function_try_handler = 0;
  RECHAIN_STMTS (try_block, TRY_HANDLERS (try_block));
  check_handlers (TRY_HANDLERS (try_block));
}

/* Generate the RTL for T, which is a HANDLER.  */

static void
genrtl_handler (tree t)
{
  genrtl_do_pushlevel ();
  if (!processing_template_decl)
    expand_start_catch (HANDLER_TYPE (t));
  expand_stmt (HANDLER_BODY (t));
  if (!processing_template_decl)
    expand_end_catch ();
}

/* Begin a handler.  Returns a HANDLER if appropriate.  */

tree
begin_handler (void)
{
  tree r;
  r = build_stmt (HANDLER, NULL_TREE, NULL_TREE);
  add_stmt (r);
  /* Create a binding level for the eh_info and the exception object
     cleanup.  */
  do_pushlevel (sk_catch);
  return r;
}

/* Finish the handler-parameters for a handler, which may be given by
   HANDLER.  DECL is the declaration for the catch parameter, or NULL
   if this is a `catch (...)' clause.  */

void
finish_handler_parms (tree decl, tree handler)
{
  tree type = NULL_TREE;
  if (processing_template_decl)
    {
      if (decl)
	{
	  decl = pushdecl (decl);
	  decl = push_template_decl (decl);
	  add_decl_stmt (decl);
	  RECHAIN_STMTS (handler, HANDLER_PARMS (handler));
	  type = TREE_TYPE (decl);
	}
    }
  else
    type = expand_start_catch_block (decl);

  HANDLER_TYPE (handler) = type;
  if (!processing_template_decl && type)
    mark_used (eh_type_info (type));
}

/* Finish a handler, which may be given by HANDLER.  The BLOCKs are
   the return value from the matching call to finish_handler_parms.  */

void
finish_handler (tree handler)
{
  if (!processing_template_decl)
    expand_end_catch_block ();
  do_poplevel ();
  RECHAIN_STMTS (handler, HANDLER_BODY (handler));
}

/* Begin a compound-statement.  If HAS_NO_SCOPE is true, the
   compound-statement does not define a scope.  Returns a new
   COMPOUND_STMT.  */

tree
begin_compound_stmt (bool has_no_scope)
{
  tree r; 
  int is_try = 0;

  r = build_stmt (COMPOUND_STMT, NULL_TREE);

  if (last_tree && TREE_CODE (last_tree) == TRY_BLOCK)
    is_try = 1;

  add_stmt (r);
  if (has_no_scope)
    COMPOUND_STMT_NO_SCOPE (r) = 1;

  last_expr_type = NULL_TREE;

  if (!has_no_scope)
    do_pushlevel (is_try ? sk_try : sk_block);
  else
    /* Normally, we try hard to keep the BLOCK for a
       statement-expression.  But, if it's a statement-expression with
       a scopeless block, there's nothing to keep, and we don't want
       to accidentally keep a block *inside* the scopeless block.  */ 
    keep_next_level (false);

  return r;
}

/* Finish a compound-statement, which is given by COMPOUND_STMT.  */

tree
finish_compound_stmt (tree compound_stmt)
{
  tree r;
  tree t;

  if (COMPOUND_STMT_NO_SCOPE (compound_stmt))
    r = NULL_TREE;
  else
    r = do_poplevel ();

  RECHAIN_STMTS (compound_stmt, COMPOUND_BODY (compound_stmt));

  /* When we call finish_stmt we will lose LAST_EXPR_TYPE.  But, since
     the precise purpose of that variable is store the type of the
     last expression statement within the last compound statement, we
     preserve the value.  */
  t = last_expr_type;
  finish_stmt ();
  last_expr_type = t;

  return r;
}

/* Finish an asm-statement, whose components are a CV_QUALIFIER, a
   STRING, some OUTPUT_OPERANDS, some INPUT_OPERANDS, and some
   CLOBBERS.  */

tree
finish_asm_stmt (tree cv_qualifier, 
                 tree string, 
                 tree output_operands,
		 tree input_operands, 
                 tree clobbers)
{
  tree r;
  tree t;

  if (cv_qualifier != NULL_TREE
      && cv_qualifier != ridpointers[(int) RID_VOLATILE])
    {
      warning ("%s qualifier ignored on asm",
		  IDENTIFIER_POINTER (cv_qualifier));
      cv_qualifier = NULL_TREE;
    }

  if (!processing_template_decl)
    {
      int i;
      int ninputs;
      int noutputs;

      for (t = input_operands; t; t = TREE_CHAIN (t))
	{
	  tree converted_operand 
	    = decay_conversion (TREE_VALUE (t)); 
	  
	  /* If the type of the operand hasn't been determined (e.g.,
	     because it involves an overloaded function), then issue
	     an error message.  There's no context available to
	     resolve the overloading.  */
	  if (TREE_TYPE (converted_operand) == unknown_type_node)
	    {
	      error ("type of asm operand `%E' could not be determined", 
			TREE_VALUE (t));
	      converted_operand = error_mark_node;
	    }
	  TREE_VALUE (t) = converted_operand;
	}

      ninputs = list_length (input_operands);
      noutputs = list_length (output_operands);

      for (i = 0, t = output_operands; t; t = TREE_CHAIN (t), ++i)
	{
	  bool allows_mem;
	  bool allows_reg;
	  bool is_inout;
	  const char *constraint;
	  tree operand;

	  constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
	  operand = TREE_VALUE (t);

	  if (!parse_output_constraint (&constraint,
					i, ninputs, noutputs,
					&allows_mem,
					&allows_reg,
					&is_inout))
	    {
	      /* By marking this operand as erroneous, we will not try
		 to process this operand again in expand_asm_operands.  */
	      TREE_VALUE (t) = error_mark_node;
	      continue;
	    }

	  /* If the operand is a DECL that is going to end up in
	     memory, assume it is addressable.  This is a bit more
	     conservative than it would ideally be; the exact test is
	     buried deep in expand_asm_operands and depends on the
	     DECL_RTL for the OPERAND -- which we don't have at this
	     point.  */
	  if (!allows_reg && DECL_P (operand))
	    cxx_mark_addressable (operand);
	}
    }

  r = build_stmt (ASM_STMT, cv_qualifier, string,
		  output_operands, input_operands,
		  clobbers);
  return add_stmt (r);
}

/* Finish a label with the indicated NAME.  */

tree
finish_label_stmt (tree name)
{
  tree decl = define_label (input_location, name);
  return add_stmt (build_stmt (LABEL_STMT, decl));
}

/* Finish a series of declarations for local labels.  G++ allows users
   to declare "local" labels, i.e., labels with scope.  This extension
   is useful when writing code involving statement-expressions.  */

void
finish_label_decl (tree name)
{
  tree decl = declare_local_label (name);
  add_decl_stmt (decl);
}

/* When DECL goes out of scope, make sure that CLEANUP is executed.  */

void 
finish_decl_cleanup (tree decl, tree cleanup)
{
  add_stmt (build_stmt (CLEANUP_STMT, decl, cleanup));
}

/* If the current scope exits with an exception, run CLEANUP.  */

void
finish_eh_cleanup (tree cleanup)
{
  tree r = build_stmt (CLEANUP_STMT, NULL_TREE, cleanup);
  CLEANUP_EH_ONLY (r) = 1;
  add_stmt (r);
}

/* The MEM_INITS is a list of mem-initializers, in reverse of the
   order they were written by the user.  Each node is as for
   emit_mem_initializers.  */

void
finish_mem_initializers (tree mem_inits)
{
  /* Reorder the MEM_INITS so that they are in the order they appeared
     in the source program.  */
  mem_inits = nreverse (mem_inits);

  if (processing_template_decl)
    add_stmt (build_min_nt (CTOR_INITIALIZER, mem_inits));
  else
    emit_mem_initializers (mem_inits);
}

/* Returns the stack of SCOPE_STMTs for the current function.  */

tree *
current_scope_stmt_stack (void)
{
  return &cfun->language->base.x_scope_stmt_stack;
}

/* Finish a parenthesized expression EXPR.  */

tree
finish_parenthesized_expr (tree expr)
{
  if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (expr))))
    /* This inhibits warnings in c_common_truthvalue_conversion.  */
    C_SET_EXP_ORIGINAL_CODE (expr, ERROR_MARK); 

  if (TREE_CODE (expr) == OFFSET_REF)
    /* [expr.unary.op]/3 The qualified id of a pointer-to-member must not be
       enclosed in parentheses.  */
    PTRMEM_OK_P (expr) = 0;
  return expr;
}

/* Finish a reference to a non-static data member (DECL) that is not
   preceded by `.' or `->'.  */

tree
finish_non_static_data_member (tree decl, tree object, tree qualifying_scope)
{
  my_friendly_assert (TREE_CODE (decl) == FIELD_DECL, 20020909);

  if (!object)
    {
      if (current_function_decl 
	  && DECL_STATIC_FUNCTION_P (current_function_decl))
	cp_error_at ("invalid use of member `%D' in static member function",
		     decl);
      else
	cp_error_at ("invalid use of non-static data member `%D'", decl);
      error ("from this location");

      return error_mark_node;
    }
  TREE_USED (current_class_ptr) = 1;
  if (processing_template_decl && !qualifying_scope)
    {
      tree type = TREE_TYPE (decl);

      if (TREE_CODE (type) == REFERENCE_TYPE)
	type = TREE_TYPE (type);
      else
	{
	  /* Set the cv qualifiers.  */
	  int quals = cp_type_quals (TREE_TYPE (current_class_ref));
	  
	  if (DECL_MUTABLE_P (decl))
	    quals &= ~TYPE_QUAL_CONST;

	  quals |= cp_type_quals (TREE_TYPE (decl));
	  type = cp_build_qualified_type (type, quals);
	}
      
      return build_min (COMPONENT_REF, type, object, decl);
    }
  else
    {
      tree access_type = TREE_TYPE (object);
      tree lookup_context = context_for_name_lookup (decl);
      
      while (!DERIVED_FROM_P (lookup_context, access_type))
	{
	  access_type = TYPE_CONTEXT (access_type);
	  while (access_type && DECL_P (access_type))
	    access_type = DECL_CONTEXT (access_type);

	  if (!access_type)
	    {
	      cp_error_at ("object missing in reference to `%D'", decl);
	      error ("from this location");
	      return error_mark_node;
	    }
	}

      /* If PROCESSING_TEMPLATE_DECL is nonzero here, then
	 QUALIFYING_SCOPE is also non-null.  Wrap this in a SCOPE_REF
	 for now.  */
      if (processing_template_decl)
	return build_min (SCOPE_REF, TREE_TYPE (decl),
			  qualifying_scope, DECL_NAME (decl));

      perform_or_defer_access_check (TYPE_BINFO (access_type), decl);

      /* If the data member was named `C::M', convert `*this' to `C'
	 first.  */
      if (qualifying_scope)
	{
	  tree binfo = NULL_TREE;
	  object = build_scoped_ref (object, qualifying_scope,
				     &binfo);
	}

      return build_class_member_access_expr (object, decl,
					     /*access_path=*/NULL_TREE,
					     /*preserve_reference=*/false);
    }
}

/* DECL was the declaration to which a qualified-id resolved.  Issue
   an error message if it is not accessible.  If OBJECT_TYPE is
   non-NULL, we have just seen `x->' or `x.' and OBJECT_TYPE is the
   type of `*x', or `x', respectively.  If the DECL was named as
   `A::B' then NESTED_NAME_SPECIFIER is `A'.  */

void
check_accessibility_of_qualified_id (tree decl, 
				     tree object_type, 
				     tree nested_name_specifier)
{
  tree scope;
  tree qualifying_type = NULL_TREE;
  
  /* Determine the SCOPE of DECL.  */
  scope = context_for_name_lookup (decl);
  /* If the SCOPE is not a type, then DECL is not a member.  */
  if (!TYPE_P (scope))
    return;
  /* Compute the scope through which DECL is being accessed.  */
  if (object_type 
      /* OBJECT_TYPE might not be a class type; consider:

	   class A { typedef int I; };
	   I *p;
	   p->A::I::~I();

         In this case, we will have "A::I" as the DECL, but "I" as the
	 OBJECT_TYPE.  */
      && CLASS_TYPE_P (object_type)
      && DERIVED_FROM_P (scope, object_type))
    /* If we are processing a `->' or `.' expression, use the type of the
       left-hand side.  */
    qualifying_type = object_type;
  else if (nested_name_specifier)
    {
      /* If the reference is to a non-static member of the
	 current class, treat it as if it were referenced through
	 `this'.  */
      if (DECL_NONSTATIC_MEMBER_P (decl)
	  && current_class_ptr
	  && DERIVED_FROM_P (scope, current_class_type))
	qualifying_type = current_class_type;
      /* Otherwise, use the type indicated by the
	 nested-name-specifier.  */
      else
	qualifying_type = nested_name_specifier;
    }
  else
    /* Otherwise, the name must be from the current class or one of
       its bases.  */
    qualifying_type = currently_open_derived_class (scope);

  if (qualifying_type)
    perform_or_defer_access_check (TYPE_BINFO (qualifying_type), decl);
}

/* EXPR is the result of a qualified-id.  The QUALIFYING_CLASS was the
   class named to the left of the "::" operator.  DONE is true if this
   expression is a complete postfix-expression; it is false if this
   expression is followed by '->', '[', '(', etc.  ADDRESS_P is true
   iff this expression is the operand of '&'.  */

tree
finish_qualified_id_expr (tree qualifying_class, tree expr, bool done,
			  bool address_p)
{
  if (error_operand_p (expr))
    return error_mark_node;

  /* If EXPR occurs as the operand of '&', use special handling that
     permits a pointer-to-member.  */
  if (address_p && done)
    {
      if (TREE_CODE (expr) == SCOPE_REF)
	expr = TREE_OPERAND (expr, 1);
      expr = build_offset_ref (qualifying_class, expr, 
			       /*address_p=*/true);
      return expr;
    }

  if (TREE_CODE (expr) == FIELD_DECL)
    expr = finish_non_static_data_member (expr, current_class_ref,
					  qualifying_class);
  else if (BASELINK_P (expr) && !processing_template_decl)
    {
      tree fn;
      tree fns;

      /* See if any of the functions are non-static members.  */
      fns = BASELINK_FUNCTIONS (expr);
      if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
	fns = TREE_OPERAND (fns, 0);
      for (fn = fns; fn; fn = OVL_NEXT (fn))
	if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
	  break;
      /* If so, the expression may be relative to the current
	 class.  */
      if (fn && current_class_type 
	  && DERIVED_FROM_P (qualifying_class, current_class_type))
	expr = (build_class_member_access_expr 
		(maybe_dummy_object (qualifying_class, NULL),
		 expr,
		 BASELINK_ACCESS_BINFO (expr),
		 /*preserve_reference=*/false));
      else if (done)
	/* The expression is a qualified name whose address is not
	   being taken.  */
	expr = build_offset_ref (qualifying_class, expr, /*address_p=*/false);
    }

  return expr;
}

/* Begin a statement-expression.  The value returned must be passed to
   finish_stmt_expr.  */

tree 
begin_stmt_expr (void)
{
  /* If we're outside a function, we won't have a statement-tree to
     work with.  But, if we see a statement-expression we need to
     create one.  */
  if (! cfun && !last_tree)
    begin_stmt_tree (&scope_chain->x_saved_tree);

  last_expr_type = NULL_TREE;
  
  keep_next_level (true);

  return last_tree; 
}

/* Process the final expression of a statement expression. EXPR can be
   NULL, if the final expression is empty.  Build up a TARGET_EXPR so
   that the result value can be safely returned to the enclosing
   expression.  */

tree
finish_stmt_expr_expr (tree expr)
{
  tree result = NULL_TREE;
  tree type = void_type_node;

  if (expr)
    {
      type = TREE_TYPE (expr);
      
      if (!processing_template_decl && !VOID_TYPE_P (TREE_TYPE (expr)))
	{
	  if (TREE_CODE (type) == ARRAY_TYPE
	      || TREE_CODE (type) == FUNCTION_TYPE)
	    expr = decay_conversion (expr);

	  expr = convert_from_reference (expr);
	  expr = require_complete_type (expr);

	  /* Build a TARGET_EXPR for this aggregate.  finish_stmt_expr
	     will then pull it apart so the lifetime of the target is
	     within the scope of the expression containing this statement
	     expression.  */
	  if (TREE_CODE (expr) == TARGET_EXPR)
	    ;
	  else if (!IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_INIT_REF (type))
	    expr = build_target_expr_with_type (expr, type);
	  else
	    {
	      /* Copy construct.  */
	      expr = build_special_member_call
		(NULL_TREE, complete_ctor_identifier,
		 build_tree_list (NULL_TREE, expr),
		 TYPE_BINFO (type), LOOKUP_NORMAL);
	      expr = build_cplus_new (type, expr);
	      my_friendly_assert (TREE_CODE (expr) == TARGET_EXPR, 20030729);
	    }
	}

      if (expr != error_mark_node)
	{
	  result = build_stmt (EXPR_STMT, expr);
	  add_stmt (result);
	}
    }
  
  finish_stmt ();

  /* Remember the last expression so that finish_stmt_expr can pull it
     apart.  */
  last_expr_type = result ? result : void_type_node;
  
  return result;
}

/* Finish a statement-expression.  EXPR should be the value returned
   by the previous begin_stmt_expr.  Returns an expression
   representing the statement-expression.  */

tree 
finish_stmt_expr (tree rtl_expr, bool has_no_scope)
{
  tree result;
  tree result_stmt = last_expr_type;
  tree type;
  
  if (!last_expr_type)
    type = void_type_node;
  else
    {
      if (result_stmt == void_type_node)
	{
	  type = void_type_node;
	  result_stmt = NULL_TREE;
	}
      else
	type = TREE_TYPE (EXPR_STMT_EXPR (result_stmt));
    }
  
  result = build_min (STMT_EXPR, type, last_tree);
  TREE_SIDE_EFFECTS (result) = 1;
  STMT_EXPR_NO_SCOPE (result) = has_no_scope;
  
  last_expr_type = NULL_TREE;
  
  /* Remove the compound statement from the tree structure; it is
     now saved in the STMT_EXPR.  */
  last_tree = rtl_expr;
  TREE_CHAIN (last_tree) = NULL_TREE;

  /* If we created a statement-tree for this statement-expression,
     remove it now.  */ 
  if (! cfun
      && TREE_CHAIN (scope_chain->x_saved_tree) == NULL_TREE)
    finish_stmt_tree (&scope_chain->x_saved_tree);

  if (processing_template_decl)
    return result;

  if (!VOID_TYPE_P (type))
    {
      /* Pull out the TARGET_EXPR that is the final expression. Put
	 the target's init_expr as the final expression and then put
	 the statement expression itself as the target's init
	 expr. Finally, return the target expression.  */
      tree last_expr = EXPR_STMT_EXPR (result_stmt);
      
      my_friendly_assert (TREE_CODE (last_expr) == TARGET_EXPR, 20030729);
      EXPR_STMT_EXPR (result_stmt) = TREE_OPERAND (last_expr, 1);
      TREE_OPERAND (last_expr, 1) = result;
      result = last_expr;
    }
  return result;
}

/* Perform Koenig lookup.  FN is the postfix-expression representing
   the function (or functions) to call; ARGS are the arguments to the
   call.  Returns the functions to be considered by overload
   resolution.  */

tree
perform_koenig_lookup (tree fn, tree args)
{
  tree identifier = NULL_TREE;
  tree functions = NULL_TREE;

  /* Find the name of the overloaded function.  */
  if (TREE_CODE (fn) == IDENTIFIER_NODE)
    identifier = fn;
  else if (is_overloaded_fn (fn))
    {
      functions = fn;
      identifier = DECL_NAME (get_first_fn (functions));
    }
  else if (DECL_P (fn))
    {
      functions = fn;
      identifier = DECL_NAME (fn);
    }

  /* A call to a namespace-scope function using an unqualified name.

     Do Koenig lookup -- unless any of the arguments are
     type-dependent.  */
  if (!any_type_dependent_arguments_p (args))
    {
      fn = lookup_arg_dependent (identifier, functions, args);
      if (!fn)
	/* The unqualified name could not be resolved.  */
	fn = unqualified_fn_lookup_error (identifier);
    }
  else
    fn = identifier;

  return fn;
}

/* Generate an expression for `FN (ARGS)'.

   If DISALLOW_VIRTUAL is true, the call to FN will be not generated
   as a virtual call, even if FN is virtual.  (This flag is set when
   encountering an expression where the function name is explicitly
   qualified.  For example a call to `X::f' never generates a virtual
   call.)

   Returns code for the call.  */

tree 
finish_call_expr (tree fn, tree args, bool disallow_virtual, bool koenig_p)
{
  tree result;
  tree orig_fn;
  tree orig_args;

  if (fn == error_mark_node || args == error_mark_node)
    return error_mark_node;

  /* ARGS should be a list of arguments.  */
  my_friendly_assert (!args || TREE_CODE (args) == TREE_LIST,
		      20020712);

  orig_fn = fn;
  orig_args = args;

  if (processing_template_decl)
    {
      if (type_dependent_expression_p (fn)
	  || any_type_dependent_arguments_p (args))
	{
	  result = build_nt (CALL_EXPR, fn, args);
	  KOENIG_LOOKUP_P (result) = koenig_p;
	  return result;
	}
      if (!BASELINK_P (fn)
	  && TREE_CODE (fn) != PSEUDO_DTOR_EXPR
	  && TREE_TYPE (fn) != unknown_type_node)
	fn = build_non_dependent_expr (fn);
      args = build_non_dependent_args (orig_args);
    }

  /* A reference to a member function will appear as an overloaded
     function (rather than a BASELINK) if an unqualified name was used
     to refer to it.  */
  if (!BASELINK_P (fn) && is_overloaded_fn (fn))
    {
      tree f = fn;

      if (TREE_CODE (f) == TEMPLATE_ID_EXPR)
	f = TREE_OPERAND (f, 0);
      f = get_first_fn (f);
      if (DECL_FUNCTION_MEMBER_P (f))
	{
	  tree type = currently_open_derived_class (DECL_CONTEXT (f));
	  if (!type)
	    type = DECL_CONTEXT (f);
	  fn = build_baselink (TYPE_BINFO (type),
			       TYPE_BINFO (type),
			       fn, /*optype=*/NULL_TREE);
	}
    }

  result = NULL_TREE;
  if (BASELINK_P (fn))
    {
      tree object;

      /* A call to a member function.  From [over.call.func]:

	   If the keyword this is in scope and refers to the class of
	   that member function, or a derived class thereof, then the
	   function call is transformed into a qualified function call
	   using (*this) as the postfix-expression to the left of the
	   . operator.... [Otherwise] a contrived object of type T
	   becomes the implied object argument.  

        This paragraph is unclear about this situation:

	  struct A { void f(); };
	  struct B : public A {};
	  struct C : public A { void g() { B::f(); }};

	In particular, for `B::f', this paragraph does not make clear
	whether "the class of that member function" refers to `A' or 
	to `B'.  We believe it refers to `B'.  */
      if (current_class_type 
	  && DERIVED_FROM_P (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
			     current_class_type)
	  && current_class_ref)
	object = maybe_dummy_object (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
				     NULL);
      else
	{
	  tree representative_fn;

	  representative_fn = BASELINK_FUNCTIONS (fn);
	  if (TREE_CODE (representative_fn) == TEMPLATE_ID_EXPR)
	    representative_fn = TREE_OPERAND (representative_fn, 0);
	  representative_fn = get_first_fn (representative_fn);
	  object = build_dummy_object (DECL_CONTEXT (representative_fn));
	}

      if (processing_template_decl)
	{
	  if (type_dependent_expression_p (object))
	    return build_nt (CALL_EXPR, orig_fn, orig_args);
	  object = build_non_dependent_expr (object);
	}

      result = build_new_method_call (object, fn, args, NULL_TREE,
				      (disallow_virtual 
				       ? LOOKUP_NONVIRTUAL : 0));
    }
  else if (is_overloaded_fn (fn))
    /* A call to a namespace-scope function.  */
    result = build_new_function_call (fn, args);
  else if (TREE_CODE (fn) == PSEUDO_DTOR_EXPR)
    {
      if (args)
	error ("arguments to destructor are not allowed");
      /* Mark the pseudo-destructor call as having side-effects so
	 that we do not issue warnings about its use.  */
      result = build1 (NOP_EXPR,
		       void_type_node,
		       TREE_OPERAND (fn, 0));
      TREE_SIDE_EFFECTS (result) = 1;
    }
  else if (CLASS_TYPE_P (TREE_TYPE (fn)))
    /* If the "function" is really an object of class type, it might
       have an overloaded `operator ()'.  */
    result = build_new_op (CALL_EXPR, LOOKUP_NORMAL, fn, args, NULL_TREE,
			   /*overloaded_p=*/NULL);
  if (!result)
    /* A call where the function is unknown.  */
    result = build_function_call (fn, args);

  if (processing_template_decl)
    {
      result = build (CALL_EXPR, TREE_TYPE (result), orig_fn, orig_args);
      KOENIG_LOOKUP_P (result) = koenig_p;
    }
  return result;
}

/* Finish a call to a postfix increment or decrement or EXPR.  (Which
   is indicated by CODE, which should be POSTINCREMENT_EXPR or
   POSTDECREMENT_EXPR.)  */

tree 
finish_increment_expr (tree expr, enum tree_code code)
{
  return build_x_unary_op (code, expr);  
}

/* Finish a use of `this'.  Returns an expression for `this'.  */

tree 
finish_this_expr (void)
{
  tree result;

  if (current_class_ptr)
    {
      result = current_class_ptr;
    }
  else if (current_function_decl
	   && DECL_STATIC_FUNCTION_P (current_function_decl))
    {
      error ("`this' is unavailable for static member functions");
      result = error_mark_node;
    }
  else
    {
      if (current_function_decl)
	error ("invalid use of `this' in non-member function");
      else
	error ("invalid use of `this' at top level");
      result = error_mark_node;
    }

  return result;
}

/* Finish a pseudo-destructor expression.  If SCOPE is NULL, the
   expression was of the form `OBJECT.~DESTRUCTOR' where DESTRUCTOR is
   the TYPE for the type given.  If SCOPE is non-NULL, the expression
   was of the form `OBJECT.SCOPE::~DESTRUCTOR'.  */

tree 
finish_pseudo_destructor_expr (tree object, tree scope, tree destructor)
{
  if (destructor == error_mark_node)
    return error_mark_node;

  my_friendly_assert (TYPE_P (destructor), 20010905);

  if (!processing_template_decl)
    {
      if (scope == error_mark_node)
	{
	  error ("invalid qualifying scope in pseudo-destructor name");
	  return error_mark_node;
	}
      
      /* [expr.pseudo] says both:

           The type designated by the pseudo-destructor-name shall be
	   the same as the object type.

         and:

           The cv-unqualified versions of the object type and of the
	   type designated by the pseudo-destructor-name shall be the
	   same type.

         We implement the more generous second sentence, since that is
         what most other compilers do.  */
      if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (object), 
						      destructor))
	{
	  error ("`%E' is not of type `%T'", object, destructor);
	  return error_mark_node;
	}
    }

  return build (PSEUDO_DTOR_EXPR, void_type_node, object, scope, destructor);
}

/* Finish an expression of the form CODE EXPR.  */

tree
finish_unary_op_expr (enum tree_code code, tree expr)
{
  tree result = build_x_unary_op (code, expr);
  /* Inside a template, build_x_unary_op does not fold the
     expression. So check whether the result is folded before
     setting TREE_NEGATED_INT.  */
  if (code == NEGATE_EXPR && TREE_CODE (expr) == INTEGER_CST
      && TREE_CODE (result) == INTEGER_CST
      && !TYPE_UNSIGNED (TREE_TYPE (result))
      && INT_CST_LT (result, integer_zero_node))
    TREE_NEGATED_INT (result) = 1;
  overflow_warning (result);
  return result;
}

/* Finish a compound-literal expression.  TYPE is the type to which
   the INITIALIZER_LIST is being cast.  */

tree
finish_compound_literal (tree type, tree initializer_list)
{
  tree compound_literal;

  /* Build a CONSTRUCTOR for the INITIALIZER_LIST.  */
  compound_literal = build_constructor (NULL_TREE, initializer_list);
  /* Mark it as a compound-literal.  */
  TREE_HAS_CONSTRUCTOR (compound_literal) = 1;
  if (processing_template_decl)
    TREE_TYPE (compound_literal) = type;
  else
    {
      /* Check the initialization.  */
      compound_literal = digest_init (type, compound_literal, NULL);
      /* If the TYPE was an array type with an unknown bound, then we can
	 figure out the dimension now.  For example, something like:

	   `(int []) { 2, 3 }'

	 implies that the array has two elements.  */
      if (TREE_CODE (type) == ARRAY_TYPE && !COMPLETE_TYPE_P (type))
	complete_array_type (type, compound_literal, 1);
    }

  return compound_literal;
}

/* Return the declaration for the function-name variable indicated by
   ID.  */

tree
finish_fname (tree id)
{
  tree decl;
  
  decl = fname_decl (C_RID_CODE (id), id);
  if (processing_template_decl)
    decl = DECL_NAME (decl);
  return decl;
}

/* Begin a function definition declared with DECL_SPECS, ATTRIBUTES,
   and DECLARATOR.  Returns nonzero if the function-declaration is
   valid.  */

int
begin_function_definition (tree decl_specs, tree attributes, tree declarator)
{
  if (!start_function (decl_specs, declarator, attributes, SF_DEFAULT))
    return 0;

  /* The things we're about to see are not directly qualified by any
     template headers we've seen thus far.  */
  reset_specialization ();

  return 1;
}

/* Finish a translation unit.  */

void 
finish_translation_unit (void)
{
  /* In case there were missing closebraces,
     get us back to the global binding level.  */
  pop_everything ();
  while (current_namespace != global_namespace)
    pop_namespace ();

  /* Do file scope __FUNCTION__ et al.  */
  finish_fname_decls ();
}

/* Finish a template type parameter, specified as AGGR IDENTIFIER.
   Returns the parameter.  */

tree 
finish_template_type_parm (tree aggr, tree identifier)
{
  if (aggr != class_type_node)
    {
      pedwarn ("template type parameters must use the keyword `class' or `typename'");
      aggr = class_type_node;
    }

  return build_tree_list (aggr, identifier);
}

/* Finish a template template parameter, specified as AGGR IDENTIFIER.
   Returns the parameter.  */

tree 
finish_template_template_parm (tree aggr, tree identifier)
{
  tree decl = build_decl (TYPE_DECL, identifier, NULL_TREE);
  tree tmpl = build_lang_decl (TEMPLATE_DECL, identifier, NULL_TREE);
  DECL_TEMPLATE_PARMS (tmpl) = current_template_parms;
  DECL_TEMPLATE_RESULT (tmpl) = decl;
  DECL_ARTIFICIAL (decl) = 1;
  end_template_decl ();

  my_friendly_assert (DECL_TEMPLATE_PARMS (tmpl), 20010110);

  return finish_template_type_parm (aggr, tmpl);
}

/* ARGUMENT is the default-argument value for a template template
   parameter.  If ARGUMENT is invalid, issue error messages and return
   the ERROR_MARK_NODE.  Otherwise, ARGUMENT itself is returned.  */

tree
check_template_template_default_arg (tree argument)
{
  if (TREE_CODE (argument) != TEMPLATE_DECL
      && TREE_CODE (argument) != TEMPLATE_TEMPLATE_PARM
      && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
    {
      if (TREE_CODE (argument) == TYPE_DECL)
	{
	  tree t = TREE_TYPE (argument);

	  /* Try to emit a slightly smarter error message if we detect
	     that the user is using a template instantiation.  */
	  if (CLASSTYPE_TEMPLATE_INFO (t) 
	      && CLASSTYPE_TEMPLATE_INSTANTIATION (t))
	    error ("invalid use of type `%T' as a default value for a "
	           "template template-parameter", t);
	  else
	    error ("invalid use of `%D' as a default value for a template "
	           "template-parameter", argument);
	}
      else
	error ("invalid default argument for a template template parameter");
      return error_mark_node;
    }

  return argument;
}

/* Finish a parameter list, indicated by PARMS.  If ELLIPSIS is
   nonzero, the parameter list was terminated by a `...'.  */

tree
finish_parmlist (tree parms, int ellipsis)
{
  if (parms)
    {
      /* We mark the PARMS as a parmlist so that declarator processing can
         disambiguate certain constructs.  */
      TREE_PARMLIST (parms) = 1;
      /* We do not append void_list_node here, but leave it to grokparms
         to do that.  */
      PARMLIST_ELLIPSIS_P (parms) = ellipsis;
    }
  return parms;
}

/* Begin a class definition, as indicated by T.  */

tree
begin_class_definition (tree t)
{
  if (t == error_mark_node)
    return error_mark_node;

  if (processing_template_parmlist)
    {
      error ("definition of `%#T' inside template parameter list", t);
      return error_mark_node;
    }
  /* A non-implicit typename comes from code like:

       template <typename T> struct A {
         template <typename U> struct A<T>::B ...

     This is erroneous.  */
  else if (TREE_CODE (t) == TYPENAME_TYPE)
    {
      error ("invalid definition of qualified type `%T'", t);
      t = error_mark_node;
    }

  if (t == error_mark_node || ! IS_AGGR_TYPE (t))
    {
      t = make_aggr_type (RECORD_TYPE);
      pushtag (make_anon_name (), t, 0);
    }

  /* If this type was already complete, and we see another definition,
     that's an error.  */
  if (COMPLETE_TYPE_P (t))
    {
      error ("redefinition of `%#T'", t);
      cp_error_at ("previous definition of `%#T'", t);
      return error_mark_node;
    }

  /* Update the location of the decl.  */
  DECL_SOURCE_LOCATION (TYPE_NAME (t)) = input_location;
  
  if (TYPE_BEING_DEFINED (t))
    {
      t = make_aggr_type (TREE_CODE (t));
      pushtag (TYPE_IDENTIFIER (t), t, 0);
    }
  maybe_process_partial_specialization (t);
  pushclass (t);
  TYPE_BEING_DEFINED (t) = 1;
  if (flag_pack_struct)
    {
      tree v;
      TYPE_PACKED (t) = 1;
      /* Even though the type is being defined for the first time
	 here, there might have been a forward declaration, so there
	 might be cv-qualified variants of T.  */
      for (v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
	TYPE_PACKED (v) = 1;
    }
  /* Reset the interface data, at the earliest possible
     moment, as it might have been set via a class foo;
     before.  */
  if (! TYPE_ANONYMOUS_P (t))
    {
      CLASSTYPE_INTERFACE_ONLY (t) = interface_only;
      SET_CLASSTYPE_INTERFACE_UNKNOWN_X
	(t, interface_unknown);
    }
  reset_specialization();
  
  /* Make a declaration for this class in its own scope.  */
  build_self_reference ();

  return t;
}

/* Finish the member declaration given by DECL.  */

void
finish_member_declaration (tree decl)
{
  if (decl == error_mark_node || decl == NULL_TREE)
    return;

  if (decl == void_type_node)
    /* The COMPONENT was a friend, not a member, and so there's
       nothing for us to do.  */
    return;

  /* We should see only one DECL at a time.  */
  my_friendly_assert (TREE_CHAIN (decl) == NULL_TREE, 0);

  /* Set up access control for DECL.  */
  TREE_PRIVATE (decl) 
    = (current_access_specifier == access_private_node);
  TREE_PROTECTED (decl) 
    = (current_access_specifier == access_protected_node);
  if (TREE_CODE (decl) == TEMPLATE_DECL)
    {
      TREE_PRIVATE (DECL_TEMPLATE_RESULT (decl)) = TREE_PRIVATE (decl);
      TREE_PROTECTED (DECL_TEMPLATE_RESULT (decl)) = TREE_PROTECTED (decl);
    }

  /* Mark the DECL as a member of the current class.  */
  DECL_CONTEXT (decl) = current_class_type;

  /* [dcl.link]

     A C language linkage is ignored for the names of class members
     and the member function type of class member functions.  */
  if (DECL_LANG_SPECIFIC (decl) && DECL_LANGUAGE (decl) == lang_c)
    SET_DECL_LANGUAGE (decl, lang_cplusplus);

  /* Put functions on the TYPE_METHODS list and everything else on the
     TYPE_FIELDS list.  Note that these are built up in reverse order.
     We reverse them (to obtain declaration order) in finish_struct.  */
  if (TREE_CODE (decl) == FUNCTION_DECL 
      || DECL_FUNCTION_TEMPLATE_P (decl))
    {
      /* We also need to add this function to the
	 CLASSTYPE_METHOD_VEC.  */
      add_method (current_class_type, decl, /*error_p=*/0);

      TREE_CHAIN (decl) = TYPE_METHODS (current_class_type);
      TYPE_METHODS (current_class_type) = decl;

      maybe_add_class_template_decl_list (current_class_type, decl, 
					  /*friend_p=*/0);
    }
  /* Enter the DECL into the scope of the class.  */
  else if ((TREE_CODE (decl) == USING_DECL && TREE_TYPE (decl))
	   || pushdecl_class_level (decl))
    {
      /* All TYPE_DECLs go at the end of TYPE_FIELDS.  Ordinary fields
	 go at the beginning.  The reason is that lookup_field_1
	 searches the list in order, and we want a field name to
	 override a type name so that the "struct stat hack" will
	 work.  In particular:

	   struct S { enum E { }; int E } s;
	   s.E = 3;

	 is valid.  In addition, the FIELD_DECLs must be maintained in
	 declaration order so that class layout works as expected.
	 However, we don't need that order until class layout, so we
	 save a little time by putting FIELD_DECLs on in reverse order
	 here, and then reversing them in finish_struct_1.  (We could
	 also keep a pointer to the correct insertion points in the
	 list.)  */

      if (TREE_CODE (decl) == TYPE_DECL)
	TYPE_FIELDS (current_class_type) 
	  = chainon (TYPE_FIELDS (current_class_type), decl);
      else
	{
	  TREE_CHAIN (decl) = TYPE_FIELDS (current_class_type);
	  TYPE_FIELDS (current_class_type) = decl;
	}

      maybe_add_class_template_decl_list (current_class_type, decl, 
					  /*friend_p=*/0);
    }
}

/* Finish processing the declaration of a member class template
   TYPES whose template parameters are given by PARMS.  */

tree
finish_member_class_template (tree types)
{
  tree t;

  /* If there are declared, but undefined, partial specializations
     mixed in with the typespecs they will not yet have passed through
     maybe_process_partial_specialization, so we do that here.  */
  for (t = types; t != NULL_TREE; t = TREE_CHAIN (t))
    if (IS_AGGR_TYPE_CODE (TREE_CODE (TREE_VALUE (t))))
      maybe_process_partial_specialization (TREE_VALUE (t));

  grok_x_components (types);
  if (TYPE_CONTEXT (TREE_VALUE (types)) != current_class_type)
    /* The component was in fact a friend declaration.  We avoid
       finish_member_template_decl performing certain checks by
       unsetting TYPES.  */
    types = NULL_TREE;
  
  finish_member_template_decl (types);

  /* As with other component type declarations, we do
     not store the new DECL on the list of
     component_decls.  */
  return NULL_TREE;
}

/* Finish processing a complete template declaration.  The PARMS are
   the template parameters.  */

void
finish_template_decl (tree parms)
{
  if (parms)
    end_template_decl ();
  else
    end_specialization ();
}

/* Finish processing a template-id (which names a type) of the form
   NAME < ARGS >.  Return the TYPE_DECL for the type named by the
   template-id.  If ENTERING_SCOPE is nonzero we are about to enter
   the scope of template-id indicated.  */

tree
finish_template_type (tree name, tree args, int entering_scope)
{
  tree decl;

  decl = lookup_template_class (name, args,
				NULL_TREE, NULL_TREE, entering_scope,
				tf_error | tf_warning | tf_user);
  if (decl != error_mark_node)
    decl = TYPE_STUB_DECL (decl);

  return decl;
}

/* Finish processing a BASE_CLASS with the indicated ACCESS_SPECIFIER.
   Return a TREE_LIST containing the ACCESS_SPECIFIER and the
   BASE_CLASS, or NULL_TREE if an error occurred.  The
   ACCESS_SPECIFIER is one of
   access_{default,public,protected_private}[_virtual]_node.*/

tree 
finish_base_specifier (tree base, tree access, bool virtual_p)
{
  tree result;

  if (base == error_mark_node)
    {
      error ("invalid base-class specification");
      result = NULL_TREE;
    }
  else if (! is_aggr_type (base, 1))
    result = NULL_TREE;
  else
    {
      if (cp_type_quals (base) != 0)
        {
          error ("base class `%T' has cv qualifiers", base);
          base = TYPE_MAIN_VARIANT (base);
        }
      result = build_tree_list (access, base);
      TREE_VIA_VIRTUAL (result) = virtual_p;
    }

  return result;
}

/* Called when multiple declarators are processed.  If that is not
   permitted in this context, an error is issued.  */

void
check_multiple_declarators (void)
{
  /* [temp]
     
     In a template-declaration, explicit specialization, or explicit
     instantiation the init-declarator-list in the declaration shall
     contain at most one declarator.  

     We don't just use PROCESSING_TEMPLATE_DECL for the first
     condition since that would disallow the perfectly valid code, 
     like `template <class T> struct S { int i, j; };'.  */
  if (at_function_scope_p ())
    /* It's OK to write `template <class T> void f() { int i, j;}'.  */
    return;
     
  if (PROCESSING_REAL_TEMPLATE_DECL_P () 
      || processing_explicit_instantiation
      || processing_specialization)
    error ("multiple declarators in template declaration");
}

/* Issue a diagnostic that NAME cannot be found in SCOPE.  */

void
qualified_name_lookup_error (tree scope, tree name)
{
  if (TYPE_P (scope))
    {
      if (!COMPLETE_TYPE_P (scope))
	error ("incomplete type `%T' used in nested name specifier", scope);
      else
	error ("`%D' is not a member of `%T'", name, scope);
    }
  else if (scope != global_namespace)
    error ("`%D' is not a member of `%D'", name, scope);
  else
    error ("`::%D' has not been declared", name);
}
	      
/* ID_EXPRESSION is a representation of parsed, but unprocessed,
   id-expression.  (See cp_parser_id_expression for details.)  SCOPE,
   if non-NULL, is the type or namespace used to explicitly qualify
   ID_EXPRESSION.  DECL is the entity to which that name has been
   resolved.  

   *CONSTANT_EXPRESSION_P is true if we are presently parsing a
   constant-expression.  In that case, *NON_CONSTANT_EXPRESSION_P will
   be set to true if this expression isn't permitted in a
   constant-expression, but it is otherwise not set by this function.
   *ALLOW_NON_CONSTANT_EXPRESSION_P is true if we are parsing a
   constant-expression, but a non-constant expression is also
   permissible.

   If an error occurs, and it is the kind of error that might cause
   the parser to abort a tentative parse, *ERROR_MSG is filled in.  It
   is the caller's responsibility to issue the message.  *ERROR_MSG
   will be a string with static storage duration, so the caller need
   not "free" it.

   Return an expression for the entity, after issuing appropriate
   diagnostics.  This function is also responsible for transforming a
   reference to a non-static member into a COMPONENT_REF that makes
   the use of "this" explicit.  

   Upon return, *IDK will be filled in appropriately.  */

tree
finish_id_expression (tree id_expression, 
		      tree decl,
		      tree scope,
		      cp_id_kind *idk,
		      tree *qualifying_class,
		      bool integral_constant_expression_p,
		      bool allow_non_integral_constant_expression_p,
		      bool *non_integral_constant_expression_p,
		      const char **error_msg)
{
  /* Initialize the output parameters.  */
  *idk = CP_ID_KIND_NONE;
  *error_msg = NULL;

  if (id_expression == error_mark_node)
    return error_mark_node;
  /* If we have a template-id, then no further lookup is
     required.  If the template-id was for a template-class, we
     will sometimes have a TYPE_DECL at this point.  */
  else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
	   || TREE_CODE (decl) == TYPE_DECL)
    ;
  /* Look up the name.  */
  else 
    {
      if (decl == error_mark_node)
	{
	  /* Name lookup failed.  */
	  if (scope 
	      && (!TYPE_P (scope) 
		  || (!dependent_type_p (scope)
		      && !(TREE_CODE (id_expression) == IDENTIFIER_NODE
			   && IDENTIFIER_TYPENAME_P (id_expression)
			   && dependent_type_p (TREE_TYPE (id_expression))))))
	    {
	      /* If the qualifying type is non-dependent (and the name
		 does not name a conversion operator to a dependent
		 type), issue an error.  */
	      qualified_name_lookup_error (scope, id_expression);
	      return error_mark_node;
	    }
	  else if (!scope)
	    {
	      /* It may be resolved via Koenig lookup.  */
	      *idk = CP_ID_KIND_UNQUALIFIED;
	      return id_expression;
	    }
	  else
	    decl = id_expression;
	}
      /* If DECL is a variable that would be out of scope under
	 ANSI/ISO rules, but in scope in the ARM, name lookup
	 will succeed.  Issue a diagnostic here.  */
      else
	decl = check_for_out_of_scope_variable (decl);

      /* Remember that the name was used in the definition of
	 the current class so that we can check later to see if
	 the meaning would have been different after the class
	 was entirely defined.  */
      if (!scope && decl != error_mark_node)
	maybe_note_name_used_in_class (id_expression, decl);
    }

  /* If we didn't find anything, or what we found was a type,
     then this wasn't really an id-expression.  */
  if (TREE_CODE (decl) == TEMPLATE_DECL
      && !DECL_FUNCTION_TEMPLATE_P (decl))
    {
      *error_msg = "missing template arguments";
      return error_mark_node;
    }
  else if (TREE_CODE (decl) == TYPE_DECL
	   || TREE_CODE (decl) == NAMESPACE_DECL)
    {
      *error_msg = "expected primary-expression";
      return error_mark_node;
    }

  /* If the name resolved to a template parameter, there is no
     need to look it up again later.  */
  if ((TREE_CODE (decl) == CONST_DECL && DECL_TEMPLATE_PARM_P (decl))
      || TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
    {
      *idk = CP_ID_KIND_NONE;
      if (TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
	decl = TEMPLATE_PARM_DECL (decl);
      if (integral_constant_expression_p 
	  && !dependent_type_p (TREE_TYPE (decl))
	  && !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (decl))) 
	{
	  if (!allow_non_integral_constant_expression_p)
	    error ("template parameter `%D' of type `%T' is not allowed in "
		   "an integral constant expression because it is not of "
		   "integral or enumeration type", decl, TREE_TYPE (decl));
	  *non_integral_constant_expression_p = true;
	}
      return DECL_INITIAL (decl);
    }
  /* Similarly, we resolve enumeration constants to their 
     underlying values.  */
  else if (TREE_CODE (decl) == CONST_DECL)
    {
      *idk = CP_ID_KIND_NONE;
      if (!processing_template_decl)
	return DECL_INITIAL (decl);
      return decl;
    }
  else
    {
      bool dependent_p;

      /* If the declaration was explicitly qualified indicate
	 that.  The semantics of `A::f(3)' are different than
	 `f(3)' if `f' is virtual.  */
      *idk = (scope 
	      ? CP_ID_KIND_QUALIFIED
	      : (TREE_CODE (decl) == TEMPLATE_ID_EXPR
		 ? CP_ID_KIND_TEMPLATE_ID
		 : CP_ID_KIND_UNQUALIFIED));


      /* [temp.dep.expr]

	 An id-expression is type-dependent if it contains an
	 identifier that was declared with a dependent type.

	 The standard is not very specific about an id-expression that
	 names a set of overloaded functions.  What if some of them
	 have dependent types and some of them do not?  Presumably,
	 such a name should be treated as a dependent name.  */
      /* Assume the name is not dependent.  */
      dependent_p = false;
      if (!processing_template_decl)
	/* No names are dependent outside a template.  */
	;
      /* A template-id where the name of the template was not resolved
	 is definitely dependent.  */
      else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
	       && (TREE_CODE (TREE_OPERAND (decl, 0)) 
		   == IDENTIFIER_NODE))
	dependent_p = true;
      /* For anything except an overloaded function, just check its
	 type.  */
      else if (!is_overloaded_fn (decl))
	dependent_p 
	  = dependent_type_p (TREE_TYPE (decl));
      /* For a set of overloaded functions, check each of the
	 functions.  */
      else
	{
	  tree fns = decl;

	  if (BASELINK_P (fns))
	    fns = BASELINK_FUNCTIONS (fns);

	  /* For a template-id, check to see if the template
	     arguments are dependent.  */
	  if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
	    {
	      tree args = TREE_OPERAND (fns, 1);
	      dependent_p = any_dependent_template_arguments_p (args);
	      /* The functions are those referred to by the
		 template-id.  */
	      fns = TREE_OPERAND (fns, 0);
	    }

	  /* If there are no dependent template arguments, go through
	     the overloaded functions.  */
	  while (fns && !dependent_p)
	    {
	      tree fn = OVL_CURRENT (fns);

	      /* Member functions of dependent classes are
		 dependent.  */
	      if (TREE_CODE (fn) == FUNCTION_DECL
		  && type_dependent_expression_p (fn))
		dependent_p = true;
	      else if (TREE_CODE (fn) == TEMPLATE_DECL
		       && dependent_template_p (fn))
		dependent_p = true;

	      fns = OVL_NEXT (fns);
	    }
	}

      /* If the name was dependent on a template parameter, we will
	 resolve the name at instantiation time.  */
      if (dependent_p)
	{
	  /* Create a SCOPE_REF for qualified names, if the scope is
	     dependent.  */
	  if (scope)
	    {
	      if (TYPE_P (scope))
		*qualifying_class = scope;
	      /* Since this name was dependent, the expression isn't
		 constant -- yet.  No error is issued because it might
		 be constant when things are instantiated.  */
	      if (integral_constant_expression_p)
		*non_integral_constant_expression_p = true;
	      if (TYPE_P (scope) && dependent_type_p (scope))
		return build_nt (SCOPE_REF, scope, id_expression);
	      else if (TYPE_P (scope) && DECL_P (decl))
		return build (SCOPE_REF, TREE_TYPE (decl), scope,
			      id_expression);
	      else
		return decl;
	    }
	  /* A TEMPLATE_ID already contains all the information we
	     need.  */
	  if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR)
	    return id_expression;
	  /* Since this name was dependent, the expression isn't
	     constant -- yet.  No error is issued because it might be
	     constant when things are instantiated.  */
	  if (integral_constant_expression_p)
	    *non_integral_constant_expression_p = true;
	  *idk = CP_ID_KIND_UNQUALIFIED_DEPENDENT;
	  /* If we found a variable, then name lookup during the
	     instantiation will always resolve to the same VAR_DECL
	     (or an instantiation thereof).  */
	  if (TREE_CODE (decl) == VAR_DECL
	      || TREE_CODE (decl) == PARM_DECL)
	    return decl;
	  return id_expression;
	}

      /* Only certain kinds of names are allowed in constant
       expression.  Enumerators and template parameters 
       have already been handled above.  */
      if (integral_constant_expression_p)
	{
	    /* Const variables or static data members of integral or
	      enumeration types initialized with constant expressions
	      are OK.  */
	  if (TREE_CODE (decl) == VAR_DECL
	      && CP_TYPE_CONST_P (TREE_TYPE (decl))
	      && INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (decl))
	      && DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
	    ;
	  else
	    {
	      if (!allow_non_integral_constant_expression_p)
		{
		  error ("`%D' cannot appear in a constant-expression", decl);
		  return error_mark_node;
		}
	      *non_integral_constant_expression_p = true;
	    }
	}
      
      if (TREE_CODE (decl) == NAMESPACE_DECL)
	{
	  error ("use of namespace `%D' as expression", decl);
	  return error_mark_node;
	}
      else if (DECL_CLASS_TEMPLATE_P (decl))
	{
	  error ("use of class template `%T' as expression", decl);
	  return error_mark_node;
	}
      else if (TREE_CODE (decl) == TREE_LIST)
	{
	  /* Ambiguous reference to base members.  */
	  error ("request for member `%D' is ambiguous in "
		 "multiple inheritance lattice", id_expression);
	  print_candidates (decl);
	  return error_mark_node;
	}

      /* Mark variable-like entities as used.  Functions are similarly
	 marked either below or after overload resolution.  */
      if (TREE_CODE (decl) == VAR_DECL
	  || TREE_CODE (decl) == PARM_DECL
	  || TREE_CODE (decl) == RESULT_DECL)
	mark_used (decl);

      if (scope)
	{
	  decl = (adjust_result_of_qualified_name_lookup 
		  (decl, scope, current_class_type));

	  if (TREE_CODE (decl) == FUNCTION_DECL)
	    mark_used (decl);

	  if (TREE_CODE (decl) == FIELD_DECL || BASELINK_P (decl))
	    *qualifying_class = scope;
	  else if (!processing_template_decl)
	    decl = convert_from_reference (decl);
	  else if (TYPE_P (scope))
	    decl = build (SCOPE_REF, TREE_TYPE (decl), scope, decl);
	}
      else if (TREE_CODE (decl) == FIELD_DECL)
	decl = finish_non_static_data_member (decl, current_class_ref,
					      /*qualifying_scope=*/NULL_TREE);
      else if (is_overloaded_fn (decl))
	{
	  tree first_fn = OVL_CURRENT (decl);

	  if (TREE_CODE (first_fn) == TEMPLATE_DECL)
	    first_fn = DECL_TEMPLATE_RESULT (first_fn);

	  if (!really_overloaded_fn (decl))
	    mark_used (first_fn);

	  if (TREE_CODE (first_fn) == FUNCTION_DECL
	      && DECL_FUNCTION_MEMBER_P (first_fn))
	    {
	      /* A set of member functions.  */
	      decl = maybe_dummy_object (DECL_CONTEXT (first_fn), 0);
	      return finish_class_member_access_expr (decl, id_expression);
	    }
	}
      else
	{
	  if (TREE_CODE (decl) == VAR_DECL
	      || TREE_CODE (decl) == PARM_DECL
	      || TREE_CODE (decl) == RESULT_DECL)
	    {
	      tree context = decl_function_context (decl);
	      
	      if (context != NULL_TREE && context != current_function_decl
		  && ! TREE_STATIC (decl))
		{
		  error ("use of %s from containing function",
			 (TREE_CODE (decl) == VAR_DECL
			  ? "`auto' variable" : "parameter"));
		  cp_error_at ("  `%#D' declared here", decl);
		  return error_mark_node;
		}
	    }
	  
	  if (DECL_P (decl) && DECL_NONLOCAL (decl)
	      && DECL_CLASS_SCOPE_P (decl)
	      && DECL_CONTEXT (decl) != current_class_type)
	    {
	      tree path;
	      
	      path = currently_open_derived_class (DECL_CONTEXT (decl));
	      perform_or_defer_access_check (TYPE_BINFO (path), decl);
	    }
	  
	  if (! processing_template_decl)
	    decl = convert_from_reference (decl);
	}
      
      /* Resolve references to variables of anonymous unions
	 into COMPONENT_REFs.  */
      if (TREE_CODE (decl) == ALIAS_DECL)
	decl = DECL_INITIAL (decl);
    }

  if (TREE_DEPRECATED (decl))
    warn_deprecated_use (decl);

  return decl;
}

/* Implement the __typeof keyword: Return the type of EXPR, suitable for
   use as a type-specifier.  */

tree
finish_typeof (tree expr)
{
  tree type;

  if (type_dependent_expression_p (expr))
    {
      type = make_aggr_type (TYPEOF_TYPE);
      TYPEOF_TYPE_EXPR (type) = expr;

      return type;
    }

  type = TREE_TYPE (expr);

  if (!type || type == unknown_type_node)
    {
      error ("type of `%E' is unknown", expr);
      return error_mark_node;
    }

  return type;
}

/* Generate RTL for the statement T, and its substatements, and any
   other statements at its nesting level.  */

static void
cp_expand_stmt (tree t)
{
  switch (TREE_CODE (t))
    {
    case TRY_BLOCK:
      genrtl_try_block (t);
      break;

    case EH_SPEC_BLOCK:
      genrtl_eh_spec_block (t);
      break;

    case HANDLER:
      genrtl_handler (t);
      break;

    case USING_STMT:
      break;
    
    default:
      abort ();
      break;
    }
}

/* Called from expand_body via walk_tree.  Replace all AGGR_INIT_EXPRs
   will equivalent CALL_EXPRs.  */

static tree
simplify_aggr_init_exprs_r (tree* tp, 
                            int* walk_subtrees,
                            void* data ATTRIBUTE_UNUSED)
{
  /* We don't need to walk into types; there's nothing in a type that
     needs simplification.  (And, furthermore, there are places we
     actively don't want to go.  For example, we don't want to wander
     into the default arguments for a FUNCTION_DECL that appears in a
     CALL_EXPR.)  */
  if (TYPE_P (*tp))
    {
      *walk_subtrees = 0;
      return NULL_TREE;
    }
  /* Only AGGR_INIT_EXPRs are interesting.  */
  else if (TREE_CODE (*tp) != AGGR_INIT_EXPR)
    return NULL_TREE;

  simplify_aggr_init_expr (tp);

  /* Keep iterating.  */
  return NULL_TREE;
}

/* Replace the AGGR_INIT_EXPR at *TP with an equivalent CALL_EXPR.  This
   function is broken out from the above for the benefit of the tree-ssa
   project.  */

void
simplify_aggr_init_expr (tree *tp)
{
  tree aggr_init_expr = *tp;

  /* Form an appropriate CALL_EXPR.  */
  tree fn = TREE_OPERAND (aggr_init_expr, 0);
  tree args = TREE_OPERAND (aggr_init_expr, 1);
  tree slot = TREE_OPERAND (aggr_init_expr, 2);
  tree type = TREE_TYPE (aggr_init_expr);

  tree call_expr;
  enum style_t { ctor, arg, pcc } style;

  if (AGGR_INIT_VIA_CTOR_P (aggr_init_expr))
    style = ctor;
#ifdef PCC_STATIC_STRUCT_RETURN
  else if (1)
    style = pcc;
#endif
  else if (TREE_ADDRESSABLE (type))
    style = arg;
  else
    /* We shouldn't build an AGGR_INIT_EXPR if we don't need any special
       handling.  See build_cplus_new.  */
    abort ();

  if (style == ctor || style == arg)
    {
      /* Pass the address of the slot.  If this is a constructor, we
	 replace the first argument; otherwise, we tack on a new one.  */
      tree addr;

      if (style == ctor)
	args = TREE_CHAIN (args);

      cxx_mark_addressable (slot);
      addr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (slot)), slot);
      if (style == arg)
	{
	  /* The return type might have different cv-quals from the slot.  */
	  tree fntype = TREE_TYPE (TREE_TYPE (fn));
#ifdef ENABLE_CHECKING
	  if (TREE_CODE (fntype) != FUNCTION_TYPE
	      && TREE_CODE (fntype) != METHOD_TYPE)
	    abort ();
#endif
	  addr = convert (build_pointer_type (TREE_TYPE (fntype)), addr);
	}

      args = tree_cons (NULL_TREE, addr, args);
    }

  call_expr = build (CALL_EXPR, 
		     TREE_TYPE (TREE_TYPE (TREE_TYPE (fn))),
		     fn, args, NULL_TREE);

  if (style == arg)
    /* Tell the backend that we've added our return slot to the argument
       list.  */
    CALL_EXPR_HAS_RETURN_SLOT_ADDR (call_expr) = 1;
  else if (style == pcc)
    {
      /* If we're using the non-reentrant PCC calling convention, then we
	 need to copy the returned value out of the static buffer into the
	 SLOT.  */
      push_deferring_access_checks (dk_no_check);
      call_expr = build_aggr_init (slot, call_expr,
				   DIRECT_BIND | LOOKUP_ONLYCONVERTING);
      pop_deferring_access_checks ();
    }

  /* We want to use the value of the initialized location as the
     result.  */
  call_expr = build (COMPOUND_EXPR, type,
		     call_expr, slot);

  /* Replace the AGGR_INIT_EXPR with the CALL_EXPR.  */
  TREE_CHAIN (call_expr) = TREE_CHAIN (aggr_init_expr);
  *tp = call_expr;
}

/* Emit all thunks to FN that should be emitted when FN is emitted.  */

static void
emit_associated_thunks (tree fn)
{
  /* When we use vcall offsets, we emit thunks with the virtual
     functions to which they thunk. The whole point of vcall offsets
     is so that you can know statically the entire set of thunks that
     will ever be needed for a given virtual function, thereby
     enabling you to output all the thunks with the function itself.  */
  if (DECL_VIRTUAL_P (fn))
    {
      tree thunk;
      
      for (thunk = DECL_THUNKS (fn); thunk; thunk = TREE_CHAIN (thunk))
	{
	  if (!THUNK_ALIAS (thunk))
	    {
	      use_thunk (thunk, /*emit_p=*/1);
	      if (DECL_RESULT_THUNK_P (thunk))
		{
		  tree probe;
		  
		  for (probe = DECL_THUNKS (thunk);
		       probe; probe = TREE_CHAIN (probe))
		    use_thunk (probe, /*emit_p=*/1);
		}
	    }
	  else
	    my_friendly_assert (!DECL_THUNKS (thunk), 20031023);
	}
    }
}

/* Generate RTL for FN.  */

void
expand_body (tree fn)
{
  tree saved_function;
  
  /* Compute the appropriate object-file linkage for inline
     functions.  */
  if (DECL_DECLARED_INLINE_P (fn))
    import_export_decl (fn);

  /* If FN is external, then there's no point in generating RTL for
     it.  This situation can arise with an inline function under
     `-fexternal-templates'; we instantiate the function, even though
     we're not planning on emitting it, in case we get a chance to
     inline it.  */
  if (DECL_EXTERNAL (fn))
    return;

  /* ??? When is this needed?  */
  saved_function = current_function_decl;

  /* Emit any thunks that should be emitted at the same time as FN.  */
  emit_associated_thunks (fn);

  tree_rest_of_compilation (fn, function_depth > 1);

  current_function_decl = saved_function;

  extract_interface_info ();

  /* If this function is marked with the constructor attribute, add it
     to the list of functions to be called along with constructors
     from static duration objects.  */
  if (DECL_STATIC_CONSTRUCTOR (fn))
    static_ctors = tree_cons (NULL_TREE, fn, static_ctors);

  /* If this function is marked with the destructor attribute, add it
     to the list of functions to be called along with destructors from
     static duration objects.  */
  if (DECL_STATIC_DESTRUCTOR (fn))
    static_dtors = tree_cons (NULL_TREE, fn, static_dtors);

  if (DECL_CLONED_FUNCTION_P (fn))
    {
      /* If this is a clone, go through the other clones now and mark
         their parameters used.  We have to do that here, as we don't
         know whether any particular clone will be expanded, and
         therefore cannot pick one arbitrarily.  */ 
      tree probe;

      for (probe = TREE_CHAIN (DECL_CLONED_FUNCTION (fn));
	   probe && DECL_CLONED_FUNCTION_P (probe);
	   probe = TREE_CHAIN (probe))
	{
	  tree parms;

	  for (parms = DECL_ARGUMENTS (probe);
	       parms; parms = TREE_CHAIN (parms))
	    TREE_USED (parms) = 1;
	}
    }
}

/* Generate RTL for FN.  */

void
expand_or_defer_fn (tree fn)
{
  /* When the parser calls us after finishing the body of a template
     function, we don't really want to expand the body.  */
  if (processing_template_decl)
    {
      /* Normally, collection only occurs in rest_of_compilation.  So,
	 if we don't collect here, we never collect junk generated
	 during the processing of templates until we hit a
	 non-template function.  */
      ggc_collect ();
      return;
    }

  /* Replace AGGR_INIT_EXPRs with appropriate CALL_EXPRs.  */
  walk_tree_without_duplicates (&DECL_SAVED_TREE (fn),
				simplify_aggr_init_exprs_r,
				NULL);

  /* If this is a constructor or destructor body, we have to clone
     it.  */
  if (maybe_clone_body (fn))
    {
      /* We don't want to process FN again, so pretend we've written
	 it out, even though we haven't.  */
      TREE_ASM_WRITTEN (fn) = 1;
      return;
    }

  /* There's no reason to do any of the work here if we're only doing
     semantic analysis; this code just generates RTL.  */
  if (flag_syntax_only)
    return;

  /* Compute the appropriate object-file linkage for inline functions.  */
  if (DECL_DECLARED_INLINE_P (fn))
    import_export_decl (fn);

  function_depth++;

  /* Expand or defer, at the whim of the compilation unit manager.  */
  cgraph_finalize_function (fn, function_depth > 1);

  function_depth--;
}

/* Helper function for walk_tree, used by finish_function to override all
   the RETURN_STMTs and pertinent CLEANUP_STMTs for the named return
   value optimization.  */

tree
nullify_returns_r (tree* tp, int* walk_subtrees, void* data)
{
  tree nrv = (tree) data;

  /* No need to walk into types.  There wouldn't be any need to walk into
     non-statements, except that we have to consider STMT_EXPRs.  */
  if (TYPE_P (*tp))
    *walk_subtrees = 0;
  else if (TREE_CODE (*tp) == RETURN_STMT)
    RETURN_STMT_EXPR (*tp) = NULL_TREE;
  else if (TREE_CODE (*tp) == CLEANUP_STMT
	   && CLEANUP_DECL (*tp) == nrv)
    CLEANUP_EH_ONLY (*tp) = 1;

  /* Keep iterating.  */
  return NULL_TREE;
}

/* Start generating the RTL for FN.  */

void
cxx_expand_function_start (void)
{
  /* Give our named return value the same RTL as our RESULT_DECL.  */
  if (current_function_return_value)
    COPY_DECL_RTL (DECL_RESULT (cfun->decl), current_function_return_value);
}

/* Perform initialization related to this module.  */

void
init_cp_semantics (void)
{
  lang_expand_stmt = cp_expand_stmt;
}

#include "gt-cp-semantics.h"