1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
|
/* Subroutines for gcc2 for pdp11.
Copyright (C) 1994-2023 Free Software Foundation, Inc.
Contributed by Michael K. Gschwind (mike@vlsivie.tuwien.ac.at).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define IN_TARGET_CODE 1
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "stringpool.h"
#include "attribs.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "conditions.h"
#include "output.h"
#include "stor-layout.h"
#include "varasm.h"
#include "calls.h"
#include "expr.h"
#include "builtins.h"
#include "explow.h"
#include "expmed.h"
/* This file should be included last. */
#include "target-def.h"
/* this is the current value returned by the macro FIRST_PARM_OFFSET
defined in tm.h */
int current_first_parm_offset;
/* Routines to encode/decode pdp11 floats */
static void encode_pdp11_f (const struct real_format *fmt,
long *, const REAL_VALUE_TYPE *);
static void decode_pdp11_f (const struct real_format *,
REAL_VALUE_TYPE *, const long *);
static void encode_pdp11_d (const struct real_format *fmt,
long *, const REAL_VALUE_TYPE *);
static void decode_pdp11_d (const struct real_format *,
REAL_VALUE_TYPE *, const long *);
/* These two are taken from the corresponding vax descriptors
in real.cc, changing only the encode/decode routine pointers. */
const struct real_format pdp11_f_format =
{
encode_pdp11_f,
decode_pdp11_f,
2,
24,
24,
-127,
127,
15,
15,
0,
false,
false,
false,
false,
false,
false,
false,
false,
"pdp11_f"
};
const struct real_format pdp11_d_format =
{
encode_pdp11_d,
decode_pdp11_d,
2,
56,
56,
-127,
127,
15,
15,
0,
false,
false,
false,
false,
false,
false,
false,
false,
"pdp11_d"
};
static void
encode_pdp11_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
const REAL_VALUE_TYPE *r)
{
(*vax_f_format.encode) (fmt, buf, r);
buf[0] = ((buf[0] >> 16) & 0xffff) | ((buf[0] & 0xffff) << 16);
}
static void
decode_pdp11_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
REAL_VALUE_TYPE *r, const long *buf)
{
long tbuf;
tbuf = ((buf[0] >> 16) & 0xffff) | ((buf[0] & 0xffff) << 16);
(*vax_f_format.decode) (fmt, r, &tbuf);
}
static void
encode_pdp11_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
const REAL_VALUE_TYPE *r)
{
(*vax_d_format.encode) (fmt, buf, r);
buf[0] = ((buf[0] >> 16) & 0xffff) | ((buf[0] & 0xffff) << 16);
buf[1] = ((buf[1] >> 16) & 0xffff) | ((buf[1] & 0xffff) << 16);
}
static void
decode_pdp11_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
REAL_VALUE_TYPE *r, const long *buf)
{
long tbuf[2];
tbuf[0] = ((buf[0] >> 16) & 0xffff) | ((buf[0] & 0xffff) << 16);
tbuf[1] = ((buf[1] >> 16) & 0xffff) | ((buf[1] & 0xffff) << 16);
(*vax_d_format.decode) (fmt, r, tbuf);
}
static const char *singlemove_string (rtx *);
static bool pdp11_assemble_integer (rtx, unsigned int, int);
static bool pdp11_rtx_costs (rtx, machine_mode, int, int, int *, bool);
static int pdp11_addr_cost (rtx, machine_mode, addr_space_t, bool);
static int pdp11_insn_cost (rtx_insn *insn, bool speed);
static rtx_insn *pdp11_md_asm_adjust (vec<rtx> &, vec<rtx> &,
vec<machine_mode> &, vec<const char *> &,
vec<rtx> &, HARD_REG_SET &, location_t);
static bool pdp11_return_in_memory (const_tree, const_tree);
static rtx pdp11_function_value (const_tree, const_tree, bool);
static rtx pdp11_libcall_value (machine_mode, const_rtx);
static bool pdp11_function_value_regno_p (const unsigned int);
static void pdp11_trampoline_init (rtx, tree, rtx);
static rtx pdp11_function_arg (cumulative_args_t, const function_arg_info &);
static void pdp11_function_arg_advance (cumulative_args_t,
const function_arg_info &);
static void pdp11_conditional_register_usage (void);
static bool pdp11_legitimate_constant_p (machine_mode, rtx);
static bool pdp11_scalar_mode_supported_p (scalar_mode);
/* Initialize the GCC target structure. */
#undef TARGET_ASM_BYTE_OP
#define TARGET_ASM_BYTE_OP NULL
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP NULL
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP NULL
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER pdp11_assemble_integer
/* These two apply to Unix and GNU assembler; for DEC, they are
overridden during option processing. */
#undef TARGET_ASM_OPEN_PAREN
#define TARGET_ASM_OPEN_PAREN "["
#undef TARGET_ASM_CLOSE_PAREN
#define TARGET_ASM_CLOSE_PAREN "]"
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS pdp11_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST pdp11_addr_cost
#undef TARGET_INSN_COST
#define TARGET_INSN_COST pdp11_insn_cost
#undef TARGET_MD_ASM_ADJUST
#define TARGET_MD_ASM_ADJUST pdp11_md_asm_adjust
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG pdp11_function_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE pdp11_function_arg_advance
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY pdp11_return_in_memory
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE pdp11_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE pdp11_libcall_value
#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P pdp11_function_value_regno_p
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT pdp11_trampoline_init
#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD pdp11_secondary_reload
#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST pdp11_register_move_cost
#undef TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS pdp11_preferred_reload_class
#undef TARGET_PREFERRED_OUTPUT_RELOAD_CLASS
#define TARGET_PREFERRED_OUTPUT_RELOAD_CLASS pdp11_preferred_output_reload_class
#undef TARGET_LRA_P
#define TARGET_LRA_P pdp11_lra_p
#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P pdp11_legitimate_address_p
#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE pdp11_conditional_register_usage
#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE pdp11_option_override
#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
#undef TARGET_ASM_OUTPUT_IDENT
#define TARGET_ASM_OUTPUT_IDENT pdp11_output_ident
#undef TARGET_ASM_FUNCTION_SECTION
#define TARGET_ASM_FUNCTION_SECTION pdp11_function_section
#undef TARGET_ASM_NAMED_SECTION
#define TARGET_ASM_NAMED_SECTION pdp11_asm_named_section
#undef TARGET_ASM_INIT_SECTIONS
#define TARGET_ASM_INIT_SECTIONS pdp11_asm_init_sections
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START pdp11_file_start
#undef TARGET_ASM_FILE_END
#define TARGET_ASM_FILE_END pdp11_file_end
#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND pdp11_asm_print_operand
#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P pdp11_asm_print_operand_punct_valid_p
#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P pdp11_legitimate_constant_p
#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P pdp11_scalar_mode_supported_p
#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS pdp11_hard_regno_nregs
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK pdp11_hard_regno_mode_ok
#undef TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P pdp11_modes_tieable_p
#undef TARGET_SECONDARY_MEMORY_NEEDED
#define TARGET_SECONDARY_MEMORY_NEEDED pdp11_secondary_memory_needed
#undef TARGET_CAN_CHANGE_MODE_CLASS
#define TARGET_CAN_CHANGE_MODE_CLASS pdp11_can_change_mode_class
#undef TARGET_INVALID_WITHIN_DOLOOP
#define TARGET_INVALID_WITHIN_DOLOOP hook_constcharptr_const_rtx_insn_null
#undef TARGET_CXX_GUARD_TYPE
#define TARGET_CXX_GUARD_TYPE pdp11_guard_type
#undef TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT
#define TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT hook_bool_void_false
#undef TARGET_CXX_LIBRARY_RTTI_COMDAT
#define TARGET_CXX_LIBRARY_RTTI_COMDAT hook_bool_void_false
#undef TARGET_HAVE_SPECULATION_SAFE_VALUE
#define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed
#undef TARGET_STACK_PROTECT_RUNTIME_ENABLED_P
#define TARGET_STACK_PROTECT_RUNTIME_ENABLED_P hook_bool_void_false
/* A helper function to determine if REGNO should be saved in the
current function's stack frame. */
static inline bool
pdp11_saved_regno (unsigned regno)
{
return !call_used_or_fixed_reg_p (regno) && df_regs_ever_live_p (regno);
}
/* Expand the function prologue. */
/* Frame layout, from high to low memory (stack push order):
return address (from jsr instruction)
saved CPU registers, lowest number first
saved FPU registers, lowest number first, always 64 bit mode
*** frame pointer points here ***
local variables
alloca storage if any. */
void
pdp11_expand_prologue (void)
{
HOST_WIDE_INT fsize = get_frame_size ();
unsigned regno;
rtx x, via_ac = NULL;
/* If we are outputting code for main, the switch FPU to the
right mode if TARGET_FPU. */
if (MAIN_NAME_P (DECL_NAME (current_function_decl)) && TARGET_FPU)
{
emit_insn (gen_setd ());
emit_insn (gen_seti ());
}
/* Save CPU registers. */
for (regno = R0_REGNUM; regno <= PC_REGNUM; regno++)
if (pdp11_saved_regno (regno))
{
x = gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx);
x = gen_frame_mem (Pmode, x);
emit_move_insn (x, gen_rtx_REG (Pmode, regno));
}
/* Save FPU registers. */
for (regno = AC0_REGNUM; regno <= AC3_REGNUM; regno++)
if (pdp11_saved_regno (regno))
{
x = gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx);
x = gen_frame_mem (DFmode, x);
via_ac = gen_rtx_REG (DFmode, regno);
emit_move_insn (x, via_ac);
}
/* ??? Maybe make ac4, ac5 call used regs?? */
for (regno = AC4_REGNUM; regno <= AC5_REGNUM; regno++)
if (pdp11_saved_regno (regno))
{
gcc_assert (via_ac != NULL);
emit_move_insn (via_ac, gen_rtx_REG (DFmode, regno));
x = gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx);
x = gen_frame_mem (DFmode, x);
emit_move_insn (x, via_ac);
}
if (frame_pointer_needed)
emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
/* Make local variable space. */
if (fsize)
emit_insn (gen_addhi3 (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (-fsize)));
}
/* Generate epilogue. This uses the frame pointer to pop the local
variables and any alloca data off the stack. If there is no alloca
and frame pointer elimination hasn't been disabled, there is no
frame pointer and the local variables are popped by adjusting the
stack pointer instead. */
void
pdp11_expand_epilogue (void)
{
HOST_WIDE_INT fsize = get_frame_size ();
unsigned regno;
rtx x, reg, via_ac = NULL;
/* Deallocate the local variables. */
if (fsize)
{
if (frame_pointer_needed)
{
/* We can deallocate the frame with a single move. */
emit_move_insn (stack_pointer_rtx, frame_pointer_rtx);
}
else
emit_insn (gen_addhi3 (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (fsize)));
}
/* Restore the FPU registers. */
if (pdp11_saved_regno (AC4_REGNUM) || pdp11_saved_regno (AC5_REGNUM))
{
/* Find a temporary with which to restore AC4/5. */
for (regno = AC0_REGNUM; regno <= AC3_REGNUM; regno++)
if (pdp11_saved_regno (regno))
{
via_ac = gen_rtx_REG (DFmode, regno);
break;
}
}
/* Restore registers via pops. */
for (regno = AC5_REGNUM; regno >= AC0_REGNUM; regno--)
if (pdp11_saved_regno (regno))
{
x = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
x = gen_frame_mem (DFmode, x);
reg = gen_rtx_REG (DFmode, regno);
if (LOAD_FPU_REG_P (regno))
emit_move_insn (reg, x);
else
{
emit_move_insn (via_ac, x);
emit_move_insn (reg, via_ac);
}
}
for (regno = PC_REGNUM; regno >= R0_REGNUM + 2; regno--)
if (pdp11_saved_regno (regno))
{
x = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
x = gen_frame_mem (Pmode, x);
emit_move_insn (gen_rtx_REG (Pmode, regno), x);
}
emit_jump_insn (gen_rtspc ());
}
/* Return the best assembler insn template
for moving operands[1] into operands[0] as a fullword. */
static const char *
singlemove_string (rtx *operands)
{
if (operands[1] != const0_rtx)
return "mov\t%1,%0";
return "clr\t%0";
}
/* Expand multi-word operands (SImode or DImode) into the 2 or 4
corresponding HImode operands. The number of operands is given as
the third argument, the word count for the mode as the fourth
argument, and the required order of parts as the sixth argument.
The word count is explicit because sometimes we're asked to compare
two constants, both of which have mode VOIDmode, so we can't always
rely on the input operand mode to imply the operand size. */
bool
pdp11_expand_operands (rtx *operands, rtx exops[][2],
int opcount, int words,
pdp11_action *action, pdp11_partorder order)
{
int op, w, i, sh;
pdp11_partorder useorder;
bool sameoff = false;
enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype;
long sval[2];
/* If either piece order is accepted and one is pre-decrement
while the other is post-increment, set order to be high order
word first. That will force the pre-decrement to be turned
into a pointer adjust, then offset addressing.
Otherwise, if either operand uses pre-decrement, that means
the order is low order first.
Otherwise, if both operands are registers and destination is
higher than source and they overlap, do low order word (highest
register number) first. */
useorder = either;
if (opcount == 2)
{
if (GET_CODE (operands[0]) == MEM &&
GET_CODE (operands[1]) == MEM &&
((GET_CODE (XEXP (operands[0], 0)) == POST_INC &&
GET_CODE (XEXP (operands[1], 0)) == PRE_DEC) ||
(GET_CODE (XEXP (operands[0], 0)) == PRE_DEC &&
GET_CODE (XEXP (operands[1], 0)) == POST_INC)))
useorder = big;
else if ((GET_CODE (operands[0]) == MEM &&
GET_CODE (XEXP (operands[0], 0)) == PRE_DEC) ||
(GET_CODE (operands[1]) == MEM &&
GET_CODE (XEXP (operands[1], 0)) == PRE_DEC))
useorder = little;
else if (REG_P (operands[0]) && REG_P (operands[1]) &&
REGNO (operands[0]) > REGNO (operands[1]) &&
REGNO (operands[0]) < REGNO (operands[1]) + words)
useorder = little;
/* Check for source == offset from register and dest == push of
the same register. In that case, we have to use the same
offset (the one for the low order word) for all words, because
the push increases the offset to each source word.
In theory there are other cases like this, for example dest == pop,
but those don't occur in real life so ignore those. */
if (GET_CODE (operands[0]) == MEM
&& GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
&& REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
&& reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
sameoff = true;
}
/* If the caller didn't specify order, use the one we computed,
or high word first if we don't care either. If the caller did
specify, verify we don't have a problem with that order.
(If it matters to the caller, constraints need to be used to
ensure this case doesn't occur). */
if (order == either)
order = (useorder == either) ? big : useorder;
else
gcc_assert (useorder == either || useorder == order);
for (op = 0; op < opcount; op++)
{
/* First classify the operand. */
if (REG_P (operands[op]))
optype = REGOP;
else if (CONST_INT_P (operands[op])
|| GET_CODE (operands[op]) == CONST_DOUBLE)
optype = CNSTOP;
else if (GET_CODE (XEXP (operands[op], 0)) == POST_INC)
optype = POPOP;
else if (GET_CODE (XEXP (operands[op], 0)) == PRE_DEC)
optype = PUSHOP;
else if (!reload_in_progress || offsettable_memref_p (operands[op]))
optype = OFFSOP;
else if (GET_CODE (operands[op]) == MEM)
optype = MEMOP;
else
optype = RNDOP;
/* Check for the cases that the operand constraints are not
supposed to allow to happen. Return failure for such cases. */
if (optype == RNDOP)
return false;
if (action != NULL)
action[op] = no_action;
/* If the operand uses pre-decrement addressing but we
want to get the parts high order first,
decrement the former register explicitly
and change the operand into ordinary indexing. */
if (optype == PUSHOP && order == big)
{
gcc_assert (action != NULL);
action[op] = dec_before;
operands[op] = gen_rtx_MEM (GET_MODE (operands[op]),
XEXP (XEXP (operands[op], 0), 0));
optype = OFFSOP;
}
/* If the operand uses post-increment mode but we want
to get the parts low order first, change the operand
into ordinary indexing and remember to increment
the register explicitly when we're done. */
else if (optype == POPOP && order == little)
{
gcc_assert (action != NULL);
action[op] = inc_after;
operands[op] = gen_rtx_MEM (GET_MODE (operands[op]),
XEXP (XEXP (operands[op], 0), 0));
optype = OFFSOP;
}
if (GET_CODE (operands[op]) == CONST_DOUBLE)
{
gcc_assert (GET_MODE (operands[op]) != VOIDmode);
REAL_VALUE_TO_TARGET_DOUBLE
(*CONST_DOUBLE_REAL_VALUE (operands[op]), sval);
}
for (i = 0; i < words; i++)
{
if (order == big)
w = i;
else if (sameoff)
w = words - 1;
else
w = words - 1 - i;
/* Set the output operand to be word "w" of the input. */
if (optype == REGOP)
exops[i][op] = gen_rtx_REG (HImode, REGNO (operands[op]) + w);
else if (optype == OFFSOP)
exops[i][op] = adjust_address (operands[op], HImode, w * 2);
else if (optype == CNSTOP)
{
if (GET_CODE (operands[op]) == CONST_DOUBLE)
{
sh = 16 - (w & 1) * 16;
exops[i][op] = gen_rtx_CONST_INT (HImode, (sval[w / 2] >> sh) & 0xffff);
}
else
{
sh = ((words - 1 - w) * 16);
exops[i][op] = gen_rtx_CONST_INT (HImode, trunc_int_for_mode (INTVAL(operands[op]) >> sh, HImode));
}
}
else
exops[i][op] = operands[op];
}
}
return true;
}
/* Output assembler code to perform a multiple-word move insn
with operands OPERANDS. This moves 2 or 4 words depending
on the machine mode of the operands. */
const char *
output_move_multiple (rtx *operands)
{
rtx inops[2];
rtx exops[4][2];
rtx adjops[2];
pdp11_action action[2];
int i, words;
words = GET_MODE_BITSIZE (GET_MODE (operands[0])) / 16;
adjops[1] = gen_rtx_CONST_INT (HImode, words * 2);
inops[0] = operands[0];
inops[1] = operands[1];
pdp11_expand_operands (inops, exops, 2, words, action, either);
/* Check for explicit decrement before. */
if (action[0] == dec_before)
{
adjops[0] = XEXP (XEXP (operands[0], 0), 0);
output_asm_insn ("sub\t%1,%0", adjops);
}
if (action[1] == dec_before)
{
adjops[0] = XEXP (XEXP (operands[1], 0), 0);
output_asm_insn ("sub\t%1,%0", adjops);
}
/* Do the words. */
for (i = 0; i < words; i++)
output_asm_insn (singlemove_string (exops[i]), exops[i]);
/* Check for increment after. */
if (action[0] == inc_after)
{
adjops[0] = XEXP (XEXP (operands[0], 0), 0);
output_asm_insn ("add\t%1,%0", adjops);
}
if (action[1] == inc_after)
{
adjops[0] = XEXP (XEXP (operands[1], 0), 0);
output_asm_insn ("add\t%1,%0", adjops);
}
return "";
}
/* Build an internal label. */
void
pdp11_gen_int_label (char *label, const char *prefix, int num)
{
if (TARGET_DEC_ASM)
/* +1 because GCC numbers labels starting at zero. */
sprintf (label, "*%u$", num + 1);
else
sprintf (label, "*%s_%u", prefix, num);
}
/* Output an ascii string. */
void
output_ascii (FILE *file, const char *p, int size)
{
int i, c;
const char *pseudo = "\t.ascii\t";
bool delim = false;
if (TARGET_DEC_ASM)
{
if (p[size - 1] == '\0')
{
pseudo = "\t.asciz\t";
size--;
}
fputs (pseudo, file);
for (i = 0; i < size; i++)
{
c = *p++ & 0xff;
if (c < 32 || c == '"' || c > 126)
{
if (delim)
putc ('"', file);
fprintf (file, "<%o>", c);
delim = false;
}
else
{
if (!delim)
putc ('"', file);
delim = true;
putc (c, file);
}
}
if (delim)
putc ('"', file);
putc ('\n', file);
}
else
{
fprintf (file, "\t.byte ");
for (i = 0; i < size; i++)
{
fprintf (file, "%#o", *p++ & 0xff);
if (i < size - 1)
putc (',', file);
}
putc ('\n', file);
}
}
void
pdp11_asm_output_var (FILE *file, const char *name, int size,
int align, bool global)
{
switch_to_section (data_section);
if (align > 8)
fprintf (file, "\t.even\n");
if (TARGET_DEC_ASM)
{
assemble_name (file, name);
if (global)
fputs ("::", file);
else
fputs (":", file);
if (align > 8)
fprintf (file, "\t.blkw\t%o\n", (size & 0xffff) / 2);
else
fprintf (file, "\t.blkb\t%o\n", size & 0xffff);
}
else
{
if (global)
{
fprintf (file, ".globl ");
assemble_name (file, name);
fprintf (file, "\n");
}
assemble_name (file, name);
fputs (":", file);
ASM_OUTPUT_SKIP (file, size);
}
}
/* Special format operators handled here:
# -- output the correct immediate operand marker for the assembler
dialect.
@ -- output the correct indirect marker for the assembler dialect.
o -- emit a constant value as a number (not an immediate operand)
in octal. */
static void
pdp11_asm_print_operand (FILE *file, rtx x, int code)
{
long sval[2];
if (code == '#')
{
if (TARGET_DEC_ASM)
putc ('#', file);
else
putc ('$', file);
}
else if (code == '@')
{
if (TARGET_UNIX_ASM)
fprintf (file, "*");
else
fprintf (file, "@");
}
else if (GET_CODE (x) == REG)
fprintf (file, "%s", reg_names[REGNO (x)]);
else if (GET_CODE (x) == MEM)
output_address (GET_MODE (x), XEXP (x, 0));
else if (GET_CODE (x) == CONST_DOUBLE && FLOAT_MODE_P (GET_MODE (x)))
{
REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (x), sval);
if (TARGET_DEC_ASM)
fprintf (file, "#%lo", (sval[0] >> 16) & 0xffff);
else
fprintf (file, "$%#lo", (sval[0] >> 16) & 0xffff);
}
else
{
if (code != 'o')
{
if (TARGET_DEC_ASM)
putc ('#', file);
else
putc ('$', file);
}
output_addr_const_pdp11 (file, x);
}
}
static bool
pdp11_asm_print_operand_punct_valid_p (unsigned char c)
{
return (c == '#' || c == '@');
}
void
print_operand_address (FILE *file, rtx addr)
{
rtx breg;
rtx offset;
int again = 0;
retry:
switch (GET_CODE (addr))
{
case MEM:
if (TARGET_UNIX_ASM)
fprintf (file, "*");
else
fprintf (file, "@");
addr = XEXP (addr, 0);
again = 1;
goto retry;
case REG:
fprintf (file, "(%s)", reg_names[REGNO (addr)]);
break;
case PRE_MODIFY:
case PRE_DEC:
fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]);
break;
case POST_MODIFY:
case POST_INC:
fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]);
break;
case PLUS:
breg = 0;
offset = 0;
if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
|| GET_CODE (XEXP (addr, 0)) == MEM)
{
offset = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
|| GET_CODE (XEXP (addr, 1)) == MEM)
{
offset = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
if (GET_CODE (addr) != PLUS)
;
else if (GET_CODE (XEXP (addr, 0)) == REG)
{
breg = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (GET_CODE (XEXP (addr, 1)) == REG)
{
breg = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
if (GET_CODE (addr) == REG)
{
gcc_assert (breg == 0);
breg = addr;
addr = 0;
}
if (offset != 0)
{
gcc_assert (addr == 0);
addr = offset;
}
if (addr != 0)
output_addr_const_pdp11 (file, addr);
if (breg != 0)
{
gcc_assert (GET_CODE (breg) == REG);
fprintf (file, "(%s)", reg_names[REGNO (breg)]);
}
break;
default:
if (!again && GET_CODE (addr) == CONST_INT)
{
/* Absolute (integer number) address. */
if (TARGET_DEC_ASM)
fprintf (file, "@#");
else if (!TARGET_UNIX_ASM)
fprintf (file, "@$");
}
output_addr_const_pdp11 (file, addr);
}
}
/* Target hook to assemble integer objects. We need to use the
pdp-specific version of output_addr_const. */
static bool
pdp11_assemble_integer (rtx x, unsigned int size, int aligned_p)
{
if (aligned_p)
switch (size)
{
case 1:
fprintf (asm_out_file, "\t.byte\t");
output_addr_const_pdp11 (asm_out_file, GEN_INT (INTVAL (x) & 0xff));
fputs ("\n", asm_out_file);
return true;
case 2:
fprintf (asm_out_file, TARGET_UNIX_ASM ? "\t" : "\t.word\t");
output_addr_const_pdp11 (asm_out_file, x);
fputs ("\n", asm_out_file);
return true;
}
return default_assemble_integer (x, size, aligned_p);
}
static bool
pdp11_lra_p (void)
{
return TARGET_LRA;
}
/* Register to register moves are cheap if both are general
registers. */
static int
pdp11_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
reg_class_t c1, reg_class_t c2)
{
if (CPU_REG_CLASS (c1) && CPU_REG_CLASS (c2))
return 2;
else if ((c1 >= LOAD_FPU_REGS && c1 <= FPU_REGS && c2 == LOAD_FPU_REGS) ||
(c2 >= LOAD_FPU_REGS && c2 <= FPU_REGS && c1 == LOAD_FPU_REGS))
return 2;
else
return 22;
}
/* This tries to approximate what pdp11_insn_cost would do, but
without visibility into the actual instruction being generated it's
inevitably a rough approximation. */
static bool
pdp11_rtx_costs (rtx x, machine_mode mode, int outer_code,
int opno ATTRIBUTE_UNUSED, int *total, bool speed)
{
const int code = GET_CODE (x);
const int asize = (mode == QImode) ? 2 : GET_MODE_SIZE (mode);
rtx src, dest;
const char *fmt;
switch (code)
{
case CONST_INT:
/* Treat -1, 0, 1 as things that are optimized as clr or dec
etc. though that doesn't apply to every case. */
if (INTVAL (x) >= -1 && INTVAL (x) <= 1)
{
*total = 0;
return true;
}
/* FALL THROUGH. */
case REG:
case MEM:
case CONST:
case LABEL_REF:
case SYMBOL_REF:
case CONST_DOUBLE:
*total = pdp11_addr_cost (x, mode, ADDR_SPACE_GENERIC, speed);
return true;
}
if (GET_RTX_LENGTH (code) == 0)
{
if (speed)
*total = 0;
else
*total = 2;
return true;
}
/* Pick up source and dest. We don't necessarily use the standard
recursion in rtx_costs to figure the cost, because that would
count the destination operand twice for three-operand insns.
Also, this way we can catch special cases like move of zero, or
add one. */
fmt = GET_RTX_FORMAT (code);
if (fmt[0] != 'e' || (GET_RTX_LENGTH (code) > 1 && fmt[1] != 'e'))
{
if (speed)
*total = 0;
else
*total = 2;
return true;
}
if (GET_RTX_LENGTH (code) > 1)
src = XEXP (x, 1);
dest = XEXP (x, 0);
/* If optimizing for size, claim everything costs 2 per word, plus
whatever the operands require. */
if (!speed)
*total = asize;
else
{
if (FLOAT_MODE_P (mode))
{
switch (code)
{
case MULT:
case DIV:
case MOD:
*total = 20;
break;
case COMPARE:
*total = 4;
break;
case PLUS:
case MINUS:
*total = 6;
break;
default:
*total = 2;
break;
}
}
else
{
/* Integer operations are scaled for SI and DI modes, though the
scaling is not exactly accurate. */
switch (code)
{
case MULT:
*total = 5 * asize * asize;
break;
case DIV:
*total = 10 * asize * asize;
break;
case MOD:
/* Fake value because it's accounted for under DIV, since we
use a divmod pattern. */
total = 0;
break;
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
/* This is a bit problematic because the cost depends on the
shift amount. Make it <asize> for now, which is for the
case of a one bit shift. */
*total = asize;
break;
default:
*total = asize;
break;
}
}
}
/* Now see if we're looking at a SET. If yes, then look at the
source to see if this is a move or an arithmetic operation, and
continue accordingly to handle the operands. */
if (code == SET)
{
switch (GET_CODE (src))
{
case REG:
case MEM:
case CONST_INT:
case CONST:
case LABEL_REF:
case SYMBOL_REF:
case CONST_DOUBLE:
/* It's a move. */
*total += pdp11_addr_cost (dest, mode, ADDR_SPACE_GENERIC, speed);
if (src != const0_rtx)
*total += pdp11_addr_cost (src, mode, ADDR_SPACE_GENERIC, speed);
return true;
default:
/* Not a move. Get the cost of the source operand and add
that in, but not the destination operand since we're
dealing with read/modify/write operands. */
*total += rtx_cost (src, mode, (enum rtx_code) outer_code, 1, speed);
return true;
}
}
else if (code == PLUS || code == MINUS)
{
if (GET_CODE (src) == CONST_INT &&
(INTVAL (src) == 1 || INTVAL (src) == -1))
{
*total += rtx_cost (dest, mode, (enum rtx_code) outer_code, 0, speed);
return true;
}
}
return false;
}
/* Return cost of accessing the supplied operand. Registers are free.
Anything else starts with a cost of two. Add to that for memory
references the memory accesses of the addressing mode (if any) plus
the data reference; for other operands just the memory access (if
any) for the mode. */
static int
pdp11_addr_cost (rtx addr, machine_mode mode, addr_space_t as ATTRIBUTE_UNUSED,
bool speed)
{
int cost = 0;
if (GET_CODE (addr) != REG)
{
if (!simple_memory_operand (addr, mode))
cost = 2;
/* If optimizing for speed, account for the memory reference if
any. */
if (speed && !CONSTANT_P (addr))
cost += (mode == QImode) ? 2 : GET_MODE_SIZE (mode);
}
return cost;
}
static int
pdp11_insn_cost (rtx_insn *insn, bool speed)
{
int base_cost;
rtx pat, set, dest, src, src2;
machine_mode mode;
enum rtx_code op;
if (recog_memoized (insn) < 0)
return 0;
/* If optimizing for size, we want the insn size. */
if (!speed)
return get_attr_length (insn);
else
{
/* Optimizing for speed. Get the base cost of the insn, then
adjust for the cost of accessing operands. Zero means use
the length as the cost even when optimizing for speed. */
base_cost = get_attr_base_cost (insn);
if (base_cost <= 0)
base_cost = get_attr_length (insn);
}
/* Look for the operands. Often we have a PARALLEL that's either
the actual operation plus a clobber, or the implicit compare plus
the actual operation. Find the actual operation. */
pat = PATTERN (insn);
if (GET_CODE (pat) == PARALLEL)
{
set = XVECEXP (pat, 0, 0);
if (GET_CODE (set) != SET || GET_CODE (XEXP (set, 1)) == COMPARE)
set = XVECEXP (pat, 0, 1);
if (GET_CODE (set) != SET || GET_CODE (XEXP (set, 1)) == COMPARE)
return 0;
}
else
{
set = pat;
if (GET_CODE (set) != SET)
return 0;
}
/* Pick up the SET source and destination RTL. */
dest = XEXP (set, 0);
src = XEXP (set, 1);
mode = GET_MODE (dest);
/* See if we have a move, or some arithmetic operation. If a move,
account for source and destination operand costs. Otherwise,
account for the destination and for the second operand of the
operation -- the first is also destination and we don't want to
double-count it. */
base_cost += pdp11_addr_cost (dest, mode, ADDR_SPACE_GENERIC, speed);
op = GET_CODE (src);
switch (op)
{
case REG:
case MEM:
case CONST_INT:
case CONST:
case LABEL_REF:
case SYMBOL_REF:
case CONST_DOUBLE:
/* It's a move. */
if (src != const0_rtx)
base_cost += pdp11_addr_cost (src, mode, ADDR_SPACE_GENERIC, speed);
return base_cost;
default:
break;
}
/* There are some other cases where souce and dest are distinct. */
if (FLOAT_MODE_P (mode) &&
(op == FLOAT_TRUNCATE || op == FLOAT_EXTEND || op == FIX || op == FLOAT))
{
src2 = XEXP (src, 0);
base_cost += pdp11_addr_cost (src2, mode, ADDR_SPACE_GENERIC, speed);
}
/* Otherwise, pick up the second operand of the arithmetic
operation, if it has two operands. */
else if (op != SUBREG && op != UNSPEC && GET_RTX_LENGTH (op) > 1)
{
src2 = XEXP (src, 1);
base_cost += pdp11_addr_cost (src2, mode, ADDR_SPACE_GENERIC, speed);
}
return base_cost;
}
const char *
output_jump (rtx *operands, int ccnz, int length)
{
rtx tmpop[1];
static char buf[100];
const char *pos, *neg;
enum rtx_code code = GET_CODE (operands[0]);
if (ccnz)
{
/* These are the branches valid for CCNZmode, i.e., a comparison
with zero where the V bit is not set to zero. These cases
occur when CC or FCC are set as a side effect of some data
manipulation, such as the ADD instruction. */
switch (code)
{
case EQ: pos = "beq", neg = "bne"; break;
case NE: pos = "bne", neg = "beq"; break;
case LT: pos = "bmi", neg = "bpl"; break;
case GE: pos = "bpl", neg = "bmi"; break;
default: gcc_unreachable ();
}
}
else
{
switch (code)
{
case EQ: pos = "beq", neg = "bne"; break;
case NE: pos = "bne", neg = "beq"; break;
case GT: pos = "bgt", neg = "ble"; break;
case GTU: pos = "bhi", neg = "blos"; break;
case LT: pos = "blt", neg = "bge"; break;
case LTU: pos = "blo", neg = "bhis"; break;
case GE: pos = "bge", neg = "blt"; break;
case GEU: pos = "bhis", neg = "blo"; break;
case LE: pos = "ble", neg = "bgt"; break;
case LEU: pos = "blos", neg = "bhi"; break;
default: gcc_unreachable ();
}
}
switch (length)
{
case 2:
sprintf (buf, "%s\t%%l1", pos);
return buf;
case 6:
tmpop[0] = gen_label_rtx ();
sprintf (buf, "%s\t%%l0", neg);
output_asm_insn (buf, tmpop);
output_asm_insn ("jmp\t%l1", operands);
output_asm_label (tmpop[0]);
fputs (":\n", asm_out_file);
return "";
default:
gcc_unreachable ();
}
}
/* Select the CC mode to be used for the side effect compare with
zero, given the compare operation code in op and the compare
operands in x in and y. */
machine_mode
pdp11_cc_mode (enum rtx_code op ATTRIBUTE_UNUSED, rtx x, rtx y ATTRIBUTE_UNUSED)
{
if (FLOAT_MODE_P (GET_MODE (x)))
{
switch (GET_CODE (x))
{
case ABS:
case NEG:
case REG:
case MEM:
return CCmode;
default:
return CCNZmode;
}
}
else
{
switch (GET_CODE (x))
{
case XOR:
case AND:
case IOR:
case MULT:
case NOT:
case REG:
case MEM:
return CCmode;
default:
return CCNZmode;
}
}
}
int
simple_memory_operand(rtx op, machine_mode mode ATTRIBUTE_UNUSED)
{
rtx addr;
/* Eliminate non-memory operations */
if (GET_CODE (op) != MEM)
return FALSE;
/* Decode the address now. */
indirection:
addr = XEXP (op, 0);
switch (GET_CODE (addr))
{
case REG:
/* (R0) - no extra cost */
return 1;
case PRE_DEC:
case POST_INC:
case PRE_MODIFY:
case POST_MODIFY:
/* -(R0), (R0)+ - cheap! */
return 1;
case MEM:
/* cheap - is encoded in addressing mode info!
-- except for @(R0), which has to be @0(R0) !!! */
if (GET_CODE (XEXP (addr, 0)) == REG)
return 0;
op=addr;
goto indirection;
case CONST_INT:
case LABEL_REF:
case CONST:
case SYMBOL_REF:
/* @#address - extra cost */
return 0;
case PLUS:
/* X(R0) - extra cost */
return 0;
default:
break;
}
return FALSE;
}
/* Similar to simple_memory_operand but doesn't match push/pop. */
int
no_side_effect_operand(rtx op, machine_mode mode ATTRIBUTE_UNUSED)
{
rtx addr;
/* Eliminate non-memory operations */
if (GET_CODE (op) != MEM)
return FALSE;
/* Decode the address now. */
indirection:
addr = XEXP (op, 0);
switch (GET_CODE (addr))
{
case REG:
/* (R0) - no extra cost */
return 1;
case PRE_DEC:
case POST_INC:
case PRE_MODIFY:
case POST_MODIFY:
return 0;
case MEM:
/* cheap - is encoded in addressing mode info!
-- except for @(R0), which has to be @0(R0) !!! */
if (GET_CODE (XEXP (addr, 0)) == REG)
return 0;
op=addr;
goto indirection;
case CONST_INT:
case LABEL_REF:
case CONST:
case SYMBOL_REF:
/* @#address - extra cost */
return 0;
case PLUS:
/* X(R0) - extra cost */
return 0;
default:
break;
}
return FALSE;
}
/* Return TRUE if op is a push or pop using the register "regno". */
bool
pushpop_regeq (rtx op, int regno)
{
rtx addr;
/* False if not memory reference. */
if (GET_CODE (op) != MEM)
return FALSE;
/* Get the address of the memory reference. */
addr = XEXP (op, 0);
if (GET_CODE (addr) == MEM)
addr = XEXP (addr, 0);
switch (GET_CODE (addr))
{
case PRE_DEC:
case POST_INC:
case PRE_MODIFY:
case POST_MODIFY:
return REGNO (XEXP (addr, 0)) == (unsigned) regno;
default:
return FALSE;
}
}
/* This function checks whether a real value can be encoded as
a literal, i.e., addressing mode 27. In that mode, real values
are one word values, so the remaining 48 bits have to be zero. */
int
legitimate_const_double_p (rtx address)
{
long sval[2];
/* If it's too big for HOST_WIDE_INT, it's definitely to big here. */
if (GET_MODE (address) == VOIDmode)
return 0;
REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (address), sval);
if ((sval[0] & 0xffff) == 0 && sval[1] == 0)
return 1;
return 0;
}
/* Implement TARGET_CAN_CHANGE_MODE_CLASS. */
static bool
pdp11_can_change_mode_class (machine_mode from,
machine_mode to,
reg_class_t rclass)
{
/* Also, FPU registers contain a whole float value and the parts of
it are not separately accessible.
So we disallow all mode changes involving FPRs. */
if (FLOAT_MODE_P (from) != FLOAT_MODE_P (to))
return false;
return !reg_classes_intersect_p (FPU_REGS, rclass);
}
/* Implement TARGET_CXX_GUARD_TYPE */
static tree
pdp11_guard_type (void)
{
return short_integer_type_node;
}
/* TARGET_PREFERRED_RELOAD_CLASS
Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class.
loading is easier into LOAD_FPU_REGS than FPU_REGS! */
static reg_class_t
pdp11_preferred_reload_class (rtx x, reg_class_t rclass)
{
if (rclass == FPU_REGS)
return LOAD_FPU_REGS;
if (rclass == ALL_REGS)
{
if (FLOAT_MODE_P (GET_MODE (x)))
return LOAD_FPU_REGS;
else
return GENERAL_REGS;
}
return rclass;
}
/* TARGET_PREFERRED_OUTPUT_RELOAD_CLASS
Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class.
loading is easier into LOAD_FPU_REGS than FPU_REGS! */
static reg_class_t
pdp11_preferred_output_reload_class (rtx x, reg_class_t rclass)
{
if (rclass == FPU_REGS)
return LOAD_FPU_REGS;
if (rclass == ALL_REGS)
{
if (FLOAT_MODE_P (GET_MODE (x)))
return LOAD_FPU_REGS;
else
return GENERAL_REGS;
}
return rclass;
}
/* TARGET_SECONDARY_RELOAD.
FPU registers AC4 and AC5 (class NO_LOAD_FPU_REGS) require an
intermediate register (AC0-AC3: LOAD_FPU_REGS). Everything else
can be loaded/stored directly. */
static reg_class_t
pdp11_secondary_reload (bool in_p ATTRIBUTE_UNUSED,
rtx x,
reg_class_t reload_class,
machine_mode reload_mode ATTRIBUTE_UNUSED,
secondary_reload_info *sri ATTRIBUTE_UNUSED)
{
if (reload_class != NO_LOAD_FPU_REGS || GET_CODE (x) != REG ||
REGNO_REG_CLASS (REGNO (x)) == LOAD_FPU_REGS)
return NO_REGS;
return LOAD_FPU_REGS;
}
/* Implement TARGET_SECONDARY_MEMORY_NEEDED.
The answer is yes if we're going between general register and FPU
registers. The mode doesn't matter in making this check. */
static bool
pdp11_secondary_memory_needed (machine_mode, reg_class_t c1, reg_class_t c2)
{
int fromfloat = (c1 == LOAD_FPU_REGS || c1 == NO_LOAD_FPU_REGS ||
c1 == FPU_REGS);
int tofloat = (c2 == LOAD_FPU_REGS || c2 == NO_LOAD_FPU_REGS ||
c2 == FPU_REGS);
return (fromfloat != tofloat);
}
/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
*/
static bool
pdp11_legitimate_address_p (machine_mode mode,
rtx operand, bool strict)
{
rtx xfoob;
/* accept @#address */
if (CONSTANT_ADDRESS_P (operand))
return true;
switch (GET_CODE (operand))
{
case REG:
/* accept (R0) */
return !strict || REGNO_OK_FOR_BASE_P (REGNO (operand));
case PLUS:
/* accept X(R0) */
return GET_CODE (XEXP (operand, 0)) == REG
&& (!strict || REGNO_OK_FOR_BASE_P (REGNO (XEXP (operand, 0))))
&& CONSTANT_ADDRESS_P (XEXP (operand, 1));
case PRE_DEC:
/* accept -(R0) */
return GET_CODE (XEXP (operand, 0)) == REG
&& (!strict || REGNO_OK_FOR_BASE_P (REGNO (XEXP (operand, 0))));
case POST_INC:
/* accept (R0)+ */
return GET_CODE (XEXP (operand, 0)) == REG
&& (!strict || REGNO_OK_FOR_BASE_P (REGNO (XEXP (operand, 0))));
case PRE_MODIFY:
/* accept -(SP) -- which uses PRE_MODIFY for byte mode */
return GET_CODE (XEXP (operand, 0)) == REG
&& REGNO (XEXP (operand, 0)) == STACK_POINTER_REGNUM
&& GET_CODE ((xfoob = XEXP (operand, 1))) == PLUS
&& GET_CODE (XEXP (xfoob, 0)) == REG
&& REGNO (XEXP (xfoob, 0)) == STACK_POINTER_REGNUM
&& CONST_INT_P (XEXP (xfoob, 1))
&& INTVAL (XEXP (xfoob,1)) == -2;
case POST_MODIFY:
/* accept (SP)+ -- which uses POST_MODIFY for byte mode */
return GET_CODE (XEXP (operand, 0)) == REG
&& REGNO (XEXP (operand, 0)) == STACK_POINTER_REGNUM
&& GET_CODE ((xfoob = XEXP (operand, 1))) == PLUS
&& GET_CODE (XEXP (xfoob, 0)) == REG
&& REGNO (XEXP (xfoob, 0)) == STACK_POINTER_REGNUM
&& CONST_INT_P (XEXP (xfoob, 1))
&& INTVAL (XEXP (xfoob,1)) == 2;
case MEM:
/* handle another level of indirection ! */
xfoob = XEXP (operand, 0);
/* (MEM:xx (MEM:xx ())) is not valid for SI, DI and currently
also forbidden for float, because we have to handle this
in output_move_double and/or output_move_quad() - we could
do it, but currently it's not worth it!!!
now that DFmode cannot go into CPU register file,
maybe I should allow float ...
but then I have to handle memory-to-memory moves in movdf ?? */
if (GET_MODE_BITSIZE(mode) > 16)
return false;
/* accept @address */
if (CONSTANT_ADDRESS_P (xfoob))
return true;
switch (GET_CODE (xfoob))
{
case REG:
/* accept @(R0) - which is @0(R0) */
return !strict || REGNO_OK_FOR_BASE_P(REGNO (xfoob));
case PLUS:
/* accept @X(R0) */
return GET_CODE (XEXP (xfoob, 0)) == REG
&& (!strict || REGNO_OK_FOR_BASE_P (REGNO (XEXP (xfoob, 0))))
&& CONSTANT_ADDRESS_P (XEXP (xfoob, 1));
case PRE_DEC:
/* accept @-(R0) */
return GET_CODE (XEXP (xfoob, 0)) == REG
&& (!strict || REGNO_OK_FOR_BASE_P (REGNO (XEXP (xfoob, 0))));
case POST_INC:
/* accept @(R0)+ */
return GET_CODE (XEXP (xfoob, 0)) == REG
&& (!strict || REGNO_OK_FOR_BASE_P (REGNO (XEXP (xfoob, 0))));
default:
/* anything else is invalid */
return false;
}
default:
/* anything else is invalid */
return false;
}
}
/* Return the class number of the smallest class containing
reg number REGNO. */
enum reg_class
pdp11_regno_reg_class (int regno)
{
if (regno == ARG_POINTER_REGNUM)
return NOTSP_REG;
else if (regno == CC_REGNUM || regno == FCC_REGNUM)
return CC_REGS;
else if (regno > AC3_REGNUM)
return NO_LOAD_FPU_REGS;
else if (regno >= AC0_REGNUM)
return LOAD_FPU_REGS;
else if (regno == 6)
return NOTR0_REG;
else if (regno < 6)
return NOTSP_REG;
else
return GENERAL_REGS;
}
/* Return the regnums of the CC registers. */
bool
pdp11_fixed_cc_regs (unsigned int *p1, unsigned int *p2)
{
*p1 = CC_REGNUM;
*p2 = FCC_REGNUM;
return true;
}
static int
pdp11_reg_save_size (void)
{
int offset = 0, regno;
for (regno = 0; regno <= PC_REGNUM; regno++)
if (pdp11_saved_regno (regno))
offset += 2;
for (regno = AC0_REGNUM; regno <= AC5_REGNUM; regno++)
if (pdp11_saved_regno (regno))
offset += 8;
return offset;
}
/* Return the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
int
pdp11_initial_elimination_offset (int from, int to)
{
/* Get the size of the register save area. */
if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
return get_frame_size ();
else if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
return pdp11_reg_save_size () + 2;
else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
return pdp11_reg_save_size () + 2 + get_frame_size ();
else
gcc_assert (0);
}
/* A copy of output_addr_const modified for pdp11 expression syntax.
output_addr_const also gets called for %cDIGIT and %nDIGIT, which we don't
use, and for debugging output, which we don't support with this port either.
So this copy should get called whenever needed.
*/
void
output_addr_const_pdp11 (FILE *file, rtx x)
{
char buf[256];
int i;
restart:
switch (GET_CODE (x))
{
case PC:
gcc_assert (flag_pic);
putc ('.', file);
break;
case SYMBOL_REF:
assemble_name (file, XSTR (x, 0));
break;
case LABEL_REF:
ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
assemble_name (file, buf);
break;
case CODE_LABEL:
ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
assemble_name (file, buf);
break;
case CONST_INT:
i = INTVAL (x);
if (i < 0)
{
i = -i;
fprintf (file, "-");
}
if (TARGET_DEC_ASM)
fprintf (file, "%o", i & 0xffff);
else
fprintf (file, "%#o", i & 0xffff);
break;
case CONST:
output_addr_const_pdp11 (file, XEXP (x, 0));
break;
case PLUS:
/* Some assemblers need integer constants to appear last (e.g. masm). */
if (GET_CODE (XEXP (x, 0)) == CONST_INT)
{
output_addr_const_pdp11 (file, XEXP (x, 1));
if (INTVAL (XEXP (x, 0)) >= 0)
fprintf (file, "+");
output_addr_const_pdp11 (file, XEXP (x, 0));
}
else
{
output_addr_const_pdp11 (file, XEXP (x, 0));
if (INTVAL (XEXP (x, 1)) >= 0)
fprintf (file, "+");
output_addr_const_pdp11 (file, XEXP (x, 1));
}
break;
case MINUS:
/* Avoid outputting things like x-x or x+5-x,
since some assemblers can't handle that. */
x = simplify_subtraction (x);
if (GET_CODE (x) != MINUS)
goto restart;
output_addr_const_pdp11 (file, XEXP (x, 0));
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|| INTVAL (XEXP (x, 1)) >= 0)
fprintf (file, "-");
output_addr_const_pdp11 (file, XEXP (x, 1));
break;
case ZERO_EXTEND:
case SIGN_EXTEND:
output_addr_const_pdp11 (file, XEXP (x, 0));
break;
default:
output_operand_lossage ("invalid expression as operand");
}
}
/* Worker function for TARGET_RETURN_IN_MEMORY. */
static bool
pdp11_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
/* Integers 32 bits and under, and scalar floats (if FPU), are returned
in registers. The rest go into memory. */
return (TYPE_MODE (type) == DImode
|| (FLOAT_MODE_P (TYPE_MODE (type)) && ! TARGET_AC0)
|| VECTOR_TYPE_P (type)
|| COMPLEX_MODE_P (TYPE_MODE (type)));
}
/* Worker function for TARGET_FUNCTION_VALUE.
On the pdp11 the value is found in R0 (or ac0??? not without FPU!!!! ) */
static rtx
pdp11_function_value (const_tree valtype,
const_tree fntype_or_decl ATTRIBUTE_UNUSED,
bool outgoing ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (TYPE_MODE (valtype),
BASE_RETURN_VALUE_REG(TYPE_MODE(valtype)));
}
/* Worker function for TARGET_LIBCALL_VALUE. */
static rtx
pdp11_libcall_value (machine_mode mode,
const_rtx fun ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (mode, BASE_RETURN_VALUE_REG(mode));
}
/* Worker function for TARGET_FUNCTION_VALUE_REGNO_P.
On the pdp, the first "output" reg is the only register thus used.
maybe ac0 ? - as option someday! */
static bool
pdp11_function_value_regno_p (const unsigned int regno)
{
return (regno == RETVAL_REGNUM) || (TARGET_AC0 && (regno == AC0_REGNUM));
}
/* Used for O constraint, matches if shift count is "small". */
bool
pdp11_small_shift (int n)
{
return (unsigned) n < 4;
}
/* Expand a shift insn. Returns true if the expansion was done,
false if it needs to be handled by the caller. */
bool
pdp11_expand_shift (rtx *operands, rtx (*shift_sc) (rtx, rtx, rtx),
rtx (*shift_base) (rtx, rtx, rtx))
{
rtx r, test;
rtx_code_label *lb;
if (CONST_INT_P (operands[2]) && pdp11_small_shift (INTVAL (operands[2])))
emit_insn ((*shift_sc) (operands[0], operands[1], operands[2]));
else if (TARGET_40_PLUS)
return false;
else
{
lb = gen_label_rtx ();
r = gen_reg_rtx (HImode);
emit_move_insn (operands[0], operands[1]);
emit_move_insn (r, operands[2]);
if (!CONST_INT_P (operands[2]))
{
test = gen_rtx_LE (HImode, r, const0_rtx);
emit_jump_insn (gen_cbranchhi4 (test, r, const0_rtx, lb));
}
/* It would be nice to expand the loop here, but that's not
possible because shifts may be generated by the loop unroll
optimizer and it doesn't appreciate flow changes happening
while it's doing things. */
emit_insn ((*shift_base) (operands[0], operands[1], r));
if (!CONST_INT_P (operands[2]))
{
emit_label (lb);
/* Allow REG_NOTES to be set on last insn (labels don't have enough
fields, and can't be used for REG_NOTES anyway). */
emit_use (stack_pointer_rtx);
}
}
return true;
}
/* Emit the instructions needed to produce a shift by a small constant
amount (unrolled), or a shift made from a loop for the base machine
case. */
const char *
pdp11_assemble_shift (rtx *operands, machine_mode m, int code)
{
int i, n;
rtx inops[2];
rtx exops[2][2];
rtx lb[1];
pdp11_action action[2];
const bool small = CONST_INT_P (operands[2]) && pdp11_small_shift (INTVAL (operands[2]));
gcc_assert (small || !TARGET_40_PLUS);
if (m == E_SImode)
{
inops[0] = operands[0];
pdp11_expand_operands (inops, exops, 1, 2, action, either);
}
if (!small)
{
/* Loop case, generate the top of loop label. */
lb[0] = gen_label_rtx ();
output_asm_label (lb[0]);
fputs (":\n", asm_out_file);
n = 1;
}
else
n = INTVAL (operands[2]);
if (code == LSHIFTRT)
{
output_asm_insn ("clc", NULL);
switch (m)
{
case E_QImode:
output_asm_insn ("rorb\t%0", operands);
break;
case E_HImode:
output_asm_insn ("ror\t%0", operands);
break;
case E_SImode:
output_asm_insn ("ror\t%0", exops[0]);
output_asm_insn ("ror\t%0", exops[1]);
break;
default:
gcc_unreachable ();
}
n--;
}
for (i = 0; i < n; i++)
{
switch (code)
{
case LSHIFTRT:
case ASHIFTRT:
switch (m)
{
case E_QImode:
output_asm_insn ("asrb\t%0", operands);
break;
case E_HImode:
output_asm_insn ("asr\t%0", operands);
break;
case E_SImode:
output_asm_insn ("asr\t%0", exops[0]);
output_asm_insn ("ror\t%0", exops[1]);
break;
default:
gcc_unreachable ();
}
break;
case ASHIFT:
switch (m)
{
case E_QImode:
output_asm_insn ("aslb\t%0", operands);
break;
case E_HImode:
output_asm_insn ("asl\t%0", operands);
break;
case E_SImode:
output_asm_insn ("asl\t%0", exops[1]);
output_asm_insn ("rol\t%0", exops[0]);
break;
default:
gcc_unreachable ();
}
break;
}
}
if (!small)
{
/* Loop case, emit the count-down and branch if not done. */
output_asm_insn ("dec\t%2", operands);
output_asm_insn ("bne\t%l0", lb);
}
return "";
}
/* Figure out the length of the instructions that will be produced for
the given operands by pdp11_assemble_shift above. */
int
pdp11_shift_length (rtx *operands, machine_mode m, int code, bool simple_operand_p)
{
int shift_size;
/* Shift by 1 is 2 bytes if simple operand, 4 bytes if 2-word addressing mode. */
shift_size = simple_operand_p ? 2 : 4;
/* In SImode, two shifts are needed per data item. */
if (m == E_SImode)
shift_size *= 2;
/* If shifting by a small constant, the loop is unrolled by the
shift count. Otherwise, account for the size of the decrement
and branch. */
if (CONST_INT_P (operands[2]) && pdp11_small_shift (INTVAL (operands[2])))
shift_size *= INTVAL (operands[2]);
else
shift_size += 4;
/* Logical right shift takes one more instruction (CLC). */
if (code == LSHIFTRT)
shift_size += 2;
return shift_size;
}
/* Return the length of 2 or 4 word integer compares. */
int
pdp11_cmp_length (rtx *operands, int words)
{
rtx inops[2];
rtx exops[4][2];
int i, len = 0;
if (!reload_completed)
return 2;
inops[0] = operands[0];
inops[1] = operands[1];
pdp11_expand_operands (inops, exops, 2, words, NULL, big);
for (i = 0; i < words; i++)
{
len += 4; /* cmp instruction word and branch that follows. */
if (!REG_P (exops[i][0]) &&
!simple_memory_operand (exops[i][0], HImode))
len += 2; /* first operand extra word. */
if (!REG_P (exops[i][1]) &&
!simple_memory_operand (exops[i][1], HImode) &&
!(CONST_INT_P (exops[i][1]) && INTVAL (exops[i][1]) == 0))
len += 2; /* second operand extra word. */
}
/* Deduct one word because there is no branch at the end. */
return len - 2;
}
/* Prepend to CLOBBERS hard registers that are automatically clobbered
for an asm We do this for CC_REGNUM and FCC_REGNUM (on FPU target)
to maintain source compatibility with the original cc0-based
compiler. */
static rtx_insn *
pdp11_md_asm_adjust (vec<rtx> & /*outputs*/, vec<rtx> & /*inputs*/,
vec<machine_mode> & /*input_modes*/,
vec<const char *> & /*constraints*/, vec<rtx> &clobbers,
HARD_REG_SET &clobbered_regs, location_t /*loc*/)
{
clobbers.safe_push (gen_rtx_REG (CCmode, CC_REGNUM));
SET_HARD_REG_BIT (clobbered_regs, CC_REGNUM);
if (TARGET_FPU)
{
clobbers.safe_push (gen_rtx_REG (CCmode, FCC_REGNUM));
SET_HARD_REG_BIT (clobbered_regs, FCC_REGNUM);
}
return NULL;
}
/* Worker function for TARGET_TRAMPOLINE_INIT.
trampoline - how should i do it in separate i+d ?
have some allocate_trampoline magic???
the following should work for shared I/D:
MOV #STATIC, $4 01270Y 0x0000 <- STATIC; Y = STATIC_CHAIN_REGNUM
JMP @#FUNCTION 000137 0x0000 <- FUNCTION
*/
static void
pdp11_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
rtx mem;
gcc_assert (!TARGET_SPLIT);
mem = adjust_address (m_tramp, HImode, 0);
emit_move_insn (mem, GEN_INT (012700+STATIC_CHAIN_REGNUM));
mem = adjust_address (m_tramp, HImode, 2);
emit_move_insn (mem, chain_value);
mem = adjust_address (m_tramp, HImode, 4);
emit_move_insn (mem, GEN_INT (000137));
emit_move_insn (mem, fnaddr);
}
/* Worker function for TARGET_FUNCTION_ARG. */
static rtx
pdp11_function_arg (cumulative_args_t, const function_arg_info &)
{
return NULL_RTX;
}
/* Worker function for TARGET_FUNCTION_ARG_ADVANCE.
Update the data in CUM to advance over argument ARG. */
static void
pdp11_function_arg_advance (cumulative_args_t cum_v,
const function_arg_info &arg)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
*cum += arg.promoted_size_in_bytes ();
}
/* Make sure everything's fine if we *don't* have an FPU.
This assumes that putting a register in fixed_regs will keep the
compiler's mitts completely off it. We don't bother to zero it out
of register classes. Also fix incompatible register naming with
the UNIX assembler. */
static void
pdp11_conditional_register_usage (void)
{
int i;
HARD_REG_SET x;
if (!TARGET_FPU)
{
x = reg_class_contents[FPU_REGS];
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ )
if (TEST_HARD_REG_BIT (x, i))
fixed_regs[i] = call_used_regs[i] = 1;
}
if (TARGET_AC0)
call_used_regs[AC0_REGNUM] = 1;
if (TARGET_UNIX_ASM)
{
/* Change names of FPU registers for the UNIX assembler. */
reg_names[8] = "fr0";
reg_names[9] = "fr1";
reg_names[10] = "fr2";
reg_names[11] = "fr3";
reg_names[12] = "fr4";
reg_names[13] = "fr5";
}
}
static section *
pdp11_function_section (tree decl ATTRIBUTE_UNUSED,
enum node_frequency freq ATTRIBUTE_UNUSED,
bool startup ATTRIBUTE_UNUSED,
bool exit ATTRIBUTE_UNUSED)
{
return NULL;
}
/* Support #ident for DEC assembler, but don't process the
auto-generated ident string that names the compiler (since its
syntax is not correct for DEC .ident). */
static void pdp11_output_ident (const char *ident)
{
if (TARGET_DEC_ASM)
{
if (!startswith (ident, "GCC:"))
fprintf (asm_out_file, "\t.ident\t\"%s\"\n", ident);
}
}
/* This emits a (user) label, which gets a "_" prefix except for DEC
assembler output. */
void
pdp11_output_labelref (FILE *file, const char *name)
{
if (!TARGET_DEC_ASM)
fputs (USER_LABEL_PREFIX, file);
fputs (name, file);
}
/* This equates name with value. */
void
pdp11_output_def (FILE *file, const char *label1, const char *label2)
{
if (TARGET_DEC_ASM)
{
assemble_name (file, label1);
putc ('=', file);
assemble_name (file, label2);
}
else
{
fputs ("\t.set\t", file);
assemble_name (file, label1);
putc (',', file);
assemble_name (file, label2);
}
putc ('\n', file);
}
void
pdp11_output_addr_vec_elt (FILE *file, int value)
{
char buf[256];
pdp11_gen_int_label (buf, "L", value);
if (!TARGET_UNIX_ASM)
fprintf (file, "\t.word");
fprintf (file, "\t%s\n", buf + 1);
}
/* This overrides some target hooks that are initializer elements so
they can't be variables in the #define. */
static void
pdp11_option_override (void)
{
if (TARGET_DEC_ASM)
{
targetm.asm_out.open_paren = "<";
targetm.asm_out.close_paren = ">";
}
}
static void
pdp11_asm_named_section (const char *name, unsigned int flags,
tree decl ATTRIBUTE_UNUSED)
{
const char *rwro = (flags & SECTION_WRITE) ? "rw" : "ro";
const char *insdat = (flags & SECTION_CODE) ? "i" : "d";
gcc_assert (TARGET_DEC_ASM);
fprintf (asm_out_file, "\t.psect\t%s,con,%s,%s\n", name, insdat, rwro);
}
static void
pdp11_asm_init_sections (void)
{
if (TARGET_DEC_ASM)
{
bss_section = data_section;
}
else if (TARGET_GNU_ASM)
{
bss_section = get_unnamed_section (SECTION_WRITE | SECTION_BSS,
output_section_asm_op,
".bss");
}
}
static void
pdp11_file_start (void)
{
default_file_start ();
if (TARGET_DEC_ASM)
fprintf (asm_out_file, "\t.enabl\tlsb,reg\n\n");
}
static void
pdp11_file_end (void)
{
if (TARGET_DEC_ASM)
fprintf (asm_out_file, "\t.end\n");
}
/* Implement TARGET_LEGITIMATE_CONSTANT_P. */
static bool
pdp11_legitimate_constant_p (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
return GET_CODE (x) != CONST_DOUBLE || legitimate_const_double_p (x);
}
/* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */
static bool
pdp11_scalar_mode_supported_p (scalar_mode mode)
{
/* Support SFmode even with -mfloat64. */
if (mode == SFmode)
return true;
return default_scalar_mode_supported_p (mode);
}
/* Implement TARGET_HARD_REGNO_NREGS. */
static unsigned int
pdp11_hard_regno_nregs (unsigned int regno, machine_mode mode)
{
if (regno <= PC_REGNUM)
return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD);
return 1;
}
/* Implement TARGET_HARD_REGNO_MODE_OK. On the pdp, the cpu registers
can hold any mode other than float (because otherwise we may end up
being asked to move from CPU to FPU register, which isn't a valid
operation on the PDP11). For CPU registers, check alignment.
FPU accepts SF and DF but actually holds a DF - simplifies life! */
static bool
pdp11_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
{
if (regno <= PC_REGNUM)
return (GET_MODE_BITSIZE (mode) <= 16
|| (GET_MODE_BITSIZE (mode) >= 32
&& !(regno & 1)
&& !FLOAT_MODE_P (mode)));
return FLOAT_MODE_P (mode);
}
/* Implement TARGET_MODES_TIEABLE_P. */
static bool
pdp11_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
return mode1 == HImode && mode2 == QImode;
}
/* Implement PUSH_ROUNDING. On the pdp11, the stack is on an even
boundary. */
poly_int64
pdp11_push_rounding (poly_int64 bytes)
{
return (bytes + 1) & ~1;
}
struct gcc_target targetm = TARGET_INITIALIZER;
|