aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/rs6000/rs6000.cc
blob: 6ac3adcec6bd390c861235138e1b9b963fb0a70b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
// SPDX-License-Identifier: GPL-3.0-or-later
/* Subroutines used for code generation on IBM RS/6000.
   Copyright (C) 1991-2022 Free Software Foundation, Inc.
   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published
   by the Free Software Foundation; either version 3, or (at your
   option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#define IN_TARGET_CODE 1

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "gimple.h"
#include "cfghooks.h"
#include "cfgloop.h"
#include "df.h"
#include "tm_p.h"
#include "stringpool.h"
#include "expmed.h"
#include "optabs.h"
#include "regs.h"
#include "ira.h"
#include "recog.h"
#include "cgraph.h"
#include "diagnostic-core.h"
#include "insn-attr.h"
#include "flags.h"
#include "alias.h"
#include "fold-const.h"
#include "attribs.h"
#include "stor-layout.h"
#include "calls.h"
#include "print-tree.h"
#include "varasm.h"
#include "explow.h"
#include "expr.h"
#include "output.h"
#include "common/common-target.h"
#include "langhooks.h"
#include "reload.h"
#include "sched-int.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimple-fold.h"
#include "gimple-walk.h"
#include "ssa.h"
#include "tree-vectorizer.h"
#include "tree-ssa-propagate.h"
#include "intl.h"
#include "tm-constrs.h"
#include "target-globals.h"
#include "builtins.h"
#include "tree-vector-builder.h"
#include "context.h"
#include "tree-pass.h"
#include "symbol-summary.h"
#include "ipa-prop.h"
#include "ipa-fnsummary.h"
#include "except.h"
#include "case-cfn-macros.h"
#include "ppc-auxv.h"
#include "rs6000-internal.h"
#include "opts.h"

/* This file should be included last.  */
#include "target-def.h"

extern tree rs6000_builtin_mask_for_load (void);
extern tree rs6000_builtin_md_vectorized_function (tree, tree, tree);
extern tree rs6000_builtin_reciprocal (tree);

  /* Set -mabi=ieeelongdouble on some old targets.  In the future, power server
     systems will also set long double to be IEEE 128-bit.  AIX and Darwin
     explicitly redefine TARGET_IEEEQUAD and TARGET_IEEEQUAD_DEFAULT to 0, so
     those systems will not pick up this default.  This needs to be after all
     of the include files, so that POWERPC_LINUX and POWERPC_FREEBSD are
     properly defined.  */
#ifndef TARGET_IEEEQUAD_DEFAULT
#if !defined (POWERPC_LINUX) && !defined (POWERPC_FREEBSD)
#define TARGET_IEEEQUAD_DEFAULT 1
#else
#define TARGET_IEEEQUAD_DEFAULT 0
#endif
#endif

/* Don't enable PC-relative addressing if the target does not support it.  */
#ifndef PCREL_SUPPORTED_BY_OS
#define PCREL_SUPPORTED_BY_OS	0
#endif

#ifdef USING_ELFOS_H
/* Counter for labels which are to be placed in .fixup.  */
int fixuplabelno = 0;
#endif

/* Whether to use variant of AIX ABI for PowerPC64 Linux.  */
int dot_symbols;

/* Specify the machine mode that pointers have.  After generation of rtl, the
   compiler makes no further distinction between pointers and any other objects
   of this machine mode.  */
scalar_int_mode rs6000_pmode;

/* Track use of r13 in 64bit AIX TLS.  */
static bool xcoff_tls_exec_model_detected = false;

/* Width in bits of a pointer.  */
unsigned rs6000_pointer_size;

#ifdef HAVE_AS_GNU_ATTRIBUTE
# ifndef HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE
# define HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE 0
# endif
/* Flag whether floating point values have been passed/returned.
   Note that this doesn't say whether fprs are used, since the
   Tag_GNU_Power_ABI_FP .gnu.attributes value this flag controls
   should be set for soft-float values passed in gprs and ieee128
   values passed in vsx registers.  */
bool rs6000_passes_float = false;
bool rs6000_passes_long_double = false;
/* Flag whether vector values have been passed/returned.  */
bool rs6000_passes_vector = false;
/* Flag whether small (<= 8 byte) structures have been returned.  */
bool rs6000_returns_struct = false;
#endif

/* Value is TRUE if register/mode pair is acceptable.  */
static bool rs6000_hard_regno_mode_ok_p
  [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];

/* Maximum number of registers needed for a given register class and mode.  */
unsigned char rs6000_class_max_nregs[NUM_MACHINE_MODES][LIM_REG_CLASSES];

/* How many registers are needed for a given register and mode.  */
unsigned char rs6000_hard_regno_nregs[NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];

/* Map register number to register class.  */
enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];

static int dbg_cost_ctrl;

/* Flag to say the TOC is initialized */
int toc_initialized, need_toc_init;
char toc_label_name[10];

/* Cached value of rs6000_variable_issue. This is cached in
   rs6000_variable_issue hook and returned from rs6000_sched_reorder2.  */
static short cached_can_issue_more;

static GTY(()) section *read_only_data_section;
static GTY(()) section *private_data_section;
static GTY(()) section *tls_data_section;
static GTY(()) section *tls_private_data_section;
static GTY(()) section *read_only_private_data_section;
static GTY(()) section *sdata2_section;

section *toc_section = 0;

/* Describe the vector unit used for modes.  */
enum rs6000_vector rs6000_vector_unit[NUM_MACHINE_MODES];
enum rs6000_vector rs6000_vector_mem[NUM_MACHINE_MODES];

/* Register classes for various constraints that are based on the target
   switches.  */
enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];

/* Describe the alignment of a vector.  */
int rs6000_vector_align[NUM_MACHINE_MODES];

/* What modes to automatically generate reciprocal divide estimate (fre) and
   reciprocal sqrt (frsqrte) for.  */
unsigned char rs6000_recip_bits[MAX_MACHINE_MODE];

/* Masks to determine which reciprocal esitmate instructions to generate
   automatically.  */
enum rs6000_recip_mask {
  RECIP_SF_DIV		= 0x001,	/* Use divide estimate */
  RECIP_DF_DIV		= 0x002,
  RECIP_V4SF_DIV	= 0x004,
  RECIP_V2DF_DIV	= 0x008,

  RECIP_SF_RSQRT	= 0x010,	/* Use reciprocal sqrt estimate.  */
  RECIP_DF_RSQRT	= 0x020,
  RECIP_V4SF_RSQRT	= 0x040,
  RECIP_V2DF_RSQRT	= 0x080,

  /* Various combination of flags for -mrecip=xxx.  */
  RECIP_NONE		= 0,
  RECIP_ALL		= (RECIP_SF_DIV | RECIP_DF_DIV | RECIP_V4SF_DIV
			   | RECIP_V2DF_DIV | RECIP_SF_RSQRT | RECIP_DF_RSQRT
			   | RECIP_V4SF_RSQRT | RECIP_V2DF_RSQRT),

  RECIP_HIGH_PRECISION	= RECIP_ALL,

  /* On low precision machines like the power5, don't enable double precision
     reciprocal square root estimate, since it isn't accurate enough.  */
  RECIP_LOW_PRECISION	= (RECIP_ALL & ~(RECIP_DF_RSQRT | RECIP_V2DF_RSQRT))
};

/* -mrecip options.  */
static struct
{
  const char *string;		/* option name */
  unsigned int mask;		/* mask bits to set */
} recip_options[] = {
  { "all",	 RECIP_ALL },
  { "none",	 RECIP_NONE },
  { "div",	 (RECIP_SF_DIV | RECIP_DF_DIV | RECIP_V4SF_DIV
		  | RECIP_V2DF_DIV) },
  { "divf",	 (RECIP_SF_DIV | RECIP_V4SF_DIV) },
  { "divd",	 (RECIP_DF_DIV | RECIP_V2DF_DIV) },
  { "rsqrt",	 (RECIP_SF_RSQRT | RECIP_DF_RSQRT | RECIP_V4SF_RSQRT
		  | RECIP_V2DF_RSQRT) },
  { "rsqrtf",	 (RECIP_SF_RSQRT | RECIP_V4SF_RSQRT) },
  { "rsqrtd",	 (RECIP_DF_RSQRT | RECIP_V2DF_RSQRT) },
};

/* On PowerPC, we have a limited number of target clones that we care about
   which means we can use an array to hold the options, rather than having more
   elaborate data structures to identify each possible variation.  Order the
   clones from the default to the highest ISA.  */
enum {
  CLONE_DEFAULT		= 0,		/* default clone.  */
  CLONE_ISA_2_05,			/* ISA 2.05 (power6).  */
  CLONE_ISA_2_06,			/* ISA 2.06 (power7).  */
  CLONE_ISA_2_07,			/* ISA 2.07 (power8).  */
  CLONE_ISA_3_00,			/* ISA 3.0 (power9).  */
  CLONE_ISA_3_1,			/* ISA 3.1 (power10).  */
  CLONE_MAX
};

/* Map compiler ISA bits into HWCAP names.  */
struct clone_map {
  HOST_WIDE_INT isa_mask;	/* rs6000_isa mask */
  const char *name;		/* name to use in __builtin_cpu_supports.  */
};

static const struct clone_map rs6000_clone_map[CLONE_MAX] = {
  { 0,				"" },		/* Default options.  */
  { OPTION_MASK_CMPB,		"arch_2_05" },	/* ISA 2.05 (power6).  */
  { OPTION_MASK_POPCNTD,	"arch_2_06" },	/* ISA 2.06 (power7).  */
  { OPTION_MASK_P8_VECTOR,	"arch_2_07" },	/* ISA 2.07 (power8).  */
  { OPTION_MASK_P9_VECTOR,	"arch_3_00" },	/* ISA 3.0 (power9).  */
  { OPTION_MASK_POWER10,	"arch_3_1" },	/* ISA 3.1 (power10).  */
};


/* Newer LIBCs explicitly export this symbol to declare that they provide
   the AT_PLATFORM and AT_HWCAP/AT_HWCAP2 values in the TCB.  We emit a
   reference to this symbol whenever we expand a CPU builtin, so that
   we never link against an old LIBC.  */
const char *tcb_verification_symbol = "__parse_hwcap_and_convert_at_platform";

/* True if we have expanded a CPU builtin.  */
bool cpu_builtin_p = false;

/* Pointer to function (in rs6000-c.cc) that can define or undefine target
   macros that have changed.  Languages that don't support the preprocessor
   don't link in rs6000-c.cc, so we can't call it directly.  */
void (*rs6000_target_modify_macros_ptr) (bool, HOST_WIDE_INT);

/* Simplfy register classes into simpler classifications.  We assume
   GPR_REG_TYPE - FPR_REG_TYPE are ordered so that we can use a simple range
   check for standard register classes (gpr/floating/altivec/vsx) and
   floating/vector classes (float/altivec/vsx).  */

enum rs6000_reg_type {
  NO_REG_TYPE,
  PSEUDO_REG_TYPE,
  GPR_REG_TYPE,
  VSX_REG_TYPE,
  ALTIVEC_REG_TYPE,
  FPR_REG_TYPE,
  SPR_REG_TYPE,
  CR_REG_TYPE
};

/* Map register class to register type.  */
static enum rs6000_reg_type reg_class_to_reg_type[N_REG_CLASSES];

/* First/last register type for the 'normal' register types (i.e. general
   purpose, floating point, altivec, and VSX registers).  */
#define IS_STD_REG_TYPE(RTYPE) IN_RANGE(RTYPE, GPR_REG_TYPE, FPR_REG_TYPE)

#define IS_FP_VECT_REG_TYPE(RTYPE) IN_RANGE(RTYPE, VSX_REG_TYPE, FPR_REG_TYPE)


/* Register classes we care about in secondary reload or go if legitimate
   address.  We only need to worry about GPR, FPR, and Altivec registers here,
   along an ANY field that is the OR of the 3 register classes.  */

enum rs6000_reload_reg_type {
  RELOAD_REG_GPR,			/* General purpose registers.  */
  RELOAD_REG_FPR,			/* Traditional floating point regs.  */
  RELOAD_REG_VMX,			/* Altivec (VMX) registers.  */
  RELOAD_REG_ANY,			/* OR of GPR, FPR, Altivec masks.  */
  N_RELOAD_REG
};

/* For setting up register classes, loop through the 3 register classes mapping
   into real registers, and skip the ANY class, which is just an OR of the
   bits.  */
#define FIRST_RELOAD_REG_CLASS	RELOAD_REG_GPR
#define LAST_RELOAD_REG_CLASS	RELOAD_REG_VMX

/* Map reload register type to a register in the register class.  */
struct reload_reg_map_type {
  const char *name;			/* Register class name.  */
  int reg;				/* Register in the register class.  */
};

static const struct reload_reg_map_type reload_reg_map[N_RELOAD_REG] = {
  { "Gpr",	FIRST_GPR_REGNO },	/* RELOAD_REG_GPR.  */
  { "Fpr",	FIRST_FPR_REGNO },	/* RELOAD_REG_FPR.  */
  { "VMX",	FIRST_ALTIVEC_REGNO },	/* RELOAD_REG_VMX.  */
  { "Any",	-1 },			/* RELOAD_REG_ANY.  */
};

/* Mask bits for each register class, indexed per mode.  Historically the
   compiler has been more restrictive which types can do PRE_MODIFY instead of
   PRE_INC and PRE_DEC, so keep track of sepaate bits for these two.  */
typedef unsigned char addr_mask_type;

#define RELOAD_REG_VALID	0x01	/* Mode valid in register..  */
#define RELOAD_REG_MULTIPLE	0x02	/* Mode takes multiple registers.  */
#define RELOAD_REG_INDEXED	0x04	/* Reg+reg addressing.  */
#define RELOAD_REG_OFFSET	0x08	/* Reg+offset addressing. */
#define RELOAD_REG_PRE_INCDEC	0x10	/* PRE_INC/PRE_DEC valid.  */
#define RELOAD_REG_PRE_MODIFY	0x20	/* PRE_MODIFY valid.  */
#define RELOAD_REG_AND_M16	0x40	/* AND -16 addressing.  */
#define RELOAD_REG_QUAD_OFFSET	0x80	/* quad offset is limited.  */

/* Register type masks based on the type, of valid addressing modes.  */
struct rs6000_reg_addr {
  enum insn_code reload_load;		/* INSN to reload for loading. */
  enum insn_code reload_store;		/* INSN to reload for storing.  */
  enum insn_code reload_fpr_gpr;	/* INSN to move from FPR to GPR.  */
  enum insn_code reload_gpr_vsx;	/* INSN to move from GPR to VSX.  */
  enum insn_code reload_vsx_gpr;	/* INSN to move from VSX to GPR.  */
  addr_mask_type addr_mask[(int)N_RELOAD_REG]; /* Valid address masks.  */
  bool scalar_in_vmx_p;			/* Scalar value can go in VMX.  */
};

static struct rs6000_reg_addr reg_addr[NUM_MACHINE_MODES];

/* Helper function to say whether a mode supports PRE_INC or PRE_DEC.  */
static inline bool
mode_supports_pre_incdec_p (machine_mode mode)
{
  return ((reg_addr[mode].addr_mask[RELOAD_REG_ANY] & RELOAD_REG_PRE_INCDEC)
	  != 0);
}

/* Helper function to say whether a mode supports PRE_MODIFY.  */
static inline bool
mode_supports_pre_modify_p (machine_mode mode)
{
  return ((reg_addr[mode].addr_mask[RELOAD_REG_ANY] & RELOAD_REG_PRE_MODIFY)
	  != 0);
}

/* Return true if we have D-form addressing in altivec registers.  */
static inline bool
mode_supports_vmx_dform (machine_mode mode)
{
  return ((reg_addr[mode].addr_mask[RELOAD_REG_VMX] & RELOAD_REG_OFFSET) != 0);
}

/* Return true if we have D-form addressing in VSX registers.  This addressing
   is more limited than normal d-form addressing in that the offset must be
   aligned on a 16-byte boundary.  */
static inline bool
mode_supports_dq_form (machine_mode mode)
{
  return ((reg_addr[mode].addr_mask[RELOAD_REG_ANY] & RELOAD_REG_QUAD_OFFSET)
	  != 0);
}

/* Given that there exists at least one variable that is set (produced)
   by OUT_INSN and read (consumed) by IN_INSN, return true iff
   IN_INSN represents one or more memory store operations and none of
   the variables set by OUT_INSN is used by IN_INSN as the address of a
   store operation.  If either IN_INSN or OUT_INSN does not represent
   a "single" RTL SET expression (as loosely defined by the
   implementation of the single_set function) or a PARALLEL with only
   SETs, CLOBBERs, and USEs inside, this function returns false.

   This rs6000-specific version of store_data_bypass_p checks for
   certain conditions that result in assertion failures (and internal
   compiler errors) in the generic store_data_bypass_p function and
   returns false rather than calling store_data_bypass_p if one of the
   problematic conditions is detected.  */

int
rs6000_store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
{
  rtx out_set, in_set;
  rtx out_pat, in_pat;
  rtx out_exp, in_exp;
  int i, j;

  in_set = single_set (in_insn);
  if (in_set)
    {
      if (MEM_P (SET_DEST (in_set)))
	{
	  out_set = single_set (out_insn);
	  if (!out_set)
	    {
	      out_pat = PATTERN (out_insn);
	      if (GET_CODE (out_pat) == PARALLEL)
		{
		  for (i = 0; i < XVECLEN (out_pat, 0); i++)
		    {
		      out_exp = XVECEXP (out_pat, 0, i);
		      if ((GET_CODE (out_exp) == CLOBBER)
			  || (GET_CODE (out_exp) == USE))
			continue;
		      else if (GET_CODE (out_exp) != SET)
			return false;
		    }
		}
	    }
	}
    }
  else
    {
      in_pat = PATTERN (in_insn);
      if (GET_CODE (in_pat) != PARALLEL)
	return false;

      for (i = 0; i < XVECLEN (in_pat, 0); i++)
	{
	  in_exp = XVECEXP (in_pat, 0, i);
	  if ((GET_CODE (in_exp) == CLOBBER) || (GET_CODE (in_exp) == USE))
	    continue;
	  else if (GET_CODE (in_exp) != SET)
	    return false;

	  if (MEM_P (SET_DEST (in_exp)))
	    {
	      out_set = single_set (out_insn);
	      if (!out_set)
		{
		  out_pat = PATTERN (out_insn);
		  if (GET_CODE (out_pat) != PARALLEL)
		    return false;
		  for (j = 0; j < XVECLEN (out_pat, 0); j++)
		    {
		      out_exp = XVECEXP (out_pat, 0, j);
		      if ((GET_CODE (out_exp) == CLOBBER)
			  || (GET_CODE (out_exp) == USE))
			continue;
		      else if (GET_CODE (out_exp) != SET)
			return false;
		    }
		}
	    }
	}
    }
  return store_data_bypass_p (out_insn, in_insn);
}


/* Processor costs (relative to an add) */

const struct processor_costs *rs6000_cost;

/* Instruction size costs on 32bit processors.  */
static const
struct processor_costs size32_cost = {
  COSTS_N_INSNS (1),    /* mulsi */
  COSTS_N_INSNS (1),    /* mulsi_const */
  COSTS_N_INSNS (1),    /* mulsi_const9 */
  COSTS_N_INSNS (1),    /* muldi */
  COSTS_N_INSNS (1),    /* divsi */
  COSTS_N_INSNS (1),    /* divdi */
  COSTS_N_INSNS (1),    /* fp */
  COSTS_N_INSNS (1),    /* dmul */
  COSTS_N_INSNS (1),    /* sdiv */
  COSTS_N_INSNS (1),    /* ddiv */
  32,			/* cache line size */
  0,			/* l1 cache */
  0,			/* l2 cache */
  0,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction size costs on 64bit processors.  */
static const
struct processor_costs size64_cost = {
  COSTS_N_INSNS (1),    /* mulsi */
  COSTS_N_INSNS (1),    /* mulsi_const */
  COSTS_N_INSNS (1),    /* mulsi_const9 */
  COSTS_N_INSNS (1),    /* muldi */
  COSTS_N_INSNS (1),    /* divsi */
  COSTS_N_INSNS (1),    /* divdi */
  COSTS_N_INSNS (1),    /* fp */
  COSTS_N_INSNS (1),    /* dmul */
  COSTS_N_INSNS (1),    /* sdiv */
  COSTS_N_INSNS (1),    /* ddiv */
  128,			/* cache line size */
  0,			/* l1 cache */
  0,			/* l2 cache */
  0,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on RS64A processors.  */
static const
struct processor_costs rs64a_cost = {
  COSTS_N_INSNS (20),   /* mulsi */
  COSTS_N_INSNS (12),   /* mulsi_const */
  COSTS_N_INSNS (8),    /* mulsi_const9 */
  COSTS_N_INSNS (34),   /* muldi */
  COSTS_N_INSNS (65),   /* divsi */
  COSTS_N_INSNS (67),   /* divdi */
  COSTS_N_INSNS (4),    /* fp */
  COSTS_N_INSNS (4),    /* dmul */
  COSTS_N_INSNS (31),   /* sdiv */
  COSTS_N_INSNS (31),   /* ddiv */
  128,			/* cache line size */
  128,			/* l1 cache */
  2048,			/* l2 cache */
  1,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on MPCCORE processors.  */
static const
struct processor_costs mpccore_cost = {
  COSTS_N_INSNS (2),    /* mulsi */
  COSTS_N_INSNS (2),    /* mulsi_const */
  COSTS_N_INSNS (2),    /* mulsi_const9 */
  COSTS_N_INSNS (2),    /* muldi */
  COSTS_N_INSNS (6),    /* divsi */
  COSTS_N_INSNS (6),    /* divdi */
  COSTS_N_INSNS (4),    /* fp */
  COSTS_N_INSNS (5),    /* dmul */
  COSTS_N_INSNS (10),   /* sdiv */
  COSTS_N_INSNS (17),   /* ddiv */
  32,			/* cache line size */
  4,			/* l1 cache */
  16,			/* l2 cache */
  1,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on PPC403 processors.  */
static const
struct processor_costs ppc403_cost = {
  COSTS_N_INSNS (4),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (4),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (33),   /* divsi */
  COSTS_N_INSNS (33),   /* divdi */
  COSTS_N_INSNS (11),   /* fp */
  COSTS_N_INSNS (11),   /* dmul */
  COSTS_N_INSNS (11),   /* sdiv */
  COSTS_N_INSNS (11),   /* ddiv */
  32,			/* cache line size */
  4,			/* l1 cache */
  16,			/* l2 cache */
  1,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on PPC405 processors.  */
static const
struct processor_costs ppc405_cost = {
  COSTS_N_INSNS (5),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (3),    /* mulsi_const9 */
  COSTS_N_INSNS (5),    /* muldi */
  COSTS_N_INSNS (35),   /* divsi */
  COSTS_N_INSNS (35),   /* divdi */
  COSTS_N_INSNS (11),   /* fp */
  COSTS_N_INSNS (11),   /* dmul */
  COSTS_N_INSNS (11),   /* sdiv */
  COSTS_N_INSNS (11),   /* ddiv */
  32,			/* cache line size */
  16,			/* l1 cache */
  128,			/* l2 cache */
  1,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on PPC440 processors.  */
static const
struct processor_costs ppc440_cost = {
  COSTS_N_INSNS (3),    /* mulsi */
  COSTS_N_INSNS (2),    /* mulsi_const */
  COSTS_N_INSNS (2),    /* mulsi_const9 */
  COSTS_N_INSNS (3),    /* muldi */
  COSTS_N_INSNS (34),   /* divsi */
  COSTS_N_INSNS (34),   /* divdi */
  COSTS_N_INSNS (5),    /* fp */
  COSTS_N_INSNS (5),    /* dmul */
  COSTS_N_INSNS (19),   /* sdiv */
  COSTS_N_INSNS (33),   /* ddiv */
  32,			/* cache line size */
  32,			/* l1 cache */
  256,			/* l2 cache */
  1,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on PPC476 processors.  */
static const
struct processor_costs ppc476_cost = {
  COSTS_N_INSNS (4),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (4),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (11),   /* divsi */
  COSTS_N_INSNS (11),   /* divdi */
  COSTS_N_INSNS (6),    /* fp */
  COSTS_N_INSNS (6),    /* dmul */
  COSTS_N_INSNS (19),   /* sdiv */
  COSTS_N_INSNS (33),   /* ddiv */
  32,			/* l1 cache line size */
  32,			/* l1 cache */
  512,			/* l2 cache */
  1,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on PPC601 processors.  */
static const
struct processor_costs ppc601_cost = {
  COSTS_N_INSNS (5),    /* mulsi */
  COSTS_N_INSNS (5),    /* mulsi_const */
  COSTS_N_INSNS (5),    /* mulsi_const9 */
  COSTS_N_INSNS (5),    /* muldi */
  COSTS_N_INSNS (36),   /* divsi */
  COSTS_N_INSNS (36),   /* divdi */
  COSTS_N_INSNS (4),    /* fp */
  COSTS_N_INSNS (5),    /* dmul */
  COSTS_N_INSNS (17),   /* sdiv */
  COSTS_N_INSNS (31),   /* ddiv */
  32,			/* cache line size */
  32,			/* l1 cache */
  256,			/* l2 cache */
  1,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on PPC603 processors.  */
static const
struct processor_costs ppc603_cost = {
  COSTS_N_INSNS (5),    /* mulsi */
  COSTS_N_INSNS (3),    /* mulsi_const */
  COSTS_N_INSNS (2),    /* mulsi_const9 */
  COSTS_N_INSNS (5),    /* muldi */
  COSTS_N_INSNS (37),   /* divsi */
  COSTS_N_INSNS (37),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (4),    /* dmul */
  COSTS_N_INSNS (18),   /* sdiv */
  COSTS_N_INSNS (33),   /* ddiv */
  32,			/* cache line size */
  8,			/* l1 cache */
  64,			/* l2 cache */
  1,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on PPC604 processors.  */
static const
struct processor_costs ppc604_cost = {
  COSTS_N_INSNS (4),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (4),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (20),   /* divsi */
  COSTS_N_INSNS (20),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (3),    /* dmul */
  COSTS_N_INSNS (18),   /* sdiv */
  COSTS_N_INSNS (32),   /* ddiv */
  32,			/* cache line size */
  16,			/* l1 cache */
  512,			/* l2 cache */
  1,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on PPC604e processors.  */
static const
struct processor_costs ppc604e_cost = {
  COSTS_N_INSNS (2),    /* mulsi */
  COSTS_N_INSNS (2),    /* mulsi_const */
  COSTS_N_INSNS (2),    /* mulsi_const9 */
  COSTS_N_INSNS (2),    /* muldi */
  COSTS_N_INSNS (20),   /* divsi */
  COSTS_N_INSNS (20),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (3),    /* dmul */
  COSTS_N_INSNS (18),   /* sdiv */
  COSTS_N_INSNS (32),   /* ddiv */
  32,			/* cache line size */
  32,			/* l1 cache */
  1024,			/* l2 cache */
  1,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on PPC620 processors.  */
static const
struct processor_costs ppc620_cost = {
  COSTS_N_INSNS (5),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (3),    /* mulsi_const9 */
  COSTS_N_INSNS (7),    /* muldi */
  COSTS_N_INSNS (21),   /* divsi */
  COSTS_N_INSNS (37),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (3),    /* dmul */
  COSTS_N_INSNS (18),   /* sdiv */
  COSTS_N_INSNS (32),   /* ddiv */
  128,			/* cache line size */
  32,			/* l1 cache */
  1024,			/* l2 cache */
  1,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on PPC630 processors.  */
static const
struct processor_costs ppc630_cost = {
  COSTS_N_INSNS (5),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (3),    /* mulsi_const9 */
  COSTS_N_INSNS (7),    /* muldi */
  COSTS_N_INSNS (21),   /* divsi */
  COSTS_N_INSNS (37),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (3),    /* dmul */
  COSTS_N_INSNS (17),   /* sdiv */
  COSTS_N_INSNS (21),   /* ddiv */
  128,			/* cache line size */
  64,			/* l1 cache */
  1024,			/* l2 cache */
  1,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on Cell processor.  */
/* COSTS_N_INSNS (1) ~ one add.  */
static const
struct processor_costs ppccell_cost = {
  COSTS_N_INSNS (9/2)+2,    /* mulsi */
  COSTS_N_INSNS (6/2),    /* mulsi_const */
  COSTS_N_INSNS (6/2),    /* mulsi_const9 */
  COSTS_N_INSNS (15/2)+2,   /* muldi */
  COSTS_N_INSNS (38/2),   /* divsi */
  COSTS_N_INSNS (70/2),   /* divdi */
  COSTS_N_INSNS (10/2),   /* fp */
  COSTS_N_INSNS (10/2),   /* dmul */
  COSTS_N_INSNS (74/2),   /* sdiv */
  COSTS_N_INSNS (74/2),   /* ddiv */
  128,			/* cache line size */
  32,			/* l1 cache */
  512,			/* l2 cache */
  6,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on PPC750 and PPC7400 processors.  */
static const
struct processor_costs ppc750_cost = {
  COSTS_N_INSNS (5),    /* mulsi */
  COSTS_N_INSNS (3),    /* mulsi_const */
  COSTS_N_INSNS (2),    /* mulsi_const9 */
  COSTS_N_INSNS (5),    /* muldi */
  COSTS_N_INSNS (17),   /* divsi */
  COSTS_N_INSNS (17),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (3),    /* dmul */
  COSTS_N_INSNS (17),   /* sdiv */
  COSTS_N_INSNS (31),   /* ddiv */
  32,			/* cache line size */
  32,			/* l1 cache */
  512,			/* l2 cache */
  1,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on PPC7450 processors.  */
static const
struct processor_costs ppc7450_cost = {
  COSTS_N_INSNS (4),    /* mulsi */
  COSTS_N_INSNS (3),    /* mulsi_const */
  COSTS_N_INSNS (3),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (23),   /* divsi */
  COSTS_N_INSNS (23),   /* divdi */
  COSTS_N_INSNS (5),    /* fp */
  COSTS_N_INSNS (5),    /* dmul */
  COSTS_N_INSNS (21),   /* sdiv */
  COSTS_N_INSNS (35),   /* ddiv */
  32,			/* cache line size */
  32,			/* l1 cache */
  1024,			/* l2 cache */
  1,			/* streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on PPC8540 processors.  */
static const
struct processor_costs ppc8540_cost = {
  COSTS_N_INSNS (4),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (4),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (19),   /* divsi */
  COSTS_N_INSNS (19),   /* divdi */
  COSTS_N_INSNS (4),    /* fp */
  COSTS_N_INSNS (4),    /* dmul */
  COSTS_N_INSNS (29),   /* sdiv */
  COSTS_N_INSNS (29),   /* ddiv */
  32,			/* cache line size */
  32,			/* l1 cache */
  256,			/* l2 cache */
  1,			/* prefetch streams /*/
  0,			/* SF->DF convert */
};

/* Instruction costs on E300C2 and E300C3 cores.  */
static const
struct processor_costs ppce300c2c3_cost = {
  COSTS_N_INSNS (4),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (4),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (19),   /* divsi */
  COSTS_N_INSNS (19),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (4),    /* dmul */
  COSTS_N_INSNS (18),   /* sdiv */
  COSTS_N_INSNS (33),   /* ddiv */
  32,
  16,			/* l1 cache */
  16,			/* l2 cache */
  1,			/* prefetch streams /*/
  0,			/* SF->DF convert */
};

/* Instruction costs on PPCE500MC processors.  */
static const
struct processor_costs ppce500mc_cost = {
  COSTS_N_INSNS (4),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (4),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (14),   /* divsi */
  COSTS_N_INSNS (14),   /* divdi */
  COSTS_N_INSNS (8),    /* fp */
  COSTS_N_INSNS (10),   /* dmul */
  COSTS_N_INSNS (36),   /* sdiv */
  COSTS_N_INSNS (66),   /* ddiv */
  64,			/* cache line size */
  32,			/* l1 cache */
  128,			/* l2 cache */
  1,			/* prefetch streams /*/
  0,			/* SF->DF convert */
};

/* Instruction costs on PPCE500MC64 processors.  */
static const
struct processor_costs ppce500mc64_cost = {
  COSTS_N_INSNS (4),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (4),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (14),   /* divsi */
  COSTS_N_INSNS (14),   /* divdi */
  COSTS_N_INSNS (4),    /* fp */
  COSTS_N_INSNS (10),   /* dmul */
  COSTS_N_INSNS (36),   /* sdiv */
  COSTS_N_INSNS (66),   /* ddiv */
  64,			/* cache line size */
  32,			/* l1 cache */
  128,			/* l2 cache */
  1,			/* prefetch streams /*/
  0,			/* SF->DF convert */
};

/* Instruction costs on PPCE5500 processors.  */
static const
struct processor_costs ppce5500_cost = {
  COSTS_N_INSNS (5),    /* mulsi */
  COSTS_N_INSNS (5),    /* mulsi_const */
  COSTS_N_INSNS (4),    /* mulsi_const9 */
  COSTS_N_INSNS (5),    /* muldi */
  COSTS_N_INSNS (14),   /* divsi */
  COSTS_N_INSNS (14),   /* divdi */
  COSTS_N_INSNS (7),    /* fp */
  COSTS_N_INSNS (10),   /* dmul */
  COSTS_N_INSNS (36),   /* sdiv */
  COSTS_N_INSNS (66),   /* ddiv */
  64,			/* cache line size */
  32,			/* l1 cache */
  128,			/* l2 cache */
  1,			/* prefetch streams /*/
  0,			/* SF->DF convert */
};

/* Instruction costs on PPCE6500 processors.  */
static const
struct processor_costs ppce6500_cost = {
  COSTS_N_INSNS (5),    /* mulsi */
  COSTS_N_INSNS (5),    /* mulsi_const */
  COSTS_N_INSNS (4),    /* mulsi_const9 */
  COSTS_N_INSNS (5),    /* muldi */
  COSTS_N_INSNS (14),   /* divsi */
  COSTS_N_INSNS (14),   /* divdi */
  COSTS_N_INSNS (7),    /* fp */
  COSTS_N_INSNS (10),   /* dmul */
  COSTS_N_INSNS (36),   /* sdiv */
  COSTS_N_INSNS (66),   /* ddiv */
  64,			/* cache line size */
  32,			/* l1 cache */
  128,			/* l2 cache */
  1,			/* prefetch streams /*/
  0,			/* SF->DF convert */
};

/* Instruction costs on AppliedMicro Titan processors.  */
static const
struct processor_costs titan_cost = {
  COSTS_N_INSNS (5),    /* mulsi */
  COSTS_N_INSNS (5),    /* mulsi_const */
  COSTS_N_INSNS (5),    /* mulsi_const9 */
  COSTS_N_INSNS (5),    /* muldi */
  COSTS_N_INSNS (18),   /* divsi */
  COSTS_N_INSNS (18),   /* divdi */
  COSTS_N_INSNS (10),   /* fp */
  COSTS_N_INSNS (10),   /* dmul */
  COSTS_N_INSNS (46),   /* sdiv */
  COSTS_N_INSNS (72),   /* ddiv */
  32,			/* cache line size */
  32,			/* l1 cache */
  512,			/* l2 cache */
  1,			/* prefetch streams /*/
  0,			/* SF->DF convert */
};

/* Instruction costs on POWER4 and POWER5 processors.  */
static const
struct processor_costs power4_cost = {
  COSTS_N_INSNS (3),    /* mulsi */
  COSTS_N_INSNS (2),    /* mulsi_const */
  COSTS_N_INSNS (2),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (18),   /* divsi */
  COSTS_N_INSNS (34),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (3),    /* dmul */
  COSTS_N_INSNS (17),   /* sdiv */
  COSTS_N_INSNS (17),   /* ddiv */
  128,			/* cache line size */
  32,			/* l1 cache */
  1024,			/* l2 cache */
  8,			/* prefetch streams /*/
  0,			/* SF->DF convert */
};

/* Instruction costs on POWER6 processors.  */
static const
struct processor_costs power6_cost = {
  COSTS_N_INSNS (8),    /* mulsi */
  COSTS_N_INSNS (8),    /* mulsi_const */
  COSTS_N_INSNS (8),    /* mulsi_const9 */
  COSTS_N_INSNS (8),    /* muldi */
  COSTS_N_INSNS (22),   /* divsi */
  COSTS_N_INSNS (28),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (3),    /* dmul */
  COSTS_N_INSNS (13),   /* sdiv */
  COSTS_N_INSNS (16),   /* ddiv */
  128,			/* cache line size */
  64,			/* l1 cache */
  2048,			/* l2 cache */
  16,			/* prefetch streams */
  0,			/* SF->DF convert */
};

/* Instruction costs on POWER7 processors.  */
static const
struct processor_costs power7_cost = {
  COSTS_N_INSNS (2),	/* mulsi */
  COSTS_N_INSNS (2),	/* mulsi_const */
  COSTS_N_INSNS (2),	/* mulsi_const9 */
  COSTS_N_INSNS (2),	/* muldi */
  COSTS_N_INSNS (18),	/* divsi */
  COSTS_N_INSNS (34),	/* divdi */
  COSTS_N_INSNS (3),	/* fp */
  COSTS_N_INSNS (3),	/* dmul */
  COSTS_N_INSNS (13),	/* sdiv */
  COSTS_N_INSNS (16),	/* ddiv */
  128,			/* cache line size */
  32,			/* l1 cache */
  256,			/* l2 cache */
  12,			/* prefetch streams */
  COSTS_N_INSNS (3),	/* SF->DF convert */
};

/* Instruction costs on POWER8 processors.  */
static const
struct processor_costs power8_cost = {
  COSTS_N_INSNS (3),	/* mulsi */
  COSTS_N_INSNS (3),	/* mulsi_const */
  COSTS_N_INSNS (3),	/* mulsi_const9 */
  COSTS_N_INSNS (3),	/* muldi */
  COSTS_N_INSNS (19),	/* divsi */
  COSTS_N_INSNS (35),	/* divdi */
  COSTS_N_INSNS (3),	/* fp */
  COSTS_N_INSNS (3),	/* dmul */
  COSTS_N_INSNS (14),	/* sdiv */
  COSTS_N_INSNS (17),	/* ddiv */
  128,			/* cache line size */
  32,			/* l1 cache */
  512,			/* l2 cache */
  12,			/* prefetch streams */
  COSTS_N_INSNS (3),	/* SF->DF convert */
};

/* Instruction costs on POWER9 processors.  */
static const
struct processor_costs power9_cost = {
  COSTS_N_INSNS (3),	/* mulsi */
  COSTS_N_INSNS (3),	/* mulsi_const */
  COSTS_N_INSNS (3),	/* mulsi_const9 */
  COSTS_N_INSNS (3),	/* muldi */
  COSTS_N_INSNS (8),	/* divsi */
  COSTS_N_INSNS (12),	/* divdi */
  COSTS_N_INSNS (3),	/* fp */
  COSTS_N_INSNS (3),	/* dmul */
  COSTS_N_INSNS (13),	/* sdiv */
  COSTS_N_INSNS (18),	/* ddiv */
  128,			/* cache line size */
  32,			/* l1 cache */
  512,			/* l2 cache */
  8,			/* prefetch streams */
  COSTS_N_INSNS (3),	/* SF->DF convert */
};

/* Instruction costs on POWER10 processors.  */
static const
struct processor_costs power10_cost = {
  COSTS_N_INSNS (2),	/* mulsi */
  COSTS_N_INSNS (2),	/* mulsi_const */
  COSTS_N_INSNS (2),	/* mulsi_const9 */
  COSTS_N_INSNS (2),	/* muldi */
  COSTS_N_INSNS (6),	/* divsi */
  COSTS_N_INSNS (6),	/* divdi */
  COSTS_N_INSNS (2),	/* fp */
  COSTS_N_INSNS (2),	/* dmul */
  COSTS_N_INSNS (11),	/* sdiv */
  COSTS_N_INSNS (13),	/* ddiv */
  128,			/* cache line size */
  32,			/* l1 cache */
  512,			/* l2 cache */
  16,			/* prefetch streams */
  COSTS_N_INSNS (2),	/* SF->DF convert */
};

/* Instruction costs on POWER A2 processors.  */
static const
struct processor_costs ppca2_cost = {
  COSTS_N_INSNS (16),    /* mulsi */
  COSTS_N_INSNS (16),    /* mulsi_const */
  COSTS_N_INSNS (16),    /* mulsi_const9 */
  COSTS_N_INSNS (16),   /* muldi */
  COSTS_N_INSNS (22),   /* divsi */
  COSTS_N_INSNS (28),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (3),    /* dmul */
  COSTS_N_INSNS (59),   /* sdiv */
  COSTS_N_INSNS (72),   /* ddiv */
  64,
  16,			/* l1 cache */
  2048,			/* l2 cache */
  16,			/* prefetch streams */
  0,			/* SF->DF convert */
};

/* Support for -mveclibabi=<xxx> to control which vector library to use.  */
static tree (*rs6000_veclib_handler) (combined_fn, tree, tree);


static bool rs6000_debug_legitimate_address_p (machine_mode, rtx, bool);
static tree rs6000_handle_longcall_attribute (tree *, tree, tree, int, bool *);
static tree rs6000_handle_altivec_attribute (tree *, tree, tree, int, bool *);
static tree rs6000_handle_struct_attribute (tree *, tree, tree, int, bool *);
static tree rs6000_builtin_vectorized_libmass (combined_fn, tree, tree);
static void rs6000_emit_set_long_const (rtx, HOST_WIDE_INT);
static int rs6000_memory_move_cost (machine_mode, reg_class_t, bool);
static bool rs6000_debug_rtx_costs (rtx, machine_mode, int, int, int *, bool);
static int rs6000_debug_address_cost (rtx, machine_mode, addr_space_t,
				      bool);
static int rs6000_debug_adjust_cost (rtx_insn *, int, rtx_insn *, int,
				     unsigned int);
static bool is_microcoded_insn (rtx_insn *);
static bool is_nonpipeline_insn (rtx_insn *);
static bool is_cracked_insn (rtx_insn *);
static bool is_load_insn (rtx, rtx *);
static bool is_store_insn (rtx, rtx *);
static bool set_to_load_agen (rtx_insn *,rtx_insn *);
static bool insn_terminates_group_p (rtx_insn *, enum group_termination);
static bool insn_must_be_first_in_group (rtx_insn *);
static bool insn_must_be_last_in_group (rtx_insn *);
bool easy_vector_constant (rtx, machine_mode);
static rtx rs6000_debug_legitimize_address (rtx, rtx, machine_mode);
static rtx rs6000_legitimize_tls_address (rtx, enum tls_model);
#if TARGET_MACHO
static tree get_prev_label (tree);
#endif
static bool rs6000_mode_dependent_address (const_rtx);
static bool rs6000_debug_mode_dependent_address (const_rtx);
static bool rs6000_offsettable_memref_p (rtx, machine_mode, bool);
static enum reg_class rs6000_secondary_reload_class (enum reg_class,
						     machine_mode, rtx);
static enum reg_class rs6000_debug_secondary_reload_class (enum reg_class,
							   machine_mode,
							   rtx);
static enum reg_class rs6000_preferred_reload_class (rtx, enum reg_class);
static enum reg_class rs6000_debug_preferred_reload_class (rtx,
							   enum reg_class);
static bool rs6000_debug_secondary_memory_needed (machine_mode,
						  reg_class_t,
						  reg_class_t);
static bool rs6000_debug_can_change_mode_class (machine_mode,
						machine_mode,
						reg_class_t);

static bool (*rs6000_mode_dependent_address_ptr) (const_rtx)
  = rs6000_mode_dependent_address;

enum reg_class (*rs6000_secondary_reload_class_ptr) (enum reg_class,
						     machine_mode, rtx)
  = rs6000_secondary_reload_class;

enum reg_class (*rs6000_preferred_reload_class_ptr) (rtx, enum reg_class)
  = rs6000_preferred_reload_class;

const int INSN_NOT_AVAILABLE = -1;

static void rs6000_print_isa_options (FILE *, int, const char *,
				      HOST_WIDE_INT);
static HOST_WIDE_INT rs6000_disable_incompatible_switches (void);

static enum rs6000_reg_type register_to_reg_type (rtx, bool *);
static bool rs6000_secondary_reload_move (enum rs6000_reg_type,
					  enum rs6000_reg_type,
					  machine_mode,
					  secondary_reload_info *,
					  bool);
rtl_opt_pass *make_pass_analyze_swaps (gcc::context*);

/* Hash table stuff for keeping track of TOC entries.  */

struct GTY((for_user)) toc_hash_struct
{
  /* `key' will satisfy CONSTANT_P; in fact, it will satisfy
     ASM_OUTPUT_SPECIAL_POOL_ENTRY_P.  */
  rtx key;
  machine_mode key_mode;
  int labelno;
};

struct toc_hasher : ggc_ptr_hash<toc_hash_struct>
{
  static hashval_t hash (toc_hash_struct *);
  static bool equal (toc_hash_struct *, toc_hash_struct *);
};

static GTY (()) hash_table<toc_hasher> *toc_hash_table;



/* Default register names.  */
char rs6000_reg_names[][8] =
{
  /* GPRs */
      "0",  "1",  "2",  "3",  "4",  "5",  "6",  "7",
      "8",  "9", "10", "11", "12", "13", "14", "15",
     "16", "17", "18", "19", "20", "21", "22", "23",
     "24", "25", "26", "27", "28", "29", "30", "31",
  /* FPRs */
      "0",  "1",  "2",  "3",  "4",  "5",  "6",  "7",
      "8",  "9", "10", "11", "12", "13", "14", "15",
     "16", "17", "18", "19", "20", "21", "22", "23",
     "24", "25", "26", "27", "28", "29", "30", "31",
  /* VRs */
      "0",  "1",  "2",  "3",  "4",  "5",  "6",  "7",
      "8",  "9", "10", "11", "12", "13", "14", "15",
     "16", "17", "18", "19", "20", "21", "22", "23",
     "24", "25", "26", "27", "28", "29", "30", "31",
  /* lr ctr ca ap */
     "lr", "ctr", "ca", "ap",
  /* cr0..cr7 */
      "0",  "1",  "2",  "3",  "4",  "5",  "6",  "7",
  /* vrsave vscr sfp */
      "vrsave", "vscr", "sfp",
};

#ifdef TARGET_REGNAMES
static const char alt_reg_names[][8] =
{
  /* GPRs */
   "%r0",  "%r1",  "%r2",  "%r3",  "%r4",  "%r5",  "%r6",  "%r7",
   "%r8",  "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
  "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23",
  "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31",
  /* FPRs */
   "%f0",  "%f1",  "%f2",  "%f3",  "%f4",  "%f5",  "%f6",  "%f7",
   "%f8",  "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",
  "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",
  "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",
  /* VRs */
   "%v0",  "%v1",  "%v2",  "%v3",  "%v4",  "%v5",  "%v6",  "%v7",
   "%v8",  "%v9", "%v10", "%v11", "%v12", "%v13", "%v14", "%v15",
  "%v16", "%v17", "%v18", "%v19", "%v20", "%v21", "%v22", "%v23",
  "%v24", "%v25", "%v26", "%v27", "%v28", "%v29", "%v30", "%v31",
  /* lr ctr ca ap */
    "lr",  "ctr",   "ca",   "ap",
  /* cr0..cr7 */
  "%cr0",  "%cr1", "%cr2", "%cr3", "%cr4", "%cr5", "%cr6", "%cr7",
  /* vrsave vscr sfp */
  "vrsave", "vscr", "sfp",
};
#endif

/* Table of valid machine attributes.  */

static const struct attribute_spec rs6000_attribute_table[] =
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
       affects_type_identity, handler, exclude } */
  { "altivec",   1, 1, false, true,  false, false,
    rs6000_handle_altivec_attribute, NULL },
  { "longcall",  0, 0, false, true,  true,  false,
    rs6000_handle_longcall_attribute, NULL },
  { "shortcall", 0, 0, false, true,  true,  false,
    rs6000_handle_longcall_attribute, NULL },
  { "ms_struct", 0, 0, false, false, false, false,
    rs6000_handle_struct_attribute, NULL },
  { "gcc_struct", 0, 0, false, false, false, false,
    rs6000_handle_struct_attribute, NULL },
#ifdef SUBTARGET_ATTRIBUTE_TABLE
  SUBTARGET_ATTRIBUTE_TABLE,
#endif
  { NULL,        0, 0, false, false, false, false, NULL, NULL }
};

#ifndef TARGET_PROFILE_KERNEL
#define TARGET_PROFILE_KERNEL 0
#endif

/* Initialize the GCC target structure.  */
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE rs6000_attribute_table
#undef TARGET_SET_DEFAULT_TYPE_ATTRIBUTES
#define TARGET_SET_DEFAULT_TYPE_ATTRIBUTES rs6000_set_default_type_attributes
#undef TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P
#define TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P rs6000_attribute_takes_identifier_p

#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP DOUBLE_INT_ASM_OP

/* Default unaligned ops are only provided for ELF.  Find the ops needed
   for non-ELF systems.  */
#ifndef OBJECT_FORMAT_ELF
#if TARGET_XCOFF
/* For XCOFF.  rs6000_assemble_integer will handle unaligned DIs on
   64-bit targets.  */
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP "\t.vbyte\t2,"
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP "\t.vbyte\t4,"
#undef TARGET_ASM_UNALIGNED_DI_OP
#define TARGET_ASM_UNALIGNED_DI_OP "\t.vbyte\t8,"
#else
/* For Darwin.  */
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
#undef TARGET_ASM_UNALIGNED_DI_OP
#define TARGET_ASM_UNALIGNED_DI_OP "\t.quad\t"
#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
#endif
#endif

/* This hook deals with fixups for relocatable code and DI-mode objects
   in 64-bit code.  */
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER rs6000_assemble_integer

#if defined (HAVE_GAS_HIDDEN) && !TARGET_MACHO
#undef TARGET_ASM_ASSEMBLE_VISIBILITY
#define TARGET_ASM_ASSEMBLE_VISIBILITY rs6000_assemble_visibility
#endif

#undef TARGET_ASM_PRINT_PATCHABLE_FUNCTION_ENTRY
#define TARGET_ASM_PRINT_PATCHABLE_FUNCTION_ENTRY \
  rs6000_print_patchable_function_entry

#undef TARGET_SET_UP_BY_PROLOGUE
#define TARGET_SET_UP_BY_PROLOGUE rs6000_set_up_by_prologue

#undef TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS
#define TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS rs6000_get_separate_components
#undef TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB
#define TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB rs6000_components_for_bb
#undef TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS
#define TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS rs6000_disqualify_components
#undef TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS
#define TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS rs6000_emit_prologue_components
#undef TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS
#define TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS rs6000_emit_epilogue_components
#undef TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS
#define TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS rs6000_set_handled_components

#undef TARGET_EXTRA_LIVE_ON_ENTRY
#define TARGET_EXTRA_LIVE_ON_ENTRY rs6000_live_on_entry

#undef TARGET_INTERNAL_ARG_POINTER
#define TARGET_INTERNAL_ARG_POINTER rs6000_internal_arg_pointer

#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS HAVE_AS_TLS

#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM rs6000_cannot_force_const_mem

#undef TARGET_DELEGITIMIZE_ADDRESS
#define TARGET_DELEGITIMIZE_ADDRESS rs6000_delegitimize_address

#undef TARGET_CONST_NOT_OK_FOR_DEBUG_P
#define TARGET_CONST_NOT_OK_FOR_DEBUG_P rs6000_const_not_ok_for_debug_p

#undef TARGET_LEGITIMATE_COMBINED_INSN
#define TARGET_LEGITIMATE_COMBINED_INSN rs6000_legitimate_combined_insn

#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE rs6000_output_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE rs6000_output_function_epilogue

#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA rs6000_output_addr_const_extra

#undef  TARGET_ASM_GENERATE_PIC_ADDR_DIFF_VEC
#define TARGET_ASM_GENERATE_PIC_ADDR_DIFF_VEC rs6000_gen_pic_addr_diff_vec

#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS rs6000_legitimize_address

#undef  TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE rs6000_variable_issue

#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE rs6000_issue_rate
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST rs6000_adjust_cost
#undef TARGET_SCHED_ADJUST_PRIORITY
#define TARGET_SCHED_ADJUST_PRIORITY rs6000_adjust_priority
#undef TARGET_SCHED_IS_COSTLY_DEPENDENCE
#define TARGET_SCHED_IS_COSTLY_DEPENDENCE rs6000_is_costly_dependence
#undef TARGET_SCHED_INIT
#define TARGET_SCHED_INIT rs6000_sched_init
#undef TARGET_SCHED_FINISH
#define TARGET_SCHED_FINISH rs6000_sched_finish
#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER rs6000_sched_reorder
#undef TARGET_SCHED_REORDER2
#define TARGET_SCHED_REORDER2 rs6000_sched_reorder2

#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD rs6000_use_sched_lookahead

#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD rs6000_use_sched_lookahead_guard

#undef TARGET_SCHED_ALLOC_SCHED_CONTEXT
#define TARGET_SCHED_ALLOC_SCHED_CONTEXT rs6000_alloc_sched_context
#undef TARGET_SCHED_INIT_SCHED_CONTEXT
#define TARGET_SCHED_INIT_SCHED_CONTEXT rs6000_init_sched_context
#undef TARGET_SCHED_SET_SCHED_CONTEXT
#define TARGET_SCHED_SET_SCHED_CONTEXT rs6000_set_sched_context
#undef TARGET_SCHED_FREE_SCHED_CONTEXT
#define TARGET_SCHED_FREE_SCHED_CONTEXT rs6000_free_sched_context

#undef TARGET_SCHED_CAN_SPECULATE_INSN
#define TARGET_SCHED_CAN_SPECULATE_INSN rs6000_sched_can_speculate_insn

#undef TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD
#define TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD rs6000_builtin_mask_for_load
#undef TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT
#define TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT		\
  rs6000_builtin_support_vector_misalignment
#undef TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
#define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE rs6000_vector_alignment_reachable
#undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
#define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \
  rs6000_builtin_vectorization_cost
#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE \
  rs6000_preferred_simd_mode
#undef TARGET_VECTORIZE_CREATE_COSTS
#define TARGET_VECTORIZE_CREATE_COSTS rs6000_vectorize_create_costs

#undef TARGET_LOOP_UNROLL_ADJUST
#define TARGET_LOOP_UNROLL_ADJUST rs6000_loop_unroll_adjust

#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS rs6000_init_builtins
#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL rs6000_builtin_decl

#undef TARGET_FOLD_BUILTIN
#define TARGET_FOLD_BUILTIN rs6000_fold_builtin
#undef TARGET_GIMPLE_FOLD_BUILTIN
#define TARGET_GIMPLE_FOLD_BUILTIN rs6000_gimple_fold_builtin

#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN rs6000_expand_builtin

#undef TARGET_MANGLE_TYPE
#define TARGET_MANGLE_TYPE rs6000_mangle_type

#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS rs6000_init_libfuncs

#if TARGET_MACHO
#undef TARGET_BINDS_LOCAL_P
#define TARGET_BINDS_LOCAL_P darwin_binds_local_p
#endif

#undef TARGET_MS_BITFIELD_LAYOUT_P
#define TARGET_MS_BITFIELD_LAYOUT_P rs6000_ms_bitfield_layout_p

#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK rs6000_output_mi_thunk

#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true

#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL rs6000_function_ok_for_sibcall

#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST rs6000_register_move_cost
#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST rs6000_memory_move_cost
#undef TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS
#define TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS \
  rs6000_ira_change_pseudo_allocno_class
#undef TARGET_CANNOT_COPY_INSN_P
#define TARGET_CANNOT_COPY_INSN_P rs6000_cannot_copy_insn_p
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS rs6000_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
#undef TARGET_INSN_COST
#define TARGET_INSN_COST rs6000_insn_cost

#undef TARGET_INIT_DWARF_REG_SIZES_EXTRA
#define TARGET_INIT_DWARF_REG_SIZES_EXTRA rs6000_init_dwarf_reg_sizes_extra

#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE rs6000_promote_function_mode

#undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
#define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE rs6000_override_options_after_change

#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY rs6000_return_in_memory

#undef TARGET_RETURN_IN_MSB
#define TARGET_RETURN_IN_MSB rs6000_return_in_msb

#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS setup_incoming_varargs

/* Always strict argument naming on rs6000.  */
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
#undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
#define TARGET_PRETEND_OUTGOING_VARARGS_NAMED hook_bool_CUMULATIVE_ARGS_true
#undef TARGET_SPLIT_COMPLEX_ARG
#define TARGET_SPLIT_COMPLEX_ARG hook_bool_const_tree_true
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK rs6000_must_pass_in_stack
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE rs6000_pass_by_reference
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES rs6000_arg_partial_bytes
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE rs6000_function_arg_advance
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG rs6000_function_arg
#undef TARGET_FUNCTION_ARG_PADDING
#define TARGET_FUNCTION_ARG_PADDING rs6000_function_arg_padding
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY rs6000_function_arg_boundary

#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST rs6000_build_builtin_va_list

#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START rs6000_va_start

#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR rs6000_gimplify_va_arg

#undef TARGET_EH_RETURN_FILTER_MODE
#define TARGET_EH_RETURN_FILTER_MODE rs6000_eh_return_filter_mode

#undef TARGET_TRANSLATE_MODE_ATTRIBUTE
#define TARGET_TRANSLATE_MODE_ATTRIBUTE rs6000_translate_mode_attribute

#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P rs6000_scalar_mode_supported_p

#undef TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P
#define TARGET_LIBGCC_FLOATING_MODE_SUPPORTED_P \
  rs6000_libgcc_floating_mode_supported_p

#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P rs6000_vector_mode_supported_p

#undef TARGET_FLOATN_MODE
#define TARGET_FLOATN_MODE rs6000_floatn_mode

#undef TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN
#define TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN invalid_arg_for_unprototyped_fn

#undef TARGET_MD_ASM_ADJUST
#define TARGET_MD_ASM_ADJUST rs6000_md_asm_adjust

#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE rs6000_option_override

#undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION
#define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \
  rs6000_builtin_vectorized_function

#undef TARGET_VECTORIZE_BUILTIN_MD_VECTORIZED_FUNCTION
#define TARGET_VECTORIZE_BUILTIN_MD_VECTORIZED_FUNCTION \
  rs6000_builtin_md_vectorized_function

#undef TARGET_STACK_PROTECT_GUARD
#define TARGET_STACK_PROTECT_GUARD rs6000_init_stack_protect_guard

#if !TARGET_MACHO
#undef TARGET_STACK_PROTECT_FAIL
#define TARGET_STACK_PROTECT_FAIL rs6000_stack_protect_fail
#endif

#ifdef HAVE_AS_TLS
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
#define TARGET_ASM_OUTPUT_DWARF_DTPREL rs6000_output_dwarf_dtprel
#endif

/* Use a 32-bit anchor range.  This leads to sequences like:

	addis	tmp,anchor,high
	add	dest,tmp,low

   where tmp itself acts as an anchor, and can be shared between
   accesses to the same 64k page.  */
#undef TARGET_MIN_ANCHOR_OFFSET
#define TARGET_MIN_ANCHOR_OFFSET -0x7fffffff - 1
#undef TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET 0x7fffffff
#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P rs6000_use_blocks_for_constant_p
#undef TARGET_USE_BLOCKS_FOR_DECL_P
#define TARGET_USE_BLOCKS_FOR_DECL_P rs6000_use_blocks_for_decl_p

#undef TARGET_BUILTIN_RECIPROCAL
#define TARGET_BUILTIN_RECIPROCAL rs6000_builtin_reciprocal

#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD rs6000_secondary_reload
#undef TARGET_SECONDARY_MEMORY_NEEDED
#define TARGET_SECONDARY_MEMORY_NEEDED rs6000_secondary_memory_needed
#undef TARGET_SECONDARY_MEMORY_NEEDED_MODE
#define TARGET_SECONDARY_MEMORY_NEEDED_MODE rs6000_secondary_memory_needed_mode

#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P rs6000_legitimate_address_p

#undef TARGET_MODE_DEPENDENT_ADDRESS_P
#define TARGET_MODE_DEPENDENT_ADDRESS_P rs6000_mode_dependent_address_p

#undef TARGET_COMPUTE_PRESSURE_CLASSES
#define TARGET_COMPUTE_PRESSURE_CLASSES rs6000_compute_pressure_classes

#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE rs6000_can_eliminate

#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage

#undef TARGET_SCHED_REASSOCIATION_WIDTH
#define TARGET_SCHED_REASSOCIATION_WIDTH rs6000_reassociation_width

#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT rs6000_trampoline_init

#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE rs6000_function_value

#undef TARGET_OPTION_VALID_ATTRIBUTE_P
#define TARGET_OPTION_VALID_ATTRIBUTE_P rs6000_valid_attribute_p

#undef TARGET_OPTION_SAVE
#define TARGET_OPTION_SAVE rs6000_function_specific_save

#undef TARGET_OPTION_RESTORE
#define TARGET_OPTION_RESTORE rs6000_function_specific_restore

#undef TARGET_OPTION_PRINT
#define TARGET_OPTION_PRINT rs6000_function_specific_print

#undef TARGET_CAN_INLINE_P
#define TARGET_CAN_INLINE_P rs6000_can_inline_p

#undef TARGET_SET_CURRENT_FUNCTION
#define TARGET_SET_CURRENT_FUNCTION rs6000_set_current_function

#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P rs6000_legitimate_constant_p

#undef TARGET_VECTORIZE_VEC_PERM_CONST
#define TARGET_VECTORIZE_VEC_PERM_CONST rs6000_vectorize_vec_perm_const

#undef TARGET_CAN_USE_DOLOOP_P
#define TARGET_CAN_USE_DOLOOP_P can_use_doloop_if_innermost

#undef TARGET_PREDICT_DOLOOP_P
#define TARGET_PREDICT_DOLOOP_P rs6000_predict_doloop_p

#undef TARGET_HAVE_COUNT_REG_DECR_P
#define TARGET_HAVE_COUNT_REG_DECR_P true

/* 1000000000 is infinite cost in IVOPTs.  */
#undef TARGET_DOLOOP_COST_FOR_GENERIC
#define TARGET_DOLOOP_COST_FOR_GENERIC 1000000000

#undef TARGET_DOLOOP_COST_FOR_ADDRESS
#define TARGET_DOLOOP_COST_FOR_ADDRESS 1000000000

#undef TARGET_PREFERRED_DOLOOP_MODE
#define TARGET_PREFERRED_DOLOOP_MODE rs6000_preferred_doloop_mode

#undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
#define TARGET_ATOMIC_ASSIGN_EXPAND_FENV rs6000_atomic_assign_expand_fenv

#undef TARGET_LIBGCC_CMP_RETURN_MODE
#define TARGET_LIBGCC_CMP_RETURN_MODE rs6000_abi_word_mode
#undef TARGET_LIBGCC_SHIFT_COUNT_MODE
#define TARGET_LIBGCC_SHIFT_COUNT_MODE rs6000_abi_word_mode
#undef TARGET_UNWIND_WORD_MODE
#define TARGET_UNWIND_WORD_MODE rs6000_abi_word_mode

#undef TARGET_OFFLOAD_OPTIONS
#define TARGET_OFFLOAD_OPTIONS rs6000_offload_options

#undef TARGET_C_MODE_FOR_SUFFIX
#define TARGET_C_MODE_FOR_SUFFIX rs6000_c_mode_for_suffix

#undef TARGET_INVALID_BINARY_OP
#define TARGET_INVALID_BINARY_OP rs6000_invalid_binary_op

#undef TARGET_OPTAB_SUPPORTED_P
#define TARGET_OPTAB_SUPPORTED_P rs6000_optab_supported_p

#undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS
#define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 1

#undef TARGET_COMPARE_VERSION_PRIORITY
#define TARGET_COMPARE_VERSION_PRIORITY rs6000_compare_version_priority

#undef TARGET_GENERATE_VERSION_DISPATCHER_BODY
#define TARGET_GENERATE_VERSION_DISPATCHER_BODY				\
  rs6000_generate_version_dispatcher_body

#undef TARGET_GET_FUNCTION_VERSIONS_DISPATCHER
#define TARGET_GET_FUNCTION_VERSIONS_DISPATCHER				\
  rs6000_get_function_versions_dispatcher

#undef TARGET_OPTION_FUNCTION_VERSIONS
#define TARGET_OPTION_FUNCTION_VERSIONS common_function_versions

#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS rs6000_hard_regno_nregs_hook
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK rs6000_hard_regno_mode_ok

#undef TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P rs6000_modes_tieable_p

#undef TARGET_HARD_REGNO_CALL_PART_CLOBBERED
#define TARGET_HARD_REGNO_CALL_PART_CLOBBERED \
  rs6000_hard_regno_call_part_clobbered

#undef TARGET_SLOW_UNALIGNED_ACCESS
#define TARGET_SLOW_UNALIGNED_ACCESS rs6000_slow_unaligned_access

#undef TARGET_CAN_CHANGE_MODE_CLASS
#define TARGET_CAN_CHANGE_MODE_CLASS rs6000_can_change_mode_class

#undef TARGET_CONSTANT_ALIGNMENT
#define TARGET_CONSTANT_ALIGNMENT rs6000_constant_alignment

#undef TARGET_STARTING_FRAME_OFFSET
#define TARGET_STARTING_FRAME_OFFSET rs6000_starting_frame_offset

#undef TARGET_SETJMP_PRESERVES_NONVOLATILE_REGS_P
#define TARGET_SETJMP_PRESERVES_NONVOLATILE_REGS_P hook_bool_void_true

#undef TARGET_MANGLE_DECL_ASSEMBLER_NAME
#define TARGET_MANGLE_DECL_ASSEMBLER_NAME rs6000_mangle_decl_assembler_name

#undef TARGET_CANNOT_SUBSTITUTE_MEM_EQUIV_P
#define TARGET_CANNOT_SUBSTITUTE_MEM_EQUIV_P \
  rs6000_cannot_substitute_mem_equiv_p

#undef TARGET_INVALID_CONVERSION
#define TARGET_INVALID_CONVERSION rs6000_invalid_conversion

#undef TARGET_NEED_IPA_FN_TARGET_INFO
#define TARGET_NEED_IPA_FN_TARGET_INFO rs6000_need_ipa_fn_target_info

#undef TARGET_UPDATE_IPA_FN_TARGET_INFO
#define TARGET_UPDATE_IPA_FN_TARGET_INFO rs6000_update_ipa_fn_target_info


/* Processor table.  */
struct rs6000_ptt
{
  const char *const name;		/* Canonical processor name.  */
  const enum processor_type processor;	/* Processor type enum value.  */
  const HOST_WIDE_INT target_enable;	/* Target flags to enable.  */
};

static struct rs6000_ptt const processor_target_table[] =
{
#define RS6000_CPU(NAME, CPU, FLAGS) { NAME, CPU, FLAGS },
#include "rs6000-cpus.def"
#undef RS6000_CPU
};

/* Look up a processor name for -mcpu=xxx and -mtune=xxx.  Return -1 if the
   name is invalid.  */

static int
rs6000_cpu_name_lookup (const char *name)
{
  size_t i;

  if (name != NULL)
    {
      for (i = 0; i < ARRAY_SIZE (processor_target_table); i++)
	if (! strcmp (name, processor_target_table[i].name))
	  return (int)i;
    }

  return -1;
}


/* Return number of consecutive hard regs needed starting at reg REGNO
   to hold something of mode MODE.
   This is ordinarily the length in words of a value of mode MODE
   but can be less for certain modes in special long registers.

   POWER and PowerPC GPRs hold 32 bits worth;
   PowerPC64 GPRs and FPRs point register holds 64 bits worth.  */

static int
rs6000_hard_regno_nregs_internal (int regno, machine_mode mode)
{
  unsigned HOST_WIDE_INT reg_size;

  /* 128-bit floating point usually takes 2 registers, unless it is IEEE
     128-bit floating point that can go in vector registers, which has VSX
     memory addressing.  */
  if (FP_REGNO_P (regno))
    reg_size = (VECTOR_MEM_VSX_P (mode) || VECTOR_ALIGNMENT_P (mode)
		? UNITS_PER_VSX_WORD
		: UNITS_PER_FP_WORD);

  else if (ALTIVEC_REGNO_P (regno))
    reg_size = UNITS_PER_ALTIVEC_WORD;

  else
    reg_size = UNITS_PER_WORD;

  return (GET_MODE_SIZE (mode) + reg_size - 1) / reg_size;
}

/* Value is 1 if hard register REGNO can hold a value of machine-mode
   MODE.  */
static int
rs6000_hard_regno_mode_ok_uncached (int regno, machine_mode mode)
{
  int last_regno = regno + rs6000_hard_regno_nregs[mode][regno] - 1;

  if (COMPLEX_MODE_P (mode))
    mode = GET_MODE_INNER (mode);

  /* Vector pair modes need even/odd VSX register pairs.  Only allow vector
     registers.  */
  if (mode == OOmode)
    return (TARGET_MMA && VSX_REGNO_P (regno) && (regno & 1) == 0);

  /* MMA accumulator modes need FPR registers divisible by 4.  */
  if (mode == XOmode)
    return (TARGET_MMA && FP_REGNO_P (regno) && (regno & 3) == 0);

  /* PTImode can only go in GPRs.  Quad word memory operations require even/odd
     register combinations, and use PTImode where we need to deal with quad
     word memory operations.  Don't allow quad words in the argument or frame
     pointer registers, just registers 0..31.  */
  if (mode == PTImode)
    return (IN_RANGE (regno, FIRST_GPR_REGNO, LAST_GPR_REGNO)
	    && IN_RANGE (last_regno, FIRST_GPR_REGNO, LAST_GPR_REGNO)
	    && ((regno & 1) == 0));

  /* VSX registers that overlap the FPR registers are larger than for non-VSX
     implementations.  Don't allow an item to be split between a FP register
     and an Altivec register.  Allow TImode in all VSX registers if the user
     asked for it.  */
  if (TARGET_VSX && VSX_REGNO_P (regno)
      && (VECTOR_MEM_VSX_P (mode)
	  || VECTOR_ALIGNMENT_P (mode)
	  || reg_addr[mode].scalar_in_vmx_p
	  || mode == TImode
	  || (TARGET_VADDUQM && mode == V1TImode)))
    {
      if (FP_REGNO_P (regno))
	return FP_REGNO_P (last_regno);

      if (ALTIVEC_REGNO_P (regno))
	{
	  if (GET_MODE_SIZE (mode) < 16 && !reg_addr[mode].scalar_in_vmx_p)
	    return 0;

	  return ALTIVEC_REGNO_P (last_regno);
	}
    }

  /* The GPRs can hold any mode, but values bigger than one register
     cannot go past R31.  */
  if (INT_REGNO_P (regno))
    return INT_REGNO_P (last_regno);

  /* The float registers (except for VSX vector modes) can only hold floating
     modes and DImode.  */
  if (FP_REGNO_P (regno))
    {
      if (VECTOR_ALIGNMENT_P (mode))
	return false;

      if (SCALAR_FLOAT_MODE_P (mode)
	  && (mode != TDmode || (regno % 2) == 0)
	  && FP_REGNO_P (last_regno))
	return 1;

      if (GET_MODE_CLASS (mode) == MODE_INT)
	{
	  if(GET_MODE_SIZE (mode) == UNITS_PER_FP_WORD)
	    return 1;

	  if (TARGET_P8_VECTOR && (mode == SImode))
	    return 1;

	  if (TARGET_P9_VECTOR && (mode == QImode || mode == HImode))
	    return 1;
	}

      return 0;
    }

  /* The CR register can only hold CC modes.  */
  if (CR_REGNO_P (regno))
    return GET_MODE_CLASS (mode) == MODE_CC;

  if (CA_REGNO_P (regno))
    return mode == Pmode || mode == SImode;

  /* AltiVec only in AldyVec registers.  */
  if (ALTIVEC_REGNO_P (regno))
    return (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)
	    || mode == V1TImode);

  /* We cannot put non-VSX TImode or PTImode anywhere except general register
     and it must be able to fit within the register set.  */

  return GET_MODE_SIZE (mode) <= UNITS_PER_WORD;
}

/* Implement TARGET_HARD_REGNO_NREGS.  */

static unsigned int
rs6000_hard_regno_nregs_hook (unsigned int regno, machine_mode mode)
{
  return rs6000_hard_regno_nregs[mode][regno];
}

/* Implement TARGET_HARD_REGNO_MODE_OK.  */

static bool
rs6000_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
{
  return rs6000_hard_regno_mode_ok_p[mode][regno];
}

/* Implement TARGET_MODES_TIEABLE_P.

   PTImode cannot tie with other modes because PTImode is restricted to even
   GPR registers, and TImode can go in any GPR as well as VSX registers (PR
   57744).

   Similarly, don't allow OOmode (vector pair, restricted to even VSX
   registers) or XOmode (vector quad, restricted to FPR registers divisible
   by 4) to tie with other modes.

   Altivec/VSX vector tests were moved ahead of scalar float mode, so that IEEE
   128-bit floating point on VSX systems ties with other vectors.  */

static bool
rs6000_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
  if (mode1 == PTImode || mode1 == OOmode || mode1 == XOmode
      || mode2 == PTImode || mode2 == OOmode || mode2 == XOmode)
    return mode1 == mode2;

  if (ALTIVEC_OR_VSX_VECTOR_MODE (mode1))
    return ALTIVEC_OR_VSX_VECTOR_MODE (mode2);
  if (ALTIVEC_OR_VSX_VECTOR_MODE (mode2))
    return false;

  if (SCALAR_FLOAT_MODE_P (mode1))
    return SCALAR_FLOAT_MODE_P (mode2);
  if (SCALAR_FLOAT_MODE_P (mode2))
    return false;

  if (GET_MODE_CLASS (mode1) == MODE_CC)
    return GET_MODE_CLASS (mode2) == MODE_CC;
  if (GET_MODE_CLASS (mode2) == MODE_CC)
    return false;

  return true;
}

/* Implement TARGET_HARD_REGNO_CALL_PART_CLOBBERED.  */

static bool
rs6000_hard_regno_call_part_clobbered (unsigned int, unsigned int regno,
				       machine_mode mode)
{
  if (TARGET_32BIT
      && TARGET_POWERPC64
      && GET_MODE_SIZE (mode) > 4
      && INT_REGNO_P (regno))
    return true;

  if (TARGET_VSX
      && FP_REGNO_P (regno)
      && GET_MODE_SIZE (mode) > 8
      && !FLOAT128_2REG_P (mode))
    return true;

  return false;
}

/* Print interesting facts about registers.  */
static void
rs6000_debug_reg_print (int first_regno, int last_regno, const char *reg_name)
{
  int r, m;

  for (r = first_regno; r <= last_regno; ++r)
    {
      const char *comma = "";
      int len;

      if (first_regno == last_regno)
	fprintf (stderr, "%s:\t", reg_name);
      else
	fprintf (stderr, "%s%d:\t", reg_name, r - first_regno);

      len = 8;
      for (m = 0; m < NUM_MACHINE_MODES; ++m)
	if (rs6000_hard_regno_mode_ok_p[m][r] && rs6000_hard_regno_nregs[m][r])
	  {
	    if (len > 70)
	      {
		fprintf (stderr, ",\n\t");
		len = 8;
		comma = "";
	      }

	    if (rs6000_hard_regno_nregs[m][r] > 1)
	      len += fprintf (stderr, "%s%s/%d", comma, GET_MODE_NAME (m),
			     rs6000_hard_regno_nregs[m][r]);
	    else
	      len += fprintf (stderr, "%s%s", comma, GET_MODE_NAME (m));

	    comma = ", ";
	  }

      if (call_used_or_fixed_reg_p (r))
	{
	  if (len > 70)
	    {
	      fprintf (stderr, ",\n\t");
	      len = 8;
	      comma = "";
	    }

	  len += fprintf (stderr, "%s%s", comma, "call-used");
	  comma = ", ";
	}

      if (fixed_regs[r])
	{
	  if (len > 70)
	    {
	      fprintf (stderr, ",\n\t");
	      len = 8;
	      comma = "";
	    }

	  len += fprintf (stderr, "%s%s", comma, "fixed");
	  comma = ", ";
	}

      if (len > 70)
	{
	  fprintf (stderr, ",\n\t");
	  comma = "";
	}

      len += fprintf (stderr, "%sreg-class = %s", comma,
		      reg_class_names[(int)rs6000_regno_regclass[r]]);
      comma = ", ";

      if (len > 70)
	{
	  fprintf (stderr, ",\n\t");
	  comma = "";
	}

      fprintf (stderr, "%sregno = %d\n", comma, r);
    }
}

static const char *
rs6000_debug_vector_unit (enum rs6000_vector v)
{
  const char *ret;

  switch (v)
    {
    case VECTOR_NONE:	   ret = "none";      break;
    case VECTOR_ALTIVEC:   ret = "altivec";   break;
    case VECTOR_VSX:	   ret = "vsx";       break;
    case VECTOR_P8_VECTOR: ret = "p8_vector"; break;
    default:		   ret = "unknown";   break;
    }

  return ret;
}

/* Inner function printing just the address mask for a particular reload
   register class.  */
DEBUG_FUNCTION char *
rs6000_debug_addr_mask (addr_mask_type mask, bool keep_spaces)
{
  static char ret[8];
  char *p = ret;

  if ((mask & RELOAD_REG_VALID) != 0)
    *p++ = 'v';
  else if (keep_spaces)
    *p++ = ' ';

  if ((mask & RELOAD_REG_MULTIPLE) != 0)
    *p++ = 'm';
  else if (keep_spaces)
    *p++ = ' ';

  if ((mask & RELOAD_REG_INDEXED) != 0)
    *p++ = 'i';
  else if (keep_spaces)
    *p++ = ' ';

  if ((mask & RELOAD_REG_QUAD_OFFSET) != 0)
    *p++ = 'O';
  else if ((mask & RELOAD_REG_OFFSET) != 0)
    *p++ = 'o';
  else if (keep_spaces)
    *p++ = ' ';

  if ((mask & RELOAD_REG_PRE_INCDEC) != 0)
    *p++ = '+';
  else if (keep_spaces)
    *p++ = ' ';

  if ((mask & RELOAD_REG_PRE_MODIFY) != 0)
    *p++ = '+';
  else if (keep_spaces)
    *p++ = ' ';

  if ((mask & RELOAD_REG_AND_M16) != 0)
    *p++ = '&';
  else if (keep_spaces)
    *p++ = ' ';

  *p = '\0';

  return ret;
}

/* Print the address masks in a human readble fashion.  */
DEBUG_FUNCTION void
rs6000_debug_print_mode (ssize_t m)
{
  ssize_t rc;
  int spaces = 0;

  fprintf (stderr, "Mode: %-5s", GET_MODE_NAME (m));
  for (rc = 0; rc < N_RELOAD_REG; rc++)
    fprintf (stderr, " %s: %s", reload_reg_map[rc].name,
	     rs6000_debug_addr_mask (reg_addr[m].addr_mask[rc], true));

  if ((reg_addr[m].reload_store != CODE_FOR_nothing)
      || (reg_addr[m].reload_load != CODE_FOR_nothing))
    {
      fprintf (stderr, "%*s  Reload=%c%c", spaces, "",
	       (reg_addr[m].reload_store != CODE_FOR_nothing) ? 's' : '*',
	       (reg_addr[m].reload_load != CODE_FOR_nothing) ? 'l' : '*');
      spaces = 0;
    }
  else
    spaces += strlen ("  Reload=sl");

  if (reg_addr[m].scalar_in_vmx_p)
    {
      fprintf (stderr, "%*s  Upper=y", spaces, "");
      spaces = 0;
    }
  else
    spaces += strlen ("  Upper=y");

  if (rs6000_vector_unit[m] != VECTOR_NONE
      || rs6000_vector_mem[m] != VECTOR_NONE)
    {
      fprintf (stderr, "%*s  vector: arith=%-10s mem=%s",
	       spaces, "",
	       rs6000_debug_vector_unit (rs6000_vector_unit[m]),
	       rs6000_debug_vector_unit (rs6000_vector_mem[m]));
    }

  fputs ("\n", stderr);
}

#define DEBUG_FMT_ID "%-32s= "
#define DEBUG_FMT_D   DEBUG_FMT_ID "%d\n"
#define DEBUG_FMT_WX  DEBUG_FMT_ID "%#.12" HOST_WIDE_INT_PRINT "x: "
#define DEBUG_FMT_S   DEBUG_FMT_ID "%s\n"

/* Print various interesting information with -mdebug=reg.  */
static void
rs6000_debug_reg_global (void)
{
  static const char *const tf[2] = { "false", "true" };
  const char *nl = (const char *)0;
  int m;
  size_t m1, m2, v;
  char costly_num[20];
  char nop_num[20];
  char flags_buffer[40];
  const char *costly_str;
  const char *nop_str;
  const char *trace_str;
  const char *abi_str;
  const char *cmodel_str;
  struct cl_target_option cl_opts;

  /* Modes we want tieable information on.  */
  static const machine_mode print_tieable_modes[] = {
    QImode,
    HImode,
    SImode,
    DImode,
    TImode,
    PTImode,
    SFmode,
    DFmode,
    TFmode,
    IFmode,
    KFmode,
    SDmode,
    DDmode,
    TDmode,
    V2SImode,
    V2SFmode,
    V16QImode,
    V8HImode,
    V4SImode,
    V2DImode,
    V1TImode,
    V32QImode,
    V16HImode,
    V8SImode,
    V4DImode,
    V2TImode,
    V4SFmode,
    V2DFmode,
    V8SFmode,
    V4DFmode,
    OOmode,
    XOmode,
    CCmode,
    CCUNSmode,
    CCEQmode,
    CCFPmode,
  };

  /* Virtual regs we are interested in.  */
  const static struct {
    int regno;			/* register number.  */
    const char *name;		/* register name.  */
  } virtual_regs[] = {
    { STACK_POINTER_REGNUM,			"stack pointer:" },
    { TOC_REGNUM,				"toc:          " },
    { STATIC_CHAIN_REGNUM,			"static chain: " },
    { RS6000_PIC_OFFSET_TABLE_REGNUM,		"pic offset:   " },
    { HARD_FRAME_POINTER_REGNUM,		"hard frame:   " },
    { ARG_POINTER_REGNUM,			"arg pointer:  " },
    { FRAME_POINTER_REGNUM,			"frame pointer:" },
    { FIRST_PSEUDO_REGISTER,			"first pseudo: " },
    { FIRST_VIRTUAL_REGISTER,			"first virtual:" },
    { VIRTUAL_INCOMING_ARGS_REGNUM,		"incoming_args:" },
    { VIRTUAL_STACK_VARS_REGNUM,		"stack_vars:   " },
    { VIRTUAL_STACK_DYNAMIC_REGNUM,		"stack_dynamic:" },
    { VIRTUAL_OUTGOING_ARGS_REGNUM,		"outgoing_args:" },
    { VIRTUAL_CFA_REGNUM,			"cfa (frame):  " },
    { VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM,	"stack boundry:" },
    { LAST_VIRTUAL_REGISTER,			"last virtual: " },
  };

  fputs ("\nHard register information:\n", stderr);
  rs6000_debug_reg_print (FIRST_GPR_REGNO, LAST_GPR_REGNO, "gr");
  rs6000_debug_reg_print (FIRST_FPR_REGNO, LAST_FPR_REGNO, "fp");
  rs6000_debug_reg_print (FIRST_ALTIVEC_REGNO,
			  LAST_ALTIVEC_REGNO,
			  "vs");
  rs6000_debug_reg_print (LR_REGNO, LR_REGNO, "lr");
  rs6000_debug_reg_print (CTR_REGNO, CTR_REGNO, "ctr");
  rs6000_debug_reg_print (CR0_REGNO, CR7_REGNO, "cr");
  rs6000_debug_reg_print (CA_REGNO, CA_REGNO, "ca");
  rs6000_debug_reg_print (VRSAVE_REGNO, VRSAVE_REGNO, "vrsave");
  rs6000_debug_reg_print (VSCR_REGNO, VSCR_REGNO, "vscr");

  fputs ("\nVirtual/stack/frame registers:\n", stderr);
  for (v = 0; v < ARRAY_SIZE (virtual_regs); v++)
    fprintf (stderr, "%s regno = %3d\n", virtual_regs[v].name, virtual_regs[v].regno);

  fprintf (stderr,
	   "\n"
	   "d  reg_class = %s\n"
	   "v  reg_class = %s\n"
	   "wa reg_class = %s\n"
	   "we reg_class = %s\n"
	   "wr reg_class = %s\n"
	   "wx reg_class = %s\n"
	   "wA reg_class = %s\n"
	   "\n",
	   reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_d]],
	   reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_v]],
	   reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wa]],
	   reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_we]],
	   reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wr]],
	   reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wx]],
	   reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wA]]);

  nl = "\n";
  for (m = 0; m < NUM_MACHINE_MODES; ++m)
    rs6000_debug_print_mode (m);

  fputs ("\n", stderr);

  for (m1 = 0; m1 < ARRAY_SIZE (print_tieable_modes); m1++)
    {
      machine_mode mode1 = print_tieable_modes[m1];
      bool first_time = true;

      nl = (const char *)0;
      for (m2 = 0; m2 < ARRAY_SIZE (print_tieable_modes); m2++)
	{
	  machine_mode mode2 = print_tieable_modes[m2];
	  if (mode1 != mode2 && rs6000_modes_tieable_p (mode1, mode2))
	    {
	      if (first_time)
		{
		  fprintf (stderr, "Tieable modes %s:", GET_MODE_NAME (mode1));
		  nl = "\n";
		  first_time = false;
		}

	      fprintf (stderr, " %s", GET_MODE_NAME (mode2));
	    }
	}

      if (!first_time)
	fputs ("\n", stderr);
    }

  if (nl)
    fputs (nl, stderr);

  if (rs6000_recip_control)
    {
      fprintf (stderr, "\nReciprocal mask = 0x%x\n", rs6000_recip_control);

      for (m = 0; m < NUM_MACHINE_MODES; ++m)
	if (rs6000_recip_bits[m])
	  {
	    fprintf (stderr,
		     "Reciprocal estimate mode: %-5s divide: %s rsqrt: %s\n",
		     GET_MODE_NAME (m),
		     (RS6000_RECIP_AUTO_RE_P (m)
		      ? "auto"
		      : (RS6000_RECIP_HAVE_RE_P (m) ? "have" : "none")),
		     (RS6000_RECIP_AUTO_RSQRTE_P (m)
		      ? "auto"
		      : (RS6000_RECIP_HAVE_RSQRTE_P (m) ? "have" : "none")));
	  }

      fputs ("\n", stderr);
    }

  if (rs6000_cpu_index >= 0)
    {
      const char *name = processor_target_table[rs6000_cpu_index].name;
      HOST_WIDE_INT flags
	= processor_target_table[rs6000_cpu_index].target_enable;

      sprintf (flags_buffer, "-mcpu=%s flags", name);
      rs6000_print_isa_options (stderr, 0, flags_buffer, flags);
    }
  else
    fprintf (stderr, DEBUG_FMT_S, "cpu", "<none>");

  if (rs6000_tune_index >= 0)
    {
      const char *name = processor_target_table[rs6000_tune_index].name;
      HOST_WIDE_INT flags
	= processor_target_table[rs6000_tune_index].target_enable;

      sprintf (flags_buffer, "-mtune=%s flags", name);
      rs6000_print_isa_options (stderr, 0, flags_buffer, flags);
    }
  else
    fprintf (stderr, DEBUG_FMT_S, "tune", "<none>");

  cl_target_option_save (&cl_opts, &global_options, &global_options_set);
  rs6000_print_isa_options (stderr, 0, "rs6000_isa_flags",
			    rs6000_isa_flags);

  rs6000_print_isa_options (stderr, 0, "rs6000_isa_flags_explicit",
			    rs6000_isa_flags_explicit);

  rs6000_print_isa_options (stderr, 0, "TARGET_DEFAULT", TARGET_DEFAULT);

  fprintf (stderr, DEBUG_FMT_S, "--with-cpu default",
	   OPTION_TARGET_CPU_DEFAULT ? OPTION_TARGET_CPU_DEFAULT : "<none>");

  switch (rs6000_sched_costly_dep)
    {
    case max_dep_latency:
      costly_str = "max_dep_latency";
      break;

    case no_dep_costly:
      costly_str = "no_dep_costly";
      break;

    case all_deps_costly:
      costly_str = "all_deps_costly";
      break;

    case true_store_to_load_dep_costly:
      costly_str = "true_store_to_load_dep_costly";
      break;

    case store_to_load_dep_costly:
      costly_str = "store_to_load_dep_costly";
      break;

    default:
      costly_str = costly_num;
      sprintf (costly_num, "%d", (int)rs6000_sched_costly_dep);
      break;
    }

  fprintf (stderr, DEBUG_FMT_S, "sched_costly_dep", costly_str);

  switch (rs6000_sched_insert_nops)
    {
    case sched_finish_regroup_exact:
      nop_str = "sched_finish_regroup_exact";
      break;

    case sched_finish_pad_groups:
      nop_str = "sched_finish_pad_groups";
      break;

    case sched_finish_none:
      nop_str = "sched_finish_none";
      break;

    default:
      nop_str = nop_num;
      sprintf (nop_num, "%d", (int)rs6000_sched_insert_nops);
      break;
    }

  fprintf (stderr, DEBUG_FMT_S, "sched_insert_nops", nop_str);

  switch (rs6000_sdata)
    {
    default:
    case SDATA_NONE:
      break;

    case SDATA_DATA:
      fprintf (stderr, DEBUG_FMT_S, "sdata", "data");
      break;

    case SDATA_SYSV:
      fprintf (stderr, DEBUG_FMT_S, "sdata", "sysv");
      break;

    case SDATA_EABI:
      fprintf (stderr, DEBUG_FMT_S, "sdata", "eabi");
      break;

    }

  switch (rs6000_traceback)
    {
    case traceback_default:	trace_str = "default";	break;
    case traceback_none:	trace_str = "none";	break;
    case traceback_part:	trace_str = "part";	break;
    case traceback_full:	trace_str = "full";	break;
    default:			trace_str = "unknown";	break;
    }

  fprintf (stderr, DEBUG_FMT_S, "traceback", trace_str);

  switch (rs6000_current_cmodel)
    {
    case CMODEL_SMALL:	cmodel_str = "small";	break;
    case CMODEL_MEDIUM:	cmodel_str = "medium";	break;
    case CMODEL_LARGE:	cmodel_str = "large";	break;
    default:		cmodel_str = "unknown";	break;
    }

  fprintf (stderr, DEBUG_FMT_S, "cmodel", cmodel_str);

  switch (rs6000_current_abi)
    {
    case ABI_NONE:	abi_str = "none";	break;
    case ABI_AIX:	abi_str = "aix";	break;
    case ABI_ELFv2:	abi_str = "ELFv2";	break;
    case ABI_V4:	abi_str = "V4";		break;
    case ABI_DARWIN:	abi_str = "darwin";	break;
    default:		abi_str = "unknown";	break;
    }

  fprintf (stderr, DEBUG_FMT_S, "abi", abi_str);

  if (rs6000_altivec_abi)
    fprintf (stderr, DEBUG_FMT_S, "altivec_abi", "true");

  if (rs6000_aix_extabi)
    fprintf (stderr, DEBUG_FMT_S, "AIX vec-extabi", "true");

  if (rs6000_darwin64_abi)
    fprintf (stderr, DEBUG_FMT_S, "darwin64_abi", "true");

  fprintf (stderr, DEBUG_FMT_S, "soft_float",
	   (TARGET_SOFT_FLOAT ? "true" : "false"));

  if (TARGET_LINK_STACK)
    fprintf (stderr, DEBUG_FMT_S, "link_stack", "true");

  if (TARGET_P8_FUSION)
    {
      char options[80];

      strcpy (options, "power8");
      if (TARGET_P8_FUSION_SIGN)
	strcat (options, ", sign");

      fprintf (stderr, DEBUG_FMT_S, "fusion", options);
    }

  fprintf (stderr, DEBUG_FMT_S, "plt-format",
	   TARGET_SECURE_PLT ? "secure" : "bss");
  fprintf (stderr, DEBUG_FMT_S, "struct-return",
	   aix_struct_return ? "aix" : "sysv");
  fprintf (stderr, DEBUG_FMT_S, "always_hint", tf[!!rs6000_always_hint]);
  fprintf (stderr, DEBUG_FMT_S, "sched_groups", tf[!!rs6000_sched_groups]);
  fprintf (stderr, DEBUG_FMT_S, "align_branch",
	   tf[!!rs6000_align_branch_targets]);
  fprintf (stderr, DEBUG_FMT_D, "tls_size", rs6000_tls_size);
  fprintf (stderr, DEBUG_FMT_D, "long_double_size",
	   rs6000_long_double_type_size);
  if (rs6000_long_double_type_size > 64)
    {
      fprintf (stderr, DEBUG_FMT_S, "long double type",
	       TARGET_IEEEQUAD ? "IEEE" : "IBM");
      fprintf (stderr, DEBUG_FMT_S, "default long double type",
	       TARGET_IEEEQUAD_DEFAULT ? "IEEE" : "IBM");
    }
  fprintf (stderr, DEBUG_FMT_D, "sched_restricted_insns_priority",
	   (int)rs6000_sched_restricted_insns_priority);
  fprintf (stderr, DEBUG_FMT_D, "Number of standard builtins",
	   (int)END_BUILTINS);

  fprintf (stderr, DEBUG_FMT_D, "Enable float128 on VSX",
	   (int)TARGET_FLOAT128_ENABLE_TYPE);

  if (TARGET_VSX)
    fprintf (stderr, DEBUG_FMT_D, "VSX easy 64-bit scalar element",
	     (int)VECTOR_ELEMENT_SCALAR_64BIT);

  if (TARGET_DIRECT_MOVE_128)
    fprintf (stderr, DEBUG_FMT_D, "VSX easy 64-bit mfvsrld element",
	     (int)VECTOR_ELEMENT_MFVSRLD_64BIT);
}


/* Update the addr mask bits in reg_addr to help secondary reload and go if
   legitimate address support to figure out the appropriate addressing to
   use.  */

static void
rs6000_setup_reg_addr_masks (void)
{
  ssize_t rc, reg, m, nregs;
  addr_mask_type any_addr_mask, addr_mask;

  for (m = 0; m < NUM_MACHINE_MODES; ++m)
    {
      machine_mode m2 = (machine_mode) m;
      bool complex_p = false;
      bool small_int_p = (m2 == QImode || m2 == HImode || m2 == SImode);
      size_t msize;

      if (COMPLEX_MODE_P (m2))
	{
	  complex_p = true;
	  m2 = GET_MODE_INNER (m2);
	}

      msize = GET_MODE_SIZE (m2);

      /* SDmode is special in that we want to access it only via REG+REG
	 addressing on power7 and above, since we want to use the LFIWZX and
	 STFIWZX instructions to load it.  */
      bool indexed_only_p = (m == SDmode && TARGET_NO_SDMODE_STACK);

      any_addr_mask = 0;
      for (rc = FIRST_RELOAD_REG_CLASS; rc <= LAST_RELOAD_REG_CLASS; rc++)
	{
	  addr_mask = 0;
	  reg = reload_reg_map[rc].reg;

	  /* Can mode values go in the GPR/FPR/Altivec registers?  */
	  if (reg >= 0 && rs6000_hard_regno_mode_ok_p[m][reg])
	    {
	      bool small_int_vsx_p = (small_int_p
				      && (rc == RELOAD_REG_FPR
					  || rc == RELOAD_REG_VMX));

	      nregs = rs6000_hard_regno_nregs[m][reg];
	      addr_mask |= RELOAD_REG_VALID;

	      /* Indicate if the mode takes more than 1 physical register.  If
		 it takes a single register, indicate it can do REG+REG
		 addressing.  Small integers in VSX registers can only do
		 REG+REG addressing.  */
	      if (small_int_vsx_p)
		addr_mask |= RELOAD_REG_INDEXED;
	      else if (nregs > 1 || m == BLKmode || complex_p)
		addr_mask |= RELOAD_REG_MULTIPLE;
	      else
		addr_mask |= RELOAD_REG_INDEXED;

	      /* Figure out if we can do PRE_INC, PRE_DEC, or PRE_MODIFY
		 addressing.  If we allow scalars into Altivec registers,
		 don't allow PRE_INC, PRE_DEC, or PRE_MODIFY.

		 For VSX systems, we don't allow update addressing for
		 DFmode/SFmode if those registers can go in both the
		 traditional floating point registers and Altivec registers.
		 The load/store instructions for the Altivec registers do not
		 have update forms.  If we allowed update addressing, it seems
		 to break IV-OPT code using floating point if the index type is
		 int instead of long (PR target/81550 and target/84042).  */

	      if (TARGET_UPDATE
		  && (rc == RELOAD_REG_GPR || rc == RELOAD_REG_FPR)
		  && msize <= 8
		  && !VECTOR_MODE_P (m2)
		  && !VECTOR_ALIGNMENT_P (m2)
		  && !complex_p
		  && (m != E_DFmode || !TARGET_VSX)
		  && (m != E_SFmode || !TARGET_P8_VECTOR)
		  && !small_int_vsx_p)
		{
		  addr_mask |= RELOAD_REG_PRE_INCDEC;

		  /* PRE_MODIFY is more restricted than PRE_INC/PRE_DEC in that
		     we don't allow PRE_MODIFY for some multi-register
		     operations.  */
		  switch (m)
		    {
		    default:
		      addr_mask |= RELOAD_REG_PRE_MODIFY;
		      break;

		    case E_DImode:
		      if (TARGET_POWERPC64)
			addr_mask |= RELOAD_REG_PRE_MODIFY;
		      break;

		    case E_DFmode:
		    case E_DDmode:
		      if (TARGET_HARD_FLOAT)
			addr_mask |= RELOAD_REG_PRE_MODIFY;
		      break;
		    }
		}
	    }

	  /* GPR and FPR registers can do REG+OFFSET addressing, except
	     possibly for SDmode.  ISA 3.0 (i.e. power9) adds D-form addressing
	     for 64-bit scalars and 32-bit SFmode to altivec registers.  */
	  if ((addr_mask != 0) && !indexed_only_p
	      && msize <= 8
	      && (rc == RELOAD_REG_GPR
		  || ((msize == 8 || m2 == SFmode)
		      && (rc == RELOAD_REG_FPR
			  || (rc == RELOAD_REG_VMX && TARGET_P9_VECTOR)))))
	    addr_mask |= RELOAD_REG_OFFSET;

	  /* VSX registers can do REG+OFFSET addresssing if ISA 3.0
	     instructions are enabled.  The offset for 128-bit VSX registers is
	     only 12-bits.  While GPRs can handle the full offset range, VSX
	     registers can only handle the restricted range.  */
	  else if ((addr_mask != 0) && !indexed_only_p
		   && msize == 16 && TARGET_P9_VECTOR
		   && (ALTIVEC_OR_VSX_VECTOR_MODE (m2)
		       || (m2 == TImode && TARGET_VSX)))
	    {
	      addr_mask |= RELOAD_REG_OFFSET;
	      if (rc == RELOAD_REG_FPR || rc == RELOAD_REG_VMX)
		addr_mask |= RELOAD_REG_QUAD_OFFSET;
	    }

	  /* Vector pairs can do both indexed and offset loads if the
	     instructions are enabled, otherwise they can only do offset loads
	     since it will be broken into two vector moves.  Vector quads can
	     only do offset loads.  */
	  else if ((addr_mask != 0) && TARGET_MMA
		   && (m2 == OOmode || m2 == XOmode))
	    {
	      addr_mask |= RELOAD_REG_OFFSET;
	      if (rc == RELOAD_REG_FPR || rc == RELOAD_REG_VMX)
		{
		  addr_mask |= RELOAD_REG_QUAD_OFFSET;
		  if (m2 == OOmode)
		    addr_mask |= RELOAD_REG_INDEXED;
		}
	    }

	  /* VMX registers can do (REG & -16) and ((REG+REG) & -16)
	     addressing on 128-bit types.  */
	  if (rc == RELOAD_REG_VMX && msize == 16
	      && (addr_mask & RELOAD_REG_VALID) != 0)
	    addr_mask |= RELOAD_REG_AND_M16;

	  reg_addr[m].addr_mask[rc] = addr_mask;
	  any_addr_mask |= addr_mask;
	}

      reg_addr[m].addr_mask[RELOAD_REG_ANY] = any_addr_mask;
    }
}


/* Initialize the various global tables that are based on register size.  */
static void
rs6000_init_hard_regno_mode_ok (bool global_init_p)
{
  ssize_t r, m, c;
  int align64;
  int align32;

  /* Precalculate REGNO_REG_CLASS.  */
  rs6000_regno_regclass[0] = GENERAL_REGS;
  for (r = 1; r < 32; ++r)
    rs6000_regno_regclass[r] = BASE_REGS;

  for (r = 32; r < 64; ++r)
    rs6000_regno_regclass[r] = FLOAT_REGS;

  for (r = 64; HARD_REGISTER_NUM_P (r); ++r)
    rs6000_regno_regclass[r] = NO_REGS;

  for (r = FIRST_ALTIVEC_REGNO; r <= LAST_ALTIVEC_REGNO; ++r)
    rs6000_regno_regclass[r] = ALTIVEC_REGS;

  rs6000_regno_regclass[CR0_REGNO] = CR0_REGS;
  for (r = CR1_REGNO; r <= CR7_REGNO; ++r)
    rs6000_regno_regclass[r] = CR_REGS;

  rs6000_regno_regclass[LR_REGNO] = LINK_REGS;
  rs6000_regno_regclass[CTR_REGNO] = CTR_REGS;
  rs6000_regno_regclass[CA_REGNO] = NO_REGS;
  rs6000_regno_regclass[VRSAVE_REGNO] = VRSAVE_REGS;
  rs6000_regno_regclass[VSCR_REGNO] = VRSAVE_REGS;
  rs6000_regno_regclass[ARG_POINTER_REGNUM] = BASE_REGS;
  rs6000_regno_regclass[FRAME_POINTER_REGNUM] = BASE_REGS;

  /* Precalculate register class to simpler reload register class.  We don't
     need all of the register classes that are combinations of different
     classes, just the simple ones that have constraint letters.  */
  for (c = 0; c < N_REG_CLASSES; c++)
    reg_class_to_reg_type[c] = NO_REG_TYPE;

  reg_class_to_reg_type[(int)GENERAL_REGS] = GPR_REG_TYPE;
  reg_class_to_reg_type[(int)BASE_REGS] = GPR_REG_TYPE;
  reg_class_to_reg_type[(int)VSX_REGS] = VSX_REG_TYPE;
  reg_class_to_reg_type[(int)VRSAVE_REGS] = SPR_REG_TYPE;
  reg_class_to_reg_type[(int)VSCR_REGS] = SPR_REG_TYPE;
  reg_class_to_reg_type[(int)LINK_REGS] = SPR_REG_TYPE;
  reg_class_to_reg_type[(int)CTR_REGS] = SPR_REG_TYPE;
  reg_class_to_reg_type[(int)LINK_OR_CTR_REGS] = SPR_REG_TYPE;
  reg_class_to_reg_type[(int)CR_REGS] = CR_REG_TYPE;
  reg_class_to_reg_type[(int)CR0_REGS] = CR_REG_TYPE;

  if (TARGET_VSX)
    {
      reg_class_to_reg_type[(int)FLOAT_REGS] = VSX_REG_TYPE;
      reg_class_to_reg_type[(int)ALTIVEC_REGS] = VSX_REG_TYPE;
    }
  else
    {
      reg_class_to_reg_type[(int)FLOAT_REGS] = FPR_REG_TYPE;
      reg_class_to_reg_type[(int)ALTIVEC_REGS] = ALTIVEC_REG_TYPE;
    }

  /* Precalculate the valid memory formats as well as the vector information,
     this must be set up before the rs6000_hard_regno_nregs_internal calls
     below.  */
  gcc_assert ((int)VECTOR_NONE == 0);
  memset ((void *) &rs6000_vector_unit[0], '\0', sizeof (rs6000_vector_unit));
  memset ((void *) &rs6000_vector_mem[0], '\0', sizeof (rs6000_vector_mem));

  gcc_assert ((int)CODE_FOR_nothing == 0);
  memset ((void *) &reg_addr[0], '\0', sizeof (reg_addr));

  gcc_assert ((int)NO_REGS == 0);
  memset ((void *) &rs6000_constraints[0], '\0', sizeof (rs6000_constraints));

  /* The VSX hardware allows native alignment for vectors, but control whether the compiler
     believes it can use native alignment or still uses 128-bit alignment.  */
  if (TARGET_VSX && !TARGET_VSX_ALIGN_128)
    {
      align64 = 64;
      align32 = 32;
    }
  else
    {
      align64 = 128;
      align32 = 128;
    }

  /* KF mode (IEEE 128-bit in VSX registers).  We do not have arithmetic, so
     only set the memory modes.  Include TFmode if -mabi=ieeelongdouble.  */
  if (TARGET_FLOAT128_TYPE)
    {
      rs6000_vector_mem[KFmode] = VECTOR_VSX;
      rs6000_vector_align[KFmode] = 128;

      if (FLOAT128_IEEE_P (TFmode))
	{
	  rs6000_vector_mem[TFmode] = VECTOR_VSX;
	  rs6000_vector_align[TFmode] = 128;
	}
    }

  /* V2DF mode, VSX only.  */
  if (TARGET_VSX)
    {
      rs6000_vector_unit[V2DFmode] = VECTOR_VSX;
      rs6000_vector_mem[V2DFmode] = VECTOR_VSX;
      rs6000_vector_align[V2DFmode] = align64;
    }

  /* V4SF mode, either VSX or Altivec.  */
  if (TARGET_VSX)
    {
      rs6000_vector_unit[V4SFmode] = VECTOR_VSX;
      rs6000_vector_mem[V4SFmode] = VECTOR_VSX;
      rs6000_vector_align[V4SFmode] = align32;
    }
  else if (TARGET_ALTIVEC)
    {
      rs6000_vector_unit[V4SFmode] = VECTOR_ALTIVEC;
      rs6000_vector_mem[V4SFmode] = VECTOR_ALTIVEC;
      rs6000_vector_align[V4SFmode] = align32;
    }

  /* V16QImode, V8HImode, V4SImode are Altivec only, but possibly do VSX loads
     and stores. */
  if (TARGET_ALTIVEC)
    {
      rs6000_vector_unit[V4SImode] = VECTOR_ALTIVEC;
      rs6000_vector_unit[V8HImode] = VECTOR_ALTIVEC;
      rs6000_vector_unit[V16QImode] = VECTOR_ALTIVEC;
      rs6000_vector_align[V4SImode] = align32;
      rs6000_vector_align[V8HImode] = align32;
      rs6000_vector_align[V16QImode] = align32;

      if (TARGET_VSX)
	{
	  rs6000_vector_mem[V4SImode] = VECTOR_VSX;
	  rs6000_vector_mem[V8HImode] = VECTOR_VSX;
	  rs6000_vector_mem[V16QImode] = VECTOR_VSX;
	}
      else
	{
	  rs6000_vector_mem[V4SImode] = VECTOR_ALTIVEC;
	  rs6000_vector_mem[V8HImode] = VECTOR_ALTIVEC;
	  rs6000_vector_mem[V16QImode] = VECTOR_ALTIVEC;
	}
    }

  /* V2DImode, full mode depends on ISA 2.07 vector mode.  Allow under VSX to
     do insert/splat/extract.  Altivec doesn't have 64-bit integer support.  */
  if (TARGET_VSX)
    {
      rs6000_vector_mem[V2DImode] = VECTOR_VSX;
      rs6000_vector_unit[V2DImode]
	= (TARGET_P8_VECTOR) ? VECTOR_P8_VECTOR : VECTOR_NONE;
      rs6000_vector_align[V2DImode] = align64;

      rs6000_vector_mem[V1TImode] = VECTOR_VSX;
      rs6000_vector_unit[V1TImode]
	= (TARGET_P8_VECTOR) ? VECTOR_P8_VECTOR : VECTOR_NONE;
      rs6000_vector_align[V1TImode] = 128;
    }

  /* DFmode, see if we want to use the VSX unit.  Memory is handled
     differently, so don't set rs6000_vector_mem.  */
  if (TARGET_VSX)
    {
      rs6000_vector_unit[DFmode] = VECTOR_VSX;
      rs6000_vector_align[DFmode] = 64;
    }

  /* SFmode, see if we want to use the VSX unit.  */
  if (TARGET_P8_VECTOR)
    {
      rs6000_vector_unit[SFmode] = VECTOR_VSX;
      rs6000_vector_align[SFmode] = 32;
    }

  /* Allow TImode in VSX register and set the VSX memory macros.  */
  if (TARGET_VSX)
    {
      rs6000_vector_mem[TImode] = VECTOR_VSX;
      rs6000_vector_align[TImode] = align64;
    }

  /* Add support for vector pairs and vector quad registers.  */
  if (TARGET_MMA)
    {
      rs6000_vector_unit[OOmode] = VECTOR_NONE;
      rs6000_vector_mem[OOmode] = VECTOR_VSX;
      rs6000_vector_align[OOmode] = 256;

      rs6000_vector_unit[XOmode] = VECTOR_NONE;
      rs6000_vector_mem[XOmode] = VECTOR_VSX;
      rs6000_vector_align[XOmode] = 512;
    }

  /* Register class constraints for the constraints that depend on compile
     switches. When the VSX code was added, different constraints were added
     based on the type (DFmode, V2DFmode, V4SFmode).  For the vector types, all
     of the VSX registers are used.  The register classes for scalar floating
     point types is set, based on whether we allow that type into the upper
     (Altivec) registers.  GCC has register classes to target the Altivec
     registers for load/store operations, to select using a VSX memory
     operation instead of the traditional floating point operation.  The
     constraints are:

	d  - Register class to use with traditional DFmode instructions.
	v  - Altivec register.
	wa - Any VSX register.
	wc - Reserved to represent individual CR bits (used in LLVM).
	wn - always NO_REGS.
	wr - GPR if 64-bit mode is permitted.
	wx - Float register if we can do 32-bit int stores.  */

  if (TARGET_HARD_FLOAT)
    rs6000_constraints[RS6000_CONSTRAINT_d] = FLOAT_REGS;
  if (TARGET_ALTIVEC)
    rs6000_constraints[RS6000_CONSTRAINT_v] = ALTIVEC_REGS;
  if (TARGET_VSX)
    rs6000_constraints[RS6000_CONSTRAINT_wa] = VSX_REGS;

  if (TARGET_POWERPC64)
    {
      rs6000_constraints[RS6000_CONSTRAINT_wr] = GENERAL_REGS;
      rs6000_constraints[RS6000_CONSTRAINT_wA] = BASE_REGS;
    }

  if (TARGET_STFIWX)
    rs6000_constraints[RS6000_CONSTRAINT_wx] = FLOAT_REGS;	/* DImode  */

  /* Support for new direct moves (ISA 3.0 + 64bit).  */
  if (TARGET_DIRECT_MOVE_128)
    rs6000_constraints[RS6000_CONSTRAINT_we] = VSX_REGS;

  /* Set up the reload helper and direct move functions.  */
  if (TARGET_VSX || TARGET_ALTIVEC)
    {
      if (TARGET_64BIT)
	{
	  reg_addr[V16QImode].reload_store = CODE_FOR_reload_v16qi_di_store;
	  reg_addr[V16QImode].reload_load  = CODE_FOR_reload_v16qi_di_load;
	  reg_addr[V8HImode].reload_store  = CODE_FOR_reload_v8hi_di_store;
	  reg_addr[V8HImode].reload_load   = CODE_FOR_reload_v8hi_di_load;
	  reg_addr[V4SImode].reload_store  = CODE_FOR_reload_v4si_di_store;
	  reg_addr[V4SImode].reload_load   = CODE_FOR_reload_v4si_di_load;
	  reg_addr[V2DImode].reload_store  = CODE_FOR_reload_v2di_di_store;
	  reg_addr[V2DImode].reload_load   = CODE_FOR_reload_v2di_di_load;
	  reg_addr[V1TImode].reload_store  = CODE_FOR_reload_v1ti_di_store;
	  reg_addr[V1TImode].reload_load   = CODE_FOR_reload_v1ti_di_load;
	  reg_addr[V4SFmode].reload_store  = CODE_FOR_reload_v4sf_di_store;
	  reg_addr[V4SFmode].reload_load   = CODE_FOR_reload_v4sf_di_load;
	  reg_addr[V2DFmode].reload_store  = CODE_FOR_reload_v2df_di_store;
	  reg_addr[V2DFmode].reload_load   = CODE_FOR_reload_v2df_di_load;
	  reg_addr[DFmode].reload_store    = CODE_FOR_reload_df_di_store;
	  reg_addr[DFmode].reload_load     = CODE_FOR_reload_df_di_load;
	  reg_addr[DDmode].reload_store    = CODE_FOR_reload_dd_di_store;
	  reg_addr[DDmode].reload_load     = CODE_FOR_reload_dd_di_load;
	  reg_addr[SFmode].reload_store    = CODE_FOR_reload_sf_di_store;
	  reg_addr[SFmode].reload_load     = CODE_FOR_reload_sf_di_load;

	  if (FLOAT128_VECTOR_P (KFmode))
	    {
	      reg_addr[KFmode].reload_store = CODE_FOR_reload_kf_di_store;
	      reg_addr[KFmode].reload_load  = CODE_FOR_reload_kf_di_load;
	    }

	  if (FLOAT128_VECTOR_P (TFmode))
	    {
	      reg_addr[TFmode].reload_store = CODE_FOR_reload_tf_di_store;
	      reg_addr[TFmode].reload_load  = CODE_FOR_reload_tf_di_load;
	    }

	  /* Only provide a reload handler for SDmode if lfiwzx/stfiwx are
	     available.  */
	  if (TARGET_NO_SDMODE_STACK)
	    {
	      reg_addr[SDmode].reload_store = CODE_FOR_reload_sd_di_store;
	      reg_addr[SDmode].reload_load  = CODE_FOR_reload_sd_di_load;
	    }

	  if (TARGET_VSX)
	    {
	      reg_addr[TImode].reload_store  = CODE_FOR_reload_ti_di_store;
	      reg_addr[TImode].reload_load   = CODE_FOR_reload_ti_di_load;
	    }

	  if (TARGET_DIRECT_MOVE && !TARGET_DIRECT_MOVE_128)
	    {
	      reg_addr[TImode].reload_gpr_vsx    = CODE_FOR_reload_gpr_from_vsxti;
	      reg_addr[V1TImode].reload_gpr_vsx  = CODE_FOR_reload_gpr_from_vsxv1ti;
	      reg_addr[V2DFmode].reload_gpr_vsx  = CODE_FOR_reload_gpr_from_vsxv2df;
	      reg_addr[V2DImode].reload_gpr_vsx  = CODE_FOR_reload_gpr_from_vsxv2di;
	      reg_addr[V4SFmode].reload_gpr_vsx  = CODE_FOR_reload_gpr_from_vsxv4sf;
	      reg_addr[V4SImode].reload_gpr_vsx  = CODE_FOR_reload_gpr_from_vsxv4si;
	      reg_addr[V8HImode].reload_gpr_vsx  = CODE_FOR_reload_gpr_from_vsxv8hi;
	      reg_addr[V16QImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv16qi;
	      reg_addr[SFmode].reload_gpr_vsx    = CODE_FOR_reload_gpr_from_vsxsf;

	      reg_addr[TImode].reload_vsx_gpr    = CODE_FOR_reload_vsx_from_gprti;
	      reg_addr[V1TImode].reload_vsx_gpr  = CODE_FOR_reload_vsx_from_gprv1ti;
	      reg_addr[V2DFmode].reload_vsx_gpr  = CODE_FOR_reload_vsx_from_gprv2df;
	      reg_addr[V2DImode].reload_vsx_gpr  = CODE_FOR_reload_vsx_from_gprv2di;
	      reg_addr[V4SFmode].reload_vsx_gpr  = CODE_FOR_reload_vsx_from_gprv4sf;
	      reg_addr[V4SImode].reload_vsx_gpr  = CODE_FOR_reload_vsx_from_gprv4si;
	      reg_addr[V8HImode].reload_vsx_gpr  = CODE_FOR_reload_vsx_from_gprv8hi;
	      reg_addr[V16QImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv16qi;
	      reg_addr[SFmode].reload_vsx_gpr    = CODE_FOR_reload_vsx_from_gprsf;

	      if (FLOAT128_VECTOR_P (KFmode))
		{
		  reg_addr[KFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxkf;
		  reg_addr[KFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprkf;
		}

	      if (FLOAT128_VECTOR_P (TFmode))
		{
		  reg_addr[TFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxtf;
		  reg_addr[TFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprtf;
		}

	      if (TARGET_MMA)
		{
		  reg_addr[OOmode].reload_store = CODE_FOR_reload_oo_di_store;
		  reg_addr[OOmode].reload_load = CODE_FOR_reload_oo_di_load;
		  reg_addr[XOmode].reload_store = CODE_FOR_reload_xo_di_store;
		  reg_addr[XOmode].reload_load = CODE_FOR_reload_xo_di_load;
		}
	    }
	}
      else
	{
	  reg_addr[V16QImode].reload_store = CODE_FOR_reload_v16qi_si_store;
	  reg_addr[V16QImode].reload_load  = CODE_FOR_reload_v16qi_si_load;
	  reg_addr[V8HImode].reload_store  = CODE_FOR_reload_v8hi_si_store;
	  reg_addr[V8HImode].reload_load   = CODE_FOR_reload_v8hi_si_load;
	  reg_addr[V4SImode].reload_store  = CODE_FOR_reload_v4si_si_store;
	  reg_addr[V4SImode].reload_load   = CODE_FOR_reload_v4si_si_load;
	  reg_addr[V2DImode].reload_store  = CODE_FOR_reload_v2di_si_store;
	  reg_addr[V2DImode].reload_load   = CODE_FOR_reload_v2di_si_load;
	  reg_addr[V1TImode].reload_store  = CODE_FOR_reload_v1ti_si_store;
	  reg_addr[V1TImode].reload_load   = CODE_FOR_reload_v1ti_si_load;
	  reg_addr[V4SFmode].reload_store  = CODE_FOR_reload_v4sf_si_store;
	  reg_addr[V4SFmode].reload_load   = CODE_FOR_reload_v4sf_si_load;
	  reg_addr[V2DFmode].reload_store  = CODE_FOR_reload_v2df_si_store;
	  reg_addr[V2DFmode].reload_load   = CODE_FOR_reload_v2df_si_load;
	  reg_addr[DFmode].reload_store    = CODE_FOR_reload_df_si_store;
	  reg_addr[DFmode].reload_load     = CODE_FOR_reload_df_si_load;
	  reg_addr[DDmode].reload_store    = CODE_FOR_reload_dd_si_store;
	  reg_addr[DDmode].reload_load     = CODE_FOR_reload_dd_si_load;
	  reg_addr[SFmode].reload_store    = CODE_FOR_reload_sf_si_store;
	  reg_addr[SFmode].reload_load     = CODE_FOR_reload_sf_si_load;

	  if (FLOAT128_VECTOR_P (KFmode))
	    {
	      reg_addr[KFmode].reload_store = CODE_FOR_reload_kf_si_store;
	      reg_addr[KFmode].reload_load  = CODE_FOR_reload_kf_si_load;
	    }

	  if (FLOAT128_IEEE_P (TFmode))
	    {
	      reg_addr[TFmode].reload_store = CODE_FOR_reload_tf_si_store;
	      reg_addr[TFmode].reload_load  = CODE_FOR_reload_tf_si_load;
	    }

	  /* Only provide a reload handler for SDmode if lfiwzx/stfiwx are
	     available.  */
	  if (TARGET_NO_SDMODE_STACK)
	    {
	      reg_addr[SDmode].reload_store = CODE_FOR_reload_sd_si_store;
	      reg_addr[SDmode].reload_load  = CODE_FOR_reload_sd_si_load;
	    }

	  if (TARGET_VSX)
	    {
	      reg_addr[TImode].reload_store  = CODE_FOR_reload_ti_si_store;
	      reg_addr[TImode].reload_load   = CODE_FOR_reload_ti_si_load;
	    }

	  if (TARGET_DIRECT_MOVE)
	    {
	      reg_addr[DImode].reload_fpr_gpr = CODE_FOR_reload_fpr_from_gprdi;
	      reg_addr[DDmode].reload_fpr_gpr = CODE_FOR_reload_fpr_from_gprdd;
	      reg_addr[DFmode].reload_fpr_gpr = CODE_FOR_reload_fpr_from_gprdf;
	    }
	}

      reg_addr[DFmode].scalar_in_vmx_p = true;
      reg_addr[DImode].scalar_in_vmx_p = true;

      if (TARGET_P8_VECTOR)
	{
	  reg_addr[SFmode].scalar_in_vmx_p = true;
	  reg_addr[SImode].scalar_in_vmx_p = true;

	  if (TARGET_P9_VECTOR)
	    {
	      reg_addr[HImode].scalar_in_vmx_p = true;
	      reg_addr[QImode].scalar_in_vmx_p = true;
	    }
	}
    }

  /* Precalculate HARD_REGNO_NREGS.  */
  for (r = 0; HARD_REGISTER_NUM_P (r); ++r)
    for (m = 0; m < NUM_MACHINE_MODES; ++m)
      rs6000_hard_regno_nregs[m][r]
	= rs6000_hard_regno_nregs_internal (r, (machine_mode) m);

  /* Precalculate TARGET_HARD_REGNO_MODE_OK.  */
  for (r = 0; HARD_REGISTER_NUM_P (r); ++r)
    for (m = 0; m < NUM_MACHINE_MODES; ++m)
      rs6000_hard_regno_mode_ok_p[m][r]
	= rs6000_hard_regno_mode_ok_uncached (r, (machine_mode) m);

  /* Precalculate CLASS_MAX_NREGS sizes.  */
  for (c = 0; c < LIM_REG_CLASSES; ++c)
    {
      int reg_size;

      if (TARGET_VSX && VSX_REG_CLASS_P (c))
	reg_size = UNITS_PER_VSX_WORD;

      else if (c == ALTIVEC_REGS)
	reg_size = UNITS_PER_ALTIVEC_WORD;

      else if (c == FLOAT_REGS)
	reg_size = UNITS_PER_FP_WORD;

      else
	reg_size = UNITS_PER_WORD;

      for (m = 0; m < NUM_MACHINE_MODES; ++m)
	{
	  machine_mode m2 = (machine_mode)m;
	  int reg_size2 = reg_size;

	  /* TDmode & IBM 128-bit floating point always takes 2 registers, even
	     in VSX.  */
	  if (TARGET_VSX && VSX_REG_CLASS_P (c) && FLOAT128_2REG_P (m))
	    reg_size2 = UNITS_PER_FP_WORD;

	  rs6000_class_max_nregs[m][c]
	    = (GET_MODE_SIZE (m2) + reg_size2 - 1) / reg_size2;
	}
    }

  /* Calculate which modes to automatically generate code to use a the
     reciprocal divide and square root instructions.  In the future, possibly
     automatically generate the instructions even if the user did not specify
     -mrecip.  The older machines double precision reciprocal sqrt estimate is
     not accurate enough.  */
  memset (rs6000_recip_bits, 0, sizeof (rs6000_recip_bits));
  if (TARGET_FRES)
    rs6000_recip_bits[SFmode] = RS6000_RECIP_MASK_HAVE_RE;
  if (TARGET_FRE)
    rs6000_recip_bits[DFmode] = RS6000_RECIP_MASK_HAVE_RE;
  if (VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode))
    rs6000_recip_bits[V4SFmode] = RS6000_RECIP_MASK_HAVE_RE;
  if (VECTOR_UNIT_VSX_P (V2DFmode))
    rs6000_recip_bits[V2DFmode] = RS6000_RECIP_MASK_HAVE_RE;

  if (TARGET_FRSQRTES)
    rs6000_recip_bits[SFmode] |= RS6000_RECIP_MASK_HAVE_RSQRTE;
  if (TARGET_FRSQRTE)
    rs6000_recip_bits[DFmode] |= RS6000_RECIP_MASK_HAVE_RSQRTE;
  if (VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode))
    rs6000_recip_bits[V4SFmode] |= RS6000_RECIP_MASK_HAVE_RSQRTE;
  if (VECTOR_UNIT_VSX_P (V2DFmode))
    rs6000_recip_bits[V2DFmode] |= RS6000_RECIP_MASK_HAVE_RSQRTE;

  if (rs6000_recip_control)
    {
      if (!flag_finite_math_only)
	warning (0, "%qs requires %qs or %qs", "-mrecip", "-ffinite-math",
		 "-ffast-math");
      if (flag_trapping_math)
	warning (0, "%qs requires %qs or %qs", "-mrecip",
		 "-fno-trapping-math", "-ffast-math");
      if (!flag_reciprocal_math)
	warning (0, "%qs requires %qs or %qs", "-mrecip", "-freciprocal-math",
		 "-ffast-math");
      if (flag_finite_math_only && !flag_trapping_math && flag_reciprocal_math)
	{
	  if (RS6000_RECIP_HAVE_RE_P (SFmode)
	      && (rs6000_recip_control & RECIP_SF_DIV) != 0)
	    rs6000_recip_bits[SFmode] |= RS6000_RECIP_MASK_AUTO_RE;

	  if (RS6000_RECIP_HAVE_RE_P (DFmode)
	      && (rs6000_recip_control & RECIP_DF_DIV) != 0)
	    rs6000_recip_bits[DFmode] |= RS6000_RECIP_MASK_AUTO_RE;

	  if (RS6000_RECIP_HAVE_RE_P (V4SFmode)
	      && (rs6000_recip_control & RECIP_V4SF_DIV) != 0)
	    rs6000_recip_bits[V4SFmode] |= RS6000_RECIP_MASK_AUTO_RE;

	  if (RS6000_RECIP_HAVE_RE_P (V2DFmode)
	      && (rs6000_recip_control & RECIP_V2DF_DIV) != 0)
	    rs6000_recip_bits[V2DFmode] |= RS6000_RECIP_MASK_AUTO_RE;

	  if (RS6000_RECIP_HAVE_RSQRTE_P (SFmode)
	      && (rs6000_recip_control & RECIP_SF_RSQRT) != 0)
	    rs6000_recip_bits[SFmode] |= RS6000_RECIP_MASK_AUTO_RSQRTE;

	  if (RS6000_RECIP_HAVE_RSQRTE_P (DFmode)
	      && (rs6000_recip_control & RECIP_DF_RSQRT) != 0)
	    rs6000_recip_bits[DFmode] |= RS6000_RECIP_MASK_AUTO_RSQRTE;

	  if (RS6000_RECIP_HAVE_RSQRTE_P (V4SFmode)
	      && (rs6000_recip_control & RECIP_V4SF_RSQRT) != 0)
	    rs6000_recip_bits[V4SFmode] |= RS6000_RECIP_MASK_AUTO_RSQRTE;

	  if (RS6000_RECIP_HAVE_RSQRTE_P (V2DFmode)
	      && (rs6000_recip_control & RECIP_V2DF_RSQRT) != 0)
	    rs6000_recip_bits[V2DFmode] |= RS6000_RECIP_MASK_AUTO_RSQRTE;
	}
    }

  /* Update the addr mask bits in reg_addr to help secondary reload and go if
     legitimate address support to figure out the appropriate addressing to
     use.  */
  rs6000_setup_reg_addr_masks ();

  if (global_init_p || TARGET_DEBUG_TARGET)
    {
      if (TARGET_DEBUG_REG)
	rs6000_debug_reg_global ();

      if (TARGET_DEBUG_COST || TARGET_DEBUG_REG)
	fprintf (stderr,
		 "SImode variable mult cost       = %d\n"
		 "SImode constant mult cost       = %d\n"
		 "SImode short constant mult cost = %d\n"
		 "DImode multipliciation cost     = %d\n"
		 "SImode division cost            = %d\n"
		 "DImode division cost            = %d\n"
		 "Simple fp operation cost        = %d\n"
		 "DFmode multiplication cost      = %d\n"
		 "SFmode division cost            = %d\n"
		 "DFmode division cost            = %d\n"
		 "cache line size                 = %d\n"
		 "l1 cache size                   = %d\n"
		 "l2 cache size                   = %d\n"
		 "simultaneous prefetches         = %d\n"
		 "\n",
		 rs6000_cost->mulsi,
		 rs6000_cost->mulsi_const,
		 rs6000_cost->mulsi_const9,
		 rs6000_cost->muldi,
		 rs6000_cost->divsi,
		 rs6000_cost->divdi,
		 rs6000_cost->fp,
		 rs6000_cost->dmul,
		 rs6000_cost->sdiv,
		 rs6000_cost->ddiv,
		 rs6000_cost->cache_line_size,
		 rs6000_cost->l1_cache_size,
		 rs6000_cost->l2_cache_size,
		 rs6000_cost->simultaneous_prefetches);
    }
}

#if TARGET_MACHO
/* The Darwin version of SUBTARGET_OVERRIDE_OPTIONS.  */

static void
darwin_rs6000_override_options (void)
{
  /* The Darwin ABI always includes AltiVec, can't be (validly) turned
     off.  */
  rs6000_altivec_abi = 1;
  TARGET_ALTIVEC_VRSAVE = 1;
  rs6000_current_abi = ABI_DARWIN;

  if (DEFAULT_ABI == ABI_DARWIN
      && TARGET_64BIT)
      darwin_one_byte_bool = 1;

  if (TARGET_64BIT && ! TARGET_POWERPC64)
    {
      rs6000_isa_flags |= OPTION_MASK_POWERPC64;
      warning (0, "%qs requires PowerPC64 architecture, enabling", "-m64");
    }

  /* The linkers [ld64] that support 64Bit do not need the JBSR longcall
     optimisation, and will not work with the most generic case (where the
     symbol is undefined external, but there is no symbl stub).  */
  if (TARGET_64BIT)
    rs6000_default_long_calls = 0;

  /* ld_classic is (so far) still used for kernel (static) code, and supports
     the JBSR longcall / branch islands.  */
  if (flag_mkernel)
    {
      rs6000_default_long_calls = 1;

      /* Allow a kext author to do -mkernel -mhard-float.  */
      if (! (rs6000_isa_flags_explicit & OPTION_MASK_SOFT_FLOAT))
        rs6000_isa_flags |= OPTION_MASK_SOFT_FLOAT;
    }

  /* Make -m64 imply -maltivec.  Darwin's 64-bit ABI includes
     Altivec.  */
  if (!flag_mkernel && !flag_apple_kext
      && TARGET_64BIT
      && ! (rs6000_isa_flags_explicit & OPTION_MASK_ALTIVEC))
    rs6000_isa_flags |= OPTION_MASK_ALTIVEC;

  /* Unless the user (not the configurer) has explicitly overridden
     it with -mcpu=G3 or -mno-altivec, then 10.5+ targets default to
     G4 unless targeting the kernel.  */
  if (!flag_mkernel
      && !flag_apple_kext
      && strverscmp (darwin_macosx_version_min, "10.5") >= 0
      && ! (rs6000_isa_flags_explicit & OPTION_MASK_ALTIVEC)
      && ! OPTION_SET_P (rs6000_cpu_index))
    {
      rs6000_isa_flags |= OPTION_MASK_ALTIVEC;
    }
}
#endif

/* If not otherwise specified by a target, make 'long double' equivalent to
   'double'.  */

#ifndef RS6000_DEFAULT_LONG_DOUBLE_SIZE
#define RS6000_DEFAULT_LONG_DOUBLE_SIZE 64
#endif

/* Implement TARGET_MD_ASM_ADJUST.  All asm statements are considered
   to clobber the XER[CA] bit because clobbering that bit without telling
   the compiler worked just fine with versions of GCC before GCC 5, and
   breaking a lot of older code in ways that are hard to track down is
   not such a great idea.  */

static rtx_insn *
rs6000_md_asm_adjust (vec<rtx> & /*outputs*/, vec<rtx> & /*inputs*/,
		      vec<machine_mode> & /*input_modes*/,
		      vec<const char *> & /*constraints*/, vec<rtx> &clobbers,
		      HARD_REG_SET &clobbered_regs, location_t /*loc*/)
{
  clobbers.safe_push (gen_rtx_REG (SImode, CA_REGNO));
  SET_HARD_REG_BIT (clobbered_regs, CA_REGNO);
  return NULL;
}

/* This target function is similar to the hook TARGET_OPTION_OVERRIDE
   but is called when the optimize level is changed via an attribute or
   pragma or when it is reset at the end of the code affected by the
   attribute or pragma.  It is not called at the beginning of compilation
   when TARGET_OPTION_OVERRIDE is called so if you want to perform these
   actions then, you should have TARGET_OPTION_OVERRIDE call
   TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE.  */

static void
rs6000_override_options_after_change (void)
{
  /* Explicit -funroll-loops turns -munroll-only-small-loops off, and
     turns -frename-registers on.  */
  if ((OPTION_SET_P (flag_unroll_loops) && flag_unroll_loops)
       || (OPTION_SET_P (flag_unroll_all_loops)
	   && flag_unroll_all_loops))
    {
      if (!OPTION_SET_P (unroll_only_small_loops))
	unroll_only_small_loops = 0;
      if (!OPTION_SET_P (flag_rename_registers))
	flag_rename_registers = 1;
      if (!OPTION_SET_P (flag_cunroll_grow_size))
	flag_cunroll_grow_size = 1;
    }
  else if (!OPTION_SET_P (flag_cunroll_grow_size))
    flag_cunroll_grow_size = flag_peel_loops || optimize >= 3;

  /* If we are inserting ROP-protect instructions, disable shrink wrap.  */
  if (rs6000_rop_protect)
    flag_shrink_wrap = 0;
}

#ifdef TARGET_USES_LINUX64_OPT
static void
rs6000_linux64_override_options ()
{
  if (!OPTION_SET_P (rs6000_alignment_flags))
    rs6000_alignment_flags = MASK_ALIGN_NATURAL;
  if (rs6000_isa_flags & OPTION_MASK_64BIT)
    {
      if (DEFAULT_ABI != ABI_AIX)
	{
	  rs6000_current_abi = ABI_AIX;
	  error (INVALID_64BIT, "call");
	}
      dot_symbols = !strcmp (rs6000_abi_name, "aixdesc");
      if (ELFv2_ABI_CHECK)
	{
	  rs6000_current_abi = ABI_ELFv2;
	  if (dot_symbols)
	    error ("%<-mcall-aixdesc%> incompatible with %<-mabi=elfv2%>");
	}
      if (rs6000_isa_flags & OPTION_MASK_RELOCATABLE)
	{
	  rs6000_isa_flags &= ~OPTION_MASK_RELOCATABLE;
	  error (INVALID_64BIT, "relocatable");
	}
      if (rs6000_isa_flags & OPTION_MASK_EABI)
	{
	  rs6000_isa_flags &= ~OPTION_MASK_EABI;
	  error (INVALID_64BIT, "eabi");
	}
      if (TARGET_PROTOTYPE)
	{
	  target_prototype = 0;
	  error (INVALID_64BIT, "prototype");
	}
      if ((rs6000_isa_flags & OPTION_MASK_POWERPC64) == 0)
	{
	  rs6000_isa_flags |= OPTION_MASK_POWERPC64;
	  error ("%<-m64%> requires a PowerPC64 cpu");
	}
      if (!OPTION_SET_P (rs6000_current_cmodel))
	SET_CMODEL (CMODEL_MEDIUM);
      if ((rs6000_isa_flags_explicit & OPTION_MASK_MINIMAL_TOC) != 0)
	{
	  if (OPTION_SET_P (rs6000_current_cmodel)
	      && rs6000_current_cmodel != CMODEL_SMALL)
	    error ("%<-mcmodel%> incompatible with other toc options");
	  if (TARGET_MINIMAL_TOC)
	    SET_CMODEL (CMODEL_SMALL);
	  else if (TARGET_PCREL
		   || (PCREL_SUPPORTED_BY_OS
		       && (rs6000_isa_flags_explicit & OPTION_MASK_PCREL) == 0))
	    /* Ignore -mno-minimal-toc.  */
	    ;
	  else
	    SET_CMODEL (CMODEL_SMALL);
	}
      if (rs6000_current_cmodel != CMODEL_SMALL)
	{
	  if (!OPTION_SET_P (TARGET_NO_FP_IN_TOC))
	    TARGET_NO_FP_IN_TOC = rs6000_current_cmodel == CMODEL_MEDIUM;
	  if (!OPTION_SET_P (TARGET_NO_SUM_IN_TOC))
	    TARGET_NO_SUM_IN_TOC = 0;
	}
      if (TARGET_PLTSEQ && DEFAULT_ABI != ABI_ELFv2)
	{
	  if (OPTION_SET_P (rs6000_pltseq))
	    warning (0, "%qs unsupported for this ABI",
		     "-mpltseq");
	  rs6000_pltseq = false;
	}
    }
  else if (TARGET_64BIT)
    error (INVALID_32BIT, "32");
  else
    {
      if (TARGET_PROFILE_KERNEL)
	{
	  profile_kernel = 0;
	  error (INVALID_32BIT, "profile-kernel");
	}
      if (OPTION_SET_P (rs6000_current_cmodel))
	{
	  SET_CMODEL (CMODEL_SMALL);
	  error (INVALID_32BIT, "cmodel");
	}
    }
}
#endif

/* Return true if we are using GLIBC, and it supports IEEE 128-bit long double.
   This support is only in little endian GLIBC 2.32 or newer.  */
static bool
glibc_supports_ieee_128bit (void)
{
#ifdef OPTION_GLIBC
  if (OPTION_GLIBC && !BYTES_BIG_ENDIAN
      && ((TARGET_GLIBC_MAJOR * 1000) + TARGET_GLIBC_MINOR) >= 2032)
    return true;
#endif /* OPTION_GLIBC.  */

  return false;
}

/* Override command line options.

   Combine build-specific configuration information with options
   specified on the command line to set various state variables which
   influence code generation, optimization, and expansion of built-in
   functions.  Assure that command-line configuration preferences are
   compatible with each other and with the build configuration; issue
   warnings while adjusting configuration or error messages while
   rejecting configuration.

   Upon entry to this function:

     This function is called once at the beginning of
     compilation, and then again at the start and end of compiling
     each section of code that has a different configuration, as
     indicated, for example, by adding the

       __attribute__((__target__("cpu=power9")))

     qualifier to a function definition or, for example, by bracketing
     code between

       #pragma GCC target("altivec")

     and

       #pragma GCC reset_options

     directives.  Parameter global_init_p is true for the initial
     invocation, which initializes global variables, and false for all
     subsequent invocations.


     Various global state information is assumed to be valid.  This
     includes OPTION_TARGET_CPU_DEFAULT, representing the name of the
     default CPU specified at build configure time, TARGET_DEFAULT,
     representing the default set of option flags for the default
     target, and OPTION_SET_P (rs6000_isa_flags), representing
     which options were requested on the command line.

   Upon return from this function:

     rs6000_isa_flags_explicit has a non-zero bit for each flag that
     was set by name on the command line.  Additionally, if certain
     attributes are automatically enabled or disabled by this function
     in order to assure compatibility between options and
     configuration, the flags associated with those attributes are
     also set.  By setting these "explicit bits", we avoid the risk
     that other code might accidentally overwrite these particular
     attributes with "default values".

     The various bits of rs6000_isa_flags are set to indicate the
     target options that have been selected for the most current
     compilation efforts.  This has the effect of also turning on the
     associated TARGET_XXX values since these are macros which are
     generally defined to test the corresponding bit of the
     rs6000_isa_flags variable.

     Various other global variables and fields of global structures
     (over 50 in all) are initialized to reflect the desired options
     for the most current compilation efforts.  */

static bool
rs6000_option_override_internal (bool global_init_p)
{
  bool ret = true;

  HOST_WIDE_INT set_masks;
  HOST_WIDE_INT ignore_masks;
  int cpu_index = -1;
  int tune_index;
  struct cl_target_option *main_target_opt
    = ((global_init_p || target_option_default_node == NULL)
       ? NULL : TREE_TARGET_OPTION (target_option_default_node));

  /* Print defaults.  */
  if ((TARGET_DEBUG_REG || TARGET_DEBUG_TARGET) && global_init_p)
    rs6000_print_isa_options (stderr, 0, "TARGET_DEFAULT", TARGET_DEFAULT);

  /* Remember the explicit arguments.  */
  if (global_init_p)
    rs6000_isa_flags_explicit = OPTION_SET_P (rs6000_isa_flags);

  /* On 64-bit Darwin, power alignment is ABI-incompatible with some C
     library functions, so warn about it. The flag may be useful for
     performance studies from time to time though, so don't disable it
     entirely.  */
  if (OPTION_SET_P (rs6000_alignment_flags)
      && rs6000_alignment_flags == MASK_ALIGN_POWER
      && DEFAULT_ABI == ABI_DARWIN
      && TARGET_64BIT)
    warning (0, "%qs is not supported for 64-bit Darwin;"
	     " it is incompatible with the installed C and C++ libraries",
	     "-malign-power");

  /* Numerous experiment shows that IRA based loop pressure
     calculation works better for RTL loop invariant motion on targets
     with enough (>= 32) registers.  It is an expensive optimization.
     So it is on only for peak performance.  */
  if (optimize >= 3 && global_init_p
      && !OPTION_SET_P (flag_ira_loop_pressure))
    flag_ira_loop_pressure = 1;

  /* -fsanitize=address needs to turn on -fasynchronous-unwind-tables in order
     for tracebacks to be complete but not if any -fasynchronous-unwind-tables
     options were already specified.  */
  if (flag_sanitize & SANITIZE_USER_ADDRESS
      && !OPTION_SET_P (flag_asynchronous_unwind_tables))
    flag_asynchronous_unwind_tables = 1;

  /* -fvariable-expansion-in-unroller is a win for POWER whenever the
     loop unroller is active.  It is only checked during unrolling, so
     we can just set it on by default.  */
  if (!OPTION_SET_P (flag_variable_expansion_in_unroller))
    flag_variable_expansion_in_unroller = 1;

  /* Set the pointer size.  */
  if (TARGET_64BIT)
    {
      rs6000_pmode = DImode;
      rs6000_pointer_size = 64;
    }
  else
    {
      rs6000_pmode = SImode;
      rs6000_pointer_size = 32;
    }

  /* Some OSs don't support saving Altivec registers.  On those OSs, we don't
     touch the OPTION_MASK_ALTIVEC settings; if the user wants it, the user
     must explicitly specify it and we won't interfere with the user's
     specification.  */

  set_masks = POWERPC_MASKS;
#ifdef OS_MISSING_ALTIVEC
  if (OS_MISSING_ALTIVEC)
    set_masks &= ~(OPTION_MASK_ALTIVEC | OPTION_MASK_VSX
		   | OTHER_VSX_VECTOR_MASKS);
#endif

  /* Don't override by the processor default if given explicitly.  */
  set_masks &= ~rs6000_isa_flags_explicit;

  /* Without option powerpc64 specified explicitly, we need to ensure
     powerpc64 always enabled for 64 bit here, otherwise some following
     checks can use unexpected TARGET_POWERPC64 value.  Meanwhile, we
     need to ensure set_masks doesn't have OPTION_MASK_POWERPC64 on,
     otherwise later processing can clear it.  */
  if (!(rs6000_isa_flags_explicit & OPTION_MASK_POWERPC64)
      && TARGET_64BIT)
    {
      rs6000_isa_flags |= OPTION_MASK_POWERPC64;
      set_masks &= ~OPTION_MASK_POWERPC64;
    }

  /* Process the -mcpu=<xxx> and -mtune=<xxx> argument.  If the user changed
     the cpu in a target attribute or pragma, but did not specify a tuning
     option, use the cpu for the tuning option rather than the option specified
     with -mtune on the command line.  Process a '--with-cpu' configuration
     request as an implicit --cpu.  */
  if (rs6000_cpu_index >= 0)
    cpu_index = rs6000_cpu_index;
  else if (main_target_opt != NULL && main_target_opt->x_rs6000_cpu_index >= 0)
    cpu_index = main_target_opt->x_rs6000_cpu_index;
  else if (OPTION_TARGET_CPU_DEFAULT)
    cpu_index = rs6000_cpu_name_lookup (OPTION_TARGET_CPU_DEFAULT);

  /* If we have a cpu, either through an explicit -mcpu=<xxx> or if the
     compiler was configured with --with-cpu=<xxx>, replace all of the ISA bits
     with those from the cpu, except for options that were explicitly set.  If
     we don't have a cpu, do not override the target bits set in
     TARGET_DEFAULT.  */
  if (cpu_index >= 0)
    {
      rs6000_cpu_index = cpu_index;
      rs6000_isa_flags &= ~set_masks;
      rs6000_isa_flags |= (processor_target_table[cpu_index].target_enable
			   & set_masks);
    }
  else
    {
      /* If no -mcpu=<xxx>, inherit any default options that were cleared via
	 POWERPC_MASKS.  Originally, TARGET_DEFAULT was used to initialize
	 target_flags via the TARGET_DEFAULT_TARGET_FLAGS hook.  When we switched
	 to using rs6000_isa_flags, we need to do the initialization here.

	 If there is a TARGET_DEFAULT, use that.  Otherwise fall back to using
	 -mcpu=powerpc, -mcpu=powerpc64, or -mcpu=powerpc64le defaults.  */
      HOST_WIDE_INT flags;
      if (TARGET_DEFAULT)
	flags = TARGET_DEFAULT;
      else
	{
	  /* PowerPC 64-bit LE requires at least ISA 2.07.  */
	  const char *default_cpu = (!TARGET_POWERPC64
				     ? "powerpc"
				     : (BYTES_BIG_ENDIAN
					? "powerpc64"
					: "powerpc64le"));
	  int default_cpu_index = rs6000_cpu_name_lookup (default_cpu);
	  flags = processor_target_table[default_cpu_index].target_enable;
	}
      rs6000_isa_flags |= (flags & ~rs6000_isa_flags_explicit);
    }

  /* Don't expect powerpc64 enabled on those OSes with OS_MISSING_POWERPC64,
     since they do not save and restore the high half of the GPRs correctly
     in all cases.  If the user explicitly specifies it, we won't interfere
     with the user's specification.  */
#ifdef OS_MISSING_POWERPC64
  if (OS_MISSING_POWERPC64
      && TARGET_32BIT
      && TARGET_POWERPC64
      && !(rs6000_isa_flags_explicit & OPTION_MASK_POWERPC64))
    rs6000_isa_flags &= ~OPTION_MASK_POWERPC64;
#endif

  if (rs6000_tune_index >= 0)
    tune_index = rs6000_tune_index;
  else if (cpu_index >= 0)
    rs6000_tune_index = tune_index = cpu_index;
  else
    {
      size_t i;
      enum processor_type tune_proc
	= (TARGET_POWERPC64 ? PROCESSOR_DEFAULT64 : PROCESSOR_DEFAULT);

      tune_index = -1;
      for (i = 0; i < ARRAY_SIZE (processor_target_table); i++)
	if (processor_target_table[i].processor == tune_proc)
	  {
	    tune_index = i;
	    break;
	  }
    }

  if (cpu_index >= 0)
    rs6000_cpu = processor_target_table[cpu_index].processor;
  else
    rs6000_cpu = TARGET_POWERPC64 ? PROCESSOR_DEFAULT64 : PROCESSOR_DEFAULT;

  gcc_assert (tune_index >= 0);
  rs6000_tune = processor_target_table[tune_index].processor;

  if (rs6000_cpu == PROCESSOR_PPCE300C2 || rs6000_cpu == PROCESSOR_PPCE300C3
      || rs6000_cpu == PROCESSOR_PPCE500MC || rs6000_cpu == PROCESSOR_PPCE500MC64
      || rs6000_cpu == PROCESSOR_PPCE5500)
    {
      if (TARGET_ALTIVEC)
	error ("AltiVec not supported in this target");
    }

  /* If we are optimizing big endian systems for space, use the load/store
     multiple instructions.  */
  if (BYTES_BIG_ENDIAN && optimize_size)
    rs6000_isa_flags |= ~rs6000_isa_flags_explicit & OPTION_MASK_MULTIPLE;

  /* Don't allow -mmultiple on little endian systems unless the cpu is a 750,
     because the hardware doesn't support the instructions used in little
     endian mode, and causes an alignment trap.  The 750 does not cause an
     alignment trap (except when the target is unaligned).  */

  if (!BYTES_BIG_ENDIAN && rs6000_cpu != PROCESSOR_PPC750 && TARGET_MULTIPLE)
    {
      rs6000_isa_flags &= ~OPTION_MASK_MULTIPLE;
      if ((rs6000_isa_flags_explicit & OPTION_MASK_MULTIPLE) != 0)
	warning (0, "%qs is not supported on little endian systems",
		 "-mmultiple");
    }

  /* If little-endian, default to -mstrict-align on older processors.
     Testing for direct_move matches power8 and later.  */
  if (!BYTES_BIG_ENDIAN
      && !(processor_target_table[tune_index].target_enable
	   & OPTION_MASK_DIRECT_MOVE))
    rs6000_isa_flags |= ~rs6000_isa_flags_explicit & OPTION_MASK_STRICT_ALIGN;

  /* Add some warnings for VSX.  */
  if (TARGET_VSX)
    {
      const char *msg = NULL;
      if (!TARGET_HARD_FLOAT)
	{
	  if (rs6000_isa_flags_explicit & OPTION_MASK_VSX)
	    msg = N_("%<-mvsx%> requires hardware floating point");
	  else
	    {
	      rs6000_isa_flags &= ~ OPTION_MASK_VSX;
	      rs6000_isa_flags_explicit |= OPTION_MASK_VSX;
	    }
	}
      else if (TARGET_AVOID_XFORM > 0)
	msg = N_("%<-mvsx%> needs indexed addressing");
      else if (!TARGET_ALTIVEC && (rs6000_isa_flags_explicit
				   & OPTION_MASK_ALTIVEC))
        {
	  if (rs6000_isa_flags_explicit & OPTION_MASK_VSX)
	    msg = N_("%<-mvsx%> and %<-mno-altivec%> are incompatible");
	  else
	    msg = N_("%<-mno-altivec%> disables vsx");
        }

      if (msg)
	{
	  warning (0, msg);
	  rs6000_isa_flags &= ~ OPTION_MASK_VSX;
	  rs6000_isa_flags_explicit |= OPTION_MASK_VSX;
	}
    }

  /* If hard-float/altivec/vsx were explicitly turned off then don't allow
     the -mcpu setting to enable options that conflict. */
  if ((!TARGET_HARD_FLOAT || !TARGET_ALTIVEC || !TARGET_VSX)
      && (rs6000_isa_flags_explicit & (OPTION_MASK_SOFT_FLOAT
				       | OPTION_MASK_ALTIVEC
				       | OPTION_MASK_VSX)) != 0)
    rs6000_isa_flags &= ~((OPTION_MASK_P8_VECTOR | OPTION_MASK_CRYPTO
			   | OPTION_MASK_DIRECT_MOVE)
		         & ~rs6000_isa_flags_explicit);

  if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET)
    rs6000_print_isa_options (stderr, 0, "before defaults", rs6000_isa_flags);

#ifdef XCOFF_DEBUGGING_INFO
  /* For AIX default to 64-bit DWARF.  */
  if (!OPTION_SET_P (dwarf_offset_size))
    dwarf_offset_size = POINTER_SIZE_UNITS;
#endif

  /* Handle explicit -mno-{altivec,vsx,power8-vector,power9-vector} and turn
     off all of the options that depend on those flags.  */
  ignore_masks = rs6000_disable_incompatible_switches ();

  /* For the newer switches (vsx, dfp, etc.) set some of the older options,
     unless the user explicitly used the -mno-<option> to disable the code.  */
  if (TARGET_P9_VECTOR || TARGET_MODULO || TARGET_P9_MISC)
    rs6000_isa_flags |= (ISA_3_0_MASKS_SERVER & ~ignore_masks);
  else if (TARGET_P9_MINMAX)
    {
      if (cpu_index >= 0)
	{
	  if (cpu_index == PROCESSOR_POWER9)
	    {
	      /* legacy behavior: allow -mcpu=power9 with certain
		 capabilities explicitly disabled.  */
	      rs6000_isa_flags |= (ISA_3_0_MASKS_SERVER & ~ignore_masks);
	    }
	  else
	    error ("power9 target option is incompatible with %<%s=<xxx>%> "
		   "for <xxx> less than power9", "-mcpu");
	}
      else if ((ISA_3_0_MASKS_SERVER & rs6000_isa_flags_explicit)
	       != (ISA_3_0_MASKS_SERVER & rs6000_isa_flags
		   & rs6000_isa_flags_explicit))
	/* Enforce that none of the ISA_3_0_MASKS_SERVER flags
	   were explicitly cleared.  */
	error ("%qs incompatible with explicitly disabled options",
	       "-mpower9-minmax");
      else
	rs6000_isa_flags |= ISA_3_0_MASKS_SERVER;
    }
  else if (TARGET_P8_VECTOR || TARGET_DIRECT_MOVE || TARGET_CRYPTO)
    rs6000_isa_flags |= (ISA_2_7_MASKS_SERVER & ~ignore_masks);
  else if (TARGET_VSX)
    rs6000_isa_flags |= (ISA_2_6_MASKS_SERVER & ~ignore_masks);
  else if (TARGET_POPCNTD)
    rs6000_isa_flags |= (ISA_2_6_MASKS_EMBEDDED & ~ignore_masks);
  else if (TARGET_DFP)
    rs6000_isa_flags |= (ISA_2_5_MASKS_SERVER & ~ignore_masks);
  else if (TARGET_CMPB)
    rs6000_isa_flags |= (ISA_2_5_MASKS_EMBEDDED & ~ignore_masks);
  else if (TARGET_FPRND)
    rs6000_isa_flags |= (ISA_2_4_MASKS & ~ignore_masks);
  else if (TARGET_POPCNTB)
    rs6000_isa_flags |= (ISA_2_2_MASKS & ~ignore_masks);
  else if (TARGET_ALTIVEC)
    rs6000_isa_flags |= (OPTION_MASK_PPC_GFXOPT & ~ignore_masks);

  /* Disable VSX and Altivec silently if the user switched cpus to power7 in a
     target attribute or pragma which automatically enables both options,
     unless the altivec ABI was set.  This is set by default for 64-bit, but
     not for 32-bit.  Don't move this before the above code using ignore_masks,
     since it can reset the cleared VSX/ALTIVEC flag again.  */
  if (main_target_opt && !main_target_opt->x_rs6000_altivec_abi)
    rs6000_isa_flags &= ~((OPTION_MASK_VSX | OPTION_MASK_ALTIVEC)
			  & ~rs6000_isa_flags_explicit);

  if (TARGET_CRYPTO && !TARGET_ALTIVEC)
    {
      if (rs6000_isa_flags_explicit & OPTION_MASK_CRYPTO)
	error ("%qs requires %qs", "-mcrypto", "-maltivec");
      rs6000_isa_flags &= ~OPTION_MASK_CRYPTO;
    }

  if (!TARGET_FPRND && TARGET_VSX)
    {
      if (rs6000_isa_flags_explicit & OPTION_MASK_FPRND)
	/* TARGET_VSX = 1 implies Power 7 and newer */
	error ("%qs requires %qs", "-mvsx", "-mfprnd");
      rs6000_isa_flags &= ~OPTION_MASK_FPRND;
    }

  if (TARGET_DIRECT_MOVE && !TARGET_VSX)
    {
      if (rs6000_isa_flags_explicit & OPTION_MASK_DIRECT_MOVE)
	error ("%qs requires %qs", "-mdirect-move", "-mvsx");
      rs6000_isa_flags &= ~OPTION_MASK_DIRECT_MOVE;
    }

  if (TARGET_P8_VECTOR && !TARGET_ALTIVEC)
    {
      if (rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR)
	error ("%qs requires %qs", "-mpower8-vector", "-maltivec");
      rs6000_isa_flags &= ~OPTION_MASK_P8_VECTOR;
    }

  if (TARGET_P8_VECTOR && !TARGET_VSX)
    {
      if ((rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR)
	  && (rs6000_isa_flags_explicit & OPTION_MASK_VSX))
	error ("%qs requires %qs", "-mpower8-vector", "-mvsx");
      else if ((rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR) == 0)
	{
	  rs6000_isa_flags &= ~OPTION_MASK_P8_VECTOR;
	  if (rs6000_isa_flags_explicit & OPTION_MASK_VSX)
	    rs6000_isa_flags_explicit |= OPTION_MASK_P8_VECTOR;
	}
      else
	{
	  /* OPTION_MASK_P8_VECTOR is explicit, and OPTION_MASK_VSX is
	     not explicit.  */
	  rs6000_isa_flags |= OPTION_MASK_VSX;
	  rs6000_isa_flags_explicit |= OPTION_MASK_VSX;
	}
    }

  if (TARGET_DFP && !TARGET_HARD_FLOAT)
    {
      if (rs6000_isa_flags_explicit & OPTION_MASK_DFP)
	error ("%qs requires %qs", "-mhard-dfp", "-mhard-float");
      rs6000_isa_flags &= ~OPTION_MASK_DFP;
    }

  /* The quad memory instructions only works in 64-bit mode. In 32-bit mode,
     silently turn off quad memory mode.  */
  if ((TARGET_QUAD_MEMORY || TARGET_QUAD_MEMORY_ATOMIC) && !TARGET_POWERPC64)
    {
      if ((rs6000_isa_flags_explicit & OPTION_MASK_QUAD_MEMORY) != 0)
	warning (0, N_("%<-mquad-memory%> requires 64-bit mode"));

      if ((rs6000_isa_flags_explicit & OPTION_MASK_QUAD_MEMORY_ATOMIC) != 0)
	warning (0, N_("%<-mquad-memory-atomic%> requires 64-bit mode"));

      rs6000_isa_flags &= ~(OPTION_MASK_QUAD_MEMORY
			    | OPTION_MASK_QUAD_MEMORY_ATOMIC);
    }

  /* Non-atomic quad memory load/store are disabled for little endian, since
     the words are reversed, but atomic operations can still be done by
     swapping the words.  */
  if (TARGET_QUAD_MEMORY && !WORDS_BIG_ENDIAN)
    {
      if ((rs6000_isa_flags_explicit & OPTION_MASK_QUAD_MEMORY) != 0)
	warning (0, N_("%<-mquad-memory%> is not available in little endian "
		       "mode"));

      rs6000_isa_flags &= ~OPTION_MASK_QUAD_MEMORY;
    }

  /* Assume if the user asked for normal quad memory instructions, they want
     the atomic versions as well, unless they explicity told us not to use quad
     word atomic instructions.  */
  if (TARGET_QUAD_MEMORY
      && !TARGET_QUAD_MEMORY_ATOMIC
      && ((rs6000_isa_flags_explicit & OPTION_MASK_QUAD_MEMORY_ATOMIC) == 0))
    rs6000_isa_flags |= OPTION_MASK_QUAD_MEMORY_ATOMIC;

  /* If we can shrink-wrap the TOC register save separately, then use
     -msave-toc-indirect unless explicitly disabled.  */
  if ((rs6000_isa_flags_explicit & OPTION_MASK_SAVE_TOC_INDIRECT) == 0
      && flag_shrink_wrap_separate
      && optimize_function_for_speed_p (cfun))
    rs6000_isa_flags |= OPTION_MASK_SAVE_TOC_INDIRECT;

  /* Enable power8 fusion if we are tuning for power8, even if we aren't
     generating power8 instructions.  Power9 does not optimize power8 fusion
     cases.  */
  if (!(rs6000_isa_flags_explicit & OPTION_MASK_P8_FUSION))
    {
      if (processor_target_table[tune_index].processor == PROCESSOR_POWER8)
	rs6000_isa_flags |= OPTION_MASK_P8_FUSION;
      else
	rs6000_isa_flags &= ~OPTION_MASK_P8_FUSION;
    }

  /* Setting additional fusion flags turns on base fusion.  */
  if (!TARGET_P8_FUSION && TARGET_P8_FUSION_SIGN)
    {
      if (rs6000_isa_flags_explicit & OPTION_MASK_P8_FUSION)
	{
	  if (TARGET_P8_FUSION_SIGN)
	    error ("%qs requires %qs", "-mpower8-fusion-sign",
		   "-mpower8-fusion");

	  rs6000_isa_flags &= ~OPTION_MASK_P8_FUSION;
	}
      else
	rs6000_isa_flags |= OPTION_MASK_P8_FUSION;
    }

  /* Power8 does not fuse sign extended loads with the addis.  If we are
     optimizing at high levels for speed, convert a sign extended load into a
     zero extending load, and an explicit sign extension.  */
  if (TARGET_P8_FUSION
      && !(rs6000_isa_flags_explicit & OPTION_MASK_P8_FUSION_SIGN)
      && optimize_function_for_speed_p (cfun)
      && optimize >= 3)
    rs6000_isa_flags |= OPTION_MASK_P8_FUSION_SIGN;

  /* ISA 3.0 vector instructions include ISA 2.07.  */
  if (TARGET_P9_VECTOR && !TARGET_P8_VECTOR)
    {
      /* We prefer to not mention undocumented options in
	 error messages.  However, if users have managed to select
	 power9-vector without selecting power8-vector, they
	 already know about undocumented flags.  */
      if ((rs6000_isa_flags_explicit & OPTION_MASK_P9_VECTOR) &&
	  (rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR))
	error ("%qs requires %qs", "-mpower9-vector", "-mpower8-vector");
      else if ((rs6000_isa_flags_explicit & OPTION_MASK_P9_VECTOR) == 0)
	{
	  rs6000_isa_flags &= ~OPTION_MASK_P9_VECTOR;
	  if (rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR)
	    rs6000_isa_flags_explicit |= OPTION_MASK_P9_VECTOR;
	}
      else
	{
	  /* OPTION_MASK_P9_VECTOR is explicit and
	     OPTION_MASK_P8_VECTOR is not explicit.  */
	  rs6000_isa_flags |= OPTION_MASK_P8_VECTOR;
	  rs6000_isa_flags_explicit |= OPTION_MASK_P8_VECTOR;
	}
    }

  /* Set -mallow-movmisalign to explicitly on if we have full ISA 2.07
     support. If we only have ISA 2.06 support, and the user did not specify
     the switch, leave it set to -1 so the movmisalign patterns are enabled,
     but we don't enable the full vectorization support  */
  if (TARGET_ALLOW_MOVMISALIGN == -1 && TARGET_P8_VECTOR && TARGET_DIRECT_MOVE)
    TARGET_ALLOW_MOVMISALIGN = 1;

  else if (TARGET_ALLOW_MOVMISALIGN && !TARGET_VSX)
    {
      if (TARGET_ALLOW_MOVMISALIGN > 0
	  && OPTION_SET_P (TARGET_ALLOW_MOVMISALIGN))
	error ("%qs requires %qs", "-mallow-movmisalign", "-mvsx");

      TARGET_ALLOW_MOVMISALIGN = 0;
    }

  /* Determine when unaligned vector accesses are permitted, and when
     they are preferred over masked Altivec loads.  Note that if
     TARGET_ALLOW_MOVMISALIGN has been disabled by the user, then
     TARGET_EFFICIENT_UNALIGNED_VSX must be as well.  The converse is
     not true.  */
  if (TARGET_EFFICIENT_UNALIGNED_VSX)
    {
      if (!TARGET_VSX)
	{
	  if (rs6000_isa_flags_explicit & OPTION_MASK_EFFICIENT_UNALIGNED_VSX)
	    error ("%qs requires %qs", "-mefficient-unaligned-vsx", "-mvsx");

	  rs6000_isa_flags &= ~OPTION_MASK_EFFICIENT_UNALIGNED_VSX;
	}

      else if (!TARGET_ALLOW_MOVMISALIGN)
	{
	  if (rs6000_isa_flags_explicit & OPTION_MASK_EFFICIENT_UNALIGNED_VSX)
	    error ("%qs requires %qs", "-munefficient-unaligned-vsx",
		   "-mallow-movmisalign");

	  rs6000_isa_flags &= ~OPTION_MASK_EFFICIENT_UNALIGNED_VSX;
	}
    }

  if (!(rs6000_isa_flags_explicit & OPTION_MASK_BLOCK_OPS_UNALIGNED_VSX))
    {
      if (TARGET_EFFICIENT_UNALIGNED_VSX)
	rs6000_isa_flags |= OPTION_MASK_BLOCK_OPS_UNALIGNED_VSX;
      else
	rs6000_isa_flags &= ~OPTION_MASK_BLOCK_OPS_UNALIGNED_VSX;
    }

  /* Use long double size to select the appropriate long double.  We use
     TYPE_PRECISION to differentiate the 3 different long double types.  We map
     128 into the precision used for TFmode.  */
  int default_long_double_size = (RS6000_DEFAULT_LONG_DOUBLE_SIZE == 64
				  ? 64
				  : FLOAT_PRECISION_TFmode);

  /* Set long double size before the IEEE 128-bit tests.  */
  if (!OPTION_SET_P (rs6000_long_double_type_size))
    {
      if (main_target_opt != NULL
	  && (main_target_opt->x_rs6000_long_double_type_size
	      != default_long_double_size))
	error ("target attribute or pragma changes %<long double%> size");
      else
	rs6000_long_double_type_size = default_long_double_size;
    }
  else if (rs6000_long_double_type_size == FLOAT_PRECISION_TFmode)
    ; /* The option value can be seen when cl_target_option_restore is called.  */
  else if (rs6000_long_double_type_size == 128)
    rs6000_long_double_type_size = FLOAT_PRECISION_TFmode;

  /* Set -mabi=ieeelongdouble on some old targets.  In the future, power server
     systems will also set long double to be IEEE 128-bit.  AIX and Darwin
     explicitly redefine TARGET_IEEEQUAD and TARGET_IEEEQUAD_DEFAULT to 0, so
     those systems will not pick up this default.  Warn if the user changes the
     default unless -Wno-psabi.  */
  if (!OPTION_SET_P (rs6000_ieeequad))
    rs6000_ieeequad = TARGET_IEEEQUAD_DEFAULT;

  else if (TARGET_LONG_DOUBLE_128)
    {
      if (global_options.x_rs6000_ieeequad
	  && (!TARGET_POPCNTD || !TARGET_VSX))
	error ("%qs requires full ISA 2.06 support", "-mabi=ieeelongdouble");

      if (rs6000_ieeequad != TARGET_IEEEQUAD_DEFAULT)
	{
	  /* Determine if the user can change the default long double type at
	     compilation time.  You need GLIBC 2.32 or newer to be able to
	     change the long double type.  Only issue one warning.  */
	  static bool warned_change_long_double;

	  if (!warned_change_long_double && !glibc_supports_ieee_128bit ())
	    {
	      warned_change_long_double = true;
	      if (TARGET_IEEEQUAD)
		warning (OPT_Wpsabi, "Using IEEE extended precision "
			 "%<long double%>");
	      else
		warning (OPT_Wpsabi, "Using IBM extended precision "
			 "%<long double%>");
	    }
	}
    }

  /* Enable the default support for IEEE 128-bit floating point on Linux VSX
     sytems.  In GCC 7, we would enable the IEEE 128-bit floating point
     infrastructure (-mfloat128-type) but not enable the actual __float128 type
     unless the user used the explicit -mfloat128.  In GCC 8, we enable both
     the keyword as well as the type.  */
  TARGET_FLOAT128_TYPE = TARGET_FLOAT128_ENABLE_TYPE && TARGET_VSX;

  /* IEEE 128-bit floating point requires VSX support.  */
  if (TARGET_FLOAT128_KEYWORD)
    {
      if (!TARGET_VSX)
	{
	  if ((rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_KEYWORD) != 0)
	    error ("%qs requires VSX support", "-mfloat128");

	  TARGET_FLOAT128_TYPE = 0;
	  rs6000_isa_flags &= ~(OPTION_MASK_FLOAT128_KEYWORD
				| OPTION_MASK_FLOAT128_HW);
	}
      else if (!TARGET_FLOAT128_TYPE)
	{
	  TARGET_FLOAT128_TYPE = 1;
	  warning (0, "The %<-mfloat128%> option may not be fully supported");
	}
    }

  /* Enable the __float128 keyword under Linux by default.  */
  if (TARGET_FLOAT128_TYPE && !TARGET_FLOAT128_KEYWORD
      && (rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_KEYWORD) == 0)
    rs6000_isa_flags |= OPTION_MASK_FLOAT128_KEYWORD;

  /* If we have are supporting the float128 type and full ISA 3.0 support,
     enable -mfloat128-hardware by default.  However, don't enable the
     __float128 keyword if it was explicitly turned off.  64-bit mode is needed
     because sometimes the compiler wants to put things in an integer
     container, and if we don't have __int128 support, it is impossible.  */
  if (TARGET_FLOAT128_TYPE && !TARGET_FLOAT128_HW && TARGET_64BIT
      && (rs6000_isa_flags & ISA_3_0_MASKS_IEEE) == ISA_3_0_MASKS_IEEE
      && !(rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_HW))
    rs6000_isa_flags |= OPTION_MASK_FLOAT128_HW;

  if (TARGET_FLOAT128_HW
      && (rs6000_isa_flags & ISA_3_0_MASKS_IEEE) != ISA_3_0_MASKS_IEEE)
    {
      if ((rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_HW) != 0)
	error ("%qs requires full ISA 3.0 support", "%<-mfloat128-hardware%>");

      rs6000_isa_flags &= ~OPTION_MASK_FLOAT128_HW;
    }

  if (TARGET_FLOAT128_HW && !TARGET_64BIT)
    {
      if ((rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_HW) != 0)
	error ("%qs requires %qs", "%<-mfloat128-hardware%>", "-m64");

      rs6000_isa_flags &= ~OPTION_MASK_FLOAT128_HW;
    }

  /* Enable -mprefixed by default on power10 systems.  */
  if (TARGET_POWER10 && (rs6000_isa_flags_explicit & OPTION_MASK_PREFIXED) == 0)
    rs6000_isa_flags |= OPTION_MASK_PREFIXED;

  /* -mprefixed requires -mcpu=power10 (or later).  */
  else if (TARGET_PREFIXED && !TARGET_POWER10)
    {
      if ((rs6000_isa_flags_explicit & OPTION_MASK_PREFIXED) != 0)
	error ("%qs requires %qs", "-mprefixed", "-mcpu=power10");

      rs6000_isa_flags &= ~OPTION_MASK_PREFIXED;
    }

  /* -mpcrel requires prefixed load/store addressing.  */
  if (TARGET_PCREL && !TARGET_PREFIXED)
    {
      if ((rs6000_isa_flags_explicit & OPTION_MASK_PCREL) != 0)
	error ("%qs requires %qs", "-mpcrel", "-mprefixed");

      rs6000_isa_flags &= ~OPTION_MASK_PCREL;
    }

  /* Print the options after updating the defaults.  */
  if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET)
    rs6000_print_isa_options (stderr, 0, "after defaults", rs6000_isa_flags);

  /* E500mc does "better" if we inline more aggressively.  Respect the
     user's opinion, though.  */
  if (rs6000_block_move_inline_limit == 0
      && (rs6000_tune == PROCESSOR_PPCE500MC
	  || rs6000_tune == PROCESSOR_PPCE500MC64
	  || rs6000_tune == PROCESSOR_PPCE5500
	  || rs6000_tune == PROCESSOR_PPCE6500))
    rs6000_block_move_inline_limit = 128;

  /* store_one_arg depends on expand_block_move to handle at least the
     size of reg_parm_stack_space.  */
  if (rs6000_block_move_inline_limit < (TARGET_POWERPC64 ? 64 : 32))
    rs6000_block_move_inline_limit = (TARGET_POWERPC64 ? 64 : 32);

  if (global_init_p)
    {
      /* If the appropriate debug option is enabled, replace the target hooks
	 with debug versions that call the real version and then prints
	 debugging information.  */
      if (TARGET_DEBUG_COST)
	{
	  targetm.rtx_costs = rs6000_debug_rtx_costs;
	  targetm.address_cost = rs6000_debug_address_cost;
	  targetm.sched.adjust_cost = rs6000_debug_adjust_cost;
	}

      if (TARGET_DEBUG_ADDR)
	{
	  targetm.legitimate_address_p = rs6000_debug_legitimate_address_p;
	  targetm.legitimize_address = rs6000_debug_legitimize_address;
	  rs6000_secondary_reload_class_ptr
	    = rs6000_debug_secondary_reload_class;
	  targetm.secondary_memory_needed
	    = rs6000_debug_secondary_memory_needed;
	  targetm.can_change_mode_class
	    = rs6000_debug_can_change_mode_class;
	  rs6000_preferred_reload_class_ptr
	    = rs6000_debug_preferred_reload_class;
	  rs6000_mode_dependent_address_ptr
	    = rs6000_debug_mode_dependent_address;
	}

      if (rs6000_veclibabi_name)
	{
	  if (strcmp (rs6000_veclibabi_name, "mass") == 0)
	    rs6000_veclib_handler = rs6000_builtin_vectorized_libmass;
	  else
	    {
	      error ("unknown vectorization library ABI type in "
		     "%<-mveclibabi=%s%>", rs6000_veclibabi_name);
	      ret = false;
	    }
	}
    }

  /* Enable Altivec ABI for AIX -maltivec.  */
  if (TARGET_XCOFF
      && (TARGET_ALTIVEC || TARGET_VSX)
      && !OPTION_SET_P (rs6000_altivec_abi))
    {
      if (main_target_opt != NULL && !main_target_opt->x_rs6000_altivec_abi)
	error ("target attribute or pragma changes AltiVec ABI");
      else
	rs6000_altivec_abi = 1;
    }

  /* The AltiVec ABI is the default for PowerPC-64 GNU/Linux.  For
     PowerPC-32 GNU/Linux, -maltivec implies the AltiVec ABI.  It can
     be explicitly overridden in either case.  */
  if (TARGET_ELF)
    {
      if (!OPTION_SET_P (rs6000_altivec_abi)
	  && (TARGET_64BIT || TARGET_ALTIVEC || TARGET_VSX))
	{
	  if (main_target_opt != NULL &&
	      !main_target_opt->x_rs6000_altivec_abi)
	    error ("target attribute or pragma changes AltiVec ABI");
	  else
	    rs6000_altivec_abi = 1;
	}
    }

  /* Set the Darwin64 ABI as default for 64-bit Darwin.  
     So far, the only darwin64 targets are also MACH-O.  */
  if (TARGET_MACHO
      && DEFAULT_ABI == ABI_DARWIN 
      && TARGET_64BIT)
    {
      if (main_target_opt != NULL && !main_target_opt->x_rs6000_darwin64_abi)
	error ("target attribute or pragma changes darwin64 ABI");
      else
	{
	  rs6000_darwin64_abi = 1;
	  /* Default to natural alignment, for better performance.  */
	  rs6000_alignment_flags = MASK_ALIGN_NATURAL;
	}
    }

  /* Place FP constants in the constant pool instead of TOC
     if section anchors enabled.  */
  if (flag_section_anchors
      && !OPTION_SET_P (TARGET_NO_FP_IN_TOC))
    TARGET_NO_FP_IN_TOC = 1;

  if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET)
    rs6000_print_isa_options (stderr, 0, "before subtarget", rs6000_isa_flags);

#ifdef SUBTARGET_OVERRIDE_OPTIONS
  SUBTARGET_OVERRIDE_OPTIONS;
#endif
#ifdef SUBSUBTARGET_OVERRIDE_OPTIONS
  SUBSUBTARGET_OVERRIDE_OPTIONS;
#endif
#ifdef SUB3TARGET_OVERRIDE_OPTIONS
  SUB3TARGET_OVERRIDE_OPTIONS;
#endif

  /* If the ABI has support for PC-relative relocations, enable it by default.
     This test depends on the sub-target tests above setting the code model to
     medium for ELF v2 systems.  */
  if (PCREL_SUPPORTED_BY_OS
      && (rs6000_isa_flags_explicit & OPTION_MASK_PCREL) == 0)
    rs6000_isa_flags |= OPTION_MASK_PCREL;

  /* -mpcrel requires -mcmodel=medium, but we can't check TARGET_CMODEL until
      after the subtarget override options are done.  */
  else if (TARGET_PCREL && TARGET_CMODEL != CMODEL_MEDIUM)
    {
      if ((rs6000_isa_flags_explicit & OPTION_MASK_PCREL) != 0)
	error ("%qs requires %qs", "-mpcrel", "-mcmodel=medium");

      rs6000_isa_flags &= ~OPTION_MASK_PCREL;
    }

  /* Enable -mmma by default on power10 systems.  */
  if (TARGET_POWER10 && (rs6000_isa_flags_explicit & OPTION_MASK_MMA) == 0)
    rs6000_isa_flags |= OPTION_MASK_MMA;

  /* Turn off vector pair/mma options on non-power10 systems.  */
  else if (!TARGET_POWER10 && TARGET_MMA)
    {
      if ((rs6000_isa_flags_explicit & OPTION_MASK_MMA) != 0)
	error ("%qs requires %qs", "-mmma", "-mcpu=power10");

      rs6000_isa_flags &= ~OPTION_MASK_MMA;
    }

  if (TARGET_POWER10
      && (rs6000_isa_flags_explicit & OPTION_MASK_P10_FUSION) == 0)
    rs6000_isa_flags |= OPTION_MASK_P10_FUSION;

  /* MMA requires SIMD support as ISA 3.1 claims and our implementation
     such as "*movoo" uses vector pair access which use VSX registers.
     So make MMA require VSX support here.  */
  if (TARGET_MMA && !TARGET_VSX)
    {
      if ((rs6000_isa_flags_explicit & OPTION_MASK_MMA) != 0)
	error ("%qs requires %qs", "-mmma", "-mvsx");
      rs6000_isa_flags &= ~OPTION_MASK_MMA;
    }

  if (!TARGET_PCREL && TARGET_PCREL_OPT)
    rs6000_isa_flags &= ~OPTION_MASK_PCREL_OPT;

  if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET)
    rs6000_print_isa_options (stderr, 0, "after subtarget", rs6000_isa_flags);

  rs6000_always_hint = (rs6000_tune != PROCESSOR_POWER4
			&& rs6000_tune != PROCESSOR_POWER5
			&& rs6000_tune != PROCESSOR_POWER6
			&& rs6000_tune != PROCESSOR_POWER7
			&& rs6000_tune != PROCESSOR_POWER8
			&& rs6000_tune != PROCESSOR_POWER9
			&& rs6000_tune != PROCESSOR_POWER10
			&& rs6000_tune != PROCESSOR_PPCA2
			&& rs6000_tune != PROCESSOR_CELL
			&& rs6000_tune != PROCESSOR_PPC476);
  rs6000_sched_groups = (rs6000_tune == PROCESSOR_POWER4
			 || rs6000_tune == PROCESSOR_POWER5
			 || rs6000_tune == PROCESSOR_POWER7
			 || rs6000_tune == PROCESSOR_POWER8);
  rs6000_align_branch_targets = (rs6000_tune == PROCESSOR_POWER4
				 || rs6000_tune == PROCESSOR_POWER5
				 || rs6000_tune == PROCESSOR_POWER6
				 || rs6000_tune == PROCESSOR_POWER7
				 || rs6000_tune == PROCESSOR_POWER8
				 || rs6000_tune == PROCESSOR_POWER9
				 || rs6000_tune == PROCESSOR_POWER10
				 || rs6000_tune == PROCESSOR_PPCE500MC
				 || rs6000_tune == PROCESSOR_PPCE500MC64
				 || rs6000_tune == PROCESSOR_PPCE5500
				 || rs6000_tune == PROCESSOR_PPCE6500);

  /* Allow debug switches to override the above settings.  These are set to -1
     in rs6000.opt to indicate the user hasn't directly set the switch.  */
  if (TARGET_ALWAYS_HINT >= 0)
    rs6000_always_hint = TARGET_ALWAYS_HINT;

  if (TARGET_SCHED_GROUPS >= 0)
    rs6000_sched_groups = TARGET_SCHED_GROUPS;

  if (TARGET_ALIGN_BRANCH_TARGETS >= 0)
    rs6000_align_branch_targets = TARGET_ALIGN_BRANCH_TARGETS;

  rs6000_sched_restricted_insns_priority
    = (rs6000_sched_groups ? 1 : 0);

  /* Handle -msched-costly-dep option.  */
  rs6000_sched_costly_dep
    = (rs6000_sched_groups ? true_store_to_load_dep_costly : no_dep_costly);

  if (rs6000_sched_costly_dep_str)
    {
      if (! strcmp (rs6000_sched_costly_dep_str, "no"))
	rs6000_sched_costly_dep = no_dep_costly;
      else if (! strcmp (rs6000_sched_costly_dep_str, "all"))
	rs6000_sched_costly_dep = all_deps_costly;
      else if (! strcmp (rs6000_sched_costly_dep_str, "true_store_to_load"))
	rs6000_sched_costly_dep = true_store_to_load_dep_costly;
      else if (! strcmp (rs6000_sched_costly_dep_str, "store_to_load"))
	rs6000_sched_costly_dep = store_to_load_dep_costly;
      else
	rs6000_sched_costly_dep = ((enum rs6000_dependence_cost)
				   atoi (rs6000_sched_costly_dep_str));
    }

  /* Handle -minsert-sched-nops option.  */
  rs6000_sched_insert_nops
    = (rs6000_sched_groups ? sched_finish_regroup_exact : sched_finish_none);

  if (rs6000_sched_insert_nops_str)
    {
      if (! strcmp (rs6000_sched_insert_nops_str, "no"))
	rs6000_sched_insert_nops = sched_finish_none;
      else if (! strcmp (rs6000_sched_insert_nops_str, "pad"))
	rs6000_sched_insert_nops = sched_finish_pad_groups;
      else if (! strcmp (rs6000_sched_insert_nops_str, "regroup_exact"))
	rs6000_sched_insert_nops = sched_finish_regroup_exact;
      else
	rs6000_sched_insert_nops = ((enum rs6000_nop_insertion)
				    atoi (rs6000_sched_insert_nops_str));
    }

  /* Handle stack protector */
  if (!OPTION_SET_P (rs6000_stack_protector_guard))
#ifdef TARGET_THREAD_SSP_OFFSET
    rs6000_stack_protector_guard = SSP_TLS;
#else
    rs6000_stack_protector_guard = SSP_GLOBAL;
#endif

#ifdef TARGET_THREAD_SSP_OFFSET
  rs6000_stack_protector_guard_offset = TARGET_THREAD_SSP_OFFSET;
  rs6000_stack_protector_guard_reg = TARGET_64BIT ? 13 : 2;
#endif

  if (OPTION_SET_P (rs6000_stack_protector_guard_offset_str))
    {
      char *endp;
      const char *str = rs6000_stack_protector_guard_offset_str;

      errno = 0;
      long offset = strtol (str, &endp, 0);
      if (!*str || *endp || errno)
	error ("%qs is not a valid number in %qs", str,
	       "-mstack-protector-guard-offset=");

      if (!IN_RANGE (offset, -0x8000, 0x7fff)
	  || (TARGET_64BIT && (offset & 3)))
	error ("%qs is not a valid offset in %qs", str,
	       "-mstack-protector-guard-offset=");

      rs6000_stack_protector_guard_offset = offset;
    }

  if (OPTION_SET_P (rs6000_stack_protector_guard_reg_str))
    {
      const char *str = rs6000_stack_protector_guard_reg_str;
      int reg = decode_reg_name (str);

      if (!IN_RANGE (reg, 1, 31))
	error ("%qs is not a valid base register in %qs", str,
	       "-mstack-protector-guard-reg=");

      rs6000_stack_protector_guard_reg = reg;
    }

  if (rs6000_stack_protector_guard == SSP_TLS
      && !IN_RANGE (rs6000_stack_protector_guard_reg, 1, 31))
    error ("%qs needs a valid base register", "-mstack-protector-guard=tls");

  if (global_init_p)
    {
#ifdef TARGET_REGNAMES
      /* If the user desires alternate register names, copy in the
	 alternate names now.  */
      if (TARGET_REGNAMES)
	memcpy (rs6000_reg_names, alt_reg_names, sizeof (rs6000_reg_names));
#endif

      /* Set aix_struct_return last, after the ABI is determined.
	 If -maix-struct-return or -msvr4-struct-return was explicitly
	 used, don't override with the ABI default.  */
      if (!OPTION_SET_P (aix_struct_return))
	aix_struct_return = (DEFAULT_ABI != ABI_V4 || DRAFT_V4_STRUCT_RET);

#if 0
      /* IBM XL compiler defaults to unsigned bitfields.  */
      if (TARGET_XL_COMPAT)
	flag_signed_bitfields = 0;
#endif

      if (TARGET_LONG_DOUBLE_128 && !TARGET_IEEEQUAD)
	REAL_MODE_FORMAT (TFmode) = &ibm_extended_format;

      ASM_GENERATE_INTERNAL_LABEL (toc_label_name, "LCTOC", 1);

      /* We can only guarantee the availability of DI pseudo-ops when
	 assembling for 64-bit targets.  */
      if (!TARGET_64BIT)
	{
	  targetm.asm_out.aligned_op.di = NULL;
	  targetm.asm_out.unaligned_op.di = NULL;
	}


      /* Set branch target alignment, if not optimizing for size.  */
      if (!optimize_size)
	{
	  /* Cell wants to be aligned 8byte for dual issue.  Titan wants to be
	     aligned 8byte to avoid misprediction by the branch predictor.  */
	  if (rs6000_tune == PROCESSOR_TITAN
	      || rs6000_tune == PROCESSOR_CELL)
	    {
	      if (flag_align_functions && !str_align_functions)
		str_align_functions = "8";
	      if (flag_align_jumps && !str_align_jumps)
		str_align_jumps = "8";
	      if (flag_align_loops && !str_align_loops)
		str_align_loops = "8";
	    }
	  if (rs6000_align_branch_targets)
	    {
	      if (flag_align_functions && !str_align_functions)
		str_align_functions = "16";
	      if (flag_align_jumps && !str_align_jumps)
		str_align_jumps = "16";
	      if (flag_align_loops && !str_align_loops)
		{
		  can_override_loop_align = 1;
		  str_align_loops = "16";
		}
	    }
	}

      /* Arrange to save and restore machine status around nested functions.  */
      init_machine_status = rs6000_init_machine_status;

      /* We should always be splitting complex arguments, but we can't break
	 Linux and Darwin ABIs at the moment.  For now, only AIX is fixed.  */
      if (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_DARWIN)
	targetm.calls.split_complex_arg = NULL;

      /* The AIX and ELFv1 ABIs define standard function descriptors.  */
      if (DEFAULT_ABI == ABI_AIX)
	targetm.calls.custom_function_descriptors = 0;
    }

  /* Initialize rs6000_cost with the appropriate target costs.  */
  if (optimize_size)
    rs6000_cost = TARGET_POWERPC64 ? &size64_cost : &size32_cost;
  else
    switch (rs6000_tune)
      {
      case PROCESSOR_RS64A:
	rs6000_cost = &rs64a_cost;
	break;

      case PROCESSOR_MPCCORE:
	rs6000_cost = &mpccore_cost;
	break;

      case PROCESSOR_PPC403:
	rs6000_cost = &ppc403_cost;
	break;

      case PROCESSOR_PPC405:
	rs6000_cost = &ppc405_cost;
	break;

      case PROCESSOR_PPC440:
	rs6000_cost = &ppc440_cost;
	break;

      case PROCESSOR_PPC476:
	rs6000_cost = &ppc476_cost;
	break;

      case PROCESSOR_PPC601:
	rs6000_cost = &ppc601_cost;
	break;

      case PROCESSOR_PPC603:
	rs6000_cost = &ppc603_cost;
	break;

      case PROCESSOR_PPC604:
	rs6000_cost = &ppc604_cost;
	break;

      case PROCESSOR_PPC604e:
	rs6000_cost = &ppc604e_cost;
	break;

      case PROCESSOR_PPC620:
	rs6000_cost = &ppc620_cost;
	break;

      case PROCESSOR_PPC630:
	rs6000_cost = &ppc630_cost;
	break;

      case PROCESSOR_CELL:
	rs6000_cost = &ppccell_cost;
	break;

      case PROCESSOR_PPC750:
      case PROCESSOR_PPC7400:
	rs6000_cost = &ppc750_cost;
	break;

      case PROCESSOR_PPC7450:
	rs6000_cost = &ppc7450_cost;
	break;

      case PROCESSOR_PPC8540:
      case PROCESSOR_PPC8548:
	rs6000_cost = &ppc8540_cost;
	break;

      case PROCESSOR_PPCE300C2:
      case PROCESSOR_PPCE300C3:
	rs6000_cost = &ppce300c2c3_cost;
	break;

      case PROCESSOR_PPCE500MC:
	rs6000_cost = &ppce500mc_cost;
	break;

      case PROCESSOR_PPCE500MC64:
	rs6000_cost = &ppce500mc64_cost;
	break;

      case PROCESSOR_PPCE5500:
	rs6000_cost = &ppce5500_cost;
	break;

      case PROCESSOR_PPCE6500:
	rs6000_cost = &ppce6500_cost;
	break;

      case PROCESSOR_TITAN:
	rs6000_cost = &titan_cost;
	break;

      case PROCESSOR_POWER4:
      case PROCESSOR_POWER5:
	rs6000_cost = &power4_cost;
	break;

      case PROCESSOR_POWER6:
	rs6000_cost = &power6_cost;
	break;

      case PROCESSOR_POWER7:
	rs6000_cost = &power7_cost;
	break;

      case PROCESSOR_POWER8:
	rs6000_cost = &power8_cost;
	break;

      case PROCESSOR_POWER9:
	rs6000_cost = &power9_cost;
	break;

      case PROCESSOR_POWER10:
	rs6000_cost = &power10_cost;
	break;

      case PROCESSOR_PPCA2:
	rs6000_cost = &ppca2_cost;
	break;

      default:
	gcc_unreachable ();
      }

  if (global_init_p)
    {
      SET_OPTION_IF_UNSET (&global_options, &global_options_set,
			   param_simultaneous_prefetches,
			   rs6000_cost->simultaneous_prefetches);
      SET_OPTION_IF_UNSET (&global_options, &global_options_set,
			   param_l1_cache_size,
			   rs6000_cost->l1_cache_size);
      SET_OPTION_IF_UNSET (&global_options, &global_options_set,
			   param_l1_cache_line_size,
			   rs6000_cost->cache_line_size);
      SET_OPTION_IF_UNSET (&global_options, &global_options_set,
			   param_l2_cache_size,
			   rs6000_cost->l2_cache_size);

      /* Increase loop peeling limits based on performance analysis. */
      SET_OPTION_IF_UNSET (&global_options, &global_options_set,
			   param_max_peeled_insns, 400);
      SET_OPTION_IF_UNSET (&global_options, &global_options_set,
			   param_max_completely_peeled_insns, 400);

      /* The lxvl/stxvl instructions don't perform well before Power10.  */
      if (TARGET_POWER10)
	SET_OPTION_IF_UNSET (&global_options, &global_options_set,
			     param_vect_partial_vector_usage, 1);
      else
	SET_OPTION_IF_UNSET (&global_options, &global_options_set,
			     param_vect_partial_vector_usage, 0);

      /* Use the 'model' -fsched-pressure algorithm by default.  */
      SET_OPTION_IF_UNSET (&global_options, &global_options_set,
			   param_sched_pressure_algorithm,
			   SCHED_PRESSURE_MODEL);

      /* If using typedef char *va_list, signal that
	 __builtin_va_start (&ap, 0) can be optimized to
	 ap = __builtin_next_arg (0).  */
      if (DEFAULT_ABI != ABI_V4)
	targetm.expand_builtin_va_start = NULL;
    }

  rs6000_override_options_after_change ();

  /* If not explicitly specified via option, decide whether to generate indexed
     load/store instructions.  A value of -1 indicates that the
     initial value of this variable has not been overwritten. During
     compilation, TARGET_AVOID_XFORM is either 0 or 1. */
  if (TARGET_AVOID_XFORM == -1)
    /* Avoid indexed addressing when targeting Power6 in order to avoid the
     DERAT mispredict penalty.  However the LVE and STVE altivec instructions
     need indexed accesses and the type used is the scalar type of the element
     being loaded or stored.  */
    TARGET_AVOID_XFORM = (rs6000_tune == PROCESSOR_POWER6 && TARGET_CMPB
			  && !TARGET_ALTIVEC);

  /* Set the -mrecip options.  */
  if (rs6000_recip_name)
    {
      char *p = ASTRDUP (rs6000_recip_name);
      char *q;
      unsigned int mask, i;
      bool invert;

      while ((q = strtok (p, ",")) != NULL)
	{
	  p = NULL;
	  if (*q == '!')
	    {
	      invert = true;
	      q++;
	    }
	  else
	    invert = false;

	  if (!strcmp (q, "default"))
	    mask = ((TARGET_RECIP_PRECISION)
		    ? RECIP_HIGH_PRECISION : RECIP_LOW_PRECISION);
	  else
	    {
	      for (i = 0; i < ARRAY_SIZE (recip_options); i++)
		if (!strcmp (q, recip_options[i].string))
		  {
		    mask = recip_options[i].mask;
		    break;
		  }

	      if (i == ARRAY_SIZE (recip_options))
		{
		  error ("unknown option for %<%s=%s%>", "-mrecip", q);
		  invert = false;
		  mask = 0;
		  ret = false;
		}
	    }

	  if (invert)
	    rs6000_recip_control &= ~mask;
	  else
	    rs6000_recip_control |= mask;
	}
    }

  /* Initialize all of the registers.  */
  rs6000_init_hard_regno_mode_ok (global_init_p);

  /* Save the initial options in case the user does function specific options */
  if (global_init_p)
    target_option_default_node = target_option_current_node
      = build_target_option_node (&global_options, &global_options_set);

  /* If not explicitly specified via option, decide whether to generate the
     extra blr's required to preserve the link stack on some cpus (eg, 476).  */
  if (TARGET_LINK_STACK == -1)
    SET_TARGET_LINK_STACK (rs6000_tune == PROCESSOR_PPC476 && flag_pic);

  /* Deprecate use of -mno-speculate-indirect-jumps.  */
  if (!rs6000_speculate_indirect_jumps)
    warning (0, "%qs is deprecated and not recommended in any circumstances",
	     "-mno-speculate-indirect-jumps");

  return ret;
}

/* Implement TARGET_OPTION_OVERRIDE.  On the RS/6000 this is used to
   define the target cpu type.  */

static void
rs6000_option_override (void)
{
  (void) rs6000_option_override_internal (true);
}


/* Implement LOOP_ALIGN. */
align_flags
rs6000_loop_align (rtx label)
{
  basic_block bb;
  int ninsns;

  /* Don't override loop alignment if -falign-loops was specified. */
  if (!can_override_loop_align)
    return align_loops;

  bb = BLOCK_FOR_INSN (label);
  ninsns = num_loop_insns(bb->loop_father);

  /* Align small loops to 32 bytes to fit in an icache sector, otherwise return default. */
  if (ninsns > 4 && ninsns <= 8
      && (rs6000_tune == PROCESSOR_POWER4
	  || rs6000_tune == PROCESSOR_POWER5
	  || rs6000_tune == PROCESSOR_POWER6
	  || rs6000_tune == PROCESSOR_POWER7
	  || rs6000_tune == PROCESSOR_POWER8))
    return align_flags (5);
  else
    return align_loops;
}

/* Return true iff, data reference of TYPE can reach vector alignment (16)
   after applying N number of iterations.  This routine does not determine
   how may iterations are required to reach desired alignment.  */

static bool
rs6000_vector_alignment_reachable (const_tree type ATTRIBUTE_UNUSED, bool is_packed)
{
  if (is_packed)
    return false;

  if (TARGET_32BIT)
    {
      if (rs6000_alignment_flags == MASK_ALIGN_NATURAL)
        return true;

      if (rs6000_alignment_flags ==  MASK_ALIGN_POWER)
        return true;

      return false;
    }
  else
    {
      if (TARGET_MACHO)
        return false;

      /* Assuming that all other types are naturally aligned. CHECKME!  */
      return true;
    }
}

/* Return true if the vector misalignment factor is supported by the
   target.  */ 
static bool
rs6000_builtin_support_vector_misalignment (machine_mode mode,
					    const_tree type,
					    int misalignment,
					    bool is_packed)
{
  if (TARGET_VSX)
    {
      if (TARGET_EFFICIENT_UNALIGNED_VSX)
	return true;

      /* Return if movmisalign pattern is not supported for this mode.  */
      if (optab_handler (movmisalign_optab, mode) == CODE_FOR_nothing)
        return false;

      if (misalignment == -1)
	{
	  /* Misalignment factor is unknown at compile time but we know
	     it's word aligned.  */
	  if (rs6000_vector_alignment_reachable (type, is_packed))
            {
              int element_size = TREE_INT_CST_LOW (TYPE_SIZE (type));

              if (element_size == 64 || element_size == 32)
               return true;
            }

	  return false;
	}

      /* VSX supports word-aligned vector.  */
      if (misalignment % 4 == 0)
	return true;
    }
  return false;
}

/* Implement targetm.vectorize.builtin_vectorization_cost.  */
static int
rs6000_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
                                   tree vectype, int misalign)
{
  unsigned elements;
  tree elem_type;

  switch (type_of_cost)
    {
      case scalar_stmt:
      case scalar_store:
      case vector_stmt:
      case vector_store:
      case vec_to_scalar:
      case scalar_to_vec:
      case cond_branch_not_taken:
        return 1;
      case scalar_load:
      case vector_load:
	/* Like rs6000_insn_cost, make load insns cost a bit more.  */
	  return 2;

      case vec_perm:
	/* Power7 has only one permute unit, make it a bit expensive.  */
	if (TARGET_VSX && rs6000_tune == PROCESSOR_POWER7)
	  return 3;
	else
	  return 1;

      case vec_promote_demote:
	/* Power7 has only one permute/pack unit, make it a bit expensive.  */
	if (TARGET_VSX && rs6000_tune == PROCESSOR_POWER7)
	  return 4;
	else
	  return 1;

      case cond_branch_taken:
        return 3;

      case unaligned_load:
      case vector_gather_load:
	/* Like rs6000_insn_cost, make load insns cost a bit more.  */
	if (TARGET_EFFICIENT_UNALIGNED_VSX)
	  return 2;

	if (TARGET_VSX && TARGET_ALLOW_MOVMISALIGN)
	  {
	    elements = TYPE_VECTOR_SUBPARTS (vectype);
	    /* See PR102767, consider V1TI to keep consistency.  */
	    if (elements == 2 || elements == 1)
	      /* Double word aligned.  */
	      return 4;

	    if (elements == 4)
	      {
		switch (misalign)
		  {
		  case 8:
		    /* Double word aligned.  */
		    return 4;

		  case -1:
		    /* Unknown misalignment.  */
		  case 4:
		  case 12:
		    /* Word aligned.  */
		    return 33;

		  default:
		    gcc_unreachable ();
		  }
	      }
	  }

	if (TARGET_ALTIVEC)
	  /* Misaligned loads are not supported.  */
	  gcc_unreachable ();

	/* Like rs6000_insn_cost, make load insns cost a bit more.  */
	return 4;

      case unaligned_store:
      case vector_scatter_store:
	if (TARGET_EFFICIENT_UNALIGNED_VSX)
	  return 1;

	if (TARGET_VSX && TARGET_ALLOW_MOVMISALIGN)
	  {
	    elements = TYPE_VECTOR_SUBPARTS (vectype);
	    /* See PR102767, consider V1TI to keep consistency.  */
	    if (elements == 2 || elements == 1)
	      /* Double word aligned.  */
	      return 2;

	    if (elements == 4)
	      {
		switch (misalign)
		  {
		  case 8:
		    /* Double word aligned.  */
		    return 2;

		  case -1:
		    /* Unknown misalignment.  */
		  case 4:
		  case 12:
		    /* Word aligned.  */
		    return 23;

		  default:
		    gcc_unreachable ();
		  }
	      }
	  }

	if (TARGET_ALTIVEC)
	  /* Misaligned stores are not supported.  */
	  gcc_unreachable ();

	return 2;

      case vec_construct:
	/* This is a rough approximation assuming non-constant elements
	   constructed into a vector via element insertion.  FIXME:
	   vec_construct is not granular enough for uniformly good
	   decisions.  If the initialization is a splat, this is
	   cheaper than we estimate.  Improve this someday.  */
	elem_type = TREE_TYPE (vectype);
	/* 32-bit vectors loaded into registers are stored as double
	   precision, so we need 2 permutes, 2 converts, and 1 merge
	   to construct a vector of short floats from them.  */
	if (SCALAR_FLOAT_TYPE_P (elem_type)
	    && TYPE_PRECISION (elem_type) == 32)
	  return 5;
	/* On POWER9, integer vector types are built up in GPRs and then
	   use a direct move (2 cycles).  For POWER8 this is even worse,
	   as we need two direct moves and a merge, and the direct moves
	   are five cycles.  */
	else if (INTEGRAL_TYPE_P (elem_type))
	  {
	    if (TARGET_P9_VECTOR)
	      return TYPE_VECTOR_SUBPARTS (vectype) - 1 + 2;
	    else
	      return TYPE_VECTOR_SUBPARTS (vectype) - 1 + 5;
	  }
	else
	  /* V2DFmode doesn't need a direct move.  */
	  return 2;

      default:
        gcc_unreachable ();
    }
}

/* Implement targetm.vectorize.preferred_simd_mode.  */

static machine_mode
rs6000_preferred_simd_mode (scalar_mode mode)
{
  opt_machine_mode vmode = mode_for_vector (mode, 16 / GET_MODE_SIZE (mode));

  if (vmode.exists () && !VECTOR_MEM_NONE_P (vmode.require ()))
    return vmode.require ();

  return word_mode;
}

class rs6000_cost_data : public vector_costs
{
public:
  using vector_costs::vector_costs;

  unsigned int add_stmt_cost (int count, vect_cost_for_stmt kind,
			      stmt_vec_info stmt_info, slp_tree, tree vectype,
			      int misalign,
			      vect_cost_model_location where) override;
  void finish_cost (const vector_costs *) override;

protected:
  void update_target_cost_per_stmt (vect_cost_for_stmt, stmt_vec_info,
				    vect_cost_model_location, unsigned int);
  void density_test (loop_vec_info);
  void adjust_vect_cost_per_loop (loop_vec_info);
  unsigned int determine_suggested_unroll_factor (loop_vec_info);

  /* Total number of vectorized stmts (loop only).  */
  unsigned m_nstmts = 0;
  /* Total number of loads (loop only).  */
  unsigned m_nloads = 0;
  /* Total number of stores (loop only).  */
  unsigned m_nstores = 0;
  /* Reduction factor for suggesting unroll factor (loop only).  */
  unsigned m_reduc_factor = 0;
  /* Possible extra penalized cost on vector construction (loop only).  */
  unsigned m_extra_ctor_cost = 0;
  /* For each vectorized loop, this var holds TRUE iff a non-memory vector
     instruction is needed by the vectorization.  */
  bool m_vect_nonmem = false;
  /* If this loop gets vectorized with emulated gather load.  */
  bool m_gather_load = false;
};

/* Test for likely overcommitment of vector hardware resources.  If a
   loop iteration is relatively large, and too large a percentage of
   instructions in the loop are vectorized, the cost model may not
   adequately reflect delays from unavailable vector resources.
   Penalize the loop body cost for this case.  */

void
rs6000_cost_data::density_test (loop_vec_info loop_vinfo)
{
  /* This density test only cares about the cost of vector version of the
     loop, so immediately return if we are passed costing for the scalar
     version (namely computing single scalar iteration cost).  */
  if (m_costing_for_scalar)
    return;

  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block *bbs = get_loop_body (loop);
  int nbbs = loop->num_nodes;
  int vec_cost = m_costs[vect_body], not_vec_cost = 0;

  for (int i = 0; i < nbbs; i++)
    {
      basic_block bb = bbs[i];
      gimple_stmt_iterator gsi;

      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple *stmt = gsi_stmt (gsi);
	  if (is_gimple_debug (stmt))
	    continue;

	  stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (stmt);

	  if (!STMT_VINFO_RELEVANT_P (stmt_info)
	      && !STMT_VINFO_IN_PATTERN_P (stmt_info))
	    not_vec_cost++;
	}
    }

  free (bbs);
  int density_pct = (vec_cost * 100) / (vec_cost + not_vec_cost);

  if (density_pct > rs6000_density_pct_threshold
      && vec_cost + not_vec_cost > rs6000_density_size_threshold)
    {
      m_costs[vect_body] = vec_cost * (100 + rs6000_density_penalty) / 100;
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location,
			 "density %d%%, cost %d exceeds threshold, penalizing "
			 "loop body cost by %u%%\n", density_pct,
			 vec_cost + not_vec_cost, rs6000_density_penalty);
    }

  /* Check whether we need to penalize the body cost to account
     for excess strided or elementwise loads.  */
  if (m_extra_ctor_cost > 0)
    {
      gcc_assert (m_nloads <= m_nstmts);
      unsigned int load_pct = (m_nloads * 100) / m_nstmts;

      /* It's likely to be bounded by latency and execution resources
	 from many scalar loads which are strided or elementwise loads
	 into a vector if both conditions below are found:
	   1. there are many loads, it's easy to result in a long wait
	      for load units;
	   2. load has a big proportion of all vectorized statements,
	      it's not easy to schedule other statements to spread among
	      the loads.
	 One typical case is the innermost loop of the hotspot of SPEC2017
	 503.bwaves_r without loop interchange.  */
      if (m_nloads > (unsigned int) rs6000_density_load_num_threshold
	  && load_pct > (unsigned int) rs6000_density_load_pct_threshold)
	{
	  m_costs[vect_body] += m_extra_ctor_cost;
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "Found %u loads and "
			     "load pct. %u%% exceed "
			     "the threshold, "
			     "penalizing loop body "
			     "cost by extra cost %u "
			     "for ctor.\n",
			     m_nloads, load_pct,
			     m_extra_ctor_cost);
	}
    }
}

/* Implement targetm.vectorize.create_costs.  */

static vector_costs *
rs6000_vectorize_create_costs (vec_info *vinfo, bool costing_for_scalar)
{
  return new rs6000_cost_data (vinfo, costing_for_scalar);
}

/* Adjust vectorization cost after calling rs6000_builtin_vectorization_cost.
   For some statement, we would like to further fine-grain tweak the cost on
   top of rs6000_builtin_vectorization_cost handling which doesn't have any
   information on statement operation codes etc.  One typical case here is
   COND_EXPR, it takes the same cost to simple FXU instruction when evaluating
   for scalar cost, but it should be priced more whatever transformed to either
   compare + branch or compare + isel instructions.  */

static unsigned
rs6000_adjust_vect_cost_per_stmt (enum vect_cost_for_stmt kind,
				  struct _stmt_vec_info *stmt_info)
{
  if (kind == scalar_stmt && stmt_info && stmt_info->stmt
      && gimple_code (stmt_info->stmt) == GIMPLE_ASSIGN)
    {
      tree_code subcode = gimple_assign_rhs_code (stmt_info->stmt);
      if (subcode == COND_EXPR)
	return 2;
    }

  return 0;
}

/* Helper function for add_stmt_cost.  Check each statement cost
   entry, gather information and update the target_cost fields
   accordingly.  */
void
rs6000_cost_data::update_target_cost_per_stmt (vect_cost_for_stmt kind,
					       stmt_vec_info stmt_info,
					       vect_cost_model_location where,
					       unsigned int orig_count)
{

  /* Check whether we're doing something other than just a copy loop.
     Not all such loops may be profitably vectorized; see
     rs6000_finish_cost.  */
  if (kind == vec_to_scalar
      || kind == vec_perm
      || kind == vec_promote_demote
      || kind == vec_construct
      || kind == scalar_to_vec
      || (where == vect_body && kind == vector_stmt))
    m_vect_nonmem = true;

  /* Gather some information when we are costing the vectorized instruction
     for the statements located in a loop body.  */
  if (!m_costing_for_scalar
      && is_a<loop_vec_info> (m_vinfo)
      && where == vect_body)
    {
      m_nstmts += orig_count;

      if (kind == scalar_load
	  || kind == vector_load
	  || kind == unaligned_load
	  || kind == vector_gather_load)
	{
	  m_nloads += orig_count;
	  if (stmt_info && STMT_VINFO_GATHER_SCATTER_P (stmt_info))
	    m_gather_load = true;
	}
      else if (kind == scalar_store
	       || kind == vector_store
	       || kind == unaligned_store
	       || kind == vector_scatter_store)
	m_nstores += orig_count;
      else if ((kind == scalar_stmt
		|| kind == vector_stmt
		|| kind == vec_to_scalar)
	       && stmt_info
	       && vect_is_reduction (stmt_info))
	{
	  /* Loop body contains normal int or fp operations and epilogue
	     contains vector reduction.  For simplicity, we assume int
	     operation takes one cycle and fp operation takes one more.  */
	  tree lhs = gimple_get_lhs (stmt_info->stmt);
	  bool is_float = FLOAT_TYPE_P (TREE_TYPE (lhs));
	  unsigned int basic_cost = is_float ? 2 : 1;
	  m_reduc_factor = MAX (basic_cost * orig_count, m_reduc_factor);
	}

      /* Power processors do not currently have instructions for strided
	 and elementwise loads, and instead we must generate multiple
	 scalar loads.  This leads to undercounting of the cost.  We
	 account for this by scaling the construction cost by the number
	 of elements involved, and saving this as extra cost that we may
	 or may not need to apply.  When finalizing the cost of the loop,
	 the extra penalty is applied when the load density heuristics
	 are satisfied.  */
      if (kind == vec_construct && stmt_info
	  && STMT_VINFO_TYPE (stmt_info) == load_vec_info_type
	  && (STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info) == VMAT_ELEMENTWISE
	      || STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info) == VMAT_STRIDED_SLP))
	{
	  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
	  unsigned int nunits = vect_nunits_for_cost (vectype);
	  /* As PR103702 shows, it's possible that vectorizer wants to do
	     costings for only one unit here, it's no need to do any
	     penalization for it, so simply early return here.  */
	  if (nunits == 1)
	    return;
	  /* i386 port adopts nunits * stmt_cost as the penalized cost
	     for this kind of penalization, we used to follow it but
	     found it could result in an unreliable body cost especially
	     for V16QI/V8HI modes.  To make it better, we choose this
	     new heuristic: for each scalar load, we use 2 as penalized
	     cost for the case with 2 nunits and use 1 for the other
	     cases.  It's without much supporting theory, mainly
	     concluded from the broad performance evaluations on Power8,
	     Power9 and Power10.  One possibly related point is that:
	     vector construction for more units would use more insns,
	     it has more chances to schedule them better (even run in
	     parallelly when enough available units at that time), so
	     it seems reasonable not to penalize that much for them.  */
	  unsigned int adjusted_cost = (nunits == 2) ? 2 : 1;
	  unsigned int extra_cost = nunits * adjusted_cost;
	  m_extra_ctor_cost += extra_cost;
	}
    }
}

unsigned
rs6000_cost_data::add_stmt_cost (int count, vect_cost_for_stmt kind,
				 stmt_vec_info stmt_info, slp_tree,
				 tree vectype, int misalign,
				 vect_cost_model_location where)
{
  unsigned retval = 0;

  if (flag_vect_cost_model)
    {
      int stmt_cost = rs6000_builtin_vectorization_cost (kind, vectype,
							 misalign);
      stmt_cost += rs6000_adjust_vect_cost_per_stmt (kind, stmt_info);
      /* Statements in an inner loop relative to the loop being
	 vectorized are weighted more heavily.  The value here is
	 arbitrary and could potentially be improved with analysis.  */
      unsigned int orig_count = count;
      retval = adjust_cost_for_freq (stmt_info, where, count * stmt_cost);
      m_costs[where] += retval;

      update_target_cost_per_stmt (kind, stmt_info, where, orig_count);
    }

  return retval;
}

/* For some target specific vectorization cost which can't be handled per stmt,
   we check the requisite conditions and adjust the vectorization cost
   accordingly if satisfied.  One typical example is to model shift cost for
   vector with length by counting number of required lengths under condition
   LOOP_VINFO_FULLY_WITH_LENGTH_P.  */

void
rs6000_cost_data::adjust_vect_cost_per_loop (loop_vec_info loop_vinfo)
{
  if (LOOP_VINFO_FULLY_WITH_LENGTH_P (loop_vinfo))
    {
      rgroup_controls *rgc;
      unsigned int num_vectors_m1;
      unsigned int shift_cnt = 0;
      FOR_EACH_VEC_ELT (LOOP_VINFO_LENS (loop_vinfo), num_vectors_m1, rgc)
	if (rgc->type)
	  /* Each length needs one shift to fill into bits 0-7.  */
	  shift_cnt += num_vectors_m1 + 1;

      add_stmt_cost (shift_cnt, scalar_stmt, NULL, NULL,
		     NULL_TREE, 0, vect_body);
    }
}

/* Determine suggested unroll factor by considering some below factors:

    - unroll option/pragma which can disable unrolling for this loop;
    - simple hardware resource model for non memory vector insns;
    - aggressive heuristics when iteration count is unknown:
      - reduction case to break cross iteration dependency;
      - emulated gather load;
    - estimated iteration count when iteration count is unknown;
*/


unsigned int
rs6000_cost_data::determine_suggested_unroll_factor (loop_vec_info loop_vinfo)
{
  class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);

  /* Don't unroll if it's specified explicitly not to be unrolled.  */
  if (loop->unroll == 1
      || (OPTION_SET_P (flag_unroll_loops) && !flag_unroll_loops)
      || (OPTION_SET_P (flag_unroll_all_loops) && !flag_unroll_all_loops))
    return 1;

  unsigned int nstmts_nonldst = m_nstmts - m_nloads - m_nstores;
  /* Don't unroll if no vector instructions excepting for memory access.  */
  if (nstmts_nonldst == 0)
    return 1;

  /* Consider breaking cross iteration dependency for reduction.  */
  unsigned int reduc_factor = m_reduc_factor > 1 ? m_reduc_factor : 1;

  /* Use this simple hardware resource model that how many non ld/st
     vector instructions can be issued per cycle.  */
  unsigned int issue_width = rs6000_vect_unroll_issue;
  unsigned int uf = CEIL (reduc_factor * issue_width, nstmts_nonldst);
  uf = MIN ((unsigned int) rs6000_vect_unroll_limit, uf);
  /* Make sure it is power of 2.  */
  uf = 1 << ceil_log2 (uf);

  /* If the iteration count is known, the costing would be exact enough,
     don't worry it could be worse.  */
  if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
    return uf;

  /* Inspired by SPEC2017 parest_r, we want to aggressively unroll the
     loop if either condition is satisfied:
       - reduction factor exceeds the threshold;
       - emulated gather load adopted.  */
  if (reduc_factor > (unsigned int) rs6000_vect_unroll_reduc_threshold
      || m_gather_load)
    return uf;

  /* Check if we can conclude it's good to unroll from the estimated
     iteration count.  */
  HOST_WIDE_INT est_niter = get_estimated_loop_iterations_int (loop);
  unsigned int vf = vect_vf_for_cost (loop_vinfo);
  unsigned int unrolled_vf = vf * uf;
  if (est_niter == -1 || est_niter < unrolled_vf)
    /* When the estimated iteration of this loop is unknown, it's possible
       that we are able to vectorize this loop with the original VF but fail
       to vectorize it with the unrolled VF any more if the actual iteration
       count is in between.  */
    return 1;
  else
    {
      unsigned int epil_niter_unr = est_niter % unrolled_vf;
      unsigned int epil_niter = est_niter % vf;
      /* Even if we have partial vector support, it can be still inefficent
	 to calculate the length when the iteration count is unknown, so
	 only expect it's good to unroll when the epilogue iteration count
	 is not bigger than VF (only one time length calculation).  */
      if (LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
	  && epil_niter_unr <= vf)
	return uf;
      /* Without partial vector support, conservatively unroll this when
	 the epilogue iteration count is less than the original one
	 (epilogue execution time wouldn't be longer than before).  */
      else if (!LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
	       && epil_niter_unr <= epil_niter)
	return uf;
    }

  return 1;
}

void
rs6000_cost_data::finish_cost (const vector_costs *scalar_costs)
{
  if (loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (m_vinfo))
    {
      adjust_vect_cost_per_loop (loop_vinfo);
      density_test (loop_vinfo);

      /* Don't vectorize minimum-vectorization-factor, simple copy loops
	 that require versioning for any reason.  The vectorization is at
	 best a wash inside the loop, and the versioning checks make
	 profitability highly unlikely and potentially quite harmful.  */
      if (!m_vect_nonmem
	  && LOOP_VINFO_VECT_FACTOR (loop_vinfo) == 2
	  && LOOP_REQUIRES_VERSIONING (loop_vinfo))
	m_costs[vect_body] += 10000;

      m_suggested_unroll_factor
	= determine_suggested_unroll_factor (loop_vinfo);
    }

  vector_costs::finish_cost (scalar_costs);
}

/* Implement targetm.loop_unroll_adjust.  */

static unsigned
rs6000_loop_unroll_adjust (unsigned nunroll, struct loop *loop)
{
   if (unroll_only_small_loops)
    {
      /* TODO: These are hardcoded values right now.  We probably should use
	 a PARAM here.  */
      if (loop->ninsns <= 6)
	return MIN (4, nunroll);
      if (loop->ninsns <= 10)
	return MIN (2, nunroll);

      return 0;
    }

  return nunroll;
}

/* Returns a function decl for a vectorized version of the builtin function
   with builtin function code FN and the result vector type TYPE, or NULL_TREE
   if it is not available.

   Implement targetm.vectorize.builtin_vectorized_function.  */

static tree
rs6000_builtin_vectorized_function (unsigned int fn, tree type_out,
				    tree type_in)
{
  machine_mode in_mode, out_mode;
  int in_n, out_n;

  if (TARGET_DEBUG_BUILTIN)
    fprintf (stderr, "rs6000_builtin_vectorized_function (%s, %s, %s)\n",
	     combined_fn_name (combined_fn (fn)),
	     GET_MODE_NAME (TYPE_MODE (type_out)),
	     GET_MODE_NAME (TYPE_MODE (type_in)));

  /* TODO: Should this be gcc_assert?  */
  if (TREE_CODE (type_out) != VECTOR_TYPE
      || TREE_CODE (type_in) != VECTOR_TYPE)
    return NULL_TREE;

  out_mode = TYPE_MODE (TREE_TYPE (type_out));
  out_n = TYPE_VECTOR_SUBPARTS (type_out);
  in_mode = TYPE_MODE (TREE_TYPE (type_in));
  in_n = TYPE_VECTOR_SUBPARTS (type_in);

  switch (fn)
    {
    CASE_CFN_COPYSIGN:
      if (VECTOR_UNIT_VSX_P (V2DFmode)
	  && out_mode == DFmode && out_n == 2
	  && in_mode == DFmode && in_n == 2)
	return rs6000_builtin_decls[RS6000_BIF_CPSGNDP];
      if (VECTOR_UNIT_VSX_P (V4SFmode)
	  && out_mode == SFmode && out_n == 4
	  && in_mode == SFmode && in_n == 4)
	return rs6000_builtin_decls[RS6000_BIF_CPSGNSP];
      if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
	  && out_mode == SFmode && out_n == 4
	  && in_mode == SFmode && in_n == 4)
	return rs6000_builtin_decls[RS6000_BIF_COPYSIGN_V4SF];
      break;
    CASE_CFN_CEIL:
      if (VECTOR_UNIT_VSX_P (V2DFmode)
	  && out_mode == DFmode && out_n == 2
	  && in_mode == DFmode && in_n == 2)
	return rs6000_builtin_decls[RS6000_BIF_XVRDPIP];
      if (VECTOR_UNIT_VSX_P (V4SFmode)
	  && out_mode == SFmode && out_n == 4
	  && in_mode == SFmode && in_n == 4)
	return rs6000_builtin_decls[RS6000_BIF_XVRSPIP];
      if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
	  && out_mode == SFmode && out_n == 4
	  && in_mode == SFmode && in_n == 4)
	return rs6000_builtin_decls[RS6000_BIF_VRFIP];
      break;
    CASE_CFN_FLOOR:
      if (VECTOR_UNIT_VSX_P (V2DFmode)
	  && out_mode == DFmode && out_n == 2
	  && in_mode == DFmode && in_n == 2)
	return rs6000_builtin_decls[RS6000_BIF_XVRDPIM];
      if (VECTOR_UNIT_VSX_P (V4SFmode)
	  && out_mode == SFmode && out_n == 4
	  && in_mode == SFmode && in_n == 4)
	return rs6000_builtin_decls[RS6000_BIF_XVRSPIM];
      if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
	  && out_mode == SFmode && out_n == 4
	  && in_mode == SFmode && in_n == 4)
	return rs6000_builtin_decls[RS6000_BIF_VRFIM];
      break;
    CASE_CFN_FMA:
      if (VECTOR_UNIT_VSX_P (V2DFmode)
	  && out_mode == DFmode && out_n == 2
	  && in_mode == DFmode && in_n == 2)
	return rs6000_builtin_decls[RS6000_BIF_XVMADDDP];
      if (VECTOR_UNIT_VSX_P (V4SFmode)
	  && out_mode == SFmode && out_n == 4
	  && in_mode == SFmode && in_n == 4)
	return rs6000_builtin_decls[RS6000_BIF_XVMADDSP];
      if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
	  && out_mode == SFmode && out_n == 4
	  && in_mode == SFmode && in_n == 4)
	return rs6000_builtin_decls[RS6000_BIF_VMADDFP];
      break;
    CASE_CFN_TRUNC:
      if (VECTOR_UNIT_VSX_P (V2DFmode)
	  && out_mode == DFmode && out_n == 2
	  && in_mode == DFmode && in_n == 2)
	return rs6000_builtin_decls[RS6000_BIF_XVRDPIZ];
      if (VECTOR_UNIT_VSX_P (V4SFmode)
	  && out_mode == SFmode && out_n == 4
	  && in_mode == SFmode && in_n == 4)
	return rs6000_builtin_decls[RS6000_BIF_XVRSPIZ];
      if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
	  && out_mode == SFmode && out_n == 4
	  && in_mode == SFmode && in_n == 4)
	return rs6000_builtin_decls[RS6000_BIF_VRFIZ];
      break;
    CASE_CFN_NEARBYINT:
      if (VECTOR_UNIT_VSX_P (V2DFmode)
	  && flag_unsafe_math_optimizations
	  && out_mode == DFmode && out_n == 2
	  && in_mode == DFmode && in_n == 2)
	return rs6000_builtin_decls[RS6000_BIF_XVRDPI];
      if (VECTOR_UNIT_VSX_P (V4SFmode)
	  && flag_unsafe_math_optimizations
	  && out_mode == SFmode && out_n == 4
	  && in_mode == SFmode && in_n == 4)
	return rs6000_builtin_decls[RS6000_BIF_XVRSPI];
      break;
    CASE_CFN_RINT:
      if (VECTOR_UNIT_VSX_P (V2DFmode)
	  && !flag_trapping_math
	  && out_mode == DFmode && out_n == 2
	  && in_mode == DFmode && in_n == 2)
	return rs6000_builtin_decls[RS6000_BIF_XVRDPIC];
      if (VECTOR_UNIT_VSX_P (V4SFmode)
	  && !flag_trapping_math
	  && out_mode == SFmode && out_n == 4
	  && in_mode == SFmode && in_n == 4)
	return rs6000_builtin_decls[RS6000_BIF_XVRSPIC];
      break;
    default:
      break;
    }

  /* Generate calls to libmass if appropriate.  */
  if (rs6000_veclib_handler)
    return rs6000_veclib_handler (combined_fn (fn), type_out, type_in);

  return NULL_TREE;
}

/* Handler for the Mathematical Acceleration Subsystem (mass) interface to a
   library with vectorized intrinsics.  */

static tree
rs6000_builtin_vectorized_libmass (combined_fn fn, tree type_out,
				   tree type_in)
{
  char name[32];
  const char *suffix = NULL;
  tree fntype, new_fndecl, bdecl = NULL_TREE;
  int n_args = 1;
  const char *bname;
  machine_mode el_mode, in_mode;
  int n, in_n;

  /* Libmass is suitable for unsafe math only as it does not correctly support
     parts of IEEE with the required precision such as denormals.  Only support
     it if we have VSX to use the simd d2 or f4 functions.
     XXX: Add variable length support.  */
  if (!flag_unsafe_math_optimizations || !TARGET_VSX)
    return NULL_TREE;

  el_mode = TYPE_MODE (TREE_TYPE (type_out));
  n = TYPE_VECTOR_SUBPARTS (type_out);
  in_mode = TYPE_MODE (TREE_TYPE (type_in));
  in_n = TYPE_VECTOR_SUBPARTS (type_in);
  if (el_mode != in_mode
      || n != in_n)
    return NULL_TREE;

  switch (fn)
    {
    CASE_CFN_ATAN2:
    CASE_CFN_HYPOT:
    CASE_CFN_POW:
      n_args = 2;
      gcc_fallthrough ();

    CASE_CFN_ACOS:
    CASE_CFN_ACOSH:
    CASE_CFN_ASIN:
    CASE_CFN_ASINH:
    CASE_CFN_ATAN:
    CASE_CFN_ATANH:
    CASE_CFN_CBRT:
    CASE_CFN_COS:
    CASE_CFN_COSH:
    CASE_CFN_ERF:
    CASE_CFN_ERFC:
    CASE_CFN_EXP2:
    CASE_CFN_EXP:
    CASE_CFN_EXPM1:
    CASE_CFN_LGAMMA:
    CASE_CFN_LOG10:
    CASE_CFN_LOG1P:
    CASE_CFN_LOG2:
    CASE_CFN_LOG:
    CASE_CFN_SIN:
    CASE_CFN_SINH:
    CASE_CFN_SQRT:
    CASE_CFN_TAN:
    CASE_CFN_TANH:
      if (el_mode == DFmode && n == 2)
	{
	  bdecl = mathfn_built_in (double_type_node, fn);
	  suffix = "d2";				/* pow -> powd2 */
	}
      else if (el_mode == SFmode && n == 4)
	{
	  bdecl = mathfn_built_in (float_type_node, fn);
	  suffix = "4";					/* powf -> powf4 */
	}
      else
	return NULL_TREE;
      if (!bdecl)
	return NULL_TREE;
      break;

    default:
      return NULL_TREE;
    }

  gcc_assert (suffix != NULL);
  bname = IDENTIFIER_POINTER (DECL_NAME (bdecl));
  if (!bname)
    return NULL_TREE;

  strcpy (name, bname + strlen ("__builtin_"));
  strcat (name, suffix);

  if (n_args == 1)
    fntype = build_function_type_list (type_out, type_in, NULL);
  else if (n_args == 2)
    fntype = build_function_type_list (type_out, type_in, type_in, NULL);
  else
    gcc_unreachable ();

  /* Build a function declaration for the vectorized function.  */
  new_fndecl = build_decl (BUILTINS_LOCATION,
			   FUNCTION_DECL, get_identifier (name), fntype);
  TREE_PUBLIC (new_fndecl) = 1;
  DECL_EXTERNAL (new_fndecl) = 1;
  DECL_IS_NOVOPS (new_fndecl) = 1;
  TREE_READONLY (new_fndecl) = 1;

  return new_fndecl;
}


/* Default CPU string for rs6000*_file_start functions.  */
static const char *rs6000_default_cpu;

#ifdef USING_ELFOS_H
const char *rs6000_machine;

const char *
rs6000_machine_from_flags (void)
{
  /* e300 and e500 */
  if (rs6000_cpu == PROCESSOR_PPCE300C2 || rs6000_cpu == PROCESSOR_PPCE300C3)
    return "e300";
  if (rs6000_cpu == PROCESSOR_PPC8540 || rs6000_cpu == PROCESSOR_PPC8548)
    return "e500";
  if (rs6000_cpu == PROCESSOR_PPCE500MC)
    return "e500mc";
  if (rs6000_cpu == PROCESSOR_PPCE500MC64)
    return "e500mc64";
  if (rs6000_cpu == PROCESSOR_PPCE5500)
    return "e5500";
  if (rs6000_cpu == PROCESSOR_PPCE6500)
    return "e6500";

  /* 400 series */
  if (rs6000_cpu == PROCESSOR_PPC403)
    return "\"403\"";
  if (rs6000_cpu == PROCESSOR_PPC405)
    return "\"405\"";
  if (rs6000_cpu == PROCESSOR_PPC440)
    return "\"440\"";
  if (rs6000_cpu == PROCESSOR_PPC476)
    return "\"476\"";

  /* A2 */
  if (rs6000_cpu == PROCESSOR_PPCA2)
    return "a2";

  /* Cell BE */
  if (rs6000_cpu == PROCESSOR_CELL)
    return "cell";

  /* Titan */
  if (rs6000_cpu == PROCESSOR_TITAN)
    return "titan";

  /* 500 series and 800 series */
  if (rs6000_cpu == PROCESSOR_MPCCORE)
    return "\"821\"";

#if 0
  /* This (and ppc64 below) are disabled here (for now at least) because
     PROCESSOR_POWERPC, PROCESSOR_POWERPC64, and PROCESSOR_COMMON
     are #define'd as some of these.  Untangling that is a job for later.  */

  /* 600 series and 700 series, "classic" */
  if (rs6000_cpu == PROCESSOR_PPC601 || rs6000_cpu == PROCESSOR_PPC603
      || rs6000_cpu == PROCESSOR_PPC604 || rs6000_cpu == PROCESSOR_PPC604e
      || rs6000_cpu == PROCESSOR_PPC750)
    return "ppc";
#endif

  /* Classic with AltiVec, "G4" */
  if (rs6000_cpu == PROCESSOR_PPC7400 || rs6000_cpu == PROCESSOR_PPC7450)
    return "\"7450\"";

#if 0
  /* The older 64-bit CPUs */
  if (rs6000_cpu == PROCESSOR_PPC620 || rs6000_cpu == PROCESSOR_PPC630
      || rs6000_cpu == PROCESSOR_RS64A)
    return "ppc64";
#endif

  HOST_WIDE_INT flags = rs6000_isa_flags;

  /* Disable the flags that should never influence the .machine selection.  */
  flags &= ~(OPTION_MASK_PPC_GFXOPT | OPTION_MASK_PPC_GPOPT | OPTION_MASK_ISEL);

  if ((flags & (ISA_3_1_MASKS_SERVER & ~ISA_3_0_MASKS_SERVER)) != 0)
    return "power10";
  if ((flags & (ISA_3_0_MASKS_SERVER & ~ISA_2_7_MASKS_SERVER)) != 0)
    return "power9";
  if ((flags & (ISA_2_7_MASKS_SERVER & ~ISA_2_6_MASKS_SERVER)) != 0)
    return "power8";
  if ((flags & (ISA_2_6_MASKS_SERVER & ~ISA_2_5_MASKS_SERVER)) != 0)
    return "power7";
  if ((flags & (ISA_2_5_MASKS_SERVER & ~ISA_2_4_MASKS)) != 0)
    return "power6";
  if ((flags & (ISA_2_4_MASKS & ~ISA_2_1_MASKS)) != 0)
    return "power5";
  if ((flags & ISA_2_1_MASKS) != 0)
    return "power4";
  if ((flags & OPTION_MASK_POWERPC64) != 0)
    return "ppc64";
  return "ppc";
}

void
emit_asm_machine (void)
{
  fprintf (asm_out_file, "\t.machine %s\n", rs6000_machine);
}
#endif

/* Do anything needed at the start of the asm file.  */

static void
rs6000_file_start (void)
{
  char buffer[80];
  const char *start = buffer;
  FILE *file = asm_out_file;

  rs6000_default_cpu = TARGET_CPU_DEFAULT;

  default_file_start ();

  if (flag_verbose_asm)
    {
      sprintf (buffer, "\n%s rs6000/powerpc options:", ASM_COMMENT_START);

      if (rs6000_default_cpu != 0 && rs6000_default_cpu[0] != '\0')
	{
	  fprintf (file, "%s --with-cpu=%s", start, rs6000_default_cpu);
	  start = "";
	}

      if (OPTION_SET_P (rs6000_cpu_index))
	{
	  fprintf (file, "%s -mcpu=%s", start,
		   processor_target_table[rs6000_cpu_index].name);
	  start = "";
	}

      if (OPTION_SET_P (rs6000_tune_index))
	{
	  fprintf (file, "%s -mtune=%s", start,
		   processor_target_table[rs6000_tune_index].name);
	  start = "";
	}

      if (PPC405_ERRATUM77)
	{
	  fprintf (file, "%s PPC405CR_ERRATUM77", start);
	  start = "";
	}

#ifdef USING_ELFOS_H
      switch (rs6000_sdata)
	{
	case SDATA_NONE: fprintf (file, "%s -msdata=none", start); start = ""; break;
	case SDATA_DATA: fprintf (file, "%s -msdata=data", start); start = ""; break;
	case SDATA_SYSV: fprintf (file, "%s -msdata=sysv", start); start = ""; break;
	case SDATA_EABI: fprintf (file, "%s -msdata=eabi", start); start = ""; break;
	}

      if (rs6000_sdata && g_switch_value)
	{
	  fprintf (file, "%s -G %d", start,
		   g_switch_value);
	  start = "";
	}
#endif

      if (*start == '\0')
	putc ('\n', file);
    }

#ifdef USING_ELFOS_H
  rs6000_machine = rs6000_machine_from_flags ();
  emit_asm_machine ();
#endif

  if (DEFAULT_ABI == ABI_ELFv2)
    fprintf (file, "\t.abiversion 2\n");
}


/* Return nonzero if this function is known to have a null epilogue.  */

int
direct_return (void)
{
  if (reload_completed)
    {
      rs6000_stack_t *info = rs6000_stack_info ();

      if (info->first_gp_reg_save == 32
	  && info->first_fp_reg_save == 64
	  && info->first_altivec_reg_save == LAST_ALTIVEC_REGNO + 1
	  && ! info->lr_save_p
	  && ! info->cr_save_p
	  && info->vrsave_size == 0
	  && ! info->push_p)
	return 1;
    }

  return 0;
}

/* Helper for num_insns_constant.  Calculate number of instructions to
   load VALUE to a single gpr using combinations of addi, addis, ori,
   oris, sldi and rldimi instructions.  */

static int
num_insns_constant_gpr (HOST_WIDE_INT value)
{
  /* signed constant loadable with addi */
  if (SIGNED_INTEGER_16BIT_P (value))
    return 1;

  /* constant loadable with addis */
  else if ((value & 0xffff) == 0
	   && (value >> 31 == -1 || value >> 31 == 0))
    return 1;

  /* PADDI can support up to 34 bit signed integers.  */
  else if (TARGET_PREFIXED && SIGNED_INTEGER_34BIT_P (value))
    return 1;

  else if (TARGET_POWERPC64)
    {
      HOST_WIDE_INT low = sext_hwi (value, 32);
      HOST_WIDE_INT high = value >> 31;

      if (high == 0 || high == -1)
	return 2;

      high >>= 1;

      if (low == 0 || low == high)
	return num_insns_constant_gpr (high) + 1;
      else if (high == 0)
	return num_insns_constant_gpr (low) + 1;
      else
	return (num_insns_constant_gpr (high)
		+ num_insns_constant_gpr (low) + 1);
    }

  else
    return 2;
}

/* Helper for num_insns_constant.  Allow constants formed by the
   num_insns_constant_gpr sequences, plus li -1, rldicl/rldicr/rlwinm,
   and handle modes that require multiple gprs.  */

static int
num_insns_constant_multi (HOST_WIDE_INT value, machine_mode mode)
{
  int nregs = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
  int total = 0;
  while (nregs-- > 0)
    {
      HOST_WIDE_INT low = sext_hwi (value, BITS_PER_WORD);
      int insns = num_insns_constant_gpr (low);
      if (insns > 2
	  /* We won't get more than 2 from num_insns_constant_gpr
	     except when TARGET_POWERPC64 and mode is DImode or
	     wider, so the register mode must be DImode.  */
	  && rs6000_is_valid_and_mask (GEN_INT (low), DImode))
	insns = 2;
      total += insns;
      /* If BITS_PER_WORD is the number of bits in HOST_WIDE_INT, doing
	 it all at once would be UB. */
      value >>= (BITS_PER_WORD - 1);
      value >>= 1;
    }
  return total;
}

/* Return the number of instructions it takes to form a constant in as
   many gprs are needed for MODE.  */

int
num_insns_constant (rtx op, machine_mode mode)
{
  HOST_WIDE_INT val;

  switch (GET_CODE (op))
    {
    case CONST_INT:
      val = INTVAL (op);
      break;

    case CONST_WIDE_INT:
      {
	int insns = 0;
	for (int i = 0; i < CONST_WIDE_INT_NUNITS (op); i++)
	  insns += num_insns_constant_multi (CONST_WIDE_INT_ELT (op, i),
					     DImode);
	return insns;
      }

    case CONST_DOUBLE:
      {
	const struct real_value *rv = CONST_DOUBLE_REAL_VALUE (op);

	if (mode == SFmode || mode == SDmode)
	  {
	    long l;

	    if (mode == SDmode)
	      REAL_VALUE_TO_TARGET_DECIMAL32 (*rv, l);
	    else
	      REAL_VALUE_TO_TARGET_SINGLE (*rv, l);
	    /* See the first define_split in rs6000.md handling a
	       const_double_operand.  */
	    val = l;
	    mode = SImode;
	  }
	else if (mode == DFmode || mode == DDmode)
	  {
	    long l[2];

	    if (mode == DDmode)
	      REAL_VALUE_TO_TARGET_DECIMAL64 (*rv, l);
	    else
	      REAL_VALUE_TO_TARGET_DOUBLE (*rv, l);

	    /* See the second (32-bit) and third (64-bit) define_split
	       in rs6000.md handling a const_double_operand.  */
	    val = (unsigned HOST_WIDE_INT) l[WORDS_BIG_ENDIAN ? 0 : 1] << 32;
	    val |= l[WORDS_BIG_ENDIAN ? 1 : 0] & 0xffffffffUL;
	    mode = DImode;
	  }
	else if (mode == TFmode || mode == TDmode
		 || mode == KFmode || mode == IFmode)
	  {
	    long l[4];
	    int insns;

	    if (mode == TDmode)
	      REAL_VALUE_TO_TARGET_DECIMAL128 (*rv, l);
	    else
	      REAL_VALUE_TO_TARGET_LONG_DOUBLE (*rv, l);

	    val = (unsigned HOST_WIDE_INT) l[WORDS_BIG_ENDIAN ? 0 : 3] << 32;
	    val |= l[WORDS_BIG_ENDIAN ? 1 : 2] & 0xffffffffUL;
	    insns = num_insns_constant_multi (val, DImode);
	    val = (unsigned HOST_WIDE_INT) l[WORDS_BIG_ENDIAN ? 2 : 1] << 32;
	    val |= l[WORDS_BIG_ENDIAN ? 3 : 0] & 0xffffffffUL;
	    insns += num_insns_constant_multi (val, DImode);
	    return insns;
	  }
	else
	  gcc_unreachable ();
      }
      break;

    default:
      gcc_unreachable ();
    }

  return num_insns_constant_multi (val, mode);
}

/* Interpret element ELT of the CONST_VECTOR OP as an integer value.
   If the mode of OP is MODE_VECTOR_INT, this simply returns the
   corresponding element of the vector, but for V4SFmode, the
   corresponding "float" is interpreted as an SImode integer.  */

HOST_WIDE_INT
const_vector_elt_as_int (rtx op, unsigned int elt)
{
  rtx tmp;

  /* We can't handle V2DImode and V2DFmode vector constants here yet.  */
  gcc_assert (GET_MODE (op) != V2DImode
	      && GET_MODE (op) != V2DFmode);

  tmp = CONST_VECTOR_ELT (op, elt);
  if (GET_MODE (op) == V4SFmode)
    tmp = gen_lowpart (SImode, tmp);
  return INTVAL (tmp);
}

/* Return true if OP can be synthesized with a particular vspltisb, vspltish
   or vspltisw instruction.  OP is a CONST_VECTOR.  Which instruction is used
   depends on STEP and COPIES, one of which will be 1.  If COPIES > 1,
   all items are set to the same value and contain COPIES replicas of the
   vsplt's operand; if STEP > 1, one in STEP elements is set to the vsplt's
   operand and the others are set to the value of the operand's msb.  */

static bool
vspltis_constant (rtx op, unsigned step, unsigned copies)
{
  machine_mode mode = GET_MODE (op);
  machine_mode inner = GET_MODE_INNER (mode);

  unsigned i;
  unsigned nunits;
  unsigned bitsize;
  unsigned mask;

  HOST_WIDE_INT val;
  HOST_WIDE_INT splat_val;
  HOST_WIDE_INT msb_val;

  if (mode == V2DImode || mode == V2DFmode || mode == V1TImode)
    return false;

  nunits = GET_MODE_NUNITS (mode);
  bitsize = GET_MODE_BITSIZE (inner);
  mask = GET_MODE_MASK (inner);

  val = const_vector_elt_as_int (op, BYTES_BIG_ENDIAN ? nunits - 1 : 0);
  splat_val = val;
  msb_val = val >= 0 ? 0 : -1;

  if (val == 0 && step > 1)
    {
      /* Special case for loading most significant bit with step > 1.
	 In that case, match 0s in all but step-1s elements, where match
	 EASY_VECTOR_MSB.  */
      for (i = 1; i < nunits; ++i)
	{
	  unsigned elt = BYTES_BIG_ENDIAN ? nunits - 1 - i : i;
	  HOST_WIDE_INT elt_val = const_vector_elt_as_int (op, elt);
	  if ((i & (step - 1)) == step - 1)
	    {
	      if (!EASY_VECTOR_MSB (elt_val, inner))
		break;
	    }
	  else if (elt_val)
	    break;
	}
      if (i == nunits)
	return true;
    }

  /* Construct the value to be splatted, if possible.  If not, return 0.  */
  for (i = 2; i <= copies; i *= 2)
    {
      HOST_WIDE_INT small_val;
      bitsize /= 2;
      small_val = splat_val >> bitsize;
      mask >>= bitsize;
      if (splat_val != ((HOST_WIDE_INT)
          ((unsigned HOST_WIDE_INT) small_val << bitsize)
          | (small_val & mask)))
	return false;
      splat_val = small_val;
      inner = smallest_int_mode_for_size (bitsize);
    }

  /* Check if SPLAT_VAL can really be the operand of a vspltis[bhw].  */
  if (EASY_VECTOR_15 (splat_val))
    ;

  /* Also check if we can splat, and then add the result to itself.  Do so if
     the value is positive, of if the splat instruction is using OP's mode;
     for splat_val < 0, the splat and the add should use the same mode.  */
  else if (EASY_VECTOR_15_ADD_SELF (splat_val)
           && (splat_val >= 0 || (step == 1 && copies == 1)))
    ;

  /* Also check if are loading up the most significant bit which can be done by
     loading up -1 and shifting the value left by -1.  Only do this for
     step 1 here, for larger steps it is done earlier.  */
  else if (EASY_VECTOR_MSB (splat_val, inner) && step == 1)
    ;

  else
    return false;

  /* Check if VAL is present in every STEP-th element, and the
     other elements are filled with its most significant bit.  */
  for (i = 1; i < nunits; ++i)
    {
      HOST_WIDE_INT desired_val;
      unsigned elt = BYTES_BIG_ENDIAN ? nunits - 1 - i : i;
      if ((i & (step - 1)) == 0)
	desired_val = val;
      else
	desired_val = msb_val;

      if (desired_val != const_vector_elt_as_int (op, elt))
	return false;
    }

  return true;
}

/* Like vsplitis_constant, but allow the value to be shifted left with a VSLDOI
   instruction, filling in the bottom elements with 0 or -1.

   Return 0 if the constant cannot be generated with VSLDOI.  Return positive
   for the number of zeroes to shift in, or negative for the number of 0xff
   bytes to shift in.

   OP is a CONST_VECTOR.  */

int
vspltis_shifted (rtx op)
{
  machine_mode mode = GET_MODE (op);
  machine_mode inner = GET_MODE_INNER (mode);

  unsigned i, j;
  unsigned nunits;
  unsigned mask;

  HOST_WIDE_INT val;

  if (mode != V16QImode && mode != V8HImode && mode != V4SImode)
    return false;

  /* We need to create pseudo registers to do the shift, so don't recognize
     shift vector constants after reload.  Don't match it even before RA
     after split1 is done, because there won't be further splitting pass
     before RA to do the splitting.  */
  if (!can_create_pseudo_p ()
      || (cfun->curr_properties & PROP_rtl_split_insns))
    return false;

  nunits = GET_MODE_NUNITS (mode);
  mask = GET_MODE_MASK (inner);

  val = const_vector_elt_as_int (op, BYTES_BIG_ENDIAN ? 0 : nunits - 1);

  /* Check if the value can really be the operand of a vspltis[bhw].  */
  if (EASY_VECTOR_15 (val))
    ;

  /* Also check if we are loading up the most significant bit which can be done
     by loading up -1 and shifting the value left by -1.  */
  else if (EASY_VECTOR_MSB (val, inner))
    ;

  else
    return 0;

  /* Check if VAL is present in every STEP-th element until we find elements
     that are 0 or all 1 bits.  */
  for (i = 1; i < nunits; ++i)
    {
      unsigned elt = BYTES_BIG_ENDIAN ? i : nunits - 1 - i;
      HOST_WIDE_INT elt_val = const_vector_elt_as_int (op, elt);

      /* If the value isn't the splat value, check for the remaining elements
	 being 0/-1.  */
      if (val != elt_val)
	{
	  if (elt_val == 0)
	    {
	      for (j = i+1; j < nunits; ++j)
		{
		  unsigned elt2 = BYTES_BIG_ENDIAN ? j : nunits - 1 - j;
		  if (const_vector_elt_as_int (op, elt2) != 0)
		    return 0;
		}

	      return (nunits - i) * GET_MODE_SIZE (inner);
	    }

	  else if ((elt_val & mask) == mask)
	    {
	      for (j = i+1; j < nunits; ++j)
		{
		  unsigned elt2 = BYTES_BIG_ENDIAN ? j : nunits - 1 - j;
		  if ((const_vector_elt_as_int (op, elt2) & mask) != mask)
		    return 0;
		}

	      return -((nunits - i) * GET_MODE_SIZE (inner));
	    }

	  else
	    return 0;
	}
    }

  /* If all elements are equal, we don't need to do VSLDOI.  */
  return 0;
}


/* Return non-zero (element mode byte size) if OP is of the given MODE
   and can be synthesized with a vspltisb, vspltish or vspltisw.  */

int
easy_altivec_constant (rtx op, machine_mode mode)
{
  unsigned step, copies;

  if (mode == VOIDmode)
    mode = GET_MODE (op);
  else if (mode != GET_MODE (op))
    return 0;

  /* V2DI/V2DF was added with VSX.  Only allow 0 and all 1's as easy
     constants.  */
  if (mode == V2DFmode)
    return zero_constant (op, mode) ? 8 : 0;

  else if (mode == V2DImode)
    {
      if (!CONST_INT_P (CONST_VECTOR_ELT (op, 0))
	  || !CONST_INT_P (CONST_VECTOR_ELT (op, 1)))
	return 0;

      if (zero_constant (op, mode))
	return 8;

      if (INTVAL (CONST_VECTOR_ELT (op, 0)) == -1
	  && INTVAL (CONST_VECTOR_ELT (op, 1)) == -1)
	return 8;

      return 0;
    }

  /* V1TImode is a special container for TImode.  Ignore for now.  */
  else if (mode == V1TImode)
    return 0;

  /* Start with a vspltisw.  */
  step = GET_MODE_NUNITS (mode) / 4;
  copies = 1;

  if (vspltis_constant (op, step, copies))
    return 4;

  /* Then try with a vspltish.  */
  if (step == 1)
    copies <<= 1;
  else
    step >>= 1;

  if (vspltis_constant (op, step, copies))
    return 2;

  /* And finally a vspltisb.  */
  if (step == 1)
    copies <<= 1;
  else
    step >>= 1;

  if (vspltis_constant (op, step, copies))
    return 1;

  if (vspltis_shifted (op) != 0)
    return GET_MODE_SIZE (GET_MODE_INNER (mode));

  return 0;
}

/* Generate a VEC_DUPLICATE representing a vspltis[bhw] instruction whose
   result is OP.  Abort if it is not possible.  */

rtx
gen_easy_altivec_constant (rtx op)
{
  machine_mode mode = GET_MODE (op);
  int nunits = GET_MODE_NUNITS (mode);
  rtx val = CONST_VECTOR_ELT (op, BYTES_BIG_ENDIAN ? nunits - 1 : 0);
  unsigned step = nunits / 4;
  unsigned copies = 1;

  /* Start with a vspltisw.  */
  if (vspltis_constant (op, step, copies))
    return gen_rtx_VEC_DUPLICATE (V4SImode, gen_lowpart (SImode, val));

  /* Then try with a vspltish.  */
  if (step == 1)
    copies <<= 1;
  else
    step >>= 1;

  if (vspltis_constant (op, step, copies))
    return gen_rtx_VEC_DUPLICATE (V8HImode, gen_lowpart (HImode, val));

  /* And finally a vspltisb.  */
  if (step == 1)
    copies <<= 1;
  else
    step >>= 1;

  if (vspltis_constant (op, step, copies))
    return gen_rtx_VEC_DUPLICATE (V16QImode, gen_lowpart (QImode, val));

  gcc_unreachable ();
}

/* Return true if OP is of the given MODE and can be synthesized with ISA 3.0
   instructions (xxspltib, vupkhsb/vextsb2w/vextb2d).

   Return the number of instructions needed (1 or 2) into the address pointed
   via NUM_INSNS_PTR.

   Return the constant that is being split via CONSTANT_PTR.  */

bool
xxspltib_constant_p (rtx op,
		     machine_mode mode,
		     int *num_insns_ptr,
		     int *constant_ptr)
{
  size_t nunits = GET_MODE_NUNITS (mode);
  size_t i;
  HOST_WIDE_INT value;
  rtx element;

  /* Set the returned values to out of bound values.  */
  *num_insns_ptr = -1;
  *constant_ptr = 256;

  if (!TARGET_P9_VECTOR)
    return false;

  if (mode == VOIDmode)
    mode = GET_MODE (op);

  else if (mode != GET_MODE (op) && GET_MODE (op) != VOIDmode)
    return false;

  /* Handle (vec_duplicate <constant>).  */
  if (GET_CODE (op) == VEC_DUPLICATE)
    {
      if (mode != V16QImode && mode != V8HImode && mode != V4SImode
	  && mode != V2DImode)
	return false;

      element = XEXP (op, 0);
      if (!CONST_INT_P (element))
	return false;

      value = INTVAL (element);
      if (!IN_RANGE (value, -128, 127))
	return false;
    }

  /* Handle (const_vector [...]).  */
  else if (GET_CODE (op) == CONST_VECTOR)
    {
      if (mode != V16QImode && mode != V8HImode && mode != V4SImode
	  && mode != V2DImode)
	return false;

      element = CONST_VECTOR_ELT (op, 0);
      if (!CONST_INT_P (element))
	return false;

      value = INTVAL (element);
      if (!IN_RANGE (value, -128, 127))
	return false;

      for (i = 1; i < nunits; i++)
	{
	  element = CONST_VECTOR_ELT (op, i);
	  if (!CONST_INT_P (element))
	    return false;

	  if (value != INTVAL (element))
	    return false;
	}
    }

  /* Handle integer constants being loaded into the upper part of the VSX
     register as a scalar.  If the value isn't 0/-1, only allow it if the mode
     can go in Altivec registers.  Prefer VSPLTISW/VUPKHSW over XXSPLITIB.  */
  else if (CONST_INT_P (op))
    {
      if (!SCALAR_INT_MODE_P (mode))
	return false;

      value = INTVAL (op);
      if (!IN_RANGE (value, -128, 127))
	return false;

      if (!IN_RANGE (value, -1, 0))
	{
	  if (!(reg_addr[mode].addr_mask[RELOAD_REG_VMX] & RELOAD_REG_VALID))
	    return false;

	  if (EASY_VECTOR_15 (value))
	    return false;
	}
    }

  else
    return false;

  /* See if we could generate vspltisw/vspltish directly instead of xxspltib +
     sign extend.  Special case 0/-1 to allow getting any VSX register instead
     of an Altivec register.  */
  if ((mode == V4SImode || mode == V8HImode) && !IN_RANGE (value, -1, 0)
      && EASY_VECTOR_15 (value))
    return false;

  /* Return # of instructions and the constant byte for XXSPLTIB.  */
  if (mode == V16QImode)
    *num_insns_ptr = 1;

  else if (IN_RANGE (value, -1, 0))
    *num_insns_ptr = 1;

  /* Do not generate XXSPLTIB and a sign extend operation if we can generate a
     single XXSPLTIW or XXSPLTIDP instruction.  */
  else if (vsx_prefixed_constant (op, mode))
    return false;

  /* Return XXSPLITB followed by a sign extend operation to convert the
     constant to V8HImode or V4SImode.  */
  else
    *num_insns_ptr = 2;

  *constant_ptr = (int) value;
  return true;
}

const char *
output_vec_const_move (rtx *operands)
{
  int shift;
  machine_mode mode;
  rtx dest, vec;

  dest = operands[0];
  vec = operands[1];
  mode = GET_MODE (dest);

  if (TARGET_VSX)
    {
      bool dest_vmx_p = ALTIVEC_REGNO_P (REGNO (dest));
      int xxspltib_value = 256;
      int num_insns = -1;

      if (zero_constant (vec, mode))
	{
	  if (TARGET_P9_VECTOR)
	    return "xxspltib %x0,0";

	  else if (dest_vmx_p)
	    return "vspltisw %0,0";

	  else
	    return "xxlxor %x0,%x0,%x0";
	}

      if (all_ones_constant (vec, mode))
	{
	  if (TARGET_P9_VECTOR)
	    return "xxspltib %x0,255";

	  else if (dest_vmx_p)
	    return "vspltisw %0,-1";

	  else if (TARGET_P8_VECTOR)
	    return "xxlorc %x0,%x0,%x0";

	  else
	    gcc_unreachable ();
	}

      vec_const_128bit_type vsx_const;
      if (TARGET_POWER10 && vec_const_128bit_to_bytes (vec, mode, &vsx_const))
	{
	  unsigned imm = constant_generates_lxvkq (&vsx_const);
	  if (imm)
	    {
	      operands[2] = GEN_INT (imm);
	      return "lxvkq %x0,%2";
	    }

	  imm = constant_generates_xxspltiw (&vsx_const);
	  if (imm)
	    {
	      operands[2] = GEN_INT (imm);
	      return "xxspltiw %x0,%2";
	    }

	  imm = constant_generates_xxspltidp (&vsx_const);
	  if (imm)
	    {
	      operands[2] = GEN_INT (imm);
	      return "xxspltidp %x0,%2";
	    }
	}

      if (TARGET_P9_VECTOR
	  && xxspltib_constant_p (vec, mode, &num_insns, &xxspltib_value))
	{
	  if (num_insns == 1)
	    {
	      operands[2] = GEN_INT (xxspltib_value & 0xff);
	      return "xxspltib %x0,%2";
	    }

	  return "#";
	}
    }

  if (TARGET_ALTIVEC)
    {
      rtx splat_vec;

      gcc_assert (ALTIVEC_REGNO_P (REGNO (dest)));
      if (zero_constant (vec, mode))
	return "vspltisw %0,0";

      if (all_ones_constant (vec, mode))
	return "vspltisw %0,-1";

      /* Do we need to construct a value using VSLDOI?  */
      shift = vspltis_shifted (vec);
      if (shift != 0)
	return "#";

      splat_vec = gen_easy_altivec_constant (vec);
      gcc_assert (GET_CODE (splat_vec) == VEC_DUPLICATE);
      operands[1] = XEXP (splat_vec, 0);
      if (!EASY_VECTOR_15 (INTVAL (operands[1])))
	return "#";

      switch (GET_MODE (splat_vec))
	{
	case E_V4SImode:
	  return "vspltisw %0,%1";

	case E_V8HImode:
	  return "vspltish %0,%1";

	case E_V16QImode:
	  return "vspltisb %0,%1";

	default:
	  gcc_unreachable ();
	}
    }

  gcc_unreachable ();
}

/* Initialize vector TARGET to VALS.  */

void
rs6000_expand_vector_init (rtx target, rtx vals)
{
  machine_mode mode = GET_MODE (target);
  machine_mode inner_mode = GET_MODE_INNER (mode);
  unsigned int n_elts = GET_MODE_NUNITS (mode);
  int n_var = 0, one_var = -1;
  bool all_same = true, all_const_zero = true;
  rtx x, mem;
  unsigned int i;

  for (i = 0; i < n_elts; ++i)
    {
      x = XVECEXP (vals, 0, i);
      if (!(CONST_SCALAR_INT_P (x) || CONST_DOUBLE_P (x) || CONST_FIXED_P (x)))
	++n_var, one_var = i;
      else if (x != CONST0_RTX (inner_mode))
	all_const_zero = false;

      if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
	all_same = false;
    }

  if (n_var == 0)
    {
      rtx const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
      bool int_vector_p = (GET_MODE_CLASS (mode) == MODE_VECTOR_INT);
      if ((int_vector_p || TARGET_VSX) && all_const_zero)
	{
	  /* Zero register.  */
	  emit_move_insn (target, CONST0_RTX (mode));
	  return;
	}
      else if (int_vector_p && easy_vector_constant (const_vec, mode))
	{
	  /* Splat immediate.  */
	  emit_insn (gen_rtx_SET (target, const_vec));
	  return;
	}
      else
	{
	  /* Load from constant pool.  */
	  emit_move_insn (target, const_vec);
	  return;
	}
    }

  /* Double word values on VSX can use xxpermdi or lxvdsx.  */
  if (VECTOR_MEM_VSX_P (mode) && (mode == V2DFmode || mode == V2DImode))
    {
      rtx op[2];
      size_t i;
      size_t num_elements = all_same ? 1 : 2;
      for (i = 0; i < num_elements; i++)
	{
	  op[i] = XVECEXP (vals, 0, i);
	  /* Just in case there is a SUBREG with a smaller mode, do a
	     conversion.  */
	  if (GET_MODE (op[i]) != inner_mode)
	    {
	      rtx tmp = gen_reg_rtx (inner_mode);
	      convert_move (tmp, op[i], 0);
	      op[i] = tmp;
	    }
	  /* Allow load with splat double word.  */
	  else if (MEM_P (op[i]))
	    {
	      if (!all_same)
		op[i] = force_reg (inner_mode, op[i]);
	    }
	  else if (!REG_P (op[i]))
	    op[i] = force_reg (inner_mode, op[i]);
	}

      if (all_same)
	{
	  if (mode == V2DFmode)
	    emit_insn (gen_vsx_splat_v2df (target, op[0]));
	  else
	    emit_insn (gen_vsx_splat_v2di (target, op[0]));
	}
      else
	{
	  if (mode == V2DFmode)
	    emit_insn (gen_vsx_concat_v2df (target, op[0], op[1]));
	  else
	    emit_insn (gen_vsx_concat_v2di (target, op[0], op[1]));
	}
      return;
    }

  /* Special case initializing vector int if we are on 64-bit systems with
     direct move or we have the ISA 3.0 instructions.  */
  if (mode == V4SImode  && VECTOR_MEM_VSX_P (V4SImode)
      && TARGET_DIRECT_MOVE_64BIT)
    {
      if (all_same)
	{
	  rtx element0 = XVECEXP (vals, 0, 0);
	  if (MEM_P (element0))
	    element0 = rs6000_force_indexed_or_indirect_mem (element0);
	  else
	    element0 = force_reg (SImode, element0);

	  if (TARGET_P9_VECTOR)
	    emit_insn (gen_vsx_splat_v4si (target, element0));
	  else
	    {
	      rtx tmp = gen_reg_rtx (DImode);
	      emit_insn (gen_zero_extendsidi2 (tmp, element0));
	      emit_insn (gen_vsx_splat_v4si_di (target, tmp));
	    }
	  return;
	}
      else
	{
	  rtx elements[4];
	  size_t i;

	  for (i = 0; i < 4; i++)
	    elements[i] = force_reg (SImode, XVECEXP (vals, 0, i));

	  emit_insn (gen_vsx_init_v4si (target, elements[0], elements[1],
					elements[2], elements[3]));
	  return;
	}
    }

  /* With single precision floating point on VSX, know that internally single
     precision is actually represented as a double, and either make 2 V2DF
     vectors, and convert these vectors to single precision, or do one
     conversion, and splat the result to the other elements.  */
  if (mode == V4SFmode && VECTOR_MEM_VSX_P (V4SFmode))
    {
      if (all_same)
	{
	  rtx element0 = XVECEXP (vals, 0, 0);

	  if (TARGET_P9_VECTOR)
	    {
	      if (MEM_P (element0))
		element0 = rs6000_force_indexed_or_indirect_mem (element0);

	      emit_insn (gen_vsx_splat_v4sf (target, element0));
	    }

	  else
	    {
	      rtx freg = gen_reg_rtx (V4SFmode);
	      rtx sreg = force_reg (SFmode, element0);
	      rtx cvt  = (TARGET_XSCVDPSPN
			  ? gen_vsx_xscvdpspn_scalar (freg, sreg)
			  : gen_vsx_xscvdpsp_scalar (freg, sreg));

	      emit_insn (cvt);
	      emit_insn (gen_vsx_xxspltw_v4sf_direct (target, freg,
						      const0_rtx));
	    }
	}
      else
	{
	  if (TARGET_P8_VECTOR && TARGET_POWERPC64)
	    {
	      rtx tmp_sf[4];
	      rtx tmp_si[4];
	      rtx tmp_di[4];
	      rtx mrg_di[4];
	      for (i = 0; i < 4; i++)
		{
		  tmp_si[i] = gen_reg_rtx (SImode);
		  tmp_di[i] = gen_reg_rtx (DImode);
		  mrg_di[i] = gen_reg_rtx (DImode);
		  tmp_sf[i] = force_reg (SFmode, XVECEXP (vals, 0, i));
		  emit_insn (gen_movsi_from_sf (tmp_si[i], tmp_sf[i]));
		  emit_insn (gen_zero_extendsidi2 (tmp_di[i], tmp_si[i]));
		}

	      if (!BYTES_BIG_ENDIAN)
		{
		  std::swap (tmp_di[0], tmp_di[1]);
		  std::swap (tmp_di[2], tmp_di[3]);
		}

	      emit_insn (gen_ashldi3 (mrg_di[0], tmp_di[0], GEN_INT (32)));
	      emit_insn (gen_iordi3 (mrg_di[1], mrg_di[0], tmp_di[1]));
	      emit_insn (gen_ashldi3 (mrg_di[2], tmp_di[2], GEN_INT (32)));
	      emit_insn (gen_iordi3 (mrg_di[3], mrg_di[2], tmp_di[3]));

	      rtx tmp_v2di = gen_reg_rtx (V2DImode);
	      emit_insn (gen_vsx_concat_v2di (tmp_v2di, mrg_di[1], mrg_di[3]));
	      emit_move_insn (target, gen_lowpart (V4SFmode, tmp_v2di));
	    }
	  else
	    {
	      rtx dbl_even = gen_reg_rtx (V2DFmode);
	      rtx dbl_odd  = gen_reg_rtx (V2DFmode);
	      rtx flt_even = gen_reg_rtx (V4SFmode);
	      rtx flt_odd  = gen_reg_rtx (V4SFmode);
	      rtx op0 = force_reg (SFmode, XVECEXP (vals, 0, 0));
	      rtx op1 = force_reg (SFmode, XVECEXP (vals, 0, 1));
	      rtx op2 = force_reg (SFmode, XVECEXP (vals, 0, 2));
	      rtx op3 = force_reg (SFmode, XVECEXP (vals, 0, 3));

	      emit_insn (gen_vsx_concat_v2sf (dbl_even, op0, op1));
	      emit_insn (gen_vsx_concat_v2sf (dbl_odd, op2, op3));
	      emit_insn (gen_vsx_xvcvdpsp (flt_even, dbl_even));
	      emit_insn (gen_vsx_xvcvdpsp (flt_odd, dbl_odd));
	      rs6000_expand_extract_even (target, flt_even, flt_odd);
	    }
	}
      return;
    }

  /* Special case initializing vector short/char that are splats if we are on
     64-bit systems with direct move.  */
  if (all_same && TARGET_DIRECT_MOVE_64BIT
      && (mode == V16QImode || mode == V8HImode))
    {
      rtx op0 = XVECEXP (vals, 0, 0);
      rtx di_tmp = gen_reg_rtx (DImode);

      if (!REG_P (op0))
	op0 = force_reg (GET_MODE_INNER (mode), op0);

      if (mode == V16QImode)
	{
	  emit_insn (gen_zero_extendqidi2 (di_tmp, op0));
	  emit_insn (gen_vsx_vspltb_di (target, di_tmp));
	  return;
	}

      if (mode == V8HImode)
	{
	  emit_insn (gen_zero_extendhidi2 (di_tmp, op0));
	  emit_insn (gen_vsx_vsplth_di (target, di_tmp));
	  return;
	}
    }

  /* Store value to stack temp.  Load vector element.  Splat.  However, splat
     of 64-bit items is not supported on Altivec.  */
  if (all_same && GET_MODE_SIZE (inner_mode) <= 4)
    {
      mem = assign_stack_temp (mode, GET_MODE_SIZE (inner_mode));
      emit_move_insn (adjust_address_nv (mem, inner_mode, 0),
		      XVECEXP (vals, 0, 0));
      x = gen_rtx_UNSPEC (VOIDmode,
			  gen_rtvec (1, const0_rtx), UNSPEC_LVE);
      emit_insn (gen_rtx_PARALLEL (VOIDmode,
				   gen_rtvec (2,
					      gen_rtx_SET (target, mem),
					      x)));
      x = gen_rtx_VEC_SELECT (inner_mode, target,
			      gen_rtx_PARALLEL (VOIDmode,
						gen_rtvec (1, const0_rtx)));
      emit_insn (gen_rtx_SET (target, gen_rtx_VEC_DUPLICATE (mode, x)));
      return;
    }

  /* One field is non-constant.  Load constant then overwrite
     varying field.  */
  if (n_var == 1)
    {
      rtx copy = copy_rtx (vals);

      /* Load constant part of vector, substitute neighboring value for
	 varying element.  */
      XVECEXP (copy, 0, one_var) = XVECEXP (vals, 0, (one_var + 1) % n_elts);
      rs6000_expand_vector_init (target, copy);

      /* Insert variable.  */
      rs6000_expand_vector_set (target, XVECEXP (vals, 0, one_var),
				GEN_INT (one_var));
      return;
    }

  if (TARGET_DIRECT_MOVE && (mode == V16QImode || mode == V8HImode))
    {
      rtx op[16];
      /* Force the values into word_mode registers.  */
      for (i = 0; i < n_elts; i++)
	{
	  rtx tmp = force_reg (inner_mode, XVECEXP (vals, 0, i));
	  machine_mode tmode = TARGET_POWERPC64 ? DImode : SImode;
	  op[i] = simplify_gen_subreg (tmode, tmp, inner_mode, 0);
	}

      /* Take unsigned char big endianness on 64bit as example for below
	 construction, the input values are: A, B, C, D, ..., O, P.  */

      if (TARGET_DIRECT_MOVE_128)
	{
	  /* Move to VSX register with vec_concat, each has 2 values.
	     eg: vr1[0] = { xxxxxxxA, xxxxxxxB };
		 vr1[1] = { xxxxxxxC, xxxxxxxD };
		 ...
		 vr1[7] = { xxxxxxxO, xxxxxxxP };  */
	  rtx vr1[8];
	  for (i = 0; i < n_elts / 2; i++)
	    {
	      vr1[i] = gen_reg_rtx (V2DImode);
	      emit_insn (gen_vsx_concat_v2di (vr1[i], op[i * 2],
					      op[i * 2 + 1]));
	    }

	  /* Pack vectors with 2 values into vectors with 4 values.
	     eg: vr2[0] = { xxxAxxxB, xxxCxxxD };
		 vr2[1] = { xxxExxxF, xxxGxxxH };
		 vr2[1] = { xxxIxxxJ, xxxKxxxL };
		 vr2[3] = { xxxMxxxN, xxxOxxxP };  */
	  rtx vr2[4];
	  for (i = 0; i < n_elts / 4; i++)
	    {
	      vr2[i] = gen_reg_rtx (V4SImode);
	      emit_insn (gen_altivec_vpkudum (vr2[i], vr1[i * 2],
					      vr1[i * 2 + 1]));
	    }

	  /* Pack vectors with 4 values into vectors with 8 values.
	     eg: vr3[0] = { xAxBxCxD, xExFxGxH };
		 vr3[1] = { xIxJxKxL, xMxNxOxP };  */
	  rtx vr3[2];
	  for (i = 0; i < n_elts / 8; i++)
	    {
	      vr3[i] = gen_reg_rtx (V8HImode);
	      emit_insn (gen_altivec_vpkuwum (vr3[i], vr2[i * 2],
					      vr2[i * 2 + 1]));
	    }

	  /* If it's V8HImode, it's done and return it. */
	  if (mode == V8HImode)
	    {
	      emit_insn (gen_rtx_SET (target, vr3[0]));
	      return;
	    }

	  /* Pack vectors with 8 values into 16 values.  */
	  rtx res = gen_reg_rtx (V16QImode);
	  emit_insn (gen_altivec_vpkuhum (res, vr3[0], vr3[1]));
	  emit_insn (gen_rtx_SET (target, res));
	}
      else
	{
	  rtx (*merge_v16qi) (rtx, rtx, rtx) = NULL;
	  rtx (*merge_v8hi) (rtx, rtx, rtx) = NULL;
	  rtx (*merge_v4si) (rtx, rtx, rtx) = NULL;
	  rtx perm_idx;

	  /* Set up some common gen routines and values.  */
	  if (BYTES_BIG_ENDIAN)
	    {
	      if (mode == V16QImode)
		{
		  merge_v16qi = gen_altivec_vmrghb;
		  merge_v8hi = gen_altivec_vmrglh;
		}
	      else
		merge_v8hi = gen_altivec_vmrghh;

	      merge_v4si = gen_altivec_vmrglw;
	      perm_idx = GEN_INT (3);
	    }
	  else
	    {
	      if (mode == V16QImode)
		{
		  merge_v16qi = gen_altivec_vmrglb;
		  merge_v8hi = gen_altivec_vmrghh;
		}
	      else
		merge_v8hi = gen_altivec_vmrglh;

	      merge_v4si = gen_altivec_vmrghw;
	      perm_idx = GEN_INT (0);
	    }

	  /* Move to VSX register with direct move.
	     eg: vr_qi[0] = { xxxxxxxA, xxxxxxxx };
		 vr_qi[1] = { xxxxxxxB, xxxxxxxx };
		 ...
		 vr_qi[15] = { xxxxxxxP, xxxxxxxx };  */
	  rtx vr_qi[16];
	  for (i = 0; i < n_elts; i++)
	    {
	      vr_qi[i] = gen_reg_rtx (V16QImode);
	      if (TARGET_POWERPC64)
		emit_insn (gen_p8_mtvsrd_v16qidi2 (vr_qi[i], op[i]));
	      else
		emit_insn (gen_p8_mtvsrwz_v16qisi2 (vr_qi[i], op[i]));
	    }

	  /* Merge/move to vector short.
	     eg: vr_hi[0] = { xxxxxxxx, xxxxxxAB };
		 vr_hi[1] = { xxxxxxxx, xxxxxxCD };
		 ...
		 vr_hi[7] = { xxxxxxxx, xxxxxxOP };  */
	  rtx vr_hi[8];
	  for (i = 0; i < 8; i++)
	    {
	      rtx tmp = vr_qi[i];
	      if (mode == V16QImode)
		{
		  tmp = gen_reg_rtx (V16QImode);
		  emit_insn (merge_v16qi (tmp, vr_qi[2 * i], vr_qi[2 * i + 1]));
		}
	      vr_hi[i] = gen_reg_rtx (V8HImode);
	      emit_move_insn (vr_hi[i], gen_lowpart (V8HImode, tmp));
	    }

	  /* Merge vector short to vector int.
	     eg: vr_si[0] = { xxxxxxxx, xxxxABCD };
		 vr_si[1] = { xxxxxxxx, xxxxEFGH };
		 ...
		 vr_si[3] = { xxxxxxxx, xxxxMNOP };  */
	  rtx vr_si[4];
	  for (i = 0; i < 4; i++)
	    {
	      rtx tmp = gen_reg_rtx (V8HImode);
	      emit_insn (merge_v8hi (tmp, vr_hi[2 * i], vr_hi[2 * i + 1]));
	      vr_si[i] = gen_reg_rtx (V4SImode);
	      emit_move_insn (vr_si[i], gen_lowpart (V4SImode, tmp));
	    }

	  /* Merge vector int to vector long.
	     eg: vr_di[0] = { xxxxxxxx, ABCDEFGH };
		 vr_di[1] = { xxxxxxxx, IJKLMNOP };  */
	  rtx vr_di[2];
	  for (i = 0; i < 2; i++)
	    {
	      rtx tmp = gen_reg_rtx (V4SImode);
	      emit_insn (merge_v4si (tmp, vr_si[2 * i], vr_si[2 * i + 1]));
	      vr_di[i] = gen_reg_rtx (V2DImode);
	      emit_move_insn (vr_di[i], gen_lowpart (V2DImode, tmp));
	    }

	  rtx res = gen_reg_rtx (V2DImode);
	  emit_insn (gen_vsx_xxpermdi_v2di (res, vr_di[0], vr_di[1], perm_idx));
	  emit_insn (gen_rtx_SET (target, gen_lowpart (mode, res)));
	}

      return;
    }

  /* Construct the vector in memory one field at a time
     and load the whole vector.  */
  mem = assign_stack_temp (mode, GET_MODE_SIZE (mode));
  for (i = 0; i < n_elts; i++)
    emit_move_insn (adjust_address_nv (mem, inner_mode,
				    i * GET_MODE_SIZE (inner_mode)),
		    XVECEXP (vals, 0, i));
  emit_move_insn (target, mem);
}

/* Insert VAL into IDX of TARGET, VAL size is same of the vector element, IDX
   is variable and also counts by vector element size for p9 and above.  */

static void
rs6000_expand_vector_set_var_p9 (rtx target, rtx val, rtx idx)
{
  machine_mode mode = GET_MODE (target);

  gcc_assert (VECTOR_MEM_VSX_P (mode) && !CONST_INT_P (idx));

  machine_mode inner_mode = GET_MODE (val);

  int width = GET_MODE_SIZE (inner_mode);

  gcc_assert (width >= 1 && width <= 8);

  int shift = exact_log2 (width);

  machine_mode idx_mode = GET_MODE (idx);

  machine_mode shift_mode;
  rtx (*gen_ashl)(rtx, rtx, rtx);
  rtx (*gen_lvsl)(rtx, rtx);
  rtx (*gen_lvsr)(rtx, rtx);

  if (TARGET_POWERPC64)
    {
      shift_mode = DImode;
      gen_ashl = gen_ashldi3;
      gen_lvsl = gen_altivec_lvsl_reg_di;
      gen_lvsr = gen_altivec_lvsr_reg_di;
    }
  else
    {
      shift_mode = SImode;
      gen_ashl = gen_ashlsi3;
      gen_lvsl = gen_altivec_lvsl_reg_si;
      gen_lvsr = gen_altivec_lvsr_reg_si;
    }
  /* Generate the IDX for permute shift, width is the vector element size.
     idx = idx * width.  */
  rtx tmp = gen_reg_rtx (shift_mode);
  idx = convert_modes (shift_mode, idx_mode, idx, 1);

  emit_insn (gen_ashl (tmp, idx, GEN_INT (shift)));

  /*  lvsr    v1,0,idx.  */
  rtx pcvr = gen_reg_rtx (V16QImode);
  emit_insn (gen_lvsr (pcvr, tmp));

  /*  lvsl    v2,0,idx.  */
  rtx pcvl = gen_reg_rtx (V16QImode);
  emit_insn (gen_lvsl (pcvl, tmp));

  rtx sub_target = simplify_gen_subreg (V16QImode, target, mode, 0);

  rtx permr
    = gen_altivec_vperm_v8hiv16qi (sub_target, sub_target, sub_target, pcvr);
  emit_insn (permr);

  rs6000_expand_vector_set (target, val, const0_rtx);

  rtx perml
    = gen_altivec_vperm_v8hiv16qi (sub_target, sub_target, sub_target, pcvl);
  emit_insn (perml);
}

/* Insert VAL into IDX of TARGET, VAL size is same of the vector element, IDX
   is variable and also counts by vector element size for p7 & p8.  */

static void
rs6000_expand_vector_set_var_p7 (rtx target, rtx val, rtx idx)
{
  machine_mode mode = GET_MODE (target);

  gcc_assert (VECTOR_MEM_VSX_P (mode) && !CONST_INT_P (idx));

  machine_mode inner_mode = GET_MODE (val);
  HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);

  int width = GET_MODE_SIZE (inner_mode);
  gcc_assert (width >= 1 && width <= 4);

  int shift = exact_log2 (width);

  machine_mode idx_mode = GET_MODE (idx);

  machine_mode shift_mode;
  rtx (*gen_ashl)(rtx, rtx, rtx);
  rtx (*gen_add)(rtx, rtx, rtx);
  rtx (*gen_sub)(rtx, rtx, rtx);
  rtx (*gen_lvsl)(rtx, rtx);

  if (TARGET_POWERPC64)
    {
      shift_mode = DImode;
      gen_ashl = gen_ashldi3;
      gen_add = gen_adddi3;
      gen_sub = gen_subdi3;
      gen_lvsl = gen_altivec_lvsl_reg_di;
    }
  else
    {
      shift_mode = SImode;
      gen_ashl = gen_ashlsi3;
      gen_add = gen_addsi3;
      gen_sub = gen_subsi3;
      gen_lvsl = gen_altivec_lvsl_reg_si;
    }

  /*  idx = idx * width.  */
  rtx tmp = gen_reg_rtx (shift_mode);
  idx = convert_modes (shift_mode, idx_mode, idx, 1);

  emit_insn (gen_ashl (tmp, idx, GEN_INT (shift)));

  /*  For LE:  idx = idx + 8.  */
  if (!BYTES_BIG_ENDIAN)
    emit_insn (gen_add (tmp, tmp, GEN_INT (8)));
  else
    emit_insn (gen_sub (tmp, GEN_INT (24 - width), tmp));

  /*  lxv vs33, mask.
      DImode: 0xffffffffffffffff0000000000000000
      SImode: 0x00000000ffffffff0000000000000000
      HImode: 0x000000000000ffff0000000000000000.
      QImode: 0x00000000000000ff0000000000000000.  */
  rtx mask = gen_reg_rtx (V16QImode);
  rtx mask_v2di = gen_reg_rtx (V2DImode);
  rtvec v = rtvec_alloc (2);
  if (!BYTES_BIG_ENDIAN)
    {
      RTVEC_ELT (v, 0) = gen_rtx_CONST_INT (DImode, 0);
      RTVEC_ELT (v, 1) = gen_rtx_CONST_INT (DImode, mode_mask);
    }
  else
    {
      RTVEC_ELT (v, 0) = gen_rtx_CONST_INT (DImode, mode_mask);
      RTVEC_ELT (v, 1) = gen_rtx_CONST_INT (DImode, 0);
    }
  emit_insn (gen_vec_initv2didi (mask_v2di, gen_rtx_PARALLEL (V2DImode, v)));
  rtx sub_mask = simplify_gen_subreg (V16QImode, mask_v2di, V2DImode, 0);
  emit_insn (gen_rtx_SET (mask, sub_mask));

  /*  mtvsrd[wz] f0,tmp_val.  */
  rtx tmp_val = gen_reg_rtx (SImode);
  if (inner_mode == E_SFmode)
    if (TARGET_DIRECT_MOVE_64BIT)
      emit_insn (gen_movsi_from_sf (tmp_val, val));
    else
      {
	rtx stack = rs6000_allocate_stack_temp (SFmode, false, true);
	emit_insn (gen_movsf_hardfloat (stack, val));
	rtx stack2 = copy_rtx (stack);
	PUT_MODE (stack2, SImode);
	emit_move_insn (tmp_val, stack2);
      }
  else
    tmp_val = force_reg (SImode, val);

  rtx val_v16qi = gen_reg_rtx (V16QImode);
  rtx val_v2di = gen_reg_rtx (V2DImode);
  rtvec vec_val = rtvec_alloc (2);
  if (!BYTES_BIG_ENDIAN)
  {
    RTVEC_ELT (vec_val, 0) = gen_rtx_CONST_INT (DImode, 0);
    RTVEC_ELT (vec_val, 1) = tmp_val;
  }
  else
  {
    RTVEC_ELT (vec_val, 0) = tmp_val;
    RTVEC_ELT (vec_val, 1) = gen_rtx_CONST_INT (DImode, 0);
  }
  emit_insn (
    gen_vec_initv2didi (val_v2di, gen_rtx_PARALLEL (V2DImode, vec_val)));
  rtx sub_val = simplify_gen_subreg (V16QImode, val_v2di, V2DImode, 0);
  emit_insn (gen_rtx_SET (val_v16qi, sub_val));

  /*  lvsl    13,0,idx.  */
  rtx pcv = gen_reg_rtx (V16QImode);
  emit_insn (gen_lvsl (pcv, tmp));

  /*  vperm 1,1,1,13.  */
  /*  vperm 0,0,0,13.  */
  rtx val_perm = gen_reg_rtx (V16QImode);
  rtx mask_perm = gen_reg_rtx (V16QImode);
  emit_insn (gen_altivec_vperm_v8hiv16qi (val_perm, val_v16qi, val_v16qi, pcv));
  emit_insn (gen_altivec_vperm_v8hiv16qi (mask_perm, mask, mask, pcv));

  rtx target_v16qi = simplify_gen_subreg (V16QImode, target, mode, 0);

  /*  xxsel 34,34,32,33.  */
  emit_insn (
    gen_vector_select_v16qi (target_v16qi, target_v16qi, val_perm, mask_perm));
}

/* Set field ELT_RTX of TARGET to VAL.  */

void
rs6000_expand_vector_set (rtx target, rtx val, rtx elt_rtx)
{
  machine_mode mode = GET_MODE (target);
  machine_mode inner_mode = GET_MODE_INNER (mode);
  rtx reg = gen_reg_rtx (mode);
  rtx mask, mem, x;
  int width = GET_MODE_SIZE (inner_mode);
  int i;

  val = force_reg (GET_MODE (val), val);

  if (VECTOR_MEM_VSX_P (mode))
    {
      if (!CONST_INT_P (elt_rtx))
	{
	  /* For V2DI/V2DF, could leverage the P9 version to generate xxpermdi
	     when elt_rtx is variable.  */
	  if ((TARGET_P9_VECTOR && TARGET_POWERPC64) || width == 8)
	    {
	      rs6000_expand_vector_set_var_p9 (target, val, elt_rtx);
	      return;
	    }
	  else if (TARGET_VSX)
	    {
	      rs6000_expand_vector_set_var_p7 (target, val, elt_rtx);
	      return;
	    }
	  else
	    gcc_assert (CONST_INT_P (elt_rtx));
	}

      rtx insn = NULL_RTX;

      if (mode == V2DFmode)
	insn = gen_vsx_set_v2df (target, target, val, elt_rtx);

      else if (mode == V2DImode)
	insn = gen_vsx_set_v2di (target, target, val, elt_rtx);

      else if (TARGET_P9_VECTOR && TARGET_POWERPC64)
	{
	  if (mode == V4SImode)
	    insn = gen_vsx_set_v4si_p9 (target, target, val, elt_rtx);
	  else if (mode == V8HImode)
	    insn = gen_vsx_set_v8hi_p9 (target, target, val, elt_rtx);
	  else if (mode == V16QImode)
	    insn = gen_vsx_set_v16qi_p9 (target, target, val, elt_rtx);
	  else if (mode == V4SFmode)
	    insn = gen_vsx_set_v4sf_p9 (target, target, val, elt_rtx);
	}

      if (insn)
	{
	  emit_insn (insn);
	  return;
	}
    }

  /* Simplify setting single element vectors like V1TImode.  */
  if (GET_MODE_SIZE (mode) == GET_MODE_SIZE (inner_mode)
      && INTVAL (elt_rtx) == 0)
    {
      emit_move_insn (target, gen_lowpart (mode, val));
      return;
    }

  /* Load single variable value.  */
  mem = assign_stack_temp (mode, GET_MODE_SIZE (inner_mode));
  emit_move_insn (adjust_address_nv (mem, inner_mode, 0), val);
  x = gen_rtx_UNSPEC (VOIDmode,
		      gen_rtvec (1, const0_rtx), UNSPEC_LVE);
  emit_insn (gen_rtx_PARALLEL (VOIDmode,
			       gen_rtvec (2,
					  gen_rtx_SET (reg, mem),
					  x)));

  /* Linear sequence.  */
  mask = gen_rtx_PARALLEL (V16QImode, rtvec_alloc (16));
  for (i = 0; i < 16; ++i)
    XVECEXP (mask, 0, i) = GEN_INT (i);

  /* Set permute mask to insert element into target.  */
  for (i = 0; i < width; ++i)
    XVECEXP (mask, 0, INTVAL (elt_rtx) * width + i) = GEN_INT (i + 0x10);
  x = gen_rtx_CONST_VECTOR (V16QImode, XVEC (mask, 0));

  if (BYTES_BIG_ENDIAN)
    x = gen_rtx_UNSPEC (mode,
			gen_rtvec (3, target, reg,
				   force_reg (V16QImode, x)),
			UNSPEC_VPERM);
  else
    {
      if (TARGET_P9_VECTOR)
	x = gen_rtx_UNSPEC (mode,
			    gen_rtvec (3, reg, target,
				       force_reg (V16QImode, x)),
			    UNSPEC_VPERMR);
      else
	{
	  /* Invert selector.  We prefer to generate VNAND on P8 so
	     that future fusion opportunities can kick in, but must
	     generate VNOR elsewhere.  */
	  rtx notx = gen_rtx_NOT (V16QImode, force_reg (V16QImode, x));
	  rtx iorx = (TARGET_P8_VECTOR
		      ? gen_rtx_IOR (V16QImode, notx, notx)
		      : gen_rtx_AND (V16QImode, notx, notx));
	  rtx tmp = gen_reg_rtx (V16QImode);
	  emit_insn (gen_rtx_SET (tmp, iorx));

	  /* Permute with operands reversed and adjusted selector.  */
	  x = gen_rtx_UNSPEC (mode, gen_rtvec (3, reg, target, tmp),
			      UNSPEC_VPERM);
	}
    }

  emit_insn (gen_rtx_SET (target, x));
}

/* Extract field ELT from VEC into TARGET.  */

void
rs6000_expand_vector_extract (rtx target, rtx vec, rtx elt)
{
  machine_mode mode = GET_MODE (vec);
  machine_mode inner_mode = GET_MODE_INNER (mode);
  rtx mem;

  if (VECTOR_MEM_VSX_P (mode) && CONST_INT_P (elt))
    {
      switch (mode)
	{
	default:
	  break;
	case E_V1TImode:
	  emit_move_insn (target, gen_lowpart (TImode, vec));
	  break;
	case E_V2DFmode:
	  emit_insn (gen_vsx_extract_v2df (target, vec, elt));
	  return;
	case E_V2DImode:
	  emit_insn (gen_vsx_extract_v2di (target, vec, elt));
	  return;
	case E_V4SFmode:
	  emit_insn (gen_vsx_extract_v4sf (target, vec, elt));
	  return;
	case E_V16QImode:
	  if (TARGET_DIRECT_MOVE_64BIT)
	    {
	      emit_insn (gen_vsx_extract_v16qi (target, vec, elt));
	      return;
	    }
	  else
	    break;
	case E_V8HImode:
	  if (TARGET_DIRECT_MOVE_64BIT)
	    {
	      emit_insn (gen_vsx_extract_v8hi (target, vec, elt));
	      return;
	    }
	  else
	    break;
	case E_V4SImode:
	  if (TARGET_DIRECT_MOVE_64BIT)
	    {
	      emit_insn (gen_vsx_extract_v4si (target, vec, elt));
	      return;
	    }
	  break;
	}
    }
  else if (VECTOR_MEM_VSX_P (mode) && !CONST_INT_P (elt)
	   && TARGET_DIRECT_MOVE_64BIT)
    {
      if (GET_MODE (elt) != DImode)
	{
	  rtx tmp = gen_reg_rtx (DImode);
	  convert_move (tmp, elt, 0);
	  elt = tmp;
	}
      else if (!REG_P (elt))
	elt = force_reg (DImode, elt);

      switch (mode)
	{
	case E_V1TImode:
	  emit_move_insn (target, gen_lowpart (TImode, vec));
	  return;

	case E_V2DFmode:
	  emit_insn (gen_vsx_extract_v2df_var (target, vec, elt));
	  return;

	case E_V2DImode:
	  emit_insn (gen_vsx_extract_v2di_var (target, vec, elt));
	  return;

	case E_V4SFmode:
	  emit_insn (gen_vsx_extract_v4sf_var (target, vec, elt));
	  return;

	case E_V4SImode:
	  emit_insn (gen_vsx_extract_v4si_var (target, vec, elt));
	  return;

	case E_V8HImode:
	  emit_insn (gen_vsx_extract_v8hi_var (target, vec, elt));
	  return;

	case E_V16QImode:
	  emit_insn (gen_vsx_extract_v16qi_var (target, vec, elt));
	  return;

	default:
	  gcc_unreachable ();
	}
    }

  /* Allocate mode-sized buffer.  */
  mem = assign_stack_temp (mode, GET_MODE_SIZE (mode));

  emit_move_insn (mem, vec);
  if (CONST_INT_P (elt))
    {
      int modulo_elt = INTVAL (elt) % GET_MODE_NUNITS (mode);

      /* Add offset to field within buffer matching vector element.  */
      mem = adjust_address_nv (mem, inner_mode,
			       modulo_elt * GET_MODE_SIZE (inner_mode));
      emit_move_insn (target, adjust_address_nv (mem, inner_mode, 0));
    }
  else
    {
      unsigned int ele_size = GET_MODE_SIZE (inner_mode);
      rtx num_ele_m1 = GEN_INT (GET_MODE_NUNITS (mode) - 1);
      rtx new_addr = gen_reg_rtx (Pmode);

      elt = gen_rtx_AND (Pmode, elt, num_ele_m1);
      if (ele_size > 1)
	elt = gen_rtx_MULT (Pmode, elt, GEN_INT (ele_size));
      new_addr = gen_rtx_PLUS (Pmode, XEXP (mem, 0), elt);
      new_addr = change_address (mem, inner_mode, new_addr);
      emit_move_insn (target, new_addr);
    }
}

/* Return the offset within a memory object (MEM) of a vector type to a given
   element within the vector (ELEMENT) with an element size (SCALAR_SIZE).  If
   the element is constant, we return a constant integer.

   Otherwise, we use a base register temporary to calculate the offset after
   masking it to fit within the bounds of the vector and scaling it.  The
   masking is required by the 64-bit ELF version 2 ABI for the vec_extract
   built-in function.  */

static rtx
get_vector_offset (rtx mem, rtx element, rtx base_tmp, unsigned scalar_size)
{
  if (CONST_INT_P (element))
    return GEN_INT (INTVAL (element) * scalar_size);

  /* All insns should use the 'Q' constraint (address is a single register) if
     the element number is not a constant.  */
  gcc_assert (satisfies_constraint_Q (mem));

  /* Mask the element to make sure the element number is between 0 and the
     maximum number of elements - 1 so that we don't generate an address
     outside the vector.  */
  rtx num_ele_m1 = GEN_INT (GET_MODE_NUNITS (GET_MODE (mem)) - 1);
  rtx and_op = gen_rtx_AND (Pmode, element, num_ele_m1);
  emit_insn (gen_rtx_SET (base_tmp, and_op));

  /* Shift the element to get the byte offset from the element number.  */
  int shift = exact_log2 (scalar_size);
  gcc_assert (shift >= 0);

  if (shift > 0)
    {
      rtx shift_op = gen_rtx_ASHIFT (Pmode, base_tmp, GEN_INT (shift));
      emit_insn (gen_rtx_SET (base_tmp, shift_op));
    }

  return base_tmp;
}

/* Helper function update PC-relative addresses when we are adjusting a memory
   address (ADDR) to a vector to point to a scalar field within the vector with
   a constant offset (ELEMENT_OFFSET).  If the address is not valid, we can
   use the base register temporary (BASE_TMP) to form the address.  */

static rtx
adjust_vec_address_pcrel (rtx addr, rtx element_offset, rtx base_tmp)
{
  rtx new_addr = NULL;

  gcc_assert (CONST_INT_P (element_offset));

  if (GET_CODE (addr) == CONST)
    addr = XEXP (addr, 0);

  if (GET_CODE (addr) == PLUS)
    {
      rtx op0 = XEXP (addr, 0);
      rtx op1 = XEXP (addr, 1);

      if (CONST_INT_P (op1))
	{
	  HOST_WIDE_INT offset
	    = INTVAL (XEXP (addr, 1)) + INTVAL (element_offset);

	  if (offset == 0)
	    new_addr = op0;

	  else
	    {
	      rtx plus = gen_rtx_PLUS (Pmode, op0, GEN_INT (offset));
	      new_addr = gen_rtx_CONST (Pmode, plus);
	    }
	}

      else
	{
	  emit_move_insn (base_tmp, addr);
	  new_addr = gen_rtx_PLUS (Pmode, base_tmp, element_offset);
	}
    }

  else if (SYMBOL_REF_P (addr) || LABEL_REF_P (addr))
    {
      rtx plus = gen_rtx_PLUS (Pmode, addr, element_offset);
      new_addr = gen_rtx_CONST (Pmode, plus);
    }

  else
    gcc_unreachable ();

  return new_addr;
}

/* Adjust a memory address (MEM) of a vector type to point to a scalar field
   within the vector (ELEMENT) with a mode (SCALAR_MODE).  Use a base register
   temporary (BASE_TMP) to fixup the address.  Return the new memory address
   that is valid for reads or writes to a given register (SCALAR_REG).

   This function is expected to be called after reload is completed when we are
   splitting insns.  The temporary BASE_TMP might be set multiple times with
   this code.  */

rtx
rs6000_adjust_vec_address (rtx scalar_reg,
			   rtx mem,
			   rtx element,
			   rtx base_tmp,
			   machine_mode scalar_mode)
{
  unsigned scalar_size = GET_MODE_SIZE (scalar_mode);
  rtx addr = XEXP (mem, 0);
  rtx new_addr;

  gcc_assert (!reg_mentioned_p (base_tmp, addr));
  gcc_assert (!reg_mentioned_p (base_tmp, element));

  /* Vector addresses should not have PRE_INC, PRE_DEC, or PRE_MODIFY.  */
  gcc_assert (GET_RTX_CLASS (GET_CODE (addr)) != RTX_AUTOINC);

  /* Calculate what we need to add to the address to get the element
     address.  */
  rtx element_offset = get_vector_offset (mem, element, base_tmp, scalar_size);

  /* Create the new address pointing to the element within the vector.  If we
     are adding 0, we don't have to change the address.  */
  if (element_offset == const0_rtx)
    new_addr = addr;

  /* A simple indirect address can be converted into a reg + offset
     address.  */
  else if (REG_P (addr) || SUBREG_P (addr))
    new_addr = gen_rtx_PLUS (Pmode, addr, element_offset);

  /* For references to local static variables, fold a constant offset into the
     address.  */
  else if (pcrel_local_address (addr, Pmode) && CONST_INT_P (element_offset))
    new_addr = adjust_vec_address_pcrel (addr, element_offset, base_tmp);

  /* Optimize D-FORM addresses with constant offset with a constant element, to
     include the element offset in the address directly.  */
  else if (GET_CODE (addr) == PLUS)
    {
      rtx op0 = XEXP (addr, 0);
      rtx op1 = XEXP (addr, 1);

      gcc_assert (REG_P (op0) || SUBREG_P (op0));
      if (CONST_INT_P (op1) && CONST_INT_P (element_offset))
	{
	  /* op0 should never be r0, because r0+offset is not valid.  But it
	     doesn't hurt to make sure it is not r0.  */
	  gcc_assert (reg_or_subregno (op0) != 0);

	  /* D-FORM address with constant element number.  */
	  HOST_WIDE_INT offset = INTVAL (op1) + INTVAL (element_offset);
	  rtx offset_rtx = GEN_INT (offset);
	  new_addr = gen_rtx_PLUS (Pmode, op0, offset_rtx);
	}
      else
	{
	  /* If we don't have a D-FORM address with a constant element number,
	     add the two elements in the current address.  Then add the offset.

	     Previously, we tried to add the offset to OP1 and change the
	     address to an X-FORM format adding OP0 and BASE_TMP, but it became
	     complicated because we had to verify that op1 was not GPR0 and we
	     had a constant element offset (due to the way ADDI is defined).
	     By doing the add of OP0 and OP1 first, and then adding in the
	     offset, it has the benefit that if D-FORM instructions are
	     allowed, the offset is part of the memory access to the vector
	     element. */
	  emit_insn (gen_rtx_SET (base_tmp, gen_rtx_PLUS (Pmode, op0, op1)));
	  new_addr = gen_rtx_PLUS (Pmode, base_tmp, element_offset);
	}
    }

  else
    {
      emit_move_insn (base_tmp, addr);
      new_addr = gen_rtx_PLUS (Pmode, base_tmp, element_offset);
    }

    /* If the address isn't valid, move the address into the temporary base
       register.  Some reasons it could not be valid include:

       The address offset overflowed the 16 or 34 bit offset size;
       We need to use a DS-FORM load, and the bottom 2 bits are non-zero;
       We need to use a DQ-FORM load, and the bottom 4 bits are non-zero;
       Only X_FORM loads can be done, and the address is D_FORM.  */

  enum insn_form iform
    = address_to_insn_form (new_addr, scalar_mode,
			    reg_to_non_prefixed (scalar_reg, scalar_mode));

  if (iform == INSN_FORM_BAD)
    {
      emit_move_insn (base_tmp, new_addr);
      new_addr = base_tmp;
    }

  return change_address (mem, scalar_mode, new_addr);
}

/* Split a variable vec_extract operation into the component instructions.  */

void
rs6000_split_vec_extract_var (rtx dest, rtx src, rtx element, rtx tmp_gpr,
			      rtx tmp_altivec)
{
  machine_mode mode = GET_MODE (src);
  machine_mode scalar_mode = GET_MODE_INNER (GET_MODE (src));
  unsigned scalar_size = GET_MODE_SIZE (scalar_mode);
  int byte_shift = exact_log2 (scalar_size);

  gcc_assert (byte_shift >= 0);

  /* If we are given a memory address, optimize to load just the element.  We
     don't have to adjust the vector element number on little endian
     systems.  */
  if (MEM_P (src))
    {
      emit_move_insn (dest,
		      rs6000_adjust_vec_address (dest, src, element, tmp_gpr,
						 scalar_mode));
      return;
    }

  else if (REG_P (src) || SUBREG_P (src))
    {
      int num_elements = GET_MODE_NUNITS (mode);
      int bits_in_element = mode_to_bits (GET_MODE_INNER (mode));
      int bit_shift = 7 - exact_log2 (num_elements);
      rtx element2;
      unsigned int dest_regno = reg_or_subregno (dest);
      unsigned int src_regno = reg_or_subregno (src);
      unsigned int element_regno = reg_or_subregno (element);

      gcc_assert (REG_P (tmp_gpr));

      /* See if we want to generate VEXTU{B,H,W}{L,R}X if the destination is in
	 a general purpose register.  */
      if (TARGET_P9_VECTOR
	  && (mode == V16QImode || mode == V8HImode || mode == V4SImode)
	  && INT_REGNO_P (dest_regno)
	  && ALTIVEC_REGNO_P (src_regno)
	  && INT_REGNO_P (element_regno))
	{
	  rtx dest_si = gen_rtx_REG (SImode, dest_regno);
	  rtx element_si = gen_rtx_REG (SImode, element_regno);

	  if (mode == V16QImode)
	    emit_insn (BYTES_BIG_ENDIAN
		       ? gen_vextublx (dest_si, element_si, src)
		       : gen_vextubrx (dest_si, element_si, src));

	  else if (mode == V8HImode)
	    {
	      rtx tmp_gpr_si = gen_rtx_REG (SImode, REGNO (tmp_gpr));
	      emit_insn (gen_ashlsi3 (tmp_gpr_si, element_si, const1_rtx));
	      emit_insn (BYTES_BIG_ENDIAN
			 ? gen_vextuhlx (dest_si, tmp_gpr_si, src)
			 : gen_vextuhrx (dest_si, tmp_gpr_si, src));
	    }


	  else
	    {
	      rtx tmp_gpr_si = gen_rtx_REG (SImode, REGNO (tmp_gpr));
	      emit_insn (gen_ashlsi3 (tmp_gpr_si, element_si, const2_rtx));
	      emit_insn (BYTES_BIG_ENDIAN
			 ? gen_vextuwlx (dest_si, tmp_gpr_si, src)
			 : gen_vextuwrx (dest_si, tmp_gpr_si, src));
	    }

	  return;
	}


      gcc_assert (REG_P (tmp_altivec));

      /* For little endian, adjust element ordering.  For V2DI/V2DF, we can use
	 an XOR, otherwise we need to subtract.  The shift amount is so VSLO
	 will shift the element into the upper position (adding 3 to convert a
	 byte shift into a bit shift).  */
      if (scalar_size == 8)
	{
	  if (!BYTES_BIG_ENDIAN)
	    {
	      emit_insn (gen_xordi3 (tmp_gpr, element, const1_rtx));
	      element2 = tmp_gpr;
	    }
	  else
	    element2 = element;

	  /* Generate RLDIC directly to shift left 6 bits and retrieve 1
	     bit.  */
	  emit_insn (gen_rtx_SET (tmp_gpr,
				  gen_rtx_AND (DImode,
					       gen_rtx_ASHIFT (DImode,
							       element2,
							       GEN_INT (6)),
					       GEN_INT (64))));
	}
      else
	{
	  if (!BYTES_BIG_ENDIAN)
	    {
	      rtx num_ele_m1 = GEN_INT (num_elements - 1);

	      emit_insn (gen_anddi3 (tmp_gpr, element, num_ele_m1));
	      emit_insn (gen_subdi3 (tmp_gpr, num_ele_m1, tmp_gpr));
	      element2 = tmp_gpr;
	    }
	  else
	    element2 = element;

	  emit_insn (gen_ashldi3 (tmp_gpr, element2, GEN_INT (bit_shift)));
	}

      /* Get the value into the lower byte of the Altivec register where VSLO
	 expects it.  */
      if (TARGET_P9_VECTOR)
	emit_insn (gen_vsx_splat_v2di (tmp_altivec, tmp_gpr));
      else if (can_create_pseudo_p ())
	emit_insn (gen_vsx_concat_v2di (tmp_altivec, tmp_gpr, tmp_gpr));
      else
	{
	  rtx tmp_di = gen_rtx_REG (DImode, REGNO (tmp_altivec));
	  emit_move_insn (tmp_di, tmp_gpr);
	  emit_insn (gen_vsx_concat_v2di (tmp_altivec, tmp_di, tmp_di));
	}

      /* Do the VSLO to get the value into the final location.  */
      switch (mode)
	{
	case E_V2DFmode:
	  emit_insn (gen_vsx_vslo_v2df (dest, src, tmp_altivec));
	  return;

	case E_V2DImode:
	  emit_insn (gen_vsx_vslo_v2di (dest, src, tmp_altivec));
	  return;

	case E_V4SFmode:
	  {
	    rtx tmp_altivec_di = gen_rtx_REG (DImode, REGNO (tmp_altivec));
	    rtx tmp_altivec_v4sf = gen_rtx_REG (V4SFmode, REGNO (tmp_altivec));
	    rtx src_v2di = gen_rtx_REG (V2DImode, REGNO (src));
	    emit_insn (gen_vsx_vslo_v2di (tmp_altivec_di, src_v2di,
					  tmp_altivec));

	    emit_insn (gen_vsx_xscvspdp_scalar2 (dest, tmp_altivec_v4sf));
	    return;
	  }

	case E_V4SImode:
	case E_V8HImode:
	case E_V16QImode:
	  {
	    rtx tmp_altivec_di = gen_rtx_REG (DImode, REGNO (tmp_altivec));
	    rtx src_v2di = gen_rtx_REG (V2DImode, REGNO (src));
	    rtx tmp_gpr_di = gen_rtx_REG (DImode, REGNO (dest));
	    emit_insn (gen_vsx_vslo_v2di (tmp_altivec_di, src_v2di,
					  tmp_altivec));
	    emit_move_insn (tmp_gpr_di, tmp_altivec_di);
	    emit_insn (gen_lshrdi3 (tmp_gpr_di, tmp_gpr_di,
				    GEN_INT (64 - bits_in_element)));
	    return;
	  }

	default:
	  gcc_unreachable ();
	}

      return;
    }
  else
    gcc_unreachable ();
 }

/* Return alignment of TYPE.  Existing alignment is ALIGN.  HOW
   selects whether the alignment is abi mandated, optional, or
   both abi and optional alignment.  */
   
unsigned int
rs6000_data_alignment (tree type, unsigned int align, enum data_align how)
{
  if (how != align_opt)
    {
      if (TREE_CODE (type) == VECTOR_TYPE && align < 128)
	align = 128;
    }

  if (how != align_abi)
    {
      if (TREE_CODE (type) == ARRAY_TYPE
	  && TYPE_MODE (TREE_TYPE (type)) == QImode)
	{
	  if (align < BITS_PER_WORD)
	    align = BITS_PER_WORD;
	}
    }

  return align;
}

/* Implement TARGET_SLOW_UNALIGNED_ACCESS.  Altivec vector memory
   instructions simply ignore the low bits; VSX memory instructions
   are aligned to 4 or 8 bytes.  */

static bool
rs6000_slow_unaligned_access (machine_mode mode, unsigned int align)
{
  return (STRICT_ALIGNMENT
	  || (!TARGET_EFFICIENT_UNALIGNED_VSX
	      && ((SCALAR_FLOAT_MODE_NOT_VECTOR_P (mode) && align < 32)
		  || ((VECTOR_MODE_P (mode) || VECTOR_ALIGNMENT_P (mode))
		      && (int) align < VECTOR_ALIGN (mode)))));
}

/* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints.  */

unsigned int
rs6000_special_adjust_field_align (tree type, unsigned int computed)
{
  if (computed <= 32 || TYPE_PACKED (type))
    return computed;

  /* Strip initial arrays.  */
  while (TREE_CODE (type) == ARRAY_TYPE)
    type = TREE_TYPE (type);

  /* If RECORD or UNION, recursively find the first field. */
  while (AGGREGATE_TYPE_P (type))
    {
      tree field = TYPE_FIELDS (type);

      /* Skip all non field decls */
      while (field != NULL
	     && (TREE_CODE (field) != FIELD_DECL
		 || DECL_FIELD_ABI_IGNORED (field)))
	field = DECL_CHAIN (field);

      if (! field)
	break;

      /* A packed field does not contribute any extra alignment.  */
      if (DECL_PACKED (field))
	return computed;

      type = TREE_TYPE (field);

      /* Strip arrays.  */
      while (TREE_CODE (type) == ARRAY_TYPE)
	type = TREE_TYPE (type);
    }

  if (! AGGREGATE_TYPE_P (type) && type != error_mark_node
      && (TYPE_MODE (type) == DFmode || TYPE_MODE (type) == DCmode))
    computed = MIN (computed, 32);

  return computed;
}

/* AIX increases natural record alignment to doubleword if the innermost first
   field is an FP double while the FP fields remain word aligned.
   Only called if TYPE initially is a RECORD or UNION.  */

unsigned int
rs6000_special_round_type_align (tree type, unsigned int computed,
				 unsigned int specified)
{
  unsigned int align = MAX (computed, specified);

  if (TYPE_PACKED (type) || align >= 64)
    return align;

  /* If RECORD or UNION, recursively find the first field. */
  do
    {
      tree field = TYPE_FIELDS (type);

      /* Skip all non field decls */
      while (field != NULL
	     && (TREE_CODE (field) != FIELD_DECL
		 || DECL_FIELD_ABI_IGNORED (field)))
	field = DECL_CHAIN (field);

      if (! field)
	break;

      /* A packed field does not contribute any extra alignment.  */
      if (DECL_PACKED (field))
	return align;

      type = TREE_TYPE (field);

      /* Strip arrays.  */
      while (TREE_CODE (type) == ARRAY_TYPE)
	type = TREE_TYPE (type);
    } while (AGGREGATE_TYPE_P (type));

  if (! AGGREGATE_TYPE_P (type) && type != error_mark_node
      && (TYPE_MODE (type) == DFmode || TYPE_MODE (type) == DCmode))
    align = MAX (align, 64);

  return align;
}

/* Darwin increases record alignment to the natural alignment of
   the first field.  */

unsigned int
darwin_rs6000_special_round_type_align (tree type, unsigned int computed,
					unsigned int specified)
{
  unsigned int align = MAX (computed, specified);

  if (TYPE_PACKED (type))
    return align;

  /* Find the first field, looking down into aggregates.  */
  do {
    tree field = TYPE_FIELDS (type);
    /* Skip all non field decls */
    while (field != NULL
	   && (TREE_CODE (field) != FIELD_DECL
	       || DECL_FIELD_ABI_IGNORED (field)))
      field = DECL_CHAIN (field);
    if (! field)
      break;
    /* A packed field does not contribute any extra alignment.  */
    if (DECL_PACKED (field))
      return align;
    type = TREE_TYPE (field);
    while (TREE_CODE (type) == ARRAY_TYPE)
      type = TREE_TYPE (type);
  } while (AGGREGATE_TYPE_P (type));

  if (! AGGREGATE_TYPE_P (type) && type != error_mark_node)
    align = MAX (align, TYPE_ALIGN (type));

  return align;
}

/* Return 1 for an operand in small memory on V.4/eabi.  */

int
small_data_operand (rtx op ATTRIBUTE_UNUSED,
		    machine_mode mode ATTRIBUTE_UNUSED)
{
#if TARGET_ELF
  rtx sym_ref;

  if (rs6000_sdata == SDATA_NONE || rs6000_sdata == SDATA_DATA)
    return 0;

  if (DEFAULT_ABI != ABI_V4)
    return 0;

  if (SYMBOL_REF_P (op))
    sym_ref = op;

  else if (GET_CODE (op) != CONST
	   || GET_CODE (XEXP (op, 0)) != PLUS
	   || !SYMBOL_REF_P (XEXP (XEXP (op, 0), 0))
	   || !CONST_INT_P (XEXP (XEXP (op, 0), 1)))
    return 0;

  else
    {
      rtx sum = XEXP (op, 0);
      HOST_WIDE_INT summand;

      /* We have to be careful here, because it is the referenced address
	 that must be 32k from _SDA_BASE_, not just the symbol.  */
      summand = INTVAL (XEXP (sum, 1));
      if (summand < 0 || summand > g_switch_value)
	return 0;

      sym_ref = XEXP (sum, 0);
    }

  return SYMBOL_REF_SMALL_P (sym_ref);
#else
  return 0;
#endif
}

/* Return true if either operand is a general purpose register.  */

bool
gpr_or_gpr_p (rtx op0, rtx op1)
{
  return ((REG_P (op0) && INT_REGNO_P (REGNO (op0)))
	  || (REG_P (op1) && INT_REGNO_P (REGNO (op1))));
}

/* Return true if this is a move direct operation between GPR registers and
   floating point/VSX registers.  */

bool
direct_move_p (rtx op0, rtx op1)
{
  if (!REG_P (op0) || !REG_P (op1))
    return false;

  if (!TARGET_DIRECT_MOVE)
    return false;

  int regno0 = REGNO (op0);
  int regno1 = REGNO (op1);
  if (!HARD_REGISTER_NUM_P (regno0) || !HARD_REGISTER_NUM_P (regno1))
    return false;

  if (INT_REGNO_P (regno0) && VSX_REGNO_P (regno1))
    return true;

  if (VSX_REGNO_P (regno0) && INT_REGNO_P (regno1))
    return true;

  return false;
}

/* Return true if the ADDR is an acceptable address for a quad memory
   operation of mode MODE (either LQ/STQ for general purpose registers, or
   LXV/STXV for vector registers under ISA 3.0.  GPR_P is true if this address
   is intended for LQ/STQ.  If it is false, the address is intended for the ISA
   3.0 LXV/STXV instruction.  */

bool
quad_address_p (rtx addr, machine_mode mode, bool strict)
{
  rtx op0, op1;

  if (GET_MODE_SIZE (mode) < 16)
    return false;

  if (legitimate_indirect_address_p (addr, strict))
    return true;

  if (VECTOR_MODE_P (mode) && !mode_supports_dq_form (mode))
    return false;

  /* Is this a valid prefixed address?  If the bottom four bits of the offset
     are non-zero, we could use a prefixed instruction (which does not have the
     DQ-form constraint that the traditional instruction had) instead of
     forcing the unaligned offset to a GPR.  */
  if (address_is_prefixed (addr, mode, NON_PREFIXED_DQ))
    return true;

  if (GET_CODE (addr) != PLUS)
    return false;

  op0 = XEXP (addr, 0);
  if (!REG_P (op0) || !INT_REG_OK_FOR_BASE_P (op0, strict))
    return false;

  op1 = XEXP (addr, 1);
  if (!CONST_INT_P (op1))
    return false;

  return quad_address_offset_p (INTVAL (op1));
}

/* Return true if this is a load or store quad operation.  This function does
   not handle the atomic quad memory instructions.  */

bool
quad_load_store_p (rtx op0, rtx op1)
{
  bool ret;

  if (!TARGET_QUAD_MEMORY)
    ret = false;

  else if (REG_P (op0) && MEM_P (op1))
    ret = (quad_int_reg_operand (op0, GET_MODE (op0))
	   && quad_memory_operand (op1, GET_MODE (op1))
	   && !reg_overlap_mentioned_p (op0, op1));

  else if (MEM_P (op0) && REG_P (op1))
    ret = (quad_memory_operand (op0, GET_MODE (op0))
	   && quad_int_reg_operand (op1, GET_MODE (op1)));

  else
    ret = false;

  if (TARGET_DEBUG_ADDR)
    {
      fprintf (stderr, "\n========== quad_load_store, return %s\n",
	       ret ? "true" : "false");
      debug_rtx (gen_rtx_SET (op0, op1));
    }

  return ret;
}

/* Given an address, return a constant offset term if one exists.  */

static rtx
address_offset (rtx op)
{
  if (GET_CODE (op) == PRE_INC
      || GET_CODE (op) == PRE_DEC)
    op = XEXP (op, 0);
  else if (GET_CODE (op) == PRE_MODIFY
	   || GET_CODE (op) == LO_SUM)
    op = XEXP (op, 1);

  if (GET_CODE (op) == CONST)
    op = XEXP (op, 0);

  if (GET_CODE (op) == PLUS)
    op = XEXP (op, 1);

  if (CONST_INT_P (op))
    return op;

  return NULL_RTX;
}

/* This tests that a lo_sum {constant, symbol, symbol+offset} is valid for
   the mode.  If we can't find (or don't know) the alignment of the symbol
   we assume (optimistically) that it's sufficiently aligned [??? maybe we
   should be pessimistic].  Offsets are validated in the same way as for
   reg + offset.  */
static bool
darwin_rs6000_legitimate_lo_sum_const_p (rtx x, machine_mode mode)
{
  /* We should not get here with this.  */
  gcc_checking_assert (! mode_supports_dq_form (mode));

  if (GET_CODE (x) == CONST)
    x = XEXP (x, 0);

  /* If we are building PIC code, then any symbol must be wrapped in an
     UNSPEC_MACHOPIC_OFFSET so that it will get the picbase subtracted.  */
  bool machopic_offs_p = false;
  if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_MACHOPIC_OFFSET)
    {
      x =  XVECEXP (x, 0, 0);
      machopic_offs_p = true;
    }

  rtx sym = NULL_RTX;
  unsigned HOST_WIDE_INT offset = 0;

  if (GET_CODE (x) == PLUS)
    {
      sym = XEXP (x, 0);
      if (! SYMBOL_REF_P (sym))
	return false;
      if (!CONST_INT_P (XEXP (x, 1)))
	return false;
      offset = INTVAL (XEXP (x, 1));
    }
  else if (SYMBOL_REF_P (x))
    sym = x;
  else if (CONST_INT_P (x))
    offset = INTVAL (x);
  else if (GET_CODE (x) == LABEL_REF)
    offset = 0; // We assume code labels are Pmode aligned
  else
    return false; // not sure what we have here.

  /* If we don't know the alignment of the thing to which the symbol refers,
     we assume optimistically it is "enough".
     ??? maybe we should be pessimistic instead.  */
  unsigned align = 0;

  if (sym)
    {
      tree decl = SYMBOL_REF_DECL (sym);
      /* As noted above, PIC code cannot use a bare SYMBOL_REF.  */
      if (TARGET_MACHO && flag_pic && !machopic_offs_p)
	return false;
#if TARGET_MACHO
      if (MACHO_SYMBOL_INDIRECTION_P (sym))
      /* The decl in an indirection symbol is the original one, which might
	 be less aligned than the indirection.  Our indirections are always
	 pointer-aligned.  */
	;
      else
#endif
      if (decl && DECL_ALIGN (decl))
	align = DECL_ALIGN_UNIT (decl);
   }

  unsigned int extra = 0;
  switch (mode)
    {
    case E_DFmode:
    case E_DDmode:
    case E_DImode:
      /* If we are using VSX scalar loads, restrict ourselves to reg+reg
	 addressing.  */
      if (VECTOR_MEM_VSX_P (mode))
	return false;

      if (!TARGET_POWERPC64)
	extra = 4;
      else if ((offset & 3) || (align & 3))
	return false;
      break;

    case E_TFmode:
    case E_IFmode:
    case E_KFmode:
    case E_TDmode:
    case E_TImode:
    case E_PTImode:
      extra = 8;
      if (!TARGET_POWERPC64)
	extra = 12;
      else if ((offset & 3) || (align & 3))
	return false;
      break;

    default:
      break;
    }

  /* We only care if the access(es) would cause a change to the high part.  */
  offset = sext_hwi (offset, 16);
  return SIGNED_16BIT_OFFSET_EXTRA_P (offset, extra);
}

/* Return true if the MEM operand is a memory operand suitable for use
   with a (full width, possibly multiple) gpr load/store.  On
   powerpc64 this means the offset must be divisible by 4.
   Implements 'Y' constraint.

   Accept direct, indexed, offset, lo_sum and tocref.  Since this is
   a constraint function we know the operand has satisfied a suitable
   memory predicate.

   Offsetting a lo_sum should not be allowed, except where we know by
   alignment that a 32k boundary is not crossed.  Note that by
   "offsetting" here we mean a further offset to access parts of the
   MEM.  It's fine to have a lo_sum where the inner address is offset
   from a sym, since the same sym+offset will appear in the high part
   of the address calculation.  */

bool
mem_operand_gpr (rtx op, machine_mode mode)
{
  unsigned HOST_WIDE_INT offset;
  int extra;
  rtx addr = XEXP (op, 0);

  /* PR85755: Allow PRE_INC and PRE_DEC addresses.  */
  if (TARGET_UPDATE
      && (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
      && mode_supports_pre_incdec_p (mode)
      && legitimate_indirect_address_p (XEXP (addr, 0), false))
    return true;

  /* Allow prefixed instructions if supported.  If the bottom two bits of the
     offset are non-zero, we could use a prefixed instruction (which does not
     have the DS-form constraint that the traditional instruction had) instead
     of forcing the unaligned offset to a GPR.  */
  if (address_is_prefixed (addr, mode, NON_PREFIXED_DS))
    return true;

  /* We need to look through Mach-O PIC unspecs to determine if a lo_sum is
     really OK.  Doing this early avoids teaching all the other machinery
     about them.  */
  if (TARGET_MACHO && GET_CODE (addr) == LO_SUM)
    return darwin_rs6000_legitimate_lo_sum_const_p (XEXP (addr, 1), mode);

  /* Only allow offsettable addresses.  See PRs 83969 and 84279.  */
  if (!rs6000_offsettable_memref_p (op, mode, false))
    return false;

  op = address_offset (addr);
  if (op == NULL_RTX)
    return true;

  offset = INTVAL (op);
  if (TARGET_POWERPC64 && (offset & 3) != 0)
    return false;

  extra = GET_MODE_SIZE (mode) - UNITS_PER_WORD;
  if (extra < 0)
    extra = 0;

  if (GET_CODE (addr) == LO_SUM)
    /* For lo_sum addresses, we must allow any offset except one that
       causes a wrap, so test only the low 16 bits.  */
    offset = sext_hwi (offset, 16);

  return SIGNED_16BIT_OFFSET_EXTRA_P (offset, extra);
}

/* As above, but for DS-FORM VSX insns.  Unlike mem_operand_gpr,
   enforce an offset divisible by 4 even for 32-bit.  */

bool
mem_operand_ds_form (rtx op, machine_mode mode)
{
  unsigned HOST_WIDE_INT offset;
  int extra;
  rtx addr = XEXP (op, 0);

  /* Allow prefixed instructions if supported.  If the bottom two bits of the
     offset are non-zero, we could use a prefixed instruction (which does not
     have the DS-form constraint that the traditional instruction had) instead
     of forcing the unaligned offset to a GPR.  */
  if (address_is_prefixed (addr, mode, NON_PREFIXED_DS))
    return true;

  if (!offsettable_address_p (false, mode, addr))
    return false;

  op = address_offset (addr);
  if (op == NULL_RTX)
    return true;

  offset = INTVAL (op);
  if ((offset & 3) != 0)
    return false;

  extra = GET_MODE_SIZE (mode) - UNITS_PER_WORD;
  if (extra < 0)
    extra = 0;

  if (GET_CODE (addr) == LO_SUM)
    /* For lo_sum addresses, we must allow any offset except one that
       causes a wrap, so test only the low 16 bits.  */
    offset = sext_hwi (offset, 16);

  return SIGNED_16BIT_OFFSET_EXTRA_P (offset, extra);
}

/* Subroutines of rs6000_legitimize_address and rs6000_legitimate_address_p.  */

static bool
reg_offset_addressing_ok_p (machine_mode mode)
{
  switch (mode)
    {
    case E_V16QImode:
    case E_V8HImode:
    case E_V4SFmode:
    case E_V4SImode:
    case E_V2DFmode:
    case E_V2DImode:
    case E_V1TImode:
    case E_TImode:
    case E_TFmode:
    case E_KFmode:
      /* AltiVec/VSX vector modes.  Only reg+reg addressing was valid until the
	 ISA 3.0 vector d-form addressing mode was added.  While TImode is not
	 a vector mode, if we want to use the VSX registers to move it around,
	 we need to restrict ourselves to reg+reg addressing.  Similarly for
	 IEEE 128-bit floating point that is passed in a single vector
	 register.  */
      if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode))
	return mode_supports_dq_form (mode);
      break;

      /* The vector pair/quad types support offset addressing if the
	 underlying vectors support offset addressing.  */
    case E_OOmode:
    case E_XOmode:
      return TARGET_MMA;

    case E_SDmode:
      /* If we can do direct load/stores of SDmode, restrict it to reg+reg
	 addressing for the LFIWZX and STFIWX instructions.  */
      if (TARGET_NO_SDMODE_STACK)
	return false;
      break;

    default:
      break;
    }

  return true;
}

static bool
virtual_stack_registers_memory_p (rtx op)
{
  int regnum;

  if (REG_P (op))
    regnum = REGNO (op);

  else if (GET_CODE (op) == PLUS
	   && REG_P (XEXP (op, 0))
	   && CONST_INT_P (XEXP (op, 1)))
    regnum = REGNO (XEXP (op, 0));

  else
    return false;

  return (regnum >= FIRST_VIRTUAL_REGISTER
	  && regnum <= LAST_VIRTUAL_POINTER_REGISTER);
}

/* Return true if a MODE sized memory accesses to OP plus OFFSET
   is known to not straddle a 32k boundary.  This function is used
   to determine whether -mcmodel=medium code can use TOC pointer
   relative addressing for OP.  This means the alignment of the TOC
   pointer must also be taken into account, and unfortunately that is
   only 8 bytes.  */ 

#ifndef POWERPC64_TOC_POINTER_ALIGNMENT
#define POWERPC64_TOC_POINTER_ALIGNMENT 8
#endif

static bool
offsettable_ok_by_alignment (rtx op, HOST_WIDE_INT offset,
			     machine_mode mode)
{
  tree decl;
  unsigned HOST_WIDE_INT dsize, dalign, lsb, mask;

  if (!SYMBOL_REF_P (op))
    return false;

  /* ISA 3.0 vector d-form addressing is restricted, don't allow
     SYMBOL_REF.  */
  if (mode_supports_dq_form (mode))
    return false;

  dsize = GET_MODE_SIZE (mode);
  decl = SYMBOL_REF_DECL (op);
  if (!decl)
    {
      if (dsize == 0)
	return false;

      /* -fsection-anchors loses the original SYMBOL_REF_DECL when
	 replacing memory addresses with an anchor plus offset.  We
	 could find the decl by rummaging around in the block->objects
	 VEC for the given offset but that seems like too much work.  */
      dalign = BITS_PER_UNIT;
      if (SYMBOL_REF_HAS_BLOCK_INFO_P (op)
	  && SYMBOL_REF_ANCHOR_P (op)
	  && SYMBOL_REF_BLOCK (op) != NULL)
	{
	  struct object_block *block = SYMBOL_REF_BLOCK (op);

	  dalign = block->alignment;
	  offset += SYMBOL_REF_BLOCK_OFFSET (op);
	}
      else if (CONSTANT_POOL_ADDRESS_P (op))
	{
	  /* It would be nice to have get_pool_align()..  */
	  machine_mode cmode = get_pool_mode (op);

	  dalign = GET_MODE_ALIGNMENT (cmode);
	}
    }
  else if (DECL_P (decl))
    {
      dalign = DECL_ALIGN (decl);

      if (dsize == 0)
	{
	  /* Allow BLKmode when the entire object is known to not
	     cross a 32k boundary.  */
	  if (!DECL_SIZE_UNIT (decl))
	    return false;

	  if (!tree_fits_uhwi_p (DECL_SIZE_UNIT (decl)))
	    return false;

	  dsize = tree_to_uhwi (DECL_SIZE_UNIT (decl));
	  if (dsize > 32768)
	    return false;

	  dalign /= BITS_PER_UNIT;
	  if (dalign > POWERPC64_TOC_POINTER_ALIGNMENT)
	    dalign = POWERPC64_TOC_POINTER_ALIGNMENT;
	  return dalign >= dsize;
	}
    }
  else
    gcc_unreachable ();

  /* Find how many bits of the alignment we know for this access.  */
  dalign /= BITS_PER_UNIT;
  if (dalign > POWERPC64_TOC_POINTER_ALIGNMENT)
    dalign = POWERPC64_TOC_POINTER_ALIGNMENT;
  mask = dalign - 1;
  lsb = offset & -offset;
  mask &= lsb - 1;
  dalign = mask + 1;

  return dalign >= dsize;
}

static bool
constant_pool_expr_p (rtx op)
{
  rtx base, offset;

  split_const (op, &base, &offset);
  return (SYMBOL_REF_P (base)
	  && CONSTANT_POOL_ADDRESS_P (base)
	  && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (base), Pmode));
}

/* Create a TOC reference for symbol_ref SYMBOL.  If LARGETOC_REG is non-null,
   use that as the register to put the HIGH value into if register allocation
   is already done.  */

rtx
create_TOC_reference (rtx symbol, rtx largetoc_reg)
{
  rtx tocrel, tocreg, hi;

  gcc_assert (TARGET_TOC);

  if (TARGET_DEBUG_ADDR)
    {
      if (SYMBOL_REF_P (symbol))
	fprintf (stderr, "\ncreate_TOC_reference, (symbol_ref %s)\n",
		 XSTR (symbol, 0));
      else
	{
	  fprintf (stderr, "\ncreate_TOC_reference, code %s:\n",
		   GET_RTX_NAME (GET_CODE (symbol)));
	  debug_rtx (symbol);
	}
    }

  if (!can_create_pseudo_p ())
    df_set_regs_ever_live (TOC_REGISTER, true);

  tocreg = gen_rtx_REG (Pmode, TOC_REGISTER);
  tocrel = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, symbol, tocreg), UNSPEC_TOCREL);
  if (TARGET_CMODEL == CMODEL_SMALL || can_create_pseudo_p ())
    return tocrel;

  hi = gen_rtx_HIGH (Pmode, copy_rtx (tocrel));
  if (largetoc_reg != NULL)
    {
      emit_move_insn (largetoc_reg, hi);
      hi = largetoc_reg;
    }
  return gen_rtx_LO_SUM (Pmode, hi, tocrel);
}

/* These are only used to pass through from print_operand/print_operand_address
   to rs6000_output_addr_const_extra over the intervening function
   output_addr_const which is not target code.  */
static const_rtx tocrel_base_oac, tocrel_offset_oac;

/* Return true if OP is a toc pointer relative address (the output
   of create_TOC_reference).  If STRICT, do not match non-split
   -mcmodel=large/medium toc pointer relative addresses.  If the pointers 
   are non-NULL, place base and offset pieces in TOCREL_BASE_RET and 
   TOCREL_OFFSET_RET respectively.  */

bool
toc_relative_expr_p (const_rtx op, bool strict, const_rtx *tocrel_base_ret,
		     const_rtx *tocrel_offset_ret)
{
  if (!TARGET_TOC)
    return false;

  if (TARGET_CMODEL != CMODEL_SMALL)
    {
      /* When strict ensure we have everything tidy.  */
      if (strict
	  && !(GET_CODE (op) == LO_SUM
	       && REG_P (XEXP (op, 0))
	       && INT_REG_OK_FOR_BASE_P (XEXP (op, 0), strict)))
	return false;

      /* When not strict, allow non-split TOC addresses and also allow
	 (lo_sum (high ..)) TOC addresses created during reload.  */
      if (GET_CODE (op) == LO_SUM)
	op = XEXP (op, 1);
    }

  const_rtx tocrel_base = op;
  const_rtx tocrel_offset = const0_rtx;

  if (GET_CODE (op) == PLUS && add_cint_operand (XEXP (op, 1), GET_MODE (op)))
    {
      tocrel_base = XEXP (op, 0);
      tocrel_offset = XEXP (op, 1);
    }

  if (tocrel_base_ret)
    *tocrel_base_ret = tocrel_base;
  if (tocrel_offset_ret)
    *tocrel_offset_ret = tocrel_offset;

  return (GET_CODE (tocrel_base) == UNSPEC
	  && XINT (tocrel_base, 1) == UNSPEC_TOCREL
	  && REG_P (XVECEXP (tocrel_base, 0, 1))
	  && REGNO (XVECEXP (tocrel_base, 0, 1)) == TOC_REGISTER);
}

/* Return true if X is a constant pool address, and also for cmodel=medium
   if X is a toc-relative address known to be offsettable within MODE.  */

bool
legitimate_constant_pool_address_p (const_rtx x, machine_mode mode,
				    bool strict)
{
  const_rtx tocrel_base, tocrel_offset;
  return (toc_relative_expr_p (x, strict, &tocrel_base, &tocrel_offset)
	  && (TARGET_CMODEL != CMODEL_MEDIUM
	      || constant_pool_expr_p (XVECEXP (tocrel_base, 0, 0))
	      || mode == QImode
	      || offsettable_ok_by_alignment (XVECEXP (tocrel_base, 0, 0),
					      INTVAL (tocrel_offset), mode)));
}

static bool
legitimate_small_data_p (machine_mode mode, rtx x)
{
  return (DEFAULT_ABI == ABI_V4
	  && !flag_pic && !TARGET_TOC
	  && (SYMBOL_REF_P (x) || GET_CODE (x) == CONST)
	  && small_data_operand (x, mode));
}

bool
rs6000_legitimate_offset_address_p (machine_mode mode, rtx x,
				    bool strict, bool worst_case)
{
  unsigned HOST_WIDE_INT offset;
  unsigned int extra;

  if (GET_CODE (x) != PLUS)
    return false;
  if (!REG_P (XEXP (x, 0)))
    return false;
  if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), strict))
    return false;
  if (mode_supports_dq_form (mode))
    return quad_address_p (x, mode, strict);
  if (!reg_offset_addressing_ok_p (mode))
    return virtual_stack_registers_memory_p (x);
  if (legitimate_constant_pool_address_p (x, mode, strict || lra_in_progress))
    return true;
  if (!CONST_INT_P (XEXP (x, 1)))
    return false;

  offset = INTVAL (XEXP (x, 1));
  extra = 0;
  switch (mode)
    {
    case E_DFmode:
    case E_DDmode:
    case E_DImode:
      /* If we are using VSX scalar loads, restrict ourselves to reg+reg
	 addressing.  */
      if (VECTOR_MEM_VSX_P (mode))
	return false;

      if (!worst_case)
	break;
      if (!TARGET_POWERPC64)
	extra = 4;
      else if (offset & 3)
	return false;
      break;

    case E_TFmode:
    case E_IFmode:
    case E_KFmode:
    case E_TDmode:
    case E_TImode:
    case E_PTImode:
      extra = 8;
      if (!worst_case)
	break;
      if (!TARGET_POWERPC64)
	extra = 12;
      else if (offset & 3)
	return false;
      break;

    default:
      break;
    }

  if (TARGET_PREFIXED)
    return SIGNED_34BIT_OFFSET_EXTRA_P (offset, extra);
  else
    return SIGNED_16BIT_OFFSET_EXTRA_P (offset, extra);
}

bool
legitimate_indexed_address_p (rtx x, int strict)
{
  rtx op0, op1;

  if (GET_CODE (x) != PLUS)
    return false;

  op0 = XEXP (x, 0);
  op1 = XEXP (x, 1);

  return (REG_P (op0) && REG_P (op1)
	  && ((INT_REG_OK_FOR_BASE_P (op0, strict)
	       && INT_REG_OK_FOR_INDEX_P (op1, strict))
	      || (INT_REG_OK_FOR_BASE_P (op1, strict)
		  && INT_REG_OK_FOR_INDEX_P (op0, strict))));
}

bool
avoiding_indexed_address_p (machine_mode mode)
{
  unsigned int msize = GET_MODE_SIZE (mode);

  /* Avoid indexed addressing for modes that have non-indexed load/store
     instruction forms.  On power10, vector pairs have an indexed
     form, but vector quads don't.  */
  if (msize > 16)
    return msize != 32;

  return (TARGET_AVOID_XFORM && VECTOR_MEM_NONE_P (mode));
}

bool
legitimate_indirect_address_p (rtx x, int strict)
{
  return REG_P (x) && INT_REG_OK_FOR_BASE_P (x, strict);
}

bool
macho_lo_sum_memory_operand (rtx x, machine_mode mode)
{
  if (!TARGET_MACHO || !flag_pic
      || mode != SImode || !MEM_P (x))
    return false;
  x = XEXP (x, 0);

  if (GET_CODE (x) != LO_SUM)
    return false;
  if (!REG_P (XEXP (x, 0)))
    return false;
  if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), 0))
    return false;
  x = XEXP (x, 1);

  return CONSTANT_P (x);
}

static bool
legitimate_lo_sum_address_p (machine_mode mode, rtx x, int strict)
{
  if (GET_CODE (x) != LO_SUM)
    return false;
  if (!REG_P (XEXP (x, 0)))
    return false;
  if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), strict))
    return false;
  /* quad word addresses are restricted, and we can't use LO_SUM.  */
  if (mode_supports_dq_form (mode))
    return false;
  x = XEXP (x, 1);

  if (TARGET_ELF)
    {
      bool large_toc_ok;

      if (DEFAULT_ABI == ABI_V4 && flag_pic)
	return false;
      /* LRA doesn't use LEGITIMIZE_RELOAD_ADDRESS as it usually calls
	 push_reload from reload pass code.  LEGITIMIZE_RELOAD_ADDRESS
	 recognizes some LO_SUM addresses as valid although this
	 function says opposite.  In most cases, LRA through different
	 transformations can generate correct code for address reloads.
	 It cannot manage only some LO_SUM cases.  So we need to add
	 code here saying that some addresses are still valid.  */
      large_toc_ok = (lra_in_progress && TARGET_CMODEL != CMODEL_SMALL
		      && small_toc_ref (x, VOIDmode));
      if (TARGET_TOC && ! large_toc_ok)
	return false;
      if (GET_MODE_NUNITS (mode) != 1)
	return false;
      if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
	  && !(/* ??? Assume floating point reg based on mode?  */
	       TARGET_HARD_FLOAT && (mode == DFmode || mode == DDmode)))
	return false;

      return CONSTANT_P (x) || large_toc_ok;
    }
  else if (TARGET_MACHO)
    {
      if (GET_MODE_NUNITS (mode) != 1)
	return false;
      if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
	  && !(/* see above  */
	       TARGET_HARD_FLOAT && (mode == DFmode || mode == DDmode)))
	return false;
#if TARGET_MACHO
      if (MACHO_DYNAMIC_NO_PIC_P || !flag_pic)
	return CONSTANT_P (x);
#endif
      /* Macho-O PIC code from here.  */
      if (GET_CODE (x) == CONST)
	x = XEXP (x, 0);

      /* SYMBOL_REFs need to be wrapped in an UNSPEC_MACHOPIC_OFFSET.  */
      if (SYMBOL_REF_P (x))
	return false;

      /* So this is OK if the wrapped object is const.  */
      if (GET_CODE (x) == UNSPEC
	  && XINT (x, 1) == UNSPEC_MACHOPIC_OFFSET)
	return CONSTANT_P (XVECEXP (x, 0, 0));
      return CONSTANT_P (x);
    }
  return false;
}


/* Try machine-dependent ways of modifying an illegitimate address
   to be legitimate.  If we find one, return the new, valid address.
   This is used from only one place: `memory_address' in explow.cc.

   OLDX is the address as it was before break_out_memory_refs was
   called.  In some cases it is useful to look at this to decide what
   needs to be done.

   It is always safe for this function to do nothing.  It exists to
   recognize opportunities to optimize the output.

   On RS/6000, first check for the sum of a register with a constant
   integer that is out of range.  If so, generate code to add the
   constant with the low-order 16 bits masked to the register and force
   this result into another register (this can be done with `cau').
   Then generate an address of REG+(CONST&0xffff), allowing for the
   possibility of bit 16 being a one.

   Then check for the sum of a register and something not constant, try to
   load the other things into a register and return the sum.  */

static rtx
rs6000_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
			   machine_mode mode)
{
  unsigned int extra;

  if (!reg_offset_addressing_ok_p (mode)
      || mode_supports_dq_form (mode))
    {
      if (virtual_stack_registers_memory_p (x))
	return x;

      /* In theory we should not be seeing addresses of the form reg+0,
	 but just in case it is generated, optimize it away.  */
      if (GET_CODE (x) == PLUS && XEXP (x, 1) == const0_rtx)
	return force_reg (Pmode, XEXP (x, 0));

      /* For TImode with load/store quad, restrict addresses to just a single
	 pointer, so it works with both GPRs and VSX registers.  */
      /* Make sure both operands are registers.  */
      else if (GET_CODE (x) == PLUS
	       && (mode != TImode || !TARGET_VSX))
	return gen_rtx_PLUS (Pmode,
			     force_reg (Pmode, XEXP (x, 0)),
			     force_reg (Pmode, XEXP (x, 1)));
      else
	return force_reg (Pmode, x);
    }
  if (SYMBOL_REF_P (x) && !TARGET_MACHO)
    {
      enum tls_model model = SYMBOL_REF_TLS_MODEL (x);
      if (model != 0)
	return rs6000_legitimize_tls_address (x, model);
    }

  extra = 0;
  switch (mode)
    {
    case E_TFmode:
    case E_TDmode:
    case E_TImode:
    case E_PTImode:
    case E_IFmode:
    case E_KFmode:
      /* As in legitimate_offset_address_p we do not assume
	 worst-case.  The mode here is just a hint as to the registers
	 used.  A TImode is usually in gprs, but may actually be in
	 fprs.  Leave worst-case scenario for reload to handle via
	 insn constraints.  PTImode is only GPRs.  */
      extra = 8;
      break;
    default:
      break;
    }

  if (GET_CODE (x) == PLUS
      && REG_P (XEXP (x, 0))
      && CONST_INT_P (XEXP (x, 1))
      && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 1)) + 0x8000)
	  >= 0x10000 - extra))
    {
      HOST_WIDE_INT high_int, low_int;
      rtx sum;
      low_int = sext_hwi (INTVAL (XEXP (x, 1)), 16);
      if (low_int >= 0x8000 - extra)
	low_int = 0;
      high_int = INTVAL (XEXP (x, 1)) - low_int;
      sum = force_operand (gen_rtx_PLUS (Pmode, XEXP (x, 0),
					 gen_int_mode (high_int, Pmode)), 0);
      return plus_constant (Pmode, sum, low_int);
    }
  else if (GET_CODE (x) == PLUS
	   && REG_P (XEXP (x, 0))
	   && !CONST_INT_P (XEXP (x, 1))
	   && GET_MODE_NUNITS (mode) == 1
	   && (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
	       || (/* ??? Assume floating point reg based on mode?  */
		   TARGET_HARD_FLOAT && (mode == DFmode || mode == DDmode)))
	   && !avoiding_indexed_address_p (mode))
    {
      return gen_rtx_PLUS (Pmode, XEXP (x, 0),
			   force_reg (Pmode, force_operand (XEXP (x, 1), 0)));
    }
  else if ((TARGET_ELF
#if TARGET_MACHO
	    || !MACHO_DYNAMIC_NO_PIC_P
#endif
	    )
	   && TARGET_32BIT
	   && TARGET_NO_TOC_OR_PCREL
	   && !flag_pic
	   && !CONST_INT_P (x)
	   && !CONST_WIDE_INT_P (x)
	   && !CONST_DOUBLE_P (x)
	   && CONSTANT_P (x)
	   && GET_MODE_NUNITS (mode) == 1
	   && (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
	       || (/* ??? Assume floating point reg based on mode?  */
		   TARGET_HARD_FLOAT && (mode == DFmode || mode == DDmode))))
    {
      rtx reg = gen_reg_rtx (Pmode);
      if (TARGET_ELF)
	emit_insn (gen_elf_high (reg, x));
      else
	emit_insn (gen_macho_high (Pmode, reg, x));
      return gen_rtx_LO_SUM (Pmode, reg, x);
    }
  else if (TARGET_TOC
	   && SYMBOL_REF_P (x)
	   && constant_pool_expr_p (x)
	   && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (x), Pmode))
    return create_TOC_reference (x, NULL_RTX);
  else
    return x;
}

/* Debug version of rs6000_legitimize_address.  */
static rtx
rs6000_debug_legitimize_address (rtx x, rtx oldx, machine_mode mode)
{
  rtx ret;
  rtx_insn *insns;

  start_sequence ();
  ret = rs6000_legitimize_address (x, oldx, mode);
  insns = get_insns ();
  end_sequence ();

  if (ret != x)
    {
      fprintf (stderr,
	       "\nrs6000_legitimize_address: mode %s, old code %s, "
	       "new code %s, modified\n",
	       GET_MODE_NAME (mode), GET_RTX_NAME (GET_CODE (x)),
	       GET_RTX_NAME (GET_CODE (ret)));

      fprintf (stderr, "Original address:\n");
      debug_rtx (x);

      fprintf (stderr, "oldx:\n");
      debug_rtx (oldx);

      fprintf (stderr, "New address:\n");
      debug_rtx (ret);

      if (insns)
	{
	  fprintf (stderr, "Insns added:\n");
	  debug_rtx_list (insns, 20);
	}
    }
  else
    {
      fprintf (stderr,
	       "\nrs6000_legitimize_address: mode %s, code %s, no change:\n",
	       GET_MODE_NAME (mode), GET_RTX_NAME (GET_CODE (x)));

      debug_rtx (x);
    }

  if (insns)
    emit_insn (insns);

  return ret;
}

/* This is called from dwarf2out.cc via TARGET_ASM_OUTPUT_DWARF_DTPREL.
   We need to emit DTP-relative relocations.  */

static void rs6000_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
static void
rs6000_output_dwarf_dtprel (FILE *file, int size, rtx x)
{
  switch (size)
    {
    case 4:
      fputs ("\t.long\t", file);
      break;
    case 8:
      fputs (DOUBLE_INT_ASM_OP, file);
      break;
    default:
      gcc_unreachable ();
    }
  output_addr_const (file, x);
  if (TARGET_ELF)
    fputs ("@dtprel+0x8000", file);
}

/* Return true if X is a symbol that refers to real (rather than emulated)
   TLS.  */

static bool
rs6000_real_tls_symbol_ref_p (rtx x)
{
  return (SYMBOL_REF_P (x)
	  && SYMBOL_REF_TLS_MODEL (x) >= TLS_MODEL_REAL);
}

/* In the name of slightly smaller debug output, and to cater to
   general assembler lossage, recognize various UNSPEC sequences
   and turn them back into a direct symbol reference.  */

static rtx
rs6000_delegitimize_address (rtx orig_x)
{
  rtx x, y, offset;

  /* UNSPEC_FUSION_GPR is created by the peephole2 for power8 fusion.  It
     encodes loading up the high part of the address of a TOC reference along
     with a load of a GPR using the same base register used for the load.  We
     return the original SYMBOL_REF.

	(set (reg:INT1 <reg>
	     (unspec:INT1 [<combined-address>] UNSPEC_FUSION_GPR)))

     UNSPEC_PCREL_OPT_LD_ADDR is used by the power10 PCREL_OPT pass.  These
     UNSPECs include the external SYMBOL_REF along with the value being loaded.
     We return the original SYMBOL_REF.

	(parallel [(set (reg:DI <base-reg>)
			(unspec:DI [(symbol_ref <symbol>)
				    (const_int <marker>)]
				   UNSPEC_PCREL_OPT_LD_ADDR))
		   (set (reg:DI <load-reg>)
			(unspec:DI [(const_int 0)]
				   UNSPEC_PCREL_OPT_LD_DATA))])

     UNSPEC_PCREL_OPT_LD_SAME_REG is an alternative that is used if the
     GPR being loaded is the same as the GPR used to hold the external address.

	(set (reg:DI <base-reg>)
	     (unspec:DI [(symbol_ref <symbol>)
			 (const_int <marker>)]
			UNSPEC_PCREL_OPT_LD_SAME_REG))

     UNSPEC_PCREL_OPT_ST_ADDR is used by the power10 PCREL_OPT pass.  This
     UNSPEC include the external SYMBOL_REF along with the value being loaded.
     We return the original SYMBOL_REF.

	(parallel [(set (reg:DI <base-reg>)
			(unspec:DI [(symbol_ref <symbol>)
				    (const_int <marker>)]
				   UNSPEC_PCREL_OPT_ST_ADDR))
		   (use (reg <store-reg>))])  */

  if (GET_CODE (orig_x) == UNSPEC)
    switch (XINT (orig_x, 1))
      {
      case UNSPEC_FUSION_GPR:
      case UNSPEC_PCREL_OPT_LD_ADDR:
      case UNSPEC_PCREL_OPT_LD_SAME_REG:
      case UNSPEC_PCREL_OPT_ST_ADDR:
	orig_x = XVECEXP (orig_x, 0, 0);
	break;

      default:
	break;
      }

  orig_x = delegitimize_mem_from_attrs (orig_x);

  x = orig_x;
  if (MEM_P (x))
    x = XEXP (x, 0);

  y = x;
  if (TARGET_CMODEL != CMODEL_SMALL && GET_CODE (y) == LO_SUM)
    y = XEXP (y, 1);

  offset = NULL_RTX;
  if (GET_CODE (y) == PLUS
      && GET_MODE (y) == Pmode
      && CONST_INT_P (XEXP (y, 1)))
    {
      offset = XEXP (y, 1);
      y = XEXP (y, 0);
    }

  if (GET_CODE (y) == UNSPEC && XINT (y, 1) == UNSPEC_TOCREL)
    {
      y = XVECEXP (y, 0, 0);

#ifdef HAVE_AS_TLS
      /* Do not associate thread-local symbols with the original
	 constant pool symbol.  */
      if (TARGET_XCOFF
	  && SYMBOL_REF_P (y)
	  && CONSTANT_POOL_ADDRESS_P (y)
	  && rs6000_real_tls_symbol_ref_p (get_pool_constant (y)))
	return orig_x;
#endif

      if (offset != NULL_RTX)
	y = gen_rtx_PLUS (Pmode, y, offset);
      if (!MEM_P (orig_x))
	return y;
      else
	return replace_equiv_address_nv (orig_x, y);
    }

  if (TARGET_MACHO
      && GET_CODE (orig_x) == LO_SUM
      && GET_CODE (XEXP (orig_x, 1)) == CONST)
    {
      y = XEXP (XEXP (orig_x, 1), 0);
      if (GET_CODE (y) == UNSPEC && XINT (y, 1) == UNSPEC_MACHOPIC_OFFSET)
	return XVECEXP (y, 0, 0);
    }

  return orig_x;
}

/* Return true if X shouldn't be emitted into the debug info.
   The linker doesn't like .toc section references from
   .debug_* sections, so reject .toc section symbols.  */

static bool
rs6000_const_not_ok_for_debug_p (rtx x)
{
  if (GET_CODE (x) == UNSPEC)
    return true;
  if (SYMBOL_REF_P (x)
      && CONSTANT_POOL_ADDRESS_P (x))
    {
      rtx c = get_pool_constant (x);
      machine_mode cmode = get_pool_mode (x);
      if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (c, cmode))
	return true;
    }

  return false;
}

/* Implement the TARGET_LEGITIMATE_COMBINED_INSN hook.  */

static bool
rs6000_legitimate_combined_insn (rtx_insn *insn)
{
  int icode = INSN_CODE (insn);

  /* Reject creating doloop insns.  Combine should not be allowed
     to create these for a number of reasons:
     1) In a nested loop, if combine creates one of these in an
     outer loop and the register allocator happens to allocate ctr
     to the outer loop insn, then the inner loop can't use ctr.
     Inner loops ought to be more highly optimized.
     2) Combine often wants to create one of these from what was
     originally a three insn sequence, first combining the three
     insns to two, then to ctrsi/ctrdi.  When ctrsi/ctrdi is not
     allocated ctr, the splitter takes use back to the three insn
     sequence.  It's better to stop combine at the two insn
     sequence.
     3) Faced with not being able to allocate ctr for ctrsi/crtdi
     insns, the register allocator sometimes uses floating point
     or vector registers for the pseudo.  Since ctrsi/ctrdi is a
     jump insn and output reloads are not implemented for jumps,
     the ctrsi/ctrdi splitters need to handle all possible cases.
     That's a pain, and it gets to be seriously difficult when a
     splitter that runs after reload needs memory to transfer from
     a gpr to fpr.  See PR70098 and PR71763 which are not fixed
     for the difficult case.  It's better to not create problems
     in the first place.  */
  if (icode != CODE_FOR_nothing
      && (icode == CODE_FOR_bdz_si
	  || icode == CODE_FOR_bdz_di
	  || icode == CODE_FOR_bdnz_si
	  || icode == CODE_FOR_bdnz_di
	  || icode == CODE_FOR_bdztf_si
	  || icode == CODE_FOR_bdztf_di
	  || icode == CODE_FOR_bdnztf_si
	  || icode == CODE_FOR_bdnztf_di))
    return false;

  return true;
}

/* Construct the SYMBOL_REF for the tls_get_addr function.  */

static GTY(()) rtx rs6000_tls_symbol;
static rtx
rs6000_tls_get_addr (void)
{
  if (!rs6000_tls_symbol)
    rs6000_tls_symbol = init_one_libfunc ("__tls_get_addr");

  return rs6000_tls_symbol;
}

/* Construct the SYMBOL_REF for TLS GOT references.  */

static GTY(()) rtx rs6000_got_symbol;
rtx
rs6000_got_sym (void)
{
  if (!rs6000_got_symbol)
    {
      rs6000_got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
      SYMBOL_REF_FLAGS (rs6000_got_symbol) |= SYMBOL_FLAG_LOCAL;
      SYMBOL_REF_FLAGS (rs6000_got_symbol) |= SYMBOL_FLAG_EXTERNAL;
    }

  return rs6000_got_symbol;
}

/* AIX Thread-Local Address support.  */

static rtx
rs6000_legitimize_tls_address_aix (rtx addr, enum tls_model model)
{
  rtx sym, mem, tocref, tlsreg, tmpreg, dest;
  const char *name;
  char *tlsname;

  /* Place addr into TOC constant pool.  */
  sym = force_const_mem (GET_MODE (addr), addr);

  /* Output the TOC entry and create the MEM referencing the value.  */
  if (constant_pool_expr_p (XEXP (sym, 0))
      && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (XEXP (sym, 0)), Pmode))
    {
      tocref = create_TOC_reference (XEXP (sym, 0), NULL_RTX);
      mem = gen_const_mem (Pmode, tocref);
      set_mem_alias_set (mem, get_TOC_alias_set ());
    }
  else
    return sym;

  /* Use global-dynamic for local-dynamic.  */
  if (model == TLS_MODEL_GLOBAL_DYNAMIC
      || model == TLS_MODEL_LOCAL_DYNAMIC)
    {
      /* Create new TOC reference for @m symbol.  */
      name = XSTR (XVECEXP (XEXP (mem, 0), 0, 0), 0);
      tlsname = XALLOCAVEC (char, strlen (name) + 1);
      strcpy (tlsname, "*LCM");
      strcat (tlsname, name + 3);
      rtx modaddr = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (tlsname));
      SYMBOL_REF_FLAGS (modaddr) |= SYMBOL_FLAG_LOCAL;
      tocref = create_TOC_reference (modaddr, NULL_RTX);
      rtx modmem = gen_const_mem (Pmode, tocref);
      set_mem_alias_set (modmem, get_TOC_alias_set ());
      
      rtx modreg = gen_reg_rtx (Pmode);
      emit_insn (gen_rtx_SET (modreg, modmem));

      tmpreg = gen_reg_rtx (Pmode);
      emit_insn (gen_rtx_SET (tmpreg, mem));

      dest = gen_reg_rtx (Pmode);
      if (TARGET_32BIT)
	emit_insn (gen_tls_get_addrsi (dest, modreg, tmpreg));
      else
	emit_insn (gen_tls_get_addrdi (dest, modreg, tmpreg));
      return dest;
    }
  /* Obtain TLS pointer: 32 bit call or 64 bit GPR 13.  */
  else if (TARGET_32BIT)
    {
      tlsreg = gen_reg_rtx (SImode);
      emit_insn (gen_tls_get_tpointer (tlsreg));
    }
  else
    {
      tlsreg = gen_rtx_REG (DImode, 13);
      xcoff_tls_exec_model_detected = true;
    }

  /* Load the TOC value into temporary register.  */
  tmpreg = gen_reg_rtx (Pmode);
  emit_insn (gen_rtx_SET (tmpreg, mem));
  set_unique_reg_note (get_last_insn (), REG_EQUAL,
		       gen_rtx_MINUS (Pmode, addr, tlsreg));

  /* Add TOC symbol value to TLS pointer.  */
  dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, tmpreg, tlsreg));

  return dest;
}

/* Passes the tls arg value for global dynamic and local dynamic
   emit_library_call_value in rs6000_legitimize_tls_address to
   rs6000_call_aix and rs6000_call_sysv.  This is used to emit the
   marker relocs put on __tls_get_addr calls.  */
static rtx global_tlsarg;

/* ADDR contains a thread-local SYMBOL_REF.  Generate code to compute
   this (thread-local) address.  */

static rtx
rs6000_legitimize_tls_address (rtx addr, enum tls_model model)
{
  rtx dest, insn;

  if (TARGET_XCOFF)
    return rs6000_legitimize_tls_address_aix (addr, model);

  dest = gen_reg_rtx (Pmode);
  if (model == TLS_MODEL_LOCAL_EXEC
      && (rs6000_tls_size == 16 || rs6000_pcrel_p ()))
    {
      rtx tlsreg;

      if (TARGET_64BIT)
	{
	  tlsreg = gen_rtx_REG (Pmode, 13);
	  insn = gen_tls_tprel_64 (dest, tlsreg, addr);
	}
      else
	{
	  tlsreg = gen_rtx_REG (Pmode, 2);
	  insn = gen_tls_tprel_32 (dest, tlsreg, addr);
	}
      emit_insn (insn);
    }
  else if (model == TLS_MODEL_LOCAL_EXEC && rs6000_tls_size == 32)
    {
      rtx tlsreg, tmp;

      tmp = gen_reg_rtx (Pmode);
      if (TARGET_64BIT)
	{
	  tlsreg = gen_rtx_REG (Pmode, 13);
	  insn = gen_tls_tprel_ha_64 (tmp, tlsreg, addr);
	}
      else
	{
	  tlsreg = gen_rtx_REG (Pmode, 2);
	  insn = gen_tls_tprel_ha_32 (tmp, tlsreg, addr);
	}
      emit_insn (insn);
      if (TARGET_64BIT)
	insn = gen_tls_tprel_lo_64 (dest, tmp, addr);
      else
	insn = gen_tls_tprel_lo_32 (dest, tmp, addr);
      emit_insn (insn);
    }
  else
    {
      rtx got, tga, tmp1, tmp2;

      /* We currently use relocations like @got@tlsgd for tls, which
	 means the linker will handle allocation of tls entries, placing
	 them in the .got section.  So use a pointer to the .got section,
	 not one to secondary TOC sections used by 64-bit -mminimal-toc,
	 or to secondary GOT sections used by 32-bit -fPIC.  */
      if (rs6000_pcrel_p ())
	got = const0_rtx;
      else if (TARGET_64BIT)
	got = gen_rtx_REG (Pmode, 2);
      else
	{
	  if (flag_pic == 1)
	    got = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
	  else
	    {
	      rtx gsym = rs6000_got_sym ();
	      got = gen_reg_rtx (Pmode);
	      if (flag_pic == 0)
		rs6000_emit_move (got, gsym, Pmode);
	      else
		{
		  rtx mem, lab;

		  tmp1 = gen_reg_rtx (Pmode);
		  tmp2 = gen_reg_rtx (Pmode);
		  mem = gen_const_mem (Pmode, tmp1);
		  lab = gen_label_rtx ();
		  emit_insn (gen_load_toc_v4_PIC_1b (gsym, lab));
		  emit_move_insn (tmp1, gen_rtx_REG (Pmode, LR_REGNO));
		  if (TARGET_LINK_STACK)
		    emit_insn (gen_addsi3 (tmp1, tmp1, GEN_INT (4)));
		  emit_move_insn (tmp2, mem);
		  rtx_insn *last = emit_insn (gen_addsi3 (got, tmp1, tmp2));
		  set_unique_reg_note (last, REG_EQUAL, gsym);
		}
	    }
	}

      if (model == TLS_MODEL_GLOBAL_DYNAMIC)
	{
	  rtx arg = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, addr, got),
				    UNSPEC_TLSGD);
	  tga = rs6000_tls_get_addr ();
	  rtx argreg = gen_rtx_REG (Pmode, 3);
	  emit_insn (gen_rtx_SET (argreg, arg));
	  global_tlsarg = arg;
	  emit_library_call_value (tga, dest, LCT_CONST, Pmode, argreg, Pmode);
	  global_tlsarg = NULL_RTX;

	  /* Make a note so that the result of this call can be CSEd.  */
	  rtvec vec = gen_rtvec (1, copy_rtx (arg));
	  rtx uns = gen_rtx_UNSPEC (Pmode, vec, UNSPEC_TLS_GET_ADDR);
	  set_unique_reg_note (get_last_insn (), REG_EQUAL, uns);
	}
      else if (model == TLS_MODEL_LOCAL_DYNAMIC)
	{
	  rtx arg = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, got), UNSPEC_TLSLD);
	  tga = rs6000_tls_get_addr ();
	  tmp1 = gen_reg_rtx (Pmode);
	  rtx argreg = gen_rtx_REG (Pmode, 3);
	  emit_insn (gen_rtx_SET (argreg, arg));
	  global_tlsarg = arg;
	  emit_library_call_value (tga, tmp1, LCT_CONST, Pmode, argreg, Pmode);
	  global_tlsarg = NULL_RTX;

	  /* Make a note so that the result of this call can be CSEd.  */
	  rtvec vec = gen_rtvec (1, copy_rtx (arg));
	  rtx uns = gen_rtx_UNSPEC (Pmode, vec, UNSPEC_TLS_GET_ADDR);
	  set_unique_reg_note (get_last_insn (), REG_EQUAL, uns);

	  if (rs6000_tls_size == 16 || rs6000_pcrel_p ())
	    {
	      if (TARGET_64BIT)
		insn = gen_tls_dtprel_64 (dest, tmp1, addr);
	      else
		insn = gen_tls_dtprel_32 (dest, tmp1, addr);
	    }
	  else if (rs6000_tls_size == 32)
	    {
	      tmp2 = gen_reg_rtx (Pmode);
	      if (TARGET_64BIT)
		insn = gen_tls_dtprel_ha_64 (tmp2, tmp1, addr);
	      else
		insn = gen_tls_dtprel_ha_32 (tmp2, tmp1, addr);
	      emit_insn (insn);
	      if (TARGET_64BIT)
		insn = gen_tls_dtprel_lo_64 (dest, tmp2, addr);
	      else
		insn = gen_tls_dtprel_lo_32 (dest, tmp2, addr);
	    }
	  else
	    {
	      tmp2 = gen_reg_rtx (Pmode);
	      if (TARGET_64BIT)
		insn = gen_tls_got_dtprel_64 (tmp2, got, addr);
	      else
		insn = gen_tls_got_dtprel_32 (tmp2, got, addr);
	      emit_insn (insn);
	      insn = gen_rtx_SET (dest, gen_rtx_PLUS (Pmode, tmp2, tmp1));
	    }
	  emit_insn (insn);
	}
      else
	{
	  /* IE, or 64-bit offset LE.  */
	  tmp2 = gen_reg_rtx (Pmode);
	  if (TARGET_64BIT)
	    insn = gen_tls_got_tprel_64 (tmp2, got, addr);
	  else
	    insn = gen_tls_got_tprel_32 (tmp2, got, addr);
	  emit_insn (insn);
	  if (rs6000_pcrel_p ())
	    {
	      if (TARGET_64BIT)
		insn = gen_tls_tls_pcrel_64 (dest, tmp2, addr);
	      else
		insn = gen_tls_tls_pcrel_32 (dest, tmp2, addr);
	    }
	  else if (TARGET_64BIT)
	    insn = gen_tls_tls_64 (dest, tmp2, addr);
	  else
	    insn = gen_tls_tls_32 (dest, tmp2, addr);
	  emit_insn (insn);
	}
    }

  return dest;
}

/* Only create the global variable for the stack protect guard if we are using
   the global flavor of that guard.  */
static tree
rs6000_init_stack_protect_guard (void)
{
  if (rs6000_stack_protector_guard == SSP_GLOBAL)
    return default_stack_protect_guard ();

  return NULL_TREE;
}

/* Implement TARGET_CANNOT_FORCE_CONST_MEM.  */

static bool
rs6000_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
  /* If GET_CODE (x) is HIGH, the 'X' represets the high part of a symbol_ref.
     It can not be put into a constant pool.  e.g.
     (high:DI (unspec:DI [(symbol_ref/u:DI ("*.LC0")..)
     (high:DI (symbol_ref:DI ("var")..)).  */
  if (GET_CODE (x) == HIGH)
    return true;

  /* A TLS symbol in the TOC cannot contain a sum.  */
  if (GET_CODE (x) == CONST
      && GET_CODE (XEXP (x, 0)) == PLUS
      && SYMBOL_REF_P (XEXP (XEXP (x, 0), 0))
      && SYMBOL_REF_TLS_MODEL (XEXP (XEXP (x, 0), 0)) != 0)
    return true;

  /* Allow AIX TOC TLS symbols in the constant pool,
     but not ELF TLS symbols.  */
  return TARGET_ELF && tls_referenced_p (x);
}

/* Return true iff the given SYMBOL_REF refers to a constant pool entry
   that we have put in the TOC, or for cmodel=medium, if the SYMBOL_REF
   can be addressed relative to the toc pointer.  */

static bool
use_toc_relative_ref (rtx sym, machine_mode mode)
{
  return ((constant_pool_expr_p (sym)
	   && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (sym),
					       get_pool_mode (sym)))
	  || (TARGET_CMODEL == CMODEL_MEDIUM
	      && SYMBOL_REF_LOCAL_P (sym)
	      && GET_MODE_SIZE (mode) <= POWERPC64_TOC_POINTER_ALIGNMENT));
}

/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
   that is a valid memory address for an instruction.
   The MODE argument is the machine mode for the MEM expression
   that wants to use this address.

   On the RS/6000, there are four valid address: a SYMBOL_REF that
   refers to a constant pool entry of an address (or the sum of it
   plus a constant), a short (16-bit signed) constant plus a register,
   the sum of two registers, or a register indirect, possibly with an
   auto-increment.  For DFmode, DDmode and DImode with a constant plus
   register, we must ensure that both words are addressable or PowerPC64
   with offset word aligned.

   For modes spanning multiple registers (DFmode and DDmode in 32-bit GPRs,
   32-bit DImode, TImode, TFmode, TDmode), indexed addressing cannot be used
   because adjacent memory cells are accessed by adding word-sized offsets
   during assembly output.  */
static bool
rs6000_legitimate_address_p (machine_mode mode, rtx x, bool reg_ok_strict)
{
  bool reg_offset_p = reg_offset_addressing_ok_p (mode);
  bool quad_offset_p = mode_supports_dq_form (mode);

  if (TARGET_ELF && RS6000_SYMBOL_REF_TLS_P (x))
    return 0;

  /* Handle unaligned altivec lvx/stvx type addresses.  */
  if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)
      && GET_CODE (x) == AND
      && CONST_INT_P (XEXP (x, 1))
      && INTVAL (XEXP (x, 1)) == -16)
    {
      x = XEXP (x, 0);
      return (legitimate_indirect_address_p (x, reg_ok_strict)
	      || legitimate_indexed_address_p (x, reg_ok_strict)
	      || virtual_stack_registers_memory_p (x));
    }

  if (legitimate_indirect_address_p (x, reg_ok_strict))
    return 1;
  if (TARGET_UPDATE
      && (GET_CODE (x) == PRE_INC || GET_CODE (x) == PRE_DEC)
      && mode_supports_pre_incdec_p (mode)
      && legitimate_indirect_address_p (XEXP (x, 0), reg_ok_strict))
    return 1;

  /* Handle prefixed addresses (PC-relative or 34-bit offset).  */
  if (address_is_prefixed (x, mode, NON_PREFIXED_DEFAULT))
    return 1;

  /* Handle restricted vector d-form offsets in ISA 3.0.  */
  if (quad_offset_p)
    {
      if (quad_address_p (x, mode, reg_ok_strict))
	return 1;
    }
  else if (virtual_stack_registers_memory_p (x))
    return 1;

  else if (reg_offset_p)
    {
      if (legitimate_small_data_p (mode, x))
	return 1;
      if (legitimate_constant_pool_address_p (x, mode,
					     reg_ok_strict || lra_in_progress))
	return 1;
    }

  /* For TImode, if we have TImode in VSX registers, only allow register
     indirect addresses.  This will allow the values to go in either GPRs
     or VSX registers without reloading.  The vector types would tend to
     go into VSX registers, so we allow REG+REG, while TImode seems
     somewhat split, in that some uses are GPR based, and some VSX based.  */
  /* FIXME: We could loosen this by changing the following to
       if (mode == TImode && TARGET_QUAD_MEMORY && TARGET_VSX)
     but currently we cannot allow REG+REG addressing for TImode.  See
     PR72827 for complete details on how this ends up hoodwinking DSE.  */
  if (mode == TImode && TARGET_VSX)
    return 0;
  /* If not REG_OK_STRICT (before reload) let pass any stack offset.  */
  if (! reg_ok_strict
      && reg_offset_p
      && GET_CODE (x) == PLUS
      && REG_P (XEXP (x, 0))
      && (XEXP (x, 0) == virtual_stack_vars_rtx
	  || XEXP (x, 0) == arg_pointer_rtx)
      && CONST_INT_P (XEXP (x, 1)))
    return 1;
  if (rs6000_legitimate_offset_address_p (mode, x, reg_ok_strict, false))
    return 1;
  if (!FLOAT128_2REG_P (mode)
      && (TARGET_HARD_FLOAT
	  || TARGET_POWERPC64
	  || (mode != DFmode && mode != DDmode))
      && (TARGET_POWERPC64 || mode != DImode)
      && (mode != TImode || VECTOR_MEM_VSX_P (TImode))
      && mode != PTImode
      && !avoiding_indexed_address_p (mode)
      && legitimate_indexed_address_p (x, reg_ok_strict))
    return 1;
  if (TARGET_UPDATE && GET_CODE (x) == PRE_MODIFY
      && mode_supports_pre_modify_p (mode)
      && legitimate_indirect_address_p (XEXP (x, 0), reg_ok_strict)
      && (rs6000_legitimate_offset_address_p (mode, XEXP (x, 1),
					      reg_ok_strict, false)
	  || (!avoiding_indexed_address_p (mode)
	      && legitimate_indexed_address_p (XEXP (x, 1), reg_ok_strict)))
      && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
    {
      /* There is no prefixed version of the load/store with update.  */
      rtx addr = XEXP (x, 1);
      return !address_is_prefixed (addr, mode, NON_PREFIXED_DEFAULT);
    }
  if (reg_offset_p && !quad_offset_p
      && legitimate_lo_sum_address_p (mode, x, reg_ok_strict))
    return 1;
  return 0;
}

/* Debug version of rs6000_legitimate_address_p.  */
static bool
rs6000_debug_legitimate_address_p (machine_mode mode, rtx x,
				   bool reg_ok_strict)
{
  bool ret = rs6000_legitimate_address_p (mode, x, reg_ok_strict);
  fprintf (stderr,
	   "\nrs6000_legitimate_address_p: return = %s, mode = %s, "
	   "strict = %d, reload = %s, code = %s\n",
	   ret ? "true" : "false",
	   GET_MODE_NAME (mode),
	   reg_ok_strict,
	   (reload_completed ? "after" : "before"),
	   GET_RTX_NAME (GET_CODE (x)));
  debug_rtx (x);

  return ret;
}

/* Implement TARGET_MODE_DEPENDENT_ADDRESS_P.  */

static bool
rs6000_mode_dependent_address_p (const_rtx addr,
				 addr_space_t as ATTRIBUTE_UNUSED)
{
  return rs6000_mode_dependent_address_ptr (addr);
}

/* Go to LABEL if ADDR (a legitimate address expression)
   has an effect that depends on the machine mode it is used for.

   On the RS/6000 this is true of all integral offsets (since AltiVec
   and VSX modes don't allow them) or is a pre-increment or decrement.

   ??? Except that due to conceptual problems in offsettable_address_p
   we can't really report the problems of integral offsets.  So leave
   this assuming that the adjustable offset must be valid for the
   sub-words of a TFmode operand, which is what we had before.  */

static bool
rs6000_mode_dependent_address (const_rtx addr)
{
  switch (GET_CODE (addr))
    {
    case PLUS:
      /* Any offset from virtual_stack_vars_rtx and arg_pointer_rtx
	 is considered a legitimate address before reload, so there
	 are no offset restrictions in that case.  Note that this
	 condition is safe in strict mode because any address involving
	 virtual_stack_vars_rtx or arg_pointer_rtx would already have
	 been rejected as illegitimate.  */
      if (XEXP (addr, 0) != virtual_stack_vars_rtx
	  && XEXP (addr, 0) != arg_pointer_rtx
	  && CONST_INT_P (XEXP (addr, 1)))
	{
	  HOST_WIDE_INT val = INTVAL (XEXP (addr, 1));
	  HOST_WIDE_INT extra = TARGET_POWERPC64 ? 8 : 12;
	  if (TARGET_PREFIXED)
	    return !SIGNED_34BIT_OFFSET_EXTRA_P (val, extra);
	  else
	    return !SIGNED_16BIT_OFFSET_EXTRA_P (val, extra);
	}
      break;

    case LO_SUM:
      /* Anything in the constant pool is sufficiently aligned that
	 all bytes have the same high part address.  */
      return !legitimate_constant_pool_address_p (addr, QImode, false);

    /* Auto-increment cases are now treated generically in recog.cc.  */
    case PRE_MODIFY:
      return TARGET_UPDATE;

    /* AND is only allowed in Altivec loads.  */
    case AND:
      return true;

    default:
      break;
    }

  return false;
}

/* Debug version of rs6000_mode_dependent_address.  */
static bool
rs6000_debug_mode_dependent_address (const_rtx addr)
{
  bool ret = rs6000_mode_dependent_address (addr);

  fprintf (stderr, "\nrs6000_mode_dependent_address: ret = %s\n",
	   ret ? "true" : "false");
  debug_rtx (addr);

  return ret;
}

/* Implement FIND_BASE_TERM.  */

rtx
rs6000_find_base_term (rtx op)
{
  rtx base;

  base = op;
  if (GET_CODE (base) == CONST)
    base = XEXP (base, 0);
  if (GET_CODE (base) == PLUS)
    base = XEXP (base, 0);
  if (GET_CODE (base) == UNSPEC)
    switch (XINT (base, 1))
      {
      case UNSPEC_TOCREL:
      case UNSPEC_MACHOPIC_OFFSET:
	/* OP represents SYM [+ OFFSET] - ANCHOR.  SYM is the base term
	   for aliasing purposes.  */
	return XVECEXP (base, 0, 0);
      }

  return op;
}

/* More elaborate version of recog's offsettable_memref_p predicate
   that works around the ??? note of rs6000_mode_dependent_address.
   In particular it accepts

     (mem:DI (plus:SI (reg/f:SI 31 31) (const_int 32760 [0x7ff8])))

   in 32-bit mode, that the recog predicate rejects.  */

static bool
rs6000_offsettable_memref_p (rtx op, machine_mode reg_mode, bool strict)
{
  bool worst_case;

  if (!MEM_P (op))
    return false;

  /* First mimic offsettable_memref_p.  */
  if (offsettable_address_p (strict, GET_MODE (op), XEXP (op, 0)))
    return true;

  /* offsettable_address_p invokes rs6000_mode_dependent_address, but
     the latter predicate knows nothing about the mode of the memory
     reference and, therefore, assumes that it is the largest supported
     mode (TFmode).  As a consequence, legitimate offsettable memory
     references are rejected.  rs6000_legitimate_offset_address_p contains
     the correct logic for the PLUS case of rs6000_mode_dependent_address,
     at least with a little bit of help here given that we know the
     actual registers used.  */
  worst_case = ((TARGET_POWERPC64 && GET_MODE_CLASS (reg_mode) == MODE_INT)
		|| GET_MODE_SIZE (reg_mode) == 4);
  return rs6000_legitimate_offset_address_p (GET_MODE (op), XEXP (op, 0),
					     strict, worst_case);
}

/* Determine the reassociation width to be used in reassociate_bb.
   This takes into account how many parallel operations we
   can actually do of a given type, and also the latency.
   P8:
     int add/sub 6/cycle     
         mul 2/cycle
     vect add/sub/mul 2/cycle
     fp   add/sub/mul 2/cycle
     dfp  1/cycle
*/
 
static int
rs6000_reassociation_width (unsigned int opc ATTRIBUTE_UNUSED,
                            machine_mode mode)
{
  switch (rs6000_tune)
    {
    case PROCESSOR_POWER8:
    case PROCESSOR_POWER9:
    case PROCESSOR_POWER10:
      if (DECIMAL_FLOAT_MODE_P (mode))
	return 1;
      if (VECTOR_MODE_P (mode))
	return 4;
      if (INTEGRAL_MODE_P (mode)) 
	return 1;
      if (FLOAT_MODE_P (mode))
	return 4;
      break;
    default:
      break;
    }
  return 1;
}

/* Change register usage conditional on target flags.  */
static void
rs6000_conditional_register_usage (void)
{
  int i;

  if (TARGET_DEBUG_TARGET)
    fprintf (stderr, "rs6000_conditional_register_usage called\n");

  /* 64-bit AIX and Linux reserve GPR13 for thread-private data.  */
  if (TARGET_64BIT)
    fixed_regs[13] = call_used_regs[13] = 1;

  /* Conditionally disable FPRs.  */
  if (TARGET_SOFT_FLOAT)
    for (i = 32; i < 64; i++)
      fixed_regs[i] = call_used_regs[i] = 1;

  /* The TOC register is not killed across calls in a way that is
     visible to the compiler.  */
  if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
    call_used_regs[2] = 0;

  if (DEFAULT_ABI == ABI_V4 && flag_pic == 2)
    fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;

  if (DEFAULT_ABI == ABI_V4 && flag_pic == 1)
    fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
      = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;

  if (DEFAULT_ABI == ABI_DARWIN && flag_pic)
    fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
      = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;

  if (TARGET_TOC && TARGET_MINIMAL_TOC)
    fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;

  if (!TARGET_ALTIVEC && !TARGET_VSX)
    {
      for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
	fixed_regs[i] = call_used_regs[i] = 1;
      call_used_regs[VRSAVE_REGNO] = 1;
    }

  if (TARGET_ALTIVEC || TARGET_VSX)
    global_regs[VSCR_REGNO] = 1;

  if (TARGET_ALTIVEC_ABI)
    {
      for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i)
	call_used_regs[i] = 1;

      /* AIX reserves VR20:31 in non-extended ABI mode.  */
      if (TARGET_XCOFF && !rs6000_aix_extabi)
	for (i = FIRST_ALTIVEC_REGNO + 20; i < FIRST_ALTIVEC_REGNO + 32; ++i)
	  fixed_regs[i] = call_used_regs[i] = 1;
    }
}


/* Output insns to set DEST equal to the constant SOURCE as a series of
   lis, ori and shl instructions and return TRUE.  */

bool
rs6000_emit_set_const (rtx dest, rtx source)
{
  machine_mode mode = GET_MODE (dest);
  rtx temp, set;
  rtx_insn *insn;
  HOST_WIDE_INT c;

  gcc_checking_assert (CONST_INT_P (source));
  c = INTVAL (source);
  switch (mode)
    {
    case E_QImode:
    case E_HImode:
      emit_insn (gen_rtx_SET (dest, source));
      return true;

    case E_SImode:
      temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (SImode);

      emit_insn (gen_rtx_SET (temp, GEN_INT (c & ~(HOST_WIDE_INT) 0xffff)));
      emit_insn (gen_rtx_SET (dest,
			      gen_rtx_IOR (SImode, temp,
					   GEN_INT (c & 0xffff))));
      break;

    case E_DImode:
      if (!TARGET_POWERPC64)
	{
	  rtx hi, lo;

	  hi = operand_subword_force (dest, WORDS_BIG_ENDIAN == 0, DImode);
	  lo = operand_subword_force (dest, WORDS_BIG_ENDIAN != 0, DImode);
	  emit_move_insn (hi, GEN_INT (c >> 32));
	  c = sext_hwi (c, 32);
	  emit_move_insn (lo, GEN_INT (c));
	}
      else
	rs6000_emit_set_long_const (dest, c);
      break;

    default:
      gcc_unreachable ();
    }

  insn = get_last_insn ();
  set = single_set (insn);
  if (! CONSTANT_P (SET_SRC (set)))
    set_unique_reg_note (insn, REG_EQUAL, GEN_INT (c));

  return true;
}

/* Subroutine of rs6000_emit_set_const, handling PowerPC64 DImode.
   Output insns to set DEST equal to the constant C as a series of
   lis, ori and shl instructions.  */

static void
rs6000_emit_set_long_const (rtx dest, HOST_WIDE_INT c)
{
  rtx temp;
  HOST_WIDE_INT ud1, ud2, ud3, ud4;

  ud1 = c & 0xffff;
  c = c >> 16;
  ud2 = c & 0xffff;
  c = c >> 16;
  ud3 = c & 0xffff;
  c = c >> 16;
  ud4 = c & 0xffff;

  if ((ud4 == 0xffff && ud3 == 0xffff && ud2 == 0xffff && (ud1 & 0x8000))
      || (ud4 == 0 && ud3 == 0 && ud2 == 0 && ! (ud1 & 0x8000)))
    emit_move_insn (dest, GEN_INT (sext_hwi (ud1, 16)));

  else if ((ud4 == 0xffff && ud3 == 0xffff && (ud2 & 0x8000))
	   || (ud4 == 0 && ud3 == 0 && ! (ud2 & 0x8000)))
    {
      temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);

      emit_move_insn (ud1 != 0 ? temp : dest,
		      GEN_INT (sext_hwi (ud2 << 16, 32)));
      if (ud1 != 0)
	emit_move_insn (dest, gen_rtx_IOR (DImode, temp, GEN_INT (ud1)));
    }
  else if (ud4 == 0xffff && ud3 == 0xffff && (ud1 & 0x8000))
    {
      /* li; xoris */
      temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);
      emit_move_insn (temp, GEN_INT (sext_hwi (ud1, 16)));
      emit_move_insn (dest, gen_rtx_XOR (DImode, temp,
					 GEN_INT ((ud2 ^ 0xffff) << 16)));
    }
  else if (ud3 == 0 && ud4 == 0)
    {
      temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);

      gcc_assert (ud2 & 0x8000);

      if (ud1 == 0)
	{
	  /* lis; rldicl */
	  emit_move_insn (temp, GEN_INT (sext_hwi (ud2 << 16, 32)));
	  emit_move_insn (dest,
			  gen_rtx_AND (DImode, temp, GEN_INT (0xffffffff)));
	}
      else if (!(ud1 & 0x8000))
	{
	  /* li; oris */
	  emit_move_insn (temp, GEN_INT (ud1));
	  emit_move_insn (dest,
			  gen_rtx_IOR (DImode, temp, GEN_INT (ud2 << 16)));
	}
      else
	{
	  /* lis; ori; rldicl */
	  emit_move_insn (temp, GEN_INT (sext_hwi (ud2 << 16, 32)));
	  emit_move_insn (temp, gen_rtx_IOR (DImode, temp, GEN_INT (ud1)));
	  emit_move_insn (dest,
			  gen_rtx_AND (DImode, temp, GEN_INT (0xffffffff)));
	}
    }
  else if (ud1 == ud3 && ud2 == ud4)
    {
      temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);
      HOST_WIDE_INT num = (ud2 << 16) | ud1;
      rs6000_emit_set_long_const (temp, sext_hwi (num, 32));
      rtx one = gen_rtx_AND (DImode, temp, GEN_INT (0xffffffff));
      rtx two = gen_rtx_ASHIFT (DImode, temp, GEN_INT (32));
      emit_move_insn (dest, gen_rtx_IOR (DImode, one, two));
    }
  else if ((ud4 == 0xffff && (ud3 & 0x8000))
	   || (ud4 == 0 && ! (ud3 & 0x8000)))
    {
      temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);

      emit_move_insn (temp, GEN_INT (sext_hwi (ud3 << 16, 32)));
      if (ud2 != 0)
	emit_move_insn (temp, gen_rtx_IOR (DImode, temp, GEN_INT (ud2)));
      emit_move_insn (ud1 != 0 ? temp : dest,
		      gen_rtx_ASHIFT (DImode, temp, GEN_INT (16)));
      if (ud1 != 0)
	emit_move_insn (dest, gen_rtx_IOR (DImode, temp, GEN_INT (ud1)));
    }
  else if (TARGET_PREFIXED)
    {
      if (can_create_pseudo_p ())
	{
	  /* pli A,L + pli B,H + rldimi A,B,32,0.  */
	  temp = gen_reg_rtx (DImode);
	  rtx temp1 = gen_reg_rtx (DImode);
	  emit_move_insn (temp, GEN_INT ((ud4 << 16) | ud3));
	  emit_move_insn (temp1, GEN_INT ((ud2 << 16) | ud1));

	  emit_insn (gen_rotldi3_insert_3 (dest, temp, GEN_INT (32), temp1,
					   GEN_INT (0xffffffff)));
	}
      else
	{
	  /* pli A,H + sldi A,32 + paddi A,A,L.  */
	  emit_move_insn (dest, GEN_INT ((ud4 << 16) | ud3));

	  emit_move_insn (dest, gen_rtx_ASHIFT (DImode, dest, GEN_INT (32)));

	  bool can_use_paddi = REGNO (dest) != FIRST_GPR_REGNO;

	  /* Use paddi for the low 32 bits.  */
	  if (ud2 != 0 && ud1 != 0 && can_use_paddi)
	    emit_move_insn (dest, gen_rtx_PLUS (DImode, dest,
						GEN_INT ((ud2 << 16) | ud1)));

	  /* Use oris, ori for low 32 bits.  */
	  if (ud2 != 0 && (ud1 == 0 || !can_use_paddi))
	    emit_move_insn (dest,
			    gen_rtx_IOR (DImode, dest, GEN_INT (ud2 << 16)));
	  if (ud1 != 0 && (ud2 == 0 || !can_use_paddi))
	    emit_move_insn (dest, gen_rtx_IOR (DImode, dest, GEN_INT (ud1)));
	}
    }
  else
    {
      temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);

      emit_move_insn (temp, GEN_INT (sext_hwi (ud4 << 16, 32)));
      if (ud3 != 0)
	emit_move_insn (temp, gen_rtx_IOR (DImode, temp, GEN_INT (ud3)));

      emit_move_insn (ud2 != 0 || ud1 != 0 ? temp : dest,
		      gen_rtx_ASHIFT (DImode, temp, GEN_INT (32)));
      if (ud2 != 0)
	emit_move_insn (ud1 != 0 ? temp : dest,
			gen_rtx_IOR (DImode, temp, GEN_INT (ud2 << 16)));
      if (ud1 != 0)
	emit_move_insn (dest, gen_rtx_IOR (DImode, temp, GEN_INT (ud1)));
    }
}

/* Helper for the following.  Get rid of [r+r] memory refs
   in cases where it won't work (TImode, TFmode, TDmode, PTImode).  */

static void
rs6000_eliminate_indexed_memrefs (rtx operands[2])
{
  if (MEM_P (operands[0])
      && !REG_P (XEXP (operands[0], 0))
      && ! legitimate_constant_pool_address_p (XEXP (operands[0], 0),
					       GET_MODE (operands[0]), false))
    operands[0]
      = replace_equiv_address (operands[0],
			       copy_addr_to_reg (XEXP (operands[0], 0)));

  if (MEM_P (operands[1])
      && !REG_P (XEXP (operands[1], 0))
      && ! legitimate_constant_pool_address_p (XEXP (operands[1], 0),
					       GET_MODE (operands[1]), false))
    operands[1]
      = replace_equiv_address (operands[1],
			       copy_addr_to_reg (XEXP (operands[1], 0)));
}

/* Generate a vector of constants to permute MODE for a little-endian
   storage operation by swapping the two halves of a vector.  */
static rtvec
rs6000_const_vec (machine_mode mode)
{
  int i, subparts;
  rtvec v;

  switch (mode)
    {
    case E_V1TImode:
      subparts = 1;
      break;
    case E_V2DFmode:
    case E_V2DImode:
      subparts = 2;
      break;
    case E_V4SFmode:
    case E_V4SImode:
      subparts = 4;
      break;
    case E_V8HImode:
      subparts = 8;
      break;
    case E_V16QImode:
      subparts = 16;
      break;
    default:
      gcc_unreachable();
    }

  v = rtvec_alloc (subparts);

  for (i = 0; i < subparts / 2; ++i)
    RTVEC_ELT (v, i) = gen_rtx_CONST_INT (DImode, i + subparts / 2);
  for (i = subparts / 2; i < subparts; ++i)
    RTVEC_ELT (v, i) = gen_rtx_CONST_INT (DImode, i - subparts / 2);

  return v;
}

/* Emit an lxvd2x, stxvd2x, or xxpermdi instruction for a VSX load or
   store operation.  */
void
rs6000_emit_le_vsx_permute (rtx dest, rtx source, machine_mode mode)
{
  gcc_assert (!altivec_indexed_or_indirect_operand (dest, mode));
  gcc_assert (!altivec_indexed_or_indirect_operand (source, mode));

  /* Scalar permutations are easier to express in integer modes rather than
     floating-point modes, so cast them here.  We use V1TImode instead
     of TImode to ensure that the values don't go through GPRs.  */
  if (FLOAT128_VECTOR_P (mode))
    {
      dest = gen_lowpart (V1TImode, dest);
      source = gen_lowpart (V1TImode, source);
      mode = V1TImode;
    }

  /* Use ROTATE instead of VEC_SELECT if the mode contains only a single
     scalar.  */
  if (mode == TImode || mode == V1TImode)
    emit_insn (gen_rtx_SET (dest, gen_rtx_ROTATE (mode, source,
						  GEN_INT (64))));
  else
    {
      rtx par = gen_rtx_PARALLEL (VOIDmode, rs6000_const_vec (mode));
      emit_insn (gen_rtx_SET (dest, gen_rtx_VEC_SELECT (mode, source, par)));
    }
}

/* Emit a little-endian load from vector memory location SOURCE to VSX
   register DEST in mode MODE.  The load is done with two permuting
   insn's that represent an lxvd2x and xxpermdi.  */
void
rs6000_emit_le_vsx_load (rtx dest, rtx source, machine_mode mode)
{
  /* Use V2DImode to do swaps of types with 128-bit scalare parts (TImode,
     V1TImode).  */
  if (mode == TImode || mode == V1TImode)
    {
      mode = V2DImode;
      dest = gen_lowpart (V2DImode, dest);
      source = adjust_address (source, V2DImode, 0);
    }

  rtx tmp = can_create_pseudo_p () ? gen_reg_rtx_and_attrs (dest) : dest;
  rs6000_emit_le_vsx_permute (tmp, source, mode);
  rs6000_emit_le_vsx_permute (dest, tmp, mode);
}

/* Emit a little-endian store to vector memory location DEST from VSX
   register SOURCE in mode MODE.  The store is done with two permuting
   insn's that represent an xxpermdi and an stxvd2x.  */
void
rs6000_emit_le_vsx_store (rtx dest, rtx source, machine_mode mode)
{
  /* This should never be called after LRA.  */
  gcc_assert (can_create_pseudo_p ());

  /* Use V2DImode to do swaps of types with 128-bit scalar parts (TImode,
     V1TImode).  */
  if (mode == TImode || mode == V1TImode)
    {
      mode = V2DImode;
      dest = adjust_address (dest, V2DImode, 0);
      source = gen_lowpart (V2DImode, source);
    }

  rtx tmp = gen_reg_rtx_and_attrs (source);
  rs6000_emit_le_vsx_permute (tmp, source, mode);
  rs6000_emit_le_vsx_permute (dest, tmp, mode);
}

/* Emit a sequence representing a little-endian VSX load or store,
   moving data from SOURCE to DEST in mode MODE.  This is done
   separately from rs6000_emit_move to ensure it is called only
   during expand.  LE VSX loads and stores introduced later are
   handled with a split.  The expand-time RTL generation allows
   us to optimize away redundant pairs of register-permutes.  */
void
rs6000_emit_le_vsx_move (rtx dest, rtx source, machine_mode mode)
{
  gcc_assert (!BYTES_BIG_ENDIAN
	      && VECTOR_MEM_VSX_P (mode)
	      && !TARGET_P9_VECTOR
	      && !gpr_or_gpr_p (dest, source)
	      && (MEM_P (source) ^ MEM_P (dest)));

  if (MEM_P (source))
    {
      gcc_assert (REG_P (dest) || SUBREG_P (dest));
      rs6000_emit_le_vsx_load (dest, source, mode);
    }
  else
    {
      if (!REG_P (source))
	source = force_reg (mode, source);
      rs6000_emit_le_vsx_store (dest, source, mode);
    }
}

/* Return whether a SFmode or SImode move can be done without converting one
   mode to another.  This arrises when we have:

	(SUBREG:SF (REG:SI ...))
	(SUBREG:SI (REG:SF ...))

   and one of the values is in a floating point/vector register, where SFmode
   scalars are stored in DFmode format.  */

bool
valid_sf_si_move (rtx dest, rtx src, machine_mode mode)
{
  if (TARGET_ALLOW_SF_SUBREG)
    return true;

  if (mode != SFmode && GET_MODE_CLASS (mode) != MODE_INT)
    return true;

  if (!SUBREG_P (src) || !sf_subreg_operand (src, mode))
    return true;

  /*.  Allow (set (SUBREG:SI (REG:SF)) (SUBREG:SI (REG:SF))).  */
  if (SUBREG_P (dest))
    {
      rtx dest_subreg = SUBREG_REG (dest);
      rtx src_subreg = SUBREG_REG (src);
      return GET_MODE (dest_subreg) == GET_MODE (src_subreg);
    }

  return false;
}


/* Helper function to change moves with:

	(SUBREG:SF (REG:SI)) and
	(SUBREG:SI (REG:SF))

   into separate UNSPEC insns.  In the PowerPC architecture, scalar SFmode
   values are stored as DFmode values in the VSX registers.  We need to convert
   the bits before we can use a direct move or operate on the bits in the
   vector register as an integer type.

   Skip things like (set (SUBREG:SI (...) (SUBREG:SI (...)).  */

static bool
rs6000_emit_move_si_sf_subreg (rtx dest, rtx source, machine_mode mode)
{
  if (TARGET_DIRECT_MOVE_64BIT && !reload_completed
      && (!SUBREG_P (dest) || !sf_subreg_operand (dest, mode))
      && SUBREG_P (source) && sf_subreg_operand (source, mode))
    {
      rtx inner_source = SUBREG_REG (source);
      machine_mode inner_mode = GET_MODE (inner_source);

      if (mode == SImode && inner_mode == SFmode)
	{
	  emit_insn (gen_movsi_from_sf (dest, inner_source));
	  return true;
	}

      if (mode == SFmode && inner_mode == SImode)
	{
	  emit_insn (gen_movsf_from_si (dest, inner_source));
	  return true;
	}
    }

  return false;
}

/* Emit a move from SOURCE to DEST in mode MODE.  */
void
rs6000_emit_move (rtx dest, rtx source, machine_mode mode)
{
  rtx operands[2];
  operands[0] = dest;
  operands[1] = source;

  if (TARGET_DEBUG_ADDR)
    {
      fprintf (stderr,
	       "\nrs6000_emit_move: mode = %s, lra_in_progress = %d, "
	       "reload_completed = %d, can_create_pseudos = %d.\ndest:\n",
	       GET_MODE_NAME (mode),
	       lra_in_progress,
	       reload_completed,
	       can_create_pseudo_p ());
      debug_rtx (dest);
      fprintf (stderr, "source:\n");
      debug_rtx (source);
    }

  /* Check that we get CONST_WIDE_INT only when we should.  */
  if (CONST_WIDE_INT_P (operands[1])
      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
    gcc_unreachable ();

#ifdef HAVE_AS_GNU_ATTRIBUTE
  /* If we use a long double type, set the flags in .gnu_attribute that say
     what the long double type is.  This is to allow the linker's warning
     message for the wrong long double to be useful, even if the function does
     not do a call (for example, doing a 128-bit add on power9 if the long
     double type is IEEE 128-bit.  Do not set this if __ibm128 or __floa128 are
     used if they aren't the default long dobule type.  */
  if (rs6000_gnu_attr && (HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE || TARGET_64BIT))
    {
      if (TARGET_LONG_DOUBLE_128 && (mode == TFmode || mode == TCmode))
	rs6000_passes_float = rs6000_passes_long_double = true;

      else if (!TARGET_LONG_DOUBLE_128 && (mode == DFmode || mode == DCmode))
	rs6000_passes_float = rs6000_passes_long_double = true;
    }
#endif

  /* See if we need to special case SImode/SFmode SUBREG moves.  */
  if ((mode == SImode || mode == SFmode) && SUBREG_P (source)
      && rs6000_emit_move_si_sf_subreg (dest, source, mode))
    return;

  /* Check if GCC is setting up a block move that will end up using FP
     registers as temporaries.  We must make sure this is acceptable.  */
  if (MEM_P (operands[0])
      && MEM_P (operands[1])
      && mode == DImode
      && (rs6000_slow_unaligned_access (DImode, MEM_ALIGN (operands[0]))
	  || rs6000_slow_unaligned_access (DImode, MEM_ALIGN (operands[1])))
      && ! (rs6000_slow_unaligned_access (SImode,
					  (MEM_ALIGN (operands[0]) > 32
					   ? 32 : MEM_ALIGN (operands[0])))
	    || rs6000_slow_unaligned_access (SImode,
					     (MEM_ALIGN (operands[1]) > 32
					      ? 32 : MEM_ALIGN (operands[1]))))
      && ! MEM_VOLATILE_P (operands [0])
      && ! MEM_VOLATILE_P (operands [1]))
    {
      emit_move_insn (adjust_address (operands[0], SImode, 0),
		      adjust_address (operands[1], SImode, 0));
      emit_move_insn (adjust_address (copy_rtx (operands[0]), SImode, 4),
		      adjust_address (copy_rtx (operands[1]), SImode, 4));
      return;
    }

  if (can_create_pseudo_p () && MEM_P (operands[0])
      && !gpc_reg_operand (operands[1], mode))
    operands[1] = force_reg (mode, operands[1]);

  /* Recognize the case where operand[1] is a reference to thread-local
     data and load its address to a register.  */
  if (tls_referenced_p (operands[1]))
    {
      enum tls_model model;
      rtx tmp = operands[1];
      rtx addend = NULL;

      if (GET_CODE (tmp) == CONST && GET_CODE (XEXP (tmp, 0)) == PLUS)
	{
          addend = XEXP (XEXP (tmp, 0), 1);
	  tmp = XEXP (XEXP (tmp, 0), 0);
	}

      gcc_assert (SYMBOL_REF_P (tmp));
      model = SYMBOL_REF_TLS_MODEL (tmp);
      gcc_assert (model != 0);

      tmp = rs6000_legitimize_tls_address (tmp, model);
      if (addend)
	{
	  tmp = gen_rtx_PLUS (mode, tmp, addend);
	  tmp = force_operand (tmp, operands[0]);
	}
      operands[1] = tmp;
    }

  /* 128-bit constant floating-point values on Darwin should really be loaded
     as two parts.  However, this premature splitting is a problem when DFmode
     values can go into Altivec registers.  */
  if (TARGET_MACHO && CONST_DOUBLE_P (operands[1]) && FLOAT128_IBM_P (mode)
      && !reg_addr[DFmode].scalar_in_vmx_p)
    {
      rs6000_emit_move (simplify_gen_subreg (DFmode, operands[0], mode, 0),
			simplify_gen_subreg (DFmode, operands[1], mode, 0),
			DFmode);
      rs6000_emit_move (simplify_gen_subreg (DFmode, operands[0], mode,
					     GET_MODE_SIZE (DFmode)),
			simplify_gen_subreg (DFmode, operands[1], mode,
					     GET_MODE_SIZE (DFmode)),
			DFmode);
      return;
    }

  /* Transform (p0:DD, (SUBREG:DD p1:SD)) to ((SUBREG:SD p0:DD),
     p1:SD) if p1 is not of floating point class and p0 is spilled as
     we can have no analogous movsd_store for this.  */
  if (lra_in_progress && mode == DDmode
      && REG_P (operands[0]) && !HARD_REGISTER_P (operands[0])
      && reg_preferred_class (REGNO (operands[0])) == NO_REGS
      && SUBREG_P (operands[1]) && REG_P (SUBREG_REG (operands[1]))
      && GET_MODE (SUBREG_REG (operands[1])) == SDmode)
    {
      enum reg_class cl;
      int regno = REGNO (SUBREG_REG (operands[1]));

      if (!HARD_REGISTER_NUM_P (regno))
	{
	  cl = reg_preferred_class (regno);
	  regno = reg_renumber[regno];
	  if (regno < 0)
	    regno = cl == NO_REGS ? -1 : ira_class_hard_regs[cl][1];
	}
      if (regno >= 0 && ! FP_REGNO_P (regno))
	{
	  mode = SDmode;
	  operands[0] = gen_lowpart_SUBREG (SDmode, operands[0]);
	  operands[1] = SUBREG_REG (operands[1]);
	}
    }
  if (lra_in_progress
      && mode == SDmode
      && REG_P (operands[0]) && !HARD_REGISTER_P (operands[0])
      && reg_preferred_class (REGNO (operands[0])) == NO_REGS
      && (REG_P (operands[1])
	  || (SUBREG_P (operands[1]) && REG_P (SUBREG_REG (operands[1])))))
    {
      int regno = reg_or_subregno (operands[1]);
      enum reg_class cl;

      if (!HARD_REGISTER_NUM_P (regno))
	{
	  cl = reg_preferred_class (regno);
	  gcc_assert (cl != NO_REGS);
	  regno = reg_renumber[regno];
	  if (regno < 0)
	    regno = ira_class_hard_regs[cl][0];
	}
      if (FP_REGNO_P (regno))
	{
	  if (GET_MODE (operands[0]) != DDmode)
	    operands[0] = gen_rtx_SUBREG (DDmode, operands[0], 0);
	  emit_insn (gen_movsd_store (operands[0], operands[1]));
	}
      else if (INT_REGNO_P (regno))
	emit_insn (gen_movsd_hardfloat (operands[0], operands[1]));
      else
	gcc_unreachable();
      return;
    }
  /* Transform ((SUBREG:DD p0:SD), p1:DD) to (p0:SD, (SUBREG:SD
     p:DD)) if p0 is not of floating point class and p1 is spilled as
     we can have no analogous movsd_load for this.  */
  if (lra_in_progress && mode == DDmode
      && SUBREG_P (operands[0]) && REG_P (SUBREG_REG (operands[0]))
      && GET_MODE (SUBREG_REG (operands[0])) == SDmode
      && REG_P (operands[1]) && !HARD_REGISTER_P (operands[1])
      && reg_preferred_class (REGNO (operands[1])) == NO_REGS)
    {
      enum reg_class cl;
      int regno = REGNO (SUBREG_REG (operands[0]));

      if (!HARD_REGISTER_NUM_P (regno))
	{
	  cl = reg_preferred_class (regno);
	  regno = reg_renumber[regno];
	  if (regno < 0)
	    regno = cl == NO_REGS ? -1 : ira_class_hard_regs[cl][0];
	}
      if (regno >= 0 && ! FP_REGNO_P (regno))
	{
	  mode = SDmode;
	  operands[0] = SUBREG_REG (operands[0]);
	  operands[1] = gen_lowpart_SUBREG (SDmode, operands[1]);
	}
    }
  if (lra_in_progress
      && mode == SDmode
      && (REG_P (operands[0])
	  || (SUBREG_P (operands[0]) && REG_P (SUBREG_REG (operands[0]))))
      && REG_P (operands[1]) && !HARD_REGISTER_P (operands[1])
      && reg_preferred_class (REGNO (operands[1])) == NO_REGS)
    {
      int regno = reg_or_subregno (operands[0]);
      enum reg_class cl;

      if (!HARD_REGISTER_NUM_P (regno))
	{
	  cl = reg_preferred_class (regno);
	  gcc_assert (cl != NO_REGS);
	  regno = reg_renumber[regno];
	  if (regno < 0)
	    regno = ira_class_hard_regs[cl][0];
	}
      if (FP_REGNO_P (regno))
	{
	  if (GET_MODE (operands[1]) != DDmode)
	    operands[1] = gen_rtx_SUBREG (DDmode, operands[1], 0);
	  emit_insn (gen_movsd_load (operands[0], operands[1]));
	}
      else if (INT_REGNO_P (regno))
	emit_insn (gen_movsd_hardfloat (operands[0], operands[1]));
      else
	gcc_unreachable();
      return;
    }

  /* FIXME:  In the long term, this switch statement should go away
     and be replaced by a sequence of tests based on things like
     mode == Pmode.  */
  switch (mode)
    {
    case E_HImode:
    case E_QImode:
      if (CONSTANT_P (operands[1])
	  && !CONST_INT_P (operands[1]))
	operands[1] = force_const_mem (mode, operands[1]);
      break;

    case E_TFmode:
    case E_TDmode:
    case E_IFmode:
    case E_KFmode:
      if (FLOAT128_2REG_P (mode))
	rs6000_eliminate_indexed_memrefs (operands);
      /* fall through */

    case E_DFmode:
    case E_DDmode:
    case E_SFmode:
    case E_SDmode:
      if (CONSTANT_P (operands[1])
	  && ! easy_fp_constant (operands[1], mode))
	operands[1] = force_const_mem (mode, operands[1]);
      break;

    case E_V16QImode:
    case E_V8HImode:
    case E_V4SFmode:
    case E_V4SImode:
    case E_V2DFmode:
    case E_V2DImode:
    case E_V1TImode:
      if (CONSTANT_P (operands[1])
	  && !easy_vector_constant (operands[1], mode))
	operands[1] = force_const_mem (mode, operands[1]);
      break;

    case E_OOmode:
    case E_XOmode:
      if (CONST_INT_P (operands[1]) && INTVAL (operands[1]) != 0)
	error ("%qs is an opaque type, and you cannot set it to other values",
	       (mode == OOmode) ? "__vector_pair" : "__vector_quad");
      break;

    case E_SImode:
    case E_DImode:
      /* Use default pattern for address of ELF small data */
      if (TARGET_ELF
	  && mode == Pmode
	  && DEFAULT_ABI == ABI_V4
	  && (SYMBOL_REF_P (operands[1])
	      || GET_CODE (operands[1]) == CONST)
	  && small_data_operand (operands[1], mode))
	{
	  emit_insn (gen_rtx_SET (operands[0], operands[1]));
	  return;
	}

      /* Use the default pattern for loading up PC-relative addresses.  */
      if (TARGET_PCREL && mode == Pmode
	  && pcrel_local_or_external_address (operands[1], Pmode))
	{
	  emit_insn (gen_rtx_SET (operands[0], operands[1]));
	  return;
	}

      if (DEFAULT_ABI == ABI_V4
	  && mode == Pmode && mode == SImode
	  && flag_pic == 1 && got_operand (operands[1], mode))
	{
	  emit_insn (gen_movsi_got (operands[0], operands[1]));
	  return;
	}

      if ((TARGET_ELF || DEFAULT_ABI == ABI_DARWIN)
	  && TARGET_NO_TOC_OR_PCREL
	  && ! flag_pic
	  && mode == Pmode
	  && CONSTANT_P (operands[1])
	  && GET_CODE (operands[1]) != HIGH
	  && !CONST_INT_P (operands[1]))
	{
	  rtx target = (!can_create_pseudo_p ()
			? operands[0]
			: gen_reg_rtx (mode));

	  /* If this is a function address on -mcall-aixdesc,
	     convert it to the address of the descriptor.  */
	  if (DEFAULT_ABI == ABI_AIX
	      && SYMBOL_REF_P (operands[1])
	      && XSTR (operands[1], 0)[0] == '.')
	    {
	      const char *name = XSTR (operands[1], 0);
	      rtx new_ref;
	      while (*name == '.')
		name++;
	      new_ref = gen_rtx_SYMBOL_REF (Pmode, name);
	      CONSTANT_POOL_ADDRESS_P (new_ref)
		= CONSTANT_POOL_ADDRESS_P (operands[1]);
	      SYMBOL_REF_FLAGS (new_ref) = SYMBOL_REF_FLAGS (operands[1]);
	      SYMBOL_REF_USED (new_ref) = SYMBOL_REF_USED (operands[1]);
	      SYMBOL_REF_DATA (new_ref) = SYMBOL_REF_DATA (operands[1]);
	      operands[1] = new_ref;
	    }

	  if (DEFAULT_ABI == ABI_DARWIN)
	    {
#if TARGET_MACHO
	      /* This is not PIC code, but could require the subset of
		 indirections used by mdynamic-no-pic.  */
	      if (MACHO_DYNAMIC_NO_PIC_P)
		{
		  /* Take care of any required data indirection.  */
		  operands[1] = rs6000_machopic_legitimize_pic_address (
				  operands[1], mode, operands[0]);
		  if (operands[0] != operands[1])
		    emit_insn (gen_rtx_SET (operands[0], operands[1]));
		  return;
		}
#endif
	      emit_insn (gen_macho_high (Pmode, target, operands[1]));
	      emit_insn (gen_macho_low (Pmode, operands[0],
					target, operands[1]));
	      return;
	    }

	  emit_insn (gen_elf_high (target, operands[1]));
	  emit_insn (gen_elf_low (operands[0], target, operands[1]));
	  return;
	}

      /* If this is a SYMBOL_REF that refers to a constant pool entry,
	 and we have put it in the TOC, we just need to make a TOC-relative
	 reference to it.  */
      if (TARGET_TOC
	  && SYMBOL_REF_P (operands[1])
	  && use_toc_relative_ref (operands[1], mode))
	operands[1] = create_TOC_reference (operands[1], operands[0]);
      else if (mode == Pmode
	       && CONSTANT_P (operands[1])
	       && GET_CODE (operands[1]) != HIGH
	       && ((REG_P (operands[0])
		    && FP_REGNO_P (REGNO (operands[0])))
		   || !CONST_INT_P (operands[1])
		   || (num_insns_constant (operands[1], mode)
		       > (TARGET_CMODEL != CMODEL_SMALL ? 3 : 2)))
	       && !toc_relative_expr_p (operands[1], false, NULL, NULL)
	       && (TARGET_CMODEL == CMODEL_SMALL
		   || can_create_pseudo_p ()
		   || (REG_P (operands[0])
		       && INT_REG_OK_FOR_BASE_P (operands[0], true))))
	{

#if TARGET_MACHO
	  /* Darwin uses a special PIC legitimizer.  */
	  if (DEFAULT_ABI == ABI_DARWIN && MACHOPIC_INDIRECT)
	    {
	      operands[1] =
		rs6000_machopic_legitimize_pic_address (operands[1], mode,
							operands[0]);
	      if (operands[0] != operands[1])
		emit_insn (gen_rtx_SET (operands[0], operands[1]));
	      return;
	    }
#endif

	  /* If we are to limit the number of things we put in the TOC and
	     this is a symbol plus a constant we can add in one insn,
	     just put the symbol in the TOC and add the constant.  */
	  if (GET_CODE (operands[1]) == CONST
	      && TARGET_NO_SUM_IN_TOC
	      && GET_CODE (XEXP (operands[1], 0)) == PLUS
	      && add_operand (XEXP (XEXP (operands[1], 0), 1), mode)
	      && (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF
		  || SYMBOL_REF_P (XEXP (XEXP (operands[1], 0), 0)))
	      && ! side_effects_p (operands[0]))
	    {
	      rtx sym =
		force_const_mem (mode, XEXP (XEXP (operands[1], 0), 0));
	      rtx other = XEXP (XEXP (operands[1], 0), 1);

	      sym = force_reg (mode, sym);
	      emit_insn (gen_add3_insn (operands[0], sym, other));
	      return;
	    }

	  operands[1] = force_const_mem (mode, operands[1]);

	  if (TARGET_TOC
	      && SYMBOL_REF_P (XEXP (operands[1], 0))
	      && use_toc_relative_ref (XEXP (operands[1], 0), mode))
	    {
	      rtx tocref = create_TOC_reference (XEXP (operands[1], 0),
						 operands[0]);
	      operands[1] = gen_const_mem (mode, tocref);
	      set_mem_alias_set (operands[1], get_TOC_alias_set ());
	    }
	}
      break;

    case E_TImode:
      if (!VECTOR_MEM_VSX_P (TImode))
	rs6000_eliminate_indexed_memrefs (operands);
      break;

    case E_PTImode:
      rs6000_eliminate_indexed_memrefs (operands);
      break;

    default:
      fatal_insn ("bad move", gen_rtx_SET (dest, source));
    }

  /* Above, we may have called force_const_mem which may have returned
     an invalid address.  If we can, fix this up; otherwise, reload will
     have to deal with it.  */
  if (MEM_P (operands[1]))
    operands[1] = validize_mem (operands[1]);

  emit_insn (gen_rtx_SET (operands[0], operands[1]));
}


/* Set up AIX/Darwin/64-bit Linux quad floating point routines.  */
static void
init_float128_ibm (machine_mode mode)
{
  if (!TARGET_XL_COMPAT)
    {
      set_optab_libfunc (add_optab, mode, "__gcc_qadd");
      set_optab_libfunc (sub_optab, mode, "__gcc_qsub");
      set_optab_libfunc (smul_optab, mode, "__gcc_qmul");
      set_optab_libfunc (sdiv_optab, mode, "__gcc_qdiv");

      if (!TARGET_HARD_FLOAT)
	{
	  set_optab_libfunc (neg_optab, mode, "__gcc_qneg");
	  set_optab_libfunc (eq_optab, mode, "__gcc_qeq");
	  set_optab_libfunc (ne_optab, mode, "__gcc_qne");
	  set_optab_libfunc (gt_optab, mode, "__gcc_qgt");
	  set_optab_libfunc (ge_optab, mode, "__gcc_qge");
	  set_optab_libfunc (lt_optab, mode, "__gcc_qlt");
	  set_optab_libfunc (le_optab, mode, "__gcc_qle");
	  set_optab_libfunc (unord_optab, mode, "__gcc_qunord");

	  set_conv_libfunc (sext_optab, mode, SFmode, "__gcc_stoq");
	  set_conv_libfunc (sext_optab, mode, DFmode, "__gcc_dtoq");
	  set_conv_libfunc (trunc_optab, SFmode, mode, "__gcc_qtos");
	  set_conv_libfunc (trunc_optab, DFmode, mode, "__gcc_qtod");
	  set_conv_libfunc (sfix_optab, SImode, mode, "__gcc_qtoi");
	  set_conv_libfunc (ufix_optab, SImode, mode, "__gcc_qtou");
	  set_conv_libfunc (sfloat_optab, mode, SImode, "__gcc_itoq");
	  set_conv_libfunc (ufloat_optab, mode, SImode, "__gcc_utoq");
	}
    }
  else
    {
      set_optab_libfunc (add_optab, mode, "_xlqadd");
      set_optab_libfunc (sub_optab, mode, "_xlqsub");
      set_optab_libfunc (smul_optab, mode, "_xlqmul");
      set_optab_libfunc (sdiv_optab, mode, "_xlqdiv");
    }

  /* Add various conversions for IFmode to use the traditional TFmode
     names.  */
  if (mode == IFmode)
    {
      set_conv_libfunc (sext_optab, mode, SDmode, "__dpd_extendsdtf");
      set_conv_libfunc (sext_optab, mode, DDmode, "__dpd_extendddtf");
      set_conv_libfunc (trunc_optab, mode, TDmode, "__dpd_trunctdtf");
      set_conv_libfunc (trunc_optab, SDmode, mode, "__dpd_trunctfsd");
      set_conv_libfunc (trunc_optab, DDmode, mode, "__dpd_trunctfdd");
      set_conv_libfunc (sext_optab, TDmode, mode, "__dpd_extendtftd");

      set_conv_libfunc (sfix_optab, DImode, mode, "__fixtfdi");
      set_conv_libfunc (ufix_optab, DImode, mode, "__fixunstfdi");

      set_conv_libfunc (sfloat_optab, mode, DImode, "__floatditf");
      set_conv_libfunc (ufloat_optab, mode, DImode, "__floatunditf");

      if (TARGET_POWERPC64)
	{
	  set_conv_libfunc (sfix_optab, TImode, mode, "__fixtfti");
	  set_conv_libfunc (ufix_optab, TImode, mode, "__fixunstfti");
	  set_conv_libfunc (sfloat_optab, mode, TImode, "__floattitf");
	  set_conv_libfunc (ufloat_optab, mode, TImode, "__floatuntitf");
	}
    }
}

/* Create a decl for either complex long double multiply or complex long double
   divide when long double is IEEE 128-bit floating point.  We can't use
   __multc3 and __divtc3 because the original long double using IBM extended
   double used those names.  The complex multiply/divide functions are encoded
   as builtin functions with a complex result and 4 scalar inputs.  */

static void
create_complex_muldiv (const char *name, built_in_function fncode, tree fntype)
{
  tree fndecl = add_builtin_function (name, fntype, fncode, BUILT_IN_NORMAL,
				      name, NULL_TREE);

  set_builtin_decl (fncode, fndecl, true);

  if (TARGET_DEBUG_BUILTIN)
    fprintf (stderr, "create complex %s, fncode: %d\n", name, (int) fncode);

  return;
}

/* Set up IEEE 128-bit floating point routines.  Use different names if the
   arguments can be passed in a vector register.  The historical PowerPC
   implementation of IEEE 128-bit floating point used _q_<op> for the names, so
   continue to use that if we aren't using vector registers to pass IEEE
   128-bit floating point.  */

static void
init_float128_ieee (machine_mode mode)
{
  if (FLOAT128_VECTOR_P (mode))
    {
      static bool complex_muldiv_init_p = false;

      /* Set up to call __mulkc3 and __divkc3 under -mabi=ieeelongdouble.  If
	 we have clone or target attributes, this will be called a second
	 time.  We want to create the built-in function only once.  */
     if (mode == TFmode && TARGET_IEEEQUAD && !complex_muldiv_init_p)
       {
	 complex_muldiv_init_p = true;
	 built_in_function fncode_mul =
	   (built_in_function) (BUILT_IN_COMPLEX_MUL_MIN + TCmode
				- MIN_MODE_COMPLEX_FLOAT);
	 built_in_function fncode_div =
	   (built_in_function) (BUILT_IN_COMPLEX_DIV_MIN + TCmode
				- MIN_MODE_COMPLEX_FLOAT);

	 tree fntype = build_function_type_list (complex_long_double_type_node,
						 long_double_type_node,
						 long_double_type_node,
						 long_double_type_node,
						 long_double_type_node,
						 NULL_TREE);

	 create_complex_muldiv ("__mulkc3", fncode_mul, fntype);
	 create_complex_muldiv ("__divkc3", fncode_div, fntype);
       }

      set_optab_libfunc (add_optab, mode, "__addkf3");
      set_optab_libfunc (sub_optab, mode, "__subkf3");
      set_optab_libfunc (neg_optab, mode, "__negkf2");
      set_optab_libfunc (smul_optab, mode, "__mulkf3");
      set_optab_libfunc (sdiv_optab, mode, "__divkf3");
      set_optab_libfunc (sqrt_optab, mode, "__sqrtkf2");
      set_optab_libfunc (abs_optab, mode, "__abskf2");
      set_optab_libfunc (powi_optab, mode, "__powikf2");

      set_optab_libfunc (eq_optab, mode, "__eqkf2");
      set_optab_libfunc (ne_optab, mode, "__nekf2");
      set_optab_libfunc (gt_optab, mode, "__gtkf2");
      set_optab_libfunc (ge_optab, mode, "__gekf2");
      set_optab_libfunc (lt_optab, mode, "__ltkf2");
      set_optab_libfunc (le_optab, mode, "__lekf2");
      set_optab_libfunc (unord_optab, mode, "__unordkf2");

      set_conv_libfunc (sext_optab, mode, SFmode, "__extendsfkf2");
      set_conv_libfunc (sext_optab, mode, DFmode, "__extenddfkf2");
      set_conv_libfunc (trunc_optab, SFmode, mode, "__trunckfsf2");
      set_conv_libfunc (trunc_optab, DFmode, mode, "__trunckfdf2");

      set_conv_libfunc (sext_optab, mode, IFmode, "__trunctfkf2");
      if (mode != TFmode && FLOAT128_IBM_P (TFmode))
	set_conv_libfunc (sext_optab, mode, TFmode, "__trunctfkf2");

      set_conv_libfunc (trunc_optab, IFmode, mode, "__extendkftf2");
      if (mode != TFmode && FLOAT128_IBM_P (TFmode))
	set_conv_libfunc (trunc_optab, TFmode, mode, "__extendkftf2");

      set_conv_libfunc (sext_optab, mode, SDmode, "__dpd_extendsdkf");
      set_conv_libfunc (sext_optab, mode, DDmode, "__dpd_extendddkf");
      set_conv_libfunc (trunc_optab, mode, TDmode, "__dpd_trunctdkf");
      set_conv_libfunc (trunc_optab, SDmode, mode, "__dpd_trunckfsd");
      set_conv_libfunc (trunc_optab, DDmode, mode, "__dpd_trunckfdd");
      set_conv_libfunc (sext_optab, TDmode, mode, "__dpd_extendkftd");

      set_conv_libfunc (sfix_optab, SImode, mode, "__fixkfsi");
      set_conv_libfunc (ufix_optab, SImode, mode, "__fixunskfsi");
      set_conv_libfunc (sfix_optab, DImode, mode, "__fixkfdi");
      set_conv_libfunc (ufix_optab, DImode, mode, "__fixunskfdi");

      set_conv_libfunc (sfloat_optab, mode, SImode, "__floatsikf");
      set_conv_libfunc (ufloat_optab, mode, SImode, "__floatunsikf");
      set_conv_libfunc (sfloat_optab, mode, DImode, "__floatdikf");
      set_conv_libfunc (ufloat_optab, mode, DImode, "__floatundikf");

      if (TARGET_POWERPC64)
	{
	  set_conv_libfunc (sfix_optab, TImode, mode, "__fixkfti_sw");
	  set_conv_libfunc (ufix_optab, TImode, mode, "__fixunskfti_sw");
	  set_conv_libfunc (sfloat_optab, mode, TImode, "__floattikf_sw");
	  set_conv_libfunc (ufloat_optab, mode, TImode, "__floatuntikf_sw");
	}
    }

  else
    {
      set_optab_libfunc (add_optab, mode, "_q_add");
      set_optab_libfunc (sub_optab, mode, "_q_sub");
      set_optab_libfunc (neg_optab, mode, "_q_neg");
      set_optab_libfunc (smul_optab, mode, "_q_mul");
      set_optab_libfunc (sdiv_optab, mode, "_q_div");
      if (TARGET_PPC_GPOPT)
	set_optab_libfunc (sqrt_optab, mode, "_q_sqrt");

      set_optab_libfunc (eq_optab, mode, "_q_feq");
      set_optab_libfunc (ne_optab, mode, "_q_fne");
      set_optab_libfunc (gt_optab, mode, "_q_fgt");
      set_optab_libfunc (ge_optab, mode, "_q_fge");
      set_optab_libfunc (lt_optab, mode, "_q_flt");
      set_optab_libfunc (le_optab, mode, "_q_fle");

      set_conv_libfunc (sext_optab, mode, SFmode, "_q_stoq");
      set_conv_libfunc (sext_optab, mode, DFmode, "_q_dtoq");
      set_conv_libfunc (trunc_optab, SFmode, mode, "_q_qtos");
      set_conv_libfunc (trunc_optab, DFmode, mode, "_q_qtod");
      set_conv_libfunc (sfix_optab, SImode, mode, "_q_qtoi");
      set_conv_libfunc (ufix_optab, SImode, mode, "_q_qtou");
      set_conv_libfunc (sfloat_optab, mode, SImode, "_q_itoq");
      set_conv_libfunc (ufloat_optab, mode, SImode, "_q_utoq");
    }
}

static void
rs6000_init_libfuncs (void)
{
  /* __float128 support.  */
  if (TARGET_FLOAT128_TYPE)
    {
      init_float128_ibm (IFmode);
      init_float128_ieee (KFmode);
    }

  /* AIX/Darwin/64-bit Linux quad floating point routines.  */
  if (TARGET_LONG_DOUBLE_128)
    {
      if (!TARGET_IEEEQUAD)
	init_float128_ibm (TFmode);

      /* IEEE 128-bit including 32-bit SVR4 quad floating point routines.  */
      else
	init_float128_ieee (TFmode);
    }
}

/* Emit a potentially record-form instruction, setting DST from SRC.
   If DOT is 0, that is all; otherwise, set CCREG to the result of the
   signed comparison of DST with zero.  If DOT is 1, the generated RTL
   doesn't care about the DST result; if DOT is 2, it does.  If CCREG
   is CR0 do a single dot insn (as a PARALLEL); otherwise, do a SET and
   a separate COMPARE.  */

void
rs6000_emit_dot_insn (rtx dst, rtx src, int dot, rtx ccreg)
{
  if (dot == 0)
    {
      emit_move_insn (dst, src);
      return;
    }

  if (cc_reg_not_cr0_operand (ccreg, CCmode))
    {
      emit_move_insn (dst, src);
      emit_move_insn (ccreg, gen_rtx_COMPARE (CCmode, dst, const0_rtx));
      return;
    }

  rtx ccset = gen_rtx_SET (ccreg, gen_rtx_COMPARE (CCmode, src, const0_rtx));
  if (dot == 1)
    {
      rtx clobber = gen_rtx_CLOBBER (VOIDmode, dst);
      emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, ccset, clobber)));
    }
  else
    {
      rtx set = gen_rtx_SET (dst, src);
      emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, ccset, set)));
    }
}


/* A validation routine: say whether CODE, a condition code, and MODE
   match.  The other alternatives either don't make sense or should
   never be generated.  */

void
validate_condition_mode (enum rtx_code code, machine_mode mode)
{
  gcc_assert ((GET_RTX_CLASS (code) == RTX_COMPARE
	       || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
	      && GET_MODE_CLASS (mode) == MODE_CC);

  /* These don't make sense.  */
  gcc_assert ((code != GT && code != LT && code != GE && code != LE)
	      || mode != CCUNSmode);

  gcc_assert ((code != GTU && code != LTU && code != GEU && code != LEU)
	      || mode == CCUNSmode);

  gcc_assert (mode == CCFPmode
	      || (code != ORDERED && code != UNORDERED
		  && code != UNEQ && code != LTGT
		  && code != UNGT && code != UNLT
		  && code != UNGE && code != UNLE));

  /* These are invalid; the information is not there.  */
  gcc_assert (mode != CCEQmode || code == EQ || code == NE);
}


/* Return whether MASK (a CONST_INT) is a valid mask for any rlwinm,
   rldicl, rldicr, or rldic instruction in mode MODE.  If so, if E is
   not zero, store there the bit offset (counted from the right) where
   the single stretch of 1 bits begins; and similarly for B, the bit
   offset where it ends.  */

bool
rs6000_is_valid_mask (rtx mask, int *b, int *e, machine_mode mode)
{
  unsigned HOST_WIDE_INT val = INTVAL (mask);
  unsigned HOST_WIDE_INT bit;
  int nb, ne;
  int n = GET_MODE_PRECISION (mode);

  if (mode != DImode && mode != SImode)
    return false;

  if (INTVAL (mask) >= 0)
    {
      bit = val & -val;
      ne = exact_log2 (bit);
      nb = exact_log2 (val + bit);
    }
  else if (val + 1 == 0)
    {
      nb = n;
      ne = 0;
    }
  else if (val & 1)
    {
      val = ~val;
      bit = val & -val;
      nb = exact_log2 (bit);
      ne = exact_log2 (val + bit);
    }
  else
    {
      bit = val & -val;
      ne = exact_log2 (bit);
      if (val + bit == 0)
	nb = n;
      else
	nb = 0;
    }

  nb--;

  if (nb < 0 || ne < 0 || nb >= n || ne >= n)
    return false;

  if (b)
    *b = nb;
  if (e)
    *e = ne;

  return true;
}

bool
rs6000_is_valid_rotate_dot_mask (rtx mask, machine_mode mode)
{
  int nb, ne;
  return rs6000_is_valid_mask (mask, &nb, &ne, mode) && nb >= ne && ne > 0;
}

/* Return whether MASK (a CONST_INT) is a valid mask for any rlwinm, rldicl,
   or rldicr instruction, to implement an AND with it in mode MODE.  */

bool
rs6000_is_valid_and_mask (rtx mask, machine_mode mode)
{
  int nb, ne;

  if (!rs6000_is_valid_mask (mask, &nb, &ne, mode))
    return false;

  /* For DImode, we need a rldicl, rldicr, or a rlwinm with mask that
     does not wrap.  */
  if (mode == DImode)
    return (ne == 0 || nb == 63 || (nb < 32 && ne <= nb));

  /* For SImode, rlwinm can do everything.  */
  if (mode == SImode)
    return (nb < 32 && ne < 32);

  return false;
}

/* Return the instruction template for an AND with mask in mode MODE, with
   operands OPERANDS.  If DOT is true, make it a record-form instruction.  */

const char *
rs6000_insn_for_and_mask (machine_mode mode, rtx *operands, bool dot)
{
  int nb, ne;

  if (!rs6000_is_valid_mask (operands[2], &nb, &ne, mode))
    gcc_unreachable ();

  if (mode == DImode && ne == 0)
    {
      operands[3] = GEN_INT (63 - nb);
      if (dot)
	return "rldicl. %0,%1,0,%3";
      return "rldicl %0,%1,0,%3";
    }

  if (mode == DImode && nb == 63)
    {
      operands[3] = GEN_INT (63 - ne);
      if (dot)
	return "rldicr. %0,%1,0,%3";
      return "rldicr %0,%1,0,%3";
    }

  if (nb < 32 && ne < 32)
    {
      operands[3] = GEN_INT (31 - nb);
      operands[4] = GEN_INT (31 - ne);
      if (dot)
	return "rlwinm. %0,%1,0,%3,%4";
      return "rlwinm %0,%1,0,%3,%4";
    }

  gcc_unreachable ();
}

/* Return whether MASK (a CONST_INT) is a valid mask for any rlw[i]nm,
   rld[i]cl, rld[i]cr, or rld[i]c instruction, to implement an AND with
   shift SHIFT (a ROTATE, ASHIFT, or LSHIFTRT) in mode MODE.  */

bool
rs6000_is_valid_shift_mask (rtx mask, rtx shift, machine_mode mode)
{
  int nb, ne;

  if (!rs6000_is_valid_mask (mask, &nb, &ne, mode))
    return false;

  int n = GET_MODE_PRECISION (mode);
  int sh = -1;

  if (CONST_INT_P (XEXP (shift, 1)))
    {
      sh = INTVAL (XEXP (shift, 1));
      if (sh < 0 || sh >= n)
	return false;
    }

  rtx_code code = GET_CODE (shift);

  /* Convert any shift by 0 to a rotate, to simplify below code.  */
  if (sh == 0)
    code = ROTATE;

  /* Convert rotate to simple shift if we can, to make analysis simpler.  */
  if (code == ROTATE && sh >= 0 && nb >= ne && ne >= sh)
    code = ASHIFT;
  if (code == ROTATE && sh >= 0 && nb >= ne && nb < sh)
    {
      code = LSHIFTRT;
      sh = n - sh;
    }

  /* DImode rotates need rld*.  */
  if (mode == DImode && code == ROTATE)
    return (nb == 63 || ne == 0 || ne == sh);

  /* SImode rotates need rlw*.  */
  if (mode == SImode && code == ROTATE)
    return (nb < 32 && ne < 32 && sh < 32);

  /* Wrap-around masks are only okay for rotates.  */
  if (ne > nb)
    return false;

  /* Variable shifts are only okay for rotates.  */
  if (sh < 0)
    return false;

  /* Don't allow ASHIFT if the mask is wrong for that.  */
  if (code == ASHIFT && ne < sh)
    return false;

  /* If we can do it with an rlw*, we can do it.  Don't allow LSHIFTRT
     if the mask is wrong for that.  */
  if (nb < 32 && ne < 32 && sh < 32
      && !(code == LSHIFTRT && nb >= 32 - sh))
    return true;

  /* If we can do it with an rld*, we can do it.  Don't allow LSHIFTRT
     if the mask is wrong for that.  */
  if (code == LSHIFTRT)
    sh = 64 - sh;
  if (nb == 63 || ne == 0 || ne == sh)
    return !(code == LSHIFTRT && nb >= sh);

  return false;
}

/* Return the instruction template for a shift with mask in mode MODE, with
   operands OPERANDS.  If DOT is true, make it a record-form instruction.  */

const char *
rs6000_insn_for_shift_mask (machine_mode mode, rtx *operands, bool dot)
{
  int nb, ne;

  if (!rs6000_is_valid_mask (operands[3], &nb, &ne, mode))
    gcc_unreachable ();

  if (mode == DImode && ne == 0)
    {
      if (GET_CODE (operands[4]) == LSHIFTRT && INTVAL (operands[2]))
	operands[2] = GEN_INT (64 - INTVAL (operands[2]));
      operands[3] = GEN_INT (63 - nb);
      if (dot)
	return "rld%I2cl. %0,%1,%2,%3";
      return "rld%I2cl %0,%1,%2,%3";
    }

  if (mode == DImode && nb == 63)
    {
      operands[3] = GEN_INT (63 - ne);
      if (dot)
	return "rld%I2cr. %0,%1,%2,%3";
      return "rld%I2cr %0,%1,%2,%3";
    }

  if (mode == DImode
      && GET_CODE (operands[4]) != LSHIFTRT
      && CONST_INT_P (operands[2])
      && ne == INTVAL (operands[2]))
    {
      operands[3] = GEN_INT (63 - nb);
      if (dot)
	return "rld%I2c. %0,%1,%2,%3";
      return "rld%I2c %0,%1,%2,%3";
    }

  if (nb < 32 && ne < 32)
    {
      if (GET_CODE (operands[4]) == LSHIFTRT && INTVAL (operands[2]))
	operands[2] = GEN_INT (32 - INTVAL (operands[2]));
      operands[3] = GEN_INT (31 - nb);
      operands[4] = GEN_INT (31 - ne);
      /* This insn can also be a 64-bit rotate with mask that really makes
	 it just a shift right (with mask); the %h below are to adjust for
	 that situation (shift count is >= 32 in that case).  */
      if (dot)
	return "rlw%I2nm. %0,%1,%h2,%3,%4";
      return "rlw%I2nm %0,%1,%h2,%3,%4";
    }

  gcc_unreachable ();
}

/* Return whether MASK (a CONST_INT) is a valid mask for any rlwimi or
   rldimi instruction, to implement an insert with shift SHIFT (a ROTATE,
   ASHIFT, or LSHIFTRT) in mode MODE.  */

bool
rs6000_is_valid_insert_mask (rtx mask, rtx shift, machine_mode mode)
{
  int nb, ne;

  if (!rs6000_is_valid_mask (mask, &nb, &ne, mode))
    return false;

  int n = GET_MODE_PRECISION (mode);

  int sh = INTVAL (XEXP (shift, 1));
  if (sh < 0 || sh >= n)
    return false;

  rtx_code code = GET_CODE (shift);

  /* Convert any shift by 0 to a rotate, to simplify below code.  */
  if (sh == 0)
    code = ROTATE;

  /* Convert rotate to simple shift if we can, to make analysis simpler.  */
  if (code == ROTATE && sh >= 0 && nb >= ne && ne >= sh)
    code = ASHIFT;
  if (code == ROTATE && sh >= 0 && nb >= ne && nb < sh)
    {
      code = LSHIFTRT;
      sh = n - sh;
    }

  /* DImode rotates need rldimi.  */
  if (mode == DImode && code == ROTATE)
    return (ne == sh);

  /* SImode rotates need rlwimi.  */
  if (mode == SImode && code == ROTATE)
    return (nb < 32 && ne < 32 && sh < 32);

  /* Wrap-around masks are only okay for rotates.  */
  if (ne > nb)
    return false;

  /* Don't allow ASHIFT if the mask is wrong for that.  */
  if (code == ASHIFT && ne < sh)
    return false;

  /* If we can do it with an rlwimi, we can do it.  Don't allow LSHIFTRT
     if the mask is wrong for that.  */
  if (nb < 32 && ne < 32 && sh < 32
      && !(code == LSHIFTRT && nb >= 32 - sh))
    return true;

  /* If we can do it with an rldimi, we can do it.  Don't allow LSHIFTRT
     if the mask is wrong for that.  */
  if (code == LSHIFTRT)
    sh = 64 - sh;
  if (ne == sh)
    return !(code == LSHIFTRT && nb >= sh);

  return false;
}

/* Return the instruction template for an insert with mask in mode MODE, with
   operands OPERANDS.  If DOT is true, make it a record-form instruction.  */

const char *
rs6000_insn_for_insert_mask (machine_mode mode, rtx *operands, bool dot)
{
  int nb, ne;

  if (!rs6000_is_valid_mask (operands[3], &nb, &ne, mode))
    gcc_unreachable ();

  /* Prefer rldimi because rlwimi is cracked.  */
  if (TARGET_POWERPC64
      && (!dot || mode == DImode)
      && GET_CODE (operands[4]) != LSHIFTRT
      && ne == INTVAL (operands[2]))
    {
      operands[3] = GEN_INT (63 - nb);
      if (dot)
	return "rldimi. %0,%1,%2,%3";
      return "rldimi %0,%1,%2,%3";
    }

  if (nb < 32 && ne < 32)
    {
      if (GET_CODE (operands[4]) == LSHIFTRT && INTVAL (operands[2]))
	operands[2] = GEN_INT (32 - INTVAL (operands[2]));
      operands[3] = GEN_INT (31 - nb);
      operands[4] = GEN_INT (31 - ne);
      if (dot)
	return "rlwimi. %0,%1,%2,%3,%4";
      return "rlwimi %0,%1,%2,%3,%4";
    }

  gcc_unreachable ();
}

/* Return whether an AND with C (a CONST_INT) in mode MODE can be done
   using two machine instructions.  */

bool
rs6000_is_valid_2insn_and (rtx c, machine_mode mode)
{
  /* There are two kinds of AND we can handle with two insns:
     1) those we can do with two rl* insn;
     2) ori[s];xori[s].

     We do not handle that last case yet.  */

  /* If there is just one stretch of ones, we can do it.  */
  if (rs6000_is_valid_mask (c, NULL, NULL, mode))
    return true;

  /* Otherwise, fill in the lowest "hole"; if we can do the result with
     one insn, we can do the whole thing with two.  */
  unsigned HOST_WIDE_INT val = INTVAL (c);
  unsigned HOST_WIDE_INT bit1 = val & -val;
  unsigned HOST_WIDE_INT bit2 = (val + bit1) & ~val;
  unsigned HOST_WIDE_INT val1 = (val + bit1) & val;
  unsigned HOST_WIDE_INT bit3 = val1 & -val1;
  return rs6000_is_valid_and_mask (GEN_INT (val + bit3 - bit2), mode);
}

/* Emit the two insns to do an AND in mode MODE, with operands OPERANDS.
   If EXPAND is true, split rotate-and-mask instructions we generate to
   their constituent parts as well (this is used during expand); if DOT
   is 1, make the last insn a record-form instruction clobbering the
   destination GPR and setting the CC reg (from operands[3]); if 2, set
   that GPR as well as the CC reg.  */

void
rs6000_emit_2insn_and (machine_mode mode, rtx *operands, bool expand, int dot)
{
  gcc_assert (!(expand && dot));

  unsigned HOST_WIDE_INT val = INTVAL (operands[2]);

  /* If it is one stretch of ones, it is DImode; shift left, mask, then
     shift right.  This generates better code than doing the masks without
     shifts, or shifting first right and then left.  */
  int nb, ne;
  if (rs6000_is_valid_mask (operands[2], &nb, &ne, mode) && nb >= ne)
    {
      gcc_assert (mode == DImode);

      int shift = 63 - nb;
      if (expand)
	{
	  rtx tmp1 = gen_reg_rtx (DImode);
	  rtx tmp2 = gen_reg_rtx (DImode);
	  emit_insn (gen_ashldi3 (tmp1, operands[1], GEN_INT (shift)));
	  emit_insn (gen_anddi3 (tmp2, tmp1, GEN_INT (val << shift)));
	  emit_insn (gen_lshrdi3 (operands[0], tmp2, GEN_INT (shift)));
	}
      else
	{
	  rtx tmp = gen_rtx_ASHIFT (mode, operands[1], GEN_INT (shift));
	  tmp = gen_rtx_AND (mode, tmp, GEN_INT (val << shift));
	  emit_move_insn (operands[0], tmp);
	  tmp = gen_rtx_LSHIFTRT (mode, operands[0], GEN_INT (shift));
	  rs6000_emit_dot_insn (operands[0], tmp, dot, dot ? operands[3] : 0);
	}
      return;
    }

  /* Otherwise, make a mask2 that cuts out the lowest "hole", and a mask1
     that does the rest.  */
  unsigned HOST_WIDE_INT bit1 = val & -val;
  unsigned HOST_WIDE_INT bit2 = (val + bit1) & ~val;
  unsigned HOST_WIDE_INT val1 = (val + bit1) & val;
  unsigned HOST_WIDE_INT bit3 = val1 & -val1;

  unsigned HOST_WIDE_INT mask1 = -bit3 + bit2 - 1;
  unsigned HOST_WIDE_INT mask2 = val + bit3 - bit2;

  gcc_assert (rs6000_is_valid_and_mask (GEN_INT (mask2), mode));

  /* Two "no-rotate"-and-mask instructions, for SImode.  */
  if (rs6000_is_valid_and_mask (GEN_INT (mask1), mode))
    {
      gcc_assert (mode == SImode);

      rtx reg = expand ? gen_reg_rtx (mode) : operands[0];
      rtx tmp = gen_rtx_AND (mode, operands[1], GEN_INT (mask1));
      emit_move_insn (reg, tmp);
      tmp = gen_rtx_AND (mode, reg, GEN_INT (mask2));
      rs6000_emit_dot_insn (operands[0], tmp, dot, dot ? operands[3] : 0);
      return;
    }

  gcc_assert (mode == DImode);

  /* Two "no-rotate"-and-mask instructions, for DImode: both are rlwinm
     insns; we have to do the first in SImode, because it wraps.  */
  if (mask2 <= 0xffffffff
      && rs6000_is_valid_and_mask (GEN_INT (mask1), SImode))
    {
      rtx reg = expand ? gen_reg_rtx (mode) : operands[0];
      rtx tmp = gen_rtx_AND (SImode, gen_lowpart (SImode, operands[1]),
			     GEN_INT (mask1));
      rtx reg_low = gen_lowpart (SImode, reg);
      emit_move_insn (reg_low, tmp);
      tmp = gen_rtx_AND (mode, reg, GEN_INT (mask2));
      rs6000_emit_dot_insn (operands[0], tmp, dot, dot ? operands[3] : 0);
      return;
    }

  /* Two rld* insns: rotate, clear the hole in the middle (which now is
     at the top end), rotate back and clear the other hole.  */
  int right = exact_log2 (bit3);
  int left = 64 - right;

  /* Rotate the mask too.  */
  mask1 = (mask1 >> right) | ((bit2 - 1) << left);

  if (expand)
    {
      rtx tmp1 = gen_reg_rtx (DImode);
      rtx tmp2 = gen_reg_rtx (DImode);
      rtx tmp3 = gen_reg_rtx (DImode);
      emit_insn (gen_rotldi3 (tmp1, operands[1], GEN_INT (left)));
      emit_insn (gen_anddi3 (tmp2, tmp1, GEN_INT (mask1)));
      emit_insn (gen_rotldi3 (tmp3, tmp2, GEN_INT (right)));
      emit_insn (gen_anddi3 (operands[0], tmp3, GEN_INT (mask2)));
    }
  else
    {
      rtx tmp = gen_rtx_ROTATE (mode, operands[1], GEN_INT (left));
      tmp = gen_rtx_AND (mode, tmp, GEN_INT (mask1));
      emit_move_insn (operands[0], tmp);
      tmp = gen_rtx_ROTATE (mode, operands[0], GEN_INT (right));
      tmp = gen_rtx_AND (mode, tmp, GEN_INT (mask2));
      rs6000_emit_dot_insn (operands[0], tmp, dot, dot ? operands[3] : 0);
    }
}

/* Return 1 if REGNO (reg1) == REGNO (reg2) - 1 making them candidates
   for lfq and stfq insns iff the registers are hard registers.   */

int
registers_ok_for_quad_peep (rtx reg1, rtx reg2)
{
  /* We might have been passed a SUBREG.  */
  if (!REG_P (reg1) || !REG_P (reg2))
    return 0;

  /* We might have been passed non floating point registers.  */
  if (!FP_REGNO_P (REGNO (reg1))
      || !FP_REGNO_P (REGNO (reg2)))
    return 0;

  return (REGNO (reg1) == REGNO (reg2) - 1);
}

/* Return 1 if addr1 and addr2 are suitable for lfq or stfq insn.
   addr1 and addr2 must be in consecutive memory locations
   (addr2 == addr1 + 8).  */

int
mems_ok_for_quad_peep (rtx mem1, rtx mem2)
{
  rtx addr1, addr2;
  unsigned int reg1, reg2;
  int offset1, offset2;

  /* The mems cannot be volatile.  */
  if (MEM_VOLATILE_P (mem1) || MEM_VOLATILE_P (mem2))
    return 0;

  addr1 = XEXP (mem1, 0);
  addr2 = XEXP (mem2, 0);

  /* Extract an offset (if used) from the first addr.  */
  if (GET_CODE (addr1) == PLUS)
    {
      /* If not a REG, return zero.  */
      if (!REG_P (XEXP (addr1, 0)))
	return 0;
      else
	{
	  reg1 = REGNO (XEXP (addr1, 0));
	  /* The offset must be constant!  */
	  if (!CONST_INT_P (XEXP (addr1, 1)))
	    return 0;
	  offset1 = INTVAL (XEXP (addr1, 1));
	}
    }
  else if (!REG_P (addr1))
    return 0;
  else
    {
      reg1 = REGNO (addr1);
      /* This was a simple (mem (reg)) expression.  Offset is 0.  */
      offset1 = 0;
    }

  /* And now for the second addr.  */
  if (GET_CODE (addr2) == PLUS)
    {
      /* If not a REG, return zero.  */
      if (!REG_P (XEXP (addr2, 0)))
	return 0;
      else
	{
	  reg2 = REGNO (XEXP (addr2, 0));
	  /* The offset must be constant. */
	  if (!CONST_INT_P (XEXP (addr2, 1)))
	    return 0;
	  offset2 = INTVAL (XEXP (addr2, 1));
	}
    }
  else if (!REG_P (addr2))
    return 0;
  else
    {
      reg2 = REGNO (addr2);
      /* This was a simple (mem (reg)) expression.  Offset is 0.  */
      offset2 = 0;
    }

  /* Both of these must have the same base register.  */
  if (reg1 != reg2)
    return 0;

  /* The offset for the second addr must be 8 more than the first addr.  */
  if (offset2 != offset1 + 8)
    return 0;

  /* All the tests passed.  addr1 and addr2 are valid for lfq or stfq
     instructions.  */
  return 1;
}

/* Implement TARGET_SECONDARY_RELOAD_NEEDED_MODE.  For SDmode values we
   need to use DDmode, in all other cases we can use the same mode.  */
static machine_mode
rs6000_secondary_memory_needed_mode (machine_mode mode)
{
  if (lra_in_progress && mode == SDmode)
    return DDmode;
  return mode;
}

/* Classify a register type.  Because the FMRGOW/FMRGEW instructions only work
   on traditional floating point registers, and the VMRGOW/VMRGEW instructions
   only work on the traditional altivec registers, note if an altivec register
   was chosen.  */

static enum rs6000_reg_type
register_to_reg_type (rtx reg, bool *is_altivec)
{
  HOST_WIDE_INT regno;
  enum reg_class rclass;

  if (SUBREG_P (reg))
    reg = SUBREG_REG (reg);

  if (!REG_P (reg))
    return NO_REG_TYPE;

  regno = REGNO (reg);
  if (!HARD_REGISTER_NUM_P (regno))
    {
      if (!lra_in_progress && !reload_completed)
	return PSEUDO_REG_TYPE;

      regno = true_regnum (reg);
      if (regno < 0 || !HARD_REGISTER_NUM_P (regno))
	return PSEUDO_REG_TYPE;
    }

  gcc_assert (regno >= 0);

  if (is_altivec && ALTIVEC_REGNO_P (regno))
    *is_altivec = true;

  rclass = rs6000_regno_regclass[regno];
  return reg_class_to_reg_type[(int)rclass];
}

/* Helper function to return the cost of adding a TOC entry address.  */

static inline int
rs6000_secondary_reload_toc_costs (addr_mask_type addr_mask)
{
  int ret;

  if (TARGET_CMODEL != CMODEL_SMALL)
    ret = ((addr_mask & RELOAD_REG_OFFSET) == 0) ? 1 : 2;

  else
    ret = (TARGET_MINIMAL_TOC) ? 6 : 3;

  return ret;
}

/* Helper function for rs6000_secondary_reload to determine whether the memory
   address (ADDR) with a given register class (RCLASS) and machine mode (MODE)
   needs reloading.  Return negative if the memory is not handled by the memory
   helper functions and to try a different reload method, 0 if no additional
   instructions are need, and positive to give the extra cost for the
   memory.  */

static int
rs6000_secondary_reload_memory (rtx addr,
				enum reg_class rclass,
				machine_mode mode)
{
  int extra_cost = 0;
  rtx reg, and_arg, plus_arg0, plus_arg1;
  addr_mask_type addr_mask;
  const char *type = NULL;
  const char *fail_msg = NULL;

  if (GPR_REG_CLASS_P (rclass))
    addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_GPR];

  else if (rclass == FLOAT_REGS)
    addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_FPR];

  else if (rclass == ALTIVEC_REGS)
    addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_VMX];

  /* For the combined VSX_REGS, turn off Altivec AND -16.  */
  else if (rclass == VSX_REGS)
    addr_mask = (reg_addr[mode].addr_mask[RELOAD_REG_VMX]
		 & ~RELOAD_REG_AND_M16);

  /* If the register allocator hasn't made up its mind yet on the register
     class to use, settle on defaults to use.  */
  else if (rclass == NO_REGS)
    {
      addr_mask = (reg_addr[mode].addr_mask[RELOAD_REG_ANY]
		   & ~RELOAD_REG_AND_M16);

      if ((addr_mask & RELOAD_REG_MULTIPLE) != 0)
	addr_mask &= ~(RELOAD_REG_INDEXED
		       | RELOAD_REG_PRE_INCDEC
		       | RELOAD_REG_PRE_MODIFY);
    }

  else
    addr_mask = 0;

  /* If the register isn't valid in this register class, just return now.  */
  if ((addr_mask & RELOAD_REG_VALID) == 0)
    {
      if (TARGET_DEBUG_ADDR)
	{
	  fprintf (stderr,
		   "rs6000_secondary_reload_memory: mode = %s, class = %s, "
		   "not valid in class\n",
		   GET_MODE_NAME (mode), reg_class_names[rclass]);
	  debug_rtx (addr);
	}

      return -1;
    }

  switch (GET_CODE (addr))
    {
      /* Does the register class supports auto update forms for this mode?  We
	 don't need a scratch register, since the powerpc only supports
	 PRE_INC, PRE_DEC, and PRE_MODIFY.  */
    case PRE_INC:
    case PRE_DEC:
      reg = XEXP (addr, 0);
      if (!base_reg_operand (addr, GET_MODE (reg)))
	{
	  fail_msg = "no base register #1";
	  extra_cost = -1;
	}

      else if ((addr_mask & RELOAD_REG_PRE_INCDEC) == 0)
	{
	  extra_cost = 1;
	  type = "update";
	}
      break;

    case PRE_MODIFY:
      reg = XEXP (addr, 0);
      plus_arg1 = XEXP (addr, 1);
      if (!base_reg_operand (reg, GET_MODE (reg))
	  || GET_CODE (plus_arg1) != PLUS
	  || !rtx_equal_p (reg, XEXP (plus_arg1, 0)))
	{
	  fail_msg = "bad PRE_MODIFY";
	  extra_cost = -1;
	}

      else if ((addr_mask & RELOAD_REG_PRE_MODIFY) == 0)
	{
	  extra_cost = 1;
	  type = "update";
	}
      break;

      /* Do we need to simulate AND -16 to clear the bottom address bits used
	 in VMX load/stores?  Only allow the AND for vector sizes.  */
    case AND:
      and_arg = XEXP (addr, 0);
      if (GET_MODE_SIZE (mode) != 16
	  || !CONST_INT_P (XEXP (addr, 1))
	  || INTVAL (XEXP (addr, 1)) != -16)
	{
	  fail_msg = "bad Altivec AND #1";
	  extra_cost = -1;
	}

      if (rclass != ALTIVEC_REGS)
	{
	  if (legitimate_indirect_address_p (and_arg, false))
	    extra_cost = 1;

	  else if (legitimate_indexed_address_p (and_arg, false))
	    extra_cost = 2;

	  else
	    {
	      fail_msg = "bad Altivec AND #2";
	      extra_cost = -1;
	    }

	  type = "and";
	}
      break;

      /* If this is an indirect address, make sure it is a base register.  */
    case REG:
    case SUBREG:
      if (!legitimate_indirect_address_p (addr, false))
	{
	  extra_cost = 1;
	  type = "move";
	}
      break;

      /* If this is an indexed address, make sure the register class can handle
	 indexed addresses for this mode.  */
    case PLUS:
      plus_arg0 = XEXP (addr, 0);
      plus_arg1 = XEXP (addr, 1);

      /* (plus (plus (reg) (constant)) (constant)) is generated during
	 push_reload processing, so handle it now.  */
      if (GET_CODE (plus_arg0) == PLUS && CONST_INT_P (plus_arg1))
	{
	  if ((addr_mask & RELOAD_REG_OFFSET) == 0)
	    {
	      extra_cost = 1;
	      type = "offset";
	    }
	}

      /* (plus (plus (reg) (constant)) (reg)) is also generated during
	 push_reload processing, so handle it now.  */
      else if (GET_CODE (plus_arg0) == PLUS && REG_P (plus_arg1))
	{
	  if ((addr_mask & RELOAD_REG_INDEXED) == 0)
	    {
	      extra_cost = 1;
	      type = "indexed #2";
	    }
	}

      else if (!base_reg_operand (plus_arg0, GET_MODE (plus_arg0)))
	{
	  fail_msg = "no base register #2";
	  extra_cost = -1;
	}

      else if (int_reg_operand (plus_arg1, GET_MODE (plus_arg1)))
	{
	  if ((addr_mask & RELOAD_REG_INDEXED) == 0
	      || !legitimate_indexed_address_p (addr, false))
	    {
	      extra_cost = 1;
	      type = "indexed";
	    }
	}

      else if ((addr_mask & RELOAD_REG_QUAD_OFFSET) != 0
	       && CONST_INT_P (plus_arg1))
	{
	  if (!quad_address_offset_p (INTVAL (plus_arg1)))
	    {
	      extra_cost = 1;
	      type = "vector d-form offset";
	    }
	}

      /* Make sure the register class can handle offset addresses.  */
      else if (rs6000_legitimate_offset_address_p (mode, addr, false, true))
	{
	  if ((addr_mask & RELOAD_REG_OFFSET) == 0)
	    {
	      extra_cost = 1;
	      type = "offset #2";
	    }
	}

      else
	{
	  fail_msg = "bad PLUS";
	  extra_cost = -1;
	}

      break;

    case LO_SUM:
      /* Quad offsets are restricted and can't handle normal addresses.  */
      if ((addr_mask & RELOAD_REG_QUAD_OFFSET) != 0)
	{
	  extra_cost = -1;
	  type = "vector d-form lo_sum";
	}

      else if (!legitimate_lo_sum_address_p (mode, addr, false))
	{
	  fail_msg = "bad LO_SUM";
	  extra_cost = -1;
	}

      if ((addr_mask & RELOAD_REG_OFFSET) == 0)
	{
	  extra_cost = 1;
	  type = "lo_sum";
	}
      break;

      /* Static addresses need to create a TOC entry.  */
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
      if ((addr_mask & RELOAD_REG_QUAD_OFFSET) != 0)
	{
	  extra_cost = -1;
	  type = "vector d-form lo_sum #2";
	}

      else
	{
	  type = "address";
	  extra_cost = rs6000_secondary_reload_toc_costs (addr_mask);
	}
      break;

      /* TOC references look like offsetable memory.  */
    case UNSPEC:
      if (TARGET_CMODEL == CMODEL_SMALL || XINT (addr, 1) != UNSPEC_TOCREL)
	{
	  fail_msg = "bad UNSPEC";
	  extra_cost = -1;
	}

      else if ((addr_mask & RELOAD_REG_QUAD_OFFSET) != 0)
	{
	  extra_cost = -1;
	  type = "vector d-form lo_sum #3";
	}

      else if ((addr_mask & RELOAD_REG_OFFSET) == 0)
	{
	  extra_cost = 1;
	  type = "toc reference";
	}
      break;

    default:
	{
	  fail_msg = "bad address";
	  extra_cost = -1;
	}
    }

  if (TARGET_DEBUG_ADDR /* && extra_cost != 0 */)
    {
      if (extra_cost < 0)
	fprintf (stderr,
		 "rs6000_secondary_reload_memory error: mode = %s, "
		 "class = %s, addr_mask = '%s', %s\n",
		 GET_MODE_NAME (mode),
		 reg_class_names[rclass],
		 rs6000_debug_addr_mask (addr_mask, false),
		 (fail_msg != NULL) ? fail_msg : "<bad address>");

      else
	fprintf (stderr,
		 "rs6000_secondary_reload_memory: mode = %s, class = %s, "
		 "addr_mask = '%s', extra cost = %d, %s\n",
		 GET_MODE_NAME (mode),
		 reg_class_names[rclass],
		 rs6000_debug_addr_mask (addr_mask, false),
		 extra_cost,
		 (type) ? type : "<none>");

      debug_rtx (addr);
    }

  return extra_cost;
}

/* Helper function for rs6000_secondary_reload to return true if a move to a
   different register classe is really a simple move.  */

static bool
rs6000_secondary_reload_simple_move (enum rs6000_reg_type to_type,
				     enum rs6000_reg_type from_type,
				     machine_mode mode)
{
  int size = GET_MODE_SIZE (mode);

  /* Add support for various direct moves available.  In this function, we only
     look at cases where we don't need any extra registers, and one or more
     simple move insns are issued.  Originally small integers are not allowed
     in FPR/VSX registers.  Single precision binary floating is not a simple
     move because we need to convert to the single precision memory layout.
     The 4-byte SDmode can be moved.  TDmode values are disallowed since they
     need special direct move handling, which we do not support yet.  */
  if (TARGET_DIRECT_MOVE
      && ((to_type == GPR_REG_TYPE && from_type == VSX_REG_TYPE)
	  || (to_type == VSX_REG_TYPE && from_type == GPR_REG_TYPE)))
    {
      if (TARGET_POWERPC64)
	{
	  /* ISA 2.07: MTVSRD or MVFVSRD.  */
	  if (size == 8)
	    return true;

	  /* ISA 3.0: MTVSRDD or MFVSRD + MFVSRLD.  */
	  if (size == 16 && TARGET_P9_VECTOR && mode != TDmode)
	    return true;
	}

      /* ISA 2.07: MTVSRWZ or  MFVSRWZ.  */
      if (TARGET_P8_VECTOR)
	{
	  if (mode == SImode)
	    return true;

	  if (TARGET_P9_VECTOR && (mode == HImode || mode == QImode))
	    return true;
	}

      /* ISA 2.07: MTVSRWZ or  MFVSRWZ.  */
      if (mode == SDmode)
	return true;
    }

  /* Move to/from SPR.  */
  else if ((size == 4 || (TARGET_POWERPC64 && size == 8))
	   && ((to_type == GPR_REG_TYPE && from_type == SPR_REG_TYPE)
	       || (to_type == SPR_REG_TYPE && from_type == GPR_REG_TYPE)))
    return true;

  return false;
}

/* Direct move helper function for rs6000_secondary_reload, handle all of the
   special direct moves that involve allocating an extra register, return the
   insn code of the helper function if there is such a function or
   CODE_FOR_nothing if not.  */

static bool
rs6000_secondary_reload_direct_move (enum rs6000_reg_type to_type,
				     enum rs6000_reg_type from_type,
				     machine_mode mode,
				     secondary_reload_info *sri,
				     bool altivec_p)
{
  bool ret = false;
  enum insn_code icode = CODE_FOR_nothing;
  int cost = 0;
  int size = GET_MODE_SIZE (mode);

  if (TARGET_POWERPC64 && size == 16)
    {
      /* Handle moving 128-bit values from GPRs to VSX point registers on
	 ISA 2.07 (power8, power9) when running in 64-bit mode using
	 XXPERMDI to glue the two 64-bit values back together.  */
      if (to_type == VSX_REG_TYPE && from_type == GPR_REG_TYPE)
	{
	  cost = 3;			/* 2 mtvsrd's, 1 xxpermdi.  */
	  icode = reg_addr[mode].reload_vsx_gpr;
	}

      /* Handle moving 128-bit values from VSX point registers to GPRs on
	 ISA 2.07 when running in 64-bit mode using XXPERMDI to get access to the
	 bottom 64-bit value.  */
      else if (to_type == GPR_REG_TYPE && from_type == VSX_REG_TYPE)
	{
	  cost = 3;			/* 2 mfvsrd's, 1 xxpermdi.  */
	  icode = reg_addr[mode].reload_gpr_vsx;
	}
    }

  else if (TARGET_POWERPC64 && mode == SFmode)
    {
      if (to_type == GPR_REG_TYPE && from_type == VSX_REG_TYPE)
	{
	  cost = 3;			/* xscvdpspn, mfvsrd, and.  */
	  icode = reg_addr[mode].reload_gpr_vsx;
	}

      else if (to_type == VSX_REG_TYPE && from_type == GPR_REG_TYPE)
	{
	  cost = 2;			/* mtvsrz, xscvspdpn.  */
	  icode = reg_addr[mode].reload_vsx_gpr;
	}
    }

  else if (!TARGET_POWERPC64 && size == 8)
    {
      /* Handle moving 64-bit values from GPRs to floating point registers on
	 ISA 2.07 when running in 32-bit mode using FMRGOW to glue the two
	 32-bit values back together.  Altivec register classes must be handled
	 specially since a different instruction is used, and the secondary
	 reload support requires a single instruction class in the scratch
	 register constraint.  However, right now TFmode is not allowed in
	 Altivec registers, so the pattern will never match.  */
      if (to_type == VSX_REG_TYPE && from_type == GPR_REG_TYPE && !altivec_p)
	{
	  cost = 3;			/* 2 mtvsrwz's, 1 fmrgow.  */
	  icode = reg_addr[mode].reload_fpr_gpr;
	}
    }

  if (icode != CODE_FOR_nothing)
    {
      ret = true;
      if (sri)
	{
	  sri->icode = icode;
	  sri->extra_cost = cost;
	}
    }

  return ret;
}

/* Return whether a move between two register classes can be done either
   directly (simple move) or via a pattern that uses a single extra temporary
   (using ISA 2.07's direct move in this case.  */

static bool
rs6000_secondary_reload_move (enum rs6000_reg_type to_type,
			      enum rs6000_reg_type from_type,
			      machine_mode mode,
			      secondary_reload_info *sri,
			      bool altivec_p)
{
  /* Fall back to load/store reloads if either type is not a register.  */
  if (to_type == NO_REG_TYPE || from_type == NO_REG_TYPE)
    return false;

  /* If we haven't allocated registers yet, assume the move can be done for the
     standard register types.  */
  if ((to_type == PSEUDO_REG_TYPE && from_type == PSEUDO_REG_TYPE)
      || (to_type == PSEUDO_REG_TYPE && IS_STD_REG_TYPE (from_type))
      || (from_type == PSEUDO_REG_TYPE && IS_STD_REG_TYPE (to_type)))
    return true;

  /* Moves to the same set of registers is a simple move for non-specialized
     registers.  */
  if (to_type == from_type && IS_STD_REG_TYPE (to_type))
    return true;

  /* Check whether a simple move can be done directly.  */
  if (rs6000_secondary_reload_simple_move (to_type, from_type, mode))
    {
      if (sri)
	{
	  sri->icode = CODE_FOR_nothing;
	  sri->extra_cost = 0;
	}
      return true;
    }

  /* Now check if we can do it in a few steps.  */
  return rs6000_secondary_reload_direct_move (to_type, from_type, mode, sri,
					      altivec_p);
}

/* Inform reload about cases where moving X with a mode MODE to a register in
   RCLASS requires an extra scratch or immediate register.  Return the class
   needed for the immediate register.

   For VSX and Altivec, we may need a register to convert sp+offset into
   reg+sp.

   For misaligned 64-bit gpr loads and stores we need a register to
   convert an offset address to indirect.  */

static reg_class_t
rs6000_secondary_reload (bool in_p,
			 rtx x,
			 reg_class_t rclass_i,
			 machine_mode mode,
			 secondary_reload_info *sri)
{
  enum reg_class rclass = (enum reg_class) rclass_i;
  reg_class_t ret = ALL_REGS;
  enum insn_code icode;
  bool default_p = false;
  bool done_p = false;

  /* Allow subreg of memory before/during reload.  */
  bool memory_p = (MEM_P (x)
		   || (!reload_completed && SUBREG_P (x)
		       && MEM_P (SUBREG_REG (x))));

  sri->icode = CODE_FOR_nothing;
  sri->t_icode = CODE_FOR_nothing;
  sri->extra_cost = 0;
  icode = ((in_p)
	   ? reg_addr[mode].reload_load
	   : reg_addr[mode].reload_store);

  if (REG_P (x) || register_operand (x, mode))
    {
      enum rs6000_reg_type to_type = reg_class_to_reg_type[(int)rclass];
      bool altivec_p = (rclass == ALTIVEC_REGS);
      enum rs6000_reg_type from_type = register_to_reg_type (x, &altivec_p);

      if (!in_p)
	std::swap (to_type, from_type);

      /* Can we do a direct move of some sort?  */
      if (rs6000_secondary_reload_move (to_type, from_type, mode, sri,
					altivec_p))
	{
	  icode = (enum insn_code)sri->icode;
	  default_p = false;
	  done_p = true;
	  ret = NO_REGS;
	}
    }

  /* Make sure 0.0 is not reloaded or forced into memory.  */
  if (x == CONST0_RTX (mode) && VSX_REG_CLASS_P (rclass))
    {
      ret = NO_REGS;
      default_p = false;
      done_p = true;
    }

  /* If this is a scalar floating point value and we want to load it into the
     traditional Altivec registers, do it via a move via a traditional floating
     point register, unless we have D-form addressing.  Also make sure that
     non-zero constants use a FPR.  */
  if (!done_p && reg_addr[mode].scalar_in_vmx_p
      && !mode_supports_vmx_dform (mode)
      && (rclass == VSX_REGS || rclass == ALTIVEC_REGS)
      && (memory_p || CONST_DOUBLE_P (x)))
    {
      ret = FLOAT_REGS;
      default_p = false;
      done_p = true;
    }

  /* Handle reload of load/stores if we have reload helper functions.  */
  if (!done_p && icode != CODE_FOR_nothing && memory_p)
    {
      int extra_cost = rs6000_secondary_reload_memory (XEXP (x, 0), rclass,
						       mode);

      if (extra_cost >= 0)
	{
	  done_p = true;
	  ret = NO_REGS;
	  if (extra_cost > 0)
	    {
	      sri->extra_cost = extra_cost;
	      sri->icode = icode;
	    }
	}
    }

  /* Handle unaligned loads and stores of integer registers.  */
  if (!done_p && TARGET_POWERPC64
      && reg_class_to_reg_type[(int)rclass] == GPR_REG_TYPE
      && memory_p
      && GET_MODE_SIZE (GET_MODE (x)) >= UNITS_PER_WORD)
    {
      rtx addr = XEXP (x, 0);
      rtx off = address_offset (addr);

      if (off != NULL_RTX)
	{
	  unsigned int extra = GET_MODE_SIZE (GET_MODE (x)) - UNITS_PER_WORD;
	  unsigned HOST_WIDE_INT offset = INTVAL (off);

	  /* We need a secondary reload when our legitimate_address_p
	     says the address is good (as otherwise the entire address
	     will be reloaded), and the offset is not a multiple of
	     four or we have an address wrap.  Address wrap will only
	     occur for LO_SUMs since legitimate_offset_address_p
	     rejects addresses for 16-byte mems that will wrap.  */
	  if (GET_CODE (addr) == LO_SUM
	      ? (1 /* legitimate_address_p allows any offset for lo_sum */
		 && ((offset & 3) != 0
		     || ((offset & 0xffff) ^ 0x8000) >= 0x10000 - extra))
	      : (offset + 0x8000 < 0x10000 - extra /* legitimate_address_p */
		 && (offset & 3) != 0))
	    {
	      /* -m32 -mpowerpc64 needs to use a 32-bit scratch register.  */
	      if (in_p)
		sri->icode = ((TARGET_32BIT) ? CODE_FOR_reload_si_load
			      : CODE_FOR_reload_di_load);
	      else
		sri->icode = ((TARGET_32BIT) ? CODE_FOR_reload_si_store
			      : CODE_FOR_reload_di_store);
	      sri->extra_cost = 2;
	      ret = NO_REGS;
	      done_p = true;
	    }
	  else
	    default_p = true;
	}
      else
	default_p = true;
    }

  if (!done_p && !TARGET_POWERPC64
      && reg_class_to_reg_type[(int)rclass] == GPR_REG_TYPE
      && memory_p
      && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
    {
      rtx addr = XEXP (x, 0);
      rtx off = address_offset (addr);

      if (off != NULL_RTX)
	{
	  unsigned int extra = GET_MODE_SIZE (GET_MODE (x)) - UNITS_PER_WORD;
	  unsigned HOST_WIDE_INT offset = INTVAL (off);

	  /* We need a secondary reload when our legitimate_address_p
	     says the address is good (as otherwise the entire address
	     will be reloaded), and we have a wrap.

	     legitimate_lo_sum_address_p allows LO_SUM addresses to
	     have any offset so test for wrap in the low 16 bits.

	     legitimate_offset_address_p checks for the range
	     [-0x8000,0x7fff] for mode size of 8 and [-0x8000,0x7ff7]
	     for mode size of 16.  We wrap at [0x7ffc,0x7fff] and
	     [0x7ff4,0x7fff] respectively, so test for the
	     intersection of these ranges, [0x7ffc,0x7fff] and
	     [0x7ff4,0x7ff7] respectively.

	     Note that the address we see here may have been
	     manipulated by legitimize_reload_address.  */
	  if (GET_CODE (addr) == LO_SUM
	      ? ((offset & 0xffff) ^ 0x8000) >= 0x10000 - extra
	      : offset - (0x8000 - extra) < UNITS_PER_WORD)
	    {
	      if (in_p)
		sri->icode = CODE_FOR_reload_si_load;
	      else
		sri->icode = CODE_FOR_reload_si_store;
	      sri->extra_cost = 2;
	      ret = NO_REGS;
	      done_p = true;
	    }
	  else
	    default_p = true;
	}
      else
	default_p = true;
    }

  if (!done_p)
    default_p = true;

  if (default_p)
    ret = default_secondary_reload (in_p, x, rclass, mode, sri);

  gcc_assert (ret != ALL_REGS);

  if (TARGET_DEBUG_ADDR)
    {
      fprintf (stderr,
	       "\nrs6000_secondary_reload, return %s, in_p = %s, rclass = %s, "
	       "mode = %s",
	       reg_class_names[ret],
	       in_p ? "true" : "false",
	       reg_class_names[rclass],
	       GET_MODE_NAME (mode));

      if (reload_completed)
	fputs (", after reload", stderr);

      if (!done_p)
	fputs (", done_p not set", stderr);

      if (default_p)
	fputs (", default secondary reload", stderr);

      if (sri->icode != CODE_FOR_nothing)
	fprintf (stderr, ", reload func = %s, extra cost = %d",
		 insn_data[sri->icode].name, sri->extra_cost);

      else if (sri->extra_cost > 0)
	fprintf (stderr, ", extra cost = %d", sri->extra_cost);

      fputs ("\n", stderr);
      debug_rtx (x);
    }

  return ret;
}

/* Better tracing for rs6000_secondary_reload_inner.  */

static void
rs6000_secondary_reload_trace (int line, rtx reg, rtx mem, rtx scratch,
			       bool store_p)
{
  rtx set, clobber;

  gcc_assert (reg != NULL_RTX && mem != NULL_RTX && scratch != NULL_RTX);

  fprintf (stderr, "rs6000_secondary_reload_inner:%d, type = %s\n", line,
	   store_p ? "store" : "load");

  if (store_p)
    set = gen_rtx_SET (mem, reg);
  else
    set = gen_rtx_SET (reg, mem);

  clobber = gen_rtx_CLOBBER (VOIDmode, scratch);
  debug_rtx (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
}

static void rs6000_secondary_reload_fail (int, rtx, rtx, rtx, bool)
  ATTRIBUTE_NORETURN;

static void
rs6000_secondary_reload_fail (int line, rtx reg, rtx mem, rtx scratch,
			      bool store_p)
{
  rs6000_secondary_reload_trace (line, reg, mem, scratch, store_p);
  gcc_unreachable ();
}

/* Fixup reload addresses for values in GPR, FPR, and VMX registers that have
   reload helper functions.  These were identified in
   rs6000_secondary_reload_memory, and if reload decided to use the secondary
   reload, it calls the insns:
	reload_<RELOAD:mode>_<P:mptrsize>_store
	reload_<RELOAD:mode>_<P:mptrsize>_load

   which in turn calls this function, to do whatever is necessary to create
   valid addresses.  */

void
rs6000_secondary_reload_inner (rtx reg, rtx mem, rtx scratch, bool store_p)
{
  int regno = true_regnum (reg);
  machine_mode mode = GET_MODE (reg);
  addr_mask_type addr_mask;
  rtx addr;
  rtx new_addr;
  rtx op_reg, op0, op1;
  rtx and_op;
  rtx cc_clobber;
  rtvec rv;

  if (regno < 0 || !HARD_REGISTER_NUM_P (regno) || !MEM_P (mem)
      || !base_reg_operand (scratch, GET_MODE (scratch)))
    rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);

  if (IN_RANGE (regno, FIRST_GPR_REGNO, LAST_GPR_REGNO))
    addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_GPR];

  else if (IN_RANGE (regno, FIRST_FPR_REGNO, LAST_FPR_REGNO))
    addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_FPR];

  else if (IN_RANGE (regno, FIRST_ALTIVEC_REGNO, LAST_ALTIVEC_REGNO))
    addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_VMX];

  else
    rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);

  /* Make sure the mode is valid in this register class.  */
  if ((addr_mask & RELOAD_REG_VALID) == 0)
    rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);

  if (TARGET_DEBUG_ADDR)
    rs6000_secondary_reload_trace (__LINE__, reg, mem, scratch, store_p);

  new_addr = addr = XEXP (mem, 0);
  switch (GET_CODE (addr))
    {
      /* Does the register class support auto update forms for this mode?  If
	 not, do the update now.  We don't need a scratch register, since the
	 powerpc only supports PRE_INC, PRE_DEC, and PRE_MODIFY.  */
    case PRE_INC:
    case PRE_DEC:
      op_reg = XEXP (addr, 0);
      if (!base_reg_operand (op_reg, Pmode))
	rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);

      if ((addr_mask & RELOAD_REG_PRE_INCDEC) == 0)
	{
	  int delta = GET_MODE_SIZE (mode);
	  if (GET_CODE (addr) == PRE_DEC)
	    delta = -delta;
	  emit_insn (gen_add2_insn (op_reg, GEN_INT (delta)));
	  new_addr = op_reg;
	}
      break;

    case PRE_MODIFY:
      op0 = XEXP (addr, 0);
      op1 = XEXP (addr, 1);
      if (!base_reg_operand (op0, Pmode)
	  || GET_CODE (op1) != PLUS
	  || !rtx_equal_p (op0, XEXP (op1, 0)))
	rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);

      if ((addr_mask & RELOAD_REG_PRE_MODIFY) == 0)
	{
	  emit_insn (gen_rtx_SET (op0, op1));
	  new_addr = reg;
	}
      break;

      /* Do we need to simulate AND -16 to clear the bottom address bits used
	 in VMX load/stores?  */
    case AND:
      op0 = XEXP (addr, 0);
      op1 = XEXP (addr, 1);
      if ((addr_mask & RELOAD_REG_AND_M16) == 0)
	{
	  if (REG_P (op0) || SUBREG_P (op0))
	    op_reg = op0;

	  else if (GET_CODE (op1) == PLUS)
	    {
	      emit_insn (gen_rtx_SET (scratch, op1));
	      op_reg = scratch;
	    }

	  else
	    rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);

	  and_op = gen_rtx_AND (GET_MODE (scratch), op_reg, op1);
	  cc_clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (CCmode));
	  rv = gen_rtvec (2, gen_rtx_SET (scratch, and_op), cc_clobber);
	  emit_insn (gen_rtx_PARALLEL (VOIDmode, rv));
	  new_addr = scratch;
	}
      break;

      /* If this is an indirect address, make sure it is a base register.  */
    case REG:
    case SUBREG:
      if (!base_reg_operand (addr, GET_MODE (addr)))
	{
	  emit_insn (gen_rtx_SET (scratch, addr));
	  new_addr = scratch;
	}
      break;

      /* If this is an indexed address, make sure the register class can handle
	 indexed addresses for this mode.  */
    case PLUS:
      op0 = XEXP (addr, 0);
      op1 = XEXP (addr, 1);
      if (!base_reg_operand (op0, Pmode))
	rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);

      else if (int_reg_operand (op1, Pmode))
	{
	  if ((addr_mask & RELOAD_REG_INDEXED) == 0)
	    {
	      emit_insn (gen_rtx_SET (scratch, addr));
	      new_addr = scratch;
	    }
	}

      else if (mode_supports_dq_form (mode) && CONST_INT_P (op1))
	{
	  if (((addr_mask & RELOAD_REG_QUAD_OFFSET) == 0)
	      || !quad_address_p (addr, mode, false))
	    {
	      emit_insn (gen_rtx_SET (scratch, addr));
	      new_addr = scratch;
	    }
	}

      /* Make sure the register class can handle offset addresses.  */
      else if (rs6000_legitimate_offset_address_p (mode, addr, false, true))
	{
	  if ((addr_mask & RELOAD_REG_OFFSET) == 0)
	    {
	      emit_insn (gen_rtx_SET (scratch, addr));
	      new_addr = scratch;
	    }
	}

      else
	rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);

      break;

    case LO_SUM:
      op0 = XEXP (addr, 0);
      op1 = XEXP (addr, 1);
      if (!base_reg_operand (op0, Pmode))
	rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);

      else if (int_reg_operand (op1, Pmode))
	{
	  if ((addr_mask & RELOAD_REG_INDEXED) == 0)
	    {
	      emit_insn (gen_rtx_SET (scratch, addr));
	      new_addr = scratch;
	    }
	}

      /* Quad offsets are restricted and can't handle normal addresses.  */
      else if (mode_supports_dq_form (mode))
	{
	  emit_insn (gen_rtx_SET (scratch, addr));
	  new_addr = scratch;
	}

      /* Make sure the register class can handle offset addresses.  */
      else if (legitimate_lo_sum_address_p (mode, addr, false))
	{
	  if ((addr_mask & RELOAD_REG_OFFSET) == 0)
	    {
	      emit_insn (gen_rtx_SET (scratch, addr));
	      new_addr = scratch;
	    }
	}

      else
	rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);

      break;

    case SYMBOL_REF:
    case CONST:
    case LABEL_REF:
      rs6000_emit_move (scratch, addr, Pmode);
      new_addr = scratch;
      break;

    default:
      rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
    }

  /* Adjust the address if it changed.  */
  if (addr != new_addr)
    {
      mem = replace_equiv_address_nv (mem, new_addr);
      if (TARGET_DEBUG_ADDR)
	fprintf (stderr, "\nrs6000_secondary_reload_inner, mem adjusted.\n");
    }

  /* Now create the move.  */
  if (store_p)
    emit_insn (gen_rtx_SET (mem, reg));
  else
    emit_insn (gen_rtx_SET (reg, mem));

  return;
}

/* Convert reloads involving 64-bit gprs and misaligned offset
   addressing, or multiple 32-bit gprs and offsets that are too large,
   to use indirect addressing.  */

void
rs6000_secondary_reload_gpr (rtx reg, rtx mem, rtx scratch, bool store_p)
{
  int regno = true_regnum (reg);
  enum reg_class rclass;
  rtx addr;
  rtx scratch_or_premodify = scratch;

  if (TARGET_DEBUG_ADDR)
    {
      fprintf (stderr, "\nrs6000_secondary_reload_gpr, type = %s\n",
	       store_p ? "store" : "load");
      fprintf (stderr, "reg:\n");
      debug_rtx (reg);
      fprintf (stderr, "mem:\n");
      debug_rtx (mem);
      fprintf (stderr, "scratch:\n");
      debug_rtx (scratch);
    }

  gcc_assert (regno >= 0 && HARD_REGISTER_NUM_P (regno));
  gcc_assert (MEM_P (mem));
  rclass = REGNO_REG_CLASS (regno);
  gcc_assert (rclass == GENERAL_REGS || rclass == BASE_REGS);
  addr = XEXP (mem, 0);

  if (GET_CODE (addr) == PRE_MODIFY)
    {
      gcc_assert (REG_P (XEXP (addr, 0))
		  && GET_CODE (XEXP (addr, 1)) == PLUS
		  && XEXP (XEXP (addr, 1), 0) == XEXP (addr, 0));
      scratch_or_premodify = XEXP (addr, 0);
      addr = XEXP (addr, 1);
    }
  gcc_assert (GET_CODE (addr) == PLUS || GET_CODE (addr) == LO_SUM);

  rs6000_emit_move (scratch_or_premodify, addr, Pmode);

  mem = replace_equiv_address_nv (mem, scratch_or_premodify);

  /* Now create the move.  */
  if (store_p)
    emit_insn (gen_rtx_SET (mem, reg));
  else
    emit_insn (gen_rtx_SET (reg, mem));

  return;
}

/* Given an rtx X being reloaded into a reg required to be
   in class CLASS, return the class of reg to actually use.
   In general this is just CLASS; but on some machines
   in some cases it is preferable to use a more restrictive class.

   On the RS/6000, we have to return NO_REGS when we want to reload a
   floating-point CONST_DOUBLE to force it to be copied to memory.

   We also don't want to reload integer values into floating-point
   registers if we can at all help it.  In fact, this can
   cause reload to die, if it tries to generate a reload of CTR
   into a FP register and discovers it doesn't have the memory location
   required.

   ??? Would it be a good idea to have reload do the converse, that is
   try to reload floating modes into FP registers if possible?
 */

static enum reg_class
rs6000_preferred_reload_class (rtx x, enum reg_class rclass)
{
  machine_mode mode = GET_MODE (x);
  bool is_constant = CONSTANT_P (x);

  /* If a mode can't go in FPR/ALTIVEC/VSX registers, don't return a preferred
     reload class for it.  */
  if ((rclass == ALTIVEC_REGS || rclass == VSX_REGS)
      && (reg_addr[mode].addr_mask[RELOAD_REG_VMX] & RELOAD_REG_VALID) == 0)
    return NO_REGS;

  if ((rclass == FLOAT_REGS || rclass == VSX_REGS)
      && (reg_addr[mode].addr_mask[RELOAD_REG_FPR] & RELOAD_REG_VALID) == 0)
    return NO_REGS;

  /* For VSX, see if we should prefer FLOAT_REGS or ALTIVEC_REGS.  Do not allow
     the reloading of address expressions using PLUS into floating point
     registers.  */
  if (TARGET_VSX && VSX_REG_CLASS_P (rclass) && GET_CODE (x) != PLUS)
    {
      if (is_constant)
	{
	  /* Zero is always allowed in all VSX registers.  */
	  if (x == CONST0_RTX (mode))
	    return rclass;

	  /* If this is a vector constant that can be formed with a few Altivec
	     instructions, we want altivec registers.  */
	  if (GET_CODE (x) == CONST_VECTOR && easy_vector_constant (x, mode))
	    return ALTIVEC_REGS;

	  /* If this is an integer constant that can easily be loaded into
	     vector registers, allow it.  */
	  if (CONST_INT_P (x))
	    {
	      HOST_WIDE_INT value = INTVAL (x);

	      /* ISA 2.07 can generate -1 in all registers with XXLORC.  ISA
		 2.06 can generate it in the Altivec registers with
		 VSPLTI<x>.  */
	      if (value == -1)
		{
		  if (TARGET_P8_VECTOR)
		    return rclass;
		  else if (rclass == ALTIVEC_REGS || rclass == VSX_REGS)
		    return ALTIVEC_REGS;
		  else
		    return NO_REGS;
		}

	      /* ISA 3.0 can load -128..127 using the XXSPLTIB instruction and
		 a sign extend in the Altivec registers.  */
	      if (IN_RANGE (value, -128, 127) && TARGET_P9_VECTOR
		  && (rclass == ALTIVEC_REGS || rclass == VSX_REGS))
		return ALTIVEC_REGS;
	    }

	  /* Force constant to memory.  */
	  return NO_REGS;
	}

      /* D-form addressing can easily reload the value.  */
      if (mode_supports_vmx_dform (mode)
	  || mode_supports_dq_form (mode))
	return rclass;

      /* If this is a scalar floating point value and we don't have D-form
	 addressing, prefer the traditional floating point registers so that we
	 can use D-form (register+offset) addressing.  */
      if (rclass == VSX_REGS
	  && (mode == SFmode || GET_MODE_SIZE (mode) == 8))
	return FLOAT_REGS;

      /* Prefer the Altivec registers if Altivec is handling the vector
	 operations (i.e. V16QI, V8HI, and V4SI), or if we prefer Altivec
	 loads.  */
      if (VECTOR_UNIT_ALTIVEC_P (mode) || VECTOR_MEM_ALTIVEC_P (mode)
	  || mode == V1TImode)
	return ALTIVEC_REGS;

      return rclass;
    }

  if (is_constant || GET_CODE (x) == PLUS)
    {
      if (reg_class_subset_p (GENERAL_REGS, rclass))
	return GENERAL_REGS;
      if (reg_class_subset_p (BASE_REGS, rclass))
	return BASE_REGS;
      return NO_REGS;
    }

  /* For the vector pair and vector quad modes, prefer their natural register
     (VSX or FPR) rather than GPR registers.  For other integer types, prefer
     the GPR registers.  */
  if (rclass == GEN_OR_FLOAT_REGS)
    {
      if (mode == OOmode)
	return VSX_REGS;

      if (mode == XOmode)
	return FLOAT_REGS;

      if (GET_MODE_CLASS (mode) == MODE_INT)
	return GENERAL_REGS;
    }

  return rclass;
}

/* Debug version of rs6000_preferred_reload_class.  */
static enum reg_class
rs6000_debug_preferred_reload_class (rtx x, enum reg_class rclass)
{
  enum reg_class ret = rs6000_preferred_reload_class (x, rclass);

  fprintf (stderr,
	   "\nrs6000_preferred_reload_class, return %s, rclass = %s, "
	   "mode = %s, x:\n",
	   reg_class_names[ret], reg_class_names[rclass],
	   GET_MODE_NAME (GET_MODE (x)));
  debug_rtx (x);

  return ret;
}

/* If we are copying between FP or AltiVec registers and anything else, we need
   a memory location.  The exception is when we are targeting ppc64 and the
   move to/from fpr to gpr instructions are available.  Also, under VSX, you
   can copy vector registers from the FP register set to the Altivec register
   set and vice versa.  */

static bool
rs6000_secondary_memory_needed (machine_mode mode,
				reg_class_t from_class,
				reg_class_t to_class)
{
  enum rs6000_reg_type from_type, to_type;
  bool altivec_p = ((from_class == ALTIVEC_REGS)
		    || (to_class == ALTIVEC_REGS));

  /* If a simple/direct move is available, we don't need secondary memory  */
  from_type = reg_class_to_reg_type[(int)from_class];
  to_type = reg_class_to_reg_type[(int)to_class];

  if (rs6000_secondary_reload_move (to_type, from_type, mode,
				    (secondary_reload_info *)0, altivec_p))
    return false;

  /* If we have a floating point or vector register class, we need to use
     memory to transfer the data.  */
  if (IS_FP_VECT_REG_TYPE (from_type) || IS_FP_VECT_REG_TYPE (to_type))
    return true;

  return false;
}

/* Debug version of rs6000_secondary_memory_needed.  */
static bool
rs6000_debug_secondary_memory_needed (machine_mode mode,
				      reg_class_t from_class,
				      reg_class_t to_class)
{
  bool ret = rs6000_secondary_memory_needed (mode, from_class, to_class);

  fprintf (stderr,
	   "rs6000_secondary_memory_needed, return: %s, from_class = %s, "
	   "to_class = %s, mode = %s\n",
	   ret ? "true" : "false",
	   reg_class_names[from_class],
	   reg_class_names[to_class],
	   GET_MODE_NAME (mode));

  return ret;
}

/* Return the register class of a scratch register needed to copy IN into
   or out of a register in RCLASS in MODE.  If it can be done directly,
   NO_REGS is returned.  */

static enum reg_class
rs6000_secondary_reload_class (enum reg_class rclass, machine_mode mode,
			       rtx in)
{
  int regno;

  if (TARGET_ELF || (DEFAULT_ABI == ABI_DARWIN
#if TARGET_MACHO
		     && MACHOPIC_INDIRECT
#endif
		     ))
    {
      /* We cannot copy a symbolic operand directly into anything
	 other than BASE_REGS for TARGET_ELF.  So indicate that a
	 register from BASE_REGS is needed as an intermediate
	 register.

	 On Darwin, pic addresses require a load from memory, which
	 needs a base register.  */
      if (rclass != BASE_REGS
	  && (SYMBOL_REF_P (in)
	      || GET_CODE (in) == HIGH
	      || GET_CODE (in) == LABEL_REF
	      || GET_CODE (in) == CONST))
	return BASE_REGS;
    }

  if (REG_P (in))
    {
      regno = REGNO (in);
      if (!HARD_REGISTER_NUM_P (regno))
	{
	  regno = true_regnum (in);
	  if (!HARD_REGISTER_NUM_P (regno))
	    regno = -1;
	}
    }
  else if (SUBREG_P (in))
    {
      regno = true_regnum (in);
      if (!HARD_REGISTER_NUM_P (regno))
	regno = -1;
    }
  else
    regno = -1;

  /* If we have VSX register moves, prefer moving scalar values between
     Altivec registers and GPR by going via an FPR (and then via memory)
     instead of reloading the secondary memory address for Altivec moves.  */
  if (TARGET_VSX
      && GET_MODE_SIZE (mode) < 16
      && !mode_supports_vmx_dform (mode)
      && (((rclass == GENERAL_REGS || rclass == BASE_REGS)
           && (regno >= 0 && ALTIVEC_REGNO_P (regno)))
          || ((rclass == VSX_REGS || rclass == ALTIVEC_REGS)
              && (regno >= 0 && INT_REGNO_P (regno)))))
    return FLOAT_REGS;

  /* We can place anything into GENERAL_REGS and can put GENERAL_REGS
     into anything.  */
  if (rclass == GENERAL_REGS || rclass == BASE_REGS
      || (regno >= 0 && INT_REGNO_P (regno)))
    return NO_REGS;

  /* Constants, memory, and VSX registers can go into VSX registers (both the
     traditional floating point and the altivec registers).  */
  if (rclass == VSX_REGS
      && (regno == -1 || VSX_REGNO_P (regno)))
    return NO_REGS;

  /* Constants, memory, and FP registers can go into FP registers.  */
  if ((regno == -1 || FP_REGNO_P (regno))
      && (rclass == FLOAT_REGS || rclass == GEN_OR_FLOAT_REGS))
    return (mode != SDmode || lra_in_progress) ? NO_REGS : GENERAL_REGS;

  /* Memory, and AltiVec registers can go into AltiVec registers.  */
  if ((regno == -1 || ALTIVEC_REGNO_P (regno))
      && rclass == ALTIVEC_REGS)
    return NO_REGS;

  /* We can copy among the CR registers.  */
  if ((rclass == CR_REGS || rclass == CR0_REGS)
      && regno >= 0 && CR_REGNO_P (regno))
    return NO_REGS;

  /* Otherwise, we need GENERAL_REGS.  */
  return GENERAL_REGS;
}

/* Debug version of rs6000_secondary_reload_class.  */
static enum reg_class
rs6000_debug_secondary_reload_class (enum reg_class rclass,
				     machine_mode mode, rtx in)
{
  enum reg_class ret = rs6000_secondary_reload_class (rclass, mode, in);
  fprintf (stderr,
	   "\nrs6000_secondary_reload_class, return %s, rclass = %s, "
	   "mode = %s, input rtx:\n",
	   reg_class_names[ret], reg_class_names[rclass],
	   GET_MODE_NAME (mode));
  debug_rtx (in);

  return ret;
}

/* Implement TARGET_CAN_CHANGE_MODE_CLASS.  */

static bool
rs6000_can_change_mode_class (machine_mode from,
			      machine_mode to,
			      reg_class_t rclass)
{
  unsigned from_size = GET_MODE_SIZE (from);
  unsigned to_size = GET_MODE_SIZE (to);

  if (from_size != to_size)
    {
      enum reg_class xclass = (TARGET_VSX) ? VSX_REGS : FLOAT_REGS;

      if (reg_classes_intersect_p (xclass, rclass))
	{
	  unsigned to_nregs = hard_regno_nregs (FIRST_FPR_REGNO, to);
	  unsigned from_nregs = hard_regno_nregs (FIRST_FPR_REGNO, from);
	  bool to_float128_vector_p = FLOAT128_VECTOR_P (to);
	  bool from_float128_vector_p = FLOAT128_VECTOR_P (from);

	  /* Don't allow 64-bit types to overlap with 128-bit types that take a
	     single register under VSX because the scalar part of the register
	     is in the upper 64-bits, and not the lower 64-bits.  Types like
	     TFmode/TDmode that take 2 scalar register can overlap.  128-bit
	     IEEE floating point can't overlap, and neither can small
	     values.  */

	  if (to_float128_vector_p && from_float128_vector_p)
	    return true;

	  else if (to_float128_vector_p || from_float128_vector_p)
	    return false;

	  /* TDmode in floating-mode registers must always go into a register
	     pair with the most significant word in the even-numbered register
	     to match ISA requirements.  In little-endian mode, this does not
	     match subreg numbering, so we cannot allow subregs.  */
	  if (!BYTES_BIG_ENDIAN && (to == TDmode || from == TDmode))
	    return false;

	  /* Allow SD<->DD changes, since SDmode values are stored in
	     the low half of the DDmode, just like target-independent
	     code expects.  We need to allow at least SD->DD since
	     rs6000_secondary_memory_needed_mode asks for that change
	     to be made for SD reloads.  */
	  if ((to == DDmode && from == SDmode)
	      || (to == SDmode && from == DDmode))
	    return true;

	  if (from_size < 8 || to_size < 8)
	    return false;

	  if (from_size == 8 && (8 * to_nregs) != to_size)
	    return false;

	  if (to_size == 8 && (8 * from_nregs) != from_size)
	    return false;

	  return true;
	}
      else
	return true;
    }

  /* Since the VSX register set includes traditional floating point registers
     and altivec registers, just check for the size being different instead of
     trying to check whether the modes are vector modes.  Otherwise it won't
     allow say DF and DI to change classes.  For types like TFmode and TDmode
     that take 2 64-bit registers, rather than a single 128-bit register, don't
     allow subregs of those types to other 128 bit types.  */
  if (TARGET_VSX && VSX_REG_CLASS_P (rclass))
    {
      unsigned num_regs = (from_size + 15) / 16;
      if (hard_regno_nregs (FIRST_FPR_REGNO, to) > num_regs
	  || hard_regno_nregs (FIRST_FPR_REGNO, from) > num_regs)
	return false;

      return (from_size == 8 || from_size == 16);
    }

  if (TARGET_ALTIVEC && rclass == ALTIVEC_REGS
      && (ALTIVEC_VECTOR_MODE (from) + ALTIVEC_VECTOR_MODE (to)) == 1)
    return false;

  return true;
}

/* Debug version of rs6000_can_change_mode_class.  */
static bool
rs6000_debug_can_change_mode_class (machine_mode from,
				    machine_mode to,
				    reg_class_t rclass)
{
  bool ret = rs6000_can_change_mode_class (from, to, rclass);

  fprintf (stderr,
	   "rs6000_can_change_mode_class, return %s, from = %s, "
	   "to = %s, rclass = %s\n",
	   ret ? "true" : "false",
	   GET_MODE_NAME (from), GET_MODE_NAME (to),
	   reg_class_names[rclass]);

  return ret;
}

/* Return a string to do a move operation of 128 bits of data.  */

const char *
rs6000_output_move_128bit (rtx operands[])
{
  rtx dest = operands[0];
  rtx src = operands[1];
  machine_mode mode = GET_MODE (dest);
  int dest_regno;
  int src_regno;
  bool dest_gpr_p, dest_fp_p, dest_vmx_p, dest_vsx_p;
  bool src_gpr_p, src_fp_p, src_vmx_p, src_vsx_p;

  if (REG_P (dest))
    {
      dest_regno = REGNO (dest);
      dest_gpr_p = INT_REGNO_P (dest_regno);
      dest_fp_p = FP_REGNO_P (dest_regno);
      dest_vmx_p = ALTIVEC_REGNO_P (dest_regno);
      dest_vsx_p = dest_fp_p | dest_vmx_p;
    }
  else
    {
      dest_regno = -1;
      dest_gpr_p = dest_fp_p = dest_vmx_p = dest_vsx_p = false;
    }

  if (REG_P (src))
    {
      src_regno = REGNO (src);
      src_gpr_p = INT_REGNO_P (src_regno);
      src_fp_p = FP_REGNO_P (src_regno);
      src_vmx_p = ALTIVEC_REGNO_P (src_regno);
      src_vsx_p = src_fp_p | src_vmx_p;
    }
  else
    {
      src_regno = -1;
      src_gpr_p = src_fp_p = src_vmx_p = src_vsx_p = false;
    }

  /* Register moves.  */
  if (dest_regno >= 0 && src_regno >= 0)
    {
      if (dest_gpr_p)
	{
	  if (src_gpr_p)
	    return "#";

	  if (TARGET_DIRECT_MOVE_128 && src_vsx_p)
	    return (WORDS_BIG_ENDIAN
		    ? "mfvsrd %0,%x1\n\tmfvsrld %L0,%x1"
		    : "mfvsrd %L0,%x1\n\tmfvsrld %0,%x1");

	  else if (TARGET_VSX && TARGET_DIRECT_MOVE && src_vsx_p)
	    return "#";
	}

      else if (TARGET_VSX && dest_vsx_p)
	{
	  if (src_vsx_p)
	    return "xxlor %x0,%x1,%x1";

	  else if (TARGET_DIRECT_MOVE_128 && src_gpr_p)
	    return (WORDS_BIG_ENDIAN
		    ? "mtvsrdd %x0,%1,%L1"
		    : "mtvsrdd %x0,%L1,%1");

	  else if (TARGET_DIRECT_MOVE && src_gpr_p)
	    return "#";
	}

      else if (TARGET_ALTIVEC && dest_vmx_p && src_vmx_p)
	return "vor %0,%1,%1";

      else if (dest_fp_p && src_fp_p)
	return "#";
    }

  /* Loads.  */
  else if (dest_regno >= 0 && MEM_P (src))
    {
      if (dest_gpr_p)
	{
	  if (TARGET_QUAD_MEMORY && quad_load_store_p (dest, src))
	    return "lq %0,%1";
	  else
	    return "#";
	}

      else if (TARGET_ALTIVEC && dest_vmx_p
	       && altivec_indexed_or_indirect_operand (src, mode))
	return "lvx %0,%y1";

      else if (TARGET_VSX && dest_vsx_p)
	{
	  if (mode_supports_dq_form (mode)
	      && quad_address_p (XEXP (src, 0), mode, true))
	    return "lxv %x0,%1";

	  else if (TARGET_P9_VECTOR)
	    return "lxvx %x0,%y1";

	  else if (mode == V16QImode || mode == V8HImode || mode == V4SImode)
	    return "lxvw4x %x0,%y1";

	  else
	    return "lxvd2x %x0,%y1";
	}

      else if (TARGET_ALTIVEC && dest_vmx_p)
	return "lvx %0,%y1";

      else if (dest_fp_p)
	return "#";
    }

  /* Stores.  */
  else if (src_regno >= 0 && MEM_P (dest))
    {
      if (src_gpr_p)
	{
 	  if (TARGET_QUAD_MEMORY && quad_load_store_p (dest, src))
	    return "stq %1,%0";
	  else
	    return "#";
	}

      else if (TARGET_ALTIVEC && src_vmx_p
	       && altivec_indexed_or_indirect_operand (dest, mode))
	return "stvx %1,%y0";

      else if (TARGET_VSX && src_vsx_p)
	{
	  if (mode_supports_dq_form (mode)
	      && quad_address_p (XEXP (dest, 0), mode, true))
	    return "stxv %x1,%0";

	  else if (TARGET_P9_VECTOR)
	    return "stxvx %x1,%y0";

	  else if (mode == V16QImode || mode == V8HImode || mode == V4SImode)
	    return "stxvw4x %x1,%y0";

	  else
	    return "stxvd2x %x1,%y0";
	}

      else if (TARGET_ALTIVEC && src_vmx_p)
	return "stvx %1,%y0";

      else if (src_fp_p)
	return "#";
    }

  /* Constants.  */
  else if (dest_regno >= 0
	   && (CONST_INT_P (src)
	       || CONST_WIDE_INT_P (src)
	       || CONST_DOUBLE_P (src)
	       || GET_CODE (src) == CONST_VECTOR))
    {
      if (dest_gpr_p)
	return "#";

      else if ((dest_vmx_p && TARGET_ALTIVEC)
	       || (dest_vsx_p && TARGET_VSX))
	return output_vec_const_move (operands);
    }

  fatal_insn ("Bad 128-bit move", gen_rtx_SET (dest, src));
}

/* Validate a 128-bit move.  */
bool
rs6000_move_128bit_ok_p (rtx operands[])
{
  machine_mode mode = GET_MODE (operands[0]);
  return (gpc_reg_operand (operands[0], mode)
	  || gpc_reg_operand (operands[1], mode));
}

/* Return true if a 128-bit move needs to be split.  */
bool
rs6000_split_128bit_ok_p (rtx operands[])
{
  if (!reload_completed)
    return false;

  if (!gpr_or_gpr_p (operands[0], operands[1]))
    return false;

  if (quad_load_store_p (operands[0], operands[1]))
    return false;

  return true;
}


/* Given a comparison operation, return the bit number in CCR to test.  We
   know this is a valid comparison.

   SCC_P is 1 if this is for an scc.  That means that %D will have been
   used instead of %C, so the bits will be in different places.

   Return -1 if OP isn't a valid comparison for some reason.  */

int
ccr_bit (rtx op, int scc_p)
{
  enum rtx_code code = GET_CODE (op);
  machine_mode cc_mode;
  int cc_regnum;
  int base_bit;
  rtx reg;

  if (!COMPARISON_P (op))
    return -1;

  reg = XEXP (op, 0);

  if (!REG_P (reg) || !CR_REGNO_P (REGNO (reg)))
    return -1;

  cc_mode = GET_MODE (reg);
  cc_regnum = REGNO (reg);
  base_bit = 4 * (cc_regnum - CR0_REGNO);

  validate_condition_mode (code, cc_mode);

  /* When generating a sCOND operation, only positive conditions are
     allowed.  */
  if (scc_p)
    switch (code)
      {
      case EQ:
      case GT:
      case LT:
      case UNORDERED:
      case GTU:
      case LTU:
	break;
      default:
	return -1;
      }

  switch (code)
    {
    case NE:
      return scc_p ? base_bit + 3 : base_bit + 2;
    case EQ:
      return base_bit + 2;
    case GT:  case GTU:  case UNLE:
      return base_bit + 1;
    case LT:  case LTU:  case UNGE:
      return base_bit;
    case ORDERED:  case UNORDERED:
      return base_bit + 3;

    case GE:  case GEU:
      /* If scc, we will have done a cror to put the bit in the
	 unordered position.  So test that bit.  For integer, this is ! LT
	 unless this is an scc insn.  */
      return scc_p ? base_bit + 3 : base_bit;

    case LE:  case LEU:
      return scc_p ? base_bit + 3 : base_bit + 1;

    default:
      return -1;
    }
}

/* Return the GOT register.  */

rtx
rs6000_got_register (rtx value ATTRIBUTE_UNUSED)
{
  /* The second flow pass currently (June 1999) can't update
     regs_ever_live without disturbing other parts of the compiler, so
     update it here to make the prolog/epilogue code happy.  */
  if (!can_create_pseudo_p ()
      && !df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM))
    df_set_regs_ever_live (RS6000_PIC_OFFSET_TABLE_REGNUM, true);

  crtl->uses_pic_offset_table = 1;

  return pic_offset_table_rtx;
}

#define INT_P(X) (CONST_INT_P (X) && GET_MODE (X) == VOIDmode)

/* Write out a function code label.  */

void
rs6000_output_function_entry (FILE *file, const char *fname)
{
  if (fname[0] != '.')
    {
      switch (DEFAULT_ABI)
	{
	default:
	  gcc_unreachable ();

	case ABI_AIX:
	  if (DOT_SYMBOLS)
	    putc ('.', file);
	  else
	    ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "L.");
	  break;

	case ABI_ELFv2:
	case ABI_V4:
	case ABI_DARWIN:
	  break;
	}
    }

  RS6000_OUTPUT_BASENAME (file, fname);
}

/* Print an operand.  Recognize special options, documented below.  */

#if TARGET_ELF
/* Access to .sdata2 through r2 (see -msdata=eabi in invoke.texi) is
   only introduced by the linker, when applying the sda21
   relocation.  */
#define SMALL_DATA_RELOC ((rs6000_sdata == SDATA_EABI) ? "sda21" : "sdarel")
#define SMALL_DATA_REG ((rs6000_sdata == SDATA_EABI) ? 0 : 13)
#else
#define SMALL_DATA_RELOC "sda21"
#define SMALL_DATA_REG 0
#endif

void
print_operand (FILE *file, rtx x, int code)
{
  int i;
  unsigned HOST_WIDE_INT uval;

  switch (code)
    {
      /* %a is output_address.  */

      /* %c is output_addr_const if a CONSTANT_ADDRESS_P, otherwise
	 output_operand.  */

    case 'A':
      /* Write the MMA accumulator number associated with VSX register X.  */
      if (!REG_P (x) || !FP_REGNO_P (REGNO (x)) || (REGNO (x) % 4) != 0)
	output_operand_lossage ("invalid %%A value");
      else
	fprintf (file, "%d", (REGNO (x) - FIRST_FPR_REGNO) / 4);
      return;

    case 'D':
      /* Like 'J' but get to the GT bit only.  */
      if (!REG_P (x) || !CR_REGNO_P (REGNO (x)))
	{
	  output_operand_lossage ("invalid %%D value");
	  return;
	}

      /* Bit 1 is GT bit.  */
      i = 4 * (REGNO (x) - CR0_REGNO) + 1;

      /* Add one for shift count in rlinm for scc.  */
      fprintf (file, "%d", i + 1);
      return;

    case 'e':
      /* If the low 16 bits are 0, but some other bit is set, write 's'.  */
      if (! INT_P (x))
	{
	  output_operand_lossage ("invalid %%e value");
	  return;
	}

      uval = INTVAL (x);
      if ((uval & 0xffff) == 0 && uval != 0)
	putc ('s', file);
      return;

    case 'E':
      /* X is a CR register.  Print the number of the EQ bit of the CR */
      if (!REG_P (x) || !CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%E value");
      else
	fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO) + 2);
      return;

    case 'f':
      /* X is a CR register.  Print the shift count needed to move it
	 to the high-order four bits.  */
      if (!REG_P (x) || !CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%f value");
      else
	fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO));
      return;

    case 'F':
      /* Similar, but print the count for the rotate in the opposite
	 direction.  */
      if (!REG_P (x) || !CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%F value");
      else
	fprintf (file, "%d", 32 - 4 * (REGNO (x) - CR0_REGNO));
      return;

    case 'G':
      /* X is a constant integer.  If it is negative, print "m",
	 otherwise print "z".  This is to make an aze or ame insn.  */
      if (!CONST_INT_P (x))
	output_operand_lossage ("invalid %%G value");
      else if (INTVAL (x) >= 0)
	putc ('z', file);
      else
	putc ('m', file);
      return;

    case 'h':
      /* If constant, output low-order five bits.  Otherwise, write
	 normally.  */
      if (INT_P (x))
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 31);
      else
	print_operand (file, x, 0);
      return;

    case 'H':
      /* If constant, output low-order six bits.  Otherwise, write
	 normally.  */
      if (INT_P (x))
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 63);
      else
	print_operand (file, x, 0);
      return;

    case 'I':
      /* Print `i' if this is a constant, else nothing.  */
      if (INT_P (x))
	putc ('i', file);
      return;

    case 'j':
      /* Write the bit number in CCR for jump.  */
      i = ccr_bit (x, 0);
      if (i == -1)
	output_operand_lossage ("invalid %%j code");
      else
	fprintf (file, "%d", i);
      return;

    case 'J':
      /* Similar, but add one for shift count in rlinm for scc and pass
	 scc flag to `ccr_bit'.  */
      i = ccr_bit (x, 1);
      if (i == -1)
	output_operand_lossage ("invalid %%J code");
      else
	/* If we want bit 31, write a shift count of zero, not 32.  */
	fprintf (file, "%d", i == 31 ? 0 : i + 1);
      return;

    case 'k':
      /* X must be a constant.  Write the 1's complement of the
	 constant.  */
      if (! INT_P (x))
	output_operand_lossage ("invalid %%k value");
      else
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INTVAL (x));
      return;

    case 'K':
      /* X must be a symbolic constant on ELF.  Write an
	 expression suitable for an 'addi' that adds in the low 16
	 bits of the MEM.  */
      if (GET_CODE (x) == CONST)
	{
	  if (GET_CODE (XEXP (x, 0)) != PLUS
	      || (!SYMBOL_REF_P (XEXP (XEXP (x, 0), 0))
		  && GET_CODE (XEXP (XEXP (x, 0), 0)) != LABEL_REF)
	      || !CONST_INT_P (XEXP (XEXP (x, 0), 1)))
	    output_operand_lossage ("invalid %%K value");
	}
      print_operand_address (file, x);
      fputs ("@l", file);
      return;

      /* %l is output_asm_label.  */

    case 'L':
      /* Write second word of DImode or DFmode reference.  Works on register
	 or non-indexed memory only.  */
      if (REG_P (x))
	fputs (reg_names[REGNO (x) + 1], file);
      else if (MEM_P (x))
	{
	  machine_mode mode = GET_MODE (x);
	  /* Handle possible auto-increment.  Since it is pre-increment and
	     we have already done it, we can just use an offset of word.  */
	  if (GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == PRE_DEC)
	    output_address (mode, plus_constant (Pmode, XEXP (XEXP (x, 0), 0),
						 UNITS_PER_WORD));
	  else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
	    output_address (mode, plus_constant (Pmode, XEXP (XEXP (x, 0), 0),
						 UNITS_PER_WORD));
	  else
	    output_address (mode, XEXP (adjust_address_nv (x, SImode,
							   UNITS_PER_WORD),
				  0));

	  if (small_data_operand (x, GET_MODE (x)))
	    fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
		     reg_names[SMALL_DATA_REG]);
	}
      return;

    case 'N': /* Unused */
      /* Write the number of elements in the vector times 4.  */
      if (GET_CODE (x) != PARALLEL)
	output_operand_lossage ("invalid %%N value");
      else
	fprintf (file, "%d", XVECLEN (x, 0) * 4);
      return;

    case 'O': /* Unused */
      /* Similar, but subtract 1 first.  */
      if (GET_CODE (x) != PARALLEL)
	output_operand_lossage ("invalid %%O value");
      else
	fprintf (file, "%d", (XVECLEN (x, 0) - 1) * 4);
      return;

    case 'p':
      /* X is a CONST_INT that is a power of two.  Output the logarithm.  */
      if (! INT_P (x)
	  || INTVAL (x) < 0
	  || (i = exact_log2 (INTVAL (x))) < 0)
	output_operand_lossage ("invalid %%p value");
      else
	fprintf (file, "%d", i);
      return;

    case 'P':
      /* The operand must be an indirect memory reference.  The result
	 is the register name.  */
      if (!MEM_P (x) || !REG_P (XEXP (x, 0))
	  || REGNO (XEXP (x, 0)) >= 32)
	output_operand_lossage ("invalid %%P value");
      else
	fputs (reg_names[REGNO (XEXP (x, 0))], file);
      return;

    case 'q':
      /* This outputs the logical code corresponding to a boolean
	 expression.  The expression may have one or both operands
	 negated (if one, only the first one).  For condition register
	 logical operations, it will also treat the negated
	 CR codes as NOTs, but not handle NOTs of them.  */
      {
	const char *const *t = 0;
	const char *s;
	enum rtx_code code = GET_CODE (x);
	static const char * const tbl[3][3] = {
	  { "and", "andc", "nor" },
	  { "or", "orc", "nand" },
	  { "xor", "eqv", "xor" } };

	if (code == AND)
	  t = tbl[0];
	else if (code == IOR)
	  t = tbl[1];
	else if (code == XOR)
	  t = tbl[2];
	else
	  output_operand_lossage ("invalid %%q value");

	if (GET_CODE (XEXP (x, 0)) != NOT)
	  s = t[0];
	else
	  {
	    if (GET_CODE (XEXP (x, 1)) == NOT)
	      s = t[2];
	    else
	      s = t[1];
	  }

	fputs (s, file);
      }
      return;

    case 'Q':
      if (! TARGET_MFCRF)
	return;
      fputc (',', file);
      /* FALLTHRU */

    case 'R':
      /* X is a CR register.  Print the mask for `mtcrf'.  */
      if (!REG_P (x) || !CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%R value");
      else
	fprintf (file, "%d", 128 >> (REGNO (x) - CR0_REGNO));
      return;

    case 's':
      /* Low 5 bits of 32 - value */
      if (! INT_P (x))
	output_operand_lossage ("invalid %%s value");
      else
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, (32 - INTVAL (x)) & 31);
      return;

    case 't':
      /* Like 'J' but get to the OVERFLOW/UNORDERED bit.  */
      if (!REG_P (x) || !CR_REGNO_P (REGNO (x)))
	{
	  output_operand_lossage ("invalid %%t value");
	  return;
	}

      /* Bit 3 is OV bit.  */
      i = 4 * (REGNO (x) - CR0_REGNO) + 3;

      /* If we want bit 31, write a shift count of zero, not 32.  */
      fprintf (file, "%d", i == 31 ? 0 : i + 1);
      return;

    case 'T':
      /* Print the symbolic name of a branch target register.  */
      if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_PLTSEQ)
	x = XVECEXP (x, 0, 0);
      if (!REG_P (x) || (REGNO (x) != LR_REGNO
			 && REGNO (x) != CTR_REGNO))
	output_operand_lossage ("invalid %%T value");
      else if (REGNO (x) == LR_REGNO)
	fputs ("lr", file);
      else
	fputs ("ctr", file);
      return;

    case 'u':
      /* High-order or low-order 16 bits of constant, whichever is non-zero,
	 for use in unsigned operand.  */
      if (! INT_P (x))
	{
	  output_operand_lossage ("invalid %%u value");
	  return;
	}

      uval = INTVAL (x);
      if ((uval & 0xffff) == 0)
	uval >>= 16;

      fprintf (file, HOST_WIDE_INT_PRINT_HEX, uval & 0xffff);
      return;

    case 'v':
      /* High-order 16 bits of constant for use in signed operand.  */
      if (! INT_P (x))
	output_operand_lossage ("invalid %%v value");
      else
	fprintf (file, HOST_WIDE_INT_PRINT_HEX,
		 (INTVAL (x) >> 16) & 0xffff);
      return;

    case 'U':
      /* Print `u' if this has an auto-increment or auto-decrement.  */
      if (MEM_P (x)
	  && (GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == PRE_DEC
	      || GET_CODE (XEXP (x, 0)) == PRE_MODIFY))
	putc ('u', file);
      return;

    case 'V':
      /* Print the trap code for this operand.  */
      switch (GET_CODE (x))
	{
	case EQ:
	  fputs ("eq", file);   /* 4 */
	  break;
	case NE:
	  fputs ("ne", file);   /* 24 */
	  break;
	case LT:
	  fputs ("lt", file);   /* 16 */
	  break;
	case LE:
	  fputs ("le", file);   /* 20 */
	  break;
	case GT:
	  fputs ("gt", file);   /* 8 */
	  break;
	case GE:
	  fputs ("ge", file);   /* 12 */
	  break;
	case LTU:
	  fputs ("llt", file);  /* 2 */
	  break;
	case LEU:
	  fputs ("lle", file);  /* 6 */
	  break;
	case GTU:
	  fputs ("lgt", file);  /* 1 */
	  break;
	case GEU:
	  fputs ("lge", file);  /* 5 */
	  break;
	default:
	  output_operand_lossage ("invalid %%V value");
	}
      break;

    case 'w':
      /* If constant, low-order 16 bits of constant, signed.  Otherwise, write
	 normally.  */
      if (INT_P (x))
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, sext_hwi (INTVAL (x), 16));
      else
	print_operand (file, x, 0);
      return;

    case 'x':
      /* X is a FPR or Altivec register used in a VSX context.  */
      if (!REG_P (x) || !VSX_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%x value");
      else
	{
	  int reg = REGNO (x);
	  int vsx_reg = (FP_REGNO_P (reg)
			 ? reg - 32
			 : reg - FIRST_ALTIVEC_REGNO + 32);

#ifdef TARGET_REGNAMES      
	  if (TARGET_REGNAMES)
	    fprintf (file, "%%vs%d", vsx_reg);
	  else
#endif
	    fprintf (file, "%d", vsx_reg);
	}
      return;

    case 'X':
      if (MEM_P (x)
	  && (legitimate_indexed_address_p (XEXP (x, 0), 0)
	      || (GET_CODE (XEXP (x, 0)) == PRE_MODIFY
		  && legitimate_indexed_address_p (XEXP (XEXP (x, 0), 1), 0))))
	putc ('x', file);
      return;

    case 'Y':
      /* Like 'L', for third word of TImode/PTImode  */
      if (REG_P (x))
	fputs (reg_names[REGNO (x) + 2], file);
      else if (MEM_P (x))
	{
	  machine_mode mode = GET_MODE (x);
	  if (GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == PRE_DEC)
	    output_address (mode, plus_constant (Pmode,
						 XEXP (XEXP (x, 0), 0), 8));
	  else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
	    output_address (mode, plus_constant (Pmode,
						 XEXP (XEXP (x, 0), 0), 8));
	  else
	    output_address (mode, XEXP (adjust_address_nv (x, SImode, 8), 0));
	  if (small_data_operand (x, GET_MODE (x)))
	    fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
		     reg_names[SMALL_DATA_REG]);
	}
      return;

    case 'z':
      if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_PLTSEQ)
	x = XVECEXP (x, 0, 1);
      /* X is a SYMBOL_REF.  Write out the name preceded by a
	 period and without any trailing data in brackets.  Used for function
	 names.  If we are configured for System V (or the embedded ABI) on
	 the PowerPC, do not emit the period, since those systems do not use
	 TOCs and the like.  */
      if (!SYMBOL_REF_P (x))
	{
	  output_operand_lossage ("invalid %%z value");
	  return;
	}

      /* For macho, check to see if we need a stub.  */
      if (TARGET_MACHO)
	{
	  const char *name = XSTR (x, 0);
#if TARGET_MACHO
	  if (darwin_symbol_stubs
	      && MACHOPIC_INDIRECT
	      && machopic_classify_symbol (x) == MACHOPIC_UNDEFINED_FUNCTION)
	    name = machopic_indirection_name (x, /*stub_p=*/true);
#endif
	  assemble_name (file, name);
	}
      else if (!DOT_SYMBOLS)
	assemble_name (file, XSTR (x, 0));
      else
	rs6000_output_function_entry (file, XSTR (x, 0));
      return;

    case 'Z':
      /* Like 'L', for last word of TImode/PTImode.  */
      if (REG_P (x))
	fputs (reg_names[REGNO (x) + 3], file);
      else if (MEM_P (x))
	{
	  machine_mode mode = GET_MODE (x);
	  if (GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == PRE_DEC)
	    output_address (mode, plus_constant (Pmode,
						 XEXP (XEXP (x, 0), 0), 12));
	  else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
	    output_address (mode, plus_constant (Pmode,
						 XEXP (XEXP (x, 0), 0), 12));
	  else
	    output_address (mode, XEXP (adjust_address_nv (x, SImode, 12), 0));
	  if (small_data_operand (x, GET_MODE (x)))
	    fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
		     reg_names[SMALL_DATA_REG]);
	}
      return;

      /* Print AltiVec memory operand.  */
    case 'y':
      {
	rtx tmp;

	gcc_assert (MEM_P (x));

	tmp = XEXP (x, 0);

	if (VECTOR_MEM_ALTIVEC_OR_VSX_P (GET_MODE (x))
	    && GET_CODE (tmp) == AND
	    && CONST_INT_P (XEXP (tmp, 1))
	    && INTVAL (XEXP (tmp, 1)) == -16)
	  tmp = XEXP (tmp, 0);
	else if (VECTOR_MEM_VSX_P (GET_MODE (x))
		 && GET_CODE (tmp) == PRE_MODIFY)
	  tmp = XEXP (tmp, 1);
	if (REG_P (tmp))
	  fprintf (file, "0,%s", reg_names[REGNO (tmp)]);
	else
	  {
	    if (GET_CODE (tmp) != PLUS
		|| !REG_P (XEXP (tmp, 0))
		|| !REG_P (XEXP (tmp, 1)))
	      {
		output_operand_lossage ("invalid %%y value, try using the 'Z' constraint");
		break;
	      }

	    if (REGNO (XEXP (tmp, 0)) == 0)
	      fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 1)) ],
		       reg_names[ REGNO (XEXP (tmp, 0)) ]);
	    else
	      fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 0)) ],
		       reg_names[ REGNO (XEXP (tmp, 1)) ]);
	  }
	break;
      }

    case 0:
      if (REG_P (x))
	fprintf (file, "%s", reg_names[REGNO (x)]);
      else if (MEM_P (x))
	{
	  /* We need to handle PRE_INC and PRE_DEC here, since we need to
	     know the width from the mode.  */
	  if (GET_CODE (XEXP (x, 0)) == PRE_INC)
	    fprintf (file, "%d(%s)", GET_MODE_SIZE (GET_MODE (x)),
		     reg_names[REGNO (XEXP (XEXP (x, 0), 0))]);
	  else if (GET_CODE (XEXP (x, 0)) == PRE_DEC)
	    fprintf (file, "%d(%s)", - GET_MODE_SIZE (GET_MODE (x)),
		     reg_names[REGNO (XEXP (XEXP (x, 0), 0))]);
	  else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
	    output_address (GET_MODE (x), XEXP (XEXP (x, 0), 1));
	  else
	    output_address (GET_MODE (x), XEXP (x, 0));
	}
      else if (toc_relative_expr_p (x, false,
				    &tocrel_base_oac, &tocrel_offset_oac))
	/* This hack along with a corresponding hack in
	   rs6000_output_addr_const_extra arranges to output addends
	   where the assembler expects to find them.  eg.
	   (plus (unspec [(symbol_ref ("x")) (reg 2)] tocrel) 4)
	   without this hack would be output as "x@toc+4".  We
	   want "x+4@toc".  */
	output_addr_const (file, CONST_CAST_RTX (tocrel_base_oac));
      else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSGD)
	output_addr_const (file, XVECEXP (x, 0, 0));
      else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_PLTSEQ)
	output_addr_const (file, XVECEXP (x, 0, 1));
      else
	output_addr_const (file, x);
      return;

    case '&':
      if (const char *name = get_some_local_dynamic_name ())
	assemble_name (file, name);
      else
	output_operand_lossage ("'%%&' used without any "
				"local dynamic TLS references");
      return;

    default:
      output_operand_lossage ("invalid %%xn code");
    }
}

/* Print the address of an operand.  */

void
print_operand_address (FILE *file, rtx x)
{
  if (REG_P (x))
    fprintf (file, "0(%s)", reg_names[ REGNO (x) ]);

  /* Is it a PC-relative address?  */
  else if (TARGET_PCREL && pcrel_local_or_external_address (x, VOIDmode))
    {
      HOST_WIDE_INT offset;

      if (GET_CODE (x) == CONST)
	x = XEXP (x, 0);

      if (GET_CODE (x) == PLUS)
	{
	  offset = INTVAL (XEXP (x, 1));
	  x = XEXP (x, 0);
	}
      else
	offset = 0;

      output_addr_const (file, x);

      if (offset)
	fprintf (file, "%+" PRId64, offset);

      if (SYMBOL_REF_P (x) && !SYMBOL_REF_LOCAL_P (x))
	fprintf (file, "@got");

      fprintf (file, "@pcrel");
    }
  else if (SYMBOL_REF_P (x) || GET_CODE (x) == CONST
	   || GET_CODE (x) == LABEL_REF)
    {
      output_addr_const (file, x);
      if (small_data_operand (x, GET_MODE (x)))
	fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
		 reg_names[SMALL_DATA_REG]);
      else
	gcc_assert (!TARGET_TOC);
    }
  else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
	   && REG_P (XEXP (x, 1)))
    {
      if (REGNO (XEXP (x, 0)) == 0)
	fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 1)) ],
		 reg_names[ REGNO (XEXP (x, 0)) ]);
      else
	fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 0)) ],
		 reg_names[ REGNO (XEXP (x, 1)) ]);
    }
  else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
	   && CONST_INT_P (XEXP (x, 1)))
    fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%s)",
	     INTVAL (XEXP (x, 1)), reg_names[ REGNO (XEXP (x, 0)) ]);
#if TARGET_MACHO
  else if (GET_CODE (x) == LO_SUM && REG_P (XEXP (x, 0))
	   && CONSTANT_P (XEXP (x, 1)))
    {
      fprintf (file, "lo16(");
      output_addr_const (file, XEXP (x, 1));
      fprintf (file, ")(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
    }
#endif
#if TARGET_ELF
  else if (GET_CODE (x) == LO_SUM && REG_P (XEXP (x, 0))
	   && CONSTANT_P (XEXP (x, 1)))
    {
      output_addr_const (file, XEXP (x, 1));
      fprintf (file, "@l(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
    }
#endif
  else if (toc_relative_expr_p (x, false, &tocrel_base_oac, &tocrel_offset_oac))
    {
      /* This hack along with a corresponding hack in
	 rs6000_output_addr_const_extra arranges to output addends
	 where the assembler expects to find them.  eg.
	 (lo_sum (reg 9)
	 .       (plus (unspec [(symbol_ref ("x")) (reg 2)] tocrel) 8))
	 without this hack would be output as "x@toc+8@l(9)".  We
	 want "x+8@toc@l(9)".  */
      output_addr_const (file, CONST_CAST_RTX (tocrel_base_oac));
      if (GET_CODE (x) == LO_SUM)
	fprintf (file, "@l(%s)", reg_names[REGNO (XEXP (x, 0))]);
      else
	fprintf (file, "(%s)", reg_names[REGNO (XVECEXP (tocrel_base_oac, 0, 1))]);
    }
  else
    output_addr_const (file, x);
}

/* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA.  */

bool
rs6000_output_addr_const_extra (FILE *file, rtx x)
{
  if (GET_CODE (x) == UNSPEC)
    switch (XINT (x, 1))
      {
      case UNSPEC_TOCREL:
	gcc_checking_assert (SYMBOL_REF_P (XVECEXP (x, 0, 0))
			     && REG_P (XVECEXP (x, 0, 1))
			     && REGNO (XVECEXP (x, 0, 1)) == TOC_REGISTER);
	output_addr_const (file, XVECEXP (x, 0, 0));
	if (x == tocrel_base_oac && tocrel_offset_oac != const0_rtx)
	  {
	    if (INTVAL (tocrel_offset_oac) >= 0)
	      fprintf (file, "+");
	    output_addr_const (file, CONST_CAST_RTX (tocrel_offset_oac));
	  }
	if (!TARGET_AIX || (TARGET_ELF && TARGET_MINIMAL_TOC))
	  {
	    putc ('-', file);
	    assemble_name (file, toc_label_name);
	    need_toc_init = 1;
	  }
	else if (TARGET_ELF)
	  fputs ("@toc", file);
	return true;

#if TARGET_MACHO
      case UNSPEC_MACHOPIC_OFFSET:
	output_addr_const (file, XVECEXP (x, 0, 0));
	putc ('-', file);
	machopic_output_function_base_name (file);
	return true;
#endif
      }
  return false;
}

/* Target hook for assembling integer objects.  The PowerPC version has
   to handle fixup entries for relocatable code if RELOCATABLE_NEEDS_FIXUP
   is defined.  It also needs to handle DI-mode objects on 64-bit
   targets.  */

static bool
rs6000_assemble_integer (rtx x, unsigned int size, int aligned_p)
{
#ifdef RELOCATABLE_NEEDS_FIXUP
  /* Special handling for SI values.  */
  if (RELOCATABLE_NEEDS_FIXUP && size == 4 && aligned_p)
    {
      static int recurse = 0;

      /* For -mrelocatable, we mark all addresses that need to be fixed up in
	 the .fixup section.  Since the TOC section is already relocated, we
	 don't need to mark it here.  We used to skip the text section, but it
	 should never be valid for relocated addresses to be placed in the text
	 section.  */
      if (DEFAULT_ABI == ABI_V4
	  && (TARGET_RELOCATABLE || flag_pic > 1)
	  && in_section != toc_section
	  && !recurse
	  && !CONST_SCALAR_INT_P (x)
	  && CONSTANT_P (x))
	{
	  char buf[256];

	  recurse = 1;
	  ASM_GENERATE_INTERNAL_LABEL (buf, "LCP", fixuplabelno);
	  fixuplabelno++;
	  ASM_OUTPUT_LABEL (asm_out_file, buf);
	  fprintf (asm_out_file, "\t.long\t(");
	  output_addr_const (asm_out_file, x);
	  fprintf (asm_out_file, ")@fixup\n");
	  fprintf (asm_out_file, "\t.section\t\".fixup\",\"aw\"\n");
	  ASM_OUTPUT_ALIGN (asm_out_file, 2);
	  fprintf (asm_out_file, "\t.long\t");
	  assemble_name (asm_out_file, buf);
	  fprintf (asm_out_file, "\n\t.previous\n");
	  recurse = 0;
	  return true;
	}
      /* Remove initial .'s to turn a -mcall-aixdesc function
	 address into the address of the descriptor, not the function
	 itself.  */
      else if (SYMBOL_REF_P (x)
	       && XSTR (x, 0)[0] == '.'
	       && DEFAULT_ABI == ABI_AIX)
	{
	  const char *name = XSTR (x, 0);
	  while (*name == '.')
	    name++;

	  fprintf (asm_out_file, "\t.long\t%s\n", name);
	  return true;
	}
    }
#endif /* RELOCATABLE_NEEDS_FIXUP */
  return default_assemble_integer (x, size, aligned_p);
}

/* Return a template string for assembly to emit when making an
   external call.  FUNOP is the call mem argument operand number.  */

static const char *
rs6000_call_template_1 (rtx *operands, unsigned int funop, bool sibcall)
{
  /* -Wformat-overflow workaround, without which gcc thinks that %u
      might produce 10 digits.  */
  gcc_assert (funop <= MAX_RECOG_OPERANDS);

  char arg[12];
  arg[0] = 0;
  if (GET_CODE (operands[funop + 1]) == UNSPEC)
    {
      if (XINT (operands[funop + 1], 1) == UNSPEC_TLSGD)
	sprintf (arg, "(%%%u@tlsgd)", funop + 1);
      else if (XINT (operands[funop + 1], 1) == UNSPEC_TLSLD)
	sprintf (arg, "(%%&@tlsld)");
    }

  /* The magic 32768 offset here corresponds to the offset of
     r30 in .got2, as given by LCTOC1.  See sysv4.h:toc_section.  */
  char z[11];
  sprintf (z, "%%z%u%s", funop,
	   (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic == 2
	    ? "+32768" : ""));

  static char str[32];  /* 1 spare */
  if (rs6000_pcrel_p ())
    sprintf (str, "b%s %s@notoc%s", sibcall ? "" : "l", z, arg);
  else if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
    sprintf (str, "b%s %s%s%s", sibcall ? "" : "l", z, arg,
	     sibcall ? "" : "\n\tnop");
  else if (DEFAULT_ABI == ABI_V4)
    sprintf (str, "b%s %s%s%s", sibcall ? "" : "l", z, arg,
	     flag_pic ? "@plt" : "");
#if TARGET_MACHO
  /* If/when we remove the mlongcall opt, we can share the AIX/ELGv2 case. */
   else if (DEFAULT_ABI == ABI_DARWIN)
    {
      /* The cookie is in operand func+2.  */
      gcc_checking_assert (GET_CODE (operands[funop + 2]) == CONST_INT);
      int cookie = INTVAL (operands[funop + 2]);
      if (cookie & CALL_LONG)
	{
	  tree funname = get_identifier (XSTR (operands[funop], 0));
	  tree labelname = get_prev_label (funname);
	  gcc_checking_assert (labelname && !sibcall);

	  /* "jbsr foo, L42" is Mach-O for "Link as 'bl foo' if a 'bl'
	     instruction will reach 'foo', otherwise link as 'bl L42'".
	     "L42" should be a 'branch island', that will do a far jump to
	     'foo'.  Branch islands are generated in
	     macho_branch_islands().  */
	  sprintf (str, "jbsr %%z%u,%.10s", funop,
		   IDENTIFIER_POINTER (labelname));
	}
      else
        /* Same as AIX or ELFv2, except to keep backwards compat, no nop
	   after the call.  */
	sprintf (str, "b%s %s%s", sibcall ? "" : "l", z, arg);
    }
#endif
  else
    gcc_unreachable ();
  return str;
}

const char *
rs6000_call_template (rtx *operands, unsigned int funop)
{
  return rs6000_call_template_1 (operands, funop, false);
}

const char *
rs6000_sibcall_template (rtx *operands, unsigned int funop)
{
  return rs6000_call_template_1 (operands, funop, true);
}

/* As above, for indirect calls.  */

static const char *
rs6000_indirect_call_template_1 (rtx *operands, unsigned int funop,
				 bool sibcall)
{
  /* -Wformat-overflow workaround, without which gcc thinks that %u
     might produce 10 digits.  Note that -Wformat-overflow will not
     currently warn here for str[], so do not rely on a warning to
     ensure str[] is correctly sized.  */
  gcc_assert (funop <= MAX_RECOG_OPERANDS);

  /* Currently, funop is either 0 or 1.  The maximum string is always
     a !speculate 64-bit __tls_get_addr call.

     ABI_ELFv2, pcrel:
     . 27	.reloc .,R_PPC64_TLSGD,%2\n\t
     . 35	.reloc .,R_PPC64_PLTSEQ_NOTOC,%z1\n\t
     .  9	crset 2\n\t
     . 27	.reloc .,R_PPC64_TLSGD,%2\n\t
     . 36	.reloc .,R_PPC64_PLTCALL_NOTOC,%z1\n\t
     .  8	beq%T1l-
     .---
     .142

     ABI_AIX:
     .  9	ld 2,%3\n\t
     . 27	.reloc .,R_PPC64_TLSGD,%2\n\t
     . 29	.reloc .,R_PPC64_PLTSEQ,%z1\n\t
     .  9	crset 2\n\t
     . 27	.reloc .,R_PPC64_TLSGD,%2\n\t
     . 30	.reloc .,R_PPC64_PLTCALL,%z1\n\t
     . 10	beq%T1l-\n\t
     . 10	ld 2,%4(1)
     .---
     .151

     ABI_ELFv2:
     . 27	.reloc .,R_PPC64_TLSGD,%2\n\t
     . 29	.reloc .,R_PPC64_PLTSEQ,%z1\n\t
     .  9	crset 2\n\t
     . 27	.reloc .,R_PPC64_TLSGD,%2\n\t
     . 30	.reloc .,R_PPC64_PLTCALL,%z1\n\t
     . 10	beq%T1l-\n\t
     . 10	ld 2,%3(1)
     .---
     .142

     ABI_V4:
     . 27	.reloc .,R_PPC64_TLSGD,%2\n\t
     . 35	.reloc .,R_PPC64_PLTSEQ,%z1+32768\n\t
     .  9	crset 2\n\t
     . 27	.reloc .,R_PPC64_TLSGD,%2\n\t
     . 36	.reloc .,R_PPC64_PLTCALL,%z1+32768\n\t
     .  8	beq%T1l-
     .---
     .141  */
  static char str[160];  /* 8 spare */
  char *s = str;
  const char *ptrload = TARGET_64BIT ? "d" : "wz";

  if (DEFAULT_ABI == ABI_AIX)
    s += sprintf (s,
		  "l%s 2,%%%u\n\t",
		  ptrload, funop + 3);

  /* We don't need the extra code to stop indirect call speculation if
     calling via LR.  */
  bool speculate = (TARGET_MACHO
		    || rs6000_speculate_indirect_jumps
		    || (REG_P (operands[funop])
			&& REGNO (operands[funop]) == LR_REGNO));

  if (TARGET_PLTSEQ && GET_CODE (operands[funop]) == UNSPEC)
    {
      const char *rel64 = TARGET_64BIT ? "64" : "";
      char tls[29];
      tls[0] = 0;
      if (GET_CODE (operands[funop + 1]) == UNSPEC)
	{
	  if (XINT (operands[funop + 1], 1) == UNSPEC_TLSGD)
	    sprintf (tls, ".reloc .,R_PPC%s_TLSGD,%%%u\n\t",
		     rel64, funop + 1);
	  else if (XINT (operands[funop + 1], 1) == UNSPEC_TLSLD)
	    sprintf (tls, ".reloc .,R_PPC%s_TLSLD,%%&\n\t",
		     rel64);
	}

      const char *notoc = rs6000_pcrel_p () ? "_NOTOC" : "";
      const char *addend = (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT
			    && flag_pic == 2 ? "+32768" : "");
      if (!speculate)
	{
	  s += sprintf (s,
			"%s.reloc .,R_PPC%s_PLTSEQ%s,%%z%u%s\n\t",
			tls, rel64, notoc, funop, addend);
	  s += sprintf (s, "crset 2\n\t");
	}
      s += sprintf (s,
		    "%s.reloc .,R_PPC%s_PLTCALL%s,%%z%u%s\n\t",
		    tls, rel64, notoc, funop, addend);
    }
  else if (!speculate)
    s += sprintf (s, "crset 2\n\t");

  if (rs6000_pcrel_p ())
    {
      if (speculate)
	sprintf (s, "b%%T%ul", funop);
      else
	sprintf (s, "beq%%T%ul-", funop);
    }
  else if (DEFAULT_ABI == ABI_AIX)
    {
      if (speculate)
	sprintf (s,
		 "b%%T%ul\n\t"
		 "l%s 2,%%%u(1)",
		 funop, ptrload, funop + 4);
      else
	sprintf (s,
		 "beq%%T%ul-\n\t"
		 "l%s 2,%%%u(1)",
		 funop, ptrload, funop + 4);
    }
  else if (DEFAULT_ABI == ABI_ELFv2)
    {
      if (speculate)
	sprintf (s,
		 "b%%T%ul\n\t"
		 "l%s 2,%%%u(1)",
		 funop, ptrload, funop + 3);
      else
	sprintf (s,
		 "beq%%T%ul-\n\t"
		 "l%s 2,%%%u(1)",
		 funop, ptrload, funop + 3);
    }
  else
    {
      if (speculate)
	sprintf (s,
		 "b%%T%u%s",
		 funop, sibcall ? "" : "l");
      else
	sprintf (s,
		 "beq%%T%u%s-%s",
		 funop, sibcall ? "" : "l", sibcall ? "\n\tb $" : "");
    }
  return str;
}

const char *
rs6000_indirect_call_template (rtx *operands, unsigned int funop)
{
  return rs6000_indirect_call_template_1 (operands, funop, false);
}

const char *
rs6000_indirect_sibcall_template (rtx *operands, unsigned int funop)
{
  return rs6000_indirect_call_template_1 (operands, funop, true);
}

#if HAVE_AS_PLTSEQ
/* Output indirect call insns.  WHICH identifies the type of sequence.  */
const char *
rs6000_pltseq_template (rtx *operands, int which)
{
  const char *rel64 = TARGET_64BIT ? "64" : "";
  char tls[30];
  tls[0] = 0;
  if (GET_CODE (operands[3]) == UNSPEC)
    {
      char off = which == RS6000_PLTSEQ_PLT_PCREL34 ? '8' : '4';
      if (XINT (operands[3], 1) == UNSPEC_TLSGD)
	sprintf (tls, ".reloc .-%c,R_PPC%s_TLSGD,%%3\n\t",
		 off, rel64);
      else if (XINT (operands[3], 1) == UNSPEC_TLSLD)
	sprintf (tls, ".reloc .-%c,R_PPC%s_TLSLD,%%&\n\t",
		 off, rel64);
    }

  gcc_assert (DEFAULT_ABI == ABI_ELFv2 || DEFAULT_ABI == ABI_V4);
  static char str[96];  /* 10 spare */
  char off = WORDS_BIG_ENDIAN ? '2' : '4';
  const char *addend = (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT
			&& flag_pic == 2 ? "+32768" : "");
  switch (which)
    {
    case RS6000_PLTSEQ_TOCSAVE:
      sprintf (str,
	       "st%s\n\t"
	       "%s.reloc .-4,R_PPC%s_PLTSEQ,%%z2",
	       TARGET_64BIT ? "d 2,24(1)" : "w 2,12(1)",
	       tls, rel64);
      break;
    case RS6000_PLTSEQ_PLT16_HA:
      if (DEFAULT_ABI == ABI_V4 && !flag_pic)
	sprintf (str,
		 "lis %%0,0\n\t"
		 "%s.reloc .-%c,R_PPC%s_PLT16_HA,%%z2",
		 tls, off, rel64);
      else
	sprintf (str,
		 "addis %%0,%%1,0\n\t"
		 "%s.reloc .-%c,R_PPC%s_PLT16_HA,%%z2%s",
		 tls, off, rel64, addend);
      break;
    case RS6000_PLTSEQ_PLT16_LO:
      sprintf (str,
	       "l%s %%0,0(%%1)\n\t"
	       "%s.reloc .-%c,R_PPC%s_PLT16_LO%s,%%z2%s",
	       TARGET_64BIT ? "d" : "wz",
	       tls, off, rel64, TARGET_64BIT ? "_DS" : "", addend);
      break;
    case RS6000_PLTSEQ_MTCTR:
      sprintf (str,
	       "mtctr %%1\n\t"
	       "%s.reloc .-4,R_PPC%s_PLTSEQ,%%z2%s",
	       tls, rel64, addend);
      break;
    case RS6000_PLTSEQ_PLT_PCREL34:
      sprintf (str,
	       "pl%s %%0,0(0),1\n\t"
	       "%s.reloc .-8,R_PPC%s_PLT_PCREL34_NOTOC,%%z2",
	       TARGET_64BIT ? "d" : "wz",
	       tls, rel64);
      break;
    default:
      gcc_unreachable ();
    }
  return str;
}
#endif

#if defined (HAVE_GAS_HIDDEN) && !TARGET_MACHO
/* Emit an assembler directive to set symbol visibility for DECL to
   VISIBILITY_TYPE.  */

static void
rs6000_assemble_visibility (tree decl, int vis)
{
  if (TARGET_XCOFF)
    return;

  /* Functions need to have their entry point symbol visibility set as
     well as their descriptor symbol visibility.  */
  if (DEFAULT_ABI == ABI_AIX
      && DOT_SYMBOLS
      && TREE_CODE (decl) == FUNCTION_DECL)
    {
      static const char * const visibility_types[] = {
	NULL, "protected", "hidden", "internal"
      };

      const char *name, *type;

      name = ((* targetm.strip_name_encoding)
	      (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl))));
      type = visibility_types[vis];

      fprintf (asm_out_file, "\t.%s\t%s\n", type, name);
      fprintf (asm_out_file, "\t.%s\t.%s\n", type, name);
    }
  else
    default_assemble_visibility (decl, vis);
}
#endif

/* Write PATCH_AREA_SIZE NOPs into the asm outfile FILE around a function
   entry.  If RECORD_P is true and the target supports named sections,
   the location of the NOPs will be recorded in a special object section
   called "__patchable_function_entries".  This routine may be called
   twice per function to put NOPs before and after the function
   entry.  */

void
rs6000_print_patchable_function_entry (FILE *file,
				       unsigned HOST_WIDE_INT patch_area_size,
				       bool record_p)
{
  bool global_entry_needed_p = rs6000_global_entry_point_prologue_needed_p ();
  /* For a function which needs global entry point, we will emit the
     patchable area before and after local entry point under the control of
     cfun->machine->global_entry_emitted, see the handling in function
     rs6000_output_function_prologue.  */
  if (!global_entry_needed_p || cfun->machine->global_entry_emitted)
    default_print_patchable_function_entry (file, patch_area_size, record_p);
}

enum rtx_code
rs6000_reverse_condition (machine_mode mode, enum rtx_code code)
{
  /* Reversal of FP compares takes care -- an ordered compare
     becomes an unordered compare and vice versa.  */
  if (mode == CCFPmode
      && (!flag_finite_math_only
	  || code == UNLT || code == UNLE || code == UNGT || code == UNGE
	  || code == UNEQ || code == LTGT))
    return reverse_condition_maybe_unordered (code);
  else
    return reverse_condition (code);
}

/* Check if C (as 64bit integer) can be rotated to a constant which constains
   nonzero bits at the LOWBITS low bits only.

   Return true if C can be rotated to such constant.  If so, *ROT is written
   to the number by which C is rotated.
   Return false otherwise.  */

bool
can_be_rotated_to_lowbits (unsigned HOST_WIDE_INT c, int lowbits, int *rot)
{
  int clz = HOST_BITS_PER_WIDE_INT - lowbits;

  /* case a. 0..0xxx: already at least clz zeros.  */
  int lz = clz_hwi (c);
  if (lz >= clz)
    {
      *rot = 0;
      return true;
    }

  /* case b. 0..0xxx0..0: at least clz zeros.  */
  int tz = ctz_hwi (c);
  if (lz + tz >= clz)
    {
      *rot = HOST_BITS_PER_WIDE_INT - tz;
      return true;
    }

  /* case c. xx10.....0xx: rotate 'clz - 1' bits first, then check case b.
	       ^bit -> Vbit, , then zeros are at head or tail.
	     00...00xxx100, 'clz - 1' >= 'bits of xxxx'.  */
  const int rot_bits = lowbits + 1;
  unsigned HOST_WIDE_INT rc = (c >> rot_bits) | (c << (clz - 1));
  tz = ctz_hwi (rc);
  if (clz_hwi (rc) + tz >= clz)
    {
      *rot = HOST_BITS_PER_WIDE_INT - (tz + rot_bits);
      return true;
    }

  return false;
}

/* Check if C (as 64bit integer) can be rotated to a positive 16bits constant
   which contains 48bits leading zeros and 16bits of any value.  */

bool
can_be_rotated_to_positive_16bits (HOST_WIDE_INT c)
{
  int rot = 0;
  bool res = can_be_rotated_to_lowbits (c, 16, &rot);
  return res && rot > 0;
}

/* Check if C (as 64bit integer) can be rotated to a negative 15bits constant
   which contains 49bits leading ones and 15bits of any value.  */

bool
can_be_rotated_to_negative_15bits (HOST_WIDE_INT c)
{
  int rot = 0;
  bool res = can_be_rotated_to_lowbits (~c, 15, &rot);
  return res && rot > 0;
}

/* Generate a compare for CODE.  Return a brand-new rtx that
   represents the result of the compare.  */

static rtx
rs6000_generate_compare (rtx cmp, machine_mode mode)
{
  machine_mode comp_mode;
  rtx compare_result;
  enum rtx_code code = GET_CODE (cmp);
  rtx op0 = XEXP (cmp, 0);
  rtx op1 = XEXP (cmp, 1);

  if (!TARGET_FLOAT128_HW && FLOAT128_VECTOR_P (mode))
    comp_mode = CCmode;
  else if (FLOAT_MODE_P (mode))
    comp_mode = CCFPmode;
  else if (code == GTU || code == LTU
	   || code == GEU || code == LEU)
    comp_mode = CCUNSmode;
  else if ((code == EQ || code == NE)
	   && unsigned_reg_p (op0)
	   && (unsigned_reg_p (op1)
	       || (CONST_INT_P (op1) && INTVAL (op1) != 0)))
    /* These are unsigned values, perhaps there will be a later
       ordering compare that can be shared with this one.  */
    comp_mode = CCUNSmode;
  else
    comp_mode = CCmode;

  /* If we have an unsigned compare, make sure we don't have a signed value as
     an immediate.  */
  if (comp_mode == CCUNSmode && CONST_INT_P (op1)
      && INTVAL (op1) < 0)
    {
      op0 = copy_rtx_if_shared (op0);
      op1 = force_reg (GET_MODE (op0), op1);
      cmp = gen_rtx_fmt_ee (code, GET_MODE (cmp), op0, op1);
    }

  /* First, the compare.  */
  compare_result = gen_reg_rtx (comp_mode);

  /* IEEE 128-bit support in VSX registers when we do not have hardware
     support.  */
  if (!TARGET_FLOAT128_HW && FLOAT128_VECTOR_P (mode))
    {
      rtx libfunc = NULL_RTX;
      bool check_nan = false;
      rtx dest;

      switch (code)
	{
	case EQ:
	case NE:
	  libfunc = optab_libfunc (eq_optab, mode);
	  break;

	case GT:
	case GE:
	  libfunc = optab_libfunc (ge_optab, mode);
	  break;

	case LT:
	case LE:
	  libfunc = optab_libfunc (le_optab, mode);
	  break;

	case UNORDERED:
	case ORDERED:
	  libfunc = optab_libfunc (unord_optab, mode);
	  code = (code == UNORDERED) ? NE : EQ;
	  break;

	case UNGE:
	case UNGT:
	  check_nan = true;
	  libfunc = optab_libfunc (ge_optab, mode);
	  code = (code == UNGE) ? GE : GT;
	  break;

	case UNLE:
	case UNLT:
	  check_nan = true;
	  libfunc = optab_libfunc (le_optab, mode);
	  code = (code == UNLE) ? LE : LT;
	  break;

	case UNEQ:
	case LTGT:
	  check_nan = true;
	  libfunc = optab_libfunc (eq_optab, mode);
	  code = (code = UNEQ) ? EQ : NE;
	  break;

	default:
	  gcc_unreachable ();
	}

      gcc_assert (libfunc);

      if (!check_nan)
	dest = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
					SImode, op0, mode, op1, mode);

      /* The library signals an exception for signalling NaNs, so we need to
	 handle isgreater, etc. by first checking isordered.  */
      else
	{
	  rtx ne_rtx, normal_dest, unord_dest;
	  rtx unord_func = optab_libfunc (unord_optab, mode);
	  rtx join_label = gen_label_rtx ();
	  rtx join_ref = gen_rtx_LABEL_REF (VOIDmode, join_label);
	  rtx unord_cmp = gen_reg_rtx (comp_mode);


	  /* Test for either value being a NaN.  */
	  gcc_assert (unord_func);
	  unord_dest = emit_library_call_value (unord_func, NULL_RTX, LCT_CONST,
						SImode, op0, mode, op1, mode);

	  /* Set value (0) if either value is a NaN, and jump to the join
	     label.  */
	  dest = gen_reg_rtx (SImode);
	  emit_move_insn (dest, const1_rtx);
	  emit_insn (gen_rtx_SET (unord_cmp,
				  gen_rtx_COMPARE (comp_mode, unord_dest,
						   const0_rtx)));

	  ne_rtx = gen_rtx_NE (comp_mode, unord_cmp, const0_rtx);
	  emit_jump_insn (gen_rtx_SET (pc_rtx,
				       gen_rtx_IF_THEN_ELSE (VOIDmode, ne_rtx,
							     join_ref,
							     pc_rtx)));

	  /* Do the normal comparison, knowing that the values are not
	     NaNs.  */
	  normal_dest = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
						 SImode, op0, mode, op1, mode);

	  emit_insn (gen_cstoresi4 (dest,
				    gen_rtx_fmt_ee (code, SImode, normal_dest,
						    const0_rtx),
				    normal_dest, const0_rtx));

	  /* Join NaN and non-Nan paths.  Compare dest against 0.  */
	  emit_label (join_label);
	  code = NE;
	}

      emit_insn (gen_rtx_SET (compare_result,
			      gen_rtx_COMPARE (comp_mode, dest, const0_rtx)));
    }

  else
    {
      /* Generate XLC-compatible TFmode compare as PARALLEL with extra
	 CLOBBERs to match cmptf_internal2 pattern.  */
      if (comp_mode == CCFPmode && TARGET_XL_COMPAT
	  && FLOAT128_IBM_P (GET_MODE (op0))
	  && TARGET_HARD_FLOAT)
	emit_insn (gen_rtx_PARALLEL (VOIDmode,
	  gen_rtvec (10,
		     gen_rtx_SET (compare_result,
				  gen_rtx_COMPARE (comp_mode, op0, op1)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (Pmode)))));
      else if (GET_CODE (op1) == UNSPEC
	       && XINT (op1, 1) == UNSPEC_SP_TEST)
	{
	  rtx op1b = XVECEXP (op1, 0, 0);
	  comp_mode = CCEQmode;
	  compare_result = gen_reg_rtx (CCEQmode);
	  if (TARGET_64BIT)
	    emit_insn (gen_stack_protect_testdi (compare_result, op0, op1b));
	  else
	    emit_insn (gen_stack_protect_testsi (compare_result, op0, op1b));
	}
      else
	emit_insn (gen_rtx_SET (compare_result,
				gen_rtx_COMPARE (comp_mode, op0, op1)));
    }

  validate_condition_mode (code, GET_MODE (compare_result));

  return gen_rtx_fmt_ee (code, VOIDmode, compare_result, const0_rtx);
}


/* Return the diagnostic message string if the binary operation OP is
   not permitted on TYPE1 and TYPE2, NULL otherwise.  */

static const char*
rs6000_invalid_binary_op (int op ATTRIBUTE_UNUSED,
			  const_tree type1,
			  const_tree type2)
{
  machine_mode mode1 = TYPE_MODE (type1);
  machine_mode mode2 = TYPE_MODE (type2);

  /* For complex modes, use the inner type.  */
  if (COMPLEX_MODE_P (mode1))
    mode1 = GET_MODE_INNER (mode1);

  if (COMPLEX_MODE_P (mode2))
    mode2 = GET_MODE_INNER (mode2);

  /* Don't allow IEEE 754R 128-bit binary floating point and IBM extended
     double to intermix unless -mfloat128-convert.  */
  if (mode1 == mode2)
    return NULL;

  if (!TARGET_FLOAT128_CVT)
    {
      if ((FLOAT128_IEEE_P (mode1) && FLOAT128_IBM_P (mode2))
	  || (FLOAT128_IBM_P (mode1) && FLOAT128_IEEE_P (mode2)))
	return N_("Invalid mixing of IEEE 128-bit and IBM 128-bit floating "
		  "point types");
    }

  return NULL;
}


/* Expand floating point conversion to/from __float128 and __ibm128.  */

void
rs6000_expand_float128_convert (rtx dest, rtx src, bool unsigned_p)
{
  machine_mode dest_mode = GET_MODE (dest);
  machine_mode src_mode = GET_MODE (src);
  convert_optab cvt = unknown_optab;
  bool do_move = false;
  rtx libfunc = NULL_RTX;
  rtx dest2;
  typedef rtx (*rtx_2func_t) (rtx, rtx);
  rtx_2func_t hw_convert = (rtx_2func_t)0;
  size_t kf_or_tf;

  struct hw_conv_t {
    rtx_2func_t	from_df;
    rtx_2func_t from_sf;
    rtx_2func_t from_si_sign;
    rtx_2func_t from_si_uns;
    rtx_2func_t from_di_sign;
    rtx_2func_t from_di_uns;
    rtx_2func_t to_df;
    rtx_2func_t to_sf;
    rtx_2func_t to_si_sign;
    rtx_2func_t to_si_uns;
    rtx_2func_t to_di_sign;
    rtx_2func_t to_di_uns;
  } hw_conversions[2] = {
    /* convertions to/from KFmode */
    {
      gen_extenddfkf2_hw,		/* KFmode <- DFmode.  */
      gen_extendsfkf2_hw,		/* KFmode <- SFmode.  */
      gen_float_kfsi2_hw,		/* KFmode <- SImode (signed).  */
      gen_floatuns_kfsi2_hw,		/* KFmode <- SImode (unsigned).  */
      gen_float_kfdi2_hw,		/* KFmode <- DImode (signed).  */
      gen_floatuns_kfdi2_hw,		/* KFmode <- DImode (unsigned).  */
      gen_trunckfdf2_hw,		/* DFmode <- KFmode.  */
      gen_trunckfsf2_hw,		/* SFmode <- KFmode.  */
      gen_fix_kfsi2_hw,			/* SImode <- KFmode (signed).  */
      gen_fixuns_kfsi2_hw,		/* SImode <- KFmode (unsigned).  */
      gen_fix_kfdi2_hw,			/* DImode <- KFmode (signed).  */
      gen_fixuns_kfdi2_hw,		/* DImode <- KFmode (unsigned).  */
    },

    /* convertions to/from TFmode */
    {
      gen_extenddftf2_hw,		/* TFmode <- DFmode.  */
      gen_extendsftf2_hw,		/* TFmode <- SFmode.  */
      gen_float_tfsi2_hw,		/* TFmode <- SImode (signed).  */
      gen_floatuns_tfsi2_hw,		/* TFmode <- SImode (unsigned).  */
      gen_float_tfdi2_hw,		/* TFmode <- DImode (signed).  */
      gen_floatuns_tfdi2_hw,		/* TFmode <- DImode (unsigned).  */
      gen_trunctfdf2_hw,		/* DFmode <- TFmode.  */
      gen_trunctfsf2_hw,		/* SFmode <- TFmode.  */
      gen_fix_tfsi2_hw,			/* SImode <- TFmode (signed).  */
      gen_fixuns_tfsi2_hw,		/* SImode <- TFmode (unsigned).  */
      gen_fix_tfdi2_hw,			/* DImode <- TFmode (signed).  */
      gen_fixuns_tfdi2_hw,		/* DImode <- TFmode (unsigned).  */
    },
  };

  if (dest_mode == src_mode)
    gcc_unreachable ();

  /* Eliminate memory operations.  */
  if (MEM_P (src))
    src = force_reg (src_mode, src);

  if (MEM_P (dest))
    {
      rtx tmp = gen_reg_rtx (dest_mode);
      rs6000_expand_float128_convert (tmp, src, unsigned_p);
      rs6000_emit_move (dest, tmp, dest_mode);
      return;
    }

  /* Convert to IEEE 128-bit floating point.  */
  if (FLOAT128_IEEE_P (dest_mode))
    {
      if (dest_mode == KFmode)
	kf_or_tf = 0;
      else if (dest_mode == TFmode)
	kf_or_tf = 1;
      else
	gcc_unreachable ();

      switch (src_mode)
	{
	case E_DFmode:
	  cvt = sext_optab;
	  hw_convert = hw_conversions[kf_or_tf].from_df;
	  break;

	case E_SFmode:
	  cvt = sext_optab;
	  hw_convert = hw_conversions[kf_or_tf].from_sf;
	  break;

	case E_KFmode:
	case E_IFmode:
	case E_TFmode:
	  if (FLOAT128_IBM_P (src_mode))
	    cvt = sext_optab;
	  else
	    do_move = true;
	  break;

	case E_SImode:
	  if (unsigned_p)
	    {
	      cvt = ufloat_optab;
	      hw_convert = hw_conversions[kf_or_tf].from_si_uns;
	    }
	  else
	    {
	      cvt = sfloat_optab;
	      hw_convert = hw_conversions[kf_or_tf].from_si_sign;
	    }
	  break;

	case E_DImode:
	  if (unsigned_p)
	    {
	      cvt = ufloat_optab;
	      hw_convert = hw_conversions[kf_or_tf].from_di_uns;
	    }
	  else
	    {
	      cvt = sfloat_optab;
	      hw_convert = hw_conversions[kf_or_tf].from_di_sign;
	    }
	  break;

	default:
	  gcc_unreachable ();
	}
    }

  /* Convert from IEEE 128-bit floating point.  */
  else if (FLOAT128_IEEE_P (src_mode))
    {
      if (src_mode == KFmode)
	kf_or_tf = 0;
      else if (src_mode == TFmode)
	kf_or_tf = 1;
      else
	gcc_unreachable ();

      switch (dest_mode)
	{
	case E_DFmode:
	  cvt = trunc_optab;
	  hw_convert = hw_conversions[kf_or_tf].to_df;
	  break;

	case E_SFmode:
	  cvt = trunc_optab;
	  hw_convert = hw_conversions[kf_or_tf].to_sf;
	  break;

	case E_KFmode:
	case E_IFmode:
	case E_TFmode:
	  if (FLOAT128_IBM_P (dest_mode))
	    cvt = trunc_optab;
	  else
	    do_move = true;
	  break;

	case E_SImode:
	  if (unsigned_p)
	    {
	      cvt = ufix_optab;
	      hw_convert = hw_conversions[kf_or_tf].to_si_uns;
	    }
	  else
	    {
	      cvt = sfix_optab;
	      hw_convert = hw_conversions[kf_or_tf].to_si_sign;
	    }
	  break;

	case E_DImode:
	  if (unsigned_p)
	    {
	      cvt = ufix_optab;
	      hw_convert = hw_conversions[kf_or_tf].to_di_uns;
	    }
	  else
	    {
	      cvt = sfix_optab;
	      hw_convert = hw_conversions[kf_or_tf].to_di_sign;
	    }
	  break;

	default:
	  gcc_unreachable ();
	}
    }

  /* Both IBM format.  */
  else if (FLOAT128_IBM_P (dest_mode) && FLOAT128_IBM_P (src_mode))
    do_move = true;

  else
    gcc_unreachable ();

  /* Handle conversion between TFmode/KFmode/IFmode.  */
  if (do_move)
    emit_insn (gen_rtx_SET (dest, gen_rtx_FLOAT_EXTEND (dest_mode, src)));

  /* Handle conversion if we have hardware support.  */
  else if (TARGET_FLOAT128_HW && hw_convert)
    emit_insn ((hw_convert) (dest, src));

  /* Call an external function to do the conversion.  */
  else if (cvt != unknown_optab)
    {
      libfunc = convert_optab_libfunc (cvt, dest_mode, src_mode);
      gcc_assert (libfunc != NULL_RTX);

      dest2 = emit_library_call_value (libfunc, dest, LCT_CONST, dest_mode,
				       src, src_mode);

      gcc_assert (dest2 != NULL_RTX);
      if (!rtx_equal_p (dest, dest2))
	emit_move_insn (dest, dest2);
    }

  else
    gcc_unreachable ();

  return;
}


/* Emit RTL that sets a register to zero if OP1 and OP2 are equal.  SCRATCH
   can be used as that dest register.  Return the dest register.  */

rtx
rs6000_emit_eqne (machine_mode mode, rtx op1, rtx op2, rtx scratch)
{
  if (op2 == const0_rtx)
    return op1;

  if (GET_CODE (scratch) == SCRATCH)
    scratch = gen_reg_rtx (mode);

  if (logical_operand (op2, mode))
    emit_insn (gen_rtx_SET (scratch, gen_rtx_XOR (mode, op1, op2)));
  else
    emit_insn (gen_rtx_SET (scratch,
			    gen_rtx_PLUS (mode, op1, negate_rtx (mode, op2))));

  return scratch;
}

/* Emit code doing a cror of two CR bits, for FP comparisons with a CODE that
   requires this.  The result is mode MODE.  */
rtx
rs6000_emit_fp_cror (rtx_code code, machine_mode mode, rtx x)
{
  rtx cond[2];
  int n = 0;
  if (code == LTGT || code == LE || code == UNLT)
    cond[n++] = gen_rtx_fmt_ee (LT, mode, x, const0_rtx);
  if (code == LTGT || code == GE || code == UNGT)
    cond[n++] = gen_rtx_fmt_ee (GT, mode, x, const0_rtx);
  if (code == LE || code == GE || code == UNEQ)
    cond[n++] = gen_rtx_fmt_ee (EQ, mode, x, const0_rtx);
  if (code == UNLT || code == UNGT || code == UNEQ)
    cond[n++] = gen_rtx_fmt_ee (UNORDERED, mode, x, const0_rtx);

  gcc_assert (n == 2);

  rtx cc = gen_reg_rtx (CCEQmode);
  rtx logical = gen_rtx_IOR (mode, cond[0], cond[1]);
  emit_insn (gen_cceq_ior_compare (mode, cc, logical, cond[0], x, cond[1], x));

  return cc;
}

void
rs6000_emit_sCOND (machine_mode mode, rtx operands[])
{
  rtx condition_rtx = rs6000_generate_compare (operands[1], mode);
  rtx_code cond_code = GET_CODE (condition_rtx);

  if (FLOAT_MODE_P (mode) && HONOR_NANS (mode)
      && !(FLOAT128_VECTOR_P (mode) && !TARGET_FLOAT128_HW))
    ;
  else if (cond_code == NE
	   || cond_code == GE || cond_code == LE
	   || cond_code == GEU || cond_code == LEU
	   || cond_code == ORDERED || cond_code == UNGE || cond_code == UNLE)
    {
      rtx not_result = gen_reg_rtx (CCEQmode);
      rtx not_op, rev_cond_rtx;
      machine_mode cc_mode;

      cc_mode = GET_MODE (XEXP (condition_rtx, 0));

      rev_cond_rtx = gen_rtx_fmt_ee (rs6000_reverse_condition (cc_mode, cond_code),
				     SImode, XEXP (condition_rtx, 0), const0_rtx);
      not_op = gen_rtx_COMPARE (CCEQmode, rev_cond_rtx, const0_rtx);
      emit_insn (gen_rtx_SET (not_result, not_op));
      condition_rtx = gen_rtx_EQ (VOIDmode, not_result, const0_rtx);
    }

  machine_mode op_mode = GET_MODE (XEXP (operands[1], 0));
  if (op_mode == VOIDmode)
    op_mode = GET_MODE (XEXP (operands[1], 1));

  if (TARGET_POWERPC64 && (op_mode == DImode || FLOAT_MODE_P (mode)))
    {
      PUT_MODE (condition_rtx, DImode);
      convert_move (operands[0], condition_rtx, 0);
    }
  else
    {
      PUT_MODE (condition_rtx, SImode);
      emit_insn (gen_rtx_SET (operands[0], condition_rtx));
    }
}

/* Emit a branch of kind CODE to location LOC.  */

void
rs6000_emit_cbranch (machine_mode mode, rtx operands[])
{
  rtx condition_rtx = rs6000_generate_compare (operands[0], mode);
  rtx loc_ref = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
  rtx ite = gen_rtx_IF_THEN_ELSE (VOIDmode, condition_rtx, loc_ref, pc_rtx);
  emit_jump_insn (gen_rtx_SET (pc_rtx, ite));
}

/* Return the string to output a conditional branch to LABEL, which is
   the operand template of the label, or NULL if the branch is really a
   conditional return.

   OP is the conditional expression.  XEXP (OP, 0) is assumed to be a
   condition code register and its mode specifies what kind of
   comparison we made.

   REVERSED is nonzero if we should reverse the sense of the comparison.

   INSN is the insn.  */

char *
output_cbranch (rtx op, const char *label, int reversed, rtx_insn *insn)
{
  static char string[64];
  enum rtx_code code = GET_CODE (op);
  rtx cc_reg = XEXP (op, 0);
  machine_mode mode = GET_MODE (cc_reg);
  int cc_regno = REGNO (cc_reg) - CR0_REGNO;
  int need_longbranch = label != NULL && get_attr_length (insn) == 8;
  int really_reversed = reversed ^ need_longbranch;
  char *s = string;
  const char *ccode;
  const char *pred;
  rtx note;

  validate_condition_mode (code, mode);

  /* Work out which way this really branches.  We could use
     reverse_condition_maybe_unordered here always but this
     makes the resulting assembler clearer.  */
  if (really_reversed)
    {
      /* Reversal of FP compares takes care -- an ordered compare
	 becomes an unordered compare and vice versa.  */
      if (mode == CCFPmode)
	code = reverse_condition_maybe_unordered (code);
      else
	code = reverse_condition (code);
    }

  switch (code)
    {
      /* Not all of these are actually distinct opcodes, but
	 we distinguish them for clarity of the resulting assembler.  */
    case NE: case LTGT:
      ccode = "ne"; break;
    case EQ: case UNEQ:
      ccode = "eq"; break;
    case GE: case GEU:
      ccode = "ge"; break;
    case GT: case GTU: case UNGT:
      ccode = "gt"; break;
    case LE: case LEU:
      ccode = "le"; break;
    case LT: case LTU: case UNLT:
      ccode = "lt"; break;
    case UNORDERED: ccode = "un"; break;
    case ORDERED: ccode = "nu"; break;
    case UNGE: ccode = "nl"; break;
    case UNLE: ccode = "ng"; break;
    default:
      gcc_unreachable ();
    }

  /* Maybe we have a guess as to how likely the branch is.  */
  pred = "";
  note = find_reg_note (insn, REG_BR_PROB, NULL_RTX);
  if (note != NULL_RTX)
    {
      /* PROB is the difference from 50%.  */
      int prob = profile_probability::from_reg_br_prob_note (XINT (note, 0))
		   .to_reg_br_prob_base () - REG_BR_PROB_BASE / 2;

      /* Only hint for highly probable/improbable branches on newer cpus when
	 we have real profile data, as static prediction overrides processor
	 dynamic prediction.  For older cpus we may as well always hint, but
	 assume not taken for branches that are very close to 50% as a
	 mispredicted taken branch is more expensive than a
	 mispredicted not-taken branch.  */
      if (rs6000_always_hint
	  || (abs (prob) > REG_BR_PROB_BASE / 100 * 48
	      && (profile_status_for_fn (cfun) != PROFILE_GUESSED)
	      && br_prob_note_reliable_p (note)))
	{
	  if (abs (prob) > REG_BR_PROB_BASE / 20
	      && ((prob > 0) ^ need_longbranch))
	    pred = "+";
	  else
	    pred = "-";
	}
    }

  if (label == NULL)
    s += sprintf (s, "b%slr%s ", ccode, pred);
  else
    s += sprintf (s, "b%s%s ", ccode, pred);

  /* We need to escape any '%' characters in the reg_names string.
     Assume they'd only be the first character....  */
  if (reg_names[cc_regno + CR0_REGNO][0] == '%')
    *s++ = '%';
  s += sprintf (s, "%s", reg_names[cc_regno + CR0_REGNO]);

  if (label != NULL)
    {
      /* If the branch distance was too far, we may have to use an
	 unconditional branch to go the distance.  */
      if (need_longbranch)
	s += sprintf (s, ",$+8\n\tb %s", label);
      else
	s += sprintf (s, ",%s", label);
    }

  return string;
}

/* Return insn for VSX or Altivec comparisons.  */

static rtx
rs6000_emit_vector_compare_inner (enum rtx_code code, rtx op0, rtx op1)
{
  rtx mask;
  machine_mode mode = GET_MODE (op0);

  switch (code)
    {
    default:
      break;

    case GE:
      if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
	return NULL_RTX;
      /* FALLTHRU */

    case EQ:
    case GT:
    case GTU:
    case ORDERED:
    case UNORDERED:
    case UNEQ:
    case LTGT:
      mask = gen_reg_rtx (mode);
      emit_insn (gen_rtx_SET (mask, gen_rtx_fmt_ee (code, mode, op0, op1)));
      return mask;
    }

  return NULL_RTX;
}

/* Emit vector compare for operands OP0 and OP1 using code RCODE.
   DMODE is expected destination mode. This is a recursive function.  */

static rtx
rs6000_emit_vector_compare (enum rtx_code rcode,
			    rtx op0, rtx op1,
			    machine_mode dmode)
{
  rtx mask;
  bool swap_operands = false;
  bool try_again = false;

  gcc_assert (VECTOR_UNIT_ALTIVEC_OR_VSX_P (dmode));
  gcc_assert (GET_MODE (op0) == GET_MODE (op1));

  /* See if the comparison works as is.  */
  mask = rs6000_emit_vector_compare_inner (rcode, op0, op1);
  if (mask)
    return mask;

  switch (rcode)
    {
    case LT:
      rcode = GT;
      swap_operands = true;
      try_again = true;
      break;
    case LTU:
      rcode = GTU;
      swap_operands = true;
      try_again = true;
      break;
    case NE:
    case UNLE:
    case UNLT:
    case UNGE:
    case UNGT:
      /* Invert condition and try again.
	 e.g., A != B becomes ~(A==B).  */
      {
	enum rtx_code rev_code;
	enum insn_code nor_code;
	rtx mask2;

	rev_code = reverse_condition_maybe_unordered (rcode);
	if (rev_code == UNKNOWN)
	  return NULL_RTX;

	nor_code = optab_handler (one_cmpl_optab, dmode);
	if (nor_code == CODE_FOR_nothing)
	  return NULL_RTX;

	mask2 = rs6000_emit_vector_compare (rev_code, op0, op1, dmode);
	if (!mask2)
	  return NULL_RTX;

	mask = gen_reg_rtx (dmode);
	emit_insn (GEN_FCN (nor_code) (mask, mask2));
	return mask;
      }
      break;
    case GE:
    case GEU:
    case LE:
    case LEU:
      /* Try GT/GTU/LT/LTU OR EQ */
      {
	rtx c_rtx, eq_rtx;
	enum insn_code ior_code;
	enum rtx_code new_code;

	switch (rcode)
	  {
	  case  GE:
	    new_code = GT;
	    break;

	  case GEU:
	    new_code = GTU;
	    break;

	  case LE:
	    new_code = LT;
	    break;

	  case LEU:
	    new_code = LTU;
	    break;

	  default:
	    gcc_unreachable ();
	  }

	ior_code = optab_handler (ior_optab, dmode);
	if (ior_code == CODE_FOR_nothing)
	  return NULL_RTX;

	c_rtx = rs6000_emit_vector_compare (new_code, op0, op1, dmode);
	if (!c_rtx)
	  return NULL_RTX;

	eq_rtx = rs6000_emit_vector_compare (EQ, op0, op1, dmode);
	if (!eq_rtx)
	  return NULL_RTX;

	mask = gen_reg_rtx (dmode);
	emit_insn (GEN_FCN (ior_code) (mask, c_rtx, eq_rtx));
	return mask;
      }
      break;
    default:
      return NULL_RTX;
    }

  if (try_again)
    {
      if (swap_operands)
	std::swap (op0, op1);

      mask = rs6000_emit_vector_compare_inner (rcode, op0, op1);
      if (mask)
	return mask;
    }

  /* You only get two chances.  */
  return NULL_RTX;
}

/* Emit vector conditional expression.  DEST is destination. OP_TRUE and
   OP_FALSE are two VEC_COND_EXPR operands.  CC_OP0 and CC_OP1 are the two
   operands for the relation operation COND.  */

int
rs6000_emit_vector_cond_expr (rtx dest, rtx op_true, rtx op_false,
			      rtx cond, rtx cc_op0, rtx cc_op1)
{
  machine_mode dest_mode = GET_MODE (dest);
  machine_mode mask_mode = GET_MODE (cc_op0);
  enum rtx_code rcode = GET_CODE (cond);
  rtx mask;
  bool invert_move = false;

  if (VECTOR_UNIT_NONE_P (dest_mode))
    return 0;

  gcc_assert (GET_MODE_SIZE (dest_mode) == GET_MODE_SIZE (mask_mode)
	      && GET_MODE_NUNITS (dest_mode) == GET_MODE_NUNITS (mask_mode));

  switch (rcode)
    {
      /* Swap operands if we can, and fall back to doing the operation as
	 specified, and doing a NOR to invert the test.  */
    case NE:
    case UNLE:
    case UNLT:
    case UNGE:
    case UNGT:
      /* Invert condition and try again.
	 e.g., A  = (B != C) ? D : E becomes A = (B == C) ? E : D.  */
      invert_move = true;
      rcode = reverse_condition_maybe_unordered (rcode);
      if (rcode == UNKNOWN)
	return 0;
      break;

    case GE:
    case LE:
      if (GET_MODE_CLASS (mask_mode) == MODE_VECTOR_INT)
	{
	  /* Invert condition to avoid compound test.  */
	  invert_move = true;
	  rcode = reverse_condition (rcode);
	}
      break;

    case GTU:
    case GEU:
    case LTU:
    case LEU:

      /* Invert condition to avoid compound test if necessary.  */
      if (rcode == GEU || rcode == LEU)
	{
	  invert_move = true;
	  rcode = reverse_condition (rcode);
	}
      break;

    default:
      break;
    }

  /* Get the vector mask for the given relational operations.  */
  mask = rs6000_emit_vector_compare (rcode, cc_op0, cc_op1, mask_mode);

  if (!mask)
    return 0;

  if (mask_mode != dest_mode)
    mask = simplify_gen_subreg (dest_mode, mask, mask_mode, 0);

  if (invert_move)
    std::swap (op_true, op_false);

  /* Optimize vec1 == vec2, to know the mask generates -1/0.  */
  if (GET_MODE_CLASS (dest_mode) == MODE_VECTOR_INT
      && (GET_CODE (op_true) == CONST_VECTOR
	  || GET_CODE (op_false) == CONST_VECTOR))
    {
      rtx constant_0 = CONST0_RTX (dest_mode);
      rtx constant_m1 = CONSTM1_RTX (dest_mode);

      if (op_true == constant_m1 && op_false == constant_0)
	{
	  emit_move_insn (dest, mask);
	  return 1;
	}

      else if (op_true == constant_0 && op_false == constant_m1)
	{
	  emit_insn (gen_rtx_SET (dest, gen_rtx_NOT (dest_mode, mask)));
	  return 1;
	}

      /* If we can't use the vector comparison directly, perhaps we can use
	 the mask for the true or false fields, instead of loading up a
	 constant.  */
      if (op_true == constant_m1)
	op_true = mask;

      if (op_false == constant_0)
	op_false = mask;
    }

  if (!REG_P (op_true) && !SUBREG_P (op_true))
    op_true = force_reg (dest_mode, op_true);

  if (!REG_P (op_false) && !SUBREG_P (op_false))
    op_false = force_reg (dest_mode, op_false);

  rtx tmp = gen_rtx_IOR (dest_mode,
			 gen_rtx_AND (dest_mode, gen_rtx_NOT (dest_mode, mask),
				      op_false),
			 gen_rtx_AND (dest_mode, mask, op_true));
  emit_insn (gen_rtx_SET (dest, tmp));
  return 1;
}

/* Possibly emit the xsmaxc{dp,qp} and xsminc{dp,qp} instructions to emit a
   maximum or minimum with "C" semantics.

   Unless you use -ffast-math, you can't use these instructions to replace
   conditions that implicitly reverse the condition because the comparison
   might generate a NaN or signed zer0.

   I.e. the following can be replaced all of the time
	ret = (op1 >  op2) ? op1 : op2	; generate xsmaxcdp
	ret = (op1 >= op2) ? op1 : op2	; generate xsmaxcdp
	ret = (op1 <  op2) ? op1 : op2;	; generate xsmincdp
	ret = (op1 <= op2) ? op1 : op2;	; generate xsmincdp

   The following can be replaced only if -ffast-math is used:
	ret = (op1 <  op2) ? op2 : op1	; generate xsmaxcdp
	ret = (op1 <= op2) ? op2 : op1	; generate xsmaxcdp
	ret = (op1 >  op2) ? op2 : op1;	; generate xsmincdp
	ret = (op1 >= op2) ? op2 : op1;	; generate xsmincdp

   Move TRUE_COND to DEST if OP of the operands of the last comparison is
   nonzero/true, FALSE_COND if it is zero/false.

   Return false if we can't generate the appropriate minimum or maximum, and
   true if we can did the minimum or maximum.  */

static bool
rs6000_maybe_emit_maxc_minc (rtx dest, rtx op, rtx true_cond, rtx false_cond)
{
  enum rtx_code code = GET_CODE (op);
  rtx op0 = XEXP (op, 0);
  rtx op1 = XEXP (op, 1);
  machine_mode compare_mode = GET_MODE (op0);
  machine_mode result_mode = GET_MODE (dest);

  if (result_mode != compare_mode)
    return false;

  /* See the comments of this function, it simply expects GE/GT/LE/LT in
     the checks, but for the reversible equivalent UNLT/UNLE/UNGT/UNGE,
     we need to do the reversions first to make the following checks
     support fewer cases, like:

	(a UNLT b) ? op1 : op2 =>  (a >= b) ? op2 : op1;
	(a UNLE b) ? op1 : op2 =>  (a >  b) ? op2 : op1;
	(a UNGT b) ? op1 : op2 =>  (a <= b) ? op2 : op1;
	(a UNGE b) ? op1 : op2 =>  (a <  b) ? op2 : op1;

     By the way, if we see these UNLT/UNLE/UNGT/UNGE it's guaranteed
     that we have 4-way condition codes (LT/GT/EQ/UN), so we do not
     have to check for fast-math or the like.  */
  if (code == UNGE || code == UNGT || code == UNLE || code == UNLT)
    {
      code = reverse_condition_maybe_unordered (code);
      std::swap (true_cond, false_cond);
    }

  bool max_p;
  if (code == GE || code == GT)
    max_p = true;
  else if (code == LE || code == LT)
    max_p = false;
  else
    return false;

  if (rtx_equal_p (op0, true_cond) && rtx_equal_p (op1, false_cond))
    ;

  /* Only when NaNs and signed-zeros are not in effect, smax could be
     used for `op0 < op1 ? op1 : op0`, and smin could be used for
     `op0 > op1 ? op1 : op0`.  */
  else if (rtx_equal_p (op1, true_cond) && rtx_equal_p (op0, false_cond)
	   && !HONOR_NANS (compare_mode) && !HONOR_SIGNED_ZEROS (compare_mode))
    max_p = !max_p;

  else
    return false;

  rs6000_emit_minmax (dest, max_p ? SMAX : SMIN, op0, op1);
  return true;
}

/* Possibly emit a floating point conditional move by generating a compare that
   sets a mask instruction and a XXSEL select instruction.

   Move TRUE_COND to DEST if OP of the operands of the last comparison is
   nonzero/true, FALSE_COND if it is zero/false.

   Return false if the operation cannot be generated, and true if we could
   generate the instruction.  */

static bool
rs6000_maybe_emit_fp_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
{
  enum rtx_code code = GET_CODE (op);
  rtx op0 = XEXP (op, 0);
  rtx op1 = XEXP (op, 1);
  machine_mode compare_mode = GET_MODE (op0);
  machine_mode result_mode = GET_MODE (dest);
  rtx compare_rtx;
  rtx cmove_rtx;
  rtx clobber_rtx;

  if (!can_create_pseudo_p ())
    return 0;

  /* We allow the comparison to be either SFmode/DFmode and the true/false
     condition to be either SFmode/DFmode.  I.e. we allow:

	float a, b;
	double c, d, r;

	r = (a == b) ? c : d;

    and:

	double a, b;
	float c, d, r;

	r = (a == b) ? c : d;

    but we don't allow intermixing the IEEE 128-bit floating point types with
    the 32/64-bit scalar types.  */

  if (!(compare_mode == result_mode
	|| (compare_mode == SFmode && result_mode == DFmode)
	|| (compare_mode == DFmode && result_mode == SFmode)))
    return false;

  switch (code)
    {
    case EQ:
    case GE:
    case GT:
      break;

    case NE:
    case LT:
    case LE:
      code = swap_condition (code);
      std::swap (op0, op1);
      break;

    default:
      return false;
    }

  /* Generate:	[(parallel [(set (dest)
				 (if_then_else (op (cmp1) (cmp2))
					       (true)
					       (false)))
			    (clobber (scratch))])].  */

  compare_rtx = gen_rtx_fmt_ee (code, CCFPmode, op0, op1);
  cmove_rtx = gen_rtx_SET (dest,
			   gen_rtx_IF_THEN_ELSE (result_mode,
						 compare_rtx,
						 true_cond,
						 false_cond));

  clobber_rtx = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (V2DImode));
  emit_insn (gen_rtx_PARALLEL (VOIDmode,
			       gen_rtvec (2, cmove_rtx, clobber_rtx)));

  return true;
}

/* Helper function to return true if the target has instructions to do a
   compare and set mask instruction that can be used with XXSEL to implement a
   conditional move.  It is also assumed that such a target also supports the
   "C" minimum and maximum instructions. */

static bool
have_compare_and_set_mask (machine_mode mode)
{
  switch (mode)
    {
    case E_SFmode:
    case E_DFmode:
      return TARGET_P9_MINMAX;

    case E_KFmode:
    case E_TFmode:
      return TARGET_POWER10 && TARGET_FLOAT128_HW && FLOAT128_IEEE_P (mode);

    default:
      break;
    }

  return false;
}

/* Emit a conditional move: move TRUE_COND to DEST if OP of the
   operands of the last comparison is nonzero/true, FALSE_COND if it
   is zero/false.  Return 0 if the hardware has no such operation.  */

bool
rs6000_emit_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
{
  enum rtx_code code = GET_CODE (op);
  rtx op0 = XEXP (op, 0);
  rtx op1 = XEXP (op, 1);
  machine_mode compare_mode = GET_MODE (op0);
  machine_mode result_mode = GET_MODE (dest);
  rtx temp;
  bool is_against_zero;

  /* These modes should always match.  */
  if (GET_MODE (op1) != compare_mode
      /* In the isel case however, we can use a compare immediate, so
	 op1 may be a small constant.  */
      && (!TARGET_ISEL || !short_cint_operand (op1, VOIDmode)))
    return false;
  if (GET_MODE (true_cond) != result_mode)
    return false;
  if (GET_MODE (false_cond) != result_mode)
    return false;

  /* See if we can use the "C" minimum, "C" maximum, and compare and set mask
     instructions.  */
  if (have_compare_and_set_mask (compare_mode)
      && have_compare_and_set_mask (result_mode))
    {
      if (rs6000_maybe_emit_maxc_minc (dest, op, true_cond, false_cond))
	return true;

      if (rs6000_maybe_emit_fp_cmove (dest, op, true_cond, false_cond))
	return true;
    }

  /* Don't allow using floating point comparisons for integer results for
     now.  */
  if (FLOAT_MODE_P (compare_mode) && !FLOAT_MODE_P (result_mode))
    return false;

  /* First, work out if the hardware can do this at all, or
     if it's too slow....  */
  if (!FLOAT_MODE_P (compare_mode))
    {
      if (TARGET_ISEL)
	return rs6000_emit_int_cmove (dest, op, true_cond, false_cond);
      return false;
    }

  is_against_zero = op1 == CONST0_RTX (compare_mode);

  /* A floating-point subtract might overflow, underflow, or produce
     an inexact result, thus changing the floating-point flags, so it
     can't be generated if we care about that.  It's safe if one side
     of the construct is zero, since then no subtract will be
     generated.  */
  if (SCALAR_FLOAT_MODE_P (compare_mode)
      && flag_trapping_math && ! is_against_zero)
    return false;

  /* Eliminate half of the comparisons by switching operands, this
     makes the remaining code simpler.  */
  if (code == UNLT || code == UNGT || code == UNORDERED || code == NE
      || code == LTGT || code == LT || code == UNLE)
    {
      code = reverse_condition_maybe_unordered (code);
      temp = true_cond;
      true_cond = false_cond;
      false_cond = temp;
    }

  /* UNEQ and LTGT take four instructions for a comparison with zero,
     it'll probably be faster to use a branch here too.  */
  if (code == UNEQ && HONOR_NANS (compare_mode))
    return false;

  /* We're going to try to implement comparisons by performing
     a subtract, then comparing against zero.  Unfortunately,
     Inf - Inf is NaN which is not zero, and so if we don't
     know that the operand is finite and the comparison
     would treat EQ different to UNORDERED, we can't do it.  */
  if (HONOR_INFINITIES (compare_mode)
      && code != GT && code != UNGE
      && (!CONST_DOUBLE_P (op1)
	  || real_isinf (CONST_DOUBLE_REAL_VALUE (op1)))
      /* Constructs of the form (a OP b ? a : b) are safe.  */
      && ((! rtx_equal_p (op0, false_cond) && ! rtx_equal_p (op1, false_cond))
	  || (! rtx_equal_p (op0, true_cond)
	      && ! rtx_equal_p (op1, true_cond))))
    return false;

  /* At this point we know we can use fsel.  */

  /* Don't allow compare_mode other than SFmode or DFmode, for others there
     is no fsel instruction.  */
  if (compare_mode != SFmode && compare_mode != DFmode)
    return false;

  /* Reduce the comparison to a comparison against zero.  */
  if (! is_against_zero)
    {
      temp = gen_reg_rtx (compare_mode);
      emit_insn (gen_rtx_SET (temp, gen_rtx_MINUS (compare_mode, op0, op1)));
      op0 = temp;
      op1 = CONST0_RTX (compare_mode);
    }

  /* If we don't care about NaNs we can reduce some of the comparisons
     down to faster ones.  */
  if (! HONOR_NANS (compare_mode))
    switch (code)
      {
      case GT:
	code = LE;
	temp = true_cond;
	true_cond = false_cond;
	false_cond = temp;
	break;
      case UNGE:
	code = GE;
	break;
      case UNEQ:
	code = EQ;
	break;
      default:
	break;
      }

  /* Now, reduce everything down to a GE.  */
  switch (code)
    {
    case GE:
      break;

    case LE:
      temp = gen_reg_rtx (compare_mode);
      emit_insn (gen_rtx_SET (temp, gen_rtx_NEG (compare_mode, op0)));
      op0 = temp;
      break;

    case ORDERED:
      temp = gen_reg_rtx (compare_mode);
      emit_insn (gen_rtx_SET (temp, gen_rtx_ABS (compare_mode, op0)));
      op0 = temp;
      break;

    case EQ:
      temp = gen_reg_rtx (compare_mode);
      emit_insn (gen_rtx_SET (temp,
			      gen_rtx_NEG (compare_mode,
					   gen_rtx_ABS (compare_mode, op0))));
      op0 = temp;
      break;

    case UNGE:
      /* a UNGE 0 <-> (a GE 0 || -a UNLT 0) */
      temp = gen_reg_rtx (result_mode);
      emit_insn (gen_rtx_SET (temp,
			      gen_rtx_IF_THEN_ELSE (result_mode,
						    gen_rtx_GE (VOIDmode,
								op0, op1),
						    true_cond, false_cond)));
      false_cond = true_cond;
      true_cond = temp;

      temp = gen_reg_rtx (compare_mode);
      emit_insn (gen_rtx_SET (temp, gen_rtx_NEG (compare_mode, op0)));
      op0 = temp;
      break;

    case GT:
      /* a GT 0 <-> (a GE 0 && -a UNLT 0) */
      temp = gen_reg_rtx (result_mode);
      emit_insn (gen_rtx_SET (temp,
			      gen_rtx_IF_THEN_ELSE (result_mode,
						    gen_rtx_GE (VOIDmode,
								op0, op1),
						    true_cond, false_cond)));
      true_cond = false_cond;
      false_cond = temp;

      temp = gen_reg_rtx (compare_mode);
      emit_insn (gen_rtx_SET (temp, gen_rtx_NEG (compare_mode, op0)));
      op0 = temp;
      break;

    default:
      gcc_unreachable ();
    }

  emit_insn (gen_rtx_SET (dest,
			  gen_rtx_IF_THEN_ELSE (result_mode,
						gen_rtx_GE (VOIDmode,
							    op0, op1),
						true_cond, false_cond)));
  return true;
}

/* Same as above, but for ints (isel).  */

bool
rs6000_emit_int_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
{
  rtx condition_rtx, cr;
  machine_mode mode = GET_MODE (dest);
  enum rtx_code cond_code;
  rtx (*isel_func) (rtx, rtx, rtx, rtx, rtx);
  bool signedp;

  if (mode != SImode && (!TARGET_POWERPC64 || mode != DImode))
    return false;

  /* PR104335: We now need to expect CC-mode "comparisons"
     coming from ifcvt.  The following code expects proper
     comparisons so better abort here.  */
  if (GET_MODE_CLASS (GET_MODE (XEXP (op, 0))) == MODE_CC)
    return false;

  /* We still have to do the compare, because isel doesn't do a
     compare, it just looks at the CRx bits set by a previous compare
     instruction.  */
  condition_rtx = rs6000_generate_compare (op, mode);
  cond_code = GET_CODE (condition_rtx);
  cr = XEXP (condition_rtx, 0);
  signedp = GET_MODE (cr) == CCmode;

  isel_func = (mode == SImode
	       ? (signedp ? gen_isel_cc_si : gen_isel_ccuns_si)
	       : (signedp ? gen_isel_cc_di : gen_isel_ccuns_di));

  switch (cond_code)
    {
    case LT: case GT: case LTU: case GTU: case EQ:
      /* isel handles these directly.  */
      break;

    default:
      /* We need to swap the sense of the comparison.  */
      {
	std::swap (false_cond, true_cond);
	PUT_CODE (condition_rtx, reverse_condition (cond_code));
      }
      break;
    }

  false_cond = force_reg (mode, false_cond);
  if (true_cond != const0_rtx)
    true_cond = force_reg (mode, true_cond);

  emit_insn (isel_func (dest, condition_rtx, true_cond, false_cond, cr));

  return true;
}

void
rs6000_emit_minmax (rtx dest, enum rtx_code code, rtx op0, rtx op1)
{
  machine_mode mode = GET_MODE (op0);
  enum rtx_code c;
  rtx target;

  /* VSX/altivec have direct min/max insns.  */
  if ((code == SMAX || code == SMIN)
      && (VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)
	  || (mode == SFmode && VECTOR_UNIT_VSX_P (DFmode))
	  || (TARGET_POWER10 && TARGET_FLOAT128_HW && FLOAT128_IEEE_P (mode))))
    {
      emit_insn (gen_rtx_SET (dest, gen_rtx_fmt_ee (code, mode, op0, op1)));
      return;
    }

  if (code == SMAX || code == SMIN)
    c = GE;
  else
    c = GEU;

  if (code == SMAX || code == UMAX)
    target = emit_conditional_move (dest, { c, op0, op1, mode },
				    op0, op1, mode, 0);
  else
    target = emit_conditional_move (dest, { c, op0, op1, mode },
				    op1, op0, mode, 0);
  gcc_assert (target);
  if (target != dest)
    emit_move_insn (dest, target);
}

/* A subroutine of the atomic operation splitters.  Jump to LABEL if
   COND is true.  Mark the jump as unlikely to be taken.  */

static void
emit_unlikely_jump (rtx cond, rtx label)
{
  rtx x = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, label, pc_rtx);
  rtx_insn *insn = emit_jump_insn (gen_rtx_SET (pc_rtx, x));
  add_reg_br_prob_note (insn, profile_probability::very_unlikely ());
}

/* A subroutine of the atomic operation splitters.  Emit a load-locked
   instruction in MODE.  For QI/HImode, possibly use a pattern than includes
   the zero_extend operation.  */

static void
emit_load_locked (machine_mode mode, rtx reg, rtx mem)
{
  rtx (*fn) (rtx, rtx) = NULL;

  switch (mode)
    {
    case E_QImode:
      fn = gen_load_lockedqi;
      break;
    case E_HImode:
      fn = gen_load_lockedhi;
      break;
    case E_SImode:
      if (GET_MODE (mem) == QImode)
	fn = gen_load_lockedqi_si;
      else if (GET_MODE (mem) == HImode)
	fn = gen_load_lockedhi_si;
      else
	fn = gen_load_lockedsi;
      break;
    case E_DImode:
      fn = gen_load_lockeddi;
      break;
    case E_TImode:
      fn = gen_load_lockedti;
      break;
    default:
      gcc_unreachable ();
    }
  emit_insn (fn (reg, mem));
}

/* A subroutine of the atomic operation splitters.  Emit a store-conditional
   instruction in MODE.  */

static void
emit_store_conditional (machine_mode mode, rtx res, rtx mem, rtx val)
{
  rtx (*fn) (rtx, rtx, rtx) = NULL;

  switch (mode)
    {
    case E_QImode:
      fn = gen_store_conditionalqi;
      break;
    case E_HImode:
      fn = gen_store_conditionalhi;
      break;
    case E_SImode:
      fn = gen_store_conditionalsi;
      break;
    case E_DImode:
      fn = gen_store_conditionaldi;
      break;
    case E_TImode:
      fn = gen_store_conditionalti;
      break;
    default:
      gcc_unreachable ();
    }

  /* Emit sync before stwcx. to address PPC405 Erratum.  */
  if (PPC405_ERRATUM77)
    emit_insn (gen_hwsync ());

  emit_insn (fn (res, mem, val));
}

/* Expand barriers before and after a load_locked/store_cond sequence.  */

static rtx
rs6000_pre_atomic_barrier (rtx mem, enum memmodel model)
{
  rtx addr = XEXP (mem, 0);

  if (!legitimate_indirect_address_p (addr, reload_completed)
      && !legitimate_indexed_address_p (addr, reload_completed))
    {
      addr = force_reg (Pmode, addr);
      mem = replace_equiv_address_nv (mem, addr);
    }

  switch (model)
    {
    case MEMMODEL_RELAXED:
    case MEMMODEL_CONSUME:
    case MEMMODEL_ACQUIRE:
      break;
    case MEMMODEL_RELEASE:
    case MEMMODEL_ACQ_REL:
      emit_insn (gen_lwsync ());
      break;
    case MEMMODEL_SEQ_CST:
      emit_insn (gen_hwsync ());
      break;
    default:
      gcc_unreachable ();
    }
  return mem;
}

static void
rs6000_post_atomic_barrier (enum memmodel model)
{
  switch (model)
    {
    case MEMMODEL_RELAXED:
    case MEMMODEL_CONSUME:
    case MEMMODEL_RELEASE:
      break;
    case MEMMODEL_ACQUIRE:
    case MEMMODEL_ACQ_REL:
    case MEMMODEL_SEQ_CST:
      emit_insn (gen_isync ());
      break;
    default:
      gcc_unreachable ();
    }
}

/* A subroutine of the various atomic expanders.  For sub-word operations,
   we must adjust things to operate on SImode.  Given the original MEM,
   return a new aligned memory.  Also build and return the quantities by
   which to shift and mask.  */

static rtx
rs6000_adjust_atomic_subword (rtx orig_mem, rtx *pshift, rtx *pmask)
{
  rtx addr, align, shift, mask, mem;
  HOST_WIDE_INT shift_mask;
  machine_mode mode = GET_MODE (orig_mem);

  /* For smaller modes, we have to implement this via SImode.  */
  shift_mask = (mode == QImode ? 0x18 : 0x10);

  addr = XEXP (orig_mem, 0);
  addr = force_reg (GET_MODE (addr), addr);

  /* Aligned memory containing subword.  Generate a new memory.  We
     do not want any of the existing MEM_ATTR data, as we're now
     accessing memory outside the original object.  */
  align = expand_simple_binop (Pmode, AND, addr, GEN_INT (-4),
			       NULL_RTX, 1, OPTAB_LIB_WIDEN);
  mem = gen_rtx_MEM (SImode, align);
  MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (orig_mem);
  if (MEM_ALIAS_SET (orig_mem) == ALIAS_SET_MEMORY_BARRIER)
    set_mem_alias_set (mem, ALIAS_SET_MEMORY_BARRIER);

  /* Shift amount for subword relative to aligned word.  */
  shift = gen_reg_rtx (SImode);
  addr = gen_lowpart (SImode, addr);
  rtx tmp = gen_reg_rtx (SImode);
  emit_insn (gen_ashlsi3 (tmp, addr, GEN_INT (3)));
  emit_insn (gen_andsi3 (shift, tmp, GEN_INT (shift_mask)));
  if (BYTES_BIG_ENDIAN)
    shift = expand_simple_binop (SImode, XOR, shift, GEN_INT (shift_mask),
			         shift, 1, OPTAB_LIB_WIDEN);
  *pshift = shift;

  /* Mask for insertion.  */
  mask = expand_simple_binop (SImode, ASHIFT, GEN_INT (GET_MODE_MASK (mode)),
			      shift, NULL_RTX, 1, OPTAB_LIB_WIDEN);
  *pmask = mask;

  return mem;
}

/* A subroutine of the various atomic expanders.  For sub-word operands,
   combine OLDVAL and NEWVAL via MASK.  Returns a new pseduo.  */

static rtx
rs6000_mask_atomic_subword (rtx oldval, rtx newval, rtx mask)
{
  rtx x;

  x = gen_reg_rtx (SImode);
  emit_insn (gen_rtx_SET (x, gen_rtx_AND (SImode,
					  gen_rtx_NOT (SImode, mask),
					  oldval)));

  x = expand_simple_binop (SImode, IOR, newval, x, x, 1, OPTAB_LIB_WIDEN);

  return x;
}

/* A subroutine of the various atomic expanders.  For sub-word operands,
   extract WIDE to NARROW via SHIFT.  */

static void
rs6000_finish_atomic_subword (rtx narrow, rtx wide, rtx shift)
{
  wide = expand_simple_binop (SImode, LSHIFTRT, wide, shift,
			      wide, 1, OPTAB_LIB_WIDEN);
  emit_move_insn (narrow, gen_lowpart (GET_MODE (narrow), wide));
}

/* Expand an atomic compare and swap operation.  */

void
rs6000_expand_atomic_compare_and_swap (rtx operands[])
{
  rtx boolval, retval, mem, oldval, newval, cond;
  rtx label1, label2, x, mask, shift;
  machine_mode mode, orig_mode;
  enum memmodel mod_s, mod_f;
  bool is_weak;

  boolval = operands[0];
  retval = operands[1];
  mem = operands[2];
  oldval = operands[3];
  newval = operands[4];
  is_weak = (INTVAL (operands[5]) != 0);
  mod_s = memmodel_base (INTVAL (operands[6]));
  mod_f = memmodel_base (INTVAL (operands[7]));
  orig_mode = mode = GET_MODE (mem);

  mask = shift = NULL_RTX;
  if (mode == QImode || mode == HImode)
    {
      /* Before power8, we didn't have access to lbarx/lharx, so generate a
	 lwarx and shift/mask operations.  With power8, we need to do the
	 comparison in SImode, but the store is still done in QI/HImode.  */
      oldval = convert_modes (SImode, mode, oldval, 1);

      if (!TARGET_SYNC_HI_QI)
	{
	  mem = rs6000_adjust_atomic_subword (mem, &shift, &mask);

	  /* Shift and mask OLDVAL into position with the word.  */
	  oldval = expand_simple_binop (SImode, ASHIFT, oldval, shift,
					NULL_RTX, 1, OPTAB_LIB_WIDEN);

	  /* Shift and mask NEWVAL into position within the word.  */
	  newval = convert_modes (SImode, mode, newval, 1);
	  newval = expand_simple_binop (SImode, ASHIFT, newval, shift,
					NULL_RTX, 1, OPTAB_LIB_WIDEN);
	}

      /* Prepare to adjust the return value.  */
      retval = gen_reg_rtx (SImode);
      mode = SImode;
    }
  else if (reg_overlap_mentioned_p (retval, oldval))
    oldval = copy_to_reg (oldval);

  if (mode != TImode && !reg_or_short_operand (oldval, mode))
    oldval = copy_to_mode_reg (mode, oldval);

  if (reg_overlap_mentioned_p (retval, newval))
    newval = copy_to_reg (newval);

  mem = rs6000_pre_atomic_barrier (mem, mod_s);

  label1 = NULL_RTX;
  if (!is_weak)
    {
      label1 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
      emit_label (XEXP (label1, 0));
    }
  label2 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());

  emit_load_locked (mode, retval, mem);

  x = retval;
  if (mask)
    x = expand_simple_binop (SImode, AND, retval, mask,
			     NULL_RTX, 1, OPTAB_LIB_WIDEN);

  cond = gen_reg_rtx (CCmode);
  /* If we have TImode, synthesize a comparison.  */
  if (mode != TImode)
    x = gen_rtx_COMPARE (CCmode, x, oldval);
  else
    {
      rtx xor1_result = gen_reg_rtx (DImode);
      rtx xor2_result = gen_reg_rtx (DImode);
      rtx or_result = gen_reg_rtx (DImode);
      rtx new_word0 = simplify_gen_subreg (DImode, x, TImode, 0);
      rtx new_word1 = simplify_gen_subreg (DImode, x, TImode, 8);
      rtx old_word0 = simplify_gen_subreg (DImode, oldval, TImode, 0);
      rtx old_word1 = simplify_gen_subreg (DImode, oldval, TImode, 8);

      emit_insn (gen_xordi3 (xor1_result, new_word0, old_word0));
      emit_insn (gen_xordi3 (xor2_result, new_word1, old_word1));
      emit_insn (gen_iordi3 (or_result, xor1_result, xor2_result));
      x = gen_rtx_COMPARE (CCmode, or_result, const0_rtx);
    }

  emit_insn (gen_rtx_SET (cond, x));

  x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
  emit_unlikely_jump (x, label2);

  x = newval;
  if (mask)
    x = rs6000_mask_atomic_subword (retval, newval, mask);

  emit_store_conditional (orig_mode, cond, mem, x);

  if (!is_weak)
    {
      x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
      emit_unlikely_jump (x, label1);
    }

  if (!is_mm_relaxed (mod_f))
    emit_label (XEXP (label2, 0));

  rs6000_post_atomic_barrier (mod_s);

  if (is_mm_relaxed (mod_f))
    emit_label (XEXP (label2, 0));

  if (shift)
    rs6000_finish_atomic_subword (operands[1], retval, shift);
  else if (mode != GET_MODE (operands[1]))
    convert_move (operands[1], retval, 1);

  /* In all cases, CR0 contains EQ on success, and NE on failure.  */
  x = gen_rtx_EQ (SImode, cond, const0_rtx);
  emit_insn (gen_rtx_SET (boolval, x));
}

/* Expand an atomic exchange operation.  */

void
rs6000_expand_atomic_exchange (rtx operands[])
{
  rtx retval, mem, val, cond;
  machine_mode mode;
  enum memmodel model;
  rtx label, x, mask, shift;

  retval = operands[0];
  mem = operands[1];
  val = operands[2];
  model = memmodel_base (INTVAL (operands[3]));
  mode = GET_MODE (mem);

  mask = shift = NULL_RTX;
  if (!TARGET_SYNC_HI_QI && (mode == QImode || mode == HImode))
    {
      mem = rs6000_adjust_atomic_subword (mem, &shift, &mask);

      /* Shift and mask VAL into position with the word.  */
      val = convert_modes (SImode, mode, val, 1);
      val = expand_simple_binop (SImode, ASHIFT, val, shift,
				 NULL_RTX, 1, OPTAB_LIB_WIDEN);

      /* Prepare to adjust the return value.  */
      retval = gen_reg_rtx (SImode);
      mode = SImode;
    }

  mem = rs6000_pre_atomic_barrier (mem, model);

  label = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
  emit_label (XEXP (label, 0));

  emit_load_locked (mode, retval, mem);

  x = val;
  if (mask)
    x = rs6000_mask_atomic_subword (retval, val, mask);

  cond = gen_reg_rtx (CCmode);
  emit_store_conditional (mode, cond, mem, x);

  x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
  emit_unlikely_jump (x, label);

  rs6000_post_atomic_barrier (model);

  if (shift)
    rs6000_finish_atomic_subword (operands[0], retval, shift);
}

/* Expand an atomic fetch-and-operate pattern.  CODE is the binary operation
   to perform.  MEM is the memory on which to operate.  VAL is the second
   operand of the binary operator.  BEFORE and AFTER are optional locations to
   return the value of MEM either before of after the operation.  MODEL_RTX
   is a CONST_INT containing the memory model to use.  */

void
rs6000_expand_atomic_op (enum rtx_code code, rtx mem, rtx val,
			 rtx orig_before, rtx orig_after, rtx model_rtx)
{
  enum memmodel model = memmodel_base (INTVAL (model_rtx));
  machine_mode mode = GET_MODE (mem);
  machine_mode store_mode = mode;
  rtx label, x, cond, mask, shift;
  rtx before = orig_before, after = orig_after;

  mask = shift = NULL_RTX;
  /* On power8, we want to use SImode for the operation.  On previous systems,
     use the operation in a subword and shift/mask to get the proper byte or
     halfword.  */
  if (mode == QImode || mode == HImode)
    {
      if (TARGET_SYNC_HI_QI)
	{
	  val = convert_modes (SImode, mode, val, 1);

	  /* Prepare to adjust the return value.  */
	  before = gen_reg_rtx (SImode);
	  if (after)
	    after = gen_reg_rtx (SImode);
	  mode = SImode;
	}
      else
	{
	  mem = rs6000_adjust_atomic_subword (mem, &shift, &mask);

	  /* Shift and mask VAL into position with the word.  */
	  val = convert_modes (SImode, mode, val, 1);
	  val = expand_simple_binop (SImode, ASHIFT, val, shift,
				     NULL_RTX, 1, OPTAB_LIB_WIDEN);

	  switch (code)
	    {
	    case IOR:
	    case XOR:
	      /* We've already zero-extended VAL.  That is sufficient to
		 make certain that it does not affect other bits.  */
	      mask = NULL;
	      break;

	    case AND:
	      /* If we make certain that all of the other bits in VAL are
		 set, that will be sufficient to not affect other bits.  */
	      x = gen_rtx_NOT (SImode, mask);
	      x = gen_rtx_IOR (SImode, x, val);
	      emit_insn (gen_rtx_SET (val, x));
	      mask = NULL;
	      break;

	    case NOT:
	    case PLUS:
	    case MINUS:
	      /* These will all affect bits outside the field and need
		 adjustment via MASK within the loop.  */
	      break;

	    default:
	      gcc_unreachable ();
	    }

	  /* Prepare to adjust the return value.  */
	  before = gen_reg_rtx (SImode);
	  if (after)
	    after = gen_reg_rtx (SImode);
	  store_mode = mode = SImode;
	}
    }

  mem = rs6000_pre_atomic_barrier (mem, model);

  label = gen_label_rtx ();
  emit_label (label);
  label = gen_rtx_LABEL_REF (VOIDmode, label);

  if (before == NULL_RTX)
    before = gen_reg_rtx (mode);

  emit_load_locked (mode, before, mem);

  if (code == NOT)
    {
      x = expand_simple_binop (mode, AND, before, val,
			       NULL_RTX, 1, OPTAB_LIB_WIDEN);
      after = expand_simple_unop (mode, NOT, x, after, 1);
    }
  else
    {
      after = expand_simple_binop (mode, code, before, val,
				   after, 1, OPTAB_LIB_WIDEN);
    }

  x = after;
  if (mask)
    {
      x = expand_simple_binop (SImode, AND, after, mask,
			       NULL_RTX, 1, OPTAB_LIB_WIDEN);
      x = rs6000_mask_atomic_subword (before, x, mask);
    }
  else if (store_mode != mode)
    x = convert_modes (store_mode, mode, x, 1);

  cond = gen_reg_rtx (CCmode);
  emit_store_conditional (store_mode, cond, mem, x);

  x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
  emit_unlikely_jump (x, label);

  rs6000_post_atomic_barrier (model);

  if (shift)
    {
      /* QImode/HImode on machines without lbarx/lharx where we do a lwarx and
	 then do the calcuations in a SImode register.  */
      if (orig_before)
	rs6000_finish_atomic_subword (orig_before, before, shift);
      if (orig_after)
	rs6000_finish_atomic_subword (orig_after, after, shift);
    }
  else if (store_mode != mode)
    {
      /* QImode/HImode on machines with lbarx/lharx where we do the native
	 operation and then do the calcuations in a SImode register.  */
      if (orig_before)
	convert_move (orig_before, before, 1);
      if (orig_after)
	convert_move (orig_after, after, 1);
    }
  else if (orig_after && after != orig_after)
    emit_move_insn (orig_after, after);
}

static GTY(()) alias_set_type TOC_alias_set = -1;

alias_set_type
get_TOC_alias_set (void)
{
  if (TOC_alias_set == -1)
    TOC_alias_set = new_alias_set ();
  return TOC_alias_set;
}

/* The mode the ABI uses for a word.  This is not the same as word_mode
   for -m32 -mpowerpc64.  This is used to implement various target hooks.  */

static scalar_int_mode
rs6000_abi_word_mode (void)
{
  return TARGET_32BIT ? SImode : DImode;
}

/* Implement the TARGET_OFFLOAD_OPTIONS hook.  */
static char *
rs6000_offload_options (void)
{
  if (TARGET_64BIT)
    return xstrdup ("-foffload-abi=lp64");
  else
    return xstrdup ("-foffload-abi=ilp32");
}


/* A quick summary of the various types of 'constant-pool tables'
   under PowerPC:

   Target	Flags		Name		One table per
   AIX		(none)		AIX TOC		object file
   AIX		-mfull-toc	AIX TOC		object file
   AIX		-mminimal-toc	AIX minimal TOC	translation unit
   SVR4/EABI	(none)		SVR4 SDATA	object file
   SVR4/EABI	-fpic		SVR4 pic	object file
   SVR4/EABI	-fPIC		SVR4 PIC	translation unit
   SVR4/EABI	-mrelocatable	EABI TOC	function
   SVR4/EABI	-maix		AIX TOC		object file
   SVR4/EABI	-maix -mminimal-toc
				AIX minimal TOC	translation unit

   Name			Reg.	Set by	entries	      contains:
					made by	 addrs?	fp?	sum?

   AIX TOC		2	crt0	as	 Y	option	option
   AIX minimal TOC	30	prolog	gcc	 Y	Y	option
   SVR4 SDATA		13	crt0	gcc	 N	Y	N
   SVR4 pic		30	prolog	ld	 Y	not yet	N
   SVR4 PIC		30	prolog	gcc	 Y	option	option
   EABI TOC		30	prolog	gcc	 Y	option	option

*/

/* Hash functions for the hash table.  */

static unsigned
rs6000_hash_constant (rtx k)
{
  enum rtx_code code = GET_CODE (k);
  machine_mode mode = GET_MODE (k);
  unsigned result = (code << 3) ^ mode;
  const char *format;
  int flen, fidx;

  format = GET_RTX_FORMAT (code);
  flen = strlen (format);
  fidx = 0;

  switch (code)
    {
    case LABEL_REF:
      return result * 1231 + (unsigned) INSN_UID (XEXP (k, 0));

    case CONST_WIDE_INT:
      {
	int i;
	flen = CONST_WIDE_INT_NUNITS (k);
	for (i = 0; i < flen; i++)
	  result = result * 613 + CONST_WIDE_INT_ELT (k, i);
	return result;
      }

    case CONST_DOUBLE:
      return real_hash (CONST_DOUBLE_REAL_VALUE (k)) * result;

    case CODE_LABEL:
      fidx = 3;
      break;

    default:
      break;
    }

  for (; fidx < flen; fidx++)
    switch (format[fidx])
      {
      case 's':
	{
	  unsigned i, len;
	  const char *str = XSTR (k, fidx);
	  len = strlen (str);
	  result = result * 613 + len;
	  for (i = 0; i < len; i++)
	    result = result * 613 + (unsigned) str[i];
	  break;
	}
      case 'u':
      case 'e':
	result = result * 1231 + rs6000_hash_constant (XEXP (k, fidx));
	break;
      case 'i':
      case 'n':
	result = result * 613 + (unsigned) XINT (k, fidx);
	break;
      case 'w':
	if (sizeof (unsigned) >= sizeof (HOST_WIDE_INT))
	  result = result * 613 + (unsigned) XWINT (k, fidx);
	else
	  {
	    size_t i;
	    for (i = 0; i < sizeof (HOST_WIDE_INT) / sizeof (unsigned); i++)
	      result = result * 613 + (unsigned) (XWINT (k, fidx)
						  >> CHAR_BIT * i);
	  }
	break;
      case '0':
	break;
      default:
	gcc_unreachable ();
      }

  return result;
}

hashval_t
toc_hasher::hash (toc_hash_struct *thc)
{
  return rs6000_hash_constant (thc->key) ^ thc->key_mode;
}

/* Compare H1 and H2 for equivalence.  */

bool
toc_hasher::equal (toc_hash_struct *h1, toc_hash_struct *h2)
{
  rtx r1 = h1->key;
  rtx r2 = h2->key;

  if (h1->key_mode != h2->key_mode)
    return 0;

  return rtx_equal_p (r1, r2);
}

/* These are the names given by the C++ front-end to vtables, and
   vtable-like objects.  Ideally, this logic should not be here;
   instead, there should be some programmatic way of inquiring as
   to whether or not an object is a vtable.  */

#define VTABLE_NAME_P(NAME)	  \
  (startswith (name, "_vt.")	  \
  || startswith (name, "_ZTV")	  \
  || startswith (name, "_ZTT")	  \
  || startswith (name, "_ZTI")	  \
  || startswith (name, "_ZTC"))

#ifdef NO_DOLLAR_IN_LABEL
/* Return a GGC-allocated character string translating dollar signs in
   input NAME to underscores.  Used by XCOFF ASM_OUTPUT_LABELREF.  */

const char *
rs6000_xcoff_strip_dollar (const char *name)
{
  char *strip, *p;
  const char *q;
  size_t len;

  q = (const char *) strchr (name, '$');

  if (q == 0 || q == name)
    return name;

  len = strlen (name);
  strip = XALLOCAVEC (char, len + 1);
  strcpy (strip, name);
  p = strip + (q - name);
  while (p)
    {
      *p = '_';
      p = strchr (p + 1, '$');
    }

  return ggc_alloc_string (strip, len);
}
#endif

void
rs6000_output_symbol_ref (FILE *file, rtx x)
{
  const char *name = XSTR (x, 0);

  /* Currently C++ toc references to vtables can be emitted before it
     is decided whether the vtable is public or private.  If this is
     the case, then the linker will eventually complain that there is
     a reference to an unknown section.  Thus, for vtables only,
     we emit the TOC reference to reference the identifier and not the
     symbol.  */
  if (VTABLE_NAME_P (name))
    {
      RS6000_OUTPUT_BASENAME (file, name);
    }
  else
    assemble_name (file, name);
}

/* Output a TOC entry.  We derive the entry name from what is being
   written.  */

void
output_toc (FILE *file, rtx x, int labelno, machine_mode mode)
{
  char buf[256];
  const char *name = buf;
  rtx base = x;
  HOST_WIDE_INT offset = 0;

  gcc_assert (!TARGET_NO_TOC_OR_PCREL);

  /* When the linker won't eliminate them, don't output duplicate
     TOC entries (this happens on AIX if there is any kind of TOC,
     and on SVR4 under -fPIC or -mrelocatable).  Don't do this for
     CODE_LABELs.  */
  if (TARGET_TOC && GET_CODE (x) != LABEL_REF)
    {
      struct toc_hash_struct *h;

      /* Create toc_hash_table.  This can't be done at TARGET_OPTION_OVERRIDE
	 time because GGC is not initialized at that point.  */
      if (toc_hash_table == NULL)
	toc_hash_table = hash_table<toc_hasher>::create_ggc (1021);

      h = ggc_alloc<toc_hash_struct> ();
      h->key = x;
      h->key_mode = mode;
      h->labelno = labelno;

      toc_hash_struct **found = toc_hash_table->find_slot (h, INSERT);
      if (*found == NULL)
	*found = h;
      else  /* This is indeed a duplicate.
	       Set this label equal to that label.  */
	{
	  fputs ("\t.set ", file);
	  ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
	  fprintf (file, "%d,", labelno);
	  ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
	  fprintf (file, "%d\n", ((*found)->labelno));

#ifdef HAVE_AS_TLS
	  if (TARGET_XCOFF && SYMBOL_REF_P (x)
	      && (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_GLOBAL_DYNAMIC
		  || SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC))
	    {
	      fputs ("\t.set ", file);
	      ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LCM");
	      fprintf (file, "%d,", labelno);
	      ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LCM");
	      fprintf (file, "%d\n", ((*found)->labelno));
	    }
#endif
	  return;
	}
    }

  /* If we're going to put a double constant in the TOC, make sure it's
     aligned properly when strict alignment is on.  */
  if ((CONST_DOUBLE_P (x) || CONST_WIDE_INT_P (x))
      && STRICT_ALIGNMENT
      && GET_MODE_BITSIZE (mode) >= 64
      && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC)) {
    ASM_OUTPUT_ALIGN (file, 3);
  }

  (*targetm.asm_out.internal_label) (file, "LC", labelno);

  /* Handle FP constants specially.  Note that if we have a minimal
     TOC, things we put here aren't actually in the TOC, so we can allow
     FP constants.  */
  if (CONST_DOUBLE_P (x)
      && (GET_MODE (x) == TFmode || GET_MODE (x) == TDmode
	  || GET_MODE (x) == IFmode || GET_MODE (x) == KFmode))
    {
      long k[4];

      if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
	REAL_VALUE_TO_TARGET_DECIMAL128 (*CONST_DOUBLE_REAL_VALUE (x), k);
      else
	REAL_VALUE_TO_TARGET_LONG_DOUBLE (*CONST_DOUBLE_REAL_VALUE (x), k);

      if (TARGET_64BIT)
	{
	  if (TARGET_ELF || TARGET_MINIMAL_TOC)
	    fputs (DOUBLE_INT_ASM_OP, file);
	  else
	    fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
		     k[0] & 0xffffffff, k[1] & 0xffffffff,
		     k[2] & 0xffffffff, k[3] & 0xffffffff);
	  fprintf (file, "0x%lx%08lx,0x%lx%08lx\n",
		   k[WORDS_BIG_ENDIAN ? 0 : 1] & 0xffffffff,
		   k[WORDS_BIG_ENDIAN ? 1 : 0] & 0xffffffff,
		   k[WORDS_BIG_ENDIAN ? 2 : 3] & 0xffffffff,
		   k[WORDS_BIG_ENDIAN ? 3 : 2] & 0xffffffff);
	  return;
	}
      else
	{
	  if (TARGET_ELF || TARGET_MINIMAL_TOC)
	    fputs ("\t.long ", file);
	  else
	    fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
		     k[0] & 0xffffffff, k[1] & 0xffffffff,
		     k[2] & 0xffffffff, k[3] & 0xffffffff);
	  fprintf (file, "0x%lx,0x%lx,0x%lx,0x%lx\n",
		   k[0] & 0xffffffff, k[1] & 0xffffffff,
		   k[2] & 0xffffffff, k[3] & 0xffffffff);
	  return;
	}
    }
  else if (CONST_DOUBLE_P (x)
	   && (GET_MODE (x) == DFmode || GET_MODE (x) == DDmode))
    {
      long k[2];

      if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
	REAL_VALUE_TO_TARGET_DECIMAL64 (*CONST_DOUBLE_REAL_VALUE (x), k);
      else
	REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (x), k);

      if (TARGET_64BIT)
	{
	  if (TARGET_ELF || TARGET_MINIMAL_TOC)
	    fputs (DOUBLE_INT_ASM_OP, file);
	  else
	    fprintf (file, "\t.tc FD_%lx_%lx[TC],",
		     k[0] & 0xffffffff, k[1] & 0xffffffff);
	  fprintf (file, "0x%lx%08lx\n",
		   k[WORDS_BIG_ENDIAN ? 0 : 1] & 0xffffffff,
		   k[WORDS_BIG_ENDIAN ? 1 : 0] & 0xffffffff);
	  return;
	}
      else
	{
	  if (TARGET_ELF || TARGET_MINIMAL_TOC)
	    fputs ("\t.long ", file);
	  else
	    fprintf (file, "\t.tc FD_%lx_%lx[TC],",
		     k[0] & 0xffffffff, k[1] & 0xffffffff);
	  fprintf (file, "0x%lx,0x%lx\n",
		   k[0] & 0xffffffff, k[1] & 0xffffffff);
	  return;
	}
    }
  else if (CONST_DOUBLE_P (x)
	   && (GET_MODE (x) == SFmode || GET_MODE (x) == SDmode))
    {
      long l;

      if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
	REAL_VALUE_TO_TARGET_DECIMAL32 (*CONST_DOUBLE_REAL_VALUE (x), l);
      else
	REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), l);

      if (TARGET_64BIT)
	{
	  if (TARGET_ELF || TARGET_MINIMAL_TOC)
	    fputs (DOUBLE_INT_ASM_OP, file);
	  else
	    fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff);
	  if (WORDS_BIG_ENDIAN)
	    fprintf (file, "0x%lx00000000\n", l & 0xffffffff);
	  else
	    fprintf (file, "0x%lx\n", l & 0xffffffff);
	  return;
	}
      else
	{
	  if (TARGET_ELF || TARGET_MINIMAL_TOC)
	    fputs ("\t.long ", file);
	  else
	    fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff);
	  fprintf (file, "0x%lx\n", l & 0xffffffff);
	  return;
	}
    }
  else if (GET_MODE (x) == VOIDmode && CONST_INT_P (x))
    {
      unsigned HOST_WIDE_INT low;
      HOST_WIDE_INT high;

      low = INTVAL (x) & 0xffffffff;
      high = (HOST_WIDE_INT) INTVAL (x) >> 32;

      /* TOC entries are always Pmode-sized, so when big-endian
	 smaller integer constants in the TOC need to be padded.
	 (This is still a win over putting the constants in
	 a separate constant pool, because then we'd have
	 to have both a TOC entry _and_ the actual constant.)

	 For a 32-bit target, CONST_INT values are loaded and shifted
	 entirely within `low' and can be stored in one TOC entry.  */

      /* It would be easy to make this work, but it doesn't now.  */
      gcc_assert (!TARGET_64BIT || POINTER_SIZE >= GET_MODE_BITSIZE (mode));

      if (WORDS_BIG_ENDIAN && POINTER_SIZE > GET_MODE_BITSIZE (mode))
	{
	  low |= high << 32;
	  low <<= POINTER_SIZE - GET_MODE_BITSIZE (mode);
	  high = (HOST_WIDE_INT) low >> 32;
	  low &= 0xffffffff;
	}

      if (TARGET_64BIT)
	{
	  if (TARGET_ELF || TARGET_MINIMAL_TOC)
	    fputs (DOUBLE_INT_ASM_OP, file);
	  else
	    fprintf (file, "\t.tc ID_%lx_%lx[TC],",
		     (long) high & 0xffffffff, (long) low & 0xffffffff);
	  fprintf (file, "0x%lx%08lx\n",
		   (long) high & 0xffffffff, (long) low & 0xffffffff);
	  return;
	}
      else
	{
	  if (POINTER_SIZE < GET_MODE_BITSIZE (mode))
	    {
	      if (TARGET_ELF || TARGET_MINIMAL_TOC)
		fputs ("\t.long ", file);
	      else
		fprintf (file, "\t.tc ID_%lx_%lx[TC],",
			 (long) high & 0xffffffff, (long) low & 0xffffffff);
	      fprintf (file, "0x%lx,0x%lx\n",
		       (long) high & 0xffffffff, (long) low & 0xffffffff);
	    }
	  else
	    {
	      if (TARGET_ELF || TARGET_MINIMAL_TOC)
		fputs ("\t.long ", file);
	      else
		fprintf (file, "\t.tc IS_%lx[TC],", (long) low & 0xffffffff);
	      fprintf (file, "0x%lx\n", (long) low & 0xffffffff);
	    }
	  return;
	}
    }

  if (GET_CODE (x) == CONST)
    {
      gcc_assert (GET_CODE (XEXP (x, 0)) == PLUS
		  && CONST_INT_P (XEXP (XEXP (x, 0), 1)));

      base = XEXP (XEXP (x, 0), 0);
      offset = INTVAL (XEXP (XEXP (x, 0), 1));
    }

  switch (GET_CODE (base))
    {
    case SYMBOL_REF:
      name = XSTR (base, 0);
      break;

    case LABEL_REF:
      ASM_GENERATE_INTERNAL_LABEL (buf, "L",
				   CODE_LABEL_NUMBER (XEXP (base, 0)));
      break;

    case CODE_LABEL:
      ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (base));
      break;

    default:
      gcc_unreachable ();
    }

  if (TARGET_ELF || TARGET_MINIMAL_TOC)
    fputs (TARGET_32BIT ? "\t.long " : DOUBLE_INT_ASM_OP, file);
  else
    {
      fputs ("\t.tc ", file);
      RS6000_OUTPUT_BASENAME (file, name);

      if (offset < 0)
	fprintf (file, ".N" HOST_WIDE_INT_PRINT_UNSIGNED, - offset);
      else if (offset)
	fprintf (file, ".P" HOST_WIDE_INT_PRINT_UNSIGNED, offset);

      /* Mark large TOC symbols on AIX with [TE] so they are mapped
	 after other TOC symbols, reducing overflow of small TOC access
	 to [TC] symbols.  */
      fputs (TARGET_XCOFF && TARGET_CMODEL != CMODEL_SMALL
	     ? "[TE]," : "[TC],", file);
    }

  /* Currently C++ toc references to vtables can be emitted before it
     is decided whether the vtable is public or private.  If this is
     the case, then the linker will eventually complain that there is
     a TOC reference to an unknown section.  Thus, for vtables only,
     we emit the TOC reference to reference the symbol and not the
     section.  */
  if (VTABLE_NAME_P (name))
    {
      RS6000_OUTPUT_BASENAME (file, name);
      if (offset < 0)
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, offset);
      else if (offset > 0)
	fprintf (file, "+" HOST_WIDE_INT_PRINT_DEC, offset);
    }
  else
    output_addr_const (file, x);

#if HAVE_AS_TLS
  if (TARGET_XCOFF && SYMBOL_REF_P (base))
    {
      switch (SYMBOL_REF_TLS_MODEL (base))
	{
	case 0:
	  break;
	case TLS_MODEL_LOCAL_EXEC:
	  fputs ("@le", file);
	  break;
	case TLS_MODEL_INITIAL_EXEC:
	  fputs ("@ie", file);
	  break;
	/* Use global-dynamic for local-dynamic.  */
	case TLS_MODEL_GLOBAL_DYNAMIC:
	case TLS_MODEL_LOCAL_DYNAMIC:
	  putc ('\n', file);
	  (*targetm.asm_out.internal_label) (file, "LCM", labelno);
	  fputs ("\t.tc .", file);
	  RS6000_OUTPUT_BASENAME (file, name);
	  fputs ("[TC],", file);
	  output_addr_const (file, x);
	  fputs ("@m", file);
	  break;
	default:
	  gcc_unreachable ();
	}
    }
#endif

  putc ('\n', file);
}

/* Output an assembler pseudo-op to write an ASCII string of N characters
   starting at P to FILE.

   On the RS/6000, we have to do this using the .byte operation and
   write out special characters outside the quoted string.
   Also, the assembler is broken; very long strings are truncated,
   so we must artificially break them up early.  */

void
output_ascii (FILE *file, const char *p, int n)
{
  char c;
  int i, count_string;
  const char *for_string = "\t.byte \"";
  const char *for_decimal = "\t.byte ";
  const char *to_close = NULL;

  count_string = 0;
  for (i = 0; i < n; i++)
    {
      c = *p++;
      if (c >= ' ' && c < 0177)
	{
	  if (for_string)
	    fputs (for_string, file);
	  putc (c, file);

	  /* Write two quotes to get one.  */
	  if (c == '"')
	    {
	      putc (c, file);
	      ++count_string;
	    }

	  for_string = NULL;
	  for_decimal = "\"\n\t.byte ";
	  to_close = "\"\n";
	  ++count_string;

	  if (count_string >= 512)
	    {
	      fputs (to_close, file);

	      for_string = "\t.byte \"";
	      for_decimal = "\t.byte ";
	      to_close = NULL;
	      count_string = 0;
	    }
	}
      else
	{
	  if (for_decimal)
	    fputs (for_decimal, file);
	  fprintf (file, "%d", c);

	  for_string = "\n\t.byte \"";
	  for_decimal = ", ";
	  to_close = "\n";
	  count_string = 0;
	}
    }

  /* Now close the string if we have written one.  Then end the line.  */
  if (to_close)
    fputs (to_close, file);
}

/* Generate a unique section name for FILENAME for a section type
   represented by SECTION_DESC.  Output goes into BUF.

   SECTION_DESC can be any string, as long as it is different for each
   possible section type.

   We name the section in the same manner as xlc.  The name begins with an
   underscore followed by the filename (after stripping any leading directory
   names) with the last period replaced by the string SECTION_DESC.  If
   FILENAME does not contain a period, SECTION_DESC is appended to the end of
   the name.  */

void
rs6000_gen_section_name (char **buf, const char *filename,
			 const char *section_desc)
{
  const char *q, *after_last_slash, *last_period = 0;
  char *p;
  int len;

  after_last_slash = filename;
  for (q = filename; *q; q++)
    {
      if (*q == '/')
	after_last_slash = q + 1;
      else if (*q == '.')
	last_period = q;
    }

  len = strlen (after_last_slash) + strlen (section_desc) + 2;
  *buf = (char *) xmalloc (len);

  p = *buf;
  *p++ = '_';

  for (q = after_last_slash; *q; q++)
    {
      if (q == last_period)
	{
	  strcpy (p, section_desc);
	  p += strlen (section_desc);
	  break;
	}

      else if (ISALNUM (*q))
	*p++ = *q;
    }

  if (last_period == 0)
    strcpy (p, section_desc);
  else
    *p = '\0';
}

/* Emit profile function.  */

void
output_profile_hook (int labelno ATTRIBUTE_UNUSED)
{
  /* Non-standard profiling for kernels, which just saves LR then calls
     _mcount without worrying about arg saves.  The idea is to change
     the function prologue as little as possible as it isn't easy to
     account for arg save/restore code added just for _mcount.  */
  if (TARGET_PROFILE_KERNEL)
    return;

  if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
    {
#ifndef NO_PROFILE_COUNTERS
# define NO_PROFILE_COUNTERS 0
#endif
      if (NO_PROFILE_COUNTERS)
	emit_library_call (init_one_libfunc (RS6000_MCOUNT),
			   LCT_NORMAL, VOIDmode);
      else
	{
	  char buf[30];
	  const char *label_name;
	  rtx fun;

	  ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
	  label_name = ggc_strdup ((*targetm.strip_name_encoding) (buf));
	  fun = gen_rtx_SYMBOL_REF (Pmode, label_name);

	  emit_library_call (init_one_libfunc (RS6000_MCOUNT),
			     LCT_NORMAL, VOIDmode, fun, Pmode);
	}
    }
  else if (DEFAULT_ABI == ABI_DARWIN)
    {
      const char *mcount_name = RS6000_MCOUNT;
      int caller_addr_regno = LR_REGNO;

      /* Be conservative and always set this, at least for now.  */
      crtl->uses_pic_offset_table = 1;

#if TARGET_MACHO
      /* For PIC code, set up a stub and collect the caller's address
	 from r0, which is where the prologue puts it.  */
      if (MACHOPIC_INDIRECT
	  && crtl->uses_pic_offset_table)
	caller_addr_regno = 0;
#endif
      emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mcount_name),
			 LCT_NORMAL, VOIDmode,
			 gen_rtx_REG (Pmode, caller_addr_regno), Pmode);
    }
}

/* Write function profiler code.  */

void
output_function_profiler (FILE *file, int labelno)
{
  char buf[100];

  switch (DEFAULT_ABI)
    {
    default:
      gcc_unreachable ();

    case ABI_V4:
      if (!TARGET_32BIT)
	{
	  warning (0, "no profiling of 64-bit code for this ABI");
	  return;
	}
      ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
      fprintf (file, "\tmflr %s\n", reg_names[0]);
      if (NO_PROFILE_COUNTERS)
	{
	  asm_fprintf (file, "\tstw %s,4(%s)\n",
		       reg_names[0], reg_names[1]);
	}
      else if (TARGET_SECURE_PLT && flag_pic)
	{
	  if (TARGET_LINK_STACK)
	    {
	      char name[32];
	      get_ppc476_thunk_name (name);
	      asm_fprintf (file, "\tbl %s\n", name);
	    }
	  else
	    asm_fprintf (file, "\tbcl 20,31,1f\n1:\n");
	  asm_fprintf (file, "\tstw %s,4(%s)\n",
		       reg_names[0], reg_names[1]);
	  asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
	  asm_fprintf (file, "\taddis %s,%s,",
		       reg_names[12], reg_names[12]);
	  assemble_name (file, buf);
	  asm_fprintf (file, "-1b@ha\n\tla %s,", reg_names[0]);
	  assemble_name (file, buf);
	  asm_fprintf (file, "-1b@l(%s)\n", reg_names[12]);
	}
      else if (flag_pic == 1)
	{
	  fputs ("\tbl _GLOBAL_OFFSET_TABLE_@local-4\n", file);
	  asm_fprintf (file, "\tstw %s,4(%s)\n",
		       reg_names[0], reg_names[1]);
	  asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
	  asm_fprintf (file, "\tlwz %s,", reg_names[0]);
	  assemble_name (file, buf);
	  asm_fprintf (file, "@got(%s)\n", reg_names[12]);
	}
      else if (flag_pic > 1)
	{
	  asm_fprintf (file, "\tstw %s,4(%s)\n",
		       reg_names[0], reg_names[1]);
	  /* Now, we need to get the address of the label.  */
	  if (TARGET_LINK_STACK)
	    {
	      char name[32];
	      get_ppc476_thunk_name (name);
	      asm_fprintf (file, "\tbl %s\n\tb 1f\n\t.long ", name);
	      assemble_name (file, buf);
	      fputs ("-.\n1:", file);
	      asm_fprintf (file, "\tmflr %s\n", reg_names[11]);
	      asm_fprintf (file, "\taddi %s,%s,4\n",
			   reg_names[11], reg_names[11]);
	    }
	  else
	    {
	      fputs ("\tbcl 20,31,1f\n\t.long ", file);
	      assemble_name (file, buf);
	      fputs ("-.\n1:", file);
	      asm_fprintf (file, "\tmflr %s\n", reg_names[11]);
	    }
	  asm_fprintf (file, "\tlwz %s,0(%s)\n",
		       reg_names[0], reg_names[11]);
	  asm_fprintf (file, "\tadd %s,%s,%s\n",
		       reg_names[0], reg_names[0], reg_names[11]);
	}
      else
	{
	  asm_fprintf (file, "\tlis %s,", reg_names[12]);
	  assemble_name (file, buf);
	  fputs ("@ha\n", file);
	  asm_fprintf (file, "\tstw %s,4(%s)\n",
		       reg_names[0], reg_names[1]);
	  asm_fprintf (file, "\tla %s,", reg_names[0]);
	  assemble_name (file, buf);
	  asm_fprintf (file, "@l(%s)\n", reg_names[12]);
	}

      /* ABI_V4 saves the static chain reg with ASM_OUTPUT_REG_PUSH.  */
      fprintf (file, "\tbl %s%s\n",
	       RS6000_MCOUNT, flag_pic ? "@plt" : "");
      break;

    case ABI_AIX:
    case ABI_ELFv2:
    case ABI_DARWIN:
      /* Don't do anything, done in output_profile_hook ().  */
      break;
    }
}



/* The following variable value is the last issued insn.  */

static rtx_insn *last_scheduled_insn;

/* The following variable helps to balance issuing of load and
   store instructions */

static int load_store_pendulum;

/* The following variable helps pair divide insns during scheduling.  */
static int divide_cnt;
/* The following variable helps pair and alternate vector and vector load
   insns during scheduling.  */
static int vec_pairing;


/* Power4 load update and store update instructions are cracked into a
   load or store and an integer insn which are executed in the same cycle.
   Branches have their own dispatch slot which does not count against the
   GCC issue rate, but it changes the program flow so there are no other
   instructions to issue in this cycle.  */

static int
rs6000_variable_issue_1 (rtx_insn *insn, int more)
{
  last_scheduled_insn = insn;
  if (GET_CODE (PATTERN (insn)) == USE
      || GET_CODE (PATTERN (insn)) == CLOBBER)
    {
      cached_can_issue_more = more;
      return cached_can_issue_more;
    }

  if (insn_terminates_group_p (insn, current_group))
    {
      cached_can_issue_more = 0;
      return cached_can_issue_more;
    }

  /* If no reservation, but reach here */
  if (recog_memoized (insn) < 0)
    return more;

  if (rs6000_sched_groups)
    {
      if (is_microcoded_insn (insn))
        cached_can_issue_more = 0;
      else if (is_cracked_insn (insn))
        cached_can_issue_more = more > 2 ? more - 2 : 0;
      else
        cached_can_issue_more = more - 1;

      return cached_can_issue_more;
    }

  if (rs6000_tune == PROCESSOR_CELL && is_nonpipeline_insn (insn))
    return 0;

  cached_can_issue_more = more - 1;
  return cached_can_issue_more;
}

static int
rs6000_variable_issue (FILE *stream, int verbose, rtx_insn *insn, int more)
{
  int r = rs6000_variable_issue_1 (insn, more);
  if (verbose)
    fprintf (stream, "// rs6000_variable_issue (more = %d) = %d\n", more, r);
  return r;
}

/* Adjust the cost of a scheduling dependency.  Return the new cost of
   a dependency LINK or INSN on DEP_INSN.  COST is the current cost.  */

static int
rs6000_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep_insn, int cost,
		    unsigned int)
{
  enum attr_type attr_type;

  if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
    return cost;

  switch (dep_type)
    {
    case REG_DEP_TRUE:
      {
        /* Data dependency; DEP_INSN writes a register that INSN reads
	   some cycles later.  */

	/* Separate a load from a narrower, dependent store.  */
	if ((rs6000_sched_groups || rs6000_tune == PROCESSOR_POWER9
	     || rs6000_tune == PROCESSOR_POWER10)
	    && GET_CODE (PATTERN (insn)) == SET
	    && GET_CODE (PATTERN (dep_insn)) == SET
	    && MEM_P (XEXP (PATTERN (insn), 1))
	    && MEM_P (XEXP (PATTERN (dep_insn), 0))
	    && (GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (insn), 1)))
		> GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (dep_insn), 0)))))
	  return cost + 14;

        attr_type = get_attr_type (insn);

        switch (attr_type)
          {
          case TYPE_JMPREG:
            /* Tell the first scheduling pass about the latency between
               a mtctr and bctr (and mtlr and br/blr).  The first
               scheduling pass will not know about this latency since
               the mtctr instruction, which has the latency associated
               to it, will be generated by reload.  */
            return 4;
          case TYPE_BRANCH:
            /* Leave some extra cycles between a compare and its
               dependent branch, to inhibit expensive mispredicts.  */
            if ((rs6000_tune == PROCESSOR_PPC603
                 || rs6000_tune == PROCESSOR_PPC604
                 || rs6000_tune == PROCESSOR_PPC604e
                 || rs6000_tune == PROCESSOR_PPC620
                 || rs6000_tune == PROCESSOR_PPC630
                 || rs6000_tune == PROCESSOR_PPC750
                 || rs6000_tune == PROCESSOR_PPC7400
                 || rs6000_tune == PROCESSOR_PPC7450
                 || rs6000_tune == PROCESSOR_PPCE5500
                 || rs6000_tune == PROCESSOR_PPCE6500
                 || rs6000_tune == PROCESSOR_POWER4
                 || rs6000_tune == PROCESSOR_POWER5
		 || rs6000_tune == PROCESSOR_POWER7
		 || rs6000_tune == PROCESSOR_POWER8
		 || rs6000_tune == PROCESSOR_POWER9
		 || rs6000_tune == PROCESSOR_POWER10
                 || rs6000_tune == PROCESSOR_CELL)
                && recog_memoized (dep_insn)
                && (INSN_CODE (dep_insn) >= 0))

              switch (get_attr_type (dep_insn))
                {
                case TYPE_CMP:
                case TYPE_FPCOMPARE:
                case TYPE_CR_LOGICAL:
		  return cost + 2;
                case TYPE_EXTS:
                case TYPE_MUL:
		  if (get_attr_dot (dep_insn) == DOT_YES)
		    return cost + 2;
		  else
		    break;
                case TYPE_SHIFT:
		  if (get_attr_dot (dep_insn) == DOT_YES
		      && get_attr_var_shift (dep_insn) == VAR_SHIFT_NO)
		    return cost + 2;
		  else
		    break;
		default:
		  break;
		}
            break;

          case TYPE_STORE:
          case TYPE_FPSTORE:
            if ((rs6000_tune == PROCESSOR_POWER6)
                && recog_memoized (dep_insn)
                && (INSN_CODE (dep_insn) >= 0))
              {

                if (GET_CODE (PATTERN (insn)) != SET)
                  /* If this happens, we have to extend this to schedule
                     optimally.  Return default for now.  */
                  return cost;

                /* Adjust the cost for the case where the value written
                   by a fixed point operation is used as the address
                   gen value on a store. */
                switch (get_attr_type (dep_insn))
                  {
                  case TYPE_LOAD:
                  case TYPE_CNTLZ:
                    {
                      if (! rs6000_store_data_bypass_p (dep_insn, insn))
                        return get_attr_sign_extend (dep_insn)
                               == SIGN_EXTEND_YES ? 6 : 4;
                      break;
                    }
                  case TYPE_SHIFT:
                    {
                      if (! rs6000_store_data_bypass_p (dep_insn, insn))
                        return get_attr_var_shift (dep_insn) == VAR_SHIFT_YES ?
                               6 : 3;
                      break;
		    }
                  case TYPE_INTEGER:
                  case TYPE_ADD:
                  case TYPE_LOGICAL:
                  case TYPE_EXTS:
                  case TYPE_INSERT:
                    {
                      if (! rs6000_store_data_bypass_p (dep_insn, insn))
                        return 3;
                      break;
                    }
                  case TYPE_STORE:
                  case TYPE_FPLOAD:
                  case TYPE_FPSTORE:
                    {
                      if (get_attr_update (dep_insn) == UPDATE_YES
                          && ! rs6000_store_data_bypass_p (dep_insn, insn))
                        return 3;
                      break;
                    }
                  case TYPE_MUL:
                    {
                      if (! rs6000_store_data_bypass_p (dep_insn, insn))
                        return 17;
                      break;
                    }
                  case TYPE_DIV:
                    {
                      if (! rs6000_store_data_bypass_p (dep_insn, insn))
                        return get_attr_size (dep_insn) == SIZE_32 ? 45 : 57;
                      break;
                    }
                  default:
                    break;
                  }
              }
	    break;

          case TYPE_LOAD:
            if ((rs6000_tune == PROCESSOR_POWER6)
                && recog_memoized (dep_insn)
                && (INSN_CODE (dep_insn) >= 0))
              {

                /* Adjust the cost for the case where the value written
                   by a fixed point instruction is used within the address
                   gen portion of a subsequent load(u)(x) */
                switch (get_attr_type (dep_insn))
                  {
                  case TYPE_LOAD:
                  case TYPE_CNTLZ:
                    {
                      if (set_to_load_agen (dep_insn, insn))
                        return get_attr_sign_extend (dep_insn)
                               == SIGN_EXTEND_YES ? 6 : 4;
                      break;
                    }
                  case TYPE_SHIFT:
                    {
                      if (set_to_load_agen (dep_insn, insn))
                        return get_attr_var_shift (dep_insn) == VAR_SHIFT_YES ?
                               6 : 3;
                      break;
		    }
                  case TYPE_INTEGER:
                  case TYPE_ADD:
                  case TYPE_LOGICAL:
                  case TYPE_EXTS:
                  case TYPE_INSERT:
                    {
                      if (set_to_load_agen (dep_insn, insn))
                        return 3;
                      break;
                    }
                  case TYPE_STORE:
                  case TYPE_FPLOAD:
                  case TYPE_FPSTORE:
                    {
                      if (get_attr_update (dep_insn) == UPDATE_YES
                          && set_to_load_agen (dep_insn, insn))
                        return 3;
                      break;
                    }
                  case TYPE_MUL:
                    {
                      if (set_to_load_agen (dep_insn, insn))
                        return 17;
                      break;
                    }
                  case TYPE_DIV:
                    {
                      if (set_to_load_agen (dep_insn, insn))
                        return get_attr_size (dep_insn) == SIZE_32 ? 45 : 57;
                      break;
                    }
                  default:
                    break;
                  }
              }
            break;

          default:
            break;
          }

	/* Fall out to return default cost.  */
      }
      break;

    case REG_DEP_OUTPUT:
      /* Output dependency; DEP_INSN writes a register that INSN writes some
	 cycles later.  */
      if ((rs6000_tune == PROCESSOR_POWER6)
          && recog_memoized (dep_insn)
          && (INSN_CODE (dep_insn) >= 0))
        {
          attr_type = get_attr_type (insn);

          switch (attr_type)
            {
            case TYPE_FP:
            case TYPE_FPSIMPLE:
              if (get_attr_type (dep_insn) == TYPE_FP
		  || get_attr_type (dep_insn) == TYPE_FPSIMPLE)
                return 1;
              break;
            default:
              break;
            }
        }
      /* Fall through, no cost for output dependency.  */
      /* FALLTHRU */

    case REG_DEP_ANTI:
      /* Anti dependency; DEP_INSN reads a register that INSN writes some
	 cycles later.  */
      return 0;

    default:
      gcc_unreachable ();
    }

  return cost;
}

/* Debug version of rs6000_adjust_cost.  */

static int
rs6000_debug_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep_insn,
			  int cost, unsigned int dw)
{
  int ret = rs6000_adjust_cost (insn, dep_type, dep_insn, cost, dw);

  if (ret != cost)
    {
      const char *dep;

      switch (dep_type)
	{
	default:	     dep = "unknown depencency"; break;
	case REG_DEP_TRUE:   dep = "data dependency";	 break;
	case REG_DEP_OUTPUT: dep = "output dependency";  break;
	case REG_DEP_ANTI:   dep = "anti depencency";	 break;
	}

      fprintf (stderr,
	       "\nrs6000_adjust_cost, final cost = %d, orig cost = %d, "
	       "%s, insn:\n", ret, cost, dep);

      debug_rtx (insn);
    }

  return ret;
}

/* The function returns a true if INSN is microcoded.
   Return false otherwise.  */

static bool
is_microcoded_insn (rtx_insn *insn)
{
  if (!insn || !NONDEBUG_INSN_P (insn)
      || GET_CODE (PATTERN (insn)) == USE
      || GET_CODE (PATTERN (insn)) == CLOBBER)
    return false;

  if (rs6000_tune == PROCESSOR_CELL)
    return get_attr_cell_micro (insn) == CELL_MICRO_ALWAYS;

  if (rs6000_sched_groups
      && (rs6000_tune == PROCESSOR_POWER4 || rs6000_tune == PROCESSOR_POWER5))
    {
      enum attr_type type = get_attr_type (insn);
      if ((type == TYPE_LOAD
	   && get_attr_update (insn) == UPDATE_YES
	   && get_attr_sign_extend (insn) == SIGN_EXTEND_YES)
	  || ((type == TYPE_LOAD || type == TYPE_STORE)
	      && get_attr_update (insn) == UPDATE_YES
	      && get_attr_indexed (insn) == INDEXED_YES)
	  || type == TYPE_MFCR)
	return true;
    }

  return false;
}

/* The function returns true if INSN is cracked into 2 instructions
   by the processor (and therefore occupies 2 issue slots).  */

static bool
is_cracked_insn (rtx_insn *insn)
{
  if (!insn || !NONDEBUG_INSN_P (insn)
      || GET_CODE (PATTERN (insn)) == USE
      || GET_CODE (PATTERN (insn)) == CLOBBER)
    return false;

  if (rs6000_sched_groups
      && (rs6000_tune == PROCESSOR_POWER4 || rs6000_tune == PROCESSOR_POWER5))
    {
      enum attr_type type = get_attr_type (insn);
      if ((type == TYPE_LOAD
	   && get_attr_sign_extend (insn) == SIGN_EXTEND_YES
	   && get_attr_update (insn) == UPDATE_NO)
	  || (type == TYPE_LOAD
	      && get_attr_sign_extend (insn) == SIGN_EXTEND_NO
	      && get_attr_update (insn) == UPDATE_YES
	      && get_attr_indexed (insn) == INDEXED_NO)
	  || (type == TYPE_STORE
	      && get_attr_update (insn) == UPDATE_YES
	      && get_attr_indexed (insn) == INDEXED_NO)
	  || ((type == TYPE_FPLOAD || type == TYPE_FPSTORE)
	      && get_attr_update (insn) == UPDATE_YES)
	  || (type == TYPE_CR_LOGICAL
	      && get_attr_cr_logical_3op (insn) == CR_LOGICAL_3OP_YES)
	  || (type == TYPE_EXTS
	      && get_attr_dot (insn) == DOT_YES)
	  || (type == TYPE_SHIFT
	      && get_attr_dot (insn) == DOT_YES
	      && get_attr_var_shift (insn) == VAR_SHIFT_NO)
	  || (type == TYPE_MUL
	      && get_attr_dot (insn) == DOT_YES)
	  || type == TYPE_DIV
	  || (type == TYPE_INSERT
	      && get_attr_size (insn) == SIZE_32))
	return true;
    }

  return false;
}

/* The function returns true if INSN can be issued only from
   the branch slot.  */

static bool
is_branch_slot_insn (rtx_insn *insn)
{
  if (!insn || !NONDEBUG_INSN_P (insn)
      || GET_CODE (PATTERN (insn)) == USE
      || GET_CODE (PATTERN (insn)) == CLOBBER)
    return false;

  if (rs6000_sched_groups)
    {
      enum attr_type type = get_attr_type (insn);
      if (type == TYPE_BRANCH || type == TYPE_JMPREG)
	return true;
      return false;
    }

  return false;
}

/* The function returns true if out_inst sets a value that is
   used in the address generation computation of in_insn */
static bool
set_to_load_agen (rtx_insn *out_insn, rtx_insn *in_insn)
{
  rtx out_set, in_set;

  /* For performance reasons, only handle the simple case where
     both loads are a single_set. */
  out_set = single_set (out_insn);
  if (out_set)
    {
      in_set = single_set (in_insn);
      if (in_set)
        return reg_mentioned_p (SET_DEST (out_set), SET_SRC (in_set));
    }

  return false;
}

/* Try to determine base/offset/size parts of the given MEM.
   Return true if successful, false if all the values couldn't
   be determined.

   This function only looks for REG or REG+CONST address forms.
   REG+REG address form will return false. */

static bool
get_memref_parts (rtx mem, rtx *base, HOST_WIDE_INT *offset,
		  HOST_WIDE_INT *size)
{
  rtx addr_rtx;
  if (MEM_SIZE_KNOWN_P (mem))
    *size = MEM_SIZE (mem);
  else
    return false;

  addr_rtx = (XEXP (mem, 0));
  if (GET_CODE (addr_rtx) == PRE_MODIFY)
    addr_rtx = XEXP (addr_rtx, 1);

  *offset = 0;
  while (GET_CODE (addr_rtx) == PLUS
	 && CONST_INT_P (XEXP (addr_rtx, 1)))
    {
      *offset += INTVAL (XEXP (addr_rtx, 1));
      addr_rtx = XEXP (addr_rtx, 0);
    }
  if (!REG_P (addr_rtx))
    return false;

  *base = addr_rtx;
  return true;
}

/* If the target storage locations of arguments MEM1 and MEM2 are
   adjacent, then return the argument that has the lower address.
   Otherwise, return NULL_RTX.  */

static rtx
adjacent_mem_locations (rtx mem1, rtx mem2)
{
  rtx reg1, reg2;
  HOST_WIDE_INT off1, size1, off2, size2;

  if (MEM_P (mem1)
      && MEM_P (mem2)
      && get_memref_parts (mem1, &reg1, &off1, &size1)
      && get_memref_parts (mem2, &reg2, &off2, &size2)
      && REGNO (reg1) == REGNO (reg2))
    {
      if (off1 + size1 == off2)
	return mem1;
      else if (off2 + size2 == off1)
	return mem2;
    }

  return NULL_RTX;
}

/* This function returns true if it can be determined that the two MEM
   locations overlap by at least 1 byte based on base reg/offset/size. */

static bool
mem_locations_overlap (rtx mem1, rtx mem2)
{
  rtx reg1, reg2;
  HOST_WIDE_INT off1, size1, off2, size2;

  if (get_memref_parts (mem1, &reg1, &off1, &size1)
      && get_memref_parts (mem2, &reg2, &off2, &size2))
    return ((REGNO (reg1) == REGNO (reg2))
	    && (((off1 <= off2) && (off1 + size1 > off2))
		|| ((off2 <= off1) && (off2 + size2 > off1))));

  return false;
}

/* A C statement (sans semicolon) to update the integer scheduling
   priority INSN_PRIORITY (INSN). Increase the priority to execute the
   INSN earlier, reduce the priority to execute INSN later.  Do not
   define this macro if you do not need to adjust the scheduling
   priorities of insns.  */

static int
rs6000_adjust_priority (rtx_insn *insn ATTRIBUTE_UNUSED, int priority)
{
  rtx load_mem, str_mem;
  /* On machines (like the 750) which have asymmetric integer units,
     where one integer unit can do multiply and divides and the other
     can't, reduce the priority of multiply/divide so it is scheduled
     before other integer operations.  */

#if 0
  if (! INSN_P (insn))
    return priority;

  if (GET_CODE (PATTERN (insn)) == USE)
    return priority;

  switch (rs6000_tune) {
  case PROCESSOR_PPC750:
    switch (get_attr_type (insn))
      {
      default:
	break;

      case TYPE_MUL:
      case TYPE_DIV:
	fprintf (stderr, "priority was %#x (%d) before adjustment\n",
		 priority, priority);
	if (priority >= 0 && priority < 0x01000000)
	  priority >>= 3;
	break;
      }
  }
#endif

  if (insn_must_be_first_in_group (insn)
      && reload_completed
      && current_sched_info->sched_max_insns_priority
      && rs6000_sched_restricted_insns_priority)
    {

      /* Prioritize insns that can be dispatched only in the first
	 dispatch slot.  */
      if (rs6000_sched_restricted_insns_priority == 1)
	/* Attach highest priority to insn. This means that in
	   haifa-sched.cc:ready_sort(), dispatch-slot restriction considerations
	   precede 'priority' (critical path) considerations.  */
	return current_sched_info->sched_max_insns_priority;
      else if (rs6000_sched_restricted_insns_priority == 2)
	/* Increase priority of insn by a minimal amount. This means that in
	   haifa-sched.cc:ready_sort(), only 'priority' (critical path)
	   considerations precede dispatch-slot restriction considerations.  */
	return (priority + 1);
    }

  if (rs6000_tune == PROCESSOR_POWER6
      && ((load_store_pendulum == -2 && is_load_insn (insn, &load_mem))
          || (load_store_pendulum == 2 && is_store_insn (insn, &str_mem))))
    /* Attach highest priority to insn if the scheduler has just issued two
       stores and this instruction is a load, or two loads and this instruction
       is a store. Power6 wants loads and stores scheduled alternately
       when possible */
    return current_sched_info->sched_max_insns_priority;

  return priority;
}

/* Return true if the instruction is nonpipelined on the Cell. */
static bool
is_nonpipeline_insn (rtx_insn *insn)
{
  enum attr_type type;
  if (!insn || !NONDEBUG_INSN_P (insn)
      || GET_CODE (PATTERN (insn)) == USE
      || GET_CODE (PATTERN (insn)) == CLOBBER)
    return false;

  type = get_attr_type (insn);
  if (type == TYPE_MUL
      || type == TYPE_DIV
      || type == TYPE_SDIV
      || type == TYPE_DDIV
      || type == TYPE_SSQRT
      || type == TYPE_DSQRT
      || type == TYPE_MFCR
      || type == TYPE_MFCRF
      || type == TYPE_MFJMPR)
    {
      return true;
    }
  return false;
}


/* Return how many instructions the machine can issue per cycle.  */

static int
rs6000_issue_rate (void)
{
  /* Unless scheduling for register pressure, use issue rate of 1 for
     first scheduling pass to decrease degradation.  */
  if (!reload_completed && !flag_sched_pressure)
    return 1;

  switch (rs6000_tune) {
  case PROCESSOR_RS64A:
  case PROCESSOR_PPC601: /* ? */
  case PROCESSOR_PPC7450:
    return 3;
  case PROCESSOR_PPC440:
  case PROCESSOR_PPC603:
  case PROCESSOR_PPC750:
  case PROCESSOR_PPC7400:
  case PROCESSOR_PPC8540:
  case PROCESSOR_PPC8548:
  case PROCESSOR_CELL:
  case PROCESSOR_PPCE300C2:
  case PROCESSOR_PPCE300C3:
  case PROCESSOR_PPCE500MC:
  case PROCESSOR_PPCE500MC64:
  case PROCESSOR_PPCE5500:
  case PROCESSOR_PPCE6500:
  case PROCESSOR_TITAN:
    return 2;
  case PROCESSOR_PPC476:
  case PROCESSOR_PPC604:
  case PROCESSOR_PPC604e:
  case PROCESSOR_PPC620:
  case PROCESSOR_PPC630:
    return 4;
  case PROCESSOR_POWER4:
  case PROCESSOR_POWER5:
  case PROCESSOR_POWER6:
  case PROCESSOR_POWER7:
    return 5;
  case PROCESSOR_POWER8:
    return 7;
  case PROCESSOR_POWER9:
    return 6;
  case PROCESSOR_POWER10:
    return 8;
  default:
    return 1;
  }
}

/* Return how many instructions to look ahead for better insn
   scheduling.  */

static int
rs6000_use_sched_lookahead (void)
{
  switch (rs6000_tune)
    {
    case PROCESSOR_PPC8540:
    case PROCESSOR_PPC8548:
      return 4;

    case PROCESSOR_CELL:
      return (reload_completed ? 8 : 0);

    default:
      return 0;
    }
}

/* We are choosing insn from the ready queue.  Return zero if INSN can be
   chosen.  */
static int
rs6000_use_sched_lookahead_guard (rtx_insn *insn, int ready_index)
{
  if (ready_index == 0)
    return 0;

  if (rs6000_tune != PROCESSOR_CELL)
    return 0;

  gcc_assert (insn != NULL_RTX && INSN_P (insn));

  if (!reload_completed
      || is_nonpipeline_insn (insn)
      || is_microcoded_insn (insn))
    return 1;

  return 0;
}

/* Determine if PAT refers to memory. If so, set MEM_REF to the MEM rtx
   and return true.  */

static bool
find_mem_ref (rtx pat, rtx *mem_ref)
{
  const char * fmt;
  int i, j;

  /* stack_tie does not produce any real memory traffic.  */
  if (tie_operand (pat, VOIDmode))
    return false;

  if (MEM_P (pat))
    {
      *mem_ref = pat;
      return true;
    }

  /* Recursively process the pattern.  */
  fmt = GET_RTX_FORMAT (GET_CODE (pat));

  for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  if (find_mem_ref (XEXP (pat, i), mem_ref))
	    return true;
	}
      else if (fmt[i] == 'E')
	for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
	  {
	    if (find_mem_ref (XVECEXP (pat, i, j), mem_ref))
	      return true;
	  }
    }

  return false;
}

/* Determine if PAT is a PATTERN of a load insn.  */

static bool
is_load_insn1 (rtx pat, rtx *load_mem)
{
  if (!pat || pat == NULL_RTX)
    return false;

  if (GET_CODE (pat) == SET)
    {
      if (REG_P (SET_DEST (pat)))
	return find_mem_ref (SET_SRC (pat), load_mem);
      else
	return false;
    }

  if (GET_CODE (pat) == PARALLEL)
    {
      int i;

      for (i = 0; i < XVECLEN (pat, 0); i++)
	if (is_load_insn1 (XVECEXP (pat, 0, i), load_mem))
	  return true;
    }

  return false;
}

/* Determine if INSN loads from memory.  */

static bool
is_load_insn (rtx insn, rtx *load_mem)
{
  if (!insn || !INSN_P (insn))
    return false;

  if (CALL_P (insn))
    return false;

  return is_load_insn1 (PATTERN (insn), load_mem);
}

/* Determine if PAT is a PATTERN of a store insn.  */

static bool
is_store_insn1 (rtx pat, rtx *str_mem)
{
  if (!pat || pat == NULL_RTX)
    return false;

  if (GET_CODE (pat) == SET)
    {
      if (REG_P (SET_SRC (pat)) || SUBREG_P (SET_SRC (pat)))
	return find_mem_ref (SET_DEST (pat), str_mem);
      else
	return false;
    }

  if (GET_CODE (pat) == PARALLEL)
    {
      int i;

      for (i = 0; i < XVECLEN (pat, 0); i++)
	if (is_store_insn1 (XVECEXP (pat, 0, i), str_mem))
	  return true;
    }

  return false;
}

/* Determine if INSN stores to memory.  */

static bool
is_store_insn (rtx insn, rtx *str_mem)
{
  if (!insn || !INSN_P (insn))
    return false;

  return is_store_insn1 (PATTERN (insn), str_mem);
}

/* Return whether TYPE is a Power9 pairable vector instruction type.  */

static bool
is_power9_pairable_vec_type (enum attr_type type)
{
  switch (type)
    {
      case TYPE_VECSIMPLE:
      case TYPE_VECCOMPLEX:
      case TYPE_VECDIV:
      case TYPE_VECCMP:
      case TYPE_VECPERM:
      case TYPE_VECFLOAT:
      case TYPE_VECFDIV:
      case TYPE_VECDOUBLE:
	return true;
      default:
	break;
    }
  return false;
}

/* Returns whether the dependence between INSN and NEXT is considered
   costly by the given target.  */

static bool
rs6000_is_costly_dependence (dep_t dep, int cost, int distance)
{
  rtx insn;
  rtx next;
  rtx load_mem, str_mem;

  /* If the flag is not enabled - no dependence is considered costly;
     allow all dependent insns in the same group.
     This is the most aggressive option.  */
  if (rs6000_sched_costly_dep == no_dep_costly)
    return false;

  /* If the flag is set to 1 - a dependence is always considered costly;
     do not allow dependent instructions in the same group.
     This is the most conservative option.  */
  if (rs6000_sched_costly_dep == all_deps_costly)
    return true;

  insn = DEP_PRO (dep);
  next = DEP_CON (dep);

  if (rs6000_sched_costly_dep == store_to_load_dep_costly
      && is_load_insn (next, &load_mem)
      && is_store_insn (insn, &str_mem))
    /* Prevent load after store in the same group.  */
    return true;

  if (rs6000_sched_costly_dep == true_store_to_load_dep_costly
      && is_load_insn (next, &load_mem)
      && is_store_insn (insn, &str_mem)
      && DEP_TYPE (dep) == REG_DEP_TRUE
      && mem_locations_overlap(str_mem, load_mem))
     /* Prevent load after store in the same group if it is a true
	dependence.  */
     return true;

  /* The flag is set to X; dependences with latency >= X are considered costly,
     and will not be scheduled in the same group.  */
  if (rs6000_sched_costly_dep <= max_dep_latency
      && ((cost - distance) >= (int)rs6000_sched_costly_dep))
    return true;

  return false;
}

/* Return the next insn after INSN that is found before TAIL is reached,
   skipping any "non-active" insns - insns that will not actually occupy
   an issue slot.  Return NULL_RTX if such an insn is not found.  */

static rtx_insn *
get_next_active_insn (rtx_insn *insn, rtx_insn *tail)
{
  if (insn == NULL_RTX || insn == tail)
    return NULL;

  while (1)
    {
      insn = NEXT_INSN (insn);
      if (insn == NULL_RTX || insn == tail)
	return NULL;

      if (CALL_P (insn)
	  || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
	  || (NONJUMP_INSN_P (insn)
	      && GET_CODE (PATTERN (insn)) != USE
	      && GET_CODE (PATTERN (insn)) != CLOBBER
	      && INSN_CODE (insn) != CODE_FOR_stack_tie))
	break;
    }
  return insn;
}

/* Move instruction at POS to the end of the READY list.  */

static void
move_to_end_of_ready (rtx_insn **ready, int pos, int lastpos)
{
  rtx_insn *tmp;
  int i;

  tmp = ready[pos];
  for (i = pos; i < lastpos; i++)
    ready[i] = ready[i + 1];
  ready[lastpos] = tmp;
}

/* Do Power6 specific sched_reorder2 reordering of ready list.  */

static int
power6_sched_reorder2 (rtx_insn **ready, int lastpos)
{
  /* For Power6, we need to handle some special cases to try and keep the
     store queue from overflowing and triggering expensive flushes.

     This code monitors how load and store instructions are being issued
     and skews the ready list one way or the other to increase the likelihood
     that a desired instruction is issued at the proper time.

     A couple of things are done.  First, we maintain a "load_store_pendulum"
     to track the current state of load/store issue.

       - If the pendulum is at zero, then no loads or stores have been
	 issued in the current cycle so we do nothing.

       - If the pendulum is 1, then a single load has been issued in this
	 cycle and we attempt to locate another load in the ready list to
	 issue with it.

       - If the pendulum is -2, then two stores have already been
	 issued in this cycle, so we increase the priority of the first load
	 in the ready list to increase it's likelihood of being chosen first
	 in the next cycle.

       - If the pendulum is -1, then a single store has been issued in this
	 cycle and we attempt to locate another store in the ready list to
	 issue with it, preferring a store to an adjacent memory location to
	 facilitate store pairing in the store queue.

       - If the pendulum is 2, then two loads have already been
	 issued in this cycle, so we increase the priority of the first store
	 in the ready list to increase it's likelihood of being chosen first
	 in the next cycle.

       - If the pendulum < -2 or > 2, then do nothing.

       Note: This code covers the most common scenarios.  There exist non
	     load/store instructions which make use of the LSU and which
	     would need to be accounted for to strictly model the behavior
	     of the machine.  Those instructions are currently unaccounted
	     for to help minimize compile time overhead of this code.
   */
  int pos;
  rtx load_mem, str_mem;

  if (is_store_insn (last_scheduled_insn, &str_mem))
    /* Issuing a store, swing the load_store_pendulum to the left */
    load_store_pendulum--;
  else if (is_load_insn (last_scheduled_insn, &load_mem))
    /* Issuing a load, swing the load_store_pendulum to the right */
    load_store_pendulum++;
  else
    return cached_can_issue_more;

  /* If the pendulum is balanced, or there is only one instruction on
     the ready list, then all is well, so return. */
  if ((load_store_pendulum == 0) || (lastpos <= 0))
    return cached_can_issue_more;

  if (load_store_pendulum == 1)
    {
      /* A load has been issued in this cycle.  Scan the ready list
	 for another load to issue with it */
      pos = lastpos;

      while (pos >= 0)
	{
	  if (is_load_insn (ready[pos], &load_mem))
	    {
	      /* Found a load.  Move it to the head of the ready list,
		 and adjust it's priority so that it is more likely to
		 stay there */
	      move_to_end_of_ready (ready, pos, lastpos);

	      if (!sel_sched_p ()
		  && INSN_PRIORITY_KNOWN (ready[lastpos]))
		INSN_PRIORITY (ready[lastpos])++;
	      break;
	    }
	  pos--;
	}
    }
  else if (load_store_pendulum == -2)
    {
      /* Two stores have been issued in this cycle.  Increase the
	 priority of the first load in the ready list to favor it for
	 issuing in the next cycle. */
      pos = lastpos;

      while (pos >= 0)
	{
	  if (is_load_insn (ready[pos], &load_mem)
	      && !sel_sched_p ()
	      && INSN_PRIORITY_KNOWN (ready[pos]))
	    {
	      INSN_PRIORITY (ready[pos])++;

	      /* Adjust the pendulum to account for the fact that a load
		 was found and increased in priority.  This is to prevent
		 increasing the priority of multiple loads */
	      load_store_pendulum--;

	      break;
	    }
	  pos--;
	}
    }
  else if (load_store_pendulum == -1)
    {
      /* A store has been issued in this cycle.  Scan the ready list for
	 another store to issue with it, preferring a store to an adjacent
	 memory location */
      int first_store_pos = -1;

      pos = lastpos;

      while (pos >= 0)
	{
	  if (is_store_insn (ready[pos], &str_mem))
	    {
	      rtx str_mem2;
	      /* Maintain the index of the first store found on the
		 list */
	      if (first_store_pos == -1)
		first_store_pos = pos;

	      if (is_store_insn (last_scheduled_insn, &str_mem2)
		  && adjacent_mem_locations (str_mem, str_mem2))
		{
		  /* Found an adjacent store.  Move it to the head of the
		     ready list, and adjust it's priority so that it is
		     more likely to stay there */
		  move_to_end_of_ready (ready, pos, lastpos);

		  if (!sel_sched_p ()
		      && INSN_PRIORITY_KNOWN (ready[lastpos]))
		    INSN_PRIORITY (ready[lastpos])++;

		  first_store_pos = -1;

		  break;
		};
	    }
	  pos--;
	}

      if (first_store_pos >= 0)
	{
	  /* An adjacent store wasn't found, but a non-adjacent store was,
	     so move the non-adjacent store to the front of the ready
	     list, and adjust its priority so that it is more likely to
	     stay there. */
	  move_to_end_of_ready (ready, first_store_pos, lastpos);
	  if (!sel_sched_p ()
	      && INSN_PRIORITY_KNOWN (ready[lastpos]))
	    INSN_PRIORITY (ready[lastpos])++;
	}
    }
  else if (load_store_pendulum == 2)
    {
      /* Two loads have been issued in this cycle.  Increase the priority
	 of the first store in the ready list to favor it for issuing in
	 the next cycle. */
      pos = lastpos;

      while (pos >= 0)
	{
	  if (is_store_insn (ready[pos], &str_mem)
	      && !sel_sched_p ()
	      && INSN_PRIORITY_KNOWN (ready[pos]))
	    {
	      INSN_PRIORITY (ready[pos])++;

	      /* Adjust the pendulum to account for the fact that a store
		 was found and increased in priority.  This is to prevent
		 increasing the priority of multiple stores */
	      load_store_pendulum++;

	      break;
	    }
	  pos--;
	}
    }

  return cached_can_issue_more;
}

/* Do Power9 specific sched_reorder2 reordering of ready list.  */

static int
power9_sched_reorder2 (rtx_insn **ready, int lastpos)
{
  int pos;
  enum attr_type type, type2;

  type = get_attr_type (last_scheduled_insn);

  /* Try to issue fixed point divides back-to-back in pairs so they will be
     routed to separate execution units and execute in parallel.  */
  if (type == TYPE_DIV && divide_cnt == 0)
    {
      /* First divide has been scheduled.  */
      divide_cnt = 1;

      /* Scan the ready list looking for another divide, if found move it
	 to the end of the list so it is chosen next.  */
      pos = lastpos;
      while (pos >= 0)
	{
	  if (recog_memoized (ready[pos]) >= 0
	      && get_attr_type (ready[pos]) == TYPE_DIV)
	    {
	      move_to_end_of_ready (ready, pos, lastpos);
	      break;
	    }
	  pos--;
	}
    }
  else
    {
      /* Last insn was the 2nd divide or not a divide, reset the counter.  */
      divide_cnt = 0;

      /* The best dispatch throughput for vector and vector load insns can be
	 achieved by interleaving a vector and vector load such that they'll
	 dispatch to the same superslice. If this pairing cannot be achieved
	 then it is best to pair vector insns together and vector load insns
	 together.

	 To aid in this pairing, vec_pairing maintains the current state with
	 the following values:

	     0  : Initial state, no vecload/vector pairing has been started.

	     1  : A vecload or vector insn has been issued and a candidate for
		  pairing has been found and moved to the end of the ready
		  list.  */
      if (type == TYPE_VECLOAD)
	{
	  /* Issued a vecload.  */
	  if (vec_pairing == 0)
	    {
	      int vecload_pos = -1;
	      /* We issued a single vecload, look for a vector insn to pair it
		 with.  If one isn't found, try to pair another vecload.  */
	      pos = lastpos;
	      while (pos >= 0)
		{
		  if (recog_memoized (ready[pos]) >= 0)
		    {
		      type2 = get_attr_type (ready[pos]);
		      if (is_power9_pairable_vec_type (type2))
			{
			  /* Found a vector insn to pair with, move it to the
			     end of the ready list so it is scheduled next.  */
			  move_to_end_of_ready (ready, pos, lastpos);
			  vec_pairing = 1;
			  return cached_can_issue_more;
			}
		      else if (type2 == TYPE_VECLOAD && vecload_pos == -1)
			/* Remember position of first vecload seen.  */
			vecload_pos = pos;
		    }
		  pos--;
		}
	      if (vecload_pos >= 0)
		{
		  /* Didn't find a vector to pair with but did find a vecload,
		     move it to the end of the ready list.  */
		  move_to_end_of_ready (ready, vecload_pos, lastpos);
		  vec_pairing = 1;
		  return cached_can_issue_more;
		}
	    }
	}
      else if (is_power9_pairable_vec_type (type))
	{
	  /* Issued a vector operation.  */
	  if (vec_pairing == 0)
	    {
	      int vec_pos = -1;
	      /* We issued a single vector insn, look for a vecload to pair it
		 with.  If one isn't found, try to pair another vector.  */
	      pos = lastpos;
	      while (pos >= 0)
		{
		  if (recog_memoized (ready[pos]) >= 0)
		    {
		      type2 = get_attr_type (ready[pos]);
		      if (type2 == TYPE_VECLOAD)
			{
			  /* Found a vecload insn to pair with, move it to the
			     end of the ready list so it is scheduled next.  */
			  move_to_end_of_ready (ready, pos, lastpos);
			  vec_pairing = 1;
			  return cached_can_issue_more;
			}
		      else if (is_power9_pairable_vec_type (type2)
			       && vec_pos == -1)
			/* Remember position of first vector insn seen.  */
			vec_pos = pos;
		    }
		  pos--;
		}
	      if (vec_pos >= 0)
		{
		  /* Didn't find a vecload to pair with but did find a vector
		     insn, move it to the end of the ready list.  */
		  move_to_end_of_ready (ready, vec_pos, lastpos);
		  vec_pairing = 1;
		  return cached_can_issue_more;
		}
	    }
	}

      /* We've either finished a vec/vecload pair, couldn't find an insn to
	 continue the current pair, or the last insn had nothing to do with
	 with pairing.  In any case, reset the state.  */
      vec_pairing = 0;
    }

  return cached_can_issue_more;
}

/* Determine if INSN is a store to memory that can be fused with a similar
   adjacent store.  */

static bool
is_fusable_store (rtx_insn *insn, rtx *str_mem)
{
  /* Insn must be a non-prefixed base+disp form store.  */
  if (is_store_insn (insn, str_mem)
      && get_attr_prefixed (insn) == PREFIXED_NO
      && get_attr_update (insn) == UPDATE_NO
      && get_attr_indexed (insn) == INDEXED_NO)
    {
      /* Further restrictions by mode and size.  */
      if (!MEM_SIZE_KNOWN_P (*str_mem))
	return false;

      machine_mode mode = GET_MODE (*str_mem);
      HOST_WIDE_INT size = MEM_SIZE (*str_mem);

      if (INTEGRAL_MODE_P (mode))
	/* Must be word or dword size.  */
	return (size == 4 || size == 8);
      else if (FLOAT_MODE_P (mode))
	/* Must be dword size.  */
	return (size == 8);
    }

  return false;
}

/* Do Power10 specific reordering of the ready list.  */

static int
power10_sched_reorder (rtx_insn **ready, int lastpos)
{
  rtx mem1;

  /* Do store fusion during sched2 only.  */
  if (!reload_completed)
    return cached_can_issue_more;

  /* If the prior insn finished off a store fusion pair then simply
     reset the counter and return, nothing more to do.  */
  if (load_store_pendulum != 0)
    {
      load_store_pendulum = 0;
      return cached_can_issue_more;
    }

  /* Try to pair certain store insns to adjacent memory locations
     so that the hardware will fuse them to a single operation.  */
  if (TARGET_P10_FUSION && is_fusable_store (last_scheduled_insn, &mem1))
    {

      /* A fusable store was just scheduled.  Scan the ready list for another
	 store that it can fuse with.  */
      int pos = lastpos;
      while (pos >= 0)
	{
	  rtx mem2;
	  /* GPR stores can be ascending or descending offsets, FPR/VSR stores
	     must be ascending only.  */
	  if (is_fusable_store (ready[pos], &mem2)
	      && ((INTEGRAL_MODE_P (GET_MODE (mem1))
		   && adjacent_mem_locations (mem1, mem2))
		  || (FLOAT_MODE_P (GET_MODE (mem1))
		   && (adjacent_mem_locations (mem1, mem2) == mem1))))
	    {
	      /* Found a fusable store.  Move it to the end of the ready list
		 so it is scheduled next.  */
	      move_to_end_of_ready (ready, pos, lastpos);

	      load_store_pendulum = -1;
	      break;
	    }
	  pos--;
	}
    }

  return cached_can_issue_more;
}

/* We are about to begin issuing insns for this clock cycle. */

static int
rs6000_sched_reorder (FILE *dump ATTRIBUTE_UNUSED, int sched_verbose,
                        rtx_insn **ready ATTRIBUTE_UNUSED,
                        int *pn_ready ATTRIBUTE_UNUSED,
		        int clock_var ATTRIBUTE_UNUSED)
{
  int n_ready = *pn_ready;

  if (sched_verbose)
    fprintf (dump, "// rs6000_sched_reorder :\n");

  /* Reorder the ready list, if the second to last ready insn
     is a nonepipeline insn.  */
  if (rs6000_tune == PROCESSOR_CELL && n_ready > 1)
  {
    if (is_nonpipeline_insn (ready[n_ready - 1])
        && (recog_memoized (ready[n_ready - 2]) > 0))
      /* Simply swap first two insns.  */
      std::swap (ready[n_ready - 1], ready[n_ready - 2]);
  }

  if (rs6000_tune == PROCESSOR_POWER6)
    load_store_pendulum = 0;

  /* Do Power10 dependent reordering.  */
  if (rs6000_tune == PROCESSOR_POWER10 && last_scheduled_insn)
    power10_sched_reorder (ready, n_ready - 1);

  return rs6000_issue_rate ();
}

/* Like rs6000_sched_reorder, but called after issuing each insn.  */

static int
rs6000_sched_reorder2 (FILE *dump, int sched_verbose, rtx_insn **ready,
		         int *pn_ready, int clock_var ATTRIBUTE_UNUSED)
{
  if (sched_verbose)
    fprintf (dump, "// rs6000_sched_reorder2 :\n");

  /* Do Power6 dependent reordering if necessary.  */
  if (rs6000_tune == PROCESSOR_POWER6 && last_scheduled_insn)
    return power6_sched_reorder2 (ready, *pn_ready - 1);

  /* Do Power9 dependent reordering if necessary.  */
  if (rs6000_tune == PROCESSOR_POWER9 && last_scheduled_insn
      && recog_memoized (last_scheduled_insn) >= 0)
    return power9_sched_reorder2 (ready, *pn_ready - 1);

  /* Do Power10 dependent reordering.  */
  if (rs6000_tune == PROCESSOR_POWER10 && last_scheduled_insn)
    return power10_sched_reorder (ready, *pn_ready - 1);

  return cached_can_issue_more;
}

/* Return whether the presence of INSN causes a dispatch group termination
   of group WHICH_GROUP.

   If WHICH_GROUP == current_group, this function will return true if INSN
   causes the termination of the current group (i.e, the dispatch group to
   which INSN belongs). This means that INSN will be the last insn in the
   group it belongs to.

   If WHICH_GROUP == previous_group, this function will return true if INSN
   causes the termination of the previous group (i.e, the dispatch group that
   precedes the group to which INSN belongs).  This means that INSN will be
   the first insn in the group it belongs to).  */

static bool
insn_terminates_group_p (rtx_insn *insn, enum group_termination which_group)
{
  bool first, last;

  if (! insn)
    return false;

  first = insn_must_be_first_in_group (insn);
  last = insn_must_be_last_in_group (insn);

  if (first && last)
    return true;

  if (which_group == current_group)
    return last;
  else if (which_group == previous_group)
    return first;

  return false;
}


static bool
insn_must_be_first_in_group (rtx_insn *insn)
{
  enum attr_type type;

  if (!insn
      || NOTE_P (insn)
      || DEBUG_INSN_P (insn)
      || GET_CODE (PATTERN (insn)) == USE
      || GET_CODE (PATTERN (insn)) == CLOBBER)
    return false;

  switch (rs6000_tune)
    {
    case PROCESSOR_POWER5:
      if (is_cracked_insn (insn))
        return true;
      /* FALLTHRU */
    case PROCESSOR_POWER4:
      if (is_microcoded_insn (insn))
        return true;

      if (!rs6000_sched_groups)
        return false;

      type = get_attr_type (insn);

      switch (type)
        {
        case TYPE_MFCR:
        case TYPE_MFCRF:
        case TYPE_MTCR:
        case TYPE_CR_LOGICAL:
        case TYPE_MTJMPR:
        case TYPE_MFJMPR:
        case TYPE_DIV:
        case TYPE_LOAD_L:
        case TYPE_STORE_C:
        case TYPE_ISYNC:
        case TYPE_SYNC:
          return true;
        default:
          break;
        }
      break;
    case PROCESSOR_POWER6:
      type = get_attr_type (insn);

      switch (type)
        {
        case TYPE_EXTS:
        case TYPE_CNTLZ:
        case TYPE_TRAP:
        case TYPE_MUL:
        case TYPE_INSERT:
        case TYPE_FPCOMPARE:
        case TYPE_MFCR:
        case TYPE_MTCR:
        case TYPE_MFJMPR:
        case TYPE_MTJMPR:
        case TYPE_ISYNC:
        case TYPE_SYNC:
        case TYPE_LOAD_L:
        case TYPE_STORE_C:
          return true;
        case TYPE_SHIFT:
          if (get_attr_dot (insn) == DOT_NO
              || get_attr_var_shift (insn) == VAR_SHIFT_NO)
            return true;
          else
            break;
        case TYPE_DIV:
          if (get_attr_size (insn) == SIZE_32)
            return true;
          else
            break;
        case TYPE_LOAD:
        case TYPE_STORE:
        case TYPE_FPLOAD:
        case TYPE_FPSTORE:
          if (get_attr_update (insn) == UPDATE_YES)
            return true;
          else
            break;
        default:
          break;
        }
      break;
    case PROCESSOR_POWER7:
      type = get_attr_type (insn);

      switch (type)
        {
        case TYPE_CR_LOGICAL:
        case TYPE_MFCR:
        case TYPE_MFCRF:
        case TYPE_MTCR:
        case TYPE_DIV:
        case TYPE_ISYNC:
        case TYPE_LOAD_L:
        case TYPE_STORE_C:
        case TYPE_MFJMPR:
        case TYPE_MTJMPR:
          return true;
        case TYPE_MUL:
        case TYPE_SHIFT:
        case TYPE_EXTS:
          if (get_attr_dot (insn) == DOT_YES)
            return true;
          else
            break;
        case TYPE_LOAD:
          if (get_attr_sign_extend (insn) == SIGN_EXTEND_YES
              || get_attr_update (insn) == UPDATE_YES)
            return true;
          else
            break;
        case TYPE_STORE:
        case TYPE_FPLOAD:
        case TYPE_FPSTORE:
          if (get_attr_update (insn) == UPDATE_YES)
            return true;
          else
            break;
        default:
          break;
        }
      break;
    case PROCESSOR_POWER8:
      type = get_attr_type (insn);

      switch (type)
        {
        case TYPE_CR_LOGICAL:
        case TYPE_MFCR:
        case TYPE_MFCRF:
        case TYPE_MTCR:
        case TYPE_SYNC:
        case TYPE_ISYNC:
        case TYPE_LOAD_L:
        case TYPE_STORE_C:
        case TYPE_VECSTORE:
        case TYPE_MFJMPR:
        case TYPE_MTJMPR:
          return true;
        case TYPE_SHIFT:
        case TYPE_EXTS:
        case TYPE_MUL:
          if (get_attr_dot (insn) == DOT_YES)
            return true;
          else
            break;
        case TYPE_LOAD:
          if (get_attr_sign_extend (insn) == SIGN_EXTEND_YES
              || get_attr_update (insn) == UPDATE_YES)
            return true;
          else
            break;
        case TYPE_STORE:
          if (get_attr_update (insn) == UPDATE_YES
              && get_attr_indexed (insn) == INDEXED_YES)
            return true;
          else
            break;
        default:
          break;
        }
      break;
    default:
      break;
    }

  return false;
}

static bool
insn_must_be_last_in_group (rtx_insn *insn)
{
  enum attr_type type;

  if (!insn
      || NOTE_P (insn)
      || DEBUG_INSN_P (insn)
      || GET_CODE (PATTERN (insn)) == USE
      || GET_CODE (PATTERN (insn)) == CLOBBER)
    return false;

  switch (rs6000_tune) {
  case PROCESSOR_POWER4:
  case PROCESSOR_POWER5:
    if (is_microcoded_insn (insn))
      return true;

    if (is_branch_slot_insn (insn))
      return true;

    break;
  case PROCESSOR_POWER6:
    type = get_attr_type (insn);

    switch (type)
      {
      case TYPE_EXTS:
      case TYPE_CNTLZ:
      case TYPE_TRAP:
      case TYPE_MUL:
      case TYPE_FPCOMPARE:
      case TYPE_MFCR:
      case TYPE_MTCR:
      case TYPE_MFJMPR:
      case TYPE_MTJMPR:
      case TYPE_ISYNC:
      case TYPE_SYNC:
      case TYPE_LOAD_L:
      case TYPE_STORE_C:
        return true;
      case TYPE_SHIFT:
        if (get_attr_dot (insn) == DOT_NO
            || get_attr_var_shift (insn) == VAR_SHIFT_NO)
          return true;
        else
          break;
      case TYPE_DIV:
        if (get_attr_size (insn) == SIZE_32)
          return true;
        else
          break;
      default:
        break;
    }
    break;
  case PROCESSOR_POWER7:
    type = get_attr_type (insn);

    switch (type)
      {
      case TYPE_ISYNC:
      case TYPE_SYNC:
      case TYPE_LOAD_L:
      case TYPE_STORE_C:
        return true;
      case TYPE_LOAD:
        if (get_attr_sign_extend (insn) == SIGN_EXTEND_YES
            && get_attr_update (insn) == UPDATE_YES)
          return true;
        else
          break;
      case TYPE_STORE:
        if (get_attr_update (insn) == UPDATE_YES
            && get_attr_indexed (insn) == INDEXED_YES)
          return true;
        else
          break;
      default:
        break;
    }
    break;
  case PROCESSOR_POWER8:
    type = get_attr_type (insn);

    switch (type)
      {
      case TYPE_MFCR:
      case TYPE_MTCR:
      case TYPE_ISYNC:
      case TYPE_SYNC:
      case TYPE_LOAD_L:
      case TYPE_STORE_C:
        return true;
      case TYPE_LOAD:
        if (get_attr_sign_extend (insn) == SIGN_EXTEND_YES
            && get_attr_update (insn) == UPDATE_YES)
          return true;
        else
          break;
      case TYPE_STORE:
        if (get_attr_update (insn) == UPDATE_YES
            && get_attr_indexed (insn) == INDEXED_YES)
          return true;
        else
          break;
      default:
        break;
    }
    break;
  default:
    break;
  }

  return false;
}

/* Return true if it is recommended to keep NEXT_INSN "far" (in a separate
   dispatch group) from the insns in GROUP_INSNS.  Return false otherwise.  */

static bool
is_costly_group (rtx *group_insns, rtx next_insn)
{
  int i;
  int issue_rate = rs6000_issue_rate ();

  for (i = 0; i < issue_rate; i++)
    {
      sd_iterator_def sd_it;
      dep_t dep;
      rtx insn = group_insns[i];

      if (!insn)
	continue;

      FOR_EACH_DEP (insn, SD_LIST_RES_FORW, sd_it, dep)
	{
	  rtx next = DEP_CON (dep);

	  if (next == next_insn
	      && rs6000_is_costly_dependence (dep, dep_cost (dep), 0))
	    return true;
	}
    }

  return false;
}

/* Utility of the function redefine_groups.
   Check if it is too costly to schedule NEXT_INSN together with GROUP_INSNS
   in the same dispatch group.  If so, insert nops before NEXT_INSN, in order
   to keep it "far" (in a separate group) from GROUP_INSNS, following
   one of the following schemes, depending on the value of the flag
   -minsert_sched_nops = X:
   (1) X == sched_finish_regroup_exact: insert exactly as many nops as needed
       in order to force NEXT_INSN into a separate group.
   (2) X < sched_finish_regroup_exact: insert exactly X nops.
   GROUP_END, CAN_ISSUE_MORE and GROUP_COUNT record the state after nop
   insertion (has a group just ended, how many vacant issue slots remain in the
   last group, and how many dispatch groups were encountered so far).  */

static int
force_new_group (int sched_verbose, FILE *dump, rtx *group_insns,
		 rtx_insn *next_insn, bool *group_end, int can_issue_more,
		 int *group_count)
{
  rtx nop;
  bool force;
  int issue_rate = rs6000_issue_rate ();
  bool end = *group_end;
  int i;

  if (next_insn == NULL_RTX || DEBUG_INSN_P (next_insn))
    return can_issue_more;

  if (rs6000_sched_insert_nops > sched_finish_regroup_exact)
    return can_issue_more;

  force = is_costly_group (group_insns, next_insn);
  if (!force)
    return can_issue_more;

  if (sched_verbose > 6)
    fprintf (dump,"force: group count = %d, can_issue_more = %d\n",
	     *group_count ,can_issue_more);

  if (rs6000_sched_insert_nops == sched_finish_regroup_exact)
    {
      if (*group_end)
	can_issue_more = 0;

      /* Since only a branch can be issued in the last issue_slot, it is
	 sufficient to insert 'can_issue_more - 1' nops if next_insn is not
	 a branch. If next_insn is a branch, we insert 'can_issue_more' nops;
	 in this case the last nop will start a new group and the branch
	 will be forced to the new group.  */
      if (can_issue_more && !is_branch_slot_insn (next_insn))
	can_issue_more--;

      /* Do we have a special group ending nop? */
      if (rs6000_tune == PROCESSOR_POWER6 || rs6000_tune == PROCESSOR_POWER7
	  || rs6000_tune == PROCESSOR_POWER8)
	{
	  nop = gen_group_ending_nop ();
	  emit_insn_before (nop, next_insn);
	  can_issue_more = 0;
	}
      else
	while (can_issue_more > 0)
	  {
	    nop = gen_nop ();
	    emit_insn_before (nop, next_insn);
	    can_issue_more--;
	  }

      *group_end = true;
      return 0;
    }

  if (rs6000_sched_insert_nops < sched_finish_regroup_exact)
    {
      int n_nops = rs6000_sched_insert_nops;

      /* Nops can't be issued from the branch slot, so the effective
	 issue_rate for nops is 'issue_rate - 1'.  */
      if (can_issue_more == 0)
	can_issue_more = issue_rate;
      can_issue_more--;
      if (can_issue_more == 0)
	{
	  can_issue_more = issue_rate - 1;
	  (*group_count)++;
	  end = true;
	  for (i = 0; i < issue_rate; i++)
	    {
	      group_insns[i] = 0;
	    }
	}

      while (n_nops > 0)
	{
	  nop = gen_nop ();
	  emit_insn_before (nop, next_insn);
	  if (can_issue_more == issue_rate - 1) /* new group begins */
	    end = false;
	  can_issue_more--;
	  if (can_issue_more == 0)
	    {
	      can_issue_more = issue_rate - 1;
	      (*group_count)++;
	      end = true;
	      for (i = 0; i < issue_rate; i++)
		{
		  group_insns[i] = 0;
		}
	    }
	  n_nops--;
	}

      /* Scale back relative to 'issue_rate' (instead of 'issue_rate - 1').  */
      can_issue_more++;

      /* Is next_insn going to start a new group?  */
      *group_end
	= (end
	   || (can_issue_more == 1 && !is_branch_slot_insn (next_insn))
	   || (can_issue_more <= 2 && is_cracked_insn (next_insn))
	   || (can_issue_more < issue_rate &&
	       insn_terminates_group_p (next_insn, previous_group)));
      if (*group_end && end)
	(*group_count)--;

      if (sched_verbose > 6)
	fprintf (dump, "done force: group count = %d, can_issue_more = %d\n",
		 *group_count, can_issue_more);
      return can_issue_more;
    }

  return can_issue_more;
}

/* This function tries to synch the dispatch groups that the compiler "sees"
   with the dispatch groups that the processor dispatcher is expected to
   form in practice.  It tries to achieve this synchronization by forcing the
   estimated processor grouping on the compiler (as opposed to the function
   'pad_goups' which tries to force the scheduler's grouping on the processor).

   The function scans the insn sequence between PREV_HEAD_INSN and TAIL and
   examines the (estimated) dispatch groups that will be formed by the processor
   dispatcher.  It marks these group boundaries to reflect the estimated
   processor grouping, overriding the grouping that the scheduler had marked.
   Depending on the value of the flag '-minsert-sched-nops' this function can
   force certain insns into separate groups or force a certain distance between
   them by inserting nops, for example, if there exists a "costly dependence"
   between the insns.

   The function estimates the group boundaries that the processor will form as
   follows:  It keeps track of how many vacant issue slots are available after
   each insn.  A subsequent insn will start a new group if one of the following
   4 cases applies:
   - no more vacant issue slots remain in the current dispatch group.
   - only the last issue slot, which is the branch slot, is vacant, but the next
     insn is not a branch.
   - only the last 2 or less issue slots, including the branch slot, are vacant,
     which means that a cracked insn (which occupies two issue slots) can't be
     issued in this group.
   - less than 'issue_rate' slots are vacant, and the next insn always needs to
     start a new group.  */

static int
redefine_groups (FILE *dump, int sched_verbose, rtx_insn *prev_head_insn,
		 rtx_insn *tail)
{
  rtx_insn *insn, *next_insn;
  int issue_rate;
  int can_issue_more;
  int slot, i;
  bool group_end;
  int group_count = 0;
  rtx *group_insns;

  /* Initialize.  */
  issue_rate = rs6000_issue_rate ();
  group_insns = XALLOCAVEC (rtx, issue_rate);
  for (i = 0; i < issue_rate; i++)
    {
      group_insns[i] = 0;
    }
  can_issue_more = issue_rate;
  slot = 0;
  insn = get_next_active_insn (prev_head_insn, tail);
  group_end = false;

  while (insn != NULL_RTX)
    {
      slot = (issue_rate - can_issue_more);
      group_insns[slot] = insn;
      can_issue_more =
	rs6000_variable_issue (dump, sched_verbose, insn, can_issue_more);
      if (insn_terminates_group_p (insn, current_group))
	can_issue_more = 0;

      next_insn = get_next_active_insn (insn, tail);
      if (next_insn == NULL_RTX)
	return group_count + 1;

      /* Is next_insn going to start a new group?  */
      group_end
	= (can_issue_more == 0
	   || (can_issue_more == 1 && !is_branch_slot_insn (next_insn))
	   || (can_issue_more <= 2 && is_cracked_insn (next_insn))
	   || (can_issue_more < issue_rate &&
	       insn_terminates_group_p (next_insn, previous_group)));

      can_issue_more = force_new_group (sched_verbose, dump, group_insns,
					next_insn, &group_end, can_issue_more,
					&group_count);

      if (group_end)
	{
	  group_count++;
	  can_issue_more = 0;
	  for (i = 0; i < issue_rate; i++)
	    {
	      group_insns[i] = 0;
	    }
	}

      if (GET_MODE (next_insn) == TImode && can_issue_more)
	PUT_MODE (next_insn, VOIDmode);
      else if (!can_issue_more && GET_MODE (next_insn) != TImode)
	PUT_MODE (next_insn, TImode);

      insn = next_insn;
      if (can_issue_more == 0)
	can_issue_more = issue_rate;
    } /* while */

  return group_count;
}

/* Scan the insn sequence between PREV_HEAD_INSN and TAIL and examine the
   dispatch group boundaries that the scheduler had marked.  Pad with nops
   any dispatch groups which have vacant issue slots, in order to force the
   scheduler's grouping on the processor dispatcher.  The function
   returns the number of dispatch groups found.  */

static int
pad_groups (FILE *dump, int sched_verbose, rtx_insn *prev_head_insn,
	    rtx_insn *tail)
{
  rtx_insn *insn, *next_insn;
  rtx nop;
  int issue_rate;
  int can_issue_more;
  int group_end;
  int group_count = 0;

  /* Initialize issue_rate.  */
  issue_rate = rs6000_issue_rate ();
  can_issue_more = issue_rate;

  insn = get_next_active_insn (prev_head_insn, tail);
  next_insn = get_next_active_insn (insn, tail);

  while (insn != NULL_RTX)
    {
      can_issue_more =
      	rs6000_variable_issue (dump, sched_verbose, insn, can_issue_more);

      group_end = (next_insn == NULL_RTX || GET_MODE (next_insn) == TImode);

      if (next_insn == NULL_RTX)
	break;

      if (group_end)
	{
	  /* If the scheduler had marked group termination at this location
	     (between insn and next_insn), and neither insn nor next_insn will
	     force group termination, pad the group with nops to force group
	     termination.  */
	  if (can_issue_more
	      && (rs6000_sched_insert_nops == sched_finish_pad_groups)
	      && !insn_terminates_group_p (insn, current_group)
	      && !insn_terminates_group_p (next_insn, previous_group))
	    {
	      if (!is_branch_slot_insn (next_insn))
		can_issue_more--;

	      while (can_issue_more)
		{
		  nop = gen_nop ();
		  emit_insn_before (nop, next_insn);
		  can_issue_more--;
		}
	    }

	  can_issue_more = issue_rate;
	  group_count++;
	}

      insn = next_insn;
      next_insn = get_next_active_insn (insn, tail);
    }

  return group_count;
}

/* We're beginning a new block.  Initialize data structures as necessary.  */

static void
rs6000_sched_init (FILE *dump ATTRIBUTE_UNUSED,
		     int sched_verbose ATTRIBUTE_UNUSED,
		     int max_ready ATTRIBUTE_UNUSED)
{
  last_scheduled_insn = NULL;
  load_store_pendulum = 0;
  divide_cnt = 0;
  vec_pairing = 0;
}

/* The following function is called at the end of scheduling BB.
   After reload, it inserts nops at insn group bundling.  */

static void
rs6000_sched_finish (FILE *dump, int sched_verbose)
{
  int n_groups;

  if (sched_verbose)
    fprintf (dump, "=== Finishing schedule.\n");

  if (reload_completed && rs6000_sched_groups)
    {
      /* Do not run sched_finish hook when selective scheduling enabled.  */
      if (sel_sched_p ())
	return;

      if (rs6000_sched_insert_nops == sched_finish_none)
	return;

      if (rs6000_sched_insert_nops == sched_finish_pad_groups)
	n_groups = pad_groups (dump, sched_verbose,
			       current_sched_info->prev_head,
			       current_sched_info->next_tail);
      else
	n_groups = redefine_groups (dump, sched_verbose,
				    current_sched_info->prev_head,
				    current_sched_info->next_tail);

      if (sched_verbose >= 6)
	{
    	  fprintf (dump, "ngroups = %d\n", n_groups);
	  print_rtl (dump, current_sched_info->prev_head);
	  fprintf (dump, "Done finish_sched\n");
	}
    }
}

struct rs6000_sched_context
{
  short cached_can_issue_more;
  rtx_insn *last_scheduled_insn;
  int load_store_pendulum;
  int divide_cnt;
  int vec_pairing;
};

typedef struct rs6000_sched_context rs6000_sched_context_def;
typedef rs6000_sched_context_def *rs6000_sched_context_t;

/* Allocate store for new scheduling context.  */
static void *
rs6000_alloc_sched_context (void)
{
  return xmalloc (sizeof (rs6000_sched_context_def));
}

/* If CLEAN_P is true then initializes _SC with clean data,
   and from the global context otherwise.  */
static void
rs6000_init_sched_context (void *_sc, bool clean_p)
{
  rs6000_sched_context_t sc = (rs6000_sched_context_t) _sc;

  if (clean_p)
    {
      sc->cached_can_issue_more = 0;
      sc->last_scheduled_insn = NULL;
      sc->load_store_pendulum = 0;
      sc->divide_cnt = 0;
      sc->vec_pairing = 0;
    }
  else
    {
      sc->cached_can_issue_more = cached_can_issue_more;
      sc->last_scheduled_insn = last_scheduled_insn;
      sc->load_store_pendulum = load_store_pendulum;
      sc->divide_cnt = divide_cnt;
      sc->vec_pairing = vec_pairing;
    }
}

/* Sets the global scheduling context to the one pointed to by _SC.  */
static void
rs6000_set_sched_context (void *_sc)
{
  rs6000_sched_context_t sc = (rs6000_sched_context_t) _sc;

  gcc_assert (sc != NULL);

  cached_can_issue_more = sc->cached_can_issue_more;
  last_scheduled_insn = sc->last_scheduled_insn;
  load_store_pendulum = sc->load_store_pendulum;
  divide_cnt = sc->divide_cnt;
  vec_pairing = sc->vec_pairing;
}

/* Free _SC.  */
static void
rs6000_free_sched_context (void *_sc)
{
  gcc_assert (_sc != NULL);

  free (_sc);
}

static bool
rs6000_sched_can_speculate_insn (rtx_insn *insn)
{
  switch (get_attr_type (insn))
    {
    case TYPE_DIV:
    case TYPE_SDIV:
    case TYPE_DDIV:
    case TYPE_VECDIV:
    case TYPE_SSQRT:
    case TYPE_DSQRT:
      return false;

    default:
      return true;
  }
}

/* Length in units of the trampoline for entering a nested function.  */

int
rs6000_trampoline_size (void)
{
  int ret = 0;

  switch (DEFAULT_ABI)
    {
    default:
      gcc_unreachable ();

    case ABI_AIX:
      ret = (TARGET_32BIT) ? 12 : 24;
      break;

    case ABI_ELFv2:
      gcc_assert (!TARGET_32BIT);
      ret = 32;
      break;

    case ABI_DARWIN:
    case ABI_V4:
      ret = (TARGET_32BIT) ? 40 : 48;
      break;
    }

  return ret;
}

/* Emit RTL insns to initialize the variable parts of a trampoline.
   FNADDR is an RTX for the address of the function's pure code.
   CXT is an RTX for the static chain value for the function.  */

static void
rs6000_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt)
{
  int regsize = (TARGET_32BIT) ? 4 : 8;
  rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
  rtx ctx_reg = force_reg (Pmode, cxt);
  rtx addr = force_reg (Pmode, XEXP (m_tramp, 0));

  switch (DEFAULT_ABI)
    {
    default:
      gcc_unreachable ();

    /* Under AIX, just build the 3 word function descriptor */
    case ABI_AIX:
      {
	rtx fnmem, fn_reg, toc_reg;

	if (!TARGET_POINTERS_TO_NESTED_FUNCTIONS)
	  error ("you cannot take the address of a nested function if you use "
		 "the %qs option", "-mno-pointers-to-nested-functions");

	fnmem = gen_const_mem (Pmode, force_reg (Pmode, fnaddr));
	fn_reg = gen_reg_rtx (Pmode);
	toc_reg = gen_reg_rtx (Pmode);

  /* Macro to shorten the code expansions below.  */
# define MEM_PLUS(MEM, OFFSET) adjust_address (MEM, Pmode, OFFSET)

	m_tramp = replace_equiv_address (m_tramp, addr);

	emit_move_insn (fn_reg, MEM_PLUS (fnmem, 0));
	emit_move_insn (toc_reg, MEM_PLUS (fnmem, regsize));
	emit_move_insn (MEM_PLUS (m_tramp, 0), fn_reg);
	emit_move_insn (MEM_PLUS (m_tramp, regsize), toc_reg);
	emit_move_insn (MEM_PLUS (m_tramp, 2*regsize), ctx_reg);

# undef MEM_PLUS
      }
      break;

    /* Under V.4/eabi/darwin, __trampoline_setup does the real work.  */
    case ABI_ELFv2:
    case ABI_DARWIN:
    case ABI_V4:
      emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__trampoline_setup"),
			 LCT_NORMAL, VOIDmode,
			 addr, Pmode,
			 GEN_INT (rs6000_trampoline_size ()), SImode,
			 fnaddr, Pmode,
			 ctx_reg, Pmode);
      break;
    }
}


/* Returns TRUE iff the target attribute indicated by ATTR_ID takes a plain
   identifier as an argument, so the front end shouldn't look it up.  */

static bool
rs6000_attribute_takes_identifier_p (const_tree attr_id)
{
  return is_attribute_p ("altivec", attr_id);
}

/* Handle the "altivec" attribute.  The attribute may have
   arguments as follows:

	__attribute__((altivec(vector__)))
	__attribute__((altivec(pixel__)))	(always followed by 'unsigned short')
	__attribute__((altivec(bool__)))	(always followed by 'unsigned')

  and may appear more than once (e.g., 'vector bool char') in a
  given declaration.  */

static tree
rs6000_handle_altivec_attribute (tree *node,
				 tree name ATTRIBUTE_UNUSED,
				 tree args,
				 int flags ATTRIBUTE_UNUSED,
				 bool *no_add_attrs)
{
  tree type = *node, result = NULL_TREE;
  machine_mode mode;
  int unsigned_p;
  char altivec_type
    = ((args && TREE_CODE (args) == TREE_LIST && TREE_VALUE (args)
	&& TREE_CODE (TREE_VALUE (args)) == IDENTIFIER_NODE)
       ? *IDENTIFIER_POINTER (TREE_VALUE (args))
       : '?');

  while (POINTER_TYPE_P (type)
	 || TREE_CODE (type) == FUNCTION_TYPE
	 || TREE_CODE (type) == METHOD_TYPE
	 || TREE_CODE (type) == ARRAY_TYPE)
    type = TREE_TYPE (type);

  mode = TYPE_MODE (type);

  /* Check for invalid AltiVec type qualifiers.  */
  if (type == long_double_type_node)
    error ("use of %<long double%> in AltiVec types is invalid");
  else if (type == boolean_type_node)
    error ("use of boolean types in AltiVec types is invalid");
  else if (TREE_CODE (type) == COMPLEX_TYPE)
    error ("use of %<complex%> in AltiVec types is invalid");
  else if (DECIMAL_FLOAT_MODE_P (mode))
    error ("use of decimal floating-point types in AltiVec types is invalid");
  else if (!TARGET_VSX)
    {
      if (type == long_unsigned_type_node || type == long_integer_type_node)
	{
	  if (TARGET_64BIT)
	    error ("use of %<long%> in AltiVec types is invalid for "
		   "64-bit code without %qs", "-mvsx");
	  else if (rs6000_warn_altivec_long)
	    warning (0, "use of %<long%> in AltiVec types is deprecated; "
		     "use %<int%>");
	}
      else if (type == long_long_unsigned_type_node
	       || type == long_long_integer_type_node)
	error ("use of %<long long%> in AltiVec types is invalid without %qs",
	       "-mvsx");
      else if (type == double_type_node)
	error ("use of %<double%> in AltiVec types is invalid without %qs",
	       "-mvsx");
    }

  switch (altivec_type)
    {
    case 'v':
      unsigned_p = TYPE_UNSIGNED (type);
      switch (mode)
	{
	case E_TImode:
	  result = (unsigned_p ? unsigned_V1TI_type_node : V1TI_type_node);
	  break;
	case E_DImode:
	  result = (unsigned_p ? unsigned_V2DI_type_node : V2DI_type_node);
	  break;
	case E_SImode:
	  result = (unsigned_p ? unsigned_V4SI_type_node : V4SI_type_node);
	  break;
	case E_HImode:
	  result = (unsigned_p ? unsigned_V8HI_type_node : V8HI_type_node);
	  break;
	case E_QImode:
	  result = (unsigned_p ? unsigned_V16QI_type_node : V16QI_type_node);
	  break;
	case E_SFmode: result = V4SF_type_node; break;
	case E_DFmode: result = V2DF_type_node; break;
	  /* If the user says 'vector int bool', we may be handed the 'bool'
	     attribute _before_ the 'vector' attribute, and so select the
	     proper type in the 'b' case below.  */
	case E_V4SImode: case E_V8HImode: case E_V16QImode: case E_V4SFmode:
	case E_V2DImode: case E_V2DFmode:
	  result = type;
	default: break;
	}
      break;
    case 'b':
      switch (mode)
	{
	case E_TImode: case E_V1TImode: result = bool_V1TI_type_node; break;
	case E_DImode: case E_V2DImode: result = bool_V2DI_type_node; break;
	case E_SImode: case E_V4SImode: result = bool_V4SI_type_node; break;
	case E_HImode: case E_V8HImode: result = bool_V8HI_type_node; break;
	case E_QImode: case E_V16QImode: result = bool_V16QI_type_node;
	default: break;
	}
      break;
    case 'p':
      switch (mode)
	{
	case E_V8HImode: result = pixel_V8HI_type_node;
	default: break;
	}
    default: break;
    }

  /* Propagate qualifiers attached to the element type
     onto the vector type.  */
  if (result && result != type && TYPE_QUALS (type))
    result = build_qualified_type (result, TYPE_QUALS (type));

  *no_add_attrs = true;  /* No need to hang on to the attribute.  */

  if (result)
    *node = lang_hooks.types.reconstruct_complex_type (*node, result);

  return NULL_TREE;
}

/* AltiVec defines five built-in scalar types that serve as vector
   elements; we must teach the compiler how to mangle them.  The 128-bit
   floating point mangling is target-specific as well.  MMA defines
   two built-in types to be used as opaque vector types.  */

static const char *
rs6000_mangle_type (const_tree type)
{
  type = TYPE_MAIN_VARIANT (type);

  if (TREE_CODE (type) != VOID_TYPE && TREE_CODE (type) != BOOLEAN_TYPE
      && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE
      && TREE_CODE (type) != OPAQUE_TYPE)
    return NULL;

  if (type == bool_char_type_node) return "U6__boolc";
  if (type == bool_short_type_node) return "U6__bools";
  if (type == pixel_type_node) return "u7__pixel";
  if (type == bool_int_type_node) return "U6__booli";
  if (type == bool_long_long_type_node) return "U6__boolx";

  if (type == float128_type_node || type == float64x_type_node)
    return NULL;

  if (SCALAR_FLOAT_TYPE_P (type) && FLOAT128_IBM_P (TYPE_MODE (type)))
    return "g";
  if (SCALAR_FLOAT_TYPE_P (type) && FLOAT128_IEEE_P (TYPE_MODE (type)))
    return "u9__ieee128";

  if (type == vector_pair_type_node)
    return "u13__vector_pair";
  if (type == vector_quad_type_node)
    return "u13__vector_quad";

  /* For all other types, use the default mangling.  */
  return NULL;
}

/* Handle a "longcall" or "shortcall" attribute; arguments as in
   struct attribute_spec.handler.  */

static tree
rs6000_handle_longcall_attribute (tree *node, tree name,
				  tree args ATTRIBUTE_UNUSED,
				  int flags ATTRIBUTE_UNUSED,
				  bool *no_add_attrs)
{
  if (TREE_CODE (*node) != FUNCTION_TYPE
      && TREE_CODE (*node) != FIELD_DECL
      && TREE_CODE (*node) != TYPE_DECL)
    {
      warning (OPT_Wattributes, "%qE attribute only applies to functions",
	       name);
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

/* Set longcall attributes on all functions declared when
   rs6000_default_long_calls is true.  */
static void
rs6000_set_default_type_attributes (tree type)
{
  if (rs6000_default_long_calls
      && (TREE_CODE (type) == FUNCTION_TYPE
	  || TREE_CODE (type) == METHOD_TYPE))
    TYPE_ATTRIBUTES (type) = tree_cons (get_identifier ("longcall"),
					NULL_TREE,
					TYPE_ATTRIBUTES (type));

#if TARGET_MACHO
  darwin_set_default_type_attributes (type);
#endif
}

/* Return a reference suitable for calling a function with the
   longcall attribute.  */

static rtx
rs6000_longcall_ref (rtx call_ref, rtx arg)
{
  /* System V adds '.' to the internal name, so skip them.  */
  const char *call_name = XSTR (call_ref, 0);
  if (*call_name == '.')
    {
      while (*call_name == '.')
	call_name++;

      tree node = get_identifier (call_name);
      call_ref = gen_rtx_SYMBOL_REF (VOIDmode, IDENTIFIER_POINTER (node));
    }

  if (TARGET_PLTSEQ)
    {
      rtx base = const0_rtx;
      int regno = 12;
      if (rs6000_pcrel_p ())
	{
	  rtx reg = gen_rtx_REG (Pmode, regno);
	  rtx u = gen_rtx_UNSPEC_VOLATILE (Pmode,
					   gen_rtvec (3, base, call_ref, arg),
					   UNSPECV_PLT_PCREL);
	  emit_insn (gen_rtx_SET (reg, u));
	  return reg;
	}

      if (DEFAULT_ABI == ABI_ELFv2)
	base = gen_rtx_REG (Pmode, TOC_REGISTER);
      else
	{
	  if (flag_pic)
	    base = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
	  regno = 11;
	}
      /* Reg must match that used by linker PLT stubs.  For ELFv2, r12
	 may be used by a function global entry point.  For SysV4, r11
	 is used by __glink_PLTresolve lazy resolver entry.  */
      rtx reg = gen_rtx_REG (Pmode, regno);
      rtx hi = gen_rtx_UNSPEC (Pmode, gen_rtvec (3, base, call_ref, arg),
			       UNSPEC_PLT16_HA);
      rtx lo = gen_rtx_UNSPEC_VOLATILE (Pmode,
					gen_rtvec (3, reg, call_ref, arg),
					UNSPECV_PLT16_LO);
      emit_insn (gen_rtx_SET (reg, hi));
      emit_insn (gen_rtx_SET (reg, lo));
      return reg;
    }

  return force_reg (Pmode, call_ref);
}

#ifndef TARGET_USE_MS_BITFIELD_LAYOUT
#define TARGET_USE_MS_BITFIELD_LAYOUT 0
#endif

/* Handle a "ms_struct" or "gcc_struct" attribute; arguments as in
   struct attribute_spec.handler.  */
static tree
rs6000_handle_struct_attribute (tree *node, tree name,
				tree args ATTRIBUTE_UNUSED,
				int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
  tree *type = NULL;
  if (DECL_P (*node))
    {
      if (TREE_CODE (*node) == TYPE_DECL)
        type = &TREE_TYPE (*node);
    }
  else
    type = node;

  if (!(type && (TREE_CODE (*type) == RECORD_TYPE
                 || TREE_CODE (*type) == UNION_TYPE)))
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
    }

  else if ((is_attribute_p ("ms_struct", name)
            && lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (*type)))
           || ((is_attribute_p ("gcc_struct", name)
                && lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (*type)))))
    {
      warning (OPT_Wattributes, "%qE incompatible attribute ignored",
               name);
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

static bool
rs6000_ms_bitfield_layout_p (const_tree record_type)
{
  return (TARGET_USE_MS_BITFIELD_LAYOUT &&
          !lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (record_type)))
    || lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (record_type));
}

#ifdef USING_ELFOS_H

/* A get_unnamed_section callback, used for switching to toc_section.  */

static void
rs6000_elf_output_toc_section_asm_op (const char *data ATTRIBUTE_UNUSED)
{
  if ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
      && TARGET_MINIMAL_TOC)
    {
      if (!toc_initialized)
	{
	  fprintf (asm_out_file, "%s\n", TOC_SECTION_ASM_OP);
	  ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
	  (*targetm.asm_out.internal_label) (asm_out_file, "LCTOC", 0);
	  fprintf (asm_out_file, "\t.tc ");
	  ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1[TC],");
	  ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
	  fprintf (asm_out_file, "\n");

	  fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
	  ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
	  ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
	  fprintf (asm_out_file, " = .+32768\n");
	  toc_initialized = 1;
	}
      else
	fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
    }
  else if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
    {
      fprintf (asm_out_file, "%s\n", TOC_SECTION_ASM_OP);
      if (!toc_initialized)
	{
	  ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
	  toc_initialized = 1;
	}
    }
  else
    {
      fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
      if (!toc_initialized)
	{
	  ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
	  ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
	  fprintf (asm_out_file, " = .+32768\n");
	  toc_initialized = 1;
	}
    }
}

/* Implement TARGET_ASM_INIT_SECTIONS.  */

static void
rs6000_elf_asm_init_sections (void)
{
  toc_section
    = get_unnamed_section (0, rs6000_elf_output_toc_section_asm_op, NULL);

  sdata2_section
    = get_unnamed_section (SECTION_WRITE, output_section_asm_op,
			   SDATA2_SECTION_ASM_OP);
}

/* Implement TARGET_SELECT_RTX_SECTION.  */

static section *
rs6000_elf_select_rtx_section (machine_mode mode, rtx x,
			       unsigned HOST_WIDE_INT align)
{
  if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode))
    return toc_section;
  else
    return default_elf_select_rtx_section (mode, x, align);
}

/* For a SYMBOL_REF, set generic flags and then perform some
   target-specific processing.

   When the AIX ABI is requested on a non-AIX system, replace the
   function name with the real name (with a leading .) rather than the
   function descriptor name.  This saves a lot of overriding code to
   read the prefixes.  */

static void rs6000_elf_encode_section_info (tree, rtx, int) ATTRIBUTE_UNUSED;
static void
rs6000_elf_encode_section_info (tree decl, rtx rtl, int first)
{
  default_encode_section_info (decl, rtl, first);

  if (first
      && TREE_CODE (decl) == FUNCTION_DECL
      && !TARGET_AIX
      && DEFAULT_ABI == ABI_AIX)
    {
      rtx sym_ref = XEXP (rtl, 0);
      size_t len = strlen (XSTR (sym_ref, 0));
      char *str = XALLOCAVEC (char, len + 2);
      str[0] = '.';
      memcpy (str + 1, XSTR (sym_ref, 0), len + 1);
      XSTR (sym_ref, 0) = ggc_alloc_string (str, len + 1);
    }
}

static inline bool
compare_section_name (const char *section, const char *templ)
{
  int len;

  len = strlen (templ);
  return (strncmp (section, templ, len) == 0
	  && (section[len] == 0 || section[len] == '.'));
}

bool
rs6000_elf_in_small_data_p (const_tree decl)
{
  if (rs6000_sdata == SDATA_NONE)
    return false;

  /* We want to merge strings, so we never consider them small data.  */
  if (TREE_CODE (decl) == STRING_CST)
    return false;

  /* Functions are never in the small data area.  */
  if (TREE_CODE (decl) == FUNCTION_DECL)
    return false;

  if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl))
    {
      const char *section = DECL_SECTION_NAME (decl);
      if (compare_section_name (section, ".sdata")
	  || compare_section_name (section, ".sdata2")
	  || compare_section_name (section, ".gnu.linkonce.s")
	  || compare_section_name (section, ".sbss")
	  || compare_section_name (section, ".sbss2")
	  || compare_section_name (section, ".gnu.linkonce.sb")
	  || strcmp (section, ".PPC.EMB.sdata0") == 0
	  || strcmp (section, ".PPC.EMB.sbss0") == 0)
	return true;
    }
  else
    {
      /* If we are told not to put readonly data in sdata, then don't.  */
      if (TREE_READONLY (decl) && rs6000_sdata != SDATA_EABI
	  && !rs6000_readonly_in_sdata)
	return false;

      HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));

      if (size > 0
	  && size <= g_switch_value
	  /* If it's not public, and we're not going to reference it there,
	     there's no need to put it in the small data section.  */
	  && (rs6000_sdata != SDATA_DATA || TREE_PUBLIC (decl)))
	return true;
    }

  return false;
}

#endif /* USING_ELFOS_H */

/* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P.  */

static bool
rs6000_use_blocks_for_constant_p (machine_mode mode, const_rtx x)
{
  return !ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode);
}

/* Do not place thread-local symbols refs in the object blocks.  */

static bool
rs6000_use_blocks_for_decl_p (const_tree decl)
{
  return !DECL_THREAD_LOCAL_P (decl);
}

/* Return a REG that occurs in ADDR with coefficient 1.
   ADDR can be effectively incremented by incrementing REG.

   r0 is special and we must not select it as an address
   register by this routine since our caller will try to
   increment the returned register via an "la" instruction.  */

rtx
find_addr_reg (rtx addr)
{
  while (GET_CODE (addr) == PLUS)
    {
      if (REG_P (XEXP (addr, 0))
	  && REGNO (XEXP (addr, 0)) != 0)
	addr = XEXP (addr, 0);
      else if (REG_P (XEXP (addr, 1))
	       && REGNO (XEXP (addr, 1)) != 0)
	addr = XEXP (addr, 1);
      else if (CONSTANT_P (XEXP (addr, 0)))
	addr = XEXP (addr, 1);
      else if (CONSTANT_P (XEXP (addr, 1)))
	addr = XEXP (addr, 0);
      else
	gcc_unreachable ();
    }
  gcc_assert (REG_P (addr) && REGNO (addr) != 0);
  return addr;
}

void
rs6000_fatal_bad_address (rtx op)
{
  fatal_insn ("bad address", op);
}

#if TARGET_MACHO

vec<branch_island, va_gc> *branch_islands;

/* Remember to generate a branch island for far calls to the given
   function.  */

static void
add_compiler_branch_island (tree label_name, tree function_name,
			    int line_number)
{
  branch_island bi = {function_name, label_name, line_number};
  vec_safe_push (branch_islands, bi);
}

/* NO_PREVIOUS_DEF checks in the link list whether the function name is
   already there or not.  */

static int
no_previous_def (tree function_name)
{
  branch_island *bi;
  unsigned ix;

  FOR_EACH_VEC_SAFE_ELT (branch_islands, ix, bi)
    if (function_name == bi->function_name)
      return 0;
  return 1;
}

/* GET_PREV_LABEL gets the label name from the previous definition of
   the function.  */

static tree
get_prev_label (tree function_name)
{
  branch_island *bi;
  unsigned ix;

  FOR_EACH_VEC_SAFE_ELT (branch_islands, ix, bi)
    if (function_name == bi->function_name)
      return bi->label_name;
  return NULL_TREE;
}

/* Generate external symbol indirection stubs (PIC and non-PIC).  */

void
machopic_output_stub (FILE *file, const char *symb, const char *stub)
{
  unsigned int length;
  char *symbol_name, *lazy_ptr_name;
  char *local_label_0;
  static unsigned label = 0;

  /* Lose our funky encoding stuff so it doesn't contaminate the stub.  */
  symb = (*targetm.strip_name_encoding) (symb);

  length = strlen (symb);
  symbol_name = XALLOCAVEC (char, length + 32);
  GEN_SYMBOL_NAME_FOR_SYMBOL (symbol_name, symb, length);

  lazy_ptr_name = XALLOCAVEC (char, length + 32);
  GEN_LAZY_PTR_NAME_FOR_SYMBOL (lazy_ptr_name, symb, length);

  if (MACHOPIC_PURE)
    {
      switch_to_section (darwin_sections[machopic_picsymbol_stub1_section]);
      fprintf (file, "\t.align 5\n");

      fprintf (file, "%s:\n", stub);
      fprintf (file, "\t.indirect_symbol %s\n", symbol_name);

      label++;
      local_label_0 = XALLOCAVEC (char, 16);
      sprintf (local_label_0, "L%u$spb", label);

      fprintf (file, "\tmflr r0\n");
      fprintf (file, "\tbcl 20,31,%s\n", local_label_0);
      fprintf (file, "%s:\n\tmflr r11\n", local_label_0);
      fprintf (file, "\taddis r11,r11,ha16(%s-%s)\n",
	       lazy_ptr_name, local_label_0);
      fprintf (file, "\tmtlr r0\n");
      fprintf (file, "\t%s r12,lo16(%s-%s)(r11)\n",
	       (TARGET_64BIT ? "ldu" : "lwzu"),
	       lazy_ptr_name, local_label_0);
      fprintf (file, "\tmtctr r12\n");
      fprintf (file, "\tbctr\n");
    }
  else /* mdynamic-no-pic or mkernel.  */
    {
      switch_to_section (darwin_sections[machopic_symbol_stub1_section]);
      fprintf (file, "\t.align 4\n");

      fprintf (file, "%s:\n", stub);
      fprintf (file, "\t.indirect_symbol %s\n", symbol_name);

      fprintf (file, "\tlis r11,ha16(%s)\n", lazy_ptr_name);
      fprintf (file, "\t%s r12,lo16(%s)(r11)\n",
	       (TARGET_64BIT ? "ldu" : "lwzu"),
	       lazy_ptr_name);
      fprintf (file, "\tmtctr r12\n");
      fprintf (file, "\tbctr\n");
    }

  switch_to_section (darwin_sections[machopic_lazy_symbol_ptr_section]);
  fprintf (file, "%s:\n", lazy_ptr_name);
  fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
  fprintf (file, "%sdyld_stub_binding_helper\n",
	   (TARGET_64BIT ? DOUBLE_INT_ASM_OP : "\t.long\t"));
}

/* Legitimize PIC addresses.  If the address is already
   position-independent, we return ORIG.  Newly generated
   position-independent addresses go into a reg.  This is REG if non
   zero, otherwise we allocate register(s) as necessary.  */

#define SMALL_INT(X) ((UINTVAL (X) + 0x8000) < 0x10000)

rtx
rs6000_machopic_legitimize_pic_address (rtx orig, machine_mode mode,
					rtx reg)
{
  rtx base, offset;

  if (reg == NULL && !reload_completed)
    reg = gen_reg_rtx (Pmode);

  if (GET_CODE (orig) == CONST)
    {
      rtx reg_temp;

      if (GET_CODE (XEXP (orig, 0)) == PLUS
	  && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
	return orig;

      gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);

      /* Use a different reg for the intermediate value, as
	 it will be marked UNCHANGING.  */
      reg_temp = !can_create_pseudo_p () ? reg : gen_reg_rtx (Pmode);
      base = rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig, 0), 0),
						     Pmode, reg_temp);
      offset =
	rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig, 0), 1),
						Pmode, reg);

      if (CONST_INT_P (offset))
	{
	  if (SMALL_INT (offset))
	    return plus_constant (Pmode, base, INTVAL (offset));
	  else if (!reload_completed)
	    offset = force_reg (Pmode, offset);
	  else
	    {
 	      rtx mem = force_const_mem (Pmode, orig);
	      return machopic_legitimize_pic_address (mem, Pmode, reg);
	    }
	}
      return gen_rtx_PLUS (Pmode, base, offset);
    }

  /* Fall back on generic machopic code.  */
  return machopic_legitimize_pic_address (orig, mode, reg);
}

/* Output a .machine directive for the Darwin assembler, and call
   the generic start_file routine.  */

static void
rs6000_darwin_file_start (void)
{
  static const struct
  {
    const char *arg;
    const char *name;
    HOST_WIDE_INT if_set;
  } mapping[] = {
    { "ppc64", "ppc64", MASK_64BIT },
    { "970", "ppc970", OPTION_MASK_PPC_GPOPT | OPTION_MASK_MFCRF \
			| MASK_POWERPC64 },
    { "power4", "ppc970", 0 },
    { "G5", "ppc970", 0 },
    { "7450", "ppc7450", 0 },
    { "7400", "ppc7400", OPTION_MASK_ALTIVEC },
    { "G4", "ppc7400", 0 },
    { "750", "ppc750", 0 },
    { "740", "ppc750", 0 },
    { "G3", "ppc750", 0 },
    { "604e", "ppc604e", 0 },
    { "604", "ppc604", 0 },
    { "603e", "ppc603", 0 },
    { "603", "ppc603", 0 },
    { "601", "ppc601", 0 },
    { NULL, "ppc", 0 } };
  const char *cpu_id = "";
  size_t i;

  rs6000_file_start ();
  darwin_file_start ();

  /* Determine the argument to -mcpu=.  Default to G3 if not specified.  */
  
  if (rs6000_default_cpu != 0 && rs6000_default_cpu[0] != '\0')
    cpu_id = rs6000_default_cpu;

  if (OPTION_SET_P (rs6000_cpu_index))
    cpu_id = processor_target_table[rs6000_cpu_index].name;

  /* Look through the mapping array.  Pick the first name that either
     matches the argument, has a bit set in IF_SET that is also set
     in the target flags, or has a NULL name.  */

  i = 0;
  while (mapping[i].arg != NULL
	 && strcmp (mapping[i].arg, cpu_id) != 0
	 && (mapping[i].if_set & rs6000_isa_flags) == 0)
    i++;

  fprintf (asm_out_file, "\t.machine %s\n", mapping[i].name);
}

#endif /* TARGET_MACHO */

#if TARGET_ELF
static int
rs6000_elf_reloc_rw_mask (void)
{
  if (flag_pic)
    return 3;
  else if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
    return 2;
  else
    return 0;
}

/* Record an element in the table of global constructors.  SYMBOL is
   a SYMBOL_REF of the function to be called; PRIORITY is a number
   between 0 and MAX_INIT_PRIORITY.

   This differs from default_named_section_asm_out_constructor in
   that we have special handling for -mrelocatable.  */

static void rs6000_elf_asm_out_constructor (rtx, int) ATTRIBUTE_UNUSED;
static void
rs6000_elf_asm_out_constructor (rtx symbol, int priority)
{
  const char *section = ".ctors";
  char buf[18];

  if (priority != DEFAULT_INIT_PRIORITY)
    {
      sprintf (buf, ".ctors.%.5u",
	       /* Invert the numbering so the linker puts us in the proper
		  order; constructors are run from right to left, and the
		  linker sorts in increasing order.  */
	       MAX_INIT_PRIORITY - priority);
      section = buf;
    }

  switch_to_section (get_section (section, SECTION_WRITE, NULL));
  assemble_align (POINTER_SIZE);

  if (DEFAULT_ABI == ABI_V4
      && (TARGET_RELOCATABLE || flag_pic > 1))
    {
      fputs ("\t.long (", asm_out_file);
      output_addr_const (asm_out_file, symbol);
      fputs (")@fixup\n", asm_out_file);
    }
  else
    assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
}

static void rs6000_elf_asm_out_destructor (rtx, int) ATTRIBUTE_UNUSED;
static void
rs6000_elf_asm_out_destructor (rtx symbol, int priority)
{
  const char *section = ".dtors";
  char buf[18];

  if (priority != DEFAULT_INIT_PRIORITY)
    {
      sprintf (buf, ".dtors.%.5u",
	       /* Invert the numbering so the linker puts us in the proper
		  order; constructors are run from right to left, and the
		  linker sorts in increasing order.  */
	       MAX_INIT_PRIORITY - priority);
      section = buf;
    }

  switch_to_section (get_section (section, SECTION_WRITE, NULL));
  assemble_align (POINTER_SIZE);

  if (DEFAULT_ABI == ABI_V4
      && (TARGET_RELOCATABLE || flag_pic > 1))
    {
      fputs ("\t.long (", asm_out_file);
      output_addr_const (asm_out_file, symbol);
      fputs (")@fixup\n", asm_out_file);
    }
  else
    assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
}

void
rs6000_elf_declare_function_name (FILE *file, const char *name, tree decl)
{
  if (TARGET_64BIT && DEFAULT_ABI != ABI_ELFv2)
    {
      fputs ("\t.section\t\".opd\",\"aw\"\n\t.align 3\n", file);
      ASM_OUTPUT_LABEL (file, name);
      fputs (DOUBLE_INT_ASM_OP, file);
      rs6000_output_function_entry (file, name);
      fputs (",.TOC.@tocbase,0\n\t.previous\n", file);
      if (DOT_SYMBOLS)
	{
	  fputs ("\t.size\t", file);
	  assemble_name (file, name);
	  fputs (",24\n\t.type\t.", file);
	  assemble_name (file, name);
	  fputs (",@function\n", file);
	  if (TREE_PUBLIC (decl) && ! DECL_WEAK (decl))
	    {
	      fputs ("\t.globl\t.", file);
	      assemble_name (file, name);
	      putc ('\n', file);
	    }
	}
      else
	ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
      ASM_DECLARE_RESULT (file, DECL_RESULT (decl));
      rs6000_output_function_entry (file, name);
      fputs (":\n", file);
      return;
    }

  int uses_toc;
  if (DEFAULT_ABI == ABI_V4
      && (TARGET_RELOCATABLE || flag_pic > 1)
      && !TARGET_SECURE_PLT
      && (!constant_pool_empty_p () || crtl->profile)
      && (uses_toc = uses_TOC ()))
    {
      char buf[256];

      if (uses_toc == 2)
	switch_to_other_text_partition ();
      (*targetm.asm_out.internal_label) (file, "LCL", rs6000_pic_labelno);

      fprintf (file, "\t.long ");
      assemble_name (file, toc_label_name);
      need_toc_init = 1;
      putc ('-', file);
      ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
      assemble_name (file, buf);
      putc ('\n', file);
      if (uses_toc == 2)
	switch_to_other_text_partition ();
    }

  ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
  ASM_DECLARE_RESULT (file, DECL_RESULT (decl));

  if (TARGET_CMODEL == CMODEL_LARGE
      && rs6000_global_entry_point_prologue_needed_p ())
    {
      char buf[256];

      (*targetm.asm_out.internal_label) (file, "LCL", rs6000_pic_labelno);

      fprintf (file, "\t.quad .TOC.-");
      ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
      assemble_name (file, buf);
      putc ('\n', file);
    }

  if (DEFAULT_ABI == ABI_AIX)
    {
      const char *desc_name, *orig_name;

      orig_name = (*targetm.strip_name_encoding) (name);
      desc_name = orig_name;
      while (*desc_name == '.')
	desc_name++;

      if (TREE_PUBLIC (decl))
	fprintf (file, "\t.globl %s\n", desc_name);

      fprintf (file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
      fprintf (file, "%s:\n", desc_name);
      fprintf (file, "\t.long %s\n", orig_name);
      fputs ("\t.long _GLOBAL_OFFSET_TABLE_\n", file);
      fputs ("\t.long 0\n", file);
      fprintf (file, "\t.previous\n");
    }
  ASM_OUTPUT_LABEL (file, name);
}

static void rs6000_elf_file_end (void) ATTRIBUTE_UNUSED;
static void
rs6000_elf_file_end (void)
{
#ifdef HAVE_AS_GNU_ATTRIBUTE
  /* ??? The value emitted depends on options active at file end.
     Assume anyone using #pragma or attributes that might change
     options knows what they are doing.  */
  if ((TARGET_64BIT || DEFAULT_ABI == ABI_V4)
      && rs6000_passes_float)
    {
      int fp;

      if (TARGET_HARD_FLOAT)
	fp = 1;
      else
	fp = 2;
      if (rs6000_passes_long_double)
	{
	  if (!TARGET_LONG_DOUBLE_128)
	    fp |= 2 * 4;
	  else if (TARGET_IEEEQUAD)
	    fp |= 3 * 4;
	  else
	    fp |= 1 * 4;
	}
      fprintf (asm_out_file, "\t.gnu_attribute 4, %d\n", fp);
    }
  if (TARGET_32BIT && DEFAULT_ABI == ABI_V4)
    {
      if (rs6000_passes_vector)
	fprintf (asm_out_file, "\t.gnu_attribute 8, %d\n",
		 (TARGET_ALTIVEC_ABI ? 2 : 1));
      if (rs6000_returns_struct)
	fprintf (asm_out_file, "\t.gnu_attribute 12, %d\n",
		 aix_struct_return ? 2 : 1);
    }
#endif
#if defined (POWERPC_LINUX) || defined (POWERPC_FREEBSD)
  if (TARGET_32BIT || DEFAULT_ABI == ABI_ELFv2)
    file_end_indicate_exec_stack ();
#endif

  if (flag_split_stack)
    file_end_indicate_split_stack ();

  if (cpu_builtin_p)
    {
      /* We have expanded a CPU builtin, so we need to emit a reference to
	 the special symbol that LIBC uses to declare it supports the
	 AT_PLATFORM and AT_HWCAP/AT_HWCAP2 in the TCB feature.  */
      switch_to_section (data_section);
      fprintf (asm_out_file, "\t.align %u\n", TARGET_32BIT ? 2 : 3);
      fprintf (asm_out_file, "\t%s %s\n",
	       TARGET_32BIT ? ".long" : ".quad", tcb_verification_symbol);
    }
}
#endif

#if TARGET_XCOFF

#ifndef HAVE_XCOFF_DWARF_EXTRAS
#define HAVE_XCOFF_DWARF_EXTRAS 0
#endif


/* Names of bss and data sections.  These should be unique names for each
   compilation unit.  */

char *xcoff_bss_section_name;
char *xcoff_private_data_section_name;
char *xcoff_private_rodata_section_name;
char *xcoff_tls_data_section_name;
char *xcoff_read_only_section_name;

static enum unwind_info_type
rs6000_xcoff_debug_unwind_info (void)
{
  return UI_NONE;
}

static void
rs6000_xcoff_asm_output_anchor (rtx symbol)
{
  char buffer[100];

  sprintf (buffer, "$ + " HOST_WIDE_INT_PRINT_DEC,
	   SYMBOL_REF_BLOCK_OFFSET (symbol));
  fprintf (asm_out_file, "%s", SET_ASM_OP);
  RS6000_OUTPUT_BASENAME (asm_out_file, XSTR (symbol, 0));
  fprintf (asm_out_file, ",");
  RS6000_OUTPUT_BASENAME (asm_out_file, buffer);
  fprintf (asm_out_file, "\n");
}

static void
rs6000_xcoff_asm_globalize_label (FILE *stream, const char *name)
{
  fputs (GLOBAL_ASM_OP, stream);
  RS6000_OUTPUT_BASENAME (stream, name);
  putc ('\n', stream);
}

/* A get_unnamed_decl callback, used for read-only sections.  PTR
   points to the section string variable.  */

static void
rs6000_xcoff_output_readonly_section_asm_op (const char *directive)
{
  fprintf (asm_out_file, "\t.csect %s[RO],%s\n",
	   directive
	   ? xcoff_private_rodata_section_name
	   : xcoff_read_only_section_name,
	   XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
}

/* Likewise for read-write sections.  */

static void
rs6000_xcoff_output_readwrite_section_asm_op (const char *)
{
  fprintf (asm_out_file, "\t.csect %s[RW],%s\n",
	   xcoff_private_data_section_name,
	   XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
}

static void
rs6000_xcoff_output_tls_section_asm_op (const char *directive)
{
  fprintf (asm_out_file, "\t.csect %s[TL],%s\n",
	   directive
	   ? xcoff_private_data_section_name
	   : xcoff_tls_data_section_name,
	   XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
}

/* A get_unnamed_section callback, used for switching to toc_section.  */

static void
rs6000_xcoff_output_toc_section_asm_op (const char *data ATTRIBUTE_UNUSED)
{
  if (TARGET_MINIMAL_TOC)
    {
      /* toc_section is always selected at least once from
	 rs6000_xcoff_file_start, so this is guaranteed to
	 always be defined once and only once in each file.  */
      if (!toc_initialized)
	{
	  fputs ("\t.toc\nLCTOC..1:\n", asm_out_file);
	  fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file);
	  toc_initialized = 1;
	}
      fprintf (asm_out_file, "\t.csect toc_table[RW]%s\n",
	       (TARGET_32BIT ? "" : ",3"));
    }
  else
    fputs ("\t.toc\n", asm_out_file);
}

/* Implement TARGET_ASM_INIT_SECTIONS.  */

static void
rs6000_xcoff_asm_init_sections (void)
{
  read_only_data_section
    = get_unnamed_section (0, rs6000_xcoff_output_readonly_section_asm_op,
			   NULL);

  private_data_section
    = get_unnamed_section (SECTION_WRITE,
			   rs6000_xcoff_output_readwrite_section_asm_op,
			   NULL);

  read_only_private_data_section
    = get_unnamed_section (0, rs6000_xcoff_output_readonly_section_asm_op,
			   "");

  tls_data_section
    = get_unnamed_section (SECTION_TLS,
			   rs6000_xcoff_output_tls_section_asm_op,
			   NULL);

  tls_private_data_section
    = get_unnamed_section (SECTION_TLS,
			   rs6000_xcoff_output_tls_section_asm_op,
			   "");

  toc_section
    = get_unnamed_section (0, rs6000_xcoff_output_toc_section_asm_op, NULL);

  readonly_data_section = read_only_data_section;
}

static int
rs6000_xcoff_reloc_rw_mask (void)
{
  return 3;
}

static void
rs6000_xcoff_asm_named_section (const char *name, unsigned int flags,
				tree decl ATTRIBUTE_UNUSED)
{
  int smclass;
  static const char * const suffix[7]
    = { "PR", "RO", "RW", "BS", "TL", "UL", "XO" };

  if (flags & SECTION_EXCLUDE)
    smclass = 6;
  else if (flags & SECTION_DEBUG)
    {
      fprintf (asm_out_file, "\t.dwsect %s\n", name);
      return;
    }
  else if (flags & SECTION_CODE)
    smclass = 0;
  else if (flags & SECTION_TLS)
    {
      if (flags & SECTION_BSS)
	smclass = 5;
      else
	smclass = 4;
    }
  else if (flags & SECTION_WRITE)
    {
      if (flags & SECTION_BSS)
	smclass = 3;
      else
	smclass = 2;
    }
  else
    smclass = 1;

  fprintf (asm_out_file, "\t.csect %s%s[%s],%u\n",
	   (flags & SECTION_CODE) ? "." : "",
	   name, suffix[smclass], flags & SECTION_ENTSIZE);
}

#define IN_NAMED_SECTION(DECL) \
  ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
   && DECL_SECTION_NAME (DECL) != NULL)

static section *
rs6000_xcoff_select_section (tree decl, int reloc,
			     unsigned HOST_WIDE_INT align)
{
  /* Place variables with alignment stricter than BIGGEST_ALIGNMENT into
     named section.  */
  if (align > BIGGEST_ALIGNMENT && VAR_OR_FUNCTION_DECL_P (decl))
    {
      resolve_unique_section (decl, reloc, true);
      if (IN_NAMED_SECTION (decl))
	return get_named_section (decl, NULL, reloc);
    }

  if (decl_readonly_section (decl, reloc))
    {
      if (TREE_PUBLIC (decl))
	return read_only_data_section;
      else
	return read_only_private_data_section;
    }
  else
    {
#if HAVE_AS_TLS
      if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL_P (decl))
	{
	  if (bss_initializer_p (decl))
	    return tls_comm_section;
	  else if (TREE_PUBLIC (decl))
	    return tls_data_section;
	  else
	    return tls_private_data_section;
	}
      else
#endif
	if (TREE_PUBLIC (decl))
	return data_section;
      else
	return private_data_section;
    }
}

static void
rs6000_xcoff_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED)
{
  const char *name;

  name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
  name = (*targetm.strip_name_encoding) (name);
  set_decl_section_name (decl, name);
}

/* Select section for constant in constant pool.

   On RS/6000, all constants are in the private read-only data area.
   However, if this is being placed in the TOC it must be output as a
   toc entry.  */

static section *
rs6000_xcoff_select_rtx_section (machine_mode mode, rtx x,
				 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
{
  if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode))
    return toc_section;
  else
    return read_only_private_data_section;
}

/* Remove any trailing [DS] or the like from the symbol name.  */

static const char *
rs6000_xcoff_strip_name_encoding (const char *name)
{
  size_t len;
  if (*name == '*')
    name++;
  len = strlen (name);
  if (name[len - 1] == ']')
    return ggc_alloc_string (name, len - 4);
  else
    return name;
}

/* Section attributes.  AIX is always PIC.  */

static unsigned int
rs6000_xcoff_section_type_flags (tree decl, const char *name, int reloc)
{
  unsigned int align;
  unsigned int flags = default_section_type_flags (decl, name, reloc);

  if (decl && DECL_P (decl) && VAR_P (decl) && bss_initializer_p (decl))
    flags |= SECTION_BSS;

  /* Align to at least UNIT size.  */
  if (!decl || !DECL_P (decl))
    align = MIN_UNITS_PER_WORD;
  /* Align code CSECT to at least 32 bytes.  */
  else if ((flags & SECTION_CODE) != 0)
    align = MAX ((DECL_ALIGN (decl) / BITS_PER_UNIT), 32);
  else
    /* Increase alignment of large objects if not already stricter.  */
    align = MAX ((DECL_ALIGN (decl) / BITS_PER_UNIT),
		 int_size_in_bytes (TREE_TYPE (decl)) > MIN_UNITS_PER_WORD
		 ? UNITS_PER_FP_WORD : MIN_UNITS_PER_WORD);

  return flags | (exact_log2 (align) & SECTION_ENTSIZE);
}

/* Output at beginning of assembler file.

   Initialize the section names for the RS/6000 at this point.

   Specify filename, including full path, to assembler.

   We want to go into the TOC section so at least one .toc will be emitted.
   Also, in order to output proper .bs/.es pairs, we need at least one static
   [RW] section emitted.

   Finally, declare mcount when profiling to make the assembler happy.  */

static void
rs6000_xcoff_file_start (void)
{
  rs6000_gen_section_name (&xcoff_bss_section_name,
			   main_input_filename, ".bss_");
  rs6000_gen_section_name (&xcoff_private_data_section_name,
			   main_input_filename, ".rw_");
  rs6000_gen_section_name (&xcoff_private_rodata_section_name,
			   main_input_filename, ".rop_");
  rs6000_gen_section_name (&xcoff_read_only_section_name,
			   main_input_filename, ".ro_");
  rs6000_gen_section_name (&xcoff_tls_data_section_name,
			   main_input_filename, ".tls_");

  fputs ("\t.file\t", asm_out_file);
  output_quoted_string (asm_out_file, main_input_filename);
  fputc ('\n', asm_out_file);
  if (write_symbols != NO_DEBUG)
    switch_to_section (private_data_section);
  switch_to_section (toc_section);
  switch_to_section (text_section);
  if (profile_flag)
    fprintf (asm_out_file, "\t.extern %s\n", RS6000_MCOUNT);
  rs6000_file_start ();
}

/* Output at end of assembler file.
   On the RS/6000, referencing data should automatically pull in text.  */

static void
rs6000_xcoff_file_end (void)
{
  switch_to_section (text_section);
  if (xcoff_tls_exec_model_detected)
    {
      /* Add a .ref to __tls_get_addr to force libpthread dependency.  */
      fputs ("\t.extern __tls_get_addr\n\t.ref __tls_get_addr\n", asm_out_file);
    }
  fputs ("_section_.text:\n", asm_out_file);
  switch_to_section (data_section);
  fputs (TARGET_32BIT
	 ? "\t.long _section_.text\n" : "\t.llong _section_.text\n",
	 asm_out_file);

}

struct declare_alias_data
{
  FILE *file;
  bool function_descriptor;
};

/* Declare alias N.  A helper function for for_node_and_aliases.  */

static bool
rs6000_declare_alias (struct symtab_node *n, void *d)
{
  struct declare_alias_data *data = (struct declare_alias_data *)d;
  /* Main symbol is output specially, because varasm machinery does part of
     the job for us - we do not need to declare .globl/lglobs and such.  */
  if (!n->alias || n->weakref)
    return false;

  if (lookup_attribute ("ifunc", DECL_ATTRIBUTES (n->decl)))
    return false;

  /* Prevent assemble_alias from trying to use .set pseudo operation
     that does not behave as expected by the middle-end.  */
  TREE_ASM_WRITTEN (n->decl) = true;

  const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (n->decl));
  char *buffer = (char *) alloca (strlen (name) + 2);
  char *p;
  int dollar_inside = 0;

  strcpy (buffer, name);
  p = strchr (buffer, '$');
  while (p) {
    *p = '_';
    dollar_inside++;
    p = strchr (p + 1, '$');
  }
  if (TREE_PUBLIC (n->decl))
    {
      if (!RS6000_WEAK || !DECL_WEAK (n->decl))
	{
          if (dollar_inside) {
	      if (data->function_descriptor)
                fprintf(data->file, "\t.rename .%s,\".%s\"\n", buffer, name);
	      fprintf(data->file, "\t.rename %s,\"%s\"\n", buffer, name);
	    }
	  if (data->function_descriptor)
	    {
	      fputs ("\t.globl .", data->file);
	      RS6000_OUTPUT_BASENAME (data->file, buffer);
	      putc ('\n', data->file);
	    }
	  fputs ("\t.globl ", data->file);
	  assemble_name (data->file, buffer);
	  putc ('\n', data->file);
	}
#ifdef ASM_WEAKEN_DECL
      else if (DECL_WEAK (n->decl) && !data->function_descriptor)
	ASM_WEAKEN_DECL (data->file, n->decl, name, NULL);
#endif
    }
  else
    {
      if (dollar_inside)
	{
	  if (data->function_descriptor)
            fprintf(data->file, "\t.rename .%s,\".%s\"\n", buffer, name);
	  fprintf(data->file, "\t.rename %s,\"%s\"\n", buffer, name);
	}
      if (data->function_descriptor)
	{
	  fputs ("\t.lglobl .", data->file);
	  RS6000_OUTPUT_BASENAME (data->file, buffer);
	  putc ('\n', data->file);
	}
      fputs ("\t.lglobl ", data->file);
      assemble_name (data->file, buffer);
      putc ('\n', data->file);
    }
  if (data->function_descriptor)
    putc ('.', data->file);
  ASM_OUTPUT_LABEL (data->file, buffer);
  return false;
}


#ifdef HAVE_GAS_HIDDEN
/* Helper function to calculate visibility of a DECL
   and return the value as a const string.  */

static const char *
rs6000_xcoff_visibility (tree decl)
{
  static const char * const visibility_types[] = {
    "", ",protected", ",hidden", ",internal"
  };

  enum symbol_visibility vis = DECL_VISIBILITY (decl);
  return visibility_types[vis];
}
#endif


/* This macro produces the initial definition of a function name.
   On the RS/6000, we need to place an extra '.' in the function name and
   output the function descriptor.
   Dollar signs are converted to underscores.

   The csect for the function will have already been created when
   text_section was selected.  We do have to go back to that csect, however.

   The third and fourth parameters to the .function pseudo-op (16 and 044)
   are placeholders which no longer have any use.

   Because AIX assembler's .set command has unexpected semantics, we output
   all aliases as alternative labels in front of the definition.  */

void
rs6000_xcoff_declare_function_name (FILE *file, const char *name, tree decl)
{
  char *buffer = (char *) alloca (strlen (name) + 1);
  char *p;
  int dollar_inside = 0;
  struct declare_alias_data data = {file, false};

  strcpy (buffer, name);
  p = strchr (buffer, '$');
  while (p) {
    *p = '_';
    dollar_inside++;
    p = strchr (p + 1, '$');
  }
  if (TREE_PUBLIC (decl))
    {
      if (!RS6000_WEAK || !DECL_WEAK (decl))
	{
          if (dollar_inside) {
              fprintf(file, "\t.rename .%s,\".%s\"\n", buffer, name);
              fprintf(file, "\t.rename %s,\"%s\"\n", buffer, name);
	    }
	  fputs ("\t.globl .", file);
	  RS6000_OUTPUT_BASENAME (file, buffer);
#ifdef HAVE_GAS_HIDDEN
	  fputs (rs6000_xcoff_visibility (decl), file);
#endif
	  putc ('\n', file);
	}
    }
  else
    {
      if (dollar_inside) {
          fprintf(file, "\t.rename .%s,\".%s\"\n", buffer, name);
          fprintf(file, "\t.rename %s,\"%s\"\n", buffer, name);
	}
      fputs ("\t.lglobl .", file);
      RS6000_OUTPUT_BASENAME (file, buffer);
      putc ('\n', file);
    }

  fputs ("\t.csect ", file);
  assemble_name (file, buffer);
  fputs (TARGET_32BIT ? "\n" : ",3\n", file);

  ASM_OUTPUT_LABEL (file, buffer);

  symtab_node::get (decl)->call_for_symbol_and_aliases (rs6000_declare_alias,
							&data, true);
  fputs (TARGET_32BIT ? "\t.long ." : "\t.llong .", file);
  RS6000_OUTPUT_BASENAME (file, buffer);
  fputs (", TOC[tc0], 0\n", file);

  in_section = NULL;
  switch_to_section (function_section (decl));
  putc ('.', file);
  ASM_OUTPUT_LABEL (file, buffer);

  data.function_descriptor = true;
  symtab_node::get (decl)->call_for_symbol_and_aliases (rs6000_declare_alias,
							&data, true);
  if (!DECL_IGNORED_P (decl))
    {
      if (dwarf_debuginfo_p ())
	{
	  name = (*targetm.strip_name_encoding) (name);
	  fprintf (file, "\t.function .%s,.%s,2,0\n", name, name);
	}
    }
  return;
}


/* Output assembly language to globalize a symbol from a DECL,
   possibly with visibility.  */

void
rs6000_xcoff_asm_globalize_decl_name (FILE *stream, tree decl)
{
  const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
  fputs (GLOBAL_ASM_OP, stream);
  assemble_name (stream, name);
#ifdef HAVE_GAS_HIDDEN
  fputs (rs6000_xcoff_visibility (decl), stream);
#endif
  putc ('\n', stream);
}

/* Output assembly language to define a symbol as COMMON from a DECL,
   possibly with visibility.  */

void
rs6000_xcoff_asm_output_aligned_decl_common (FILE *stream,
					     tree decl ATTRIBUTE_UNUSED,
					     const char *name,
					     unsigned HOST_WIDE_INT size,
					     unsigned int align)
{
  unsigned int align2 = 2;

  if (align == 0)
    align = DATA_ABI_ALIGNMENT (TREE_TYPE (decl), DECL_ALIGN (decl));

  if (align > 32)
    align2 = floor_log2 (align / BITS_PER_UNIT);
  else if (size > 4)
    align2 = 3;

  if (! DECL_COMMON (decl))
    {
      /* Forget section.  */
      in_section = NULL;

      /* Globalize TLS BSS.  */
      if (TREE_PUBLIC (decl) && DECL_THREAD_LOCAL_P (decl))
	{
	  fputs (GLOBAL_ASM_OP, stream);
	  assemble_name (stream, name);
	  fputc ('\n', stream);
	}

      /* Switch to section and skip space.  */
      fputs ("\t.csect ", stream);
      assemble_name (stream, name);
      fprintf (stream, ",%u\n", align2);
      ASM_DECLARE_OBJECT_NAME (stream, name, decl);
      ASM_OUTPUT_SKIP (stream, size ? size : 1);
      return;
    }

  if (TREE_PUBLIC (decl))
    {
      fprintf (stream,
	       "\t.comm %s," HOST_WIDE_INT_PRINT_UNSIGNED ",%u" ,
	       name, size, align2);

#ifdef HAVE_GAS_HIDDEN
      if (decl != NULL)
	fputs (rs6000_xcoff_visibility (decl), stream);
#endif
      putc ('\n', stream);
    }
  else
      fprintf (stream,
	       "\t.lcomm %s," HOST_WIDE_INT_PRINT_UNSIGNED ",%s,%u\n",
	       (*targetm.strip_name_encoding) (name), size, name, align2);
}

/* This macro produces the initial definition of a object (variable) name.
   Because AIX assembler's .set command has unexpected semantics, we output
   all aliases as alternative labels in front of the definition.  */

void
rs6000_xcoff_declare_object_name (FILE *file, const char *name, tree decl)
{
  struct declare_alias_data data = {file, false};
  ASM_OUTPUT_LABEL (file, name);
  symtab_node::get_create (decl)->call_for_symbol_and_aliases (rs6000_declare_alias,
							       &data, true);
}

/* Overide the default 'SYMBOL-.' syntax with AIX compatible 'SYMBOL-$'. */

void
rs6000_asm_output_dwarf_pcrel (FILE *file, int size, const char *label)
{
  fputs (integer_asm_op (size, FALSE), file);
  assemble_name (file, label);
  fputs ("-$", file);
}

/* Output a symbol offset relative to the dbase for the current object.
   We use __gcc_unwind_dbase as an arbitrary base for dbase and assume
   signed offsets.

   __gcc_unwind_dbase is embedded in all executables/libraries through
   libgcc/config/rs6000/crtdbase.S.  */

void
rs6000_asm_output_dwarf_datarel (FILE *file, int size, const char *label)
{
  fputs (integer_asm_op (size, FALSE), file);
  assemble_name (file, label);
  fputs("-__gcc_unwind_dbase", file);
}

#ifdef HAVE_AS_TLS
static void
rs6000_xcoff_encode_section_info (tree decl, rtx rtl, int first)
{
  rtx symbol;
  int flags;
  const char *symname;

  default_encode_section_info (decl, rtl, first);

  /* Careful not to prod global register variables.  */
  if (!MEM_P (rtl))
    return;
  symbol = XEXP (rtl, 0);
  if (!SYMBOL_REF_P (symbol))
    return;

  flags = SYMBOL_REF_FLAGS (symbol);

  if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL_P (decl))
    flags &= ~SYMBOL_FLAG_HAS_BLOCK_INFO;

  SYMBOL_REF_FLAGS (symbol) = flags;

  symname = XSTR (symbol, 0);

  /* Append CSECT mapping class, unless the symbol already is qualified.
     Aliases are implemented as labels, so the symbol name should not add
     a mapping class.  */
  if (decl
      && DECL_P (decl)
      && VAR_OR_FUNCTION_DECL_P (decl)
      && (symtab_node::get (decl) == NULL
	  || symtab_node::get (decl)->alias == 0)
      && symname[strlen (symname) - 1] != ']')
    {
      const char *smclass = NULL;

      if (TREE_CODE (decl) == FUNCTION_DECL)
	smclass = "[DS]";
      else if (DECL_THREAD_LOCAL_P (decl))
	{
	  if (bss_initializer_p (decl))
	    smclass = "[UL]";
	  else if (flag_data_sections)
	    smclass = "[TL]";
	}
      else if (DECL_EXTERNAL (decl))
	smclass = "[UA]";
      else if (bss_initializer_p (decl))
	smclass = "[BS]";
      else if (flag_data_sections)
	{
	  /* This must exactly match the logic of select section.  */
	  if (decl_readonly_section (decl, compute_reloc_for_var (decl)))
	    smclass = "[RO]";
	  else
	    smclass = "[RW]";
	}

      if (smclass != NULL)
	{
	  char *newname = XALLOCAVEC (char, strlen (symname) + 5);

	  strcpy (newname, symname);
	  strcat (newname, smclass);
	  XSTR (symbol, 0) = ggc_strdup (newname);
	}
    }
}
#endif /* HAVE_AS_TLS */
#endif /* TARGET_XCOFF */

void
rs6000_asm_weaken_decl (FILE *stream, tree decl,
			const char *name, const char *val)
{
  fputs ("\t.weak\t", stream);
  assemble_name (stream, name);
  if (decl && TREE_CODE (decl) == FUNCTION_DECL
      && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)
    {
#if TARGET_XCOFF && HAVE_GAS_HIDDEN
      if (TARGET_XCOFF)
	fputs (rs6000_xcoff_visibility (decl), stream);
#endif
      fputs ("\n\t.weak\t.", stream);
      RS6000_OUTPUT_BASENAME (stream, name);
    }
#if TARGET_XCOFF && HAVE_GAS_HIDDEN
  if (TARGET_XCOFF)
    fputs (rs6000_xcoff_visibility (decl), stream);
#endif
  fputc ('\n', stream);

  if (val)
    {
#ifdef ASM_OUTPUT_DEF
      ASM_OUTPUT_DEF (stream, name, val);
#endif
      if (decl && TREE_CODE (decl) == FUNCTION_DECL
	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)
	{
	  fputs ("\t.set\t.", stream);
	  RS6000_OUTPUT_BASENAME (stream, name);
	  fputs (",.", stream);
	  RS6000_OUTPUT_BASENAME (stream, val);
	  fputc ('\n', stream);
	}
    }
}


/* Return true if INSN should not be copied.  */

static bool
rs6000_cannot_copy_insn_p (rtx_insn *insn)
{
  return recog_memoized (insn) >= 0
	 && get_attr_cannot_copy (insn);
}

/* Compute a (partial) cost for rtx X.  Return true if the complete
   cost has been computed, and false if subexpressions should be
   scanned.  In either case, *TOTAL contains the cost result.  */

static bool
rs6000_rtx_costs (rtx x, machine_mode mode, int outer_code,
		  int opno ATTRIBUTE_UNUSED, int *total, bool speed)
{
  int code = GET_CODE (x);

  switch (code)
    {
      /* On the RS/6000, if it is valid in the insn, it is free.  */
    case CONST_INT:
      if (((outer_code == SET
	    || outer_code == PLUS
	    || outer_code == MINUS)
	   && (satisfies_constraint_I (x)
	       || satisfies_constraint_L (x)))
	  || (outer_code == AND
	      && (satisfies_constraint_K (x)
		  || (mode == SImode
		      ? satisfies_constraint_L (x)
		      : satisfies_constraint_J (x))))
	  || ((outer_code == IOR || outer_code == XOR)
	      && (satisfies_constraint_K (x)
		  || (mode == SImode
		      ? satisfies_constraint_L (x)
		      : satisfies_constraint_J (x))))
	  || outer_code == ASHIFT
	  || outer_code == ASHIFTRT
	  || outer_code == LSHIFTRT
	  || outer_code == ROTATE
	  || outer_code == ROTATERT
	  || outer_code == ZERO_EXTRACT
	  || (outer_code == MULT
	      && satisfies_constraint_I (x))
	  || ((outer_code == DIV || outer_code == UDIV
	       || outer_code == MOD || outer_code == UMOD)
	      && exact_log2 (INTVAL (x)) >= 0)
	  || (outer_code == COMPARE
	      && (satisfies_constraint_I (x)
		  || satisfies_constraint_K (x)))
	  || ((outer_code == EQ || outer_code == NE)
	      && (satisfies_constraint_I (x)
		  || satisfies_constraint_K (x)
		  || (mode == SImode
		      ? satisfies_constraint_L (x)
		      : satisfies_constraint_J (x))))
	  || (outer_code == GTU
	      && satisfies_constraint_I (x))
	  || (outer_code == LTU
	      && satisfies_constraint_P (x)))
	{
	  *total = 0;
	  return true;
	}
      else if ((outer_code == PLUS
		&& reg_or_add_cint_operand (x, mode))
	       || (outer_code == MINUS
		   && reg_or_sub_cint_operand (x, mode))
	       || ((outer_code == SET
		    || outer_code == IOR
		    || outer_code == XOR)
		   && (INTVAL (x)
		       & ~ (unsigned HOST_WIDE_INT) 0xffffffff) == 0))
	{
	  *total = COSTS_N_INSNS (1);
	  return true;
	}
      /* FALLTHRU */

    case CONST_DOUBLE:
    case CONST_WIDE_INT:
    case CONST:
    case HIGH:
    case SYMBOL_REF:
      *total = !speed ? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (2);
      return true;

    case MEM:
      /* When optimizing for size, MEM should be slightly more expensive
	 than generating address, e.g., (plus (reg) (const)).
	 L1 cache latency is about two instructions.  */
      *total = !speed ? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (2);
      if (rs6000_slow_unaligned_access (mode, MEM_ALIGN (x)))
	*total += COSTS_N_INSNS (100);
      return true;

    case LABEL_REF:
      *total = 0;
      return true;

    case PLUS:
    case MINUS:
      if (FLOAT_MODE_P (mode))
	*total = rs6000_cost->fp;
      else
	*total = COSTS_N_INSNS (1);
      return false;

    case MULT:
      if (CONST_INT_P (XEXP (x, 1))
	  && satisfies_constraint_I (XEXP (x, 1)))
	{
	  if (INTVAL (XEXP (x, 1)) >= -256
	      && INTVAL (XEXP (x, 1)) <= 255)
	    *total = rs6000_cost->mulsi_const9;
	  else
	    *total = rs6000_cost->mulsi_const;
	}
      else if (mode == SFmode)
	*total = rs6000_cost->fp;
      else if (FLOAT_MODE_P (mode))
	*total = rs6000_cost->dmul;
      else if (mode == DImode)
	*total = rs6000_cost->muldi;
      else
	*total = rs6000_cost->mulsi;
      return false;

    case FMA:
      if (mode == SFmode)
	*total = rs6000_cost->fp;
      else
	*total = rs6000_cost->dmul;
      break;

    case DIV:
    case MOD:
      if (FLOAT_MODE_P (mode))
	{
	  *total = mode == DFmode ? rs6000_cost->ddiv
				  : rs6000_cost->sdiv;
	  return false;
	}
      /* FALLTHRU */

    case UDIV:
    case UMOD:
      if (CONST_INT_P (XEXP (x, 1))
	  && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
	{
	  if (code == DIV || code == MOD)
	    /* Shift, addze */
	    *total = COSTS_N_INSNS (2);
	  else
	    /* Shift */
	    *total = COSTS_N_INSNS (1);
	}
      else
	{
	  if (GET_MODE (XEXP (x, 1)) == DImode)
	    *total = rs6000_cost->divdi;
	  else
	    *total = rs6000_cost->divsi;
	}
      /* Add in shift and subtract for MOD unless we have a mod instruction. */
      if (!TARGET_MODULO && (code == MOD || code == UMOD))
	*total += COSTS_N_INSNS (2);
      return false;

    case CTZ:
      *total = COSTS_N_INSNS (TARGET_CTZ ? 1 : 4);
      return false;

    case FFS:
      *total = COSTS_N_INSNS (4);
      return false;

    case POPCOUNT:
      *total = COSTS_N_INSNS (TARGET_POPCNTD ? 1 : 6);
      return false;

    case PARITY:
      *total = COSTS_N_INSNS (TARGET_CMPB ? 2 : 6);
      return false;

    case NOT:
      if (outer_code == AND || outer_code == IOR || outer_code == XOR)
	*total = 0;
      else
	*total = COSTS_N_INSNS (1);
      return false;

    case AND:
      if (CONST_INT_P (XEXP (x, 1)))
	{
	  rtx left = XEXP (x, 0);
	  rtx_code left_code = GET_CODE (left);

	  /* rotate-and-mask: 1 insn.  */
	  if ((left_code == ROTATE
	       || left_code == ASHIFT
	       || left_code == LSHIFTRT)
	      && rs6000_is_valid_shift_mask (XEXP (x, 1), left, mode))
	    {
	      *total = rtx_cost (XEXP (left, 0), mode, left_code, 0, speed);
	      if (!CONST_INT_P (XEXP (left, 1)))
		*total += rtx_cost (XEXP (left, 1), SImode, left_code, 1, speed);
	      *total += COSTS_N_INSNS (1);
	      return true;
	    }

	  /* rotate-and-mask (no rotate), andi., andis.: 1 insn.  */
	  HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
	  if (rs6000_is_valid_and_mask (XEXP (x, 1), mode)
	      || (val & 0xffff) == val
	      || (val & 0xffff0000) == val
	      || ((val & 0xffff) == 0 && mode == SImode))
	    {
	      *total = rtx_cost (left, mode, AND, 0, speed);
	      *total += COSTS_N_INSNS (1);
	      return true;
	    }

	  /* 2 insns.  */
	  if (rs6000_is_valid_2insn_and (XEXP (x, 1), mode))
	    {
	      *total = rtx_cost (left, mode, AND, 0, speed);
	      *total += COSTS_N_INSNS (2);
	      return true;
	    }
	}

      *total = COSTS_N_INSNS (1);
      return false;

    case IOR:
      /* FIXME */
      *total = COSTS_N_INSNS (1);
      return true;

    case CLZ:
    case XOR:
    case ZERO_EXTRACT:
      *total = COSTS_N_INSNS (1);
      return false;

    case ASHIFT:
      /* The EXTSWSLI instruction is a combined instruction.  Don't count both
	 the sign extend and shift separately within the insn.  */
      if (TARGET_EXTSWSLI && mode == DImode
	  && GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
	  && GET_MODE (XEXP (XEXP (x, 0), 0)) == SImode)
	{
	  *total = 0;
	  return false;
	}
      /* fall through */
	  
    case ASHIFTRT:
    case LSHIFTRT:
    case ROTATE:
    case ROTATERT:
      /* Handle mul_highpart.  */
      if (outer_code == TRUNCATE
	  && GET_CODE (XEXP (x, 0)) == MULT)
	{
	  if (mode == DImode)
	    *total = rs6000_cost->muldi;
	  else
	    *total = rs6000_cost->mulsi;
	  return true;
	}
      else if (outer_code == AND)
	*total = 0;
      else
	*total = COSTS_N_INSNS (1);
      return false;

    case SIGN_EXTEND:
    case ZERO_EXTEND:
      if (MEM_P (XEXP (x, 0)))
	*total = 0;
      else
	*total = COSTS_N_INSNS (1);
      return false;

    case COMPARE:
    case NEG:
    case ABS:
      if (!FLOAT_MODE_P (mode))
	{
	  *total = COSTS_N_INSNS (1);
	  return false;
	}
      /* FALLTHRU */

    case FLOAT:
    case UNSIGNED_FLOAT:
    case FIX:
    case UNSIGNED_FIX:
    case FLOAT_TRUNCATE:
      *total = rs6000_cost->fp;
      return false;

    case FLOAT_EXTEND:
      if (mode == DFmode)
	*total = rs6000_cost->sfdf_convert;
      else
	*total = rs6000_cost->fp;
      return false;

    case CALL:
    case IF_THEN_ELSE:
      if (!speed)
	{
	  *total = COSTS_N_INSNS (1);
	  return true;
	}
      else if (FLOAT_MODE_P (mode) && TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT)
	{
	  *total = rs6000_cost->fp;
	  return false;
	}
      break;

    case NE:
    case EQ:
    case GTU:
    case LTU:
      /* Carry bit requires mode == Pmode.
	 NEG or PLUS already counted so only add one.  */
      if (mode == Pmode
	  && (outer_code == NEG || outer_code == PLUS))
	{
	  *total = COSTS_N_INSNS (1);
	  return true;
	}
      /* FALLTHRU */

    case GT:
    case LT:
    case UNORDERED:
      if (outer_code == SET)
	{
	  if (XEXP (x, 1) == const0_rtx)
	    {
	      *total = COSTS_N_INSNS (2);
	      return true;
	    }
	  else
	    {
	      *total = COSTS_N_INSNS (3);
	      return false;
	    }
	}
      /* CC COMPARE.  */
      if (outer_code == COMPARE)
	{
	  *total = 0;
	  return true;
	}
      break;

    case UNSPEC:
      if (XINT (x, 1) == UNSPECV_MMA_XXSETACCZ)
	{
	  *total = 0;
	  return true;
	}
      break;

    default:
      break;
    }

  return false;
}

/* Debug form of r6000_rtx_costs that is selected if -mdebug=cost.  */

static bool
rs6000_debug_rtx_costs (rtx x, machine_mode mode, int outer_code,
			int opno, int *total, bool speed)
{
  bool ret = rs6000_rtx_costs (x, mode, outer_code, opno, total, speed);

  fprintf (stderr,
	   "\nrs6000_rtx_costs, return = %s, mode = %s, outer_code = %s, "
	   "opno = %d, total = %d, speed = %s, x:\n",
	   ret ? "complete" : "scan inner",
	   GET_MODE_NAME (mode),
	   GET_RTX_NAME (outer_code),
	   opno,
	   *total,
	   speed ? "true" : "false");

  debug_rtx (x);

  return ret;
}

static int
rs6000_insn_cost (rtx_insn *insn, bool speed)
{
  if (recog_memoized (insn) < 0)
    return 0;

  /* If we are optimizing for size, just use the length.  */
  if (!speed)
    return get_attr_length (insn);

  /* Use the cost if provided.  */
  int cost = get_attr_cost (insn);
  if (cost > 0)
    return cost;

  /* If the insn tells us how many insns there are, use that.  Otherwise use
     the length/4.  Adjust the insn length to remove the extra size that
     prefixed instructions take.  */
  int n = get_attr_num_insns (insn);
  if (n == 0)
    {
      int length = get_attr_length (insn);
      if (get_attr_prefixed (insn) == PREFIXED_YES)
	{
	  int adjust = 0;
	  ADJUST_INSN_LENGTH (insn, adjust);
	  length -= adjust;
	}

      n = length / 4;
    }

  enum attr_type type = get_attr_type (insn);

  switch (type)
    {
    case TYPE_LOAD:
    case TYPE_FPLOAD:
    case TYPE_VECLOAD:
      cost = COSTS_N_INSNS (n + 1);
      break;

    case TYPE_MUL:
      switch (get_attr_size (insn))
	{
	case SIZE_8:
	  cost = COSTS_N_INSNS (n - 1) + rs6000_cost->mulsi_const9;
	  break;
	case SIZE_16:
	  cost = COSTS_N_INSNS (n - 1) + rs6000_cost->mulsi_const;
	  break;
	case SIZE_32:
	  cost = COSTS_N_INSNS (n - 1) + rs6000_cost->mulsi;
	  break;
	case SIZE_64:
	  cost = COSTS_N_INSNS (n - 1) + rs6000_cost->muldi;
	  break;
	default:
	  gcc_unreachable ();
	}
      break;
    case TYPE_DIV:
      switch (get_attr_size (insn))
	{
	case SIZE_32:
	  cost = COSTS_N_INSNS (n - 1) + rs6000_cost->divsi;
	  break;
	case SIZE_64:
	  cost = COSTS_N_INSNS (n - 1) + rs6000_cost->divdi;
	  break;
	default:
	  gcc_unreachable ();
	}
      break;

    case TYPE_FP:
      cost = n * rs6000_cost->fp;
      break;
    case TYPE_DMUL:
      cost = n * rs6000_cost->dmul;
      break;
    case TYPE_SDIV:
      cost = n * rs6000_cost->sdiv;
      break;
    case TYPE_DDIV:
      cost = n * rs6000_cost->ddiv;
      break;

    case TYPE_SYNC:
    case TYPE_LOAD_L:
    case TYPE_MFCR:
    case TYPE_MFCRF:
      cost = COSTS_N_INSNS (n + 2);
      break;

    default:
      cost = COSTS_N_INSNS (n);
    }

  return cost;
}

/* Debug form of ADDRESS_COST that is selected if -mdebug=cost.  */

static int
rs6000_debug_address_cost (rtx x, machine_mode mode,
			   addr_space_t as, bool speed)
{
  int ret = TARGET_ADDRESS_COST (x, mode, as, speed);

  fprintf (stderr, "\nrs6000_address_cost, return = %d, speed = %s, x:\n",
	   ret, speed ? "true" : "false");
  debug_rtx (x);

  return ret;
}


/* A C expression returning the cost of moving data from a register of class
   CLASS1 to one of CLASS2.  */

static int
rs6000_register_move_cost (machine_mode mode,
			   reg_class_t from, reg_class_t to)
{
  int ret;
  reg_class_t rclass;

  if (TARGET_DEBUG_COST)
    dbg_cost_ctrl++;

  /* If we have VSX, we can easily move between FPR or Altivec registers,
     otherwise we can only easily move within classes.
     Do this first so we give best-case answers for union classes
     containing both gprs and vsx regs.  */
  HARD_REG_SET to_vsx, from_vsx;
  to_vsx = reg_class_contents[to] & reg_class_contents[VSX_REGS];
  from_vsx = reg_class_contents[from] & reg_class_contents[VSX_REGS];
  if (!hard_reg_set_empty_p (to_vsx)
      && !hard_reg_set_empty_p (from_vsx)
      && (TARGET_VSX
	  || hard_reg_set_intersect_p (to_vsx, from_vsx)))
    {
      int reg = FIRST_FPR_REGNO;
      if (TARGET_VSX
	  || (TEST_HARD_REG_BIT (to_vsx, FIRST_ALTIVEC_REGNO)
	      && TEST_HARD_REG_BIT (from_vsx, FIRST_ALTIVEC_REGNO)))
	reg = FIRST_ALTIVEC_REGNO;
      ret = 2 * hard_regno_nregs (reg, mode);
    }

  /*  Moves from/to GENERAL_REGS.  */
  else if ((rclass = from, reg_classes_intersect_p (to, GENERAL_REGS))
	   || (rclass = to, reg_classes_intersect_p (from, GENERAL_REGS)))
    {
      if (rclass == FLOAT_REGS || rclass == ALTIVEC_REGS || rclass == VSX_REGS)
	{
	  if (TARGET_DIRECT_MOVE)
	    {
	      /* Keep the cost for direct moves above that for within
		 a register class even if the actual processor cost is
		 comparable.  We do this because a direct move insn
		 can't be a nop, whereas with ideal register
		 allocation a move within the same class might turn
		 out to be a nop.  */
	      if (rs6000_tune == PROCESSOR_POWER9
		  || rs6000_tune == PROCESSOR_POWER10)
		ret = 3 * hard_regno_nregs (FIRST_GPR_REGNO, mode);
	      else
		ret = 4 * hard_regno_nregs (FIRST_GPR_REGNO, mode);
	      /* SFmode requires a conversion when moving between gprs
		 and vsx.  */
	      if (mode == SFmode)
		ret += 2;
	    }
	  else
	    ret = (rs6000_memory_move_cost (mode, rclass, false)
		   + rs6000_memory_move_cost (mode, GENERAL_REGS, false));
	}

      /* It's more expensive to move CR_REGS than CR0_REGS because of the
	 shift.  */
      else if (rclass == CR_REGS)
	ret = 4;

      /* For those processors that have slow LR/CTR moves, make them more
         expensive than memory in order to bias spills to memory .*/
      else if ((rs6000_tune == PROCESSOR_POWER6
		|| rs6000_tune == PROCESSOR_POWER7
		|| rs6000_tune == PROCESSOR_POWER8
		|| rs6000_tune == PROCESSOR_POWER9)
	       && reg_class_subset_p (rclass, SPECIAL_REGS))
        ret = 6 * hard_regno_nregs (FIRST_GPR_REGNO, mode);

      else
	/* A move will cost one instruction per GPR moved.  */
	ret = 2 * hard_regno_nregs (FIRST_GPR_REGNO, mode);
    }

  /* Everything else has to go through GENERAL_REGS.  */
  else
    ret = (rs6000_register_move_cost (mode, GENERAL_REGS, to)
	   + rs6000_register_move_cost (mode, from, GENERAL_REGS));

  if (TARGET_DEBUG_COST)
    {
      if (dbg_cost_ctrl == 1)
	fprintf (stderr,
		 "rs6000_register_move_cost: ret=%d, mode=%s, from=%s, to=%s\n",
		 ret, GET_MODE_NAME (mode), reg_class_names[from],
		 reg_class_names[to]);
      dbg_cost_ctrl--;
    }

  return ret;
}

/* A C expressions returning the cost of moving data of MODE from a register to
   or from memory.  */

static int
rs6000_memory_move_cost (machine_mode mode, reg_class_t rclass,
			 bool in ATTRIBUTE_UNUSED)
{
  int ret;

  if (TARGET_DEBUG_COST)
    dbg_cost_ctrl++;

  if (reg_classes_intersect_p (rclass, GENERAL_REGS))
    ret = 4 * hard_regno_nregs (0, mode);
  else if ((reg_classes_intersect_p (rclass, FLOAT_REGS)
	    || reg_classes_intersect_p (rclass, VSX_REGS)))
    ret = 4 * hard_regno_nregs (32, mode);
  else if (reg_classes_intersect_p (rclass, ALTIVEC_REGS))
    ret = 4 * hard_regno_nregs (FIRST_ALTIVEC_REGNO, mode);
  else
    ret = 4 + rs6000_register_move_cost (mode, rclass, GENERAL_REGS);

  if (TARGET_DEBUG_COST)
    {
      if (dbg_cost_ctrl == 1)
	fprintf (stderr,
		 "rs6000_memory_move_cost: ret=%d, mode=%s, rclass=%s, in=%d\n",
		 ret, GET_MODE_NAME (mode), reg_class_names[rclass], in);
      dbg_cost_ctrl--;
    }

  return ret;
}

/* Implement TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS.

   The register allocator chooses GEN_OR_VSX_REGS for the allocno
   class if GENERAL_REGS and VSX_REGS cost is lower than the memory
   cost.  This happens a lot when TARGET_DIRECT_MOVE makes the register
   move cost between GENERAL_REGS and VSX_REGS low.

   It might seem reasonable to use a union class.  After all, if usage
   of vsr is low and gpr high, it might make sense to spill gpr to vsr
   rather than memory.  However, in cases where register pressure of
   both is high, like the cactus_adm spec test, allowing
   GEN_OR_VSX_REGS as the allocno class results in bad decisions in
   the first scheduling pass.  This is partly due to an allocno of
   GEN_OR_VSX_REGS wrongly contributing to the GENERAL_REGS pressure
   class, which gives too high a pressure for GENERAL_REGS and too low
   for VSX_REGS.  So, force a choice of the subclass here.

   The best class is also the union if GENERAL_REGS and VSX_REGS have
   the same cost.  In that case we do use GEN_OR_VSX_REGS as the
   allocno class, since trying to narrow down the class by regno mode
   is prone to error.  For example, SImode is allowed in VSX regs and
   in some cases (eg. gcc.target/powerpc/p9-xxbr-3.c do_bswap32_vect)
   it would be wrong to choose an allocno of GENERAL_REGS based on
   SImode.  */

static reg_class_t
rs6000_ira_change_pseudo_allocno_class (int regno ATTRIBUTE_UNUSED,
					reg_class_t allocno_class,
					reg_class_t best_class)
{
  switch (allocno_class)
    {
    case GEN_OR_VSX_REGS:
      /* best_class must be a subset of allocno_class.  */
      gcc_checking_assert (best_class == GEN_OR_VSX_REGS
			   || best_class == GEN_OR_FLOAT_REGS
			   || best_class == VSX_REGS
			   || best_class == ALTIVEC_REGS
			   || best_class == FLOAT_REGS
			   || best_class == GENERAL_REGS
			   || best_class == BASE_REGS);
      /* Use best_class but choose wider classes when copying from the
	 wider class to best_class is cheap.  This mimics IRA choice
	 of allocno class.  */
      if (best_class == BASE_REGS)
	return GENERAL_REGS;
      if (TARGET_VSX && best_class == FLOAT_REGS)
	return VSX_REGS;
      return best_class;

    case VSX_REGS:
      if (best_class == ALTIVEC_REGS)
	return ALTIVEC_REGS;

    default:
      break;
    }

  return allocno_class;
}

/* Load up a constant.  If the mode is a vector mode, splat the value across
   all of the vector elements.  */

static rtx
rs6000_load_constant_and_splat (machine_mode mode, REAL_VALUE_TYPE dconst)
{
  rtx reg;

  if (mode == SFmode || mode == DFmode)
    {
      rtx d = const_double_from_real_value (dconst, mode);
      reg = force_reg (mode, d);
    }
  else if (mode == V4SFmode)
    {
      rtx d = const_double_from_real_value (dconst, SFmode);
      rtvec v = gen_rtvec (4, d, d, d, d);
      reg = gen_reg_rtx (mode);
      rs6000_expand_vector_init (reg, gen_rtx_PARALLEL (mode, v));
    }
  else if (mode == V2DFmode)
    {
      rtx d = const_double_from_real_value (dconst, DFmode);
      rtvec v = gen_rtvec (2, d, d);
      reg = gen_reg_rtx (mode);
      rs6000_expand_vector_init (reg, gen_rtx_PARALLEL (mode, v));
    }
  else
    gcc_unreachable ();

  return reg;
}

/* Generate an FMA instruction.  */

static void
rs6000_emit_madd (rtx target, rtx m1, rtx m2, rtx a)
{
  machine_mode mode = GET_MODE (target);
  rtx dst;

  dst = expand_ternary_op (mode, fma_optab, m1, m2, a, target, 0);
  gcc_assert (dst != NULL);

  if (dst != target)
    emit_move_insn (target, dst);
}

/* Generate a FNMSUB instruction: dst = -fma(m1, m2, -a).  */

static void
rs6000_emit_nmsub (rtx dst, rtx m1, rtx m2, rtx a)
{
  machine_mode mode = GET_MODE (dst);
  rtx r;

  /* This is a tad more complicated, since the fnma_optab is for
     a different expression: fma(-m1, m2, a), which is the same
     thing except in the case of signed zeros.

     Fortunately we know that if FMA is supported that FNMSUB is
     also supported in the ISA.  Just expand it directly.  */

  gcc_assert (optab_handler (fma_optab, mode) != CODE_FOR_nothing);

  r = gen_rtx_NEG (mode, a);
  r = gen_rtx_FMA (mode, m1, m2, r);
  r = gen_rtx_NEG (mode, r);
  emit_insn (gen_rtx_SET (dst, r));
}

/* Newton-Raphson approximation of floating point divide DST = N/D.  If NOTE_P,
   add a reg_note saying that this was a division.  Support both scalar and
   vector divide.  Assumes no trapping math and finite arguments.  */

void
rs6000_emit_swdiv (rtx dst, rtx n, rtx d, bool note_p)
{
  machine_mode mode = GET_MODE (dst);
  rtx one, x0, e0, x1, xprev, eprev, xnext, enext, u, v;
  int i;

  /* Low precision estimates guarantee 5 bits of accuracy.  High
     precision estimates guarantee 14 bits of accuracy.  SFmode
     requires 23 bits of accuracy.  DFmode requires 52 bits of
     accuracy.  Each pass at least doubles the accuracy, leading
     to the following.  */
  int passes = (TARGET_RECIP_PRECISION) ? 1 : 3;
  if (mode == DFmode || mode == V2DFmode)
    passes++;

  enum insn_code code = optab_handler (smul_optab, mode);
  insn_gen_fn gen_mul = GEN_FCN (code);

  gcc_assert (code != CODE_FOR_nothing);

  one = rs6000_load_constant_and_splat (mode, dconst1);

  /* x0 = 1./d estimate */
  x0 = gen_reg_rtx (mode);
  emit_insn (gen_rtx_SET (x0, gen_rtx_UNSPEC (mode, gen_rtvec (1, d),
					      UNSPEC_FRES)));

  /* Each iteration but the last calculates x_(i+1) = x_i * (2 - d * x_i).  */
  if (passes > 1) {

    /* e0 = 1. - d * x0  */
    e0 = gen_reg_rtx (mode);
    rs6000_emit_nmsub (e0, d, x0, one);

    /* x1 = x0 + e0 * x0  */
    x1 = gen_reg_rtx (mode);
    rs6000_emit_madd (x1, e0, x0, x0);

    for (i = 0, xprev = x1, eprev = e0; i < passes - 2;
	 ++i, xprev = xnext, eprev = enext) {
      
      /* enext = eprev * eprev  */
      enext = gen_reg_rtx (mode);
      emit_insn (gen_mul (enext, eprev, eprev));

      /* xnext = xprev + enext * xprev  */
      xnext = gen_reg_rtx (mode);
      rs6000_emit_madd (xnext, enext, xprev, xprev);
    }

  } else
    xprev = x0;

  /* The last iteration calculates x_(i+1) = n * x_i * (2 - d * x_i).  */

  /* u = n * xprev  */
  u = gen_reg_rtx (mode);
  emit_insn (gen_mul (u, n, xprev));

  /* v = n - (d * u)  */
  v = gen_reg_rtx (mode);
  rs6000_emit_nmsub (v, d, u, n);

  /* dst = (v * xprev) + u  */
  rs6000_emit_madd (dst, v, xprev, u);

  if (note_p)
    add_reg_note (get_last_insn (), REG_EQUAL, gen_rtx_DIV (mode, n, d));
}

/* Goldschmidt's Algorithm for single/double-precision floating point
   sqrt and rsqrt.  Assumes no trapping math and finite arguments.  */

void
rs6000_emit_swsqrt (rtx dst, rtx src, bool recip)
{
  machine_mode mode = GET_MODE (src);
  rtx e = gen_reg_rtx (mode);
  rtx g = gen_reg_rtx (mode);
  rtx h = gen_reg_rtx (mode);

  /* Low precision estimates guarantee 5 bits of accuracy.  High
     precision estimates guarantee 14 bits of accuracy.  SFmode
     requires 23 bits of accuracy.  DFmode requires 52 bits of
     accuracy.  Each pass at least doubles the accuracy, leading
     to the following.  */
  int passes = (TARGET_RECIP_PRECISION) ? 1 : 3;
  if (mode == DFmode || mode == V2DFmode)
    passes++;

  int i;
  rtx mhalf;
  enum insn_code code = optab_handler (smul_optab, mode);
  insn_gen_fn gen_mul = GEN_FCN (code);

  gcc_assert (code != CODE_FOR_nothing);

  mhalf = rs6000_load_constant_and_splat (mode, dconsthalf);

  /* e = rsqrt estimate */
  emit_insn (gen_rtx_SET (e, gen_rtx_UNSPEC (mode, gen_rtvec (1, src),
					     UNSPEC_RSQRT)));

  /* If (src == 0.0) filter infinity to prevent NaN for sqrt(0.0).  */
  if (!recip)
    {
      rtx zero = force_reg (mode, CONST0_RTX (mode));

      if (mode == SFmode)
	{
	  rtx target = emit_conditional_move (e, { GT, src, zero, mode },
					      e, zero, mode, 0);
	  if (target != e)
	    emit_move_insn (e, target);
	}
      else
	{
	  rtx cond = gen_rtx_GT (VOIDmode, e, zero);
	  rs6000_emit_vector_cond_expr (e, e, zero, cond, src, zero);
	}
    }

  /* g = sqrt estimate.  */
  emit_insn (gen_mul (g, e, src));
  /* h = 1/(2*sqrt) estimate.  */
  emit_insn (gen_mul (h, e, mhalf));

  if (recip)
    {
      if (passes == 1)
	{
	  rtx t = gen_reg_rtx (mode);
	  rs6000_emit_nmsub (t, g, h, mhalf);
	  /* Apply correction directly to 1/rsqrt estimate.  */
	  rs6000_emit_madd (dst, e, t, e);
	}
      else
	{
	  for (i = 0; i < passes; i++)
	    {
	      rtx t1 = gen_reg_rtx (mode);
	      rtx g1 = gen_reg_rtx (mode);
	      rtx h1 = gen_reg_rtx (mode);

	      rs6000_emit_nmsub (t1, g, h, mhalf);
	      rs6000_emit_madd (g1, g, t1, g);
	      rs6000_emit_madd (h1, h, t1, h);

	      g = g1;
	      h = h1;
	    }
	  /* Multiply by 2 for 1/rsqrt.  */
	  emit_insn (gen_add3_insn (dst, h, h));
	}
    }
  else
    {
      rtx t = gen_reg_rtx (mode);
      rs6000_emit_nmsub (t, g, h, mhalf);
      rs6000_emit_madd (dst, g, t, g);
    }

  return;
}

/* Emit popcount intrinsic on TARGET_POPCNTB (Power5) and TARGET_POPCNTD
   (Power7) targets.  DST is the target, and SRC is the argument operand.  */

void
rs6000_emit_popcount (rtx dst, rtx src)
{
  machine_mode mode = GET_MODE (dst);
  rtx tmp1, tmp2;

  /* Use the PPC ISA 2.06 popcnt{w,d} instruction if we can.  */
  if (TARGET_POPCNTD)
    {
      if (mode == SImode)
	emit_insn (gen_popcntdsi2 (dst, src));
      else
	emit_insn (gen_popcntddi2 (dst, src));
      return;
    }

  tmp1 = gen_reg_rtx (mode);

  if (mode == SImode)
    {
      emit_insn (gen_popcntbsi2 (tmp1, src));
      tmp2 = expand_mult (SImode, tmp1, GEN_INT (0x01010101),
			   NULL_RTX, 0);
      tmp2 = force_reg (SImode, tmp2);
      emit_insn (gen_lshrsi3 (dst, tmp2, GEN_INT (24)));
    }
  else
    {
      emit_insn (gen_popcntbdi2 (tmp1, src));
      tmp2 = expand_mult (DImode, tmp1,
			  GEN_INT ((HOST_WIDE_INT)
				   0x01010101 << 32 | 0x01010101),
			  NULL_RTX, 0);
      tmp2 = force_reg (DImode, tmp2);
      emit_insn (gen_lshrdi3 (dst, tmp2, GEN_INT (56)));
    }
}


/* Emit parity intrinsic on TARGET_POPCNTB targets.  DST is the
   target, and SRC is the argument operand.  */

void
rs6000_emit_parity (rtx dst, rtx src)
{
  machine_mode mode = GET_MODE (dst);
  rtx tmp;

  tmp = gen_reg_rtx (mode);

  /* Use the PPC ISA 2.05 prtyw/prtyd instruction if we can.  */
  if (TARGET_CMPB)
    {
      if (mode == SImode)
	{
	  emit_insn (gen_popcntbsi2 (tmp, src));
	  emit_insn (gen_paritysi2_cmpb (dst, tmp));
	}
      else
	{
	  emit_insn (gen_popcntbdi2 (tmp, src));
	  emit_insn (gen_paritydi2_cmpb (dst, tmp));
	}
      return;
    }

  if (mode == SImode)
    {
      /* Is mult+shift >= shift+xor+shift+xor?  */
      if (rs6000_cost->mulsi_const >= COSTS_N_INSNS (3))
	{
	  rtx tmp1, tmp2, tmp3, tmp4;

	  tmp1 = gen_reg_rtx (SImode);
	  emit_insn (gen_popcntbsi2 (tmp1, src));

	  tmp2 = gen_reg_rtx (SImode);
	  emit_insn (gen_lshrsi3 (tmp2, tmp1, GEN_INT (16)));
	  tmp3 = gen_reg_rtx (SImode);
	  emit_insn (gen_xorsi3 (tmp3, tmp1, tmp2));

	  tmp4 = gen_reg_rtx (SImode);
	  emit_insn (gen_lshrsi3 (tmp4, tmp3, GEN_INT (8)));
	  emit_insn (gen_xorsi3 (tmp, tmp3, tmp4));
	}
      else
	rs6000_emit_popcount (tmp, src);
      emit_insn (gen_andsi3 (dst, tmp, const1_rtx));
    }
  else
    {
      /* Is mult+shift >= shift+xor+shift+xor+shift+xor?  */
      if (rs6000_cost->muldi >= COSTS_N_INSNS (5))
	{
	  rtx tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;

	  tmp1 = gen_reg_rtx (DImode);
	  emit_insn (gen_popcntbdi2 (tmp1, src));

	  tmp2 = gen_reg_rtx (DImode);
	  emit_insn (gen_lshrdi3 (tmp2, tmp1, GEN_INT (32)));
	  tmp3 = gen_reg_rtx (DImode);
	  emit_insn (gen_xordi3 (tmp3, tmp1, tmp2));

	  tmp4 = gen_reg_rtx (DImode);
	  emit_insn (gen_lshrdi3 (tmp4, tmp3, GEN_INT (16)));
	  tmp5 = gen_reg_rtx (DImode);
	  emit_insn (gen_xordi3 (tmp5, tmp3, tmp4));

	  tmp6 = gen_reg_rtx (DImode);
	  emit_insn (gen_lshrdi3 (tmp6, tmp5, GEN_INT (8)));
	  emit_insn (gen_xordi3 (tmp, tmp5, tmp6));
	}
      else
        rs6000_emit_popcount (tmp, src);
      emit_insn (gen_anddi3 (dst, tmp, const1_rtx));
    }
}

/* Expand an Altivec constant permutation for little endian mode.
   OP0 and OP1 are the input vectors and TARGET is the output vector.
   SEL specifies the constant permutation vector.

   There are two issues: First, the two input operands must be
   swapped so that together they form a double-wide array in LE
   order.  Second, the vperm instruction has surprising behavior
   in LE mode:  it interprets the elements of the source vectors
   in BE mode ("left to right") and interprets the elements of
   the destination vector in LE mode ("right to left").  To
   correct for this, we must subtract each element of the permute
   control vector from 31.

   For example, suppose we want to concatenate vr10 = {0, 1, 2, 3}
   with vr11 = {4, 5, 6, 7} and extract {0, 2, 4, 6} using a vperm.
   We place {0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27} in vr12 to
   serve as the permute control vector.  Then, in BE mode,

     vperm 9,10,11,12

   places the desired result in vr9.  However, in LE mode the 
   vector contents will be

     vr10 = 00000003 00000002 00000001 00000000
     vr11 = 00000007 00000006 00000005 00000004

   The result of the vperm using the same permute control vector is

     vr9  = 05000000 07000000 01000000 03000000

   That is, the leftmost 4 bytes of vr10 are interpreted as the
   source for the rightmost 4 bytes of vr9, and so on.

   If we change the permute control vector to

     vr12 = {31,20,29,28,23,22,21,20,15,14,13,12,7,6,5,4}

   and issue

     vperm 9,11,10,12

   we get the desired

   vr9  = 00000006 00000004 00000002 00000000.  */

static void
altivec_expand_vec_perm_const_le (rtx target, rtx op0, rtx op1,
				  const vec_perm_indices &sel)
{
  unsigned int i;
  rtx perm[16];
  rtx constv, unspec;

  /* Unpack and adjust the constant selector.  */
  for (i = 0; i < 16; ++i)
    {
      unsigned int elt = 31 - (sel[i] & 31);
      perm[i] = GEN_INT (elt);
    }

  /* Expand to a permute, swapping the inputs and using the
     adjusted selector.  */
  if (!REG_P (op0))
    op0 = force_reg (V16QImode, op0);
  if (!REG_P (op1))
    op1 = force_reg (V16QImode, op1);

  constv = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, perm));
  constv = force_reg (V16QImode, constv);
  unspec = gen_rtx_UNSPEC (V16QImode, gen_rtvec (3, op1, op0, constv),
			   UNSPEC_VPERM);
  if (!REG_P (target))
    {
      rtx tmp = gen_reg_rtx (V16QImode);
      emit_move_insn (tmp, unspec);
      unspec = tmp;
    }

  emit_move_insn (target, unspec);
}

/* Similarly to altivec_expand_vec_perm_const_le, we must adjust the
   permute control vector.  But here it's not a constant, so we must
   generate a vector NAND or NOR to do the adjustment.  */

void
altivec_expand_vec_perm_le (rtx operands[4])
{
  rtx notx, iorx, unspec;
  rtx target = operands[0];
  rtx op0 = operands[1];
  rtx op1 = operands[2];
  rtx sel = operands[3];
  rtx tmp = target;
  rtx norreg = gen_reg_rtx (V16QImode);
  machine_mode mode = GET_MODE (target);

  /* Get everything in regs so the pattern matches.  */
  if (!REG_P (op0))
    op0 = force_reg (mode, op0);
  if (!REG_P (op1))
    op1 = force_reg (mode, op1);
  if (!REG_P (sel))
    sel = force_reg (V16QImode, sel);
  if (!REG_P (target))
    tmp = gen_reg_rtx (mode);

  if (TARGET_P9_VECTOR)
    {
      unspec = gen_rtx_UNSPEC (mode, gen_rtvec (3, op1, op0, sel),
			       UNSPEC_VPERMR);
    }
  else
    {
      /* Invert the selector with a VNAND if available, else a VNOR.
	 The VNAND is preferred for future fusion opportunities.  */
      notx = gen_rtx_NOT (V16QImode, sel);
      iorx = (TARGET_P8_VECTOR
	      ? gen_rtx_IOR (V16QImode, notx, notx)
	      : gen_rtx_AND (V16QImode, notx, notx));
      emit_insn (gen_rtx_SET (norreg, iorx));

      /* Permute with operands reversed and adjusted selector.  */
      unspec = gen_rtx_UNSPEC (mode, gen_rtvec (3, op1, op0, norreg),
			       UNSPEC_VPERM);
    }

  /* Copy into target, possibly by way of a register.  */
  if (!REG_P (target))
    {
      emit_move_insn (tmp, unspec);
      unspec = tmp;
    }

  emit_move_insn (target, unspec);
}

/* Expand an Altivec constant permutation.  Return true if we match
   an efficient implementation; false to fall back to VPERM.

   OP0 and OP1 are the input vectors and TARGET is the output vector.
   SEL specifies the constant permutation vector.  */

static bool
altivec_expand_vec_perm_const (rtx target, rtx op0, rtx op1,
			       const vec_perm_indices &sel)
{
  struct altivec_perm_insn {
    HOST_WIDE_INT mask;
    enum insn_code impl;
    unsigned char perm[16];
  };
  static const struct altivec_perm_insn patterns[] = {
    {OPTION_MASK_ALTIVEC,
     CODE_FOR_altivec_vpkuhum_direct,
     {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}},
    {OPTION_MASK_ALTIVEC,
     CODE_FOR_altivec_vpkuwum_direct,
     {2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}},
    {OPTION_MASK_ALTIVEC,
     BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrghb_direct
		      : CODE_FOR_altivec_vmrglb_direct,
     {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}},
    {OPTION_MASK_ALTIVEC,
     BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrghh_direct
		      : CODE_FOR_altivec_vmrglh_direct,
     {0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23}},
    {OPTION_MASK_ALTIVEC,
     BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrghw_direct_v4si
		      : CODE_FOR_altivec_vmrglw_direct_v4si,
     {0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}},
    {OPTION_MASK_ALTIVEC,
     BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrglb_direct
		      : CODE_FOR_altivec_vmrghb_direct,
     {8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}},
    {OPTION_MASK_ALTIVEC,
     BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrglh_direct
		      : CODE_FOR_altivec_vmrghh_direct,
     {8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31}},
    {OPTION_MASK_ALTIVEC,
     BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrglw_direct_v4si
		      : CODE_FOR_altivec_vmrghw_direct_v4si,
     {8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}},
    {OPTION_MASK_P8_VECTOR,
     BYTES_BIG_ENDIAN ? CODE_FOR_p8_vmrgew_v4sf_direct
		      : CODE_FOR_p8_vmrgow_v4sf_direct,
     {0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27}},
    {OPTION_MASK_P8_VECTOR,
     BYTES_BIG_ENDIAN ? CODE_FOR_p8_vmrgow_v4sf_direct
		      : CODE_FOR_p8_vmrgew_v4sf_direct,
     {4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31}},
    {OPTION_MASK_VSX, CODE_FOR_vsx_xxpermdi_v16qi,
     {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23}},
    {OPTION_MASK_VSX, CODE_FOR_vsx_xxpermdi_v16qi,
     {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}},
    {OPTION_MASK_VSX, CODE_FOR_vsx_xxpermdi_v16qi,
     {0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31}},
    {OPTION_MASK_VSX, CODE_FOR_vsx_xxpermdi_v16qi,
     {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31}}};

  unsigned int i, j, elt, which;
  unsigned char perm[16];
  rtx x;
  bool one_vec;

  /* Unpack the constant selector.  */
  for (i = which = 0; i < 16; ++i)
    {
      elt = sel[i] & 31;
      which |= (elt < 16 ? 1 : 2);
      perm[i] = elt;
    }

  /* Simplify the constant selector based on operands.  */
  switch (which)
    {
    default:
      gcc_unreachable ();

    case 3:
      one_vec = false;
      if (!rtx_equal_p (op0, op1))
	break;
      /* FALLTHRU */

    case 2:
      for (i = 0; i < 16; ++i)
	perm[i] &= 15;
      op0 = op1;
      one_vec = true;
      break;

    case 1:
      op1 = op0;
      one_vec = true;
      break;
    }
 
  /* Look for splat patterns.  */
  if (one_vec)
    {
      elt = perm[0];

      for (i = 0; i < 16; ++i)
	if (perm[i] != elt)
	  break;
      if (i == 16)
	{
          if (!BYTES_BIG_ENDIAN)
            elt = 15 - elt;
	  emit_insn (gen_altivec_vspltb_direct (target, op0, GEN_INT (elt)));
	  return true;
	}

      if (elt % 2 == 0)
	{
	  for (i = 0; i < 16; i += 2)
	    if (perm[i] != elt || perm[i + 1] != elt + 1)
	      break;
	  if (i == 16)
	    {
	      int field = BYTES_BIG_ENDIAN ? elt / 2 : 7 - elt / 2;
	      x = gen_reg_rtx (V8HImode);
	      emit_insn (gen_altivec_vsplth_direct (x, gen_lowpart (V8HImode, op0),
						    GEN_INT (field)));
	      emit_move_insn (target, gen_lowpart (V16QImode, x));
	      return true;
	    }
	}

      if (elt % 4 == 0)
	{
	  for (i = 0; i < 16; i += 4)
	    if (perm[i] != elt
		|| perm[i + 1] != elt + 1
		|| perm[i + 2] != elt + 2
		|| perm[i + 3] != elt + 3)
	      break;
	  if (i == 16)
	    {
	      int field = BYTES_BIG_ENDIAN ? elt / 4 : 3 - elt / 4;
	      x = gen_reg_rtx (V4SImode);
	      emit_insn (gen_altivec_vspltw_direct (x, gen_lowpart (V4SImode, op0),
						    GEN_INT (field)));
	      emit_move_insn (target, gen_lowpart (V16QImode, x));
	      return true;
	    }
	}
    }

  /* Look for merge and pack patterns.  */
  for (j = 0; j < ARRAY_SIZE (patterns); ++j)
    {
      bool swapped;

      if ((patterns[j].mask & rs6000_isa_flags) == 0)
	continue;

      elt = patterns[j].perm[0];
      if (perm[0] == elt)
	swapped = false;
      else if (perm[0] == elt + 16)
	swapped = true;
      else
	continue;
      for (i = 1; i < 16; ++i)
	{
	  elt = patterns[j].perm[i];
	  if (swapped)
	    elt = (elt >= 16 ? elt - 16 : elt + 16);
	  else if (one_vec && elt >= 16)
	    elt -= 16;
	  if (perm[i] != elt)
	    break;
	}
      if (i == 16)
	{
	  enum insn_code icode = patterns[j].impl;
	  machine_mode omode = insn_data[icode].operand[0].mode;
	  machine_mode imode = insn_data[icode].operand[1].mode;

	  rtx perm_idx = GEN_INT (0);
	  if (icode == CODE_FOR_vsx_xxpermdi_v16qi)
	    {
	      int perm_val = 0;
	      if (one_vec)
		{
		  if (perm[0] == 8)
		    perm_val |= 2;
		  if (perm[8] == 8)
		    perm_val |= 1;
		}
	      else
		{
		  if (perm[0] != 0)
		    perm_val |= 2;
		  if (perm[8] != 16)
		    perm_val |= 1;
		}
	      perm_idx = GEN_INT (perm_val);
	    }

	  /* For little-endian, don't use vpkuwum and vpkuhum if the
	     underlying vector type is not V4SI and V8HI, respectively.
	     For example, using vpkuwum with a V8HI picks up the even
	     halfwords (BE numbering) when the even halfwords (LE
	     numbering) are what we need.  */
	  if (!BYTES_BIG_ENDIAN
	      && icode == CODE_FOR_altivec_vpkuwum_direct
	      && ((REG_P (op0)
		   && GET_MODE (op0) != V4SImode)
		  || (SUBREG_P (op0)
		      && GET_MODE (XEXP (op0, 0)) != V4SImode)))
	    continue;
	  if (!BYTES_BIG_ENDIAN
	      && icode == CODE_FOR_altivec_vpkuhum_direct
	      && ((REG_P (op0)
		   && GET_MODE (op0) != V8HImode)
		  || (SUBREG_P (op0)
		      && GET_MODE (XEXP (op0, 0)) != V8HImode)))
	    continue;

          /* For little-endian, the two input operands must be swapped
             (or swapped back) to ensure proper right-to-left numbering
             from 0 to 2N-1.  */
	  if (swapped ^ !BYTES_BIG_ENDIAN
	      && icode != CODE_FOR_vsx_xxpermdi_v16qi)
	    std::swap (op0, op1);
	  if (imode != V16QImode)
	    {
	      op0 = gen_lowpart (imode, op0);
	      op1 = gen_lowpart (imode, op1);
	    }
	  if (omode == V16QImode)
	    x = target;
	  else
	    x = gen_reg_rtx (omode);
	  if (icode == CODE_FOR_vsx_xxpermdi_v16qi)
	    emit_insn (GEN_FCN (icode) (x, op0, op1, perm_idx));
	  else
	    emit_insn (GEN_FCN (icode) (x, op0, op1));
	  if (omode != V16QImode)
	    emit_move_insn (target, gen_lowpart (V16QImode, x));
	  return true;
	}
    }

  if (!BYTES_BIG_ENDIAN)
    {
      altivec_expand_vec_perm_const_le (target, op0, op1, sel);
      return true;
    }

  return false;
}

/* Expand a VSX Permute Doubleword constant permutation.
   Return true if we match an efficient implementation.  */

static bool
rs6000_expand_vec_perm_const_1 (rtx target, rtx op0, rtx op1,
				unsigned char perm0, unsigned char perm1)
{
  rtx x;

  /* If both selectors come from the same operand, fold to single op.  */
  if ((perm0 & 2) == (perm1 & 2))
    {
      if (perm0 & 2)
	op0 = op1;
      else
	op1 = op0;
    }
  /* If both operands are equal, fold to simpler permutation.  */
  if (rtx_equal_p (op0, op1))
    {
      perm0 = perm0 & 1;
      perm1 = (perm1 & 1) + 2;
    }
  /* If the first selector comes from the second operand, swap.  */
  else if (perm0 & 2)
    {
      if (perm1 & 2)
	return false;
      perm0 -= 2;
      perm1 += 2;
      std::swap (op0, op1);
    }
  /* If the second selector does not come from the second operand, fail.  */
  else if ((perm1 & 2) == 0)
    return false;

  /* Success! */
  if (target != NULL)
    {
      machine_mode vmode, dmode;
      rtvec v;

      vmode = GET_MODE (target);
      gcc_assert (GET_MODE_NUNITS (vmode) == 2);
      dmode = mode_for_vector (GET_MODE_INNER (vmode), 4).require ();
      x = gen_rtx_VEC_CONCAT (dmode, op0, op1);
      v = gen_rtvec (2, GEN_INT (perm0), GEN_INT (perm1));
      x = gen_rtx_VEC_SELECT (vmode, x, gen_rtx_PARALLEL (VOIDmode, v));
      emit_insn (gen_rtx_SET (target, x));
    }
  return true;
}

/* Implement TARGET_VECTORIZE_VEC_PERM_CONST.  */

static bool
rs6000_vectorize_vec_perm_const (machine_mode vmode, machine_mode op_mode,
				 rtx target, rtx op0, rtx op1,
				 const vec_perm_indices &sel)
{
  if (vmode != op_mode)
    return false;

  bool testing_p = !target;

  /* AltiVec (and thus VSX) can handle arbitrary permutations.  */
  if (TARGET_ALTIVEC && testing_p)
    return true;

  if (op0)
    {
      rtx nop0 = force_reg (vmode, op0);
      if (op0 == op1)
        op1 = nop0;
      op0 = nop0;
    }
  if (op1)
    op1 = force_reg (vmode, op1);

  /* Check for ps_merge* or xxpermdi insns.  */
  if ((vmode == V2DFmode || vmode == V2DImode) && VECTOR_MEM_VSX_P (vmode))
    {
      if (testing_p)
	{
	  op0 = gen_raw_REG (vmode, LAST_VIRTUAL_REGISTER + 1);
	  op1 = gen_raw_REG (vmode, LAST_VIRTUAL_REGISTER + 2);
	}
      if (rs6000_expand_vec_perm_const_1 (target, op0, op1, sel[0], sel[1]))
	return true;
    }

  if (TARGET_ALTIVEC)
    {
      /* Force the target-independent code to lower to V16QImode.  */
      if (vmode != V16QImode)
	return false;
      if (altivec_expand_vec_perm_const (target, op0, op1, sel))
	return true;
    }

  return false;
}

/* A subroutine for rs6000_expand_extract_even & rs6000_expand_interleave.
   OP0 and OP1 are the input vectors and TARGET is the output vector.
   PERM specifies the constant permutation vector.  */

static void
rs6000_do_expand_vec_perm (rtx target, rtx op0, rtx op1,
			   machine_mode vmode, const vec_perm_builder &perm)
{
  rtx x = expand_vec_perm_const (vmode, op0, op1, perm, BLKmode, target);
  if (x != target)
    emit_move_insn (target, x);
}

/* Expand an extract even operation.  */

void
rs6000_expand_extract_even (rtx target, rtx op0, rtx op1)
{
  machine_mode vmode = GET_MODE (target);
  unsigned i, nelt = GET_MODE_NUNITS (vmode);
  vec_perm_builder perm (nelt, nelt, 1);

  for (i = 0; i < nelt; i++)
    perm.quick_push (i * 2);

  rs6000_do_expand_vec_perm (target, op0, op1, vmode, perm);
}

/* Expand a vector interleave operation.  */

void
rs6000_expand_interleave (rtx target, rtx op0, rtx op1, bool highp)
{
  machine_mode vmode = GET_MODE (target);
  unsigned i, high, nelt = GET_MODE_NUNITS (vmode);
  vec_perm_builder perm (nelt, nelt, 1);

  high = (highp ? 0 : nelt / 2);
  for (i = 0; i < nelt / 2; i++)
    {
      perm.quick_push (i + high);
      perm.quick_push (i + nelt + high);
    }

  rs6000_do_expand_vec_perm (target, op0, op1, vmode, perm);
}

/* Scale a V2DF vector SRC by two to the SCALE and place in TGT.  */
void
rs6000_scale_v2df (rtx tgt, rtx src, int scale)
{
  HOST_WIDE_INT hwi_scale (scale);
  REAL_VALUE_TYPE r_pow;
  rtvec v = rtvec_alloc (2);
  rtx elt;
  rtx scale_vec = gen_reg_rtx (V2DFmode);
  (void)real_powi (&r_pow, DFmode, &dconst2, hwi_scale);
  elt = const_double_from_real_value (r_pow, DFmode);
  RTVEC_ELT (v, 0) = elt;
  RTVEC_ELT (v, 1) = elt;
  rs6000_expand_vector_init (scale_vec, gen_rtx_PARALLEL (V2DFmode, v));
  emit_insn (gen_mulv2df3 (tgt, src, scale_vec));
}

/* Return an RTX representing where to find the function value of a
   function returning MODE.  */
static rtx
rs6000_complex_function_value (machine_mode mode)
{
  unsigned int regno;
  rtx r1, r2;
  machine_mode inner = GET_MODE_INNER (mode);
  unsigned int inner_bytes = GET_MODE_UNIT_SIZE (mode);

  if (TARGET_FLOAT128_TYPE
      && (mode == KCmode
	  || (mode == TCmode && TARGET_IEEEQUAD)))
    regno = ALTIVEC_ARG_RETURN;

  else if (FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT)
    regno = FP_ARG_RETURN;

  else
    {
      regno = GP_ARG_RETURN;

      /* 32-bit is OK since it'll go in r3/r4.  */
      if (TARGET_32BIT && inner_bytes >= 4)
	return gen_rtx_REG (mode, regno);
    }

  if (inner_bytes >= 8)
    return gen_rtx_REG (mode, regno);

  r1 = gen_rtx_EXPR_LIST (inner, gen_rtx_REG (inner, regno),
			  const0_rtx);
  r2 = gen_rtx_EXPR_LIST (inner, gen_rtx_REG (inner, regno + 1),
			  GEN_INT (inner_bytes));
  return gen_rtx_PARALLEL (mode, gen_rtvec (2, r1, r2));
}

/* Return an rtx describing a return value of MODE as a PARALLEL
   in N_ELTS registers, each of mode ELT_MODE, starting at REGNO,
   stride REG_STRIDE.  */

static rtx
rs6000_parallel_return (machine_mode mode,
			int n_elts, machine_mode elt_mode,
			unsigned int regno, unsigned int reg_stride)
{
  rtx par = gen_rtx_PARALLEL (mode, rtvec_alloc (n_elts));

  int i;
  for (i = 0; i < n_elts; i++)
    {
      rtx r = gen_rtx_REG (elt_mode, regno);
      rtx off = GEN_INT (i * GET_MODE_SIZE (elt_mode));
      XVECEXP (par, 0, i) = gen_rtx_EXPR_LIST (VOIDmode, r, off);
      regno += reg_stride;
    }

  return par;
}

/* Target hook for TARGET_FUNCTION_VALUE.

   An integer value is in r3 and a floating-point value is in fp1,
   unless -msoft-float.  */

static rtx
rs6000_function_value (const_tree valtype,
		       const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
		       bool outgoing ATTRIBUTE_UNUSED)
{
  machine_mode mode;
  unsigned int regno;
  machine_mode elt_mode;
  int n_elts;

  /* Special handling for structs in darwin64.  */
  if (TARGET_MACHO 
      && rs6000_darwin64_struct_check_p (TYPE_MODE (valtype), valtype))
    {
      CUMULATIVE_ARGS valcum;
      rtx valret;

      valcum.words = 0;
      valcum.fregno = FP_ARG_MIN_REG;
      valcum.vregno = ALTIVEC_ARG_MIN_REG;
      /* Do a trial code generation as if this were going to be passed as
	 an argument; if any part goes in memory, we return NULL.  */
      valret = rs6000_darwin64_record_arg (&valcum, valtype, true, /* retval= */ true);
      if (valret)
	return valret;
      /* Otherwise fall through to standard ABI rules.  */
    }

  mode = TYPE_MODE (valtype);

  /* The ELFv2 ABI returns homogeneous VFP aggregates in registers.  */
  if (rs6000_discover_homogeneous_aggregate (mode, valtype, &elt_mode, &n_elts))
    {
      int first_reg, n_regs;

      if (SCALAR_FLOAT_MODE_NOT_VECTOR_P (elt_mode))
	{
	  /* _Decimal128 must use even/odd register pairs.  */
	  first_reg = (elt_mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
	  n_regs = (GET_MODE_SIZE (elt_mode) + 7) >> 3;
	}
      else
	{
	  first_reg = ALTIVEC_ARG_RETURN;
	  n_regs = 1;
	}

      return rs6000_parallel_return (mode, n_elts, elt_mode, first_reg, n_regs);
    }

  /* Some return value types need be split in -mpowerpc64, 32bit ABI.  */
  if (TARGET_32BIT && TARGET_POWERPC64)
    switch (mode)
      {
      default:
	break;
      case E_DImode:
      case E_SCmode:
      case E_DCmode:
      case E_TCmode:
	int count = GET_MODE_SIZE (mode) / 4;
	return rs6000_parallel_return (mode, count, SImode, GP_ARG_RETURN, 1);
      }

  if ((INTEGRAL_TYPE_P (valtype)
       && GET_MODE_BITSIZE (mode) < (TARGET_32BIT ? 32 : 64))
      || POINTER_TYPE_P (valtype))
    mode = TARGET_32BIT ? SImode : DImode;

  if (DECIMAL_FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT)
    /* _Decimal128 must use an even/odd register pair.  */
    regno = (mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
  else if (SCALAR_FLOAT_TYPE_P (valtype) && TARGET_HARD_FLOAT
	   && !FLOAT128_VECTOR_P (mode))
    regno = FP_ARG_RETURN;
  else if (TREE_CODE (valtype) == COMPLEX_TYPE
	   && targetm.calls.split_complex_arg)
    return rs6000_complex_function_value (mode);
  /* VSX is a superset of Altivec and adds V2DImode/V2DFmode.  Since the same
     return register is used in both cases, and we won't see V2DImode/V2DFmode
     for pure altivec, combine the two cases.  */
  else if ((TREE_CODE (valtype) == VECTOR_TYPE || VECTOR_ALIGNMENT_P (mode))
	   && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI
	   && ALTIVEC_OR_VSX_VECTOR_MODE (mode))
    regno = ALTIVEC_ARG_RETURN;
  else
    regno = GP_ARG_RETURN;

  return gen_rtx_REG (mode, regno);
}

/* Define how to find the value returned by a library function
   assuming the value has mode MODE.  */
rtx
rs6000_libcall_value (machine_mode mode)
{
  unsigned int regno;

  /* Long long return value need be split in -mpowerpc64, 32bit ABI.  */
  if (TARGET_32BIT && TARGET_POWERPC64 && mode == DImode)
    return rs6000_parallel_return (mode, 2, SImode, GP_ARG_RETURN, 1);

  if (DECIMAL_FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT)
    /* _Decimal128 must use an even/odd register pair.  */
    regno = (mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
  else if (SCALAR_FLOAT_MODE_NOT_VECTOR_P (mode) && TARGET_HARD_FLOAT)
    regno = FP_ARG_RETURN;
  /* VSX is a superset of Altivec and adds V2DImode/V2DFmode.  Since the same
     return register is used in both cases, and we won't see V2DImode/V2DFmode
     for pure altivec, combine the two cases.  */
  else if (ALTIVEC_OR_VSX_VECTOR_MODE (mode)
	   && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)
    regno = ALTIVEC_ARG_RETURN;
  else if (COMPLEX_MODE_P (mode) && targetm.calls.split_complex_arg)
    return rs6000_complex_function_value (mode);
  else
    regno = GP_ARG_RETURN;

  return gen_rtx_REG (mode, regno);
}

/* Compute register pressure classes.  We implement the target hook to avoid
   IRA picking something like GEN_OR_FLOAT_REGS as a pressure class, which can
   lead to incorrect estimates of number of available registers and therefor
   increased register pressure/spill.   */
static int
rs6000_compute_pressure_classes (enum reg_class *pressure_classes)
{
  int n;

  n = 0;
  pressure_classes[n++] = GENERAL_REGS;
  if (TARGET_ALTIVEC)
    pressure_classes[n++] = ALTIVEC_REGS;
  if (TARGET_VSX)
    pressure_classes[n++] = VSX_REGS;
  else
    {
      if (TARGET_HARD_FLOAT)
	pressure_classes[n++] = FLOAT_REGS;
    }
  pressure_classes[n++] = CR_REGS;
  pressure_classes[n++] = SPECIAL_REGS;

  return n;
}

/* Given FROM and TO register numbers, say whether this elimination is allowed.
   Frame pointer elimination is automatically handled.

   For the RS/6000, if frame pointer elimination is being done, we would like
   to convert ap into fp, not sp.

   We need r30 if -mminimal-toc was specified, and there are constant pool
   references.  */

static bool
rs6000_can_eliminate (const int from, const int to)
{
  return (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM
	  ? ! frame_pointer_needed
	  : from == RS6000_PIC_OFFSET_TABLE_REGNUM
	    ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC_OR_PCREL
		|| constant_pool_empty_p ()
	    : true);
}

/* Define the offset between two registers, FROM to be eliminated and its
   replacement TO, at the start of a routine.  */
HOST_WIDE_INT
rs6000_initial_elimination_offset (int from, int to)
{
  rs6000_stack_t *info = rs6000_stack_info ();
  HOST_WIDE_INT offset;

  if (from == HARD_FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
    offset = info->push_p ? 0 : -info->total_size;
  else if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
    {
      offset = info->push_p ? 0 : -info->total_size;
      if (FRAME_GROWS_DOWNWARD)
	offset += info->fixed_size + info->vars_size + info->parm_size;
    }
  else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
    offset = FRAME_GROWS_DOWNWARD
	     ? info->fixed_size + info->vars_size + info->parm_size
	     : 0;
  else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
    offset = info->total_size;
  else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
    offset = info->push_p ? info->total_size : 0;
  else if (from == RS6000_PIC_OFFSET_TABLE_REGNUM)
    offset = 0;
  else
    gcc_unreachable ();

  return offset;
}

/* Fill in sizes of registers used by unwinder.  */

static void
rs6000_init_dwarf_reg_sizes_extra (tree address)
{
  if (TARGET_MACHO && ! TARGET_ALTIVEC)
    {
      int i;
      machine_mode mode = TYPE_MODE (char_type_node);
      rtx addr = expand_expr (address, NULL_RTX, VOIDmode, EXPAND_NORMAL);
      rtx mem = gen_rtx_MEM (BLKmode, addr);
      rtx value = gen_int_mode (16, mode);

      /* On Darwin, libgcc may be built to run on both G3 and G4/5.
	 The unwinder still needs to know the size of Altivec registers.  */

      for (i = FIRST_ALTIVEC_REGNO; i < LAST_ALTIVEC_REGNO+1; i++)
	{
	  int column = DWARF_REG_TO_UNWIND_COLUMN
		(DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), true));
	  HOST_WIDE_INT offset = column * GET_MODE_SIZE (mode);

	  emit_move_insn (adjust_address (mem, mode, offset), value);
	}
    }
}

/* Map internal gcc register numbers to debug format register numbers.
   FORMAT specifies the type of debug register number to use:
     0 -- debug information, except for frame-related sections
     1 -- DWARF .debug_frame section
     2 -- DWARF .eh_frame section  */

unsigned int
rs6000_debugger_regno (unsigned int regno, unsigned int format)
{
  /* On some platforms, we use the standard DWARF register
     numbering for .debug_info and .debug_frame.  */
  if ((format == 0 && dwarf_debuginfo_p ()) || format == 1)
    {
#ifdef RS6000_USE_DWARF_NUMBERING
      if (regno <= 31)
	return regno;
      if (FP_REGNO_P (regno))
	return regno - FIRST_FPR_REGNO + 32;
      if (ALTIVEC_REGNO_P (regno))
	return regno - FIRST_ALTIVEC_REGNO + 1124;
      if (regno == LR_REGNO)
	return 108;
      if (regno == CTR_REGNO)
	return 109;
      if (regno == CA_REGNO)
	return 101;  /* XER */
      /* Special handling for CR for .debug_frame: rs6000_emit_prologue has
	 translated any combination of CR2, CR3, CR4 saves to a save of CR2.
	 The actual code emitted saves the whole of CR, so we map CR2_REGNO
	 to the DWARF reg for CR.  */
      if (format == 1 && regno == CR2_REGNO)
	return 64;
      if (CR_REGNO_P (regno))
	return regno - CR0_REGNO + 86;
      if (regno == VRSAVE_REGNO)
	return 356;
      if (regno == VSCR_REGNO)
	return 67;

      /* These do not make much sense.  */
      if (regno == FRAME_POINTER_REGNUM)
	return 111;
      if (regno == ARG_POINTER_REGNUM)
	return 67;
      if (regno == 64)
	return 100;

      gcc_unreachable ();
#endif
    }

  /* We use the GCC 7 (and before) internal number for non-DWARF debug
     information, and also for .eh_frame.  */
  /* Translate the regnos to their numbers in GCC 7 (and before).  */
  if (regno <= 31)
    return regno;
  if (FP_REGNO_P (regno))
    return regno - FIRST_FPR_REGNO + 32;
  if (ALTIVEC_REGNO_P (regno))
    return regno - FIRST_ALTIVEC_REGNO + 77;
  if (regno == LR_REGNO)
    return 65;
  if (regno == CTR_REGNO)
    return 66;
  if (regno == CA_REGNO)
    return 76;  /* XER */
  if (CR_REGNO_P (regno))
    return regno - CR0_REGNO + 68;
  if (regno == VRSAVE_REGNO)
    return 109;
  if (regno == VSCR_REGNO)
    return 110;

  if (regno == FRAME_POINTER_REGNUM)
    return 111;
  if (regno == ARG_POINTER_REGNUM)
    return 67;
  if (regno == 64)
    return 64;

  gcc_unreachable ();
}

/* target hook eh_return_filter_mode */
static scalar_int_mode
rs6000_eh_return_filter_mode (void)
{
  return TARGET_32BIT ? SImode : word_mode;
}

/* Target hook for translate_mode_attribute.  */
static machine_mode
rs6000_translate_mode_attribute (machine_mode mode)
{
  if ((FLOAT128_IEEE_P (mode)
       && ieee128_float_type_node == long_double_type_node)
      || (FLOAT128_IBM_P (mode)
	  && ibm128_float_type_node == long_double_type_node))
    return COMPLEX_MODE_P (mode) ? E_TCmode : E_TFmode;
  return mode;
}

/* Target hook for scalar_mode_supported_p.  */
static bool
rs6000_scalar_mode_supported_p (scalar_mode mode)
{
  /* -m32 does not support TImode.  This is the default, from
     default_scalar_mode_supported_p.  For -m32 -mpowerpc64 we want the
     same ABI as for -m32.  But default_scalar_mode_supported_p allows
     integer modes of precision 2 * BITS_PER_WORD, which matches TImode
     for -mpowerpc64.  */
  if (TARGET_32BIT && mode == TImode)
    return false;

  if (DECIMAL_FLOAT_MODE_P (mode))
    return default_decimal_float_supported_p ();
  else if (TARGET_FLOAT128_TYPE && (mode == KFmode || mode == IFmode))
    return true;
  else
    return default_scalar_mode_supported_p (mode);
}

/* Target hook for libgcc_floating_mode_supported_p.  */

static bool
rs6000_libgcc_floating_mode_supported_p (scalar_float_mode mode)
{
  switch (mode)
    {
    case E_SFmode:
    case E_DFmode:
    case E_TFmode:
      return true;

      /* We only return true for KFmode if IEEE 128-bit types are supported, and
	 if long double does not use the IEEE 128-bit format.  If long double
	 uses the IEEE 128-bit format, it will use TFmode and not KFmode.
	 Because the code will not use KFmode in that case, there will be aborts
	 because it can't find KFmode in the Floatn types.  */
    case E_KFmode:
      return TARGET_FLOAT128_TYPE && !TARGET_IEEEQUAD;

    default:
      return false;
    }
}

/* Target hook for vector_mode_supported_p.  */
static bool
rs6000_vector_mode_supported_p (machine_mode mode)
{
  /* There is no vector form for IEEE 128-bit.  If we return true for IEEE
     128-bit, the compiler might try to widen IEEE 128-bit to IBM
     double-double.  */
  if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode) && !FLOAT128_IEEE_P (mode))
    return true;

  else
    return false;
}

/* Target hook for floatn_mode.  */
static opt_scalar_float_mode
rs6000_floatn_mode (int n, bool extended)
{
  if (extended)
    {
      switch (n)
	{
	case 32:
	  return DFmode;

	case 64:
	  if (TARGET_FLOAT128_TYPE)
	    return (FLOAT128_IEEE_P (TFmode)) ? TFmode : KFmode;
	  else
	    return opt_scalar_float_mode ();

	case 128:
	  return opt_scalar_float_mode ();

	default:
	  /* Those are the only valid _FloatNx types.  */
	  gcc_unreachable ();
	}
    }
  else
    {
      switch (n)
	{
	case 32:
	  return SFmode;

	case 64:
	  return DFmode;

	case 128:
	  if (TARGET_FLOAT128_TYPE)
	    return (FLOAT128_IEEE_P (TFmode)) ? TFmode : KFmode;
	  else
	    return opt_scalar_float_mode ();

	default:
	  return opt_scalar_float_mode ();
	}
    }

}

/* Target hook for c_mode_for_suffix.  */
static machine_mode
rs6000_c_mode_for_suffix (char suffix)
{
  if (TARGET_FLOAT128_TYPE)
    {
      if (suffix == 'q' || suffix == 'Q')
	return (FLOAT128_IEEE_P (TFmode)) ? TFmode : KFmode;

      /* At the moment, we are not defining a suffix for IBM extended double.
	 If/when the default for -mabi=ieeelongdouble is changed, and we want
	 to support __ibm128 constants in legacy library code, we may need to
	 re-evalaute this decision.  Currently, c-lex.cc only supports 'w' and
	 'q' as machine dependent suffixes.  The x86_64 port uses 'w' for
	 __float80 constants.  */
    }

  return VOIDmode;
}

/* Target hook for invalid_arg_for_unprototyped_fn. */
static const char *
invalid_arg_for_unprototyped_fn (const_tree typelist, const_tree funcdecl, const_tree val)
{
  return (!rs6000_darwin64_abi
	  && typelist == 0
          && TREE_CODE (TREE_TYPE (val)) == VECTOR_TYPE
          && (funcdecl == NULL_TREE
              || (TREE_CODE (funcdecl) == FUNCTION_DECL
                  && DECL_BUILT_IN_CLASS (funcdecl) != BUILT_IN_MD)))
	  ? N_("AltiVec argument passed to unprototyped function")
	  : NULL;
}

/* For TARGET_SECURE_PLT 32-bit PIC code we can save PIC register
   setup by using __stack_chk_fail_local hidden function instead of
   calling __stack_chk_fail directly.  Otherwise it is better to call
   __stack_chk_fail directly.  */

static tree ATTRIBUTE_UNUSED
rs6000_stack_protect_fail (void)
{
  return (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
	 ? default_hidden_stack_protect_fail ()
	 : default_external_stack_protect_fail ();
}

/* Implement the TARGET_ASAN_SHADOW_OFFSET hook.  */

#if TARGET_ELF
static unsigned HOST_WIDE_INT
rs6000_asan_shadow_offset (void)
{
  return (unsigned HOST_WIDE_INT) 1 << (TARGET_64BIT ? 41 : 29);
}
#endif

/* Mask options that we want to support inside of attribute((target)) and
   #pragma GCC target operations.  Note, we do not include things like
   64/32-bit, endianness, hard/soft floating point, etc. that would have
   different calling sequences.  */

struct rs6000_opt_mask {
  const char *name;		/* option name */
  HOST_WIDE_INT mask;		/* mask to set */
  bool invert;			/* invert sense of mask */
  bool valid_target;		/* option is a target option */
};

static struct rs6000_opt_mask const rs6000_opt_masks[] =
{
  { "altivec",			OPTION_MASK_ALTIVEC,		false, true  },
  { "block-ops-unaligned-vsx",	OPTION_MASK_BLOCK_OPS_UNALIGNED_VSX,
								false, true  },
  { "block-ops-vector-pair",	OPTION_MASK_BLOCK_OPS_VECTOR_PAIR,
								false, true  },
  { "cmpb",			OPTION_MASK_CMPB,		false, true  },
  { "crypto",			OPTION_MASK_CRYPTO,		false, true  },
  { "direct-move",		OPTION_MASK_DIRECT_MOVE,	false, true  },
  { "dlmzb",			OPTION_MASK_DLMZB,		false, true  },
  { "efficient-unaligned-vsx",	OPTION_MASK_EFFICIENT_UNALIGNED_VSX,
								false, true  },
  { "float128",			OPTION_MASK_FLOAT128_KEYWORD,	false, true  },
  { "float128-hardware",	OPTION_MASK_FLOAT128_HW,	false, true  },
  { "fprnd",			OPTION_MASK_FPRND,		false, true  },
  { "power10",			OPTION_MASK_POWER10,		false, true  },
  { "hard-dfp",			OPTION_MASK_DFP,		false, true  },
  { "htm",			OPTION_MASK_HTM,		false, true  },
  { "isel",			OPTION_MASK_ISEL,		false, true  },
  { "mfcrf",			OPTION_MASK_MFCRF,		false, true  },
  { "mfpgpr",			0,				false, true  },
  { "mma",			OPTION_MASK_MMA,		false, true  },
  { "modulo",			OPTION_MASK_MODULO,		false, true  },
  { "mulhw",			OPTION_MASK_MULHW,		false, true  },
  { "multiple",			OPTION_MASK_MULTIPLE,		false, true  },
  { "pcrel",			OPTION_MASK_PCREL,		false, true  },
  { "pcrel-opt",		OPTION_MASK_PCREL_OPT,		false, true  },
  { "popcntb",			OPTION_MASK_POPCNTB,		false, true  },
  { "popcntd",			OPTION_MASK_POPCNTD,		false, true  },
  { "power8-fusion",		OPTION_MASK_P8_FUSION,		false, true  },
  { "power8-fusion-sign",	OPTION_MASK_P8_FUSION_SIGN,	false, true  },
  { "power8-vector",		OPTION_MASK_P8_VECTOR,		false, true  },
  { "power9-minmax",		OPTION_MASK_P9_MINMAX,		false, true  },
  { "power9-misc",		OPTION_MASK_P9_MISC,		false, true  },
  { "power9-vector",		OPTION_MASK_P9_VECTOR,		false, true  },
  { "power10-fusion",		OPTION_MASK_P10_FUSION,		false, true  },
  { "powerpc-gfxopt",		OPTION_MASK_PPC_GFXOPT,		false, true  },
  { "powerpc-gpopt",		OPTION_MASK_PPC_GPOPT,		false, true  },
  { "prefixed",			OPTION_MASK_PREFIXED,		false, true  },
  { "quad-memory",		OPTION_MASK_QUAD_MEMORY,	false, true  },
  { "quad-memory-atomic",	OPTION_MASK_QUAD_MEMORY_ATOMIC,	false, true  },
  { "recip-precision",		OPTION_MASK_RECIP_PRECISION,	false, true  },
  { "save-toc-indirect",	OPTION_MASK_SAVE_TOC_INDIRECT,	false, true  },
  { "string",			0,				false, true  },
  { "update",			OPTION_MASK_NO_UPDATE,		true , true  },
  { "vsx",			OPTION_MASK_VSX,		false, true  },
#ifdef OPTION_MASK_64BIT
#if TARGET_AIX_OS
  { "aix64",			OPTION_MASK_64BIT,		false, false },
  { "aix32",			OPTION_MASK_64BIT,		true,  false },
#else
  { "64",			OPTION_MASK_64BIT,		false, false },
  { "32",			OPTION_MASK_64BIT,		true,  false },
#endif
#endif
#ifdef OPTION_MASK_EABI
  { "eabi",			OPTION_MASK_EABI,		false, false },
#endif
#ifdef OPTION_MASK_LITTLE_ENDIAN
  { "little",			OPTION_MASK_LITTLE_ENDIAN,	false, false },
  { "big",			OPTION_MASK_LITTLE_ENDIAN,	true,  false },
#endif
#ifdef OPTION_MASK_RELOCATABLE
  { "relocatable",		OPTION_MASK_RELOCATABLE,	false, false },
#endif
#ifdef OPTION_MASK_STRICT_ALIGN
  { "strict-align",		OPTION_MASK_STRICT_ALIGN,	false, false },
#endif
  { "soft-float",		OPTION_MASK_SOFT_FLOAT,		false, false },
  { "string",			0,				false, false },
};

/* Option variables that we want to support inside attribute((target)) and
   #pragma GCC target operations.  */

struct rs6000_opt_var {
  const char *name;		/* option name */
  size_t global_offset;		/* offset of the option in global_options.  */
  size_t target_offset;		/* offset of the option in target options.  */
};

static struct rs6000_opt_var const rs6000_opt_vars[] =
{
  { "friz",
    offsetof (struct gcc_options, x_TARGET_FRIZ),
    offsetof (struct cl_target_option, x_TARGET_FRIZ), },
  { "avoid-indexed-addresses",
    offsetof (struct gcc_options, x_TARGET_AVOID_XFORM),
    offsetof (struct cl_target_option, x_TARGET_AVOID_XFORM) },
  { "longcall",
    offsetof (struct gcc_options, x_rs6000_default_long_calls),
    offsetof (struct cl_target_option, x_rs6000_default_long_calls), },
  { "optimize-swaps",
    offsetof (struct gcc_options, x_rs6000_optimize_swaps),
    offsetof (struct cl_target_option, x_rs6000_optimize_swaps), },
  { "allow-movmisalign",
    offsetof (struct gcc_options, x_TARGET_ALLOW_MOVMISALIGN),
    offsetof (struct cl_target_option, x_TARGET_ALLOW_MOVMISALIGN), },
  { "sched-groups",
    offsetof (struct gcc_options, x_TARGET_SCHED_GROUPS),
    offsetof (struct cl_target_option, x_TARGET_SCHED_GROUPS), },
  { "always-hint",
    offsetof (struct gcc_options, x_TARGET_ALWAYS_HINT),
    offsetof (struct cl_target_option, x_TARGET_ALWAYS_HINT), },
  { "align-branch-targets",
    offsetof (struct gcc_options, x_TARGET_ALIGN_BRANCH_TARGETS),
    offsetof (struct cl_target_option, x_TARGET_ALIGN_BRANCH_TARGETS), },
  { "sched-prolog",
    offsetof (struct gcc_options, x_TARGET_SCHED_PROLOG),
    offsetof (struct cl_target_option, x_TARGET_SCHED_PROLOG), },
  { "sched-epilog",
    offsetof (struct gcc_options, x_TARGET_SCHED_PROLOG),
    offsetof (struct cl_target_option, x_TARGET_SCHED_PROLOG), },
  { "speculate-indirect-jumps",
    offsetof (struct gcc_options, x_rs6000_speculate_indirect_jumps),
    offsetof (struct cl_target_option, x_rs6000_speculate_indirect_jumps), },
};

/* Inner function to handle attribute((target("..."))) and #pragma GCC target
   parsing.  Return true if there were no errors.  */

static bool
rs6000_inner_target_options (tree args, bool attr_p)
{
  bool ret = true;

  if (args == NULL_TREE)
    ;

  else if (TREE_CODE (args) == STRING_CST)
    {
      char *p = ASTRDUP (TREE_STRING_POINTER (args));
      char *q;

      while ((q = strtok (p, ",")) != NULL)
	{
	  bool error_p = false;
	  bool not_valid_p = false;
	  const char *cpu_opt = NULL;

	  p = NULL;
	  if (startswith (q, "cpu="))
	    {
	      int cpu_index = rs6000_cpu_name_lookup (q+4);
	      if (cpu_index >= 0)
		rs6000_cpu_index = cpu_index;
	      else
		{
		  error_p = true;
		  cpu_opt = q+4;
		}
	    }
	  else if (startswith (q, "tune="))
	    {
	      int tune_index = rs6000_cpu_name_lookup (q+5);
	      if (tune_index >= 0)
		rs6000_tune_index = tune_index;
	      else
		{
		  error_p = true;
		  cpu_opt = q+5;
		}
	    }
	  else
	    {
	      size_t i;
	      bool invert = false;
	      char *r = q;

	      error_p = true;
	      if (startswith (r, "no-"))
		{
		  invert = true;
		  r += 3;
		}

	      for (i = 0; i < ARRAY_SIZE (rs6000_opt_masks); i++)
		if (strcmp (r, rs6000_opt_masks[i].name) == 0)
		  {
		    HOST_WIDE_INT mask = rs6000_opt_masks[i].mask;

		    if (!rs6000_opt_masks[i].valid_target)
		      not_valid_p = true;
		    else
		      {
			error_p = false;
			rs6000_isa_flags_explicit |= mask;

			/* VSX needs altivec, so -mvsx automagically sets
			   altivec and disables -mavoid-indexed-addresses.  */
			if (!invert)
			  {
			    if (mask == OPTION_MASK_VSX)
			      {
				mask |= OPTION_MASK_ALTIVEC;
				TARGET_AVOID_XFORM = 0;
			      }
			  }

			if (rs6000_opt_masks[i].invert)
			  invert = !invert;

			if (invert)
			  rs6000_isa_flags &= ~mask;
			else
			  rs6000_isa_flags |= mask;
		      }
		    break;
		  }

	      if (error_p && !not_valid_p)
		{
		  for (i = 0; i < ARRAY_SIZE (rs6000_opt_vars); i++)
		    if (strcmp (r, rs6000_opt_vars[i].name) == 0)
		      {
			size_t j = rs6000_opt_vars[i].global_offset;
			*((int *) ((char *)&global_options + j)) = !invert;
			error_p = false;
			not_valid_p = false;
			break;
		      }
		}
	    }

	  if (error_p)
	    {
	      const char *eprefix, *esuffix;

	      ret = false;
	      if (attr_p)
		{
		  eprefix = "__attribute__((__target__(";
		  esuffix = ")))";
		}
	      else
		{
		  eprefix = "#pragma GCC target ";
		  esuffix = "";
		}

	      if (cpu_opt)
		error ("invalid cpu %qs for %s%qs%s", cpu_opt, eprefix,
		       q, esuffix);
	      else if (not_valid_p)
		error ("%s%qs%s is not allowed", eprefix, q, esuffix);
	      else
		error ("%s%qs%s is invalid", eprefix, q, esuffix);
	    }
	}
    }

  else if (TREE_CODE (args) == TREE_LIST)
    {
      do
	{
	  tree value = TREE_VALUE (args);
	  if (value)
	    {
	      bool ret2 = rs6000_inner_target_options (value, attr_p);
	      if (!ret2)
		ret = false;
	    }
	  args = TREE_CHAIN (args);
	}
      while (args != NULL_TREE);
    }

  else
    {
      error ("attribute %<target%> argument not a string");
      return false;
    }

  return ret;
}

/* Print out the target options as a list for -mdebug=target.  */

static void
rs6000_debug_target_options (tree args, const char *prefix)
{
  if (args == NULL_TREE)
    fprintf (stderr, "%s<NULL>", prefix);

  else if (TREE_CODE (args) == STRING_CST)
    {
      char *p = ASTRDUP (TREE_STRING_POINTER (args));
      char *q;

      while ((q = strtok (p, ",")) != NULL)
	{
	  p = NULL;
	  fprintf (stderr, "%s\"%s\"", prefix, q);
	  prefix = ", ";
	}
    }

  else if (TREE_CODE (args) == TREE_LIST)
    {
      do
	{
	  tree value = TREE_VALUE (args);
	  if (value)
	    {
	      rs6000_debug_target_options (value, prefix);
	      prefix = ", ";
	    }
	  args = TREE_CHAIN (args);
	}
      while (args != NULL_TREE);
    }

  else
    gcc_unreachable ();

  return;
}


/* Hook to validate attribute((target("..."))).  */

static bool
rs6000_valid_attribute_p (tree fndecl,
			  tree ARG_UNUSED (name),
			  tree args,
			  int flags)
{
  struct cl_target_option cur_target;
  bool ret;
  tree old_optimize;
  tree new_target, new_optimize;
  tree func_optimize;

  gcc_assert ((fndecl != NULL_TREE) && (args != NULL_TREE));

  if (TARGET_DEBUG_TARGET)
    {
      tree tname = DECL_NAME (fndecl);
      fprintf (stderr, "\n==================== rs6000_valid_attribute_p:\n");
      if (tname)
	fprintf (stderr, "function: %.*s\n",
		 (int) IDENTIFIER_LENGTH (tname),
		 IDENTIFIER_POINTER (tname));
      else
	fprintf (stderr, "function: unknown\n");
  
      fprintf (stderr, "args:");
      rs6000_debug_target_options (args, " ");
      fprintf (stderr, "\n");

      if (flags)
	fprintf (stderr, "flags: 0x%x\n", flags);

      fprintf (stderr, "--------------------\n");
    }

  /* attribute((target("default"))) does nothing, beyond
     affecting multi-versioning.  */
  if (TREE_VALUE (args)
      && TREE_CODE (TREE_VALUE (args)) == STRING_CST
      && TREE_CHAIN (args) == NULL_TREE
      && strcmp (TREE_STRING_POINTER (TREE_VALUE (args)), "default") == 0)
    return true;

  old_optimize = build_optimization_node (&global_options,
					  &global_options_set);
  func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl);

  /* If the function changed the optimization levels as well as setting target
     options, start with the optimizations specified.  */
  if (func_optimize && func_optimize != old_optimize)
    cl_optimization_restore (&global_options, &global_options_set,
			     TREE_OPTIMIZATION (func_optimize));

  /* The target attributes may also change some optimization flags, so update
     the optimization options if necessary.  */
  cl_target_option_save (&cur_target, &global_options, &global_options_set);
  rs6000_cpu_index = rs6000_tune_index = -1;
  ret = rs6000_inner_target_options (args, true);

  /* Set up any additional state.  */
  if (ret)
    {
      ret = rs6000_option_override_internal (false);
      new_target = build_target_option_node (&global_options,
					     &global_options_set);
    }
  else
    new_target = NULL;

  new_optimize = build_optimization_node (&global_options,
					  &global_options_set);

  if (!new_target)
    ret = false;

  else if (fndecl)
    {
      DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = new_target;

      if (old_optimize != new_optimize)
	DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) = new_optimize;
    }

  cl_target_option_restore (&global_options, &global_options_set, &cur_target);

  if (old_optimize != new_optimize)
    cl_optimization_restore (&global_options, &global_options_set,
			     TREE_OPTIMIZATION (old_optimize));

  return ret;
}


/* Hook to validate the current #pragma GCC target and set the state, and
   update the macros based on what was changed.  If ARGS is NULL, then
   POP_TARGET is used to reset the options.  */

bool
rs6000_pragma_target_parse (tree args, tree pop_target)
{
  tree prev_tree = build_target_option_node (&global_options,
					     &global_options_set);
  tree cur_tree;
  struct cl_target_option *prev_opt, *cur_opt;
  HOST_WIDE_INT prev_flags, cur_flags, diff_flags;

  if (TARGET_DEBUG_TARGET)
    {
      fprintf (stderr, "\n==================== rs6000_pragma_target_parse\n");
      fprintf (stderr, "args:");
      rs6000_debug_target_options (args, " ");
      fprintf (stderr, "\n");

      if (pop_target)
	{
	  fprintf (stderr, "pop_target:\n");
	  debug_tree (pop_target);
	}
      else
	fprintf (stderr, "pop_target: <NULL>\n");

      fprintf (stderr, "--------------------\n");
    }

  if (! args)
    {
      cur_tree = ((pop_target)
		  ? pop_target
		  : target_option_default_node);
      cl_target_option_restore (&global_options, &global_options_set,
				TREE_TARGET_OPTION (cur_tree));
    }
  else
    {
      rs6000_cpu_index = rs6000_tune_index = -1;
      if (!rs6000_inner_target_options (args, false)
	  || !rs6000_option_override_internal (false)
	  || (cur_tree = build_target_option_node (&global_options,
						   &global_options_set))
	     == NULL_TREE)
	{
	  if (TARGET_DEBUG_BUILTIN || TARGET_DEBUG_TARGET)
	    fprintf (stderr, "invalid pragma\n");

	  return false;
	}
    }

  target_option_current_node = cur_tree;
  rs6000_activate_target_options (target_option_current_node);

  /* If we have the preprocessor linked in (i.e. C or C++ languages), possibly
     change the macros that are defined.  */
  if (rs6000_target_modify_macros_ptr)
    {
      prev_opt    = TREE_TARGET_OPTION (prev_tree);
      prev_flags  = prev_opt->x_rs6000_isa_flags;

      cur_opt     = TREE_TARGET_OPTION (cur_tree);
      cur_flags   = cur_opt->x_rs6000_isa_flags;

      diff_flags  = (prev_flags ^ cur_flags);

      if (diff_flags != 0)
	{
	  /* Delete old macros.  */
	  rs6000_target_modify_macros_ptr (false,
					   prev_flags & diff_flags);

	  /* Define new macros.  */
	  rs6000_target_modify_macros_ptr (true,
					   cur_flags & diff_flags);
	}
    }

  return true;
}


/* Remember the last target of rs6000_set_current_function.  */
static GTY(()) tree rs6000_previous_fndecl;

/* Restore target's globals from NEW_TREE and invalidate the
   rs6000_previous_fndecl cache.  */

void
rs6000_activate_target_options (tree new_tree)
{
  cl_target_option_restore (&global_options, &global_options_set,
			    TREE_TARGET_OPTION (new_tree));
  if (TREE_TARGET_GLOBALS (new_tree))
    restore_target_globals (TREE_TARGET_GLOBALS (new_tree));
  else if (new_tree == target_option_default_node)
    restore_target_globals (&default_target_globals);
  else
    TREE_TARGET_GLOBALS (new_tree) = save_target_globals_default_opts ();
  rs6000_previous_fndecl = NULL_TREE;
}

/* Establish appropriate back-end context for processing the function
   FNDECL.  The argument might be NULL to indicate processing at top
   level, outside of any function scope.  */
static void
rs6000_set_current_function (tree fndecl)
{
  if (TARGET_DEBUG_TARGET)
    {
      fprintf (stderr, "\n==================== rs6000_set_current_function");

      if (fndecl)
	fprintf (stderr, ", fndecl %s (%p)",
		 (DECL_NAME (fndecl)
		  ? IDENTIFIER_POINTER (DECL_NAME (fndecl))
		  : "<unknown>"), (void *)fndecl);

      if (rs6000_previous_fndecl)
	fprintf (stderr, ", prev_fndecl (%p)", (void *)rs6000_previous_fndecl);

      fprintf (stderr, "\n");
    }

  /* Only change the context if the function changes.  This hook is called
     several times in the course of compiling a function, and we don't want to
     slow things down too much or call target_reinit when it isn't safe.  */
  if (fndecl == rs6000_previous_fndecl)
    return;

  tree old_tree;
  if (rs6000_previous_fndecl == NULL_TREE)
    old_tree = target_option_current_node;
  else if (DECL_FUNCTION_SPECIFIC_TARGET (rs6000_previous_fndecl))
    old_tree = DECL_FUNCTION_SPECIFIC_TARGET (rs6000_previous_fndecl);
  else
    old_tree = target_option_default_node;

  tree new_tree;
  if (fndecl == NULL_TREE)
    {
      if (old_tree != target_option_current_node)
	new_tree = target_option_current_node;
      else
	new_tree = NULL_TREE;
    }
  else
    {
      new_tree = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);
      if (new_tree == NULL_TREE)
	new_tree = target_option_default_node;
    }

  if (TARGET_DEBUG_TARGET)
    {
      if (new_tree)
	{
	  fprintf (stderr, "\nnew fndecl target specific options:\n");
	  debug_tree (new_tree);
	}

      if (old_tree)
	{
	  fprintf (stderr, "\nold fndecl target specific options:\n");
	  debug_tree (old_tree);
	}

      if (old_tree != NULL_TREE || new_tree != NULL_TREE)
	fprintf (stderr, "--------------------\n");
    }

  if (new_tree && old_tree != new_tree)
    rs6000_activate_target_options (new_tree);

  if (fndecl)
    rs6000_previous_fndecl = fndecl;
}


/* Save the current options */

static void
rs6000_function_specific_save (struct cl_target_option *ptr,
			       struct gcc_options *opts,
			       struct gcc_options */* opts_set */)
{
  ptr->x_rs6000_isa_flags = opts->x_rs6000_isa_flags;
  ptr->x_rs6000_isa_flags_explicit = opts->x_rs6000_isa_flags_explicit;
}

/* Restore the current options */

static void
rs6000_function_specific_restore (struct gcc_options *opts,
				  struct gcc_options */* opts_set */,
				  struct cl_target_option *ptr)
				  
{
  opts->x_rs6000_isa_flags = ptr->x_rs6000_isa_flags;
  opts->x_rs6000_isa_flags_explicit = ptr->x_rs6000_isa_flags_explicit;
  (void) rs6000_option_override_internal (false);
}

/* Print the current options */

static void
rs6000_function_specific_print (FILE *file, int indent,
				struct cl_target_option *ptr)
{
  rs6000_print_isa_options (file, indent, "Isa options set",
			    ptr->x_rs6000_isa_flags);

  rs6000_print_isa_options (file, indent, "Isa options explicit",
			    ptr->x_rs6000_isa_flags_explicit);
}

/* Helper function to print the current isa or misc options on a line.  */

static void
rs6000_print_options_internal (FILE *file,
			       int indent,
			       const char *string,
			       HOST_WIDE_INT flags,
			       const char *prefix,
			       const struct rs6000_opt_mask *opts,
			       size_t num_elements)
{
  size_t i;
  size_t start_column = 0;
  size_t cur_column;
  size_t max_column = 120;
  size_t prefix_len = strlen (prefix);
  size_t comma_len = 0;
  const char *comma = "";

  if (indent)
    start_column += fprintf (file, "%*s", indent, "");

  if (!flags)
    {
      fprintf (stderr, DEBUG_FMT_S, string, "<none>");
      return;
    }

  start_column += fprintf (stderr, DEBUG_FMT_WX, string, flags);

  /* Print the various mask options.  */
  cur_column = start_column;
  for (i = 0; i < num_elements; i++)
    {
      bool invert = opts[i].invert;
      const char *name = opts[i].name;
      const char *no_str = "";
      HOST_WIDE_INT mask = opts[i].mask;
      size_t len = comma_len + prefix_len + strlen (name);

      if (!invert)
	{
	  if ((flags & mask) == 0)
	    {
	      no_str = "no-";
	      len += strlen ("no-");
	    }

	  flags &= ~mask;
	}

      else
	{
	  if ((flags & mask) != 0)
	    {
	      no_str = "no-";
	      len += strlen ("no-");
	    }

	  flags |= mask;
	}

      cur_column += len;
      if (cur_column > max_column)
	{
	  fprintf (stderr, ", \\\n%*s", (int)start_column, "");
	  cur_column = start_column + len;
	  comma = "";
	}

      fprintf (file, "%s%s%s%s", comma, prefix, no_str, name);
      comma = ", ";
      comma_len = strlen (", ");
    }

  fputs ("\n", file);
}

/* Helper function to print the current isa options on a line.  */

static void
rs6000_print_isa_options (FILE *file, int indent, const char *string,
			  HOST_WIDE_INT flags)
{
  rs6000_print_options_internal (file, indent, string, flags, "-m",
				 &rs6000_opt_masks[0],
				 ARRAY_SIZE (rs6000_opt_masks));
}

/* If the user used -mno-vsx, we need turn off all of the implicit ISA 2.06,
   2.07, and 3.0 options that relate to the vector unit (-mdirect-move,
   -mupper-regs-df, etc.).

   If the user used -mno-power8-vector, we need to turn off all of the implicit
   ISA 2.07 and 3.0 options that relate to the vector unit.

   If the user used -mno-power9-vector, we need to turn off all of the implicit
   ISA 3.0 options that relate to the vector unit.

   This function does not handle explicit options such as the user specifying
   -mdirect-move.  These are handled in rs6000_option_override_internal, and
   the appropriate error is given if needed.

   We return a mask of all of the implicit options that should not be enabled
   by default.  */

static HOST_WIDE_INT
rs6000_disable_incompatible_switches (void)
{
  HOST_WIDE_INT ignore_masks = rs6000_isa_flags_explicit;
  size_t i, j;

  static const struct {
    const HOST_WIDE_INT no_flag;	/* flag explicitly turned off.  */
    const HOST_WIDE_INT dep_flags;	/* flags that depend on this option.  */
    const char *const name;		/* name of the switch.  */
  } flags[] = {
    { OPTION_MASK_P9_VECTOR,	OTHER_P9_VECTOR_MASKS,	"power9-vector"	},
    { OPTION_MASK_P8_VECTOR,	OTHER_P8_VECTOR_MASKS,	"power8-vector"	},
    { OPTION_MASK_VSX,		OTHER_VSX_VECTOR_MASKS,	"vsx"		},
    { OPTION_MASK_ALTIVEC,	OTHER_ALTIVEC_MASKS,	"altivec"	},
  };

  for (i = 0; i < ARRAY_SIZE (flags); i++)
    {
      HOST_WIDE_INT no_flag = flags[i].no_flag;

      if ((rs6000_isa_flags & no_flag) == 0
	  && (rs6000_isa_flags_explicit & no_flag) != 0)
	{
	  HOST_WIDE_INT dep_flags = flags[i].dep_flags;
	  HOST_WIDE_INT set_flags = (rs6000_isa_flags_explicit
				     & rs6000_isa_flags
				     & dep_flags);

	  if (set_flags)
	    {
	      for (j = 0; j < ARRAY_SIZE (rs6000_opt_masks); j++)
		if ((set_flags & rs6000_opt_masks[j].mask) != 0)
		  {
		    set_flags &= ~rs6000_opt_masks[j].mask;
		    error ("%<-mno-%s%> turns off %<-m%s%>",
			   flags[i].name,
			   rs6000_opt_masks[j].name);
		  }

	      gcc_assert (!set_flags);
	    }

	  rs6000_isa_flags &= ~dep_flags;
	  ignore_masks |= no_flag | dep_flags;
	}
    }

  return ignore_masks;
}


/* Helper function for printing the function name when debugging.  */

static const char *
get_decl_name (tree fn)
{
  tree name;

  if (!fn)
    return "<null>";

  name = DECL_NAME (fn);
  if (!name)
    return "<no-name>";

  return IDENTIFIER_POINTER (name);
}

/* Return the clone id of the target we are compiling code for in a target
   clone.  The clone id is ordered from 0 (default) to CLONE_MAX-1 and gives
   the priority list for the target clones (ordered from lowest to
   highest).  */

static int
rs6000_clone_priority (tree fndecl)
{
  tree fn_opts = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);
  HOST_WIDE_INT isa_masks;
  int ret = CLONE_DEFAULT;
  tree attrs = lookup_attribute ("target", DECL_ATTRIBUTES (fndecl));
  const char *attrs_str = NULL;

  attrs = TREE_VALUE (TREE_VALUE (attrs));
  attrs_str = TREE_STRING_POINTER (attrs);

  /* Return priority zero for default function.  Return the ISA needed for the
     function if it is not the default.  */
  if (strcmp (attrs_str, "default") != 0)
    {
      if (fn_opts == NULL_TREE)
	fn_opts = target_option_default_node;

      if (!fn_opts || !TREE_TARGET_OPTION (fn_opts))
	isa_masks = rs6000_isa_flags;
      else
	isa_masks = TREE_TARGET_OPTION (fn_opts)->x_rs6000_isa_flags;

      for (ret = CLONE_MAX - 1; ret != 0; ret--)
	if ((rs6000_clone_map[ret].isa_mask & isa_masks) != 0)
	  break;
    }

  if (TARGET_DEBUG_TARGET)
    fprintf (stderr, "rs6000_get_function_version_priority (%s) => %d\n",
	     get_decl_name (fndecl), ret);

  return ret;
}

/* This compares the priority of target features in function DECL1 and DECL2.
   It returns positive value if DECL1 is higher priority, negative value if
   DECL2 is higher priority and 0 if they are the same.  Note, priorities are
   ordered from lowest (CLONE_DEFAULT) to highest (currently CLONE_ISA_3_0).  */

static int
rs6000_compare_version_priority (tree decl1, tree decl2)
{
  int priority1 = rs6000_clone_priority (decl1);
  int priority2 = rs6000_clone_priority (decl2);
  int ret = priority1 - priority2;

  if (TARGET_DEBUG_TARGET)
    fprintf (stderr, "rs6000_compare_version_priority (%s, %s) => %d\n",
	     get_decl_name (decl1), get_decl_name (decl2), ret);

  return ret;
}

/* Make a dispatcher declaration for the multi-versioned function DECL.
   Calls to DECL function will be replaced with calls to the dispatcher
   by the front-end.  Returns the decl of the dispatcher function.  */

static tree
rs6000_get_function_versions_dispatcher (void *decl)
{
  tree fn = (tree) decl;
  struct cgraph_node *node = NULL;
  struct cgraph_node *default_node = NULL;
  struct cgraph_function_version_info *node_v = NULL;
  struct cgraph_function_version_info *first_v = NULL;

  tree dispatch_decl = NULL;

  struct cgraph_function_version_info *default_version_info = NULL;
  gcc_assert (fn != NULL && DECL_FUNCTION_VERSIONED (fn));

  if (TARGET_DEBUG_TARGET)
    fprintf (stderr, "rs6000_get_function_versions_dispatcher (%s)\n",
	     get_decl_name (fn));

  node = cgraph_node::get (fn);
  gcc_assert (node != NULL);

  node_v = node->function_version ();
  gcc_assert (node_v != NULL);

  if (node_v->dispatcher_resolver != NULL)
    return node_v->dispatcher_resolver;

  /* Find the default version and make it the first node.  */
  first_v = node_v;
  /* Go to the beginning of the chain.  */
  while (first_v->prev != NULL)
    first_v = first_v->prev;

  default_version_info = first_v;
  while (default_version_info != NULL)
    {
      const tree decl2 = default_version_info->this_node->decl;
      if (is_function_default_version (decl2))
        break;
      default_version_info = default_version_info->next;
    }

  /* If there is no default node, just return NULL.  */
  if (default_version_info == NULL)
    return NULL;

  /* Make default info the first node.  */
  if (first_v != default_version_info)
    {
      default_version_info->prev->next = default_version_info->next;
      if (default_version_info->next)
        default_version_info->next->prev = default_version_info->prev;
      first_v->prev = default_version_info;
      default_version_info->next = first_v;
      default_version_info->prev = NULL;
    }

  default_node = default_version_info->this_node;

#ifndef TARGET_LIBC_PROVIDES_HWCAP_IN_TCB
  error_at (DECL_SOURCE_LOCATION (default_node->decl),
	    "%<target_clones%> attribute needs GLIBC (2.23 and newer) that "
	    "exports hardware capability bits");
#else

  if (targetm.has_ifunc_p ())
    {
      struct cgraph_function_version_info *it_v = NULL;
      struct cgraph_node *dispatcher_node = NULL;
      struct cgraph_function_version_info *dispatcher_version_info = NULL;

      /* Right now, the dispatching is done via ifunc.  */
      dispatch_decl = make_dispatcher_decl (default_node->decl);
      TREE_NOTHROW (dispatch_decl) = TREE_NOTHROW (fn);

      dispatcher_node = cgraph_node::get_create (dispatch_decl);
      gcc_assert (dispatcher_node != NULL);
      dispatcher_node->dispatcher_function = 1;
      dispatcher_version_info
	= dispatcher_node->insert_new_function_version ();
      dispatcher_version_info->next = default_version_info;
      dispatcher_node->definition = 1;

      /* Set the dispatcher for all the versions.  */
      it_v = default_version_info;
      while (it_v != NULL)
	{
	  it_v->dispatcher_resolver = dispatch_decl;
	  it_v = it_v->next;
	}
    }
  else
    {
      error_at (DECL_SOURCE_LOCATION (default_node->decl),
		"multiversioning needs %<ifunc%> which is not supported "
		"on this target");
    }
#endif

  return dispatch_decl;
}

/* Make the resolver function decl to dispatch the versions of a multi-
   versioned function, DEFAULT_DECL.  Create an empty basic block in the
   resolver and store the pointer in EMPTY_BB.  Return the decl of the resolver
   function.  */

static tree
make_resolver_func (const tree default_decl,
		    const tree dispatch_decl,
		    basic_block *empty_bb)
{
  /* Make the resolver function static.  The resolver function returns
     void *.  */
  tree decl_name = clone_function_name (default_decl, "resolver");
  const char *resolver_name = IDENTIFIER_POINTER (decl_name);
  tree type = build_function_type_list (ptr_type_node, NULL_TREE);
  tree decl = build_fn_decl (resolver_name, type);
  SET_DECL_ASSEMBLER_NAME (decl, decl_name);

  DECL_NAME (decl) = decl_name;
  TREE_USED (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  DECL_IGNORED_P (decl) = 0;
  TREE_PUBLIC (decl) = 0;
  DECL_UNINLINABLE (decl) = 1;

  /* Resolver is not external, body is generated.  */
  DECL_EXTERNAL (decl) = 0;
  DECL_EXTERNAL (dispatch_decl) = 0;

  DECL_CONTEXT (decl) = NULL_TREE;
  DECL_INITIAL (decl) = make_node (BLOCK);
  DECL_STATIC_CONSTRUCTOR (decl) = 0;

  if (DECL_COMDAT_GROUP (default_decl)
      || TREE_PUBLIC (default_decl))
    {
      /* In this case, each translation unit with a call to this
	 versioned function will put out a resolver.  Ensure it
	 is comdat to keep just one copy.  */
      DECL_COMDAT (decl) = 1;
      make_decl_one_only (decl, DECL_ASSEMBLER_NAME (decl));
    }
  else
    TREE_PUBLIC (dispatch_decl) = 0;

  /* Build result decl and add to function_decl.  */
  tree t = build_decl (UNKNOWN_LOCATION, RESULT_DECL, NULL_TREE, ptr_type_node);
  DECL_CONTEXT (t) = decl;
  DECL_ARTIFICIAL (t) = 1;
  DECL_IGNORED_P (t) = 1;
  DECL_RESULT (decl) = t;

  gimplify_function_tree (decl);
  push_cfun (DECL_STRUCT_FUNCTION (decl));
  *empty_bb = init_lowered_empty_function (decl, false,
					   profile_count::uninitialized ());

  cgraph_node::add_new_function (decl, true);
  symtab->call_cgraph_insertion_hooks (cgraph_node::get_create (decl));

  pop_cfun ();

  /* Mark dispatch_decl as "ifunc" with resolver as resolver_name.  */
  DECL_ATTRIBUTES (dispatch_decl)
    = make_attribute ("ifunc", resolver_name, DECL_ATTRIBUTES (dispatch_decl));

  cgraph_node::create_same_body_alias (dispatch_decl, decl);

  return decl;
}

/* This adds a condition to the basic_block NEW_BB in function FUNCTION_DECL to
   return a pointer to VERSION_DECL if we are running on a machine that
   supports the index CLONE_ISA hardware architecture bits.  This function will
   be called during version dispatch to decide which function version to
   execute.  It returns the basic block at the end, to which more conditions
   can be added.  */

static basic_block
add_condition_to_bb (tree function_decl, tree version_decl,
		     int clone_isa, basic_block new_bb)
{
  push_cfun (DECL_STRUCT_FUNCTION (function_decl));

  gcc_assert (new_bb != NULL);
  gimple_seq gseq = bb_seq (new_bb);


  tree convert_expr = build1 (CONVERT_EXPR, ptr_type_node,
			      build_fold_addr_expr (version_decl));
  tree result_var = create_tmp_var (ptr_type_node);
  gimple *convert_stmt = gimple_build_assign (result_var, convert_expr);
  gimple *return_stmt = gimple_build_return (result_var);

  if (clone_isa == CLONE_DEFAULT)
    {
      gimple_seq_add_stmt (&gseq, convert_stmt);
      gimple_seq_add_stmt (&gseq, return_stmt);
      set_bb_seq (new_bb, gseq);
      gimple_set_bb (convert_stmt, new_bb);
      gimple_set_bb (return_stmt, new_bb);
      pop_cfun ();
      return new_bb;
    }

  tree bool_zero = build_int_cst (bool_int_type_node, 0);
  tree cond_var = create_tmp_var (bool_int_type_node);
  tree predicate_decl = rs6000_builtin_decls[(int) RS6000_BIF_CPU_SUPPORTS];
  const char *arg_str = rs6000_clone_map[clone_isa].name;
  tree predicate_arg = build_string_literal (strlen (arg_str) + 1, arg_str);
  gimple *call_cond_stmt = gimple_build_call (predicate_decl, 1, predicate_arg);
  gimple_call_set_lhs (call_cond_stmt, cond_var);

  gimple_set_block (call_cond_stmt, DECL_INITIAL (function_decl));
  gimple_set_bb (call_cond_stmt, new_bb);
  gimple_seq_add_stmt (&gseq, call_cond_stmt);

  gimple *if_else_stmt = gimple_build_cond (NE_EXPR, cond_var, bool_zero,
					    NULL_TREE, NULL_TREE);
  gimple_set_block (if_else_stmt, DECL_INITIAL (function_decl));
  gimple_set_bb (if_else_stmt, new_bb);
  gimple_seq_add_stmt (&gseq, if_else_stmt);

  gimple_seq_add_stmt (&gseq, convert_stmt);
  gimple_seq_add_stmt (&gseq, return_stmt);
  set_bb_seq (new_bb, gseq);

  basic_block bb1 = new_bb;
  edge e12 = split_block (bb1, if_else_stmt);
  basic_block bb2 = e12->dest;
  e12->flags &= ~EDGE_FALLTHRU;
  e12->flags |= EDGE_TRUE_VALUE;

  edge e23 = split_block (bb2, return_stmt);
  gimple_set_bb (convert_stmt, bb2);
  gimple_set_bb (return_stmt, bb2);

  basic_block bb3 = e23->dest;
  make_edge (bb1, bb3, EDGE_FALSE_VALUE);

  remove_edge (e23);
  make_edge (bb2, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);

  pop_cfun ();
  return bb3;
}

/* This function generates the dispatch function for multi-versioned functions.
   DISPATCH_DECL is the function which will contain the dispatch logic.
   FNDECLS are the function choices for dispatch, and is a tree chain.
   EMPTY_BB is the basic block pointer in DISPATCH_DECL in which the dispatch
   code is generated.  */

static int
dispatch_function_versions (tree dispatch_decl,
			    void *fndecls_p,
			    basic_block *empty_bb)
{
  int ix;
  tree ele;
  vec<tree> *fndecls;
  tree clones[CLONE_MAX];

  if (TARGET_DEBUG_TARGET)
    fputs ("dispatch_function_versions, top\n", stderr);

  gcc_assert (dispatch_decl != NULL
	      && fndecls_p != NULL
	      && empty_bb != NULL);

  /* fndecls_p is actually a vector.  */
  fndecls = static_cast<vec<tree> *> (fndecls_p);

  /* At least one more version other than the default.  */
  gcc_assert (fndecls->length () >= 2);

  /* The first version in the vector is the default decl.  */
  memset ((void *) clones, '\0', sizeof (clones));
  clones[CLONE_DEFAULT] = (*fndecls)[0];

  /* On the PowerPC, we do not need to call __builtin_cpu_init, which is a NOP
     on the PowerPC (on the x86_64, it is not a NOP).  The builtin function
     __builtin_cpu_support ensures that the TOC fields are setup by requiring a
     recent glibc.  If we ever need to call __builtin_cpu_init, we would need
     to insert the code here to do the call.  */

  for (ix = 1; fndecls->iterate (ix, &ele); ++ix)
    {
      int priority = rs6000_clone_priority (ele);
      if (!clones[priority])
	clones[priority] = ele;
    }

  for (ix = CLONE_MAX - 1; ix >= 0; ix--)
    if (clones[ix])
      {
	if (TARGET_DEBUG_TARGET)
	  fprintf (stderr, "dispatch_function_versions, clone %d, %s\n",
		   ix, get_decl_name (clones[ix]));

	*empty_bb = add_condition_to_bb (dispatch_decl, clones[ix], ix,
					 *empty_bb);
      }

  return 0;
}

/* Generate the dispatching code body to dispatch multi-versioned function
   DECL.  The target hook is called to process the "target" attributes and
   provide the code to dispatch the right function at run-time.  NODE points
   to the dispatcher decl whose body will be created.  */

static tree
rs6000_generate_version_dispatcher_body (void *node_p)
{
  tree resolver;
  basic_block empty_bb;
  struct cgraph_node *node = (cgraph_node *) node_p;
  struct cgraph_function_version_info *ninfo = node->function_version ();

  if (ninfo->dispatcher_resolver)
    return ninfo->dispatcher_resolver;

  /* node is going to be an alias, so remove the finalized bit.  */
  node->definition = false;

  /* The first version in the chain corresponds to the default version.  */
  ninfo->dispatcher_resolver = resolver
    = make_resolver_func (ninfo->next->this_node->decl, node->decl, &empty_bb);

  if (TARGET_DEBUG_TARGET)
    fprintf (stderr, "rs6000_get_function_versions_dispatcher, %s\n",
	     get_decl_name (resolver));

  push_cfun (DECL_STRUCT_FUNCTION (resolver));
  auto_vec<tree, 2> fn_ver_vec;

  for (struct cgraph_function_version_info *vinfo = ninfo->next;
       vinfo;
       vinfo = vinfo->next)
    {
      struct cgraph_node *version = vinfo->this_node;
      /* Check for virtual functions here again, as by this time it should
	 have been determined if this function needs a vtable index or
	 not.  This happens for methods in derived classes that override
	 virtual methods in base classes but are not explicitly marked as
	 virtual.  */
      if (DECL_VINDEX (version->decl))
	sorry ("Virtual function multiversioning not supported");

      fn_ver_vec.safe_push (version->decl);
    }

  dispatch_function_versions (resolver, &fn_ver_vec, &empty_bb);
  cgraph_edge::rebuild_edges ();
  pop_cfun ();
  return resolver;
}

/* Hook to decide if we need to scan function gimple statements to
   collect target specific information for inlining, and update the
   corresponding RS6000_FN_TARGET_INFO_* bit in INFO if we are able
   to predict which ISA feature is used at this time.  Return true
   if we need to scan, otherwise return false.  */

static bool
rs6000_need_ipa_fn_target_info (const_tree decl,
				unsigned int &info ATTRIBUTE_UNUSED)
{
  tree target = DECL_FUNCTION_SPECIFIC_TARGET (decl);
  if (!target)
    target = target_option_default_node;
  struct cl_target_option *opts = TREE_TARGET_OPTION (target);

  /* See PR102059, we only handle HTM for now, so will only do
     the consequent scannings when HTM feature enabled.  */
  if (opts->x_rs6000_isa_flags & OPTION_MASK_HTM)
      return true;

  return false;
}

/* Hook to update target specific information INFO for inlining by
   checking the given STMT.  Return false if we don't need to scan
   any more, otherwise return true.  */

static bool
rs6000_update_ipa_fn_target_info (unsigned int &info, const gimple *stmt)
{
  /* Assume inline asm can use any instruction features.  */
  if (gimple_code (stmt) == GIMPLE_ASM)
    {
      /* Should set any bits we concerned, for now OPTION_MASK_HTM is
	 the only bit we care about.  */
      info |= RS6000_FN_TARGET_INFO_HTM;
      return false;
    }
  else if (gimple_code (stmt) == GIMPLE_CALL)
    {
      tree fndecl = gimple_call_fndecl (stmt);
      if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_MD))
	{
	  enum rs6000_gen_builtins fcode
	    = (enum rs6000_gen_builtins) DECL_MD_FUNCTION_CODE (fndecl);
	  /* HTM bifs definitely exploit HTM insns.  */
	  if (bif_is_htm (rs6000_builtin_info[fcode]))
	    {
	      info |= RS6000_FN_TARGET_INFO_HTM;
	      return false;
	    }
	}
    }

  return true;
}

/* Hook to determine if one function can safely inline another.  */

static bool
rs6000_can_inline_p (tree caller, tree callee)
{
  bool ret = false;
  tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller);
  tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee);

  /* If the callee has no option attributes, then it is ok to inline.  */
  if (!callee_tree)
    ret = true;

  else
    {
      HOST_WIDE_INT caller_isa;
      struct cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree);
      HOST_WIDE_INT callee_isa = callee_opts->x_rs6000_isa_flags;
      HOST_WIDE_INT explicit_isa = callee_opts->x_rs6000_isa_flags_explicit;

      /* If the caller has option attributes, then use them.
	 Otherwise, use the command line options.  */
      if (caller_tree)
	caller_isa = TREE_TARGET_OPTION (caller_tree)->x_rs6000_isa_flags;
      else
	caller_isa = rs6000_isa_flags;

      cgraph_node *callee_node = cgraph_node::get (callee);
      if (ipa_fn_summaries && ipa_fn_summaries->get (callee_node) != NULL)
	{
	  unsigned int info = ipa_fn_summaries->get (callee_node)->target_info;
	  if ((info & RS6000_FN_TARGET_INFO_HTM) == 0)
	    {
	      callee_isa &= ~OPTION_MASK_HTM;
	      explicit_isa &= ~OPTION_MASK_HTM;
	    }
	}

      /* Ignore -mpower8-fusion and -mpower10-fusion options for inlining
	 purposes.  */
      callee_isa &= ~(OPTION_MASK_P8_FUSION | OPTION_MASK_P10_FUSION);
      explicit_isa &= ~(OPTION_MASK_P8_FUSION | OPTION_MASK_P10_FUSION);

      /* The callee's options must be a subset of the caller's options, i.e.
	 a vsx function may inline an altivec function, but a no-vsx function
	 must not inline a vsx function.  However, for those options that the
	 callee has explicitly enabled or disabled, then we must enforce that
	 the callee's and caller's options match exactly; see PR70010.  */
      if (((caller_isa & callee_isa) == callee_isa)
	  && (caller_isa & explicit_isa) == (callee_isa & explicit_isa))
	ret = true;
    }

  if (TARGET_DEBUG_TARGET)
    fprintf (stderr, "rs6000_can_inline_p:, caller %s, callee %s, %s inline\n",
	     get_decl_name (caller), get_decl_name (callee),
	     (ret ? "can" : "cannot"));

  return ret;
}

/* Allocate a stack temp and fixup the address so it meets the particular
   memory requirements (either offetable or REG+REG addressing).  */

rtx
rs6000_allocate_stack_temp (machine_mode mode,
			    bool offsettable_p,
			    bool reg_reg_p)
{
  rtx stack = assign_stack_temp (mode, GET_MODE_SIZE (mode));
  rtx addr = XEXP (stack, 0);
  int strict_p = reload_completed;

  if (!legitimate_indirect_address_p (addr, strict_p))
    {
      if (offsettable_p
	  && !rs6000_legitimate_offset_address_p (mode, addr, strict_p, true))
	stack = replace_equiv_address (stack, copy_addr_to_reg (addr));

      else if (reg_reg_p && !legitimate_indexed_address_p (addr, strict_p))
	stack = replace_equiv_address (stack, copy_addr_to_reg (addr));
    }

  return stack;
}

/* Given a memory reference, if it is not a reg or reg+reg addressing,
   convert to such a form to deal with memory reference instructions
   like STFIWX and LDBRX that only take reg+reg addressing.  */

rtx
rs6000_force_indexed_or_indirect_mem (rtx x)
{
  machine_mode mode = GET_MODE (x);

  gcc_assert (MEM_P (x));
  if (can_create_pseudo_p () && !indexed_or_indirect_operand (x, mode))
    {
      rtx addr = XEXP (x, 0);
      if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
	{
	  rtx reg = XEXP (addr, 0);
	  HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (x));
	  rtx size_rtx = GEN_INT ((GET_CODE (addr) == PRE_DEC) ? -size : size);
	  gcc_assert (REG_P (reg));
	  emit_insn (gen_add3_insn (reg, reg, size_rtx));
	  addr = reg;
	}
      else if (GET_CODE (addr) == PRE_MODIFY)
	{
	  rtx reg = XEXP (addr, 0);
	  rtx expr = XEXP (addr, 1);
	  gcc_assert (REG_P (reg));
	  gcc_assert (GET_CODE (expr) == PLUS);
	  emit_insn (gen_add3_insn (reg, XEXP (expr, 0), XEXP (expr, 1)));
	  addr = reg;
	}

      if (GET_CODE (addr) == PLUS)
	{
	  rtx op0 = XEXP (addr, 0);
	  rtx op1 = XEXP (addr, 1);
	  op0 = force_reg (Pmode, op0);
	  op1 = force_reg (Pmode, op1);
	  x = replace_equiv_address (x, gen_rtx_PLUS (Pmode, op0, op1));
	}
      else
	x = replace_equiv_address (x, force_reg (Pmode, addr));
    }

  return x;
}

/* Implement TARGET_LEGITIMATE_CONSTANT_P.

   On the RS/6000, all integer constants are acceptable, most won't be valid
   for particular insns, though.  Only easy FP constants are acceptable.  */

static bool
rs6000_legitimate_constant_p (machine_mode mode, rtx x)
{
  if (TARGET_ELF && tls_referenced_p (x))
    return false;

  if (CONST_DOUBLE_P (x))
    return easy_fp_constant (x, mode);

  if (GET_CODE (x) == CONST_VECTOR)
    return easy_vector_constant (x, mode);

  return true;
}

#if TARGET_AIX_OS
/* Implement TARGET_PRECOMPUTE_TLS_P.

   On the AIX, TLS symbols are in the TOC, which is maintained in the
   constant pool.  AIX TOC TLS symbols need to be pre-computed, but
   must be considered legitimate constants.  */

static bool
rs6000_aix_precompute_tls_p (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
  return tls_referenced_p (x);
}
#endif


/* Return TRUE iff the sequence ending in LAST sets the static chain.  */

static bool
chain_already_loaded (rtx_insn *last)
{
  for (; last != NULL; last = PREV_INSN (last))
    {
      if (NONJUMP_INSN_P (last))
	{
	  rtx patt = PATTERN (last);

	  if (GET_CODE (patt) == SET)
	    {
	      rtx lhs = XEXP (patt, 0);

	      if (REG_P (lhs) && REGNO (lhs) == STATIC_CHAIN_REGNUM)
		return true;
	    }
	}
    }
  return false;
}

/* Expand code to perform a call under the AIX or ELFv2 ABI.  */

void
rs6000_call_aix (rtx value, rtx func_desc, rtx tlsarg, rtx cookie)
{
  rtx func = func_desc;
  rtx toc_reg = gen_rtx_REG (Pmode, TOC_REGNUM);
  rtx toc_load = NULL_RTX;
  rtx toc_restore = NULL_RTX;
  rtx func_addr;
  rtx abi_reg = NULL_RTX;
  rtx call[5];
  int n_call;
  rtx insn;
  bool is_pltseq_longcall;

  if (global_tlsarg)
    tlsarg = global_tlsarg;

  /* Handle longcall attributes.  */
  is_pltseq_longcall = false;
  if ((INTVAL (cookie) & CALL_LONG) != 0
      && GET_CODE (func_desc) == SYMBOL_REF)
    {
      func = rs6000_longcall_ref (func_desc, tlsarg);
      if (TARGET_PLTSEQ)
	is_pltseq_longcall = true;
    }

  /* Handle indirect calls.  */
  if (!SYMBOL_REF_P (func)
      || (DEFAULT_ABI == ABI_AIX && !SYMBOL_REF_FUNCTION_P (func)))
    {
      if (!rs6000_pcrel_p ())
	{
	  /* Save the TOC into its reserved slot before the call,
	     and prepare to restore it after the call.  */
	  rtx stack_toc_offset = GEN_INT (RS6000_TOC_SAVE_SLOT);
	  rtx stack_toc_unspec = gen_rtx_UNSPEC (Pmode,
						 gen_rtvec (1, stack_toc_offset),
						 UNSPEC_TOCSLOT);
	  toc_restore = gen_rtx_SET (toc_reg, stack_toc_unspec);

	  /* Can we optimize saving the TOC in the prologue or
	     do we need to do it at every call?  */
	  if (TARGET_SAVE_TOC_INDIRECT && !cfun->calls_alloca)
	    cfun->machine->save_toc_in_prologue = true;
	  else
	    {
	      rtx stack_ptr = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
	      rtx stack_toc_mem = gen_frame_mem (Pmode,
						 gen_rtx_PLUS (Pmode, stack_ptr,
							       stack_toc_offset));
	      MEM_VOLATILE_P (stack_toc_mem) = 1;
	      if (is_pltseq_longcall)
		{
		  rtvec v = gen_rtvec (3, toc_reg, func_desc, tlsarg);
		  rtx mark_toc_reg = gen_rtx_UNSPEC (Pmode, v, UNSPEC_PLTSEQ);
		  emit_insn (gen_rtx_SET (stack_toc_mem, mark_toc_reg));
		}
	      else
		emit_move_insn (stack_toc_mem, toc_reg);
	    }
	}

      if (DEFAULT_ABI == ABI_ELFv2)
	{
	  /* A function pointer in the ELFv2 ABI is just a plain address, but
	     the ABI requires it to be loaded into r12 before the call.  */
	  func_addr = gen_rtx_REG (Pmode, 12);
	  emit_move_insn (func_addr, func);
	  abi_reg = func_addr;
	  /* Indirect calls via CTR are strongly preferred over indirect
	     calls via LR, so move the address there.  Needed to mark
	     this insn for linker plt sequence editing too.  */
	  func_addr = gen_rtx_REG (Pmode, CTR_REGNO);
	  if (is_pltseq_longcall)
	    {
	      rtvec v = gen_rtvec (3, abi_reg, func_desc, tlsarg);
	      rtx mark_func = gen_rtx_UNSPEC (Pmode, v, UNSPEC_PLTSEQ);
	      emit_insn (gen_rtx_SET (func_addr, mark_func));
	      v = gen_rtvec (2, func_addr, func_desc);
	      func_addr = gen_rtx_UNSPEC (Pmode, v, UNSPEC_PLTSEQ);
	    }
	  else
	    emit_move_insn (func_addr, abi_reg);
	}
      else
	{
	  /* A function pointer under AIX is a pointer to a data area whose
	     first word contains the actual address of the function, whose
	     second word contains a pointer to its TOC, and whose third word
	     contains a value to place in the static chain register (r11).
	     Note that if we load the static chain, our "trampoline" need
	     not have any executable code.  */

	  /* Load up address of the actual function.  */
	  func = force_reg (Pmode, func);
	  func_addr = gen_reg_rtx (Pmode);
	  emit_move_insn (func_addr, gen_rtx_MEM (Pmode, func));

	  /* Indirect calls via CTR are strongly preferred over indirect
	     calls via LR, so move the address there.  */
	  rtx ctr_reg = gen_rtx_REG (Pmode, CTR_REGNO);
	  emit_move_insn (ctr_reg, func_addr);
	  func_addr = ctr_reg;

	  /* Prepare to load the TOC of the called function.  Note that the
	     TOC load must happen immediately before the actual call so
	     that unwinding the TOC registers works correctly.  See the
	     comment in frob_update_context.  */
	  rtx func_toc_offset = GEN_INT (GET_MODE_SIZE (Pmode));
	  rtx func_toc_mem = gen_rtx_MEM (Pmode,
					  gen_rtx_PLUS (Pmode, func,
							func_toc_offset));
	  toc_load = gen_rtx_USE (VOIDmode, func_toc_mem);

	  /* If we have a static chain, load it up.  But, if the call was
	     originally direct, the 3rd word has not been written since no
	     trampoline has been built, so we ought not to load it, lest we
	     override a static chain value.  */
	  if (!(GET_CODE (func_desc) == SYMBOL_REF
		&& SYMBOL_REF_FUNCTION_P (func_desc))
	      && TARGET_POINTERS_TO_NESTED_FUNCTIONS
	      && !chain_already_loaded (get_current_sequence ()->next->last))
	    {
	      rtx sc_reg = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
	      rtx func_sc_offset = GEN_INT (2 * GET_MODE_SIZE (Pmode));
	      rtx func_sc_mem = gen_rtx_MEM (Pmode,
					     gen_rtx_PLUS (Pmode, func,
							   func_sc_offset));
	      emit_move_insn (sc_reg, func_sc_mem);
	      abi_reg = sc_reg;
	    }
	}
    }
  else
    {
      /* No TOC register needed for calls from PC-relative callers.  */
      if (!rs6000_pcrel_p ())
	/* Direct calls use the TOC: for local calls, the callee will
	   assume the TOC register is set; for non-local calls, the
	   PLT stub needs the TOC register.  */
	abi_reg = toc_reg;
      func_addr = func;
    }

  /* Create the call.  */
  call[0] = gen_rtx_CALL (VOIDmode, gen_rtx_MEM (SImode, func_addr), tlsarg);
  if (value != NULL_RTX)
    call[0] = gen_rtx_SET (value, call[0]);
  call[1] = gen_rtx_USE (VOIDmode, cookie);
  n_call = 2;

  if (toc_load)
    call[n_call++] = toc_load;
  if (toc_restore)
    call[n_call++] = toc_restore;

  call[n_call++] = gen_hard_reg_clobber (Pmode, LR_REGNO);

  insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (n_call, call));
  insn = emit_call_insn (insn);

  /* Mention all registers defined by the ABI to hold information
     as uses in CALL_INSN_FUNCTION_USAGE.  */
  if (abi_reg)
    use_reg (&CALL_INSN_FUNCTION_USAGE (insn), abi_reg);
}

/* Expand code to perform a sibling call under the AIX or ELFv2 ABI.  */

void
rs6000_sibcall_aix (rtx value, rtx func_desc, rtx tlsarg, rtx cookie)
{
  rtx call[2];
  rtx insn;
  rtx r12 = NULL_RTX;
  rtx func_addr = func_desc;

  if (global_tlsarg)
    tlsarg = global_tlsarg;

  /* Handle longcall attributes.  */
  if (INTVAL (cookie) & CALL_LONG && SYMBOL_REF_P (func_desc))
    {
      /* PCREL can do a sibling call to a longcall function
	 because we don't need to restore the TOC register.  */
      gcc_assert (rs6000_pcrel_p ());
      func_desc = rs6000_longcall_ref (func_desc, tlsarg);
    }
  else
    gcc_assert (INTVAL (cookie) == 0);

  /* For ELFv2, r12 and CTR need to hold the function address
     for an indirect call.  */
  if (GET_CODE (func_desc) != SYMBOL_REF && DEFAULT_ABI == ABI_ELFv2)
    {
      r12 = gen_rtx_REG (Pmode, 12);
      emit_move_insn (r12, func_desc);
      func_addr = gen_rtx_REG (Pmode, CTR_REGNO);
      emit_move_insn (func_addr, r12);
    }

  /* Create the call.  */
  call[0] = gen_rtx_CALL (VOIDmode, gen_rtx_MEM (SImode, func_addr), tlsarg);
  if (value != NULL_RTX)
    call[0] = gen_rtx_SET (value, call[0]);

  call[1] = simple_return_rtx;

  insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (2, call));
  insn = emit_call_insn (insn);

  /* Note use of the TOC register.  */
  if (!rs6000_pcrel_p ())
    use_reg (&CALL_INSN_FUNCTION_USAGE (insn),
	     gen_rtx_REG (Pmode, TOC_REGNUM));

  /* Note use of r12.  */
  if (r12)
    use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r12);
}

/* Expand code to perform a call under the SYSV4 ABI.  */

void
rs6000_call_sysv (rtx value, rtx func_desc, rtx tlsarg, rtx cookie)
{
  rtx func = func_desc;
  rtx func_addr;
  rtx call[4];
  rtx insn;
  rtx abi_reg = NULL_RTX;
  int n;

  if (global_tlsarg)
    tlsarg = global_tlsarg;

  /* Handle longcall attributes.  */
  if ((INTVAL (cookie) & CALL_LONG) != 0
      && GET_CODE (func_desc) == SYMBOL_REF)
    {
      func = rs6000_longcall_ref (func_desc, tlsarg);
      /* If the longcall was implemented as an inline PLT call using
	 PLT unspecs then func will be REG:r11.  If not, func will be
	 a pseudo reg.  The inline PLT call sequence supports lazy
	 linking (and longcalls to functions in dlopen'd libraries).
	 The other style of longcalls don't.  The lazy linking entry
	 to the dynamic symbol resolver requires r11 be the function
	 address (as it is for linker generated PLT stubs).  Ensure
	 r11 stays valid to the bctrl by marking r11 used by the call.  */
      if (TARGET_PLTSEQ)
	abi_reg = func;
    }

  /* Handle indirect calls.  */
  if (GET_CODE (func) != SYMBOL_REF)
    {
      func = force_reg (Pmode, func);

      /* Indirect calls via CTR are strongly preferred over indirect
	 calls via LR, so move the address there.  That can't be left
	 to reload because we want to mark every instruction in an
	 inline PLT call sequence with a reloc, enabling the linker to
	 edit the sequence back to a direct call when that makes sense.  */
      func_addr = gen_rtx_REG (Pmode, CTR_REGNO);
      if (abi_reg)
	{
	  rtvec v = gen_rtvec (3, func, func_desc, tlsarg);
	  rtx mark_func = gen_rtx_UNSPEC (Pmode, v, UNSPEC_PLTSEQ);
	  emit_insn (gen_rtx_SET (func_addr, mark_func));
	  v = gen_rtvec (2, func_addr, func_desc);
	  func_addr = gen_rtx_UNSPEC (Pmode, v, UNSPEC_PLTSEQ);
	}
      else
	emit_move_insn (func_addr, func);
    }
  else
    func_addr = func;

  /* Create the call.  */
  call[0] = gen_rtx_CALL (VOIDmode, gen_rtx_MEM (SImode, func_addr), tlsarg);
  if (value != NULL_RTX)
    call[0] = gen_rtx_SET (value, call[0]);

  call[1] = gen_rtx_USE (VOIDmode, cookie);
  n = 2;
  if (TARGET_SECURE_PLT
      && flag_pic
      && GET_CODE (func_addr) == SYMBOL_REF
      && !SYMBOL_REF_LOCAL_P (func_addr))
    call[n++] = gen_rtx_USE (VOIDmode, pic_offset_table_rtx);

  call[n++] = gen_hard_reg_clobber (Pmode, LR_REGNO);

  insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (n, call));
  insn = emit_call_insn (insn);
  if (abi_reg)
    use_reg (&CALL_INSN_FUNCTION_USAGE (insn), abi_reg);
}

/* Expand code to perform a sibling call under the SysV4 ABI.  */

void
rs6000_sibcall_sysv (rtx value, rtx func_desc, rtx tlsarg, rtx cookie)
{
  rtx func = func_desc;
  rtx func_addr;
  rtx call[3];
  rtx insn;
  rtx abi_reg = NULL_RTX;

  if (global_tlsarg)
    tlsarg = global_tlsarg;

  /* Handle longcall attributes.  */
  if ((INTVAL (cookie) & CALL_LONG) != 0
      && GET_CODE (func_desc) == SYMBOL_REF)
    {
      func = rs6000_longcall_ref (func_desc, tlsarg);
      /* If the longcall was implemented as an inline PLT call using
	 PLT unspecs then func will be REG:r11.  If not, func will be
	 a pseudo reg.  The inline PLT call sequence supports lazy
	 linking (and longcalls to functions in dlopen'd libraries).
	 The other style of longcalls don't.  The lazy linking entry
	 to the dynamic symbol resolver requires r11 be the function
	 address (as it is for linker generated PLT stubs).  Ensure
	 r11 stays valid to the bctr by marking r11 used by the call.  */
      if (TARGET_PLTSEQ)
	abi_reg = func;
    }

  /* Handle indirect calls.  */
  if (GET_CODE (func) != SYMBOL_REF)
    {
      func = force_reg (Pmode, func);

      /* Indirect sibcalls must go via CTR.  That can't be left to
	 reload because we want to mark every instruction in an inline
	 PLT call sequence with a reloc, enabling the linker to edit
	 the sequence back to a direct call when that makes sense.  */
      func_addr = gen_rtx_REG (Pmode, CTR_REGNO);
      if (abi_reg)
	{
	  rtvec v = gen_rtvec (3, func, func_desc, tlsarg);
	  rtx mark_func = gen_rtx_UNSPEC (Pmode, v, UNSPEC_PLTSEQ);
	  emit_insn (gen_rtx_SET (func_addr, mark_func));
	  v = gen_rtvec (2, func_addr, func_desc);
	  func_addr = gen_rtx_UNSPEC (Pmode, v, UNSPEC_PLTSEQ);
	}
      else
	emit_move_insn (func_addr, func);
    }
  else
    func_addr = func;

  /* Create the call.  */
  call[0] = gen_rtx_CALL (VOIDmode, gen_rtx_MEM (SImode, func_addr), tlsarg);
  if (value != NULL_RTX)
    call[0] = gen_rtx_SET (value, call[0]);

  call[1] = gen_rtx_USE (VOIDmode, cookie);
  call[2] = simple_return_rtx;

  insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (3, call));
  insn = emit_call_insn (insn);
  if (abi_reg)
    use_reg (&CALL_INSN_FUNCTION_USAGE (insn), abi_reg);
}

#if TARGET_MACHO

/* Expand code to perform a call under the Darwin ABI.
   Modulo handling of mlongcall, this is much the same as sysv.
   if/when the longcall optimisation is removed, we could drop this
   code and use the sysv case (taking care to avoid the tls stuff).

   We can use this for sibcalls too, if needed.  */

void
rs6000_call_darwin_1 (rtx value, rtx func_desc, rtx tlsarg,
		      rtx cookie, bool sibcall)
{
  rtx func = func_desc;
  rtx func_addr;
  rtx call[3];
  rtx insn;
  int cookie_val = INTVAL (cookie);
  bool make_island = false;

  /* Handle longcall attributes, there are two cases for Darwin:
     1) Newer linkers are capable of synthesising any branch islands needed.
     2) We need a helper branch island synthesised by the compiler.
     The second case has mostly been retired and we don't use it for m64.
     In fact, it's is an optimisation, we could just indirect as sysv does..
     ... however, backwards compatibility for now.
     If we're going to use this, then we need to keep the CALL_LONG bit set,
     so that we can pick up the special insn form later.  */
  if ((cookie_val & CALL_LONG) != 0
      && GET_CODE (func_desc) == SYMBOL_REF)
    {
      /* FIXME: the longcall opt should not hang off this flag, it is most
	 likely incorrect for kernel-mode code-generation.  */
      if (darwin_symbol_stubs && TARGET_32BIT)
	make_island = true; /* Do nothing yet, retain the CALL_LONG flag.  */
      else
	{
	  /* The linker is capable of doing this, but the user explicitly
	     asked for -mlongcall, so we'll do the 'normal' version.  */
	  func = rs6000_longcall_ref (func_desc, NULL_RTX);
	  cookie_val &= ~CALL_LONG; /* Handled, zap it.  */
	}
    }

  /* Handle indirect calls.  */
  if (GET_CODE (func) != SYMBOL_REF)
    {
      func = force_reg (Pmode, func);

      /* Indirect calls via CTR are strongly preferred over indirect
	 calls via LR, and are required for indirect sibcalls, so move
	 the address there.   */
      func_addr = gen_rtx_REG (Pmode, CTR_REGNO);
      emit_move_insn (func_addr, func);
    }
  else
    func_addr = func;

  /* Create the call.  */
  call[0] = gen_rtx_CALL (VOIDmode, gen_rtx_MEM (SImode, func_addr), tlsarg);
  if (value != NULL_RTX)
    call[0] = gen_rtx_SET (value, call[0]);

  call[1] = gen_rtx_USE (VOIDmode, GEN_INT (cookie_val));

  if (sibcall)
    call[2] = simple_return_rtx;
  else
    call[2] = gen_hard_reg_clobber (Pmode, LR_REGNO);

  insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (3, call));
  insn = emit_call_insn (insn);
  /* Now we have the debug info in the insn, we can set up the branch island
     if we're using one.  */
  if (make_island)
    {
      tree funname = get_identifier (XSTR (func_desc, 0));

      if (no_previous_def (funname))
	{
	  rtx label_rtx = gen_label_rtx ();
	  char *label_buf, temp_buf[256];
	  ASM_GENERATE_INTERNAL_LABEL (temp_buf, "L",
				       CODE_LABEL_NUMBER (label_rtx));
	  label_buf = temp_buf[0] == '*' ? temp_buf + 1 : temp_buf;
	  tree labelname = get_identifier (label_buf);
	  add_compiler_branch_island (labelname, funname,
				     insn_line ((const rtx_insn*)insn));
	}
     }
}
#endif

void
rs6000_call_darwin (rtx value ATTRIBUTE_UNUSED, rtx func_desc ATTRIBUTE_UNUSED,
		    rtx tlsarg ATTRIBUTE_UNUSED, rtx cookie ATTRIBUTE_UNUSED)
{
#if TARGET_MACHO
  rs6000_call_darwin_1 (value, func_desc, tlsarg, cookie, false);
#else
  gcc_unreachable();
#endif
}


void
rs6000_sibcall_darwin (rtx value ATTRIBUTE_UNUSED, rtx func_desc ATTRIBUTE_UNUSED,
		       rtx tlsarg ATTRIBUTE_UNUSED, rtx cookie ATTRIBUTE_UNUSED)
{
#if TARGET_MACHO
  rs6000_call_darwin_1 (value, func_desc, tlsarg, cookie, true);
#else
  gcc_unreachable();
#endif
}

/* Return whether we should generate PC-relative code for FNDECL.  */
bool
rs6000_fndecl_pcrel_p (const_tree fndecl)
{
  if (DEFAULT_ABI != ABI_ELFv2)
    return false;

  struct cl_target_option *opts = target_opts_for_fn (fndecl);

  return ((opts->x_rs6000_isa_flags & OPTION_MASK_PCREL) != 0
	  && TARGET_CMODEL == CMODEL_MEDIUM);
}

/* Return whether we should generate PC-relative code for *FN.  */
bool
rs6000_function_pcrel_p (struct function *fn)
{
  if (DEFAULT_ABI != ABI_ELFv2)
    return false;

  /* Optimize usual case.  */
  if (fn == cfun)
    return ((rs6000_isa_flags & OPTION_MASK_PCREL) != 0
	    && TARGET_CMODEL == CMODEL_MEDIUM);

  return rs6000_fndecl_pcrel_p (fn->decl);
}

/* Return whether we should generate PC-relative code for the current
   function.  */
bool
rs6000_pcrel_p ()
{
  return (DEFAULT_ABI == ABI_ELFv2
	  && (rs6000_isa_flags & OPTION_MASK_PCREL) != 0
	  && TARGET_CMODEL == CMODEL_MEDIUM);
}


/* Given an address (ADDR), a mode (MODE), and what the format of the
   non-prefixed address (NON_PREFIXED_FORMAT) is, return the instruction format
   for the address.  */

enum insn_form
address_to_insn_form (rtx addr,
		      machine_mode mode,
		      enum non_prefixed_form non_prefixed_format)
{
  /* Single register is easy.  */
  if (REG_P (addr) || SUBREG_P (addr))
    return INSN_FORM_BASE_REG;

  /* If the non prefixed instruction format doesn't support offset addressing,
     make sure only indexed addressing is allowed.

     We special case SDmode so that the register allocator does not try to move
     SDmode through GPR registers, but instead uses the 32-bit integer load and
     store instructions for the floating point registers.  */
  if (non_prefixed_format == NON_PREFIXED_X || (mode == SDmode && TARGET_DFP))
    {
      if (GET_CODE (addr) != PLUS)
	return INSN_FORM_BAD;

      rtx op0 = XEXP (addr, 0);
      rtx op1 = XEXP (addr, 1);
      if (!REG_P (op0) && !SUBREG_P (op0))
	return INSN_FORM_BAD;

      if (!REG_P (op1) && !SUBREG_P (op1))
	return INSN_FORM_BAD;

      return INSN_FORM_X;
    }

  /* Deal with update forms.  */
  if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
    return INSN_FORM_UPDATE;

  /* Handle PC-relative symbols and labels.  Check for both local and
     external symbols.  Assume labels are always local.  TLS symbols
     are not PC-relative for rs6000.  */
  if (TARGET_PCREL)
    {
      if (LABEL_REF_P (addr))
	return INSN_FORM_PCREL_LOCAL;

      if (SYMBOL_REF_P (addr) && !SYMBOL_REF_TLS_MODEL (addr))
	{
	  if (!SYMBOL_REF_LOCAL_P (addr))
	    return INSN_FORM_PCREL_EXTERNAL;
	  else
	    return INSN_FORM_PCREL_LOCAL;
	}
    }

  if (GET_CODE (addr) == CONST)
    addr = XEXP (addr, 0);

  /* Recognize LO_SUM addresses used with TOC and 32-bit addressing.  */
  if (GET_CODE (addr) == LO_SUM)
    return INSN_FORM_LO_SUM;

  /* Everything below must be an offset address of some form.  */
  if (GET_CODE (addr) != PLUS)
    return INSN_FORM_BAD;

  rtx op0 = XEXP (addr, 0);
  rtx op1 = XEXP (addr, 1);

  /* Check for indexed addresses.  */
  if (REG_P (op1) || SUBREG_P (op1))
    {
      if (REG_P (op0) || SUBREG_P (op0))
	return INSN_FORM_X;

      return INSN_FORM_BAD;
    }

  if (!CONST_INT_P (op1))
    return INSN_FORM_BAD;

  HOST_WIDE_INT offset = INTVAL (op1);
  if (!SIGNED_INTEGER_34BIT_P (offset))
    return INSN_FORM_BAD;

  /* Check for local and external PC-relative addresses.  Labels are always
     local.  TLS symbols are not PC-relative for rs6000.  */
  if (TARGET_PCREL)
    {
      if (LABEL_REF_P (op0))
	return INSN_FORM_PCREL_LOCAL;

      if (SYMBOL_REF_P (op0) && !SYMBOL_REF_TLS_MODEL (op0))
	{
	  if (!SYMBOL_REF_LOCAL_P (op0))
	    return INSN_FORM_PCREL_EXTERNAL;
	  else
	    return INSN_FORM_PCREL_LOCAL;
	}
    }

  /* If it isn't PC-relative, the address must use a base register.  */
  if (!REG_P (op0) && !SUBREG_P (op0))
    return INSN_FORM_BAD;

  /* Large offsets must be prefixed.  */
  if (!SIGNED_INTEGER_16BIT_P (offset))
    {
      if (TARGET_PREFIXED)
	return INSN_FORM_PREFIXED_NUMERIC;

      return INSN_FORM_BAD;
    }

  /* We have a 16-bit offset, see what default instruction format to use.  */
  if (non_prefixed_format == NON_PREFIXED_DEFAULT)
    {
      unsigned size = GET_MODE_SIZE (mode);

      /* On 64-bit systems, assume 64-bit integers need to use DS form
	 addresses (for LD/STD).  VSX vectors need to use DQ form addresses
	 (for LXV and STXV).  TImode is problematical in that its normal usage
	 is expected to be GPRs where it wants a DS instruction format, but if
	 it goes into the vector registers, it wants a DQ instruction
	 format.  */
      if (TARGET_POWERPC64 && size >= 8 && GET_MODE_CLASS (mode) == MODE_INT)
	non_prefixed_format = NON_PREFIXED_DS;

      else if (TARGET_VSX && size >= 16
	       && (VECTOR_MODE_P (mode) || VECTOR_ALIGNMENT_P (mode)))
	non_prefixed_format = NON_PREFIXED_DQ;

      else
	non_prefixed_format = NON_PREFIXED_D;
    }

  /* Classify the D/DS/DQ-form addresses.  */
  switch (non_prefixed_format)
    {
      /* Instruction format D, all 16 bits are valid.  */
    case NON_PREFIXED_D:
      return INSN_FORM_D;

      /* Instruction format DS, bottom 2 bits must be 0.  */
    case NON_PREFIXED_DS:
      if ((offset & 3) == 0)
	return INSN_FORM_DS;

      else if (TARGET_PREFIXED)
	return INSN_FORM_PREFIXED_NUMERIC;

      else
	return INSN_FORM_BAD;

      /* Instruction format DQ, bottom 4 bits must be 0.  */
    case NON_PREFIXED_DQ:
      if ((offset & 15) == 0)
	return INSN_FORM_DQ;

      else if (TARGET_PREFIXED)
	return INSN_FORM_PREFIXED_NUMERIC;

      else
	return INSN_FORM_BAD;

    default:
      break;
    }

  return INSN_FORM_BAD;
}

/* Given address rtx ADDR for a load of MODE, is this legitimate for a
   non-prefixed D-form or X-form instruction?  NON_PREFIXED_FORMAT is
   given NON_PREFIXED_D or NON_PREFIXED_DS to indicate whether we want
   a D-form or DS-form instruction.  X-form and base_reg are always
   allowed.  */
bool
address_is_non_pfx_d_or_x (rtx addr, machine_mode mode,
			   enum non_prefixed_form non_prefixed_format)
{
  enum insn_form result_form;

  result_form = address_to_insn_form (addr, mode, non_prefixed_format);

  switch (non_prefixed_format)
    {
    case NON_PREFIXED_D:
      switch (result_form)
	{
	case INSN_FORM_X:
	case INSN_FORM_D:
	case INSN_FORM_DS:
	case INSN_FORM_BASE_REG:
	  return true;
	default:
	  return false;
	}
      break;
    case NON_PREFIXED_DS:
      switch (result_form)
	{
	case INSN_FORM_X:
	case INSN_FORM_DS:
	case INSN_FORM_BASE_REG:
	  return true;
	default:
	  return false;
	}
      break;
    default:
      break;
    }
  return false;
}

/* Return true if an REG with a given MODE is loaded from or stored into a MEM
   location uses a non-prefixed D/DS/DQ-form address.  This is used to validate
   the load or store with the PCREL_OPT optimization to make sure it is an
   instruction that can be optimized.

   We need to specify the MODE separately from the REG to allow for loads that
   include zero/sign/float extension.  */

bool
pcrel_opt_valid_mem_p (rtx reg, machine_mode mode, rtx mem)
{
  /* If the instruction is indexed only like LFIWAX/LXSIWAX we cannot do the
     PCREL_OPT optimization.  */
  enum non_prefixed_form non_prefixed = reg_to_non_prefixed (reg, mode);
  if (non_prefixed == NON_PREFIXED_X)
    return false;

  /* Check if this is a non-prefixed D/DS/DQ-form instruction.  */
  rtx addr = XEXP (mem, 0);
  enum insn_form iform = address_to_insn_form (addr, mode, non_prefixed);
  return (iform == INSN_FORM_BASE_REG
	  || iform == INSN_FORM_D
	  || iform == INSN_FORM_DS
	  || iform == INSN_FORM_DQ);
}

/* Helper function to see if we're potentially looking at lfs/stfs.
   - PARALLEL containing a SET and a CLOBBER
   - stfs:
    - SET is from UNSPEC_SI_FROM_SF to MEM:SI
    - CLOBBER is a V4SF
   - lfs:
    - SET is from UNSPEC_SF_FROM_SI to REG:SF
    - CLOBBER is a DI
 */

static bool
is_lfs_stfs_insn (rtx_insn *insn)
{
  rtx pattern = PATTERN (insn);
  if (GET_CODE (pattern) != PARALLEL)
    return false;

  /* This should be a parallel with exactly one set and one clobber.  */
  if (XVECLEN (pattern, 0) != 2)
    return false;

  rtx set = XVECEXP (pattern, 0, 0);
  if (GET_CODE (set) != SET)
    return false;
  
  rtx clobber = XVECEXP (pattern, 0, 1);
  if (GET_CODE (clobber) != CLOBBER)
    return false;

  /* All we care is that the destination of the SET is a mem:SI,
     the source should be an UNSPEC_SI_FROM_SF, and the clobber
     should be a scratch:V4SF.  */

  rtx dest = SET_DEST (set);
  rtx src = SET_SRC (set);
  rtx scratch = SET_DEST (clobber);

  if (GET_CODE (src) != UNSPEC)
    return false;

  /* stfs case.  */
  if (XINT (src, 1) == UNSPEC_SI_FROM_SF
      && GET_CODE (dest) == MEM && GET_MODE (dest) == SImode
      && GET_CODE (scratch) == SCRATCH && GET_MODE (scratch) == V4SFmode)
    return true;

  /* lfs case.  */
  if (XINT (src, 1) == UNSPEC_SF_FROM_SI
      && GET_CODE (dest) == REG && GET_MODE (dest) == SFmode
      && GET_CODE (scratch) == SCRATCH && GET_MODE (scratch) == DImode)
    return true;

  return false;
}

/* Helper function to take a REG and a MODE and turn it into the non-prefixed
   instruction format (D/DS/DQ) used for offset memory.  */

enum non_prefixed_form
reg_to_non_prefixed (rtx reg, machine_mode mode)
{
  /* If it isn't a register, use the defaults.  */
  if (!REG_P (reg) && !SUBREG_P (reg))
    return NON_PREFIXED_DEFAULT;

  unsigned int r = reg_or_subregno (reg);

  /* If we have a pseudo, use the default instruction format.  */
  if (!HARD_REGISTER_NUM_P (r))
    return NON_PREFIXED_DEFAULT;

  unsigned size = GET_MODE_SIZE (mode);

  /* FPR registers use D-mode for scalars, and DQ-mode for vectors, IEEE
     128-bit floating point, and 128-bit integers.  Before power9, only indexed
     addressing was available for vectors.  */
  if (FP_REGNO_P (r))
    {
      if (mode == SFmode || size == 8 || FLOAT128_2REG_P (mode))
	return NON_PREFIXED_D;

      else if (size < 8)
	return NON_PREFIXED_X;

      else if (TARGET_VSX && size >= 16
	       && (VECTOR_MODE_P (mode)
		   || VECTOR_ALIGNMENT_P (mode)
		   || mode == TImode || mode == CTImode))
	return (TARGET_P9_VECTOR) ? NON_PREFIXED_DQ : NON_PREFIXED_X;

      else
	return NON_PREFIXED_DEFAULT;
    }

  /* Altivec registers use DS-mode for scalars, and DQ-mode for vectors, IEEE
     128-bit floating point, and 128-bit integers.  Before power9, only indexed
     addressing was available.  */
  else if (ALTIVEC_REGNO_P (r))
    {
      if (!TARGET_P9_VECTOR)
	return NON_PREFIXED_X;

      if (mode == SFmode || size == 8 || FLOAT128_2REG_P (mode))
	return NON_PREFIXED_DS;

      else if (size < 8)
	return NON_PREFIXED_X;

      else if (TARGET_VSX && size >= 16
	       && (VECTOR_MODE_P (mode)
		   || VECTOR_ALIGNMENT_P (mode)
		   || mode == TImode || mode == CTImode))
	return NON_PREFIXED_DQ;

      else
	return NON_PREFIXED_DEFAULT;
    }

  /* GPR registers use DS-mode for 64-bit items on 64-bit systems, and D-mode
     otherwise.  Assume that any other register, such as LR, CRs, etc. will go
     through the GPR registers for memory operations.  */
  else if (TARGET_POWERPC64 && size >= 8)
    return NON_PREFIXED_DS;

  return NON_PREFIXED_D;
}


/* Whether a load instruction is a prefixed instruction.  This is called from
   the prefixed attribute processing.  */

bool
prefixed_load_p (rtx_insn *insn)
{
  /* Validate the insn to make sure it is a normal load insn.  */
  extract_insn_cached (insn);
  if (recog_data.n_operands < 2)
    return false;

  rtx reg = recog_data.operand[0];
  rtx mem = recog_data.operand[1];

  if (!REG_P (reg) && !SUBREG_P (reg))
    return false;

  if (!MEM_P (mem))
    return false;

  /* Prefixed load instructions do not support update or indexed forms.  */
  if (get_attr_indexed (insn) == INDEXED_YES
      || get_attr_update (insn) == UPDATE_YES)
    return false;

  /* LWA uses the DS format instead of the D format that LWZ uses.  */
  enum non_prefixed_form non_prefixed;
  machine_mode reg_mode = GET_MODE (reg);
  machine_mode mem_mode = GET_MODE (mem);

  if (mem_mode == SImode && reg_mode == DImode
      && get_attr_sign_extend (insn) == SIGN_EXTEND_YES)
    non_prefixed = NON_PREFIXED_DS;

  else
    non_prefixed = reg_to_non_prefixed (reg, mem_mode);

  if (non_prefixed == NON_PREFIXED_X && is_lfs_stfs_insn (insn))
    return address_is_prefixed (XEXP (mem, 0), mem_mode, NON_PREFIXED_DEFAULT);
  else
    return address_is_prefixed (XEXP (mem, 0), mem_mode, non_prefixed);
}

/* Whether a store instruction is a prefixed instruction.  This is called from
   the prefixed attribute processing.  */

bool
prefixed_store_p (rtx_insn *insn)
{
  /* Validate the insn to make sure it is a normal store insn.  */
  extract_insn_cached (insn);
  if (recog_data.n_operands < 2)
    return false;

  rtx mem = recog_data.operand[0];
  rtx reg = recog_data.operand[1];

  if (!REG_P (reg) && !SUBREG_P (reg))
    return false;

  if (!MEM_P (mem))
    return false;

  /* Prefixed store instructions do not support update or indexed forms.  */
  if (get_attr_indexed (insn) == INDEXED_YES
      || get_attr_update (insn) == UPDATE_YES)
    return false;

  machine_mode mem_mode = GET_MODE (mem);
  rtx addr = XEXP (mem, 0);
  enum non_prefixed_form non_prefixed = reg_to_non_prefixed (reg, mem_mode);

  /* Need to make sure we aren't looking at a stfs which doesn't look
     like the other things reg_to_non_prefixed/address_is_prefixed
     looks for.  */
  if (non_prefixed == NON_PREFIXED_X && is_lfs_stfs_insn (insn))
    return address_is_prefixed (addr, mem_mode, NON_PREFIXED_DEFAULT);
  else
    return address_is_prefixed (addr, mem_mode, non_prefixed);
}

/* Whether a load immediate or add instruction is a prefixed instruction.  This
   is called from the prefixed attribute processing.  */

bool
prefixed_paddi_p (rtx_insn *insn)
{
  rtx set = single_set (insn);
  if (!set)
    return false;

  rtx dest = SET_DEST (set);
  rtx src = SET_SRC (set);

  if (!REG_P (dest) && !SUBREG_P (dest))
    return false;

  /* Is this a load immediate that can't be done with a simple ADDI or
     ADDIS?  */
  if (CONST_INT_P (src))
    return (satisfies_constraint_eI (src)
	    && !satisfies_constraint_I (src)
	    && !satisfies_constraint_L (src));

  /* Is this a PADDI instruction that can't be done with a simple ADDI or
     ADDIS?  */
  if (GET_CODE (src) == PLUS)
    {
      rtx op1 = XEXP (src, 1);

      return (CONST_INT_P (op1)
	      && satisfies_constraint_eI (op1)
	      && !satisfies_constraint_I (op1)
	      && !satisfies_constraint_L (op1));
    }

  /* If not, is it a load of a PC-relative address?  */
  if (!TARGET_PCREL || GET_MODE (dest) != Pmode)
    return false;

  if (!SYMBOL_REF_P (src) && !LABEL_REF_P (src) && GET_CODE (src) != CONST)
    return false;

  enum insn_form iform = address_to_insn_form (src, Pmode,
					       NON_PREFIXED_DEFAULT);

  return (iform == INSN_FORM_PCREL_EXTERNAL || iform == INSN_FORM_PCREL_LOCAL);
}

/* Whether the next instruction needs a 'p' prefix issued before the
   instruction is printed out.  */
static bool prepend_p_to_next_insn;

/* Define FINAL_PRESCAN_INSN if some processing needs to be done before
   outputting the assembler code.  On the PowerPC, we remember if the current
   insn is a prefixed insn where we need to emit a 'p' before the insn.

   In addition, if the insn is part of a PC-relative reference to an external
   label optimization, this is recorded also.  */
void
rs6000_final_prescan_insn (rtx_insn *insn, rtx [], int)
{
  prepend_p_to_next_insn = (get_attr_maybe_prefixed (insn)
			    == MAYBE_PREFIXED_YES
			    && get_attr_prefixed (insn) == PREFIXED_YES);
  return;
}

/* Define ASM_OUTPUT_OPCODE to do anything special before emitting an opcode.
   We use it to emit a 'p' for prefixed insns that is set in
   FINAL_PRESCAN_INSN.  */
void
rs6000_asm_output_opcode (FILE *stream)
{
  if (prepend_p_to_next_insn)
    {
      fprintf (stream, "p");

      /* Reset the flag in the case where there are separate insn lines in the
	 sequence, so the 'p' is only emitted for the first line.  This shows up
	 when we are doing the PCREL_OPT optimization, in that the label created
	 with %r<n> would have a leading 'p' printed.  */
      prepend_p_to_next_insn = false;
    }

  return;
}

/* Emit the relocation to tie the next instruction to a previous instruction
   that loads up an external address.  This is used to do the PCREL_OPT
   optimization.  Note, the label is generated after the PLD of the got
   pc-relative address to allow for the assembler to insert NOPs before the PLD
   instruction.  The operand is a constant integer that is the label
   number.  */

void
output_pcrel_opt_reloc (rtx label_num)
{
  rtx operands[1] = { label_num };
  output_asm_insn (".reloc .Lpcrel%0-8,R_PPC64_PCREL_OPT,.-(.Lpcrel%0-8)",
		   operands);
}

/* Adjust the length of an INSN.  LENGTH is the currently-computed length and
   should be adjusted to reflect any required changes.  This macro is used when
   there is some systematic length adjustment required that would be difficult
   to express in the length attribute.

   In the PowerPC, we use this to adjust the length of an instruction if one or
   more prefixed instructions are generated, using the attribute
   num_prefixed_insns.  A prefixed instruction is 8 bytes instead of 4, but the
   hardware requires that a prefied instruciton does not cross a 64-byte
   boundary.  This means the compiler has to assume the length of the first
   prefixed instruction is 12 bytes instead of 8 bytes.  Since the length is
   already set for the non-prefixed instruction, we just need to udpate for the
   difference.  */

int
rs6000_adjust_insn_length (rtx_insn *insn, int length)
{
  if (TARGET_PREFIXED && NONJUMP_INSN_P (insn))
    {
      rtx pattern = PATTERN (insn);
      if (GET_CODE (pattern) != USE && GET_CODE (pattern) != CLOBBER
	  && get_attr_prefixed (insn) == PREFIXED_YES)
	{
	  int num_prefixed = get_attr_max_prefixed_insns (insn);
	  length += 4 * (num_prefixed + 1);
	}
    }

  return length;
}


#ifdef HAVE_GAS_HIDDEN
# define USE_HIDDEN_LINKONCE 1
#else
# define USE_HIDDEN_LINKONCE 0
#endif

/* Fills in the label name that should be used for a 476 link stack thunk.  */

void
get_ppc476_thunk_name (char name[32])
{
  gcc_assert (TARGET_LINK_STACK);

  if (USE_HIDDEN_LINKONCE)
    sprintf (name, "__ppc476.get_thunk");
  else
    ASM_GENERATE_INTERNAL_LABEL (name, "LPPC476_", 0);
}

/* This function emits the simple thunk routine that is used to preserve
   the link stack on the 476 cpu.  */

static void rs6000_code_end (void) ATTRIBUTE_UNUSED;
static void
rs6000_code_end (void)
{
  char name[32];
  tree decl;

  if (!TARGET_LINK_STACK)
    return;

  get_ppc476_thunk_name (name);

  decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, get_identifier (name),
		     build_function_type_list (void_type_node, NULL_TREE));
  DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL,
				   NULL_TREE, void_type_node);
  TREE_PUBLIC (decl) = 1;
  TREE_STATIC (decl) = 1;

#if RS6000_WEAK
  if (USE_HIDDEN_LINKONCE && !TARGET_XCOFF)
    {
      cgraph_node::create (decl)->set_comdat_group (DECL_ASSEMBLER_NAME (decl));
      targetm.asm_out.unique_section (decl, 0);
      switch_to_section (get_named_section (decl, NULL, 0));
      DECL_WEAK (decl) = 1;
      ASM_WEAKEN_DECL (asm_out_file, decl, name, 0);
      targetm.asm_out.globalize_label (asm_out_file, name);
      targetm.asm_out.assemble_visibility (decl, VISIBILITY_HIDDEN);
      ASM_DECLARE_FUNCTION_NAME (asm_out_file, name, decl);
    }
  else
#endif
    {
      switch_to_section (text_section);
      ASM_OUTPUT_LABEL (asm_out_file, name);
    }

  DECL_INITIAL (decl) = make_node (BLOCK);
  current_function_decl = decl;
  allocate_struct_function (decl, false);
  init_function_start (decl);
  first_function_block_is_cold = false;
  /* Make sure unwind info is emitted for the thunk if needed.  */
  final_start_function (emit_barrier (), asm_out_file, 1);

  fputs ("\tblr\n", asm_out_file);

  final_end_function ();
  init_insn_lengths ();
  free_after_compilation (cfun);
  set_cfun (NULL);
  current_function_decl = NULL;
}

/* Add r30 to hard reg set if the prologue sets it up and it is not
   pic_offset_table_rtx.  */

static void
rs6000_set_up_by_prologue (struct hard_reg_set_container *set)
{
  if (!TARGET_SINGLE_PIC_BASE
      && TARGET_TOC
      && TARGET_MINIMAL_TOC
      && !constant_pool_empty_p ())
    add_to_hard_reg_set (&set->set, Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
  if (cfun->machine->split_stack_argp_used)
    add_to_hard_reg_set (&set->set, Pmode, 12);

  /* Make sure the hard reg set doesn't include r2, which was possibly added
     via PIC_OFFSET_TABLE_REGNUM.  */
  if (TARGET_TOC)
    remove_from_hard_reg_set (&set->set, Pmode, TOC_REGNUM);
}


/* Helper function for rs6000_split_logical to emit a logical instruction after
   spliting the operation to single GPR registers.

   DEST is the destination register.
   OP1 and OP2 are the input source registers.
   CODE is the base operation (AND, IOR, XOR, NOT).
   MODE is the machine mode.
   If COMPLEMENT_FINAL_P is true, wrap the whole operation with NOT.
   If COMPLEMENT_OP1_P is true, wrap operand1 with NOT.
   If COMPLEMENT_OP2_P is true, wrap operand2 with NOT.  */

static void
rs6000_split_logical_inner (rtx dest,
			    rtx op1,
			    rtx op2,
			    enum rtx_code code,
			    machine_mode mode,
			    bool complement_final_p,
			    bool complement_op1_p,
			    bool complement_op2_p)
{
  rtx bool_rtx;

  /* Optimize AND of 0/0xffffffff and IOR/XOR of 0.  */
  if (op2 && CONST_INT_P (op2)
      && (mode == SImode || (mode == DImode && TARGET_POWERPC64))
      && !complement_final_p && !complement_op1_p && !complement_op2_p)
    {
      HOST_WIDE_INT mask = GET_MODE_MASK (mode);
      HOST_WIDE_INT value = INTVAL (op2) & mask;

      /* Optimize AND of 0 to just set 0.  Optimize AND of -1 to be a move.  */
      if (code == AND)
	{
	  if (value == 0)
	    {
	      emit_insn (gen_rtx_SET (dest, const0_rtx));
	      return;
	    }

	  else if (value == mask)
	    {
	      if (!rtx_equal_p (dest, op1))
		emit_insn (gen_rtx_SET (dest, op1));
	      return;
	    }
	}

      /* Optimize IOR/XOR of 0 to be a simple move.  Split large operations
	 into separate ORI/ORIS or XORI/XORIS instrucitons.  */
      else if (code == IOR || code == XOR)
	{
	  if (value == 0)
	    {
	      if (!rtx_equal_p (dest, op1))
		emit_insn (gen_rtx_SET (dest, op1));
	      return;
	    }
	}
    }

  if (code == AND && mode == SImode
      && !complement_final_p && !complement_op1_p && !complement_op2_p)
    {
      emit_insn (gen_andsi3 (dest, op1, op2));
      return;
    }

  if (complement_op1_p)
    op1 = gen_rtx_NOT (mode, op1);

  if (complement_op2_p)
    op2 = gen_rtx_NOT (mode, op2);

  /* For canonical RTL, if only one arm is inverted it is the first.  */
  if (!complement_op1_p && complement_op2_p)
    std::swap (op1, op2);

  bool_rtx = ((code == NOT)
	      ? gen_rtx_NOT (mode, op1)
	      : gen_rtx_fmt_ee (code, mode, op1, op2));

  if (complement_final_p)
    bool_rtx = gen_rtx_NOT (mode, bool_rtx);

  emit_insn (gen_rtx_SET (dest, bool_rtx));
}

/* Split a DImode AND/IOR/XOR with a constant on a 32-bit system.  These
   operations are split immediately during RTL generation to allow for more
   optimizations of the AND/IOR/XOR.

   OPERANDS is an array containing the destination and two input operands.
   CODE is the base operation (AND, IOR, XOR, NOT).
   MODE is the machine mode.
   If COMPLEMENT_FINAL_P is true, wrap the whole operation with NOT.
   If COMPLEMENT_OP1_P is true, wrap operand1 with NOT.
   If COMPLEMENT_OP2_P is true, wrap operand2 with NOT.
   CLOBBER_REG is either NULL or a scratch register of type CC to allow
   formation of the AND instructions.  */

static void
rs6000_split_logical_di (rtx operands[3],
			 enum rtx_code code,
			 bool complement_final_p,
			 bool complement_op1_p,
			 bool complement_op2_p)
{
  const HOST_WIDE_INT lower_32bits = HOST_WIDE_INT_C(0xffffffff);
  const HOST_WIDE_INT upper_32bits = ~ lower_32bits;
  const HOST_WIDE_INT sign_bit = HOST_WIDE_INT_C(0x80000000);
  enum hi_lo { hi = 0, lo = 1 };
  rtx op0_hi_lo[2], op1_hi_lo[2], op2_hi_lo[2];
  size_t i;

  op0_hi_lo[hi] = gen_highpart (SImode, operands[0]);
  op1_hi_lo[hi] = gen_highpart (SImode, operands[1]);
  op0_hi_lo[lo] = gen_lowpart (SImode, operands[0]);
  op1_hi_lo[lo] = gen_lowpart (SImode, operands[1]);

  if (code == NOT)
    op2_hi_lo[hi] = op2_hi_lo[lo] = NULL_RTX;
  else
    {
      if (!CONST_INT_P (operands[2]))
	{
	  op2_hi_lo[hi] = gen_highpart_mode (SImode, DImode, operands[2]);
	  op2_hi_lo[lo] = gen_lowpart (SImode, operands[2]);
	}
      else
	{
	  HOST_WIDE_INT value = INTVAL (operands[2]);
	  HOST_WIDE_INT value_hi_lo[2];

	  gcc_assert (!complement_final_p);
	  gcc_assert (!complement_op1_p);
	  gcc_assert (!complement_op2_p);

	  value_hi_lo[hi] = value >> 32;
	  value_hi_lo[lo] = value & lower_32bits;

	  for (i = 0; i < 2; i++)
	    {
	      HOST_WIDE_INT sub_value = value_hi_lo[i];

	      if (sub_value & sign_bit)
		sub_value |= upper_32bits;

	      op2_hi_lo[i] = GEN_INT (sub_value);

	      /* If this is an AND instruction, check to see if we need to load
		 the value in a register.  */
	      if (code == AND && sub_value != -1 && sub_value != 0
		  && !and_operand (op2_hi_lo[i], SImode))
		op2_hi_lo[i] = force_reg (SImode, op2_hi_lo[i]);
	    }
	}
    }

  for (i = 0; i < 2; i++)
    {
      /* Split large IOR/XOR operations.  */
      if ((code == IOR || code == XOR)
	  && CONST_INT_P (op2_hi_lo[i])
	  && !complement_final_p
	  && !complement_op1_p
	  && !complement_op2_p
	  && !logical_const_operand (op2_hi_lo[i], SImode))
	{
	  HOST_WIDE_INT value = INTVAL (op2_hi_lo[i]);
	  HOST_WIDE_INT hi_16bits = value & HOST_WIDE_INT_C(0xffff0000);
	  HOST_WIDE_INT lo_16bits = value & HOST_WIDE_INT_C(0x0000ffff);
	  rtx tmp = gen_reg_rtx (SImode);

	  /* Make sure the constant is sign extended.  */
	  if ((hi_16bits & sign_bit) != 0)
	    hi_16bits |= upper_32bits;

	  rs6000_split_logical_inner (tmp, op1_hi_lo[i], GEN_INT (hi_16bits),
				      code, SImode, false, false, false);

	  rs6000_split_logical_inner (op0_hi_lo[i], tmp, GEN_INT (lo_16bits),
				      code, SImode, false, false, false);
	}
      else
	rs6000_split_logical_inner (op0_hi_lo[i], op1_hi_lo[i], op2_hi_lo[i],
				    code, SImode, complement_final_p,
				    complement_op1_p, complement_op2_p);
    }

  return;
}

/* Split the insns that make up boolean operations operating on multiple GPR
   registers.  The boolean MD patterns ensure that the inputs either are
   exactly the same as the output registers, or there is no overlap.

   OPERANDS is an array containing the destination and two input operands.
   CODE is the base operation (AND, IOR, XOR, NOT).
   If COMPLEMENT_FINAL_P is true, wrap the whole operation with NOT.
   If COMPLEMENT_OP1_P is true, wrap operand1 with NOT.
   If COMPLEMENT_OP2_P is true, wrap operand2 with NOT.  */

void
rs6000_split_logical (rtx operands[3],
		      enum rtx_code code,
		      bool complement_final_p,
		      bool complement_op1_p,
		      bool complement_op2_p)
{
  machine_mode mode = GET_MODE (operands[0]);
  machine_mode sub_mode;
  rtx op0, op1, op2;
  int sub_size, regno0, regno1, nregs, i;

  /* If this is DImode, use the specialized version that can run before
     register allocation.  */
  if (mode == DImode && !TARGET_POWERPC64)
    {
      rs6000_split_logical_di (operands, code, complement_final_p,
			       complement_op1_p, complement_op2_p);
      return;
    }

  op0 = operands[0];
  op1 = operands[1];
  op2 = (code == NOT) ? NULL_RTX : operands[2];
  sub_mode = (TARGET_POWERPC64) ? DImode : SImode;
  sub_size = GET_MODE_SIZE (sub_mode);
  regno0 = REGNO (op0);
  regno1 = REGNO (op1);

  gcc_assert (reload_completed);
  gcc_assert (IN_RANGE (regno0, FIRST_GPR_REGNO, LAST_GPR_REGNO));
  gcc_assert (IN_RANGE (regno1, FIRST_GPR_REGNO, LAST_GPR_REGNO));

  nregs = rs6000_hard_regno_nregs[(int)mode][regno0];
  gcc_assert (nregs > 1);

  if (op2 && REG_P (op2))
    gcc_assert (IN_RANGE (REGNO (op2), FIRST_GPR_REGNO, LAST_GPR_REGNO));

  for (i = 0; i < nregs; i++)
    {
      int offset = i * sub_size;
      rtx sub_op0 = simplify_subreg (sub_mode, op0, mode, offset);
      rtx sub_op1 = simplify_subreg (sub_mode, op1, mode, offset);
      rtx sub_op2 = ((code == NOT)
		     ? NULL_RTX
		     : simplify_subreg (sub_mode, op2, mode, offset));

      rs6000_split_logical_inner (sub_op0, sub_op1, sub_op2, code, sub_mode,
				  complement_final_p, complement_op1_p,
				  complement_op2_p);
    }

  return;
}

/* Emit instructions to move SRC to DST.  Called by splitters for
   multi-register moves.  It will emit at most one instruction for
   each register that is accessed; that is, it won't emit li/lis pairs
   (or equivalent for 64-bit code).  One of SRC or DST must be a hard
   register.  */

void
rs6000_split_multireg_move (rtx dst, rtx src)
{
  /* The register number of the first register being moved.  */
  int reg;
  /* The mode that is to be moved.  */
  machine_mode mode;
  /* The mode that the move is being done in, and its size.  */
  machine_mode reg_mode;
  int reg_mode_size;
  /* The number of registers that will be moved.  */
  int nregs;

  reg = REG_P (dst) ? REGNO (dst) : REGNO (src);
  mode = GET_MODE (dst);
  nregs = hard_regno_nregs (reg, mode);

  /* If we have a vector quad register for MMA, and this is a load or store,
     see if we can use vector paired load/stores.  */
  if (mode == XOmode && TARGET_MMA
      && (MEM_P (dst) || MEM_P (src)))
    {
      reg_mode = OOmode;
      nregs /= 2;
    }
  /* If we have a vector pair/quad mode, split it into two/four separate
     vectors.  */
  else if (mode == OOmode || mode == XOmode)
    reg_mode = V1TImode;
  else if (FP_REGNO_P (reg))
    reg_mode = DECIMAL_FLOAT_MODE_P (mode) ? DDmode :
	(TARGET_HARD_FLOAT ? DFmode : SFmode);
  else if (ALTIVEC_REGNO_P (reg))
    reg_mode = V16QImode;
  else
    reg_mode = word_mode;
  reg_mode_size = GET_MODE_SIZE (reg_mode);

  gcc_assert (reg_mode_size * nregs == GET_MODE_SIZE (mode));

  /* TDmode residing in FP registers is special, since the ISA requires that
     the lower-numbered word of a register pair is always the most significant
     word, even in little-endian mode.  This does not match the usual subreg
     semantics, so we cannnot use simplify_gen_subreg in those cases.  Access
     the appropriate constituent registers "by hand" in little-endian mode.

     Note we do not need to check for destructive overlap here since TDmode
     can only reside in even/odd register pairs.  */
  if (FP_REGNO_P (reg) && DECIMAL_FLOAT_MODE_P (mode) && !BYTES_BIG_ENDIAN)
    {
      rtx p_src, p_dst;
      int i;

      for (i = 0; i < nregs; i++)
	{
	  if (REG_P (src) && FP_REGNO_P (REGNO (src)))
	    p_src = gen_rtx_REG (reg_mode, REGNO (src) + nregs - 1 - i);
	  else
	    p_src = simplify_gen_subreg (reg_mode, src, mode,
					 i * reg_mode_size);

	  if (REG_P (dst) && FP_REGNO_P (REGNO (dst)))
	    p_dst = gen_rtx_REG (reg_mode, REGNO (dst) + nregs - 1 - i);
	  else
	    p_dst = simplify_gen_subreg (reg_mode, dst, mode,
					 i * reg_mode_size);

	  emit_insn (gen_rtx_SET (p_dst, p_src));
	}

      return;
    }

  /* The __vector_pair and __vector_quad modes are multi-register
     modes, so if we have to load or store the registers, we have to be
     careful to properly swap them if we're in little endian mode
     below.  This means the last register gets the first memory
     location.  We also need to be careful of using the right register
     numbers if we are splitting XO to OO.  */
  if (mode == OOmode || mode == XOmode)
    {
      nregs = hard_regno_nregs (reg, mode);
      int reg_mode_nregs = hard_regno_nregs (reg, reg_mode);
      if (MEM_P (dst))
	{
	  unsigned offset = 0;
	  unsigned size = GET_MODE_SIZE (reg_mode);

	  /* If we are reading an accumulator register, we have to
	     deprime it before we can access it.  */
	  if (TARGET_MMA
	      && GET_MODE (src) == XOmode && FP_REGNO_P (REGNO (src)))
	    emit_insn (gen_mma_xxmfacc (src, src));

	  for (int i = 0; i < nregs; i += reg_mode_nregs)
	    {
	      unsigned subreg
		= WORDS_BIG_ENDIAN ? i : (nregs - reg_mode_nregs - i);
	      rtx dst2 = adjust_address (dst, reg_mode, offset);
	      rtx src2 = gen_rtx_REG (reg_mode, reg + subreg);
	      offset += size;
	      emit_insn (gen_rtx_SET (dst2, src2));
	    }

	  return;
	}

      if (MEM_P (src))
	{
	  unsigned offset = 0;
	  unsigned size = GET_MODE_SIZE (reg_mode);

	  for (int i = 0; i < nregs; i += reg_mode_nregs)
	    {
	      unsigned subreg
		= WORDS_BIG_ENDIAN ? i : (nregs - reg_mode_nregs - i);
	      rtx dst2 = gen_rtx_REG (reg_mode, reg + subreg);
	      rtx src2 = adjust_address (src, reg_mode, offset);
	      offset += size;
	      emit_insn (gen_rtx_SET (dst2, src2));
	    }

	  /* If we are writing an accumulator register, we have to
	     prime it after we've written it.  */
	  if (TARGET_MMA
	      && GET_MODE (dst) == XOmode && FP_REGNO_P (REGNO (dst)))
	    emit_insn (gen_mma_xxmtacc (dst, dst));

	  return;
	}

      if (GET_CODE (src) == UNSPEC
	  || GET_CODE (src) == UNSPEC_VOLATILE)
	{
	  gcc_assert (XINT (src, 1) == UNSPEC_VSX_ASSEMBLE
		      || XINT (src, 1) == UNSPECV_MMA_ASSEMBLE);
	  gcc_assert (REG_P (dst));
	  if (GET_MODE (src) == XOmode)
	    gcc_assert (FP_REGNO_P (REGNO (dst)));
	  if (GET_MODE (src) == OOmode)
	    gcc_assert (VSX_REGNO_P (REGNO (dst)));

	  int nvecs = XVECLEN (src, 0);
	  for (int i = 0; i < nvecs; i++)
	    {
	      rtx op;
	      int regno = reg + i;

	      if (WORDS_BIG_ENDIAN)
		{
		  op = XVECEXP (src, 0, i);

		  /* If we are loading an even VSX register and the memory location
		     is adjacent to the next register's memory location (if any),
		     then we can load them both with one LXVP instruction.  */
		  if ((regno & 1) == 0)
		    {
		      rtx op2 = XVECEXP (src, 0, i + 1);
		      if (adjacent_mem_locations (op, op2) == op)
			{
			  op = adjust_address (op, OOmode, 0);
			  /* Skip the next register, since we're going to
			     load it together with this register.  */
			  i++;
			}
		    }
		}
	      else
		{
		  op = XVECEXP (src, 0, nvecs - i - 1);

		  /* If we are loading an even VSX register and the memory location
		     is adjacent to the next register's memory location (if any),
		     then we can load them both with one LXVP instruction.  */
		  if ((regno & 1) == 0)
		    {
			  rtx op2 = XVECEXP (src, 0, nvecs - i - 2);
			  if (adjacent_mem_locations (op2, op) == op2)
			    {
			      op = adjust_address (op2, OOmode, 0);
			      /* Skip the next register, since we're going to
				 load it together with this register.  */
			      i++;
			    }
		    }
		}

	      rtx dst_i = gen_rtx_REG (GET_MODE (op), regno);
	      emit_insn (gen_rtx_SET (dst_i, op));
	    }

	  /* We are writing an accumulator register, so we have to
	     prime it after we've written it.  */
	  if (GET_MODE (src) == XOmode)
	    emit_insn (gen_mma_xxmtacc (dst, dst));

	  return;
	}

      /* Register -> register moves can use common code.  */
    }

  if (REG_P (src) && REG_P (dst) && (REGNO (src) < REGNO (dst)))
    {
      /* If we are reading an accumulator register, we have to
	 deprime it before we can access it.  */
      if (TARGET_MMA
	  && GET_MODE (src) == XOmode && FP_REGNO_P (REGNO (src)))
	emit_insn (gen_mma_xxmfacc (src, src));

      /* Move register range backwards, if we might have destructive
	 overlap.  */
      int i;
      /* XO/OO are opaque so cannot use subregs. */
      if (mode == OOmode || mode == XOmode )
	{
	  for (i = nregs - 1; i >= 0; i--)
	    {
	      rtx dst_i = gen_rtx_REG (reg_mode, REGNO (dst) + i);
	      rtx src_i = gen_rtx_REG (reg_mode, REGNO (src) + i);
	      emit_insn (gen_rtx_SET (dst_i, src_i));
	    }
	}
      else
	{
	  for (i = nregs - 1; i >= 0; i--)
	    emit_insn (gen_rtx_SET (simplify_gen_subreg (reg_mode, dst, mode,
							 i * reg_mode_size),
				    simplify_gen_subreg (reg_mode, src, mode,
							 i * reg_mode_size)));
	}

      /* If we are writing an accumulator register, we have to
	 prime it after we've written it.  */
      if (TARGET_MMA
	  && GET_MODE (dst) == XOmode && FP_REGNO_P (REGNO (dst)))
	emit_insn (gen_mma_xxmtacc (dst, dst));
    }
  else
    {
      int i;
      int j = -1;
      bool used_update = false;
      rtx restore_basereg = NULL_RTX;

      if (MEM_P (src) && INT_REGNO_P (reg))
	{
	  rtx breg;

	  if (GET_CODE (XEXP (src, 0)) == PRE_INC
	      || GET_CODE (XEXP (src, 0)) == PRE_DEC)
	    {
	      rtx delta_rtx;
	      breg = XEXP (XEXP (src, 0), 0);
	      delta_rtx = (GET_CODE (XEXP (src, 0)) == PRE_INC
			   ? GEN_INT (GET_MODE_SIZE (GET_MODE (src)))
			   : GEN_INT (-GET_MODE_SIZE (GET_MODE (src))));
	      emit_insn (gen_add3_insn (breg, breg, delta_rtx));
	      src = replace_equiv_address (src, breg);
	    }
	  else if (! rs6000_offsettable_memref_p (src, reg_mode, true))
	    {
	      if (GET_CODE (XEXP (src, 0)) == PRE_MODIFY)
		{
		  rtx basereg = XEXP (XEXP (src, 0), 0);
		  if (TARGET_UPDATE)
		    {
		      rtx ndst = simplify_gen_subreg (reg_mode, dst, mode, 0);
		      emit_insn (gen_rtx_SET (ndst,
					      gen_rtx_MEM (reg_mode,
							   XEXP (src, 0))));
		      used_update = true;
		    }
		  else
		    emit_insn (gen_rtx_SET (basereg,
					    XEXP (XEXP (src, 0), 1)));
		  src = replace_equiv_address (src, basereg);
		}
	      else
		{
		  rtx basereg = gen_rtx_REG (Pmode, reg);
		  emit_insn (gen_rtx_SET (basereg, XEXP (src, 0)));
		  src = replace_equiv_address (src, basereg);
		}
	    }

	  breg = XEXP (src, 0);
	  if (GET_CODE (breg) == PLUS || GET_CODE (breg) == LO_SUM)
	    breg = XEXP (breg, 0);

	  /* If the base register we are using to address memory is
	     also a destination reg, then change that register last.  */
	  if (REG_P (breg)
	      && REGNO (breg) >= REGNO (dst)
	      && REGNO (breg) < REGNO (dst) + nregs)
	    j = REGNO (breg) - REGNO (dst);
	}
      else if (MEM_P (dst) && INT_REGNO_P (reg))
	{
	  rtx breg;

	  if (GET_CODE (XEXP (dst, 0)) == PRE_INC
	      || GET_CODE (XEXP (dst, 0)) == PRE_DEC)
	    {
	      rtx delta_rtx;
	      breg = XEXP (XEXP (dst, 0), 0);
	      delta_rtx = (GET_CODE (XEXP (dst, 0)) == PRE_INC
			   ? GEN_INT (GET_MODE_SIZE (GET_MODE (dst)))
			   : GEN_INT (-GET_MODE_SIZE (GET_MODE (dst))));

	      /* We have to update the breg before doing the store.
		 Use store with update, if available.  */

	      if (TARGET_UPDATE)
		{
		  rtx nsrc = simplify_gen_subreg (reg_mode, src, mode, 0);
		  emit_insn (TARGET_32BIT
			     ? (TARGET_POWERPC64
				? gen_movdi_si_update (breg, breg, delta_rtx, nsrc)
				: gen_movsi_si_update (breg, breg, delta_rtx, nsrc))
			     : gen_movdi_di_update (breg, breg, delta_rtx, nsrc));
		  used_update = true;
		}
	      else
		emit_insn (gen_add3_insn (breg, breg, delta_rtx));
	      dst = replace_equiv_address (dst, breg);
	    }
	  else if (!rs6000_offsettable_memref_p (dst, reg_mode, true)
		   && GET_CODE (XEXP (dst, 0)) != LO_SUM)
	    {
	      if (GET_CODE (XEXP (dst, 0)) == PRE_MODIFY)
		{
		  rtx basereg = XEXP (XEXP (dst, 0), 0);
		  if (TARGET_UPDATE)
		    {
		      rtx nsrc = simplify_gen_subreg (reg_mode, src, mode, 0);
		      emit_insn (gen_rtx_SET (gen_rtx_MEM (reg_mode,
							   XEXP (dst, 0)),
					      nsrc));
		      used_update = true;
		    }
		  else
		    emit_insn (gen_rtx_SET (basereg,
					    XEXP (XEXP (dst, 0), 1)));
		  dst = replace_equiv_address (dst, basereg);
		}
	      else
		{
		  rtx basereg = XEXP (XEXP (dst, 0), 0);
		  rtx offsetreg = XEXP (XEXP (dst, 0), 1);
		  gcc_assert (GET_CODE (XEXP (dst, 0)) == PLUS
			      && REG_P (basereg)
			      && REG_P (offsetreg)
			      && REGNO (basereg) != REGNO (offsetreg));
		  if (REGNO (basereg) == 0)
		    {
		      rtx tmp = offsetreg;
		      offsetreg = basereg;
		      basereg = tmp;
		    }
		  emit_insn (gen_add3_insn (basereg, basereg, offsetreg));
		  restore_basereg = gen_sub3_insn (basereg, basereg, offsetreg);
		  dst = replace_equiv_address (dst, basereg);
		}
	    }
	  else if (GET_CODE (XEXP (dst, 0)) != LO_SUM)
	    gcc_assert (rs6000_offsettable_memref_p (dst, reg_mode, true));
	}

      /* If we are reading an accumulator register, we have to
	 deprime it before we can access it.  */
      if (TARGET_MMA && REG_P (src)
	  && GET_MODE (src) == XOmode && FP_REGNO_P (REGNO (src)))
	emit_insn (gen_mma_xxmfacc (src, src));

      for (i = 0; i < nregs; i++)
	{
	  /* Calculate index to next subword.  */
	  ++j;
	  if (j == nregs)
	    j = 0;

	  /* If compiler already emitted move of first word by
	     store with update, no need to do anything.  */
	  if (j == 0 && used_update)
	    continue;

	  /* XO/OO are opaque so cannot use subregs. */
	  if (mode == OOmode || mode == XOmode )
	    {
	      rtx dst_i = gen_rtx_REG (reg_mode, REGNO (dst) + j);
	      rtx src_i = gen_rtx_REG (reg_mode, REGNO (src) + j);
	      emit_insn (gen_rtx_SET (dst_i, src_i));
	    }
	  else
	    emit_insn (gen_rtx_SET (simplify_gen_subreg (reg_mode, dst, mode,
							 j * reg_mode_size),
				    simplify_gen_subreg (reg_mode, src, mode,
							 j * reg_mode_size)));
	}

      /* If we are writing an accumulator register, we have to
	 prime it after we've written it.  */
      if (TARGET_MMA && REG_P (dst)
	  && GET_MODE (dst) == XOmode && FP_REGNO_P (REGNO (dst)))
	emit_insn (gen_mma_xxmtacc (dst, dst));

      if (restore_basereg != NULL_RTX)
	emit_insn (restore_basereg);
    }
}

/* Return true if the peephole2 can combine a load involving a combination of
   an addis instruction and a load with an offset that can be fused together on
   a power8.  */

bool
fusion_gpr_load_p (rtx addis_reg,	/* register set via addis.  */
		   rtx addis_value,	/* addis value.  */
		   rtx target,		/* target register that is loaded.  */
		   rtx mem)		/* bottom part of the memory addr.  */
{
  rtx addr;
  rtx base_reg;

  /* Validate arguments.  */
  if (!base_reg_operand (addis_reg, GET_MODE (addis_reg)))
    return false;

  if (!base_reg_operand (target, GET_MODE (target)))
    return false;

  if (!fusion_gpr_addis (addis_value, GET_MODE (addis_value)))
    return false;

  /* Allow sign/zero extension.  */
  if (GET_CODE (mem) == ZERO_EXTEND
      || (GET_CODE (mem) == SIGN_EXTEND && TARGET_P8_FUSION_SIGN))
    mem = XEXP (mem, 0);

  if (!MEM_P (mem))
    return false;

  if (!fusion_gpr_mem_load (mem, GET_MODE (mem)))
    return false;

  addr = XEXP (mem, 0);			/* either PLUS or LO_SUM.  */
  if (GET_CODE (addr) != PLUS && GET_CODE (addr) != LO_SUM)
    return false;

  /* Validate that the register used to load the high value is either the
     register being loaded, or we can safely replace its use.

     This function is only called from the peephole2 pass and we assume that
     there are 2 instructions in the peephole (addis and load), so we want to
     check if the target register was not used in the memory address and the
     register to hold the addis result is dead after the peephole.  */
  if (REGNO (addis_reg) != REGNO (target))
    {
      if (reg_mentioned_p (target, mem))
	return false;

      if (!peep2_reg_dead_p (2, addis_reg))
	return false;

      /* If the target register being loaded is the stack pointer, we must
         avoid loading any other value into it, even temporarily.  */
      if (REG_P (target) && REGNO (target) == STACK_POINTER_REGNUM)
	return false;
    }

  base_reg = XEXP (addr, 0);
  return REGNO (addis_reg) == REGNO (base_reg);
}

/* During the peephole2 pass, adjust and expand the insns for a load fusion
   sequence.  We adjust the addis register to use the target register.  If the
   load sign extends, we adjust the code to do the zero extending load, and an
   explicit sign extension later since the fusion only covers zero extending
   loads.

   The operands are:
	operands[0]	register set with addis (to be replaced with target)
	operands[1]	value set via addis
	operands[2]	target register being loaded
	operands[3]	D-form memory reference using operands[0].  */

void
expand_fusion_gpr_load (rtx *operands)
{
  rtx addis_value = operands[1];
  rtx target = operands[2];
  rtx orig_mem = operands[3];
  rtx  new_addr, new_mem, orig_addr, offset;
  enum rtx_code plus_or_lo_sum;
  machine_mode target_mode = GET_MODE (target);
  machine_mode extend_mode = target_mode;
  machine_mode ptr_mode = Pmode;
  enum rtx_code extend = UNKNOWN;

  if (GET_CODE (orig_mem) == ZERO_EXTEND
      || (TARGET_P8_FUSION_SIGN && GET_CODE (orig_mem) == SIGN_EXTEND))
    {
      extend = GET_CODE (orig_mem);
      orig_mem = XEXP (orig_mem, 0);
      target_mode = GET_MODE (orig_mem);
    }

  gcc_assert (MEM_P (orig_mem));

  orig_addr = XEXP (orig_mem, 0);
  plus_or_lo_sum = GET_CODE (orig_addr);
  gcc_assert (plus_or_lo_sum == PLUS || plus_or_lo_sum == LO_SUM);

  offset = XEXP (orig_addr, 1);
  new_addr = gen_rtx_fmt_ee (plus_or_lo_sum, ptr_mode, addis_value, offset);
  new_mem = replace_equiv_address_nv (orig_mem, new_addr, false);

  if (extend != UNKNOWN)
    new_mem = gen_rtx_fmt_e (ZERO_EXTEND, extend_mode, new_mem);

  new_mem = gen_rtx_UNSPEC (extend_mode, gen_rtvec (1, new_mem),
			    UNSPEC_FUSION_GPR);
  emit_insn (gen_rtx_SET (target, new_mem));

  if (extend == SIGN_EXTEND)
    {
      int sub_off = ((BYTES_BIG_ENDIAN)
		     ? GET_MODE_SIZE (extend_mode) - GET_MODE_SIZE (target_mode)
		     : 0);
      rtx sign_reg
	= simplify_subreg (target_mode, target, extend_mode, sub_off);

      emit_insn (gen_rtx_SET (target,
			      gen_rtx_SIGN_EXTEND (extend_mode, sign_reg)));
    }

  return;
}

/* Emit the addis instruction that will be part of a fused instruction
   sequence.  */

void
emit_fusion_addis (rtx target, rtx addis_value)
{
  rtx fuse_ops[10];
  const char *addis_str = NULL;

  /* Emit the addis instruction.  */
  fuse_ops[0] = target;
  if (satisfies_constraint_L (addis_value))
    {
      fuse_ops[1] = addis_value;
      addis_str = "lis %0,%v1";
    }

  else if (GET_CODE (addis_value) == PLUS)
    {
      rtx op0 = XEXP (addis_value, 0);
      rtx op1 = XEXP (addis_value, 1);

      if (REG_P (op0) && CONST_INT_P (op1)
	  && satisfies_constraint_L (op1))
	{
	  fuse_ops[1] = op0;
	  fuse_ops[2] = op1;
	  addis_str = "addis %0,%1,%v2";
	}
    }

  else if (GET_CODE (addis_value) == HIGH)
    {
      rtx value = XEXP (addis_value, 0);
      if (GET_CODE (value) == UNSPEC && XINT (value, 1) == UNSPEC_TOCREL)
	{
	  fuse_ops[1] = XVECEXP (value, 0, 0);		/* symbol ref.  */
	  fuse_ops[2] = XVECEXP (value, 0, 1);		/* TOC register.  */
	  if (TARGET_ELF)
	    addis_str = "addis %0,%2,%1@toc@ha";

	  else if (TARGET_XCOFF)
	    addis_str = "addis %0,%1@u(%2)";

	  else
	    gcc_unreachable ();
	}

      else if (GET_CODE (value) == PLUS)
	{
	  rtx op0 = XEXP (value, 0);
	  rtx op1 = XEXP (value, 1);

	  if (GET_CODE (op0) == UNSPEC
	      && XINT (op0, 1) == UNSPEC_TOCREL
	      && CONST_INT_P (op1))
	    {
	      fuse_ops[1] = XVECEXP (op0, 0, 0);	/* symbol ref.  */
	      fuse_ops[2] = XVECEXP (op0, 0, 1);	/* TOC register.  */
	      fuse_ops[3] = op1;
	      if (TARGET_ELF)
		addis_str = "addis %0,%2,%1+%3@toc@ha";

	      else if (TARGET_XCOFF)
		addis_str = "addis %0,%1+%3@u(%2)";

	      else
		gcc_unreachable ();
	    }
	}

      else if (satisfies_constraint_L (value))
	{
	  fuse_ops[1] = value;
	  addis_str = "lis %0,%v1";
	}

      else if (TARGET_ELF && !TARGET_POWERPC64 && CONSTANT_P (value))
	{
	  fuse_ops[1] = value;
	  addis_str = "lis %0,%1@ha";
	}
    }

  if (!addis_str)
    fatal_insn ("Could not generate addis value for fusion", addis_value);

  output_asm_insn (addis_str, fuse_ops);
}

/* Emit a D-form load or store instruction that is the second instruction
   of a fusion sequence.  */

static void
emit_fusion_load (rtx load_reg, rtx addis_reg, rtx offset, const char *insn_str)
{
  rtx fuse_ops[10];
  char insn_template[80];

  fuse_ops[0] = load_reg;
  fuse_ops[1] = addis_reg;

  if (CONST_INT_P (offset) && satisfies_constraint_I (offset))
    {
      sprintf (insn_template, "%s %%0,%%2(%%1)", insn_str);
      fuse_ops[2] = offset;
      output_asm_insn (insn_template, fuse_ops);
    }

  else if (GET_CODE (offset) == UNSPEC
	   && XINT (offset, 1) == UNSPEC_TOCREL)
    {
      if (TARGET_ELF)
	sprintf (insn_template, "%s %%0,%%2@toc@l(%%1)", insn_str);

      else if (TARGET_XCOFF)
	sprintf (insn_template, "%s %%0,%%2@l(%%1)", insn_str);

      else
	gcc_unreachable ();

      fuse_ops[2] = XVECEXP (offset, 0, 0);
      output_asm_insn (insn_template, fuse_ops);
    }

  else if (GET_CODE (offset) == PLUS
	   && GET_CODE (XEXP (offset, 0)) == UNSPEC
	   && XINT (XEXP (offset, 0), 1) == UNSPEC_TOCREL
	   && CONST_INT_P (XEXP (offset, 1)))
    {
      rtx tocrel_unspec = XEXP (offset, 0);
      if (TARGET_ELF)
	sprintf (insn_template, "%s %%0,%%2+%%3@toc@l(%%1)", insn_str);

      else if (TARGET_XCOFF)
	sprintf (insn_template, "%s %%0,%%2+%%3@l(%%1)", insn_str);

      else
	gcc_unreachable ();

      fuse_ops[2] = XVECEXP (tocrel_unspec, 0, 0);
      fuse_ops[3] = XEXP (offset, 1);
      output_asm_insn (insn_template, fuse_ops);
    }

  else if (TARGET_ELF && !TARGET_POWERPC64 && CONSTANT_P (offset))
    {
      sprintf (insn_template, "%s %%0,%%2@l(%%1)", insn_str);

      fuse_ops[2] = offset;
      output_asm_insn (insn_template, fuse_ops);
    }

  else
    fatal_insn ("Unable to generate load/store offset for fusion", offset);

  return;
}

/* Given an address, convert it into the addis and load offset parts.  Addresses
   created during the peephole2 process look like:
	(lo_sum (high (unspec [(sym)] UNSPEC_TOCREL))
		(unspec [(...)] UNSPEC_TOCREL))  */

static void
fusion_split_address (rtx addr, rtx *p_hi, rtx *p_lo)
{
  rtx hi, lo;

  if (GET_CODE (addr) == PLUS || GET_CODE (addr) == LO_SUM)
    {
      hi = XEXP (addr, 0);
      lo = XEXP (addr, 1);
    }
  else
    gcc_unreachable ();

  *p_hi = hi;
  *p_lo = lo;
}

/* Return a string to fuse an addis instruction with a gpr load to the same
   register that we loaded up the addis instruction.  The address that is used
   is the logical address that was formed during peephole2:
	(lo_sum (high) (low-part))

   The code is complicated, so we call output_asm_insn directly, and just
   return "".  */

const char *
emit_fusion_gpr_load (rtx target, rtx mem)
{
  rtx addis_value;
  rtx addr;
  rtx load_offset;
  const char *load_str = NULL;
  machine_mode mode;

  if (GET_CODE (mem) == ZERO_EXTEND)
    mem = XEXP (mem, 0);

  gcc_assert (REG_P (target) && MEM_P (mem));

  addr = XEXP (mem, 0);
  fusion_split_address (addr, &addis_value, &load_offset);

  /* Now emit the load instruction to the same register.  */
  mode = GET_MODE (mem);
  switch (mode)
    {
    case E_QImode:
      load_str = "lbz";
      break;

    case E_HImode:
      load_str = "lhz";
      break;

    case E_SImode:
    case E_SFmode:
      load_str = "lwz";
      break;

    case E_DImode:
    case E_DFmode:
      gcc_assert (TARGET_POWERPC64);
      load_str = "ld";
      break;

    default:
      fatal_insn ("Bad GPR fusion", gen_rtx_SET (target, mem));
    }

  /* Emit the addis instruction.  */
  emit_fusion_addis (target, addis_value);

  /* Emit the D-form load instruction.  */
  emit_fusion_load (target, target, load_offset, load_str);

  return "";
}

/* This is not inside an  #ifdef RS6000_GLIBC_ATOMIC_FENV  because gengtype
   ignores it then.  */
static GTY(()) tree atomic_hold_decl;
static GTY(()) tree atomic_clear_decl;
static GTY(()) tree atomic_update_decl;

/* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV hook.  */
static void
rs6000_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update)
{
  if (!TARGET_HARD_FLOAT)
    {
#ifdef RS6000_GLIBC_ATOMIC_FENV
      if (atomic_hold_decl == NULL_TREE)
	{
	  atomic_hold_decl
	    = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
			  get_identifier ("__atomic_feholdexcept"),
			  build_function_type_list (void_type_node,
						    double_ptr_type_node,
						    NULL_TREE));
	  TREE_PUBLIC (atomic_hold_decl) = 1;
	  DECL_EXTERNAL (atomic_hold_decl) = 1;
	}

      if (atomic_clear_decl == NULL_TREE)
	{
	  atomic_clear_decl
	    = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
			  get_identifier ("__atomic_feclearexcept"),
			  build_function_type_list (void_type_node,
						    NULL_TREE));
	  TREE_PUBLIC (atomic_clear_decl) = 1;
	  DECL_EXTERNAL (atomic_clear_decl) = 1;
	}

      tree const_double = build_qualified_type (double_type_node,
						TYPE_QUAL_CONST);
      tree const_double_ptr = build_pointer_type (const_double);
      if (atomic_update_decl == NULL_TREE)
	{
	  atomic_update_decl
	    = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
			  get_identifier ("__atomic_feupdateenv"),
			  build_function_type_list (void_type_node,
						    const_double_ptr,
						    NULL_TREE));
	  TREE_PUBLIC (atomic_update_decl) = 1;
	  DECL_EXTERNAL (atomic_update_decl) = 1;
	}

      tree fenv_var = create_tmp_var_raw (double_type_node);
      TREE_ADDRESSABLE (fenv_var) = 1;
      tree fenv_addr = build1 (ADDR_EXPR, double_ptr_type_node,
			       build4 (TARGET_EXPR, double_type_node, fenv_var,
				       void_node, NULL_TREE, NULL_TREE));

      *hold = build_call_expr (atomic_hold_decl, 1, fenv_addr);
      *clear = build_call_expr (atomic_clear_decl, 0);
      *update = build_call_expr (atomic_update_decl, 1,
				 fold_convert (const_double_ptr, fenv_addr));
#endif
      return;
    }

  tree mffs = rs6000_builtin_decls[RS6000_BIF_MFFS];
  tree mtfsf = rs6000_builtin_decls[RS6000_BIF_MTFSF];
  tree call_mffs = build_call_expr (mffs, 0);

  /* Generates the equivalent of feholdexcept (&fenv_var)

     *fenv_var = __builtin_mffs ();
     double fenv_hold;
     *(uint64_t*)&fenv_hold = *(uint64_t*)fenv_var & 0xffffffff00000007LL;
     __builtin_mtfsf (0xff, fenv_hold);  */

  /* Mask to clear everything except for the rounding modes and non-IEEE
     arithmetic flag.  */
  const unsigned HOST_WIDE_INT hold_exception_mask
    = HOST_WIDE_INT_C (0xffffffff00000007);

  tree fenv_var = create_tmp_var_raw (double_type_node);

  tree hold_mffs = build4 (TARGET_EXPR, double_type_node, fenv_var, call_mffs,
			   NULL_TREE, NULL_TREE);

  tree fenv_llu = build1 (VIEW_CONVERT_EXPR, uint64_type_node, fenv_var);
  tree fenv_llu_and = build2 (BIT_AND_EXPR, uint64_type_node, fenv_llu,
			      build_int_cst (uint64_type_node,
					     hold_exception_mask));

  tree fenv_hold_mtfsf = build1 (VIEW_CONVERT_EXPR, double_type_node,
				 fenv_llu_and);

  tree hold_mtfsf = build_call_expr (mtfsf, 2,
				     build_int_cst (unsigned_type_node, 0xff),
				     fenv_hold_mtfsf);

  *hold = build2 (COMPOUND_EXPR, void_type_node, hold_mffs, hold_mtfsf);

  /* Generates the equivalent of feclearexcept (FE_ALL_EXCEPT):

     double fenv_clear = __builtin_mffs ();
     *(uint64_t)&fenv_clear &= 0xffffffff00000000LL;
     __builtin_mtfsf (0xff, fenv_clear);  */

  /* Mask to clear everything except for the rounding modes and non-IEEE
     arithmetic flag.  */
  const unsigned HOST_WIDE_INT clear_exception_mask
    = HOST_WIDE_INT_C (0xffffffff00000000);

  tree fenv_clear = create_tmp_var_raw (double_type_node);

  tree clear_mffs = build4 (TARGET_EXPR, double_type_node, fenv_clear,
			    call_mffs, NULL_TREE, NULL_TREE);

  tree fenv_clean_llu = build1 (VIEW_CONVERT_EXPR, uint64_type_node, fenv_clear);
  tree fenv_clear_llu_and = build2 (BIT_AND_EXPR, uint64_type_node,
				    fenv_clean_llu,
				    build_int_cst (uint64_type_node,
						   clear_exception_mask));

  tree fenv_clear_mtfsf = build1 (VIEW_CONVERT_EXPR, double_type_node,
				  fenv_clear_llu_and);

  tree clear_mtfsf = build_call_expr (mtfsf, 2,
				      build_int_cst (unsigned_type_node, 0xff),
				      fenv_clear_mtfsf);

  *clear = build2 (COMPOUND_EXPR, void_type_node, clear_mffs, clear_mtfsf);

  /* Generates the equivalent of feupdateenv (&fenv_var)

     double old_fenv = __builtin_mffs ();
     double fenv_update;
     *(uint64_t*)&fenv_update = (*(uint64_t*)&old & 0xffffffff1fffff00LL) |
                                (*(uint64_t*)fenv_var 0x1ff80fff);
     __builtin_mtfsf (0xff, fenv_update);  */

  const unsigned HOST_WIDE_INT update_exception_mask
    = HOST_WIDE_INT_C (0xffffffff1fffff00);
  const unsigned HOST_WIDE_INT new_exception_mask
    = HOST_WIDE_INT_C (0x1ff80fff);

  tree old_fenv = create_tmp_var_raw (double_type_node);
  tree update_mffs = build4 (TARGET_EXPR, double_type_node, old_fenv,
			     call_mffs, NULL_TREE, NULL_TREE);

  tree old_llu = build1 (VIEW_CONVERT_EXPR, uint64_type_node, old_fenv);
  tree old_llu_and = build2 (BIT_AND_EXPR, uint64_type_node, old_llu,
			     build_int_cst (uint64_type_node,
					    update_exception_mask));

  tree new_llu_and = build2 (BIT_AND_EXPR, uint64_type_node, fenv_llu,
			     build_int_cst (uint64_type_node,
					    new_exception_mask));

  tree new_llu_mask = build2 (BIT_IOR_EXPR, uint64_type_node,
			      old_llu_and, new_llu_and);

  tree fenv_update_mtfsf = build1 (VIEW_CONVERT_EXPR, double_type_node,
				   new_llu_mask);

  tree update_mtfsf = build_call_expr (mtfsf, 2,
				       build_int_cst (unsigned_type_node, 0xff),
				       fenv_update_mtfsf);

  *update = build2 (COMPOUND_EXPR, void_type_node, update_mffs, update_mtfsf);
}

void
rs6000_generate_float2_double_code (rtx dst, rtx src1, rtx src2)
{
  rtx rtx_tmp0, rtx_tmp1, rtx_tmp2, rtx_tmp3;

  rtx_tmp0 = gen_reg_rtx (V2DFmode);
  rtx_tmp1 = gen_reg_rtx (V2DFmode);

  /* The destination of the vmrgew instruction layout is:
     rtx_tmp2[0] rtx_tmp3[0] rtx_tmp2[1] rtx_tmp3[0].
     Setup rtx_tmp0 and rtx_tmp1 to ensure the order of the elements after the
     vmrgew instruction will be correct.  */
  if (BYTES_BIG_ENDIAN)
    {
       emit_insn (gen_vsx_xxpermdi_v2df_be (rtx_tmp0, src1, src2,
					    GEN_INT (0)));
       emit_insn (gen_vsx_xxpermdi_v2df_be (rtx_tmp1, src1, src2,
					    GEN_INT (3)));
    }
  else
    {
       emit_insn (gen_vsx_xxpermdi_v2df (rtx_tmp0, src1, src2, GEN_INT (3)));
       emit_insn (gen_vsx_xxpermdi_v2df (rtx_tmp1, src1, src2, GEN_INT (0)));
    }

  rtx_tmp2 = gen_reg_rtx (V4SFmode);
  rtx_tmp3 = gen_reg_rtx (V4SFmode);

  emit_insn (gen_vsx_xvcvdpsp (rtx_tmp2, rtx_tmp0));
  emit_insn (gen_vsx_xvcvdpsp (rtx_tmp3, rtx_tmp1));

  if (BYTES_BIG_ENDIAN)
    emit_insn (gen_p8_vmrgew_v4sf (dst, rtx_tmp2, rtx_tmp3));
  else
    emit_insn (gen_p8_vmrgew_v4sf (dst, rtx_tmp3, rtx_tmp2));
}

void
rs6000_generate_float2_code (bool signed_convert, rtx dst, rtx src1, rtx src2)
{
  rtx rtx_tmp0, rtx_tmp1, rtx_tmp2, rtx_tmp3;

  rtx_tmp0 = gen_reg_rtx (V2DImode);
  rtx_tmp1 = gen_reg_rtx (V2DImode);

  /* The destination of the vmrgew instruction layout is:
     rtx_tmp2[0] rtx_tmp3[0] rtx_tmp2[1] rtx_tmp3[0].
     Setup rtx_tmp0 and rtx_tmp1 to ensure the order of the elements after the
     vmrgew instruction will be correct.  */
  if (BYTES_BIG_ENDIAN)
    {
      emit_insn (gen_vsx_xxpermdi_v2di_be (rtx_tmp0, src1, src2, GEN_INT (0)));
      emit_insn (gen_vsx_xxpermdi_v2di_be (rtx_tmp1, src1, src2, GEN_INT (3)));
    }
  else
    {
      emit_insn (gen_vsx_xxpermdi_v2di (rtx_tmp0, src1, src2, GEN_INT (3)));
      emit_insn (gen_vsx_xxpermdi_v2di (rtx_tmp1, src1, src2, GEN_INT (0)));
    }

  rtx_tmp2 = gen_reg_rtx (V4SFmode);
  rtx_tmp3 = gen_reg_rtx (V4SFmode);

  if (signed_convert)
    {
      emit_insn (gen_vsx_xvcvsxdsp (rtx_tmp2, rtx_tmp0));
      emit_insn (gen_vsx_xvcvsxdsp (rtx_tmp3, rtx_tmp1));
    }
  else
    {
       emit_insn (gen_vsx_xvcvuxdsp (rtx_tmp2, rtx_tmp0));
       emit_insn (gen_vsx_xvcvuxdsp (rtx_tmp3, rtx_tmp1));
    }

  if (BYTES_BIG_ENDIAN)
    emit_insn (gen_p8_vmrgew_v4sf (dst, rtx_tmp2, rtx_tmp3));
  else
    emit_insn (gen_p8_vmrgew_v4sf (dst, rtx_tmp3, rtx_tmp2));
}

void
rs6000_generate_vsigned2_code (bool signed_convert, rtx dst, rtx src1,
			       rtx src2)
{
  rtx rtx_tmp0, rtx_tmp1, rtx_tmp2, rtx_tmp3;

  rtx_tmp0 = gen_reg_rtx (V2DFmode);
  rtx_tmp1 = gen_reg_rtx (V2DFmode);

  emit_insn (gen_vsx_xxpermdi_v2df (rtx_tmp0, src1, src2, GEN_INT (0)));
  emit_insn (gen_vsx_xxpermdi_v2df (rtx_tmp1, src1, src2, GEN_INT (3)));

  rtx_tmp2 = gen_reg_rtx (V4SImode);
  rtx_tmp3 = gen_reg_rtx (V4SImode);

  if (signed_convert)
    {
      emit_insn (gen_vsx_xvcvdpsxws (rtx_tmp2, rtx_tmp0));
      emit_insn (gen_vsx_xvcvdpsxws (rtx_tmp3, rtx_tmp1));
    }
  else
    {
      emit_insn (gen_vsx_xvcvdpuxws (rtx_tmp2, rtx_tmp0));
      emit_insn (gen_vsx_xvcvdpuxws (rtx_tmp3, rtx_tmp1));
    }

  emit_insn (gen_p8_vmrgew_v4si (dst, rtx_tmp2, rtx_tmp3));
}

/* Implement the TARGET_OPTAB_SUPPORTED_P hook.  */

static bool
rs6000_optab_supported_p (int op, machine_mode mode1, machine_mode,
			  optimization_type opt_type)
{
  switch (op)
    {
    case rsqrt_optab:
      return (opt_type == OPTIMIZE_FOR_SPEED
	      && RS6000_RECIP_AUTO_RSQRTE_P (mode1));

    default:
      return true;
    }
}

/* Implement TARGET_CONSTANT_ALIGNMENT.  */

static HOST_WIDE_INT
rs6000_constant_alignment (const_tree exp, HOST_WIDE_INT align)
{
  if (TREE_CODE (exp) == STRING_CST
      && (STRICT_ALIGNMENT || !optimize_size))
    return MAX (align, BITS_PER_WORD);
  return align;
}

/* Implement TARGET_STARTING_FRAME_OFFSET.  */

static HOST_WIDE_INT
rs6000_starting_frame_offset (void)
{
  if (FRAME_GROWS_DOWNWARD)
    return 0;
  return RS6000_STARTING_FRAME_OFFSET;
}


/* On 64-bit Linux and Freebsd systems, possibly switch the long double library
   function names from <foo>l to <foo>f128 if the default long double type is
   IEEE 128-bit.  Typically, with the C and C++ languages, the standard math.h
   include file switches the names on systems that support long double as IEEE
   128-bit, but that doesn't work if the user uses __builtin_<foo>l directly.
   In the future, glibc will export names like __ieee128_sinf128 and we can
   switch to using those instead of using sinf128, which pollutes the user's
   namespace.

   This will switch the names for Fortran math functions as well (which doesn't
   use math.h).  However, Fortran needs other changes to the compiler and
   library before you can switch the real*16 type at compile time.

   We use the TARGET_MANGLE_DECL_ASSEMBLER_NAME hook to change this name.  We
   only do this transformation if the __float128 type is enabled.  This
   prevents us from doing the transformation on older 32-bit ports that might
   have enabled using IEEE 128-bit floating point as the default long double
   type.  */

static tree
rs6000_mangle_decl_assembler_name (tree decl, tree id)
{
  if (TARGET_FLOAT128_TYPE && TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128
      && TREE_CODE (decl) == FUNCTION_DECL
      && DECL_IS_UNDECLARED_BUILTIN (decl)
      && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
    {
      size_t len = IDENTIFIER_LENGTH (id);
      const char *name = IDENTIFIER_POINTER (id);
      char *newname = NULL;

      /* See if it is one of the built-in functions with an unusual name.  */
      switch (DECL_FUNCTION_CODE (decl))
	{
	case BUILT_IN_DREML:
	  newname = xstrdup ("__remainderieee128");
	  break;

	case BUILT_IN_GAMMAL:
	  newname = xstrdup ("__lgammaieee128");
	  break;

	case BUILT_IN_GAMMAL_R:
	case BUILT_IN_LGAMMAL_R:
	  newname = xstrdup ("__lgammaieee128_r");
	  break;

	case BUILT_IN_NEXTTOWARD:
	  newname = xstrdup ("__nexttoward_to_ieee128");
	  break;

	case BUILT_IN_NEXTTOWARDF:
	  newname = xstrdup ("__nexttowardf_to_ieee128");
	  break;

	case BUILT_IN_NEXTTOWARDL:
	  newname = xstrdup ("__nexttowardieee128");
	  break;

	case BUILT_IN_POW10L:
	  newname = xstrdup ("__exp10ieee128");
	  break;

	case BUILT_IN_SCALBL:
	  newname = xstrdup ("__scalbieee128");
	  break;

	case BUILT_IN_SIGNIFICANDL:
	  newname = xstrdup ("__significandieee128");
	  break;

	case BUILT_IN_SINCOSL:
	  newname = xstrdup ("__sincosieee128");
	  break;

	default:
	  break;
	}

      /* Update the __builtin_*printf and __builtin_*scanf functions.  */
      if (!newname)
	{
	  size_t printf_len = strlen ("printf");
	  size_t scanf_len = strlen ("scanf");
	  size_t printf_chk_len = strlen ("printf_chk");

	  if (len >= printf_len
	      && strcmp (name + len - printf_len, "printf") == 0)
	    newname = xasprintf ("__%sieee128", name);

	  else if (len >= scanf_len
		   && strcmp (name + len - scanf_len, "scanf") == 0)
	    newname = xasprintf ("__isoc99_%sieee128", name);

	  else if (len >= printf_chk_len
		   && strcmp (name + len - printf_chk_len, "printf_chk") == 0)
	    newname = xasprintf ("%sieee128", name);

	  else if (name[len - 1] == 'l')
	    {
	      bool uses_ieee128_p = false;
	      tree type = TREE_TYPE (decl);
	      machine_mode ret_mode = TYPE_MODE (type);

	      /* See if the function returns a IEEE 128-bit floating point type or
		 complex type.  */
	      if (ret_mode == TFmode || ret_mode == TCmode)
		uses_ieee128_p = true;
	      else
		{
		  function_args_iterator args_iter;
		  tree arg;

		  /* See if the function passes a IEEE 128-bit floating point type
		     or complex type.  */
		  FOREACH_FUNCTION_ARGS (type, arg, args_iter)
		    {
		      machine_mode arg_mode = TYPE_MODE (arg);
		      if (arg_mode == TFmode || arg_mode == TCmode)
			{
			  uses_ieee128_p = true;
			  break;
			}
		    }
		}

	      /* If we passed or returned an IEEE 128-bit floating point type,
		 change the name.  Use __<name>ieee128, instead of <name>l.  */
	      if (uses_ieee128_p)
		newname = xasprintf ("__%.*sieee128", (int)(len - 1), name);
	    }
	}

      if (newname)
	{
	  if (TARGET_DEBUG_BUILTIN)
	    fprintf (stderr, "Map %s => %s\n", name, newname);

	  id = get_identifier (newname);
	  free (newname);
	}
    }

  return id;
}

/* Predict whether the given loop in gimple will be transformed in the RTL
   doloop_optimize pass.  */

static bool
rs6000_predict_doloop_p (struct loop *loop)
{
  gcc_assert (loop);

  /* On rs6000, targetm.can_use_doloop_p is actually
     can_use_doloop_if_innermost.  Just ensure the loop is innermost.  */
  if (loop->inner != NULL)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Predict doloop failure due to"
			    " loop nesting.\n");
      return false;
    }

  return true;
}

/* Implement TARGET_PREFERRED_DOLOOP_MODE. */

static machine_mode
rs6000_preferred_doloop_mode (machine_mode)
{
  return word_mode;
}

/* Implement TARGET_CANNOT_SUBSTITUTE_MEM_EQUIV_P.  */

static bool
rs6000_cannot_substitute_mem_equiv_p (rtx mem)
{
  gcc_assert (MEM_P (mem));

  /* curr_insn_transform()'s handling of subregs cannot handle altivec AND:
     type addresses, so don't allow MEMs with those address types to be
     substituted as an equivalent expression.  See PR93974 for details.  */
  if (GET_CODE (XEXP (mem, 0)) == AND)
    return true;

  return false;
}

/* Implement TARGET_INVALID_CONVERSION.  */

static const char *
rs6000_invalid_conversion (const_tree fromtype, const_tree totype)
{
  /* Make sure we're working with the canonical types.  */
  if (TYPE_CANONICAL (fromtype) != NULL_TREE)
    fromtype = TYPE_CANONICAL (fromtype);
  if (TYPE_CANONICAL (totype) != NULL_TREE)
    totype = TYPE_CANONICAL (totype);

  machine_mode frommode = TYPE_MODE (fromtype);
  machine_mode tomode = TYPE_MODE (totype);

  if (frommode != tomode)
    {
      /* Do not allow conversions to/from XOmode and OOmode types.  */
      if (frommode == XOmode)
	return N_("invalid conversion from type %<__vector_quad%>");
      if (tomode == XOmode)
	return N_("invalid conversion to type %<__vector_quad%>");
      if (frommode == OOmode)
	return N_("invalid conversion from type %<__vector_pair%>");
      if (tomode == OOmode)
	return N_("invalid conversion to type %<__vector_pair%>");
    }

  /* Conversion allowed.  */
  return NULL;
}

/* Convert a SFmode constant to the integer bit pattern.  */

long
rs6000_const_f32_to_i32 (rtx operand)
{
  long value;
  const struct real_value *rv = CONST_DOUBLE_REAL_VALUE (operand);

  gcc_assert (GET_MODE (operand) == SFmode);
  REAL_VALUE_TO_TARGET_SINGLE (*rv, value);
  return value;
}

void
rs6000_emit_xxspltidp_v2df (rtx dst, long value)
{
  if (((value & 0x7F800000) == 0) && ((value & 0x7FFFFF) != 0))
    inform (input_location,
	    "the result for the xxspltidp instruction "
	    "is undefined for subnormal input values");
  emit_insn( gen_xxspltidp_v2df_inst (dst, GEN_INT (value)));
}

/* Implement TARGET_ASM_GENERATE_PIC_ADDR_DIFF_VEC.  */

static bool
rs6000_gen_pic_addr_diff_vec (void)
{
  return rs6000_relative_jumptables;
}

void
rs6000_output_addr_vec_elt (FILE *file, int value)
{
  const char *directive = TARGET_64BIT ? DOUBLE_INT_ASM_OP : "\t.long\t";
  char buf[100];

  fprintf (file, "%s", directive);
  ASM_GENERATE_INTERNAL_LABEL (buf, "L", value);
  assemble_name (file, buf);
  fprintf (file, "\n");
}


/* Copy an integer constant to the vector constant structure.  */

static void
constant_int_to_128bit_vector (rtx op,
			       machine_mode mode,
			       size_t byte_num,
			       vec_const_128bit_type *info)
{
  unsigned HOST_WIDE_INT uvalue = UINTVAL (op);
  unsigned bitsize = GET_MODE_BITSIZE (mode);

  for (int shift = bitsize - 8; shift >= 0; shift -= 8)
    info->bytes[byte_num++] = (uvalue >> shift) & 0xff;
}

/* Copy a floating point constant to the vector constant structure.  */

static void
constant_fp_to_128bit_vector (rtx op,
			      machine_mode mode,
			      size_t byte_num,
			      vec_const_128bit_type *info)
{
  unsigned bitsize = GET_MODE_BITSIZE (mode);
  unsigned num_words = bitsize / 32;
  const REAL_VALUE_TYPE *rtype = CONST_DOUBLE_REAL_VALUE (op);
  long real_words[VECTOR_128BIT_WORDS];

  /* Make sure we don't overflow the real_words array and that it is
     filled completely.  */
  gcc_assert (num_words <= VECTOR_128BIT_WORDS && (bitsize % 32) == 0);

  real_to_target (real_words, rtype, mode);

  /* Iterate over each 32-bit word in the floating point constant.  The
     real_to_target function puts out words in target endian fashion.  We need
     to arrange the order so that the bytes are written in big endian order.  */
  for (unsigned num = 0; num < num_words; num++)
    {
      unsigned endian_num = (BYTES_BIG_ENDIAN
			     ? num
			     : num_words - 1 - num);

      unsigned uvalue = real_words[endian_num];
      for (int shift = 32 - 8; shift >= 0; shift -= 8)
	info->bytes[byte_num++] = (uvalue >> shift) & 0xff;
    }

  /* Mark that this constant involves floating point.  */
  info->fp_constant_p = true;
}

/* Convert a vector constant OP with mode MODE to a vector 128-bit constant
   structure INFO.

   Break out the constant out to bytes, half words, words, and double words.
   Return true if we have successfully converted the constant.

   We handle CONST_INT, CONST_DOUBLE, CONST_VECTOR, and VEC_DUPLICATE of
   constants.  Integer and floating point scalar constants are splatted to fill
   out the vector.  */

bool
vec_const_128bit_to_bytes (rtx op,
			   machine_mode mode,
			   vec_const_128bit_type *info)
{
  /* Initialize the constant structure.  */
  memset ((void *)info, 0, sizeof (vec_const_128bit_type));

  /* Assume CONST_INTs are DImode.  */
  if (mode == VOIDmode)
    mode = CONST_INT_P (op) ? DImode : GET_MODE (op);

  if (mode == VOIDmode)
    return false;

  unsigned size = GET_MODE_SIZE (mode);
  bool splat_p = false;

  if (size > VECTOR_128BIT_BYTES)
    return false;

  /* Set up the bits.  */
  switch (GET_CODE (op))
    {
      /* Integer constants, default to double word.  */
    case CONST_INT:
      {
	constant_int_to_128bit_vector (op, mode, 0, info);
	splat_p = true;
	break;
      }

      /* Floating point constants.  */
    case CONST_DOUBLE:
      {
	/* Fail if the floating point constant is the wrong mode.  */
	if (GET_MODE (op) != mode)
	  return false;

	/* SFmode stored as scalars are stored in DFmode format.  */
	if (mode == SFmode)
	  {
	    mode = DFmode;
	    size = GET_MODE_SIZE (DFmode);
	  }

	constant_fp_to_128bit_vector (op, mode, 0, info);
	splat_p = true;
	break;
      }

      /* Vector constants, iterate over each element.  On little endian
	 systems, we have to reverse the element numbers.  */
    case CONST_VECTOR:
      {
	/* Fail if the vector constant is the wrong mode or size.  */
	if (GET_MODE (op) != mode
	    || GET_MODE_SIZE (mode) != VECTOR_128BIT_BYTES)
	  return false;

	machine_mode ele_mode = GET_MODE_INNER (mode);
	size_t ele_size = GET_MODE_SIZE (ele_mode);
	size_t nunits = GET_MODE_NUNITS (mode);

	for (size_t num = 0; num < nunits; num++)
	  {
	    rtx ele = CONST_VECTOR_ELT (op, num);
	    size_t byte_num = (BYTES_BIG_ENDIAN
			       ? num
			       : nunits - 1 - num) * ele_size;

	    if (CONST_INT_P (ele))
	      constant_int_to_128bit_vector (ele, ele_mode, byte_num, info);
	    else if (CONST_DOUBLE_P (ele))
	      constant_fp_to_128bit_vector (ele, ele_mode, byte_num, info);
	    else
	      return false;
	  }

	break;
      }

	/* Treat VEC_DUPLICATE of a constant just like a vector constant.
	   Since we are duplicating the element, we don't have to worry about
	   endian issues.  */
    case VEC_DUPLICATE:
      {
	/* Fail if the vector duplicate is the wrong mode or size.  */
	if (GET_MODE (op) != mode
	    || GET_MODE_SIZE (mode) != VECTOR_128BIT_BYTES)
	  return false;

	machine_mode ele_mode = GET_MODE_INNER (mode);
	size_t ele_size = GET_MODE_SIZE (ele_mode);
	rtx ele = XEXP (op, 0);
	size_t nunits = GET_MODE_NUNITS (mode);

	if (!CONST_INT_P (ele) && !CONST_DOUBLE_P (ele))
	  return false;

	for (size_t num = 0; num < nunits; num++)
	  {
	    size_t byte_num = num * ele_size;

	    if (CONST_INT_P (ele))
	      constant_int_to_128bit_vector (ele, ele_mode, byte_num, info);
	    else
	      constant_fp_to_128bit_vector (ele, ele_mode, byte_num, info);
	  }

	break;
      }

      /* Any thing else, just return failure.  */
    default:
      return false;
    }

  /* Splat the constant to fill 128 bits if desired.  */
  if (splat_p && size < VECTOR_128BIT_BYTES)
    {
      if ((VECTOR_128BIT_BYTES % size) != 0)
	return false;

      for (size_t offset = size;
	   offset < VECTOR_128BIT_BYTES;
	   offset += size)
	memcpy ((void *) &info->bytes[offset],
		(void *) &info->bytes[0],
		size);
    }

  /* Remember original size.  */
  info->original_size = size;

  /* Determine if the bytes are all the same.  */
  unsigned char first_byte = info->bytes[0];
  info->all_bytes_same = true;
  for (size_t i = 1; i < VECTOR_128BIT_BYTES; i++)
    if (first_byte != info->bytes[i])
      {
	info->all_bytes_same = false;
	break;
      }

  /* Pack half words together & determine if all of the half words are the
     same.  */
  for (size_t i = 0; i < VECTOR_128BIT_HALF_WORDS; i++)
    info->half_words[i] = ((info->bytes[i * 2] << 8)
			   | info->bytes[(i * 2) + 1]);

  unsigned short first_hword = info->half_words[0];
  info->all_half_words_same = true;
  for (size_t i = 1; i < VECTOR_128BIT_HALF_WORDS; i++)
    if (first_hword != info->half_words[i])
      {
	info->all_half_words_same = false;
	break;
      }

  /* Pack words together & determine if all of the words are the same.  */
  for (size_t i = 0; i < VECTOR_128BIT_WORDS; i++)
    info->words[i] = ((info->bytes[i * 4] << 24)
		      | (info->bytes[(i * 4) + 1] << 16)
		      | (info->bytes[(i * 4) + 2] << 8)
		      | info->bytes[(i * 4) + 3]);

  info->all_words_same
    = (info->words[0] == info->words[1]
       && info->words[0] == info->words[1]
       && info->words[0] == info->words[2]
       && info->words[0] == info->words[3]);

  /* Pack double words together & determine if all of the double words are the
     same.  */
  for (size_t i = 0; i < VECTOR_128BIT_DOUBLE_WORDS; i++)
    {
      unsigned HOST_WIDE_INT d_word = 0;
      for (size_t j = 0; j < 8; j++)
	d_word = (d_word << 8) | info->bytes[(i * 8) + j];

      info->double_words[i] = d_word;
    }

  info->all_double_words_same
    = (info->double_words[0] == info->double_words[1]);

  return true;
}

/* Determine if an IEEE 128-bit constant can be loaded with LXVKQ.  Return zero
   if the LXVKQ instruction cannot be used.  Otherwise return the immediate
   value to be used with the LXVKQ instruction.  */

unsigned
constant_generates_lxvkq (vec_const_128bit_type *vsx_const)
{
  /* Is the instruction supported with power10 code generation, IEEE 128-bit
     floating point hardware and VSX registers are available.  */
  if (!TARGET_IEEE128_CONSTANT || !TARGET_FLOAT128_HW || !TARGET_POWER10
      || !TARGET_VSX)
    return 0;

  /* All of the constants that are generated by LXVKQ have the bottom 3 words
     that are 0.  */
  if (vsx_const->words[1] != 0
      || vsx_const->words[2] != 0
      || vsx_const->words[3] != 0)
      return 0;

  /* See if we have a match for the first word.  */
  switch (vsx_const->words[0])
    {
    case 0x3FFF0000U: return 1;		/* IEEE 128-bit +1.0.  */
    case 0x40000000U: return 2;		/* IEEE 128-bit +2.0.  */
    case 0x40008000U: return 3;		/* IEEE 128-bit +3.0.  */
    case 0x40010000U: return 4;		/* IEEE 128-bit +4.0.  */
    case 0x40014000U: return 5;		/* IEEE 128-bit +5.0.  */
    case 0x40018000U: return 6;		/* IEEE 128-bit +6.0.  */
    case 0x4001C000U: return 7;		/* IEEE 128-bit +7.0.  */
    case 0x7FFF0000U: return 8;		/* IEEE 128-bit +Infinity.  */
    case 0x7FFF8000U: return 9;		/* IEEE 128-bit quiet NaN.  */
    case 0x80000000U: return 16;	/* IEEE 128-bit -0.0.  */
    case 0xBFFF0000U: return 17;	/* IEEE 128-bit -1.0.  */
    case 0xC0000000U: return 18;	/* IEEE 128-bit -2.0.  */
    case 0xC0008000U: return 19;	/* IEEE 128-bit -3.0.  */
    case 0xC0010000U: return 20;	/* IEEE 128-bit -4.0.  */
    case 0xC0014000U: return 21;	/* IEEE 128-bit -5.0.  */
    case 0xC0018000U: return 22;	/* IEEE 128-bit -6.0.  */
    case 0xC001C000U: return 23;	/* IEEE 128-bit -7.0.  */
    case 0xFFFF0000U: return 24;	/* IEEE 128-bit -Infinity.  */

      /* anything else cannot be loaded.  */
    default:
      break;
    }

  return 0;
}

/* Determine if a vector constant can be loaded with XXSPLTIW.  Return zero if
   the XXSPLTIW instruction cannot be used.  Otherwise return the immediate
   value to be used with the XXSPLTIW instruction.  */

unsigned
constant_generates_xxspltiw (vec_const_128bit_type *vsx_const)
{
  if (!TARGET_SPLAT_WORD_CONSTANT || !TARGET_PREFIXED || !TARGET_VSX)
    return 0;

  if (!vsx_const->all_words_same)
    return 0;

  /* If we can use XXSPLTIB, don't generate XXSPLTIW.  */
  if (vsx_const->all_bytes_same)
    return 0;

  /* See if we can use VSPLTISH or VSPLTISW.  */
  if (vsx_const->all_half_words_same)
    {
      short sign_h_word = vsx_const->half_words[0];
      if (EASY_VECTOR_15 (sign_h_word))
	return 0;
    }

  int sign_word = vsx_const->words[0];
  if (EASY_VECTOR_15 (sign_word))
    return 0;

  return vsx_const->words[0];
}

/* Determine if a vector constant can be loaded with XXSPLTIDP.  Return zero if
   the XXSPLTIDP instruction cannot be used.  Otherwise return the immediate
   value to be used with the XXSPLTIDP instruction.  */

unsigned
constant_generates_xxspltidp (vec_const_128bit_type *vsx_const)
{
  if (!TARGET_SPLAT_FLOAT_CONSTANT || !TARGET_PREFIXED || !TARGET_VSX)
    return 0;

  /* Reject if the two 64-bit segments are not the same.  */
  if (!vsx_const->all_double_words_same)
    return 0;

  /* If the bytes, half words, or words are all the same, don't use XXSPLTIDP.
     Use a simpler instruction (XXSPLTIB, VSPLTISB, VSPLTISH, or VSPLTISW).  */
  if (vsx_const->all_bytes_same
      || vsx_const->all_half_words_same
      || vsx_const->all_words_same)
    return 0;

  unsigned HOST_WIDE_INT value = vsx_const->double_words[0];

  /* Avoid values that look like DFmode NaN's, except for the normal NaN bit
     pattern and the signalling NaN bit pattern.  Recognize infinity and
     negative infinity.  */

  /* Bit representation of DFmode normal quiet NaN.  */
#define RS6000_CONST_DF_NAN	HOST_WIDE_INT_UC (0x7ff8000000000000)

  /* Bit representation of DFmode normal signaling NaN.  */
#define RS6000_CONST_DF_NANS	HOST_WIDE_INT_UC (0x7ff4000000000000)

  /* Bit representation of DFmode positive infinity.  */
#define RS6000_CONST_DF_INF	HOST_WIDE_INT_UC (0x7ff0000000000000)

  /* Bit representation of DFmode negative infinity.  */
#define RS6000_CONST_DF_NEG_INF	HOST_WIDE_INT_UC (0xfff0000000000000)

  if (value != RS6000_CONST_DF_NAN
      && value != RS6000_CONST_DF_NANS
      && value != RS6000_CONST_DF_INF
      && value != RS6000_CONST_DF_NEG_INF)
    {
      /* The IEEE 754 64-bit floating format has 1 bit for sign, 11 bits for
	 the exponent, and 52 bits for the mantissa (not counting the hidden
	 bit used for normal numbers).  NaN values have the exponent set to all
	 1 bits, and the mantissa non-zero (mantissa == 0 is infinity).  */

      int df_exponent = (value >> 52) & 0x7ff;
      unsigned HOST_WIDE_INT
	df_mantissa = value & ((HOST_WIDE_INT_1U << 52) - HOST_WIDE_INT_1U);

      if (df_exponent == 0x7ff && df_mantissa != 0)	/* other NaNs.  */
	return 0;

      /* Avoid values that are DFmode subnormal values.  Subnormal numbers have
	 the exponent all 0 bits, and the mantissa non-zero.  If the value is
	 subnormal, then the hidden bit in the mantissa is not set.  */
      if (df_exponent == 0 && df_mantissa != 0)		/* subnormal.  */
	return 0;
    }

  /* Change the representation to DFmode constant.  */
  long df_words[2] = { vsx_const->words[0], vsx_const->words[1] };

  /* real_from_target takes the target words in target order.  */
  if (!BYTES_BIG_ENDIAN)
    std::swap (df_words[0], df_words[1]);

  REAL_VALUE_TYPE rv_type;
  real_from_target (&rv_type, df_words, DFmode);

  const REAL_VALUE_TYPE *rv = &rv_type;

  /* Validate that the number can be stored as a SFmode value.  */
  if (!exact_real_truncate (SFmode, rv))
    return 0;

  /* Validate that the number is not a SFmode subnormal value (exponent is 0,
     mantissa field is non-zero) which is undefined for the XXSPLTIDP
     instruction.  */
  long sf_value;
  real_to_target (&sf_value, rv, SFmode);

  /* IEEE 754 32-bit values have 1 bit for the sign, 8 bits for the exponent,
     and 23 bits for the mantissa.  Subnormal numbers have the exponent all
     0 bits, and the mantissa non-zero.  */
  long sf_exponent = (sf_value >> 23) & 0xFF;
  long sf_mantissa = sf_value & 0x7FFFFF;

  if (sf_exponent == 0 && sf_mantissa != 0)
    return 0;

  /* Return the immediate to be used.  */
  return sf_value;
}

/* Now we have only two opaque types, they are __vector_quad and
   __vector_pair built-in types.  They are target specific and
   only available when MMA is supported.  With MMA supported, it
   simply returns true, otherwise it checks if the given gimple
   STMT is an assignment stmt and uses either of these two opaque
   types unexpectedly, if yes, it would raise an error message
   and returns true, otherwise it returns false.  */

bool
rs6000_opaque_type_invalid_use_p (gimple *stmt)
{
  if (TARGET_MMA)
    return false;

  if (stmt)
    {
      /* The usage of MMA opaque types is very limited for now,
	 to check with gassign is enough so far.  */
      if (gassign *ga = dyn_cast<gassign *> (stmt))
	{
	  tree lhs = gimple_assign_lhs (ga);
	  tree type = TREE_TYPE (lhs);
	  if (type == vector_quad_type_node)
	    {
	      error ("type %<__vector_quad%> requires the %qs option", "-mmma");
	      return true;
	    }
	  else if (type == vector_pair_type_node)
	    {
	      error ("type %<__vector_pair%> requires the %qs option", "-mmma");
	      return true;
	    }
	}
    }

  return false;
}

struct gcc_target targetm = TARGET_INITIALIZER;

#include "gt-rs6000.h"