aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/riscv/riscv-v.cc
blob: 839a2c6ba71fdd0f8e35826aa99bfc2f55c0c652 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
/* Subroutines used for code generation for RISC-V 'V' Extension for
   GNU compiler.
   Copyright (C) 2022-2023 Free Software Foundation, Inc.
   Contributed by Juzhe Zhong (juzhe.zhong@rivai.ai), RiVAI Technologies Ltd.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#define IN_TARGET_CODE 1

/* We have a maximum of 11 operands for RVV instruction patterns according to
   the vector.md.  */
#define RVV_INSN_OPERANDS_MAX 11

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "backend.h"
#include "rtl.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "recog.h"
#include "alias.h"
#include "tree.h"
#include "stringpool.h"
#include "attribs.h"
#include "explow.h"
#include "memmodel.h"
#include "emit-rtl.h"
#include "tm_p.h"
#include "target.h"
#include "targhooks.h"
#include "expr.h"
#include "optabs.h"
#include "tm-constrs.h"
#include "rtx-vector-builder.h"
#include "targhooks.h"

using namespace riscv_vector;

namespace riscv_vector {

/* Return true if vlmax is constant value and can be used in vsetivl.  */
static bool
const_vlmax_p (machine_mode mode)
{
  poly_uint64 nuints = GET_MODE_NUNITS (mode);

  return nuints.is_constant ()
    /* The vsetivli can only hold register 0~31.  */
    ? (IN_RANGE (nuints.to_constant (), 0, 31))
    /* Only allowed in VLS-VLMAX mode.  */
    : false;
}

template <int MAX_OPERANDS> class insn_expander
{
public:
  insn_expander ()
    : m_opno (0), m_op_num (0), m_has_dest_p (false),
      m_fully_unmasked_p (false), m_use_real_merge_p (false),
      m_needs_avl_p (false), m_vlmax_p (false), m_has_tail_policy_p (false),
      m_has_mask_policy_p (false), m_has_fp_rounding_mode_p (false),
      m_tail_policy (TAIL_ANY), m_mask_policy (MASK_ANY),
      m_fp_rounding_mode (FRM_DYN),
      m_dest_mode (VOIDmode), m_mask_mode (VOIDmode),
      m_vl_op (NULL_RTX)
  {}

  /* Initializer for various configurations.  */
  insn_expander (int op_num, bool has_dest_p, bool use_all_trues_mask_p,
		 bool use_real_merge_p, bool needs_avl_p, bool vlmax_p,
		 machine_mode dest_mode, machine_mode mask_mode)
    : m_opno (0), m_op_num (op_num), m_has_dest_p (has_dest_p),
      m_fully_unmasked_p (use_all_trues_mask_p),
      m_use_real_merge_p (use_real_merge_p), m_needs_avl_p (needs_avl_p),
      m_vlmax_p (vlmax_p), m_has_tail_policy_p (false),
      m_has_mask_policy_p (false), m_has_fp_rounding_mode_p (false),
      m_tail_policy (TAIL_ANY), m_mask_policy (MASK_ANY),
      m_fp_rounding_mode (FRM_DYN),
      m_dest_mode (dest_mode),
      m_mask_mode (mask_mode), m_vl_op (NULL_RTX)
  {}

  void set_policy (enum tail_policy ta)
  {
    m_has_tail_policy_p = true;
    m_tail_policy = ta;
  }
  void set_policy (enum mask_policy ma)
  {
    m_has_mask_policy_p = true;
    m_mask_policy = ma;
  }
  void set_vl (rtx vl) { m_vl_op = vl; }

  void set_rounding_mode (enum floating_point_rounding_mode mode)
  {
    m_has_fp_rounding_mode_p = true;
    m_fp_rounding_mode = mode;
  }

  void add_output_operand (rtx x, machine_mode mode)
  {
    create_output_operand (&m_ops[m_opno++], x, mode);
    gcc_assert (m_opno <= MAX_OPERANDS);
  }
  void add_input_operand (rtx x, machine_mode mode)
  {
    create_input_operand (&m_ops[m_opno++], x, mode);
    gcc_assert (m_opno <= MAX_OPERANDS);
  }
  void add_all_one_mask_operand ()
  {
    add_input_operand (CONSTM1_RTX (m_mask_mode), m_mask_mode);
  }
  void add_vundef_operand ()
  {
    add_input_operand (RVV_VUNDEF (m_dest_mode), m_dest_mode);
  }
  void add_policy_operand ()
  {
    if (m_has_tail_policy_p)
      {
	rtx tail_policy_rtx = gen_int_mode (m_tail_policy, Pmode);
	add_input_operand (tail_policy_rtx, Pmode);
      }
    if (m_has_mask_policy_p)
      {
	rtx mask_policy_rtx = gen_int_mode (m_mask_policy, Pmode);
	add_input_operand (mask_policy_rtx, Pmode);
      }
  }
  void add_avl_type_operand (avl_type type)
  {
    add_input_operand (gen_int_mode (type, Pmode), Pmode);
  }

  void add_rounding_mode_operand ()
  {
    if (m_has_fp_rounding_mode_p)
      {
	rtx frm_rtx = gen_int_mode (m_fp_rounding_mode, Pmode);
	add_input_operand (frm_rtx, Pmode);
      }
  }

  void emit_insn (enum insn_code icode, rtx *ops)
  {
    int opno = 0;
    /* It's true if any operand is memory operand.  */
    bool any_mem_p = false;
    /* It's true if all operands are mask operand.  */
    bool all_mask_p = true;
    if (m_has_dest_p)
      {
	any_mem_p |= MEM_P (ops[opno]);
	all_mask_p &= GET_MODE_CLASS (GET_MODE (ops[opno])) == MODE_VECTOR_BOOL;
	add_output_operand (ops[opno++], m_dest_mode);
      }

    if (m_fully_unmasked_p)
      add_all_one_mask_operand ();

    if (!m_use_real_merge_p)
      add_vundef_operand ();

    for (; opno < m_op_num; opno++)
      {
	any_mem_p |= MEM_P (ops[opno]);
	all_mask_p &= GET_MODE_CLASS (GET_MODE (ops[opno])) == MODE_VECTOR_BOOL;
	machine_mode mode = insn_data[(int) icode].operand[m_opno].mode;
	/* 'create_input_operand doesn't allow VOIDmode.
	   According to vector.md, we may have some patterns that do not have
	   explicit machine mode specifying the operand. Such operands are
	   always Pmode.  */
	if (mode == VOIDmode)
	  mode = Pmode;
	add_input_operand (ops[opno], mode);
      }

    if (m_needs_avl_p)
      {
	rtx len = m_vl_op;
	if (m_vlmax_p)
	  {
	    if (const_vlmax_p (m_dest_mode))
	      {
		/* Optimize VLS-VLMAX code gen, we can use vsetivli instead of
		   the vsetvli to obtain the value of vlmax.  */
		poly_uint64 nunits = GET_MODE_NUNITS (m_dest_mode);
		len = gen_int_mode (nunits, Pmode);
		m_vlmax_p = false; /* It has became NONVLMAX now.  */
	      }
	    else if (can_create_pseudo_p ())
	      {
		len = gen_reg_rtx (Pmode);
		emit_vlmax_vsetvl (m_dest_mode, len);
	      }
	  }
	add_input_operand (len, Pmode);
      }

    if (!all_mask_p)
      add_policy_operand ();
    if (m_needs_avl_p)
      add_avl_type_operand (m_vlmax_p ? avl_type::VLMAX : avl_type::NONVLMAX);

    add_rounding_mode_operand ();

    expand (icode, any_mem_p);
  }

  void expand (enum insn_code icode, bool temporary_volatile_p = false)
  {
    if (temporary_volatile_p)
      {
	temporary_volatile_ok v (true);
	expand_insn (icode, m_opno, m_ops);
      }
    else
      expand_insn (icode, m_opno, m_ops);
  }

private:
  int m_opno;
  int m_op_num;
  /* It't true when the pattern has a dest operand. Most of the patterns have
     dest operand wheras some patterns like STOREs does not have dest operand.
     For example, according to vector.md. We can see indexed loads/stores do
     not have dest operand.
  */
  bool m_has_dest_p;
  /* It't true if the pattern uses all trues mask operand.  */
  bool m_fully_unmasked_p;
  /* It's true if the pattern uses real merge operand.  */
  bool m_use_real_merge_p;
  bool m_needs_avl_p;
  bool m_vlmax_p;
  bool m_has_tail_policy_p;
  bool m_has_mask_policy_p;
  bool m_has_fp_rounding_mode_p;
  enum tail_policy m_tail_policy;
  enum mask_policy m_mask_policy;
  enum floating_point_rounding_mode m_fp_rounding_mode;
  machine_mode m_dest_mode;
  machine_mode m_mask_mode;
  rtx m_vl_op;
  expand_operand m_ops[MAX_OPERANDS];
};


class rvv_builder : public rtx_vector_builder
{
public:
  rvv_builder () : rtx_vector_builder () {}
  rvv_builder (machine_mode mode, unsigned int npatterns,
	       unsigned int nelts_per_pattern)
    : rtx_vector_builder (mode, npatterns, nelts_per_pattern)
  {
    m_inner_mode = GET_MODE_INNER (mode);
    m_inner_bits_size = GET_MODE_BITSIZE (m_inner_mode);
    m_inner_bytes_size = GET_MODE_SIZE (m_inner_mode);
    m_mask_mode = get_mask_mode (mode).require ();

    gcc_assert (
      int_mode_for_size (inner_bits_size (), 0).exists (&m_inner_int_mode));
    m_int_mode
      = get_vector_mode (m_inner_int_mode, GET_MODE_NUNITS (mode)).require ();
  }

  bool can_duplicate_repeating_sequence_p ();
  rtx get_merged_repeating_sequence ();

  bool repeating_sequence_use_merge_profitable_p ();
  rtx get_merge_scalar_mask (unsigned int) const;

  bool single_step_npatterns_p () const;
  bool npatterns_all_equal_p () const;

  machine_mode new_mode () const { return m_new_mode; }
  scalar_mode inner_mode () const { return m_inner_mode; }
  scalar_int_mode inner_int_mode () const { return m_inner_int_mode; }
  machine_mode mask_mode () const { return m_mask_mode; }
  machine_mode int_mode () const { return m_int_mode; }
  unsigned int inner_bits_size () const { return m_inner_bits_size; }
  unsigned int inner_bytes_size () const { return m_inner_bytes_size; }

private:
  scalar_mode m_inner_mode;
  scalar_int_mode m_inner_int_mode;
  machine_mode m_new_mode;
  scalar_int_mode m_new_inner_mode;
  machine_mode m_mask_mode;
  machine_mode m_int_mode;
  unsigned int m_inner_bits_size;
  unsigned int m_inner_bytes_size;
};

/* Return true if the vector duplicated by a super element which is the fusion
   of consecutive elements.

     v = { a, b, a, b } super element = ab, v = { ab, ab }  */
bool
rvv_builder::can_duplicate_repeating_sequence_p ()
{
  poly_uint64 new_size = exact_div (full_nelts (), npatterns ());
  unsigned int new_inner_size = m_inner_bits_size * npatterns ();
  if (!int_mode_for_size (new_inner_size, 0).exists (&m_new_inner_mode)
      || GET_MODE_SIZE (m_new_inner_mode) > UNITS_PER_WORD
      || !get_vector_mode (m_new_inner_mode, new_size).exists (&m_new_mode))
    return false;
  if (full_nelts ().is_constant ())
    return repeating_sequence_p (0, full_nelts ().to_constant (), npatterns ());
  return nelts_per_pattern () == 1;
}

/* Return true if it is a repeating sequence that using
   merge approach has better codegen than using default
   approach (slide1down).

   Sequence A:
     {a, b, a, b, a, b, a, b, a, b, a, b, a, b, a, b}

   nelts = 16
   npatterns = 2

   for merging a we need mask 101010....
   for merging b we need mask 010101....

   Foreach element in the npattern, we need to build a mask in scalar register.
   Mostely we need 3 instructions (aka COST = 3), which is consist of 2 scalar
   instruction and 1 scalar move to v0 register.  Finally we need vector merge
   to merge them.

   lui		a5, #imm
   add		a5, #imm
   vmov.s.x	v0, a5
   vmerge.vxm	v9, v9, a1, v0

   So the overall (roughly) COST of Sequence A = (3 + 1) * npatterns = 8.
   If we use slide1down, the COST = nelts = 16 > 8 (COST of merge).
   So return true in this case as it is profitable.

   Sequence B:
     {a, b, c, d, e, f, g, h, a, b, c, d, e, f, g, h}

   nelts = 16
   npatterns = 8

   COST of merge approach = (3 + 1) * npatterns = 24
   COST of slide1down approach = nelts = 16
   Return false in this case as it is NOT profitable in merge approach.
*/
bool
rvv_builder::repeating_sequence_use_merge_profitable_p ()
{
  if (inner_bytes_size () > UNITS_PER_WORD)
    return false;

  unsigned int nelts = full_nelts ().to_constant ();

  if (!repeating_sequence_p (0, nelts, npatterns ()))
    return false;

  unsigned int merge_cost = 1;
  unsigned int build_merge_mask_cost = 3;
  unsigned int slide1down_cost = nelts;

  return (build_merge_mask_cost + merge_cost) * npatterns () < slide1down_cost;
}

/* Merge the repeating sequence into a single element and return the RTX.  */
rtx
rvv_builder::get_merged_repeating_sequence ()
{
  scalar_int_mode mode = Pmode;
  rtx target = gen_reg_rtx (mode);
  emit_move_insn (target, const0_rtx);
  rtx imm = gen_int_mode ((1ULL << m_inner_bits_size) - 1, mode);
  /* { a, b, a, b }: Generate duplicate element = b << bits | a.  */
  for (unsigned int i = 0; i < npatterns (); i++)
    {
      unsigned int loc = m_inner_bits_size * i;
      rtx shift = gen_int_mode (loc, mode);
      rtx ele = gen_lowpart (mode, elt (i));
      rtx tmp = expand_simple_binop (mode, AND, ele, imm, NULL_RTX, false,
				     OPTAB_DIRECT);
      rtx tmp2 = expand_simple_binop (mode, ASHIFT, tmp, shift, NULL_RTX, false,
				      OPTAB_DIRECT);
      rtx tmp3 = expand_simple_binop (mode, IOR, tmp2, target, NULL_RTX, false,
				      OPTAB_DIRECT);
      emit_move_insn (target, tmp3);
    }
  if (GET_MODE_SIZE (m_new_inner_mode) < UNITS_PER_WORD)
    return gen_lowpart (m_new_inner_mode, target);
  return target;
}

/* Get the mask for merge approach.

   Consider such following case:
     {a, b, a, b, a, b, a, b, a, b, a, b, a, b, a, b}
   To merge "a", the mask should be 1010....
   To merge "b", the mask should be 0101....
*/
rtx
rvv_builder::get_merge_scalar_mask (unsigned int index_in_pattern) const
{
  unsigned HOST_WIDE_INT mask = 0;
  unsigned HOST_WIDE_INT base_mask = (1ULL << index_in_pattern);
  /* Here we construct a mask pattern that will later be broadcast
     to a vector register.  The maximum broadcast size for vmv.v.x/vmv.s.x
     is determined by the length of a vector element (ELEN) and not by
     XLEN so make sure we do not exceed it.  One example is -march=zve32*
     which mandates ELEN == 32 but can be combined with -march=rv64
     with XLEN == 64.  */
  unsigned int elen = TARGET_VECTOR_ELEN_64 ? 64 : 32;

  gcc_assert (elen % npatterns () == 0);

  int limit = elen / npatterns ();

  for (int i = 0; i < limit; i++)
    mask |= base_mask << (i * npatterns ());

  return gen_int_mode (mask, inner_int_mode ());
}

/* Return true if the variable-length vector is single step.
   Single step means step all patterns in NPATTERNS are equal.
   Consider this following case:

     CASE 1: NPATTERNS = 2, NELTS_PER_PATTERN = 3.
       { 0, 2, 2, 4, 4, 6, ... }
     First pattern: step1 = 2 - 0 = 2
		    step2 = 4 - 2 = 2
     Second pattern: step1 = 4 - 2 = 2
		     step2 = 6 - 4 = 2
     Since all steps of NPATTERNS are equal step = 2.
     Return true in this case.

     CASE 2: NPATTERNS = 2, NELTS_PER_PATTERN = 3.
       { 0, 1, 2, 4, 4, 7, ... }
     First pattern: step1 = 2 - 0 = 2
		    step2 = 4 - 2 = 2
     Second pattern: step1 = 4 - 1 = 3
		     step2 = 7 - 4 = 3
     Since not all steps are equal, return false.  */
bool
rvv_builder::single_step_npatterns_p () const
{
  if (nelts_per_pattern () != 3)
    return false;

  poly_int64 step
    = rtx_to_poly_int64 (elt (npatterns ())) - rtx_to_poly_int64 (elt (0));
  for (unsigned int i = 0; i < npatterns (); i++)
    {
      poly_int64 ele0 = rtx_to_poly_int64 (elt (i));
      poly_int64 ele1 = rtx_to_poly_int64 (elt (npatterns () + i));
      poly_int64 ele2 = rtx_to_poly_int64 (elt (npatterns () * 2 + i));
      poly_int64 diff1 = ele1 - ele0;
      poly_int64 diff2 = ele2 - ele1;
      if (maybe_ne (step, diff1) || maybe_ne (step, diff2))
	return false;
    }
  return true;
}

/* Return true if all elements of NPATTERNS are equal.

   E.g. NPATTERNS = 4:
     { 2, 2, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, ... }
   E.g. NPATTERNS = 8:
     { 2, 2, 2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 8, 8, 8, 8, ... }
   We only check ele[0] ~ ele[NPATTERNS - 1] whether they are the same.
   We don't need to check the elements[n] with n >= NPATTERNS since
   they don't belong to the same pattern.
*/
bool
rvv_builder::npatterns_all_equal_p () const
{
  poly_int64 ele0 = rtx_to_poly_int64 (elt (0));
  for (unsigned int i = 1; i < npatterns (); i++)
    {
      poly_int64 ele = rtx_to_poly_int64 (elt (i));
      if (!known_eq (ele, ele0))
	return false;
    }
  return true;
}

static unsigned
get_sew (machine_mode mode)
{
  unsigned int sew = GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL
		       ? 8
		       : GET_MODE_BITSIZE (GET_MODE_INNER (mode));
  return sew;
}

/* Return true if X is a const_vector with all duplicate elements, which is in
   the range between MINVAL and MAXVAL.  */
bool
const_vec_all_same_in_range_p (rtx x, HOST_WIDE_INT minval,
			       HOST_WIDE_INT maxval)
{
  rtx elt;
  return (const_vec_duplicate_p (x, &elt) && CONST_INT_P (elt)
	  && IN_RANGE (INTVAL (elt), minval, maxval));
}

/* Return true if VEC is a constant in which every element is in the range
   [MINVAL, MAXVAL].  The elements do not need to have the same value.

   This function also exists in aarch64, we may unify it in middle-end in the
   future.  */

static bool
const_vec_all_in_range_p (rtx vec, poly_int64 minval, poly_int64 maxval)
{
  if (!CONST_VECTOR_P (vec)
      || GET_MODE_CLASS (GET_MODE (vec)) != MODE_VECTOR_INT)
    return false;

  int nunits;
  if (!CONST_VECTOR_STEPPED_P (vec))
    nunits = const_vector_encoded_nelts (vec);
  else if (!CONST_VECTOR_NUNITS (vec).is_constant (&nunits))
    return false;

  for (int i = 0; i < nunits; i++)
    {
      rtx vec_elem = CONST_VECTOR_ELT (vec, i);
      poly_int64 value;
      if (!poly_int_rtx_p (vec_elem, &value)
	  || maybe_lt (value, minval)
	  || maybe_gt (value, maxval))
	return false;
    }
  return true;
}

/* Return a const_int vector of VAL.

   This function also exists in aarch64, we may unify it in middle-end in the
   future.  */

static rtx
gen_const_vector_dup (machine_mode mode, poly_int64 val)
{
  rtx c = gen_int_mode (val, GET_MODE_INNER (mode));
  return gen_const_vec_duplicate (mode, c);
}

/* Emit a vlmax vsetvl instruction.  This should only be used when
   optimization is disabled or after vsetvl insertion pass.  */
void
emit_hard_vlmax_vsetvl (machine_mode vmode, rtx vl)
{
  unsigned int sew = get_sew (vmode);
  emit_insn (gen_vsetvl (Pmode, vl, RVV_VLMAX, gen_int_mode (sew, Pmode),
			 gen_int_mode (get_vlmul (vmode), Pmode), const0_rtx,
			 const0_rtx));
}

void
emit_vlmax_vsetvl (machine_mode vmode, rtx vl)
{
  unsigned int sew = get_sew (vmode);
  enum vlmul_type vlmul = get_vlmul (vmode);
  unsigned int ratio = calculate_ratio (sew, vlmul);

  if (!optimize)
    emit_hard_vlmax_vsetvl (vmode, vl);
  else
    emit_insn (gen_vlmax_avl (Pmode, vl, gen_int_mode (ratio, Pmode)));
}

/* Calculate SEW/LMUL ratio.  */
unsigned int
calculate_ratio (unsigned int sew, enum vlmul_type vlmul)
{
  unsigned int ratio;
  switch (vlmul)
    {
    case LMUL_1:
      ratio = sew;
      break;
    case LMUL_2:
      ratio = sew / 2;
      break;
    case LMUL_4:
      ratio = sew / 4;
      break;
    case LMUL_8:
      ratio = sew / 8;
      break;
    case LMUL_F8:
      ratio = sew * 8;
      break;
    case LMUL_F4:
      ratio = sew * 4;
      break;
    case LMUL_F2:
      ratio = sew * 2;
      break;
    default:
      gcc_unreachable ();
    }
  return ratio;
}

/* SCALABLE means that the vector-length is agnostic (run-time invariant and
   compile-time unknown). FIXED meands that the vector-length is specific
   (compile-time known). Both RVV_SCALABLE and RVV_FIXED_VLMAX are doing
   auto-vectorization using VLMAX vsetvl configuration.  */
static bool
autovec_use_vlmax_p (void)
{
  return (riscv_autovec_preference == RVV_SCALABLE
	  || riscv_autovec_preference == RVV_FIXED_VLMAX);
}

/* The RISC-V vsetvli pass uses "known vlmax" operations for optimization.
   Whether or not an instruction actually is a vlmax operation is not
   recognizable from the length operand alone but the avl_type operand
   is used instead.  In general, there are two cases:

    - Emit a vlmax operation by passing a NULL length.  Here we emit
      a vsetvli with vlmax configuration and set the avl_type to VLMAX.
    - Emit an operation that uses the existing (last-set) length and
      set the avl_type to NONVLMAX.

    Sometimes we also need to set the VLMAX avl_type to an operation that
    already uses a given length register.  This can happen during or after
    register allocation when we are not allowed to create a new register.
    For that case we also allow to set the avl_type to VLMAX.
*/

/* This function emits a {VLMAX, TAIL_ANY, MASK_ANY} vsetvli followed by the
 * actual operation.  */
void
emit_vlmax_insn (unsigned icode, int op_num, rtx *ops, rtx vl)
{
  machine_mode dest_mode = GET_MODE (ops[0]);
  machine_mode mask_mode = get_mask_mode (dest_mode).require ();
  insn_expander<RVV_INSN_OPERANDS_MAX> e (op_num,
					  /* HAS_DEST_P */ true,
					  /* FULLY_UNMASKED_P */ true,
					  /* USE_REAL_MERGE_P */ false,
					  /* HAS_AVL_P */ true,
					  /* VLMAX_P */ true,
					  dest_mode,
					  mask_mode);

  e.set_policy (TAIL_ANY);
  e.set_policy (MASK_ANY);
  /* According to LRA mov pattern in vector.md, we have a clobber operand
     to be used ad VL operand.  */
  e.set_vl (vl);
  e.emit_insn ((enum insn_code) icode, ops);
}

void
emit_vlmax_fp_insn (unsigned icode, int op_num, rtx *ops, rtx vl)
{
  machine_mode dest_mode = GET_MODE (ops[0]);
  machine_mode mask_mode = get_mask_mode (dest_mode).require ();
  insn_expander<RVV_INSN_OPERANDS_MAX> e (op_num,
					  /* HAS_DEST_P */ true,
					  /* FULLY_UNMASKED_P */ true,
					  /* USE_REAL_MERGE_P */ false,
					  /* HAS_AVL_P */ true,
					  /* VLMAX_P */ true,
					  dest_mode,
					  mask_mode);

  e.set_policy (TAIL_ANY);
  e.set_policy (MASK_ANY);
  e.set_rounding_mode (FRM_DYN);
  e.set_vl (vl);
  e.emit_insn ((enum insn_code) icode, ops);
}

/* This function emits a {VLMAX, TAIL_ANY, MASK_ANY} vsetvli followed by the
 * ternary operation which always has a real merge operand.  */
void
emit_vlmax_ternary_insn (unsigned icode, int op_num, rtx *ops, rtx vl)
{
  machine_mode dest_mode = GET_MODE (ops[0]);
  machine_mode mask_mode = get_mask_mode (dest_mode).require ();
  /* We have a maximum of 11 operands for RVV instruction patterns according to
   * vector.md.  */
  insn_expander<11> e (/*OP_NUM*/ op_num, /*HAS_DEST_P*/ true,
		       /*FULLY_UNMASKED_P*/ true,
		       /*USE_REAL_MERGE_P*/ true, /*HAS_AVL_P*/ true,
		       /*VLMAX_P*/ true,
		       /*DEST_MODE*/ dest_mode, /*MASK_MODE*/ mask_mode);
  e.set_policy (TAIL_ANY);
  e.set_policy (MASK_ANY);
  e.set_vl (vl);
  e.emit_insn ((enum insn_code) icode, ops);
}

/* This function emits a {NONVLMAX, TAIL_ANY, MASK_ANY} vsetvli followed by the
 * actual operation.  */
void
emit_nonvlmax_insn (unsigned icode, int op_num, rtx *ops, rtx avl)
{
  machine_mode dest_mode = GET_MODE (ops[0]);
  machine_mode mask_mode = get_mask_mode (dest_mode).require ();
  insn_expander<RVV_INSN_OPERANDS_MAX> e (op_num,
					  /* HAS_DEST_P */ true,
					  /* FULLY_UNMASKED_P */ true,
					  /* USE_REAL_MERGE_P */ false,
					  /* HAS_AVL_P */ true,
					  /* VLMAX_P */ false,
					  dest_mode,
					  mask_mode);

  e.set_policy (TAIL_ANY);
  e.set_policy (MASK_ANY);
  e.set_vl (avl);
  e.emit_insn ((enum insn_code) icode, ops);
}

/* This function emits a {NONVLMAX, TAIL_UNDISTURBED, MASK_ANY} vsetvli
   followed by a vslide insn (with real merge operand).  */
void
emit_vlmax_slide_insn (unsigned icode, rtx *ops)
{
  machine_mode dest_mode = GET_MODE (ops[0]);
  machine_mode mask_mode = get_mask_mode (dest_mode).require ();
  insn_expander<RVV_INSN_OPERANDS_MAX> e (RVV_SLIDE_OP,
					  /* HAS_DEST_P */ true,
					  /* FULLY_UNMASKED_P */ true,
					  /* USE_REAL_MERGE_P */ true,
					  /* HAS_AVL_P */ true,
					  /* VLMAX_P */ true,
					  dest_mode,
					  mask_mode);

  e.set_policy (TAIL_ANY);
  e.set_policy (MASK_ANY);

  e.emit_insn ((enum insn_code) icode, ops);
}

/* This function emits a {NONVLMAX, TAIL_UNDISTURBED, MASK_ANY} vsetvli
   followed by a vslide insn (with real merge operand).  */
void
emit_nonvlmax_slide_tu_insn (unsigned icode, rtx *ops, rtx avl)
{
  machine_mode dest_mode = GET_MODE (ops[0]);
  machine_mode mask_mode = get_mask_mode (dest_mode).require ();
  insn_expander<RVV_INSN_OPERANDS_MAX> e (RVV_SLIDE_OP,
					  /* HAS_DEST_P */ true,
					  /* FULLY_UNMASKED_P */ true,
					  /* USE_REAL_MERGE_P */ true,
					  /* HAS_AVL_P */ true,
					  /* VLMAX_P */ false,
					  dest_mode,
					  mask_mode);

  e.set_policy (TAIL_UNDISTURBED);
  e.set_policy (MASK_ANY);
  e.set_vl (avl);

  e.emit_insn ((enum insn_code) icode, ops);
}


/* This function emits merge instruction.  */
void
emit_vlmax_merge_insn (unsigned icode, int op_num, rtx *ops)
{
  machine_mode dest_mode = GET_MODE (ops[0]);
  machine_mode mask_mode = get_mask_mode (dest_mode).require ();
  insn_expander<RVV_INSN_OPERANDS_MAX> e (op_num,
					  /* HAS_DEST_P */ true,
					  /* FULLY_UNMASKED_P */ false,
					  /* USE_REAL_MERGE_P */ false,
					  /* HAS_AVL_P */ true,
					  /* VLMAX_P */ true,
					  dest_mode,
					  mask_mode);

  e.set_policy (TAIL_ANY);
  e.emit_insn ((enum insn_code) icode, ops);
}

/* This function emits cmp instruction.  */
void
emit_vlmax_cmp_insn (unsigned icode, rtx *ops)
{
  machine_mode mode = GET_MODE (ops[0]);
  insn_expander<RVV_INSN_OPERANDS_MAX> e (RVV_CMP_OP,
					  /* HAS_DEST_P */ true,
					  /* FULLY_UNMASKED_P */ true,
					  /* USE_REAL_MERGE_P */ false,
					  /* HAS_AVL_P */ true,
					  /* VLMAX_P */ true,
					  mode,
					  mode);

  e.set_policy (MASK_ANY);
  e.emit_insn ((enum insn_code) icode, ops);
}

/* This function emits cmp with MU instruction.  */
void
emit_vlmax_cmp_mu_insn (unsigned icode, rtx *ops)
{
  machine_mode mode = GET_MODE (ops[0]);
  insn_expander<RVV_INSN_OPERANDS_MAX> e (RVV_CMP_MU_OP,
					  /* HAS_DEST_P */ true,
					  /* FULLY_UNMASKED_P */ false,
					  /* USE_REAL_MERGE_P */ true,
					  /* HAS_AVL_P */ true,
					  /* VLMAX_P */ true,
					  mode,
					  mode);

  e.set_policy (MASK_UNDISTURBED);
  e.emit_insn ((enum insn_code) icode, ops);
}

/* This function emits a masked instruction.  */
void
emit_vlmax_masked_mu_insn (unsigned icode, int op_num, rtx *ops)
{
  machine_mode dest_mode = GET_MODE (ops[0]);
  machine_mode mask_mode = get_mask_mode (dest_mode).require ();
  insn_expander<11> e (/*OP_NUM*/ op_num, /*HAS_DEST_P*/ true,
		       /*FULLY_UNMASKED_P*/ false,
		       /*USE_REAL_MERGE_P*/ true,
		       /*HAS_AVL_P*/ true,
		       /*VLMAX_P*/ true, dest_mode, mask_mode);
  e.set_policy (TAIL_ANY);
  e.set_policy (MASK_UNDISTURBED);
  e.emit_insn ((enum insn_code) icode, ops);
}

/* Emit vmv.s.x instruction.  */

void
emit_scalar_move_insn (unsigned icode, rtx *ops)
{
  machine_mode dest_mode = GET_MODE (ops[0]);
  machine_mode mask_mode = get_mask_mode (dest_mode).require ();
  insn_expander<RVV_INSN_OPERANDS_MAX> e (riscv_vector::RVV_SCALAR_MOV_OP,
					  /* HAS_DEST_P */ true,
					  /* FULLY_UNMASKED_P */ false,
					  /* USE_REAL_MERGE_P */ true,
					  /* HAS_AVL_P */ true,
					  /* VLMAX_P */ false,
					  dest_mode,
					  mask_mode);

  e.set_policy (TAIL_ANY);
  e.set_policy (MASK_ANY);
  e.set_vl (CONST1_RTX (Pmode));
  e.emit_insn ((enum insn_code) icode, ops);
}

/* Emit vmv.v.x instruction with vlmax.  */

static void
emit_vlmax_integer_move_insn (unsigned icode, rtx *ops, rtx vl)
{
  emit_vlmax_insn (icode, riscv_vector::RVV_UNOP, ops, vl);
}

/* Emit vmv.v.x instruction with nonvlmax.  */

void
emit_nonvlmax_integer_move_insn (unsigned icode, rtx *ops, rtx avl)
{
  emit_nonvlmax_insn (icode, riscv_vector::RVV_UNOP, ops, avl);
}

/* This function emits VLMAX vrgather instruction. Emit vrgather.vx/vi when sel
   is a const duplicate vector. Otherwise, emit vrgather.vv.  */
static void
emit_vlmax_gather_insn (rtx target, rtx op, rtx sel)
{
  rtx elt;
  insn_code icode;
  machine_mode data_mode = GET_MODE (target);
  machine_mode sel_mode = GET_MODE (sel);
  if (maybe_ne (GET_MODE_SIZE (data_mode), GET_MODE_SIZE (sel_mode)))
    icode = code_for_pred_gatherei16 (data_mode);
  else if (const_vec_duplicate_p (sel, &elt))
    {
      icode = code_for_pred_gather_scalar (data_mode);
      sel = elt;
    }
  else
    icode = code_for_pred_gather (data_mode);
  rtx ops[] = {target, op, sel};
  emit_vlmax_insn (icode, RVV_BINOP, ops);
}

static void
emit_vlmax_masked_gather_mu_insn (rtx target, rtx op, rtx sel, rtx mask)
{
  rtx elt;
  insn_code icode;
  machine_mode data_mode = GET_MODE (target);
  machine_mode sel_mode = GET_MODE (sel);
  if (maybe_ne (GET_MODE_SIZE (data_mode), GET_MODE_SIZE (sel_mode)))
    icode = code_for_pred_gatherei16 (data_mode);
  else if (const_vec_duplicate_p (sel, &elt))
    {
      icode = code_for_pred_gather_scalar (data_mode);
      sel = elt;
    }
  else
    icode = code_for_pred_gather (data_mode);
  rtx ops[] = {target, mask, target, op, sel};
  emit_vlmax_masked_mu_insn (icode, RVV_BINOP_MU, ops);
}

/* According to RVV ISA spec (16.5.1. Synthesizing vdecompress):
   https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc

  There is no inverse vdecompress provided, as this operation can be readily
  synthesized using iota and a masked vrgather:

      Desired functionality of 'vdecompress'
	7 6 5 4 3 2 1 0     # vid

	      e d c b a     # packed vector of 5 elements
	1 0 0 1 1 1 0 1     # mask vector of 8 elements
	p q r s t u v w     # destination register before vdecompress

	e q r d c b v a     # result of vdecompress
       # v0 holds mask
       # v1 holds packed data
       # v11 holds input expanded vector and result
       viota.m v10, v0                 # Calc iota from mask in v0
       vrgather.vv v11, v1, v10, v0.t  # Expand into destination
     p q r s t u v w  # v11 destination register
	   e d c b a  # v1 source vector
     1 0 0 1 1 1 0 1  # v0 mask vector

     4 4 4 3 2 1 1 0  # v10 result of viota.m
     e q r d c b v a  # v11 destination after vrgather using viota.m under mask
*/
static void
emit_vlmax_decompress_insn (rtx target, rtx op0, rtx op1, rtx mask)
{
  machine_mode data_mode = GET_MODE (target);
  machine_mode sel_mode = related_int_vector_mode (data_mode).require ();
  if (GET_MODE_INNER (data_mode) == QImode)
    sel_mode = get_vector_mode (HImode, GET_MODE_NUNITS (data_mode)).require ();

  rtx sel = gen_reg_rtx (sel_mode);
  rtx iota_ops[] = {sel, mask};
  emit_vlmax_insn (code_for_pred_iota (sel_mode), RVV_UNOP, iota_ops);
  emit_vlmax_gather_insn (target, op0, sel);
  emit_vlmax_masked_gather_mu_insn (target, op1, sel, mask);
}

/* Emit merge instruction.  */

static machine_mode
get_repeating_sequence_dup_machine_mode (const rvv_builder &builder)
{
  poly_uint64 dup_nunits = GET_MODE_NUNITS (builder.mode ());

  if (known_ge (GET_MODE_SIZE (builder.mode ()), BYTES_PER_RISCV_VECTOR))
    {
      dup_nunits = exact_div (BYTES_PER_RISCV_VECTOR,
	builder.inner_bytes_size ());
    }

  return get_vector_mode (builder.inner_int_mode (), dup_nunits).require ();
}

/* Expand series const vector.  */

void
expand_vec_series (rtx dest, rtx base, rtx step)
{
  machine_mode mode = GET_MODE (dest);
  machine_mode mask_mode;
  gcc_assert (get_mask_mode (mode).exists (&mask_mode));
  poly_int64 nunits_m1 = GET_MODE_NUNITS (mode) - 1;
  poly_int64 value;

  /* VECT_IV = BASE + I * STEP.  */

  /* Step 1: Generate I = { 0, 1, 2, ... } by vid.v.  */
  rtx vid = gen_reg_rtx (mode);
  rtx op[] = {vid};
  emit_vlmax_insn (code_for_pred_series (mode), RVV_MISC_OP, op);

  /* Step 2: Generate I * STEP.
     - STEP is 1, we don't emit any instructions.
     - STEP is power of 2, we use vsll.vi/vsll.vx.
     - STEP is non-power of 2, we use vmul.vx.  */
  rtx step_adj;
  if (rtx_equal_p (step, const1_rtx))
    step_adj = vid;
  else if (rtx_equal_p (step, constm1_rtx) && poly_int_rtx_p (base, &value)
	   && known_eq (nunits_m1, value))
    {
      /* Special case:
	   {nunits - 1, nunits - 2, ... , 0}.
	   nunits can be either const_int or const_poly_int.

	 Code sequence:
	   vid.v v
	   vrsub nunits - 1, v.  */
      rtx ops[] = {dest, vid, gen_int_mode (nunits_m1, GET_MODE_INNER (mode))};
      insn_code icode = code_for_pred_sub_reverse_scalar (mode);
      emit_vlmax_insn (icode, RVV_BINOP, ops);
      return;
    }
  else
    {
      step_adj = gen_reg_rtx (mode);
      if (CONST_INT_P (step) && pow2p_hwi (INTVAL (step)))
	{
	  /* Emit logical left shift operation.  */
	  int shift = exact_log2 (INTVAL (step));
	  rtx shift_amount = gen_int_mode (shift, Pmode);
	  insn_code icode = code_for_pred_scalar (ASHIFT, mode);
	  rtx ops[] = {step_adj, vid, shift_amount};
	  emit_vlmax_insn (icode, RVV_BINOP, ops);
	}
      else
	{
	  insn_code icode = code_for_pred_scalar (MULT, mode);
	  rtx ops[] = {step_adj, vid, step};
	  emit_vlmax_insn (icode, RVV_BINOP, ops);
	}
    }

  /* Step 3: Generate BASE + I * STEP.
     - BASE is 0, use result of vid.
     - BASE is not 0, we use vadd.vx/vadd.vi.  */
  if (rtx_equal_p (base, const0_rtx))
    {
      emit_move_insn (dest, step_adj);
    }
  else
    {
      rtx result = gen_reg_rtx (mode);
      insn_code icode = code_for_pred_scalar (PLUS, mode);
      rtx ops[] = {result, step_adj, base};
      emit_vlmax_insn (icode, RVV_BINOP, ops);
      emit_move_insn (dest, result);
    }
}

static void
expand_const_vector (rtx target, rtx src)
{
  machine_mode mode = GET_MODE (target);
  scalar_mode elt_mode = GET_MODE_INNER (mode);
  if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL)
    {
      rtx elt;
      gcc_assert (
	const_vec_duplicate_p (src, &elt)
	&& (rtx_equal_p (elt, const0_rtx) || rtx_equal_p (elt, const1_rtx)));
      rtx ops[] = {target, src};
      emit_vlmax_insn (code_for_pred_mov (mode), RVV_UNOP, ops);
      return;
    }

  rtx elt;
  if (const_vec_duplicate_p (src, &elt))
    {
      rtx tmp = register_operand (target, mode) ? target : gen_reg_rtx (mode);
      /* Element in range -16 ~ 15 integer or 0.0 floating-point,
	 we use vmv.v.i instruction.  */
      if (satisfies_constraint_vi (src) || satisfies_constraint_Wc0 (src))
	{
	  rtx ops[] = {tmp, src};
	  emit_vlmax_insn (code_for_pred_mov (mode), RVV_UNOP, ops);
	}
      else
	{
	  elt = force_reg (elt_mode, elt);
	  rtx ops[] = {tmp, elt};
	  emit_vlmax_insn (code_for_pred_broadcast (mode), RVV_UNOP, ops);
	}

      if (tmp != target)
	emit_move_insn (target, tmp);
      return;
    }

  /* Support scalable const series vector.  */
  rtx base, step;
  if (const_vec_series_p (src, &base, &step))
    {
      emit_insn (gen_vec_series (mode, target, base, step));
      return;
    }

  /* Handle variable-length vector.  */
  unsigned int nelts_per_pattern = CONST_VECTOR_NELTS_PER_PATTERN (src);
  unsigned int npatterns = CONST_VECTOR_NPATTERNS (src);
  rvv_builder builder (mode, npatterns, nelts_per_pattern);
  for (unsigned int i = 0; i < nelts_per_pattern; i++)
    {
      for (unsigned int j = 0; j < npatterns; j++)
	builder.quick_push (CONST_VECTOR_ELT (src, i * npatterns + j));
    }
  builder.finalize ();

  if (CONST_VECTOR_DUPLICATE_P (src))
    {
      /* Handle the case with repeating sequence that NELTS_PER_PATTERN = 1
	 E.g. NPATTERNS = 4, v = { 0, 2, 6, 7, ... }
	      NPATTERNS = 8, v = { 0, 2, 6, 7, 19, 20, 8, 7 ... }
	The elements within NPATTERNS are not necessary regular.  */
      if (builder.can_duplicate_repeating_sequence_p ())
	{
	  /* We handle the case that we can find a vector containter to hold
	     element bitsize = NPATTERNS * ele_bitsize.

	       NPATTERNS = 8, element width = 8
		 v = { 0, 1, 2, 3, 4, 5, 6, 7, ... }
	       In this case, we can combine NPATTERNS element into a larger
	       element. Use element width = 64 and broadcast a vector with
	       all element equal to 0x0706050403020100.  */
	  rtx ele = builder.get_merged_repeating_sequence ();
	  rtx dup = expand_vector_broadcast (builder.new_mode (), ele);
	  emit_move_insn (target, gen_lowpart (mode, dup));
	}
      else
	{
	  /* We handle the case that we can't find a vector containter to hold
	     element bitsize = NPATTERNS * ele_bitsize.

	       NPATTERNS = 8, element width = 16
		 v = { 0, 1, 2, 3, 4, 5, 6, 7, ... }
	       Since NPATTERNS * element width = 128, we can't find a container
	       to hold it.

	       In this case, we use NPATTERNS merge operations to generate such
	       vector.  */
	  unsigned int nbits = npatterns - 1;

	  /* Generate vid = { 0, 1, 2, 3, 4, 5, 6, 7, ... }.  */
	  rtx vid = gen_reg_rtx (builder.int_mode ());
	  rtx op[] = {vid};
	  emit_vlmax_insn (code_for_pred_series (builder.int_mode ()),
			   RVV_MISC_OP, op);

	  /* Generate vid_repeat = { 0, 1, ... nbits, ... }  */
	  rtx vid_repeat = gen_reg_rtx (builder.int_mode ());
	  rtx and_ops[] = {vid_repeat, vid,
			   gen_int_mode (nbits, builder.inner_int_mode ())};
	  emit_vlmax_insn (code_for_pred_scalar (AND, builder.int_mode ()),
			   RVV_BINOP, and_ops);

	  rtx tmp = gen_reg_rtx (builder.mode ());
	  rtx dup_ops[] = {tmp, builder.elt (0)};
	  emit_vlmax_insn (code_for_pred_broadcast (builder.mode ()), RVV_UNOP,
			   dup_ops);
	  for (unsigned int i = 1; i < builder.npatterns (); i++)
	    {
	      /* Generate mask according to i.  */
	      rtx mask = gen_reg_rtx (builder.mask_mode ());
	      rtx const_vec = gen_const_vector_dup (builder.int_mode (), i);
	      expand_vec_cmp (mask, EQ, vid_repeat, const_vec);

	      /* Merge scalar to each i.  */
	      rtx tmp2 = gen_reg_rtx (builder.mode ());
	      rtx merge_ops[] = {tmp2, tmp, builder.elt (i), mask};
	      insn_code icode = code_for_pred_merge_scalar (builder.mode ());
	      emit_vlmax_merge_insn (icode, RVV_MERGE_OP, merge_ops);
	      tmp = tmp2;
	    }
	  emit_move_insn (target, tmp);
	}
      return;
    }
  else if (CONST_VECTOR_STEPPED_P (src))
    {
      gcc_assert (GET_MODE_CLASS (mode) == MODE_VECTOR_INT);
      if (builder.single_step_npatterns_p ())
	{
	  /* Describe the case by choosing NPATTERNS = 4 as an example.  */
	  insn_code icode;

	  /* Step 1: Generate vid = { 0, 1, 2, 3, 4, 5, 6, 7, ... }.  */
	  rtx vid = gen_reg_rtx (builder.mode ());
	  rtx vid_ops[] = {vid};
	  icode = code_for_pred_series (builder.mode ());
	  emit_vlmax_insn (icode, RVV_MISC_OP, vid_ops);

	  if (builder.npatterns_all_equal_p ())
	    {
	      /* Generate the variable-length vector following this rule:
		 { a, a, a + step, a + step, a + step * 2, a + step * 2, ...}
		   E.g. { 0, 0, 8, 8, 16, 16, ... } */
	      /* We want to create a pattern where value[ix] = floor (ix /
		 NPATTERNS). As NPATTERNS is always a power of two we can
		 rewrite this as = ix & -NPATTERNS.  */
	      /* Step 2: VID AND -NPATTERNS:
		 { 0&-4, 1&-4, 2&-4, 3 &-4, 4 &-4, 5 &-4, 6 &-4, 7 &-4, ... }
	      */
	      rtx imm
		= gen_int_mode (-builder.npatterns (), builder.inner_mode ());
	      rtx and_ops[] = {target, vid, imm};
	      icode = code_for_pred_scalar (AND, builder.mode ());
	      emit_vlmax_insn (icode, RVV_BINOP, and_ops);
	    }
	  else
	    {
	      /* Generate the variable-length vector following this rule:
		 { a, b, a, b, a + step, b + step, a + step*2, b + step*2, ...}
		   E.g. { 3, 2, 1, 0, 7, 6, 5, 4, ... } */
	      /* Step 2: Generate diff = TARGET - VID:
		 { 3-0, 2-1, 1-2, 0-3, 7-4, 6-5, 5-6, 4-7, ... }*/
	      rvv_builder v (builder.mode (), builder.npatterns (), 1);
	      for (unsigned int i = 0; i < v.npatterns (); ++i)
		{
		  /* Calculate the diff between the target sequence and
		     vid sequence.  */
		  HOST_WIDE_INT diff = INTVAL (builder.elt (i)) - i;
		  v.quick_push (gen_int_mode (diff, v.inner_mode ()));
		}
	      /* Step 2: Generate result = VID + diff.  */
	      rtx vec = v.build ();
	      rtx add_ops[] = {target, vid, vec};
	      emit_vlmax_insn (code_for_pred (PLUS, builder.mode ()), RVV_BINOP,
			       add_ops);
	    }
	}
      else
	/* TODO: We will enable more variable-length vector in the future.  */
	gcc_unreachable ();
    }
  else
    gcc_unreachable ();
}

/* Expand a pre-RA RVV data move from SRC to DEST.
   It expands move for RVV fractional vector modes.  */
bool
legitimize_move (rtx dest, rtx src)
{
  machine_mode mode = GET_MODE (dest);
  if (CONST_VECTOR_P (src))
    {
      expand_const_vector (dest, src);
      return true;
    }

  /* In order to decrease the memory traffic, we don't use whole register
   * load/store for the LMUL less than 1 and mask mode, so those case will
   * require one extra general purpose register, but it's not allowed during LRA
   * process, so we have a special move pattern used for LRA, which will defer
   * the expansion after LRA.  */
  if ((known_lt (GET_MODE_SIZE (mode), BYTES_PER_RISCV_VECTOR)
       || GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL)
      && lra_in_progress)
    {
      emit_insn (gen_mov_lra (mode, Pmode, dest, src));
      return true;
    }

  if (known_ge (GET_MODE_SIZE (mode), BYTES_PER_RISCV_VECTOR)
      && GET_MODE_CLASS (mode) != MODE_VECTOR_BOOL)
    {
      /* Need to force register if mem <- !reg.  */
      if (MEM_P (dest) && !REG_P (src))
	src = force_reg (mode, src);

      return false;
    }

  if (register_operand (src, mode) && register_operand (dest, mode))
    {
      emit_insn (gen_rtx_SET (dest, src));
      return true;
    }

  if (!register_operand (src, mode) && !register_operand (dest, mode))
    {
      rtx tmp = gen_reg_rtx (mode);
      if (MEM_P (src))
	{
	  rtx ops[] = {tmp, src};
	  emit_vlmax_insn (code_for_pred_mov (mode), RVV_UNOP, ops);
	}
      else
	emit_move_insn (tmp, src);
      src = tmp;
    }

  if (satisfies_constraint_vu (src))
    return false;

  rtx ops[] = {dest, src};
  emit_vlmax_insn (code_for_pred_mov (mode), RVV_UNOP, ops);
  return true;
}

/* VTYPE information for machine_mode.  */
struct mode_vtype_group
{
  enum vlmul_type vlmul_for_min_vlen32[NUM_MACHINE_MODES];
  uint8_t ratio_for_min_vlen32[NUM_MACHINE_MODES];
  enum vlmul_type vlmul_for_min_vlen64[NUM_MACHINE_MODES];
  uint8_t ratio_for_min_vlen64[NUM_MACHINE_MODES];
  enum vlmul_type vlmul_for_for_vlen128[NUM_MACHINE_MODES];
  uint8_t ratio_for_for_vlen128[NUM_MACHINE_MODES];
  machine_mode subpart_mode[NUM_MACHINE_MODES];
  uint8_t nf[NUM_MACHINE_MODES];
  mode_vtype_group ()
  {
#define ENTRY(MODE, REQUIREMENT, VLMUL_FOR_MIN_VLEN32, RATIO_FOR_MIN_VLEN32,   \
	      VLMUL_FOR_MIN_VLEN64, RATIO_FOR_MIN_VLEN64,                      \
	      VLMUL_FOR_MIN_VLEN128, RATIO_FOR_MIN_VLEN128)                    \
  vlmul_for_min_vlen32[MODE##mode] = VLMUL_FOR_MIN_VLEN32;                     \
  ratio_for_min_vlen32[MODE##mode] = RATIO_FOR_MIN_VLEN32;                     \
  vlmul_for_min_vlen64[MODE##mode] = VLMUL_FOR_MIN_VLEN64;                     \
  ratio_for_min_vlen64[MODE##mode] = RATIO_FOR_MIN_VLEN64;                     \
  vlmul_for_for_vlen128[MODE##mode] = VLMUL_FOR_MIN_VLEN128;                   \
  ratio_for_for_vlen128[MODE##mode] = RATIO_FOR_MIN_VLEN128;
#define TUPLE_ENTRY(MODE, REQUIREMENT, SUBPART_MODE, NF, VLMUL_FOR_MIN_VLEN32, \
		    RATIO_FOR_MIN_VLEN32, VLMUL_FOR_MIN_VLEN64,                \
		    RATIO_FOR_MIN_VLEN64, VLMUL_FOR_MIN_VLEN128,               \
		    RATIO_FOR_MIN_VLEN128)                                     \
  subpart_mode[MODE##mode] = SUBPART_MODE##mode;                               \
  nf[MODE##mode] = NF;                                                         \
  vlmul_for_min_vlen32[MODE##mode] = VLMUL_FOR_MIN_VLEN32;                     \
  ratio_for_min_vlen32[MODE##mode] = RATIO_FOR_MIN_VLEN32;                     \
  vlmul_for_min_vlen64[MODE##mode] = VLMUL_FOR_MIN_VLEN64;                     \
  ratio_for_min_vlen64[MODE##mode] = RATIO_FOR_MIN_VLEN64;                     \
  vlmul_for_for_vlen128[MODE##mode] = VLMUL_FOR_MIN_VLEN128;                   \
  ratio_for_for_vlen128[MODE##mode] = RATIO_FOR_MIN_VLEN128;
#include "riscv-vector-switch.def"
#undef ENTRY
#undef TUPLE_ENTRY
  }
};

static mode_vtype_group mode_vtype_infos;

/* Get vlmul field value by comparing LMUL with BYTES_PER_RISCV_VECTOR.  */
enum vlmul_type
get_vlmul (machine_mode mode)
{
  if (TARGET_MIN_VLEN >= 128)
    return mode_vtype_infos.vlmul_for_for_vlen128[mode];
  else if (TARGET_MIN_VLEN == 32)
    return mode_vtype_infos.vlmul_for_min_vlen32[mode];
  else
    return mode_vtype_infos.vlmul_for_min_vlen64[mode];
}

/* Return the NF value of the corresponding mode.  */
unsigned int
get_nf (machine_mode mode)
{
  /* We don't allow non-tuple modes go through this function.  */
  gcc_assert (riscv_v_ext_tuple_mode_p (mode));
  return mode_vtype_infos.nf[mode];
}

/* Return the subpart mode of the tuple mode. For VNx2x1SImode,
   the subpart mode is VNx1SImode. This will help to build
   array/struct type in builtins.  */
machine_mode
get_subpart_mode (machine_mode mode)
{
  /* We don't allow non-tuple modes go through this function.  */
  gcc_assert (riscv_v_ext_tuple_mode_p (mode));
  return mode_vtype_infos.subpart_mode[mode];
}

/* Get ratio according to machine mode.  */
unsigned int
get_ratio (machine_mode mode)
{
  if (TARGET_MIN_VLEN >= 128)
    return mode_vtype_infos.ratio_for_for_vlen128[mode];
  else if (TARGET_MIN_VLEN == 32)
    return mode_vtype_infos.ratio_for_min_vlen32[mode];
  else
    return mode_vtype_infos.ratio_for_min_vlen64[mode];
}

/* Get ta according to operand[tail_op_idx].  */
int
get_ta (rtx ta)
{
  if (INTVAL (ta) == TAIL_ANY)
    return INVALID_ATTRIBUTE;
  return INTVAL (ta);
}

/* Get ma according to operand[mask_op_idx].  */
int
get_ma (rtx ma)
{
  if (INTVAL (ma) == MASK_ANY)
    return INVALID_ATTRIBUTE;
  return INTVAL (ma);
}

/* Get prefer tail policy.  */
enum tail_policy
get_prefer_tail_policy ()
{
  /* TODO: By default, we choose to use TAIL_ANY which allows
     compiler pick up either agnostic or undisturbed. Maybe we
     will have a compile option like -mprefer=agnostic to set
     this value???.  */
  return TAIL_ANY;
}

/* Get prefer mask policy.  */
enum mask_policy
get_prefer_mask_policy ()
{
  /* TODO: By default, we choose to use MASK_ANY which allows
     compiler pick up either agnostic or undisturbed. Maybe we
     will have a compile option like -mprefer=agnostic to set
     this value???.  */
  return MASK_ANY;
}

/* Get avl_type rtx.  */
rtx
get_avl_type_rtx (enum avl_type type)
{
  return gen_int_mode (type, Pmode);
}

/* Return the appropriate mask mode for MODE.  */

opt_machine_mode
get_mask_mode (machine_mode mode)
{
  return get_vector_mode (BImode, GET_MODE_NUNITS (mode));
}

/* Return the RVV vector mode that has NUNITS elements of mode INNER_MODE.
   This function is not only used by builtins, but also will be used by
   auto-vectorization in the future.  */
opt_machine_mode
get_vector_mode (scalar_mode inner_mode, poly_uint64 nunits)
{
  enum mode_class mclass;
  if (inner_mode == E_BImode)
    mclass = MODE_VECTOR_BOOL;
  else if (FLOAT_MODE_P (inner_mode))
    mclass = MODE_VECTOR_FLOAT;
  else
    mclass = MODE_VECTOR_INT;
  machine_mode mode;
  FOR_EACH_MODE_IN_CLASS (mode, mclass)
    if (inner_mode == GET_MODE_INNER (mode)
	&& known_eq (nunits, GET_MODE_NUNITS (mode))
	&& riscv_v_ext_vector_mode_p (mode))
      return mode;
  return opt_machine_mode ();
}

/* Return the RVV tuple mode if we can find the legal tuple mode for the
   corresponding subpart mode and NF.  */
opt_machine_mode
get_tuple_mode (machine_mode subpart_mode, unsigned int nf)
{
  poly_uint64 nunits = GET_MODE_NUNITS (subpart_mode) * nf;
  scalar_mode inner_mode = GET_MODE_INNER (subpart_mode);
  enum mode_class mclass = GET_MODE_CLASS (subpart_mode);
  machine_mode mode;
  FOR_EACH_MODE_IN_CLASS (mode, mclass)
    if (inner_mode == GET_MODE_INNER (mode)
	&& known_eq (nunits, GET_MODE_NUNITS (mode))
	&& riscv_v_ext_tuple_mode_p (mode)
	&& get_subpart_mode (mode) == subpart_mode)
      return mode;
  return opt_machine_mode ();
}

bool
simm5_p (rtx x)
{
  if (!CONST_INT_P (x))
    return false;
  return IN_RANGE (INTVAL (x), -16, 15);
}

bool
neg_simm5_p (rtx x)
{
  if (!CONST_INT_P (x))
    return false;
  return IN_RANGE (INTVAL (x), -15, 16);
}

bool
has_vi_variant_p (rtx_code code, rtx x)
{
  switch (code)
    {
    case PLUS:
    case AND:
    case IOR:
    case XOR:
    case SS_PLUS:
    case US_PLUS:
    case EQ:
    case NE:
    case LE:
    case LEU:
    case GT:
    case GTU:
      return simm5_p (x);

    case LT:
    case LTU:
    case GE:
    case GEU:
    case MINUS:
    case SS_MINUS:
      return neg_simm5_p (x);

    default:
      return false;
    }
}

bool
sew64_scalar_helper (rtx *operands, rtx *scalar_op, rtx vl,
		     machine_mode vector_mode, bool has_vi_variant_p,
		     void (*emit_vector_func) (rtx *, rtx))
{
  machine_mode scalar_mode = GET_MODE_INNER (vector_mode);
  if (has_vi_variant_p)
    {
      *scalar_op = force_reg (scalar_mode, *scalar_op);
      return false;
    }

  if (TARGET_64BIT)
    {
      if (!rtx_equal_p (*scalar_op, const0_rtx))
	*scalar_op = force_reg (scalar_mode, *scalar_op);
      return false;
    }

  if (immediate_operand (*scalar_op, Pmode))
    {
      if (!rtx_equal_p (*scalar_op, const0_rtx))
	*scalar_op = force_reg (Pmode, *scalar_op);

      *scalar_op = gen_rtx_SIGN_EXTEND (scalar_mode, *scalar_op);
      return false;
    }

  if (CONST_INT_P (*scalar_op))
    *scalar_op = force_reg (scalar_mode, *scalar_op);

  rtx tmp = gen_reg_rtx (vector_mode);
  rtx ops[] = {tmp, *scalar_op};
  riscv_vector::emit_nonvlmax_insn (code_for_pred_broadcast (vector_mode),
				    riscv_vector::RVV_UNOP, ops, vl);
  emit_vector_func (operands, tmp);

  return true;
}

/* Get { ... ,0, 0, 0, ..., 0, 0, 0, 1 } mask.  */
rtx
gen_scalar_move_mask (machine_mode mode)
{
  rtx_vector_builder builder (mode, 1, 2);
  builder.quick_push (const1_rtx);
  builder.quick_push (const0_rtx);
  return builder.build ();
}

static unsigned
compute_vlmax (unsigned vector_bits, unsigned elt_size, unsigned min_size)
{
  // Original equation:
  //   VLMAX = (VectorBits / EltSize) * LMUL
  //   where LMUL = MinSize / TARGET_MIN_VLEN
  // The following equations have been reordered to prevent loss of precision
  // when calculating fractional LMUL.
  return ((vector_bits / elt_size) * min_size) / TARGET_MIN_VLEN;
}

static unsigned
get_unknown_min_value (machine_mode mode)
{
  enum vlmul_type vlmul = get_vlmul (mode);
  switch (vlmul)
    {
    case LMUL_1:
      return TARGET_MIN_VLEN;
    case LMUL_2:
      return TARGET_MIN_VLEN * 2;
    case LMUL_4:
      return TARGET_MIN_VLEN * 4;
    case LMUL_8:
      return TARGET_MIN_VLEN * 8;
    default:
      gcc_unreachable ();
    }
}

static rtx
force_vector_length_operand (rtx vl)
{
  if (CONST_INT_P (vl) && !satisfies_constraint_K (vl))
    return force_reg (Pmode, vl);
  return vl;
}

static rtx
gen_no_side_effects_vsetvl_rtx (machine_mode vmode, rtx vl, rtx avl)
{
  unsigned int sew = get_sew (vmode);
  return gen_vsetvl_no_side_effects (Pmode, vl, avl, gen_int_mode (sew, Pmode),
				     gen_int_mode (get_vlmul (vmode), Pmode),
				     const0_rtx, const0_rtx);
}

/* GET VL * 2 rtx.  */
static rtx
get_vl_x2_rtx (rtx avl, machine_mode mode, machine_mode demote_mode)
{
  rtx i32vl = NULL_RTX;
  if (CONST_INT_P (avl))
    {
      unsigned elt_size = GET_MODE_BITSIZE (GET_MODE_INNER (mode));
      unsigned min_size = get_unknown_min_value (mode);
      unsigned vlen_max = RVV_65536;
      unsigned vlmax_max = compute_vlmax (vlen_max, elt_size, min_size);
      unsigned vlen_min = TARGET_MIN_VLEN;
      unsigned vlmax_min = compute_vlmax (vlen_min, elt_size, min_size);

      unsigned HOST_WIDE_INT avl_int = INTVAL (avl);
      if (avl_int <= vlmax_min)
	i32vl = gen_int_mode (2 * avl_int, Pmode);
      else if (avl_int >= 2 * vlmax_max)
	{
	  // Just set i32vl to VLMAX in this situation
	  i32vl = gen_reg_rtx (Pmode);
	  emit_insn (
	    gen_no_side_effects_vsetvl_rtx (demote_mode, i32vl, RVV_VLMAX));
	}
      else
	{
	  // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
	  // is related to the hardware implementation.
	  // So let the following code handle
	}
    }
  if (!i32vl)
    {
      // Using vsetvli instruction to get actually used length which related to
      // the hardware implementation
      rtx i64vl = gen_reg_rtx (Pmode);
      emit_insn (
	gen_no_side_effects_vsetvl_rtx (mode, i64vl, force_reg (Pmode, avl)));
      // scale 2 for 32-bit length
      i32vl = gen_reg_rtx (Pmode);
      emit_insn (
	gen_rtx_SET (i32vl, gen_rtx_ASHIFT (Pmode, i64vl, const1_rtx)));
    }

  return force_vector_length_operand (i32vl);
}

bool
slide1_sew64_helper (int unspec, machine_mode mode, machine_mode demote_mode,
		     machine_mode demote_mask_mode, rtx *ops)
{
  rtx scalar_op = ops[4];
  rtx avl = ops[5];
  machine_mode scalar_mode = GET_MODE_INNER (mode);
  if (rtx_equal_p (scalar_op, const0_rtx))
    {
      ops[5] = force_vector_length_operand (ops[5]);
      return false;
    }

  if (TARGET_64BIT)
    {
      ops[4] = force_reg (scalar_mode, scalar_op);
      ops[5] = force_vector_length_operand (ops[5]);
      return false;
    }

  if (immediate_operand (scalar_op, Pmode))
    {
      ops[4] = gen_rtx_SIGN_EXTEND (scalar_mode, force_reg (Pmode, scalar_op));
      ops[5] = force_vector_length_operand (ops[5]);
      return false;
    }

  if (CONST_INT_P (scalar_op))
    scalar_op = force_reg (scalar_mode, scalar_op);

  rtx vl_x2 = get_vl_x2_rtx (avl, mode, demote_mode);

  rtx demote_scalar_op1, demote_scalar_op2;
  if (unspec == UNSPEC_VSLIDE1UP)
    {
      demote_scalar_op1 = gen_highpart (Pmode, scalar_op);
      demote_scalar_op2 = gen_lowpart (Pmode, scalar_op);
    }
  else
    {
      demote_scalar_op1 = gen_lowpart (Pmode, scalar_op);
      demote_scalar_op2 = gen_highpart (Pmode, scalar_op);
    }

  rtx temp = gen_reg_rtx (demote_mode);
  rtx ta = gen_int_mode (get_prefer_tail_policy (), Pmode);
  rtx ma = gen_int_mode (get_prefer_mask_policy (), Pmode);
  rtx merge = RVV_VUNDEF (demote_mode);
  /* Handle vslide1<ud>_tu.  */
  if (register_operand (ops[2], mode)
      && rtx_equal_p (ops[1], CONSTM1_RTX (GET_MODE (ops[1]))))
    {
      merge = gen_lowpart (demote_mode, ops[2]);
      ta = ops[6];
      ma = ops[7];
    }

  emit_insn (gen_pred_slide (unspec, demote_mode, temp,
			     CONSTM1_RTX (demote_mask_mode), merge,
			     gen_lowpart (demote_mode, ops[3]),
			     demote_scalar_op1, vl_x2, ta, ma, ops[8]));
  emit_insn (gen_pred_slide (unspec, demote_mode,
			     gen_lowpart (demote_mode, ops[0]),
			     CONSTM1_RTX (demote_mask_mode), merge, temp,
			     demote_scalar_op2, vl_x2, ta, ma, ops[8]));

  if (rtx_equal_p (ops[1], CONSTM1_RTX (GET_MODE (ops[1]))))
    return true;
  else
    emit_insn (gen_pred_merge (mode, ops[0], ops[2], ops[2], ops[0], ops[1],
			       force_vector_length_operand (ops[5]), ops[6],
			       ops[8]));
  return true;
}

rtx
gen_avl_for_scalar_move (rtx avl)
{
  /* AVL for scalar move has different behavior between 0 and large than 0.  */
  if (CONST_INT_P (avl))
    {
      /* So we could just set AVL to 1 for any constant other than 0.  */
      if (rtx_equal_p (avl, const0_rtx))
	return const0_rtx;
      else
	return const1_rtx;
    }
  else
    {
      /* For non-constant value, we set any non zero value to 1 by
	 `sgtu new_avl,input_avl,zero` + `vsetvli`.  */
      rtx tmp = gen_reg_rtx (Pmode);
      emit_insn (
	gen_rtx_SET (tmp, gen_rtx_fmt_ee (GTU, Pmode, avl, const0_rtx)));
      return tmp;
    }
}

/* Expand tuple modes data movement for.  */
void
expand_tuple_move (rtx *ops)
{
  unsigned int i;
  machine_mode tuple_mode = GET_MODE (ops[0]);
  machine_mode subpart_mode = get_subpart_mode (tuple_mode);
  poly_int64 subpart_size = GET_MODE_SIZE (subpart_mode);
  unsigned int nf = get_nf (tuple_mode);
  bool fractional_p = known_lt (subpart_size, BYTES_PER_RISCV_VECTOR);

  if (REG_P (ops[0]) && CONST_VECTOR_P (ops[1]))
    {
      rtx val;
      gcc_assert (can_create_pseudo_p ()
		  && const_vec_duplicate_p (ops[1], &val));
      for (i = 0; i < nf; ++i)
	{
	  poly_int64 offset = i * subpart_size;
	  rtx subreg
	    = simplify_gen_subreg (subpart_mode, ops[0], tuple_mode, offset);
	  rtx dup = gen_const_vec_duplicate (subpart_mode, val);
	  emit_move_insn (subreg, dup);
	}
    }
  else if (REG_P (ops[0]) && REG_P (ops[1]))
    {
      for (i = 0; i < nf; ++i)
	{
	  int index = i;

	  /* Take NF = 2 and LMUL = 1 for example:

	      - move v8 to v9:
		 vmv1r v10,v9
		 vmv1r v9,v8

	      - move v8 to v7:
		 vmv1r v7,v8
		 vmv1r v8,v9  */
	  if (REGNO (ops[0]) > REGNO (ops[1]))
	    index = nf - 1 - i;
	  poly_int64 offset = index * subpart_size;
	  rtx dst_subreg
	    = simplify_gen_subreg (subpart_mode, ops[0], tuple_mode, offset);
	  rtx src_subreg
	    = simplify_gen_subreg (subpart_mode, ops[1], tuple_mode, offset);
	  emit_insn (gen_rtx_SET (dst_subreg, src_subreg));
	}
    }
  else
    {
      /* Expand tuple memory data movement.  */
      gcc_assert (MEM_P (ops[0]) || MEM_P (ops[1]));
      rtx offset = gen_int_mode (subpart_size, Pmode);
      if (!subpart_size.is_constant ())
	{
	  emit_move_insn (ops[2], gen_int_mode (BYTES_PER_RISCV_VECTOR, Pmode));
	  if (fractional_p)
	    {
	      unsigned int factor
		= exact_div (BYTES_PER_RISCV_VECTOR, subpart_size)
		    .to_constant ();
	      rtx pat
		= gen_rtx_ASHIFTRT (Pmode, ops[2],
				    gen_int_mode (exact_log2 (factor), Pmode));
	      emit_insn (gen_rtx_SET (ops[2], pat));
	    }

	  if (known_gt (subpart_size, BYTES_PER_RISCV_VECTOR))
	    {
	      unsigned int factor
		= exact_div (subpart_size, BYTES_PER_RISCV_VECTOR)
		    .to_constant ();
	      rtx pat
		= gen_rtx_ASHIFT (Pmode, ops[2],
				  gen_int_mode (exact_log2 (factor), Pmode));
	      emit_insn (gen_rtx_SET (ops[2], pat));
	    }
	  offset = ops[2];
	}

      if (MEM_P (ops[1]))
	{
	  /* Load operations.  */
	  emit_move_insn (ops[3], XEXP (ops[1], 0));
	  for (i = 0; i < nf; i++)
	    {
	      rtx subreg = simplify_gen_subreg (subpart_mode, ops[0],
						tuple_mode, i * subpart_size);
	      if (i != 0)
		{
		  rtx new_addr = gen_rtx_PLUS (Pmode, ops[3], offset);
		  emit_insn (gen_rtx_SET (ops[3], new_addr));
		}
	      rtx mem = gen_rtx_MEM (subpart_mode, ops[3]);

	      if (fractional_p)
		{
		  rtx operands[] = {subreg, mem};
		  emit_vlmax_insn (code_for_pred_mov (subpart_mode), RVV_UNOP,
				   operands, ops[4]);
		}
	      else
		emit_move_insn (subreg, mem);
	    }
	}
      else
	{
	  /* Store operations.  */
	  emit_move_insn (ops[3], XEXP (ops[0], 0));
	  for (i = 0; i < nf; i++)
	    {
	      rtx subreg = simplify_gen_subreg (subpart_mode, ops[1],
						tuple_mode, i * subpart_size);
	      if (i != 0)
		{
		  rtx new_addr = gen_rtx_PLUS (Pmode, ops[3], offset);
		  emit_insn (gen_rtx_SET (ops[3], new_addr));
		}
	      rtx mem = gen_rtx_MEM (subpart_mode, ops[3]);

	      if (fractional_p)
		{
		  rtx operands[] = {mem, subreg};
		  emit_vlmax_insn (code_for_pred_mov (subpart_mode), RVV_UNOP,
				   operands, ops[4]);
		}
	      else
		emit_move_insn (mem, subreg);
	    }
	}
    }
}

/* Return the vectorization machine mode for RVV according to LMUL.  */
machine_mode
preferred_simd_mode (scalar_mode mode)
{
  /* We will disable auto-vectorization when TARGET_MIN_VLEN < 128 &&
     riscv_autovec_lmul < RVV_M2. Since GCC loop vectorizer report ICE when we
     enable -march=rv64gc_zve32* and -march=rv32gc_zve64*. in the
     'can_duplicate_and_interleave_p' of tree-vect-slp.cc. Since we have
     VNx1SImode in -march=*zve32* and VNx1DImode in -march=*zve64*, they are
     enabled in targetm. vector_mode_supported_p and SLP vectorizer will try to
     use them. Currently, we can support auto-vectorization in
     -march=rv32_zve32x_zvl128b. Wheras, -march=rv32_zve32x_zvl32b or
     -march=rv32_zve32x_zvl64b are disabled.  */
  if (autovec_use_vlmax_p ())
    {
      if (TARGET_MIN_VLEN < 128 && riscv_autovec_lmul < RVV_M2)
	return word_mode;
      /* We use LMUL = 1 as base bytesize which is BYTES_PER_RISCV_VECTOR and
	 riscv_autovec_lmul as multiply factor to calculate the the NUNITS to
	 get the auto-vectorization mode.  */
      poly_uint64 nunits;
      poly_uint64 vector_size
	= BYTES_PER_RISCV_VECTOR * ((int) riscv_autovec_lmul);
      poly_uint64 scalar_size = GET_MODE_SIZE (mode);
      gcc_assert (multiple_p (vector_size, scalar_size, &nunits));
      machine_mode rvv_mode;
      if (get_vector_mode (mode, nunits).exists (&rvv_mode))
	return rvv_mode;
    }
  /* TODO: We will support minimum length VLS auto-vectorization in
     the future.  */
  return word_mode;
}

/* Subroutine of riscv_vector_expand_vector_init.
   Works as follows:
   (a) Initialize TARGET by broadcasting element NELTS_REQD - 1 of BUILDER.
   (b) Skip leading elements from BUILDER, which are the same as
       element NELTS_REQD - 1.
   (c) Insert earlier elements in reverse order in TARGET using vslide1down.  */

static void
expand_vector_init_insert_elems (rtx target, const rvv_builder &builder,
				 int nelts_reqd)
{
  machine_mode mode = GET_MODE (target);
  machine_mode mask_mode;
  gcc_assert (get_mask_mode (mode).exists (&mask_mode));
  rtx dup = expand_vector_broadcast (mode, builder.elt (0));
  emit_move_insn (target, dup);
  int ndups = builder.count_dups (0, nelts_reqd - 1, 1);
  for (int i = ndups; i < nelts_reqd; i++)
    {
      unsigned int unspec
	= FLOAT_MODE_P (mode) ? UNSPEC_VFSLIDE1DOWN : UNSPEC_VSLIDE1DOWN;
      insn_code icode = code_for_pred_slide (unspec, mode);
      rtx ops[] = {target, target, builder.elt (i)};
      emit_vlmax_insn (icode, RVV_BINOP, ops);
    }
}

/* Use merge approach to initialize the vector with repeating sequence.
   v = {a, b, a, b, a, b, a, b}.

   v = broadcast (a).
   mask = 0b01010101....
   v = merge (v, b, mask)
*/
static void
expand_vector_init_merge_repeating_sequence (rtx target,
					     const rvv_builder &builder)
{
  machine_mode dup_mode = get_repeating_sequence_dup_machine_mode (builder);
  machine_mode dup_mask_mode = get_mask_mode (dup_mode).require ();
  machine_mode mask_mode = get_mask_mode (builder.mode ()).require ();
  uint64_t full_nelts = builder.full_nelts ().to_constant ();

  /* Step 1: Broadcast the first pattern.  */
  rtx ops[] = {target, force_reg (GET_MODE_INNER (dup_mode), builder.elt (0))};
  emit_vlmax_integer_move_insn (code_for_pred_broadcast (builder.mode ()),
				ops, NULL_RTX);

  /* Step 2: Merge the rest iteration of pattern.  */
  for (unsigned int i = 1; i < builder.npatterns (); i++)
    {
      /* Step 2-1: Generate mask register v0 for each merge.  */
      rtx merge_mask = builder.get_merge_scalar_mask (i);
      rtx mask = gen_reg_rtx (mask_mode);
      rtx dup = gen_reg_rtx (dup_mode);

      if (full_nelts <= builder.inner_bits_size ()) /* vmv.s.x.  */
	{
	  rtx ops[] = {dup, gen_scalar_move_mask (dup_mask_mode),
	    RVV_VUNDEF (dup_mode), merge_mask};
	  emit_scalar_move_insn (code_for_pred_broadcast (GET_MODE (dup)),
				 ops);
	}
      else /* vmv.v.x.  */
	{
	  rtx ops[] = {dup, force_reg (GET_MODE_INNER (dup_mode), merge_mask)};
	  rtx vl = gen_int_mode (CEIL (full_nelts, builder.inner_bits_size ()),
				 Pmode);
	  emit_nonvlmax_integer_move_insn (code_for_pred_broadcast (dup_mode),
					   ops, vl);
	}

      emit_move_insn (mask, gen_lowpart (mask_mode, dup));

      /* Step 2-2: Merge pattern according to the mask.  */
      rtx ops[] = {target, target, builder.elt (i), mask};
      emit_vlmax_merge_insn (code_for_pred_merge_scalar (GET_MODE (target)),
			     riscv_vector::RVV_MERGE_OP, ops);
    }
}

/* Initialize register TARGET from the elements in PARALLEL rtx VALS.  */

void
expand_vec_init (rtx target, rtx vals)
{
  machine_mode mode = GET_MODE (target);
  int nelts = XVECLEN (vals, 0);

  rvv_builder v (mode, nelts, 1);
  for (int i = 0; i < nelts; i++)
    v.quick_push (XVECEXP (vals, 0, i));
  v.finalize ();

  if (nelts > 3)
    {
      /* Case 1: Convert v = { a, b, a, b } into v = { ab, ab }.  */
      if (v.can_duplicate_repeating_sequence_p ())
	{
	  rtx ele = v.get_merged_repeating_sequence ();
	  rtx dup = expand_vector_broadcast (v.new_mode (), ele);
	  emit_move_insn (target, gen_lowpart (mode, dup));
	  return;
	}

      /* Case 2: Optimize repeating sequence cases that Case 1 can
	 not handle and it is profitable.  For example:
	 ELEMENT BITSIZE = 64.
	 v = {a, b, a, b, a, b, a, b, a, b, a, b, a, b, a, b}.
	 We can't find a vector mode for "ab" which will be combined into
	 128-bit element to duplicate.  */
      if (v.repeating_sequence_use_merge_profitable_p ())
	{
	  expand_vector_init_merge_repeating_sequence (target, v);
	  return;
	}

      /* TODO: We will support more Initialization of vector in the future.  */
    }

  /* Handle common situation by vslide1down. This function can handle any
     situation of vec_init<mode>. Only the cases that are not optimized above
     will fall through here.  */
  expand_vector_init_insert_elems (target, v, nelts);
}

/* Get insn code for corresponding comparison.  */

static insn_code
get_cmp_insn_code (rtx_code code, machine_mode mode)
{
  insn_code icode;
  switch (code)
    {
    case EQ:
    case NE:
    case LE:
    case LEU:
    case GT:
    case GTU:
    case LTGT:
      icode = code_for_pred_cmp (mode);
      break;
    case LT:
    case LTU:
    case GE:
    case GEU:
      if (FLOAT_MODE_P (mode))
	icode = code_for_pred_cmp (mode);
      else
	icode = code_for_pred_ltge (mode);
      break;
    default:
      gcc_unreachable ();
    }
  return icode;
}

/* This hook gives the vectorizer more vector mode options.  We want it to not
   only try modes with the maximum number of units a full vector can hold but
   for example also half the number of units for a smaller elements size.
   Such vectors can be promoted to a full vector of widened elements
   (still with the same number of elements, essentially vectorizing at a
   fixed number of units rather than a fixed number of bytes).  */
unsigned int
autovectorize_vector_modes (vector_modes *modes, bool)
{
  if (autovec_use_vlmax_p ())
    {
      /* TODO: We will support RVV VLS auto-vectorization mode in the future. */
      poly_uint64 full_size
	= BYTES_PER_RISCV_VECTOR * ((int) riscv_autovec_lmul);

      /* Start with a VNxYYQImode where YY is the number of units that
	 fit a whole vector.
	 Then try YY = nunits / 2, nunits / 4 and nunits / 8 which
	 is guided by the extensions we have available (vf2, vf4 and vf8).

	 - full_size: Try using full vectors for all element types.
	 - full_size / 2:
	   Try using 16-bit containers for 8-bit elements and full vectors
	   for wider elements.
	 - full_size / 4:
	   Try using 32-bit containers for 8-bit and 16-bit elements and
	   full vectors for wider elements.
	 - full_size / 8:
	   Try using 64-bit containers for all element types.  */
      static const int rvv_factors[] = {1, 2, 4, 8};
      for (unsigned int i = 0; i < sizeof (rvv_factors) / sizeof (int); i++)
	{
	  poly_uint64 units;
	  machine_mode mode;
	  if (can_div_trunc_p (full_size, rvv_factors[i], &units)
	      && get_vector_mode (QImode, units).exists (&mode))
	    modes->safe_push (mode);
	}
    }
  return 0;
}

/* If the given VECTOR_MODE is an RVV mode,  first get the largest number
   of units that fit into a full vector at the given ELEMENT_MODE.
   We will have the vectorizer call us with a successively decreasing
   number of units (as specified in autovectorize_vector_modes).
   The starting mode is always the one specified by preferred_simd_mode. */
opt_machine_mode
vectorize_related_mode (machine_mode vector_mode, scalar_mode element_mode,
			poly_uint64 nunits)
{
  /* TODO: We will support RVV VLS auto-vectorization mode in the future. */
  poly_uint64 min_units;
  if (autovec_use_vlmax_p () && riscv_v_ext_vector_mode_p (vector_mode)
      && multiple_p (BYTES_PER_RISCV_VECTOR * ((int) riscv_autovec_lmul),
		     GET_MODE_SIZE (element_mode), &min_units))
    {
      machine_mode rvv_mode;
      if (maybe_ne (nunits, 0U))
	{
	  /* If we were given a number of units NUNITS, try to find an
	     RVV vector mode of inner mode ELEMENT_MODE with the same
	     number of units.  */
	  if (multiple_p (min_units, nunits)
	      && get_vector_mode (element_mode, nunits).exists (&rvv_mode))
	    return rvv_mode;
	}
      else
	{
	  /* Look for a vector mode with the same number of units as the
	     VECTOR_MODE we were given.  We keep track of the minimum
	     number of units so far which determines the smallest necessary
	     but largest possible, suitable mode for vectorization.  */
	  min_units = ordered_min (min_units, GET_MODE_SIZE (vector_mode));
	  if (get_vector_mode (element_mode, min_units).exists (&rvv_mode))
	    return rvv_mode;
	}
    }

  return default_vectorize_related_mode (vector_mode, element_mode, nunits);
}

/* Expand an RVV comparison.  */

void
expand_vec_cmp (rtx target, rtx_code code, rtx op0, rtx op1)
{
  machine_mode mask_mode = GET_MODE (target);
  machine_mode data_mode = GET_MODE (op0);
  insn_code icode = get_cmp_insn_code (code, data_mode);

  if (code == LTGT)
    {
      rtx lt = gen_reg_rtx (mask_mode);
      rtx gt = gen_reg_rtx (mask_mode);
      expand_vec_cmp (lt, LT, op0, op1);
      expand_vec_cmp (gt, GT, op0, op1);
      icode = code_for_pred (IOR, mask_mode);
      rtx ops[] = {target, lt, gt};
      emit_vlmax_insn (icode, riscv_vector::RVV_BINOP, ops);
      return;
    }

  rtx cmp = gen_rtx_fmt_ee (code, mask_mode, op0, op1);
  rtx ops[] = {target, cmp, op0, op1};
  emit_vlmax_cmp_insn (icode, ops);
}

void
expand_vec_cmp (rtx target, rtx_code code, rtx mask, rtx maskoff, rtx op0,
		rtx op1)
{
  machine_mode mask_mode = GET_MODE (target);
  machine_mode data_mode = GET_MODE (op0);
  insn_code icode = get_cmp_insn_code (code, data_mode);

  if (code == LTGT)
    {
      rtx lt = gen_reg_rtx (mask_mode);
      rtx gt = gen_reg_rtx (mask_mode);
      expand_vec_cmp (lt, LT, mask, maskoff, op0, op1);
      expand_vec_cmp (gt, GT, mask, maskoff, op0, op1);
      icode = code_for_pred (IOR, mask_mode);
      rtx ops[] = {target, lt, gt};
      emit_vlmax_insn (icode, RVV_BINOP, ops);
      return;
    }

  rtx cmp = gen_rtx_fmt_ee (code, mask_mode, op0, op1);
  rtx ops[] = {target, mask, maskoff, cmp, op0, op1};
  emit_vlmax_cmp_mu_insn (icode, ops);
}

/* Expand an RVV floating-point comparison:

   If CAN_INVERT_P is true, the caller can also handle inverted results;
   return true if the result is in fact inverted.  */

bool
expand_vec_cmp_float (rtx target, rtx_code code, rtx op0, rtx op1,
		      bool can_invert_p)
{
  machine_mode mask_mode = GET_MODE (target);
  machine_mode data_mode = GET_MODE (op0);

  /* If can_invert_p = true:
     It suffices to implement a u>= b as !(a < b) but with the NaNs masked off:

       vmfeq.vv    v0, va, va
       vmfeq.vv    v1, vb, vb
       vmand.mm    v0, v0, v1
       vmflt.vv    v0, va, vb, v0.t
       vmnot.m     v0, v0

     And, if !HONOR_SNANS, then you can remove the vmand.mm by masking the
     second vmfeq.vv:

       vmfeq.vv    v0, va, va
       vmfeq.vv    v0, vb, vb, v0.t
       vmflt.vv    v0, va, vb, v0.t
       vmnot.m     v0, v0

     If can_invert_p = false:

       # Example of implementing isgreater()
       vmfeq.vv v0, va, va        # Only set where A is not NaN.
       vmfeq.vv v1, vb, vb        # Only set where B is not NaN.
       vmand.mm v0, v0, v1        # Only set where A and B are ordered,
       vmfgt.vv v0, va, vb, v0.t  #  so only set flags on ordered values.
  */

  rtx eq0 = gen_reg_rtx (mask_mode);
  rtx eq1 = gen_reg_rtx (mask_mode);
  switch (code)
    {
    case EQ:
    case NE:
    case LT:
    case LE:
    case GT:
    case GE:
    case LTGT:
      /* There is native support for the comparison.  */
      expand_vec_cmp (target, code, op0, op1);
      return false;
    case UNEQ:
    case ORDERED:
    case UNORDERED:
    case UNLT:
    case UNLE:
    case UNGT:
    case UNGE:
      /* vmfeq.vv v0, va, va  */
      expand_vec_cmp (eq0, EQ, op0, op0);
      if (HONOR_SNANS (data_mode))
	{
	  /*
	     vmfeq.vv    v1, vb, vb
	     vmand.mm    v0, v0, v1
	  */
	  expand_vec_cmp (eq1, EQ, op1, op1);
	  insn_code icode = code_for_pred (AND, mask_mode);
	  rtx ops[] = {eq0, eq0, eq1};
	  emit_vlmax_insn (icode, riscv_vector::RVV_BINOP, ops);
	}
      else
	{
	  /* vmfeq.vv    v0, vb, vb, v0.t  */
	  expand_vec_cmp (eq0, EQ, eq0, eq0, op1, op1);
	}
      break;
    default:
      gcc_unreachable ();
    }

  if (code == ORDERED)
    {
      emit_move_insn (target, eq0);
      return false;
    }

  /* There is native support for the inverse comparison.  */
  code = reverse_condition_maybe_unordered (code);
  if (code == ORDERED)
    emit_move_insn (target, eq0);
  else
    expand_vec_cmp (eq0, code, eq0, eq0, op0, op1);

  if (can_invert_p)
    {
      emit_move_insn (target, eq0);
      return true;
    }

  /* We use one_cmpl<mode>2 to make Combine PASS to combine mask instructions
     into: vmand.mm/vmnor.mm/vmnand.mm/vmnor.mm/vmxnor.mm.  */
  emit_insn (gen_rtx_SET (target, gen_rtx_NOT (mask_mode, eq0)));
  return false;
}

/* Expand an RVV vcond pattern with operands OPS.  DATA_MODE is the mode
   of the data being merged and CMP_MODE is the mode of the values being
   compared.  */

void
expand_vcond (rtx *ops)
{
  machine_mode cmp_mode = GET_MODE (ops[4]);
  machine_mode data_mode = GET_MODE (ops[1]);
  machine_mode mask_mode = get_mask_mode (cmp_mode).require ();
  rtx mask = gen_reg_rtx (mask_mode);
  if (FLOAT_MODE_P (cmp_mode))
    {
      if (expand_vec_cmp_float (mask, GET_CODE (ops[3]), ops[4], ops[5], true))
	std::swap (ops[1], ops[2]);
    }
  else
    expand_vec_cmp (mask, GET_CODE (ops[3]), ops[4], ops[5]);
  emit_insn (
    gen_vcond_mask (data_mode, data_mode, ops[0], ops[1], ops[2], mask));
}

/* Implement vec_perm<mode>.  */

void
expand_vec_perm (rtx target, rtx op0, rtx op1, rtx sel)
{
  machine_mode data_mode = GET_MODE (target);
  machine_mode sel_mode = GET_MODE (sel);
  poly_uint64 nunits = GET_MODE_NUNITS (sel_mode);

  /* Check if the sel only references the first values vector. If each select
     index is in range of [0, nunits - 1]. A single vrgather instructions is
     enough. Since we will use vrgatherei16.vv for variable-length vector,
     it is never out of range and we don't need to modulo the index.  */
  if (!nunits.is_constant () || const_vec_all_in_range_p (sel, 0, nunits - 1))
    {
      emit_vlmax_gather_insn (target, op0, sel);
      return;
    }

  /* Check if the two values vectors are the same.  */
  if (rtx_equal_p (op0, op1) || const_vec_duplicate_p (sel))
    {
      /* Note: vec_perm indices are supposed to wrap when they go beyond the
	 size of the two value vectors, i.e. the upper bits of the indices
	 are effectively ignored.  RVV vrgather instead produces 0 for any
	 out-of-range indices, so we need to modulo all the vec_perm indices
	 to ensure they are all in range of [0, nunits - 1].  */
      rtx max_sel = gen_const_vector_dup (sel_mode, nunits - 1);
      rtx sel_mod = expand_simple_binop (sel_mode, AND, sel, max_sel, NULL, 0,
					 OPTAB_DIRECT);
      emit_vlmax_gather_insn (target, op1, sel_mod);
      return;
    }

  rtx sel_mod = sel;
  rtx max_sel = gen_const_vector_dup (sel_mode, 2 * nunits - 1);
  /* We don't need to modulo indices for VLA vector.
     Since we should gurantee they aren't out of range before.  */
  if (nunits.is_constant ())
    {
      /* Note: vec_perm indices are supposed to wrap when they go beyond the
	 size of the two value vectors, i.e. the upper bits of the indices
	 are effectively ignored.  RVV vrgather instead produces 0 for any
	 out-of-range indices, so we need to modulo all the vec_perm indices
	 to ensure they are all in range of [0, 2 * nunits - 1].  */
      sel_mod = expand_simple_binop (sel_mode, AND, sel, max_sel, NULL, 0,
				     OPTAB_DIRECT);
    }

  /* This following sequence is handling the case that:
     __builtin_shufflevector (vec1, vec2, index...), the index can be any
     value in range of [0, 2 * nunits - 1].  */
  machine_mode mask_mode;
  mask_mode = get_mask_mode (data_mode).require ();
  rtx mask = gen_reg_rtx (mask_mode);
  max_sel = gen_const_vector_dup (sel_mode, nunits);

  /* Step 1: generate a mask that should select everything >= nunits into the
   * mask.  */
  expand_vec_cmp (mask, GEU, sel_mod, max_sel);

  /* Step2: gather every op0 values indexed by sel into target,
	    we don't need to care about the result of the element
	    whose index >= nunits.  */
  emit_vlmax_gather_insn (target, op0, sel_mod);

  /* Step3: shift the range from (nunits, max_of_mode] to
	    [0, max_of_mode - nunits].  */
  rtx tmp = gen_reg_rtx (sel_mode);
  rtx ops[] = {tmp, sel_mod, max_sel};
  emit_vlmax_insn (code_for_pred (MINUS, sel_mode), RVV_BINOP, ops);

  /* Step4: gather those into the previously masked-out elements
	    of target.  */
  emit_vlmax_masked_gather_mu_insn (target, op1, tmp, mask);
}

/* Implement TARGET_VECTORIZE_VEC_PERM_CONST for RVV.  */

/* vec_perm support.  */

struct expand_vec_perm_d
{
  rtx target, op0, op1;
  vec_perm_indices perm;
  machine_mode vmode;
  machine_mode op_mode;
  bool one_vector_p;
  bool testing_p;
};

/* Recognize the patterns that we can use merge operation to shuffle the
   vectors. The value of Each element (index i) in selector can only be
   either i or nunits + i.  We will check the pattern is actually monotonic.

   E.g.
   v = VEC_PERM_EXPR (v0, v1, selector),
   selector = { 0, nunits + 1, 2, nunits + 3, 4, nunits + 5, ...  }

   We can transform such pattern into:

   v = vcond_mask (v0, v1, mask),
   mask = { 0, 1, 0, 1, 0, 1, ... }.  */

static bool
shuffle_merge_patterns (struct expand_vec_perm_d *d)
{
  machine_mode vmode = d->vmode;
  machine_mode sel_mode = related_int_vector_mode (vmode).require ();
  int n_patterns = d->perm.encoding ().npatterns ();
  poly_int64 vec_len = d->perm.length ();

  for (int i = 0; i < n_patterns; ++i)
    if (!known_eq (d->perm[i], i) && !known_eq (d->perm[i], vec_len + i))
      return false;

  /* Check the pattern is monotonic here, otherwise, return false.  */
  for (int i = n_patterns; i < n_patterns * 2; i++)
    if (!d->perm.series_p (i, n_patterns, i, n_patterns)
	&& !d->perm.series_p (i, n_patterns, vec_len + i, n_patterns))
      return false;

  if (d->testing_p)
    return true;

  machine_mode mask_mode = get_mask_mode (vmode).require ();
  rtx mask = gen_reg_rtx (mask_mode);

  rtx sel = vec_perm_indices_to_rtx (sel_mode, d->perm);

  /* MASK = SELECTOR < NUNTIS ? 1 : 0.  */
  rtx x = gen_int_mode (vec_len, GET_MODE_INNER (sel_mode));
  insn_code icode = code_for_pred_cmp_scalar (sel_mode);
  rtx cmp = gen_rtx_fmt_ee (LTU, mask_mode, sel, x);
  rtx ops[] = {mask, cmp, sel, x};
  emit_vlmax_cmp_insn (icode, ops);

  /* TARGET = MASK ? OP0 : OP1.  */
  emit_insn (gen_vcond_mask (vmode, vmode, d->target, d->op0, d->op1, mask));
  return true;
}

/* Recognize decompress patterns:

   1. VEC_PERM_EXPR op0 and op1
      with isel = { 0, nunits, 1, nunits + 1, ... }.
      Decompress op0 and op1 vector with the mask = { 0, 1, 0, 1, ... }.

   2. VEC_PERM_EXPR op0 and op1
      with isel = { 1/2 nunits, 3/2 nunits, 1/2 nunits+1, 3/2 nunits+1,... }.
      Slide down op0 and op1 with OFFSET = 1/2 nunits.
      Decompress op0 and op1 vector with the mask = { 0, 1, 0, 1, ... }.
*/
static bool
shuffle_decompress_patterns (struct expand_vec_perm_d *d)
{
  poly_uint64 nelt = d->perm.length ();
  machine_mode mask_mode = get_mask_mode (d->vmode).require ();

  /* For constant size indices, we dont't need to handle it here.
     Just leave it to vec_perm<mode>.  */
  if (d->perm.length ().is_constant ())
    return false;

  poly_uint64 first = d->perm[0];
  if ((maybe_ne (first, 0U) && maybe_ne (first * 2, nelt))
      || !d->perm.series_p (0, 2, first, 1)
      || !d->perm.series_p (1, 2, first + nelt, 1))
    return false;

  /* Permuting two SEW8 variable-length vectors need vrgatherei16.vv.
     Otherwise, it could overflow the index range.  */
  machine_mode sel_mode = related_int_vector_mode (d->vmode).require ();
  if (GET_MODE_INNER (d->vmode) == QImode
      && !get_vector_mode (HImode, nelt).exists (&sel_mode))
    return false;

  /* Success!  */
  if (d->testing_p)
    return true;

  rtx op0, op1;
  if (known_eq (first, 0U))
    {
      op0 = d->op0;
      op1 = d->op1;
    }
  else
    {
      op0 = gen_reg_rtx (d->vmode);
      op1 = gen_reg_rtx (d->vmode);
      insn_code icode = code_for_pred_slide (UNSPEC_VSLIDEDOWN, d->vmode);
      rtx ops0[] = {op0, d->op0, gen_int_mode (first, Pmode)};
      rtx ops1[] = {op1, d->op1, gen_int_mode (first, Pmode)};
      emit_vlmax_insn (icode, RVV_BINOP, ops0);
      emit_vlmax_insn (icode, RVV_BINOP, ops1);
    }
  /* Generate { 0, 1, .... } mask.  */
  rtx vid = gen_reg_rtx (sel_mode);
  rtx vid_repeat = gen_reg_rtx (sel_mode);
  emit_insn (gen_vec_series (sel_mode, vid, const0_rtx, const1_rtx));
  rtx and_ops[] = {vid_repeat, vid, const1_rtx};
  emit_vlmax_insn (code_for_pred_scalar (AND, sel_mode), RVV_BINOP, and_ops);
  rtx const_vec = gen_const_vector_dup (sel_mode, 1);
  rtx mask = gen_reg_rtx (mask_mode);
  expand_vec_cmp (mask, EQ, vid_repeat, const_vec);
  emit_vlmax_decompress_insn (d->target, op0, op1, mask);
  return true;
}

/* Recognize the pattern that can be shuffled by generic approach.  */

static bool
shuffle_generic_patterns (struct expand_vec_perm_d *d)
{
  machine_mode sel_mode = related_int_vector_mode (d->vmode).require ();
  poly_uint64 nunits = GET_MODE_NUNITS (d->vmode);

  /* We don't enable SLP for non-power of 2 NPATTERNS.  */
  if (!pow2p_hwi (d->perm.encoding().npatterns ()))
    return false;

  /* For constant size indices, we dont't need to handle it here.
     Just leave it to vec_perm<mode>.  */
  if (d->perm.length ().is_constant ())
    return false;

  /* Permuting two SEW8 variable-length vectors need vrgatherei16.vv.
     Otherwise, it could overflow the index range.  */
  if (GET_MODE_INNER (d->vmode) == QImode
      && !get_vector_mode (HImode, nunits).exists (&sel_mode))
    return false;

  /* Success! */
  if (d->testing_p)
    return true;

  rtx sel = vec_perm_indices_to_rtx (sel_mode, d->perm);
  expand_vec_perm (d->target, d->op0, d->op1, force_reg (sel_mode, sel));
  return true;
}

/* This function recognizes and supports different permutation patterns
   and enable VLA SLP auto-vectorization.  */
static bool
expand_vec_perm_const_1 (struct expand_vec_perm_d *d)
{
  gcc_assert (d->op_mode != E_VOIDmode);

  /* The pattern matching functions above are written to look for a small
     number to begin the sequence (0, 1, N/2).  If we begin with an index
     from the second operand, we can swap the operands.  */
  poly_int64 nelt = d->perm.length ();
  if (known_ge (d->perm[0], nelt))
    {
      d->perm.rotate_inputs (1);
      std::swap (d->op0, d->op1);
    }

  if (known_gt (nelt, 1))
    {
      if (d->vmode == d->op_mode)
	{
	  if (shuffle_merge_patterns (d))
	    return true;
	  if (shuffle_decompress_patterns (d))
	    return true;
	  if (shuffle_generic_patterns (d))
	    return true;
	  return false;
	}
      else
	return false;
    }
  return false;
}

/* This function implements TARGET_VECTORIZE_VEC_PERM_CONST by using RVV
 * instructions.  */
bool
expand_vec_perm_const (machine_mode vmode, machine_mode op_mode, rtx target,
		       rtx op0, rtx op1, const vec_perm_indices &sel)
{
  /* RVV doesn't have Mask type pack/unpack instructions and we don't use
     mask to do the iteration loop control. Just disable it directly.  */
  if (GET_MODE_CLASS (vmode) == MODE_VECTOR_BOOL)
    return false;

  struct expand_vec_perm_d d;

  /* Check whether the mask can be applied to a single vector.  */
  if (sel.ninputs () == 1 || (op0 && rtx_equal_p (op0, op1)))
    d.one_vector_p = true;
  else if (sel.all_from_input_p (0))
    {
      d.one_vector_p = true;
      op1 = op0;
    }
  else if (sel.all_from_input_p (1))
    {
      d.one_vector_p = true;
      op0 = op1;
    }
  else
    d.one_vector_p = false;

  d.perm.new_vector (sel.encoding (), d.one_vector_p ? 1 : 2,
		     sel.nelts_per_input ());
  d.vmode = vmode;
  d.op_mode = op_mode;
  d.target = target;
  d.op0 = op0;
  if (op0 == op1)
    d.op1 = d.op0;
  else
    d.op1 = op1;
  d.testing_p = !target;

  if (!d.testing_p)
    return expand_vec_perm_const_1 (&d);

  rtx_insn *last = get_last_insn ();
  bool ret = expand_vec_perm_const_1 (&d);
  gcc_assert (last == get_last_insn ());

  return ret;
}

/* Generate no side effects vsetvl to get the vector length.  */
void
expand_select_vl (rtx *ops)
{
  poly_int64 nunits = rtx_to_poly_int64 (ops[2]);
  /* We arbitrary picked QImode as inner scalar mode to get vector mode.
     since vsetvl only demand ratio. We let VSETVL PASS to optimize it.  */
  scalar_int_mode mode = QImode;
  machine_mode rvv_mode = get_vector_mode (mode, nunits).require ();
  emit_insn (gen_no_side_effects_vsetvl_rtx (rvv_mode, ops[0], ops[1]));
}

} // namespace riscv_vector