aboutsummaryrefslogtreecommitdiff
path: root/gcc/calls.c
blob: ed92ce735c38f80c36e6e9e7d77d8829a5efc5ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
/* Convert function calls to rtl insns, for GNU C compiler.
   Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
   1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "flags.h"
#include "expr.h"
#include "libfuncs.h"
#include "function.h"
#include "regs.h"
#include "toplev.h"
#include "output.h"
#include "tm_p.h"
#include "timevar.h"
#include "sbitmap.h"
#include "langhooks.h"
#include "target.h"
#include "cgraph.h"

/* Decide whether a function's arguments should be processed
   from first to last or from last to first.

   They should if the stack and args grow in opposite directions, but
   only if we have push insns.  */

#ifdef PUSH_ROUNDING

#ifndef PUSH_ARGS_REVERSED
#if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
#define PUSH_ARGS_REVERSED  PUSH_ARGS
#endif
#endif

#endif

#ifndef PUSH_ARGS_REVERSED
#define PUSH_ARGS_REVERSED 0
#endif

#ifndef STACK_POINTER_OFFSET
#define STACK_POINTER_OFFSET    0
#endif

/* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits.  */
#define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)

/* Data structure and subroutines used within expand_call.  */

struct arg_data
{
  /* Tree node for this argument.  */
  tree tree_value;
  /* Mode for value; TYPE_MODE unless promoted.  */
  enum machine_mode mode;
  /* Current RTL value for argument, or 0 if it isn't precomputed.  */
  rtx value;
  /* Initially-compute RTL value for argument; only for const functions.  */
  rtx initial_value;
  /* Register to pass this argument in, 0 if passed on stack, or an
     PARALLEL if the arg is to be copied into multiple non-contiguous
     registers.  */
  rtx reg;
  /* Register to pass this argument in when generating tail call sequence.
     This is not the same register as for normal calls on machines with
     register windows.  */
  rtx tail_call_reg;
  /* If REG was promoted from the actual mode of the argument expression,
     indicates whether the promotion is sign- or zero-extended.  */
  int unsignedp;
  /* Number of registers to use.  0 means put the whole arg in registers.
     Also 0 if not passed in registers.  */
  int partial;
  /* Nonzero if argument must be passed on stack.
     Note that some arguments may be passed on the stack
     even though pass_on_stack is zero, just because FUNCTION_ARG says so.
     pass_on_stack identifies arguments that *cannot* go in registers.  */
  int pass_on_stack;
  /* Offset of this argument from beginning of stack-args.  */
  struct args_size offset;
  /* Similar, but offset to the start of the stack slot.  Different from
     OFFSET if this arg pads downward.  */
  struct args_size slot_offset;
  /* Size of this argument on the stack, rounded up for any padding it gets,
     parts of the argument passed in registers do not count.
     If REG_PARM_STACK_SPACE is defined, then register parms
     are counted here as well.  */
  struct args_size size;
  /* Location on the stack at which parameter should be stored.  The store
     has already been done if STACK == VALUE.  */
  rtx stack;
  /* Location on the stack of the start of this argument slot.  This can
     differ from STACK if this arg pads downward.  This location is known
     to be aligned to FUNCTION_ARG_BOUNDARY.  */
  rtx stack_slot;
  /* Place that this stack area has been saved, if needed.  */
  rtx save_area;
  /* If an argument's alignment does not permit direct copying into registers,
     copy in smaller-sized pieces into pseudos.  These are stored in a
     block pointed to by this field.  The next field says how many
     word-sized pseudos we made.  */
  rtx *aligned_regs;
  int n_aligned_regs;
  /* The amount that the stack pointer needs to be adjusted to
     force alignment for the next argument.  */
  struct args_size alignment_pad;
};

/* A vector of one char per byte of stack space.  A byte if nonzero if
   the corresponding stack location has been used.
   This vector is used to prevent a function call within an argument from
   clobbering any stack already set up.  */
static char *stack_usage_map;

/* Size of STACK_USAGE_MAP.  */
static int highest_outgoing_arg_in_use;

/* A bitmap of virtual-incoming stack space.  Bit is set if the corresponding
   stack location's tail call argument has been already stored into the stack.
   This bitmap is used to prevent sibling call optimization if function tries
   to use parent's incoming argument slots when they have been already
   overwritten with tail call arguments.  */
static sbitmap stored_args_map;

/* stack_arg_under_construction is nonzero when an argument may be
   initialized with a constructor call (including a C function that
   returns a BLKmode struct) and expand_call must take special action
   to make sure the object being constructed does not overlap the
   argument list for the constructor call.  */
int stack_arg_under_construction;

static int calls_function	PARAMS ((tree, int));
static int calls_function_1	PARAMS ((tree, int));

static void emit_call_1		PARAMS ((rtx, tree, tree, HOST_WIDE_INT,
					 HOST_WIDE_INT, HOST_WIDE_INT, rtx,
					 rtx, int, rtx, int,
					 CUMULATIVE_ARGS *));
static void precompute_register_parameters	PARAMS ((int,
							 struct arg_data *,
							 int *));
static int store_one_arg	PARAMS ((struct arg_data *, rtx, int, int,
					 int));
static void store_unaligned_arguments_into_pseudos PARAMS ((struct arg_data *,
							    int));
static int finalize_must_preallocate		PARAMS ((int, int,
							 struct arg_data *,
							 struct args_size *));
static void precompute_arguments 		PARAMS ((int, int,
							 struct arg_data *));
static int compute_argument_block_size		PARAMS ((int,
							 struct args_size *,
							 int));
static void initialize_argument_information	PARAMS ((int,
							 struct arg_data *,
							 struct args_size *,
							 int, tree, tree,
							 CUMULATIVE_ARGS *,
							 int, rtx *, int *,
							 int *, int *));
static void compute_argument_addresses		PARAMS ((struct arg_data *,
							 rtx, int));
static rtx rtx_for_function_call		PARAMS ((tree, tree));
static void load_register_parameters		PARAMS ((struct arg_data *,
							 int, rtx *, int,
							 int, int *));
static rtx emit_library_call_value_1 		PARAMS ((int, rtx, rtx,
							 enum libcall_type,
							 enum machine_mode,
							 int, va_list));
static int special_function_p			PARAMS ((tree, int));
static rtx try_to_integrate			PARAMS ((tree, tree, rtx,
							 int, tree, rtx));
static int check_sibcall_argument_overlap_1	PARAMS ((rtx));
static int check_sibcall_argument_overlap	PARAMS ((rtx, struct arg_data *,
							 int));

static int combine_pending_stack_adjustment_and_call
                                                PARAMS ((int, struct args_size *, int));
static tree fix_unsafe_tree		PARAMS ((tree));

#ifdef REG_PARM_STACK_SPACE
static rtx save_fixed_argument_area	PARAMS ((int, rtx, int *, int *));
static void restore_fixed_argument_area	PARAMS ((rtx, rtx, int, int));
#endif

/* If WHICH is 1, return 1 if EXP contains a call to the built-in function
   `alloca'.

   If WHICH is 0, return 1 if EXP contains a call to any function.
   Actually, we only need return 1 if evaluating EXP would require pushing
   arguments on the stack, but that is too difficult to compute, so we just
   assume any function call might require the stack.  */

static tree calls_function_save_exprs;

static int
calls_function (exp, which)
     tree exp;
     int which;
{
  int val;

  calls_function_save_exprs = 0;
  val = calls_function_1 (exp, which);
  calls_function_save_exprs = 0;
  return val;
}

/* Recursive function to do the work of above function.  */

static int
calls_function_1 (exp, which)
     tree exp;
     int which;
{
  int i;
  enum tree_code code = TREE_CODE (exp);
  int class = TREE_CODE_CLASS (code);
  int length = first_rtl_op (code);

  /* If this code is language-specific, we don't know what it will do.  */
  if ((int) code >= NUM_TREE_CODES)
    return 1;

  switch (code)
    {
    case CALL_EXPR:
      if (which == 0)
	return 1;
      else if ((TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
		== FUNCTION_TYPE)
	       && (TYPE_RETURNS_STACK_DEPRESSED
		   (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))))
	return 1;
      else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
	       && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
		   == FUNCTION_DECL)
	       && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
				       0)
		   & ECF_MAY_BE_ALLOCA))
	return 1;

      break;

    case CONSTRUCTOR:
      {
	tree tem;

	for (tem = CONSTRUCTOR_ELTS (exp); tem != 0; tem = TREE_CHAIN (tem))
	  if (calls_function_1 (TREE_VALUE (tem), which))
	    return 1;
      }

      return 0;

    case SAVE_EXPR:
      if (SAVE_EXPR_RTL (exp) != 0)
	return 0;
      if (value_member (exp, calls_function_save_exprs))
	return 0;
      calls_function_save_exprs = tree_cons (NULL_TREE, exp,
					     calls_function_save_exprs);
      return (TREE_OPERAND (exp, 0) != 0
	      && calls_function_1 (TREE_OPERAND (exp, 0), which));

    case BLOCK:
      {
	tree local;
	tree subblock;

	for (local = BLOCK_VARS (exp); local; local = TREE_CHAIN (local))
	  if (DECL_INITIAL (local) != 0
	      && calls_function_1 (DECL_INITIAL (local), which))
	    return 1;

	for (subblock = BLOCK_SUBBLOCKS (exp);
	     subblock;
	     subblock = TREE_CHAIN (subblock))
	  if (calls_function_1 (subblock, which))
	    return 1;
      }
      return 0;

    case TREE_LIST:
      for (; exp != 0; exp = TREE_CHAIN (exp))
	if (calls_function_1 (TREE_VALUE (exp), which))
	  return 1;
      return 0;

    default:
      break;
    }

  /* Only expressions, references, and blocks can contain calls.  */
  if (! IS_EXPR_CODE_CLASS (class) && class != 'r' && class != 'b')
    return 0;

  for (i = 0; i < length; i++)
    if (TREE_OPERAND (exp, i) != 0
	&& calls_function_1 (TREE_OPERAND (exp, i), which))
      return 1;

  return 0;
}

/* Force FUNEXP into a form suitable for the address of a CALL,
   and return that as an rtx.  Also load the static chain register
   if FNDECL is a nested function.

   CALL_FUSAGE points to a variable holding the prospective
   CALL_INSN_FUNCTION_USAGE information.  */

rtx
prepare_call_address (funexp, fndecl, call_fusage, reg_parm_seen, sibcallp)
     rtx funexp;
     tree fndecl;
     rtx *call_fusage;
     int reg_parm_seen;
     int sibcallp;
{
  rtx static_chain_value = 0;

  funexp = protect_from_queue (funexp, 0);

  if (fndecl != 0)
    /* Get possible static chain value for nested function in C.  */
    static_chain_value = lookup_static_chain (fndecl);

  /* Make a valid memory address and copy constants thru pseudo-regs,
     but not for a constant address if -fno-function-cse.  */
  if (GET_CODE (funexp) != SYMBOL_REF)
    /* If we are using registers for parameters, force the
       function address into a register now.  */
    funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
	      ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
	      : memory_address (FUNCTION_MODE, funexp));
  else if (! sibcallp)
    {
#ifndef NO_FUNCTION_CSE
      if (optimize && ! flag_no_function_cse)
#ifdef NO_RECURSIVE_FUNCTION_CSE
	if (fndecl != current_function_decl)
#endif
	  funexp = force_reg (Pmode, funexp);
#endif
    }

  if (static_chain_value != 0)
    {
      emit_move_insn (static_chain_rtx, static_chain_value);

      if (GET_CODE (static_chain_rtx) == REG)
	use_reg (call_fusage, static_chain_rtx);
    }

  return funexp;
}

/* Generate instructions to call function FUNEXP,
   and optionally pop the results.
   The CALL_INSN is the first insn generated.

   FNDECL is the declaration node of the function.  This is given to the
   macro RETURN_POPS_ARGS to determine whether this function pops its own args.

   FUNTYPE is the data type of the function.  This is given to the macro
   RETURN_POPS_ARGS to determine whether this function pops its own args.
   We used to allow an identifier for library functions, but that doesn't
   work when the return type is an aggregate type and the calling convention
   says that the pointer to this aggregate is to be popped by the callee.

   STACK_SIZE is the number of bytes of arguments on the stack,
   ROUNDED_STACK_SIZE is that number rounded up to
   PREFERRED_STACK_BOUNDARY; zero if the size is variable.  This is
   both to put into the call insn and to generate explicit popping
   code if necessary.

   STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
   It is zero if this call doesn't want a structure value.

   NEXT_ARG_REG is the rtx that results from executing
     FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
   just after all the args have had their registers assigned.
   This could be whatever you like, but normally it is the first
   arg-register beyond those used for args in this call,
   or 0 if all the arg-registers are used in this call.
   It is passed on to `gen_call' so you can put this info in the call insn.

   VALREG is a hard register in which a value is returned,
   or 0 if the call does not return a value.

   OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
   the args to this call were processed.
   We restore `inhibit_defer_pop' to that value.

   CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
   denote registers used by the called function.  */

static void
emit_call_1 (funexp, fndecl, funtype, stack_size, rounded_stack_size,
	     struct_value_size, next_arg_reg, valreg, old_inhibit_defer_pop,
	     call_fusage, ecf_flags, args_so_far)
     rtx funexp;
     tree fndecl ATTRIBUTE_UNUSED;
     tree funtype ATTRIBUTE_UNUSED;
     HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED;
     HOST_WIDE_INT rounded_stack_size;
     HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED;
     rtx next_arg_reg ATTRIBUTE_UNUSED;
     rtx valreg;
     int old_inhibit_defer_pop;
     rtx call_fusage;
     int ecf_flags;
     CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED;
{
  rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
  rtx call_insn;
  int already_popped = 0;
  HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
#if defined (HAVE_call) && defined (HAVE_call_value)
  rtx struct_value_size_rtx;
  struct_value_size_rtx = GEN_INT (struct_value_size);
#endif

#ifdef CALL_POPS_ARGS
  n_popped += CALL_POPS_ARGS (* args_so_far);
#endif
  
  /* Ensure address is valid.  SYMBOL_REF is already valid, so no need,
     and we don't want to load it into a register as an optimization,
     because prepare_call_address already did it if it should be done.  */
  if (GET_CODE (funexp) != SYMBOL_REF)
    funexp = memory_address (FUNCTION_MODE, funexp);

#if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
  if ((ecf_flags & ECF_SIBCALL)
      && HAVE_sibcall_pop && HAVE_sibcall_value_pop
      && (n_popped > 0 || stack_size == 0))
    {
      rtx n_pop = GEN_INT (n_popped);
      rtx pat;

      /* If this subroutine pops its own args, record that in the call insn
	 if possible, for the sake of frame pointer elimination.  */

      if (valreg)
	pat = GEN_SIBCALL_VALUE_POP (valreg,
				     gen_rtx_MEM (FUNCTION_MODE, funexp),
				     rounded_stack_size_rtx, next_arg_reg,
				     n_pop);
      else
	pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
			       rounded_stack_size_rtx, next_arg_reg, n_pop);

      emit_call_insn (pat);
      already_popped = 1;
    }
  else
#endif

#if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
  /* If the target has "call" or "call_value" insns, then prefer them
     if no arguments are actually popped.  If the target does not have
     "call" or "call_value" insns, then we must use the popping versions
     even if the call has no arguments to pop.  */
#if defined (HAVE_call) && defined (HAVE_call_value)
  if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
      && n_popped > 0 && ! (ecf_flags & ECF_SP_DEPRESSED))
#else
  if (HAVE_call_pop && HAVE_call_value_pop)
#endif
    {
      rtx n_pop = GEN_INT (n_popped);
      rtx pat;

      /* If this subroutine pops its own args, record that in the call insn
	 if possible, for the sake of frame pointer elimination.  */

      if (valreg)
	pat = GEN_CALL_VALUE_POP (valreg,
				  gen_rtx_MEM (FUNCTION_MODE, funexp),
				  rounded_stack_size_rtx, next_arg_reg, n_pop);
      else
	pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
			    rounded_stack_size_rtx, next_arg_reg, n_pop);

      emit_call_insn (pat);
      already_popped = 1;
    }
  else
#endif

#if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
  if ((ecf_flags & ECF_SIBCALL)
      && HAVE_sibcall && HAVE_sibcall_value)
    {
      if (valreg)
	emit_call_insn (GEN_SIBCALL_VALUE (valreg,
					   gen_rtx_MEM (FUNCTION_MODE, funexp),
					   rounded_stack_size_rtx,
					   next_arg_reg, NULL_RTX));
      else
	emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
				     rounded_stack_size_rtx, next_arg_reg,
				     struct_value_size_rtx));
    }
  else
#endif

#if defined (HAVE_call) && defined (HAVE_call_value)
  if (HAVE_call && HAVE_call_value)
    {
      if (valreg)
	emit_call_insn (GEN_CALL_VALUE (valreg,
					gen_rtx_MEM (FUNCTION_MODE, funexp),
					rounded_stack_size_rtx, next_arg_reg,
					NULL_RTX));
      else
	emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
				  rounded_stack_size_rtx, next_arg_reg,
				  struct_value_size_rtx));
    }
  else
#endif
    abort ();

  /* Find the CALL insn we just emitted.  */
  for (call_insn = get_last_insn ();
       call_insn && GET_CODE (call_insn) != CALL_INSN;
       call_insn = PREV_INSN (call_insn))
    ;

  if (! call_insn)
    abort ();

  /* Mark memory as used for "pure" function call.  */
  if (ecf_flags & ECF_PURE)
    call_fusage
      = gen_rtx_EXPR_LIST
	(VOIDmode,
	 gen_rtx_USE (VOIDmode,
		      gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))),
	 call_fusage);

  /* Put the register usage information on the CALL.  If there is already
     some usage information, put ours at the end.  */
  if (CALL_INSN_FUNCTION_USAGE (call_insn))
    {
      rtx link;

      for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
	   link = XEXP (link, 1))
	;

      XEXP (link, 1) = call_fusage;
    }
  else
    CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;

  /* If this is a const call, then set the insn's unchanging bit.  */
  if (ecf_flags & (ECF_CONST | ECF_PURE))
    CONST_OR_PURE_CALL_P (call_insn) = 1;

  /* If this call can't throw, attach a REG_EH_REGION reg note to that
     effect.  */
  if (ecf_flags & ECF_NOTHROW)
    REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, const0_rtx,
					       REG_NOTES (call_insn));

  if (ecf_flags & ECF_NORETURN)
    REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_NORETURN, const0_rtx,
					       REG_NOTES (call_insn));
  if (ecf_flags & ECF_ALWAYS_RETURN)
    REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_ALWAYS_RETURN, const0_rtx,
					       REG_NOTES (call_insn));

  if (ecf_flags & ECF_RETURNS_TWICE)
    {
      REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_SETJMP, const0_rtx,
					         REG_NOTES (call_insn));
      current_function_calls_setjmp = 1;
    }

  SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);

  /* Restore this now, so that we do defer pops for this call's args
     if the context of the call as a whole permits.  */
  inhibit_defer_pop = old_inhibit_defer_pop;

  if (n_popped > 0)
    {
      if (!already_popped)
	CALL_INSN_FUNCTION_USAGE (call_insn)
	  = gen_rtx_EXPR_LIST (VOIDmode,
			       gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
			       CALL_INSN_FUNCTION_USAGE (call_insn));
      rounded_stack_size -= n_popped;
      rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
      stack_pointer_delta -= n_popped;
    }

  if (!ACCUMULATE_OUTGOING_ARGS)
    {
      /* If returning from the subroutine does not automatically pop the args,
	 we need an instruction to pop them sooner or later.
	 Perhaps do it now; perhaps just record how much space to pop later.

	 If returning from the subroutine does pop the args, indicate that the
	 stack pointer will be changed.  */

      if (rounded_stack_size != 0)
	{
	  if (ecf_flags & ECF_SP_DEPRESSED)
	    /* Just pretend we did the pop.  */
	    stack_pointer_delta -= rounded_stack_size;
	  else if (flag_defer_pop && inhibit_defer_pop == 0
	      && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
	    pending_stack_adjust += rounded_stack_size;
	  else
	    adjust_stack (rounded_stack_size_rtx);
	}
    }
  /* When we accumulate outgoing args, we must avoid any stack manipulations.
     Restore the stack pointer to its original value now.  Usually
     ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
     On  i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
     popping variants of functions exist as well.

     ??? We may optimize similar to defer_pop above, but it is
     probably not worthwhile.

     ??? It will be worthwhile to enable combine_stack_adjustments even for
     such machines.  */
  else if (n_popped)
    anti_adjust_stack (GEN_INT (n_popped));
}

/* Determine if the function identified by NAME and FNDECL is one with
   special properties we wish to know about.

   For example, if the function might return more than one time (setjmp), then
   set RETURNS_TWICE to a nonzero value.

   Similarly set LONGJMP for if the function is in the longjmp family.

   Set MAY_BE_ALLOCA for any memory allocation function that might allocate
   space from the stack such as alloca.  */

static int
special_function_p (fndecl, flags)
     tree fndecl;
     int flags;
{
  if (! (flags & ECF_MALLOC)
      && fndecl && DECL_NAME (fndecl)
      && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
      /* Exclude functions not at the file scope, or not `extern',
	 since they are not the magic functions we would otherwise
	 think they are.  */
      && DECL_CONTEXT (fndecl) == NULL_TREE && TREE_PUBLIC (fndecl))
    {
      const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
      const char *tname = name;

      /* We assume that alloca will always be called by name.  It
	 makes no sense to pass it as a pointer-to-function to
	 anything that does not understand its behavior.  */
      if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
	    && name[0] == 'a'
	    && ! strcmp (name, "alloca"))
	   || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
	       && name[0] == '_'
	       && ! strcmp (name, "__builtin_alloca"))))
	flags |= ECF_MAY_BE_ALLOCA;

      /* Disregard prefix _, __ or __x.  */
      if (name[0] == '_')
	{
	  if (name[1] == '_' && name[2] == 'x')
	    tname += 3;
	  else if (name[1] == '_')
	    tname += 2;
	  else
	    tname += 1;
	}

      if (tname[0] == 's')
	{
	  if ((tname[1] == 'e'
	       && (! strcmp (tname, "setjmp")
		   || ! strcmp (tname, "setjmp_syscall")))
	      || (tname[1] == 'i'
		  && ! strcmp (tname, "sigsetjmp"))
	      || (tname[1] == 'a'
		  && ! strcmp (tname, "savectx")))
	    flags |= ECF_RETURNS_TWICE;

	  if (tname[1] == 'i'
	      && ! strcmp (tname, "siglongjmp"))
	    flags |= ECF_LONGJMP;
	}
      else if ((tname[0] == 'q' && tname[1] == 's'
		&& ! strcmp (tname, "qsetjmp"))
	       || (tname[0] == 'v' && tname[1] == 'f'
		   && ! strcmp (tname, "vfork")))
	flags |= ECF_RETURNS_TWICE;

      else if (tname[0] == 'l' && tname[1] == 'o'
	       && ! strcmp (tname, "longjmp"))
	flags |= ECF_LONGJMP;

      else if ((tname[0] == 'f' && tname[1] == 'o'
		&& ! strcmp (tname, "fork"))
	       /* Linux specific: __clone.  check NAME to insist on the
		  leading underscores, to avoid polluting the ISO / POSIX
		  namespace.  */
	       || (name[0] == '_' && name[1] == '_'
		   && ! strcmp (tname, "clone"))
	       || (tname[0] == 'e' && tname[1] == 'x' && tname[2] == 'e'
		   && tname[3] == 'c' && (tname[4] == 'l' || tname[4] == 'v')
		   && (tname[5] == '\0'
		       || ((tname[5] == 'p' || tname[5] == 'e')
			   && tname[6] == '\0'))))
	flags |= ECF_FORK_OR_EXEC;
    }
  return flags;
}

/* Return nonzero when tree represent call to longjmp.  */

int
setjmp_call_p (fndecl)
     tree fndecl;
{
  return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
}

/* Return true when exp contains alloca call.  */
bool
alloca_call_p (exp)
     tree exp;
{
  if (TREE_CODE (exp) == CALL_EXPR
      && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
      && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
	  == FUNCTION_DECL)
      && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
			      0) & ECF_MAY_BE_ALLOCA))
    return true;
  return false;
}

/* Detect flags (function attributes) from the function decl or type node.  */

int
flags_from_decl_or_type (exp)
     tree exp;
{
  int flags = 0;
  tree type = exp;

  if (DECL_P (exp))
    {
      struct cgraph_rtl_info *i = cgraph_rtl_info (exp);
      type = TREE_TYPE (exp);

      if (i)
	{
	  if (i->pure_function)
	    flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
	  if (i->const_function)
	    flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
	}

      /* The function exp may have the `malloc' attribute.  */
      if (DECL_IS_MALLOC (exp))
	flags |= ECF_MALLOC;

      /* The function exp may have the `pure' attribute.  */
      if (DECL_IS_PURE (exp))
	flags |= ECF_PURE | ECF_LIBCALL_BLOCK;

      if (TREE_NOTHROW (exp))
	flags |= ECF_NOTHROW;
    }

  if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
    flags |= ECF_CONST | ECF_LIBCALL_BLOCK;

  if (TREE_THIS_VOLATILE (exp))
    flags |= ECF_NORETURN;

  /* Mark if the function returns with the stack pointer depressed.   We
     cannot consider it pure or constant in that case.  */
  if (TREE_CODE (type) == FUNCTION_TYPE && TYPE_RETURNS_STACK_DEPRESSED (type))
    {
      flags |= ECF_SP_DEPRESSED;
      flags &= ~(ECF_PURE | ECF_CONST | ECF_LIBCALL_BLOCK);
    }

  return flags;
}

/* Precompute all register parameters as described by ARGS, storing values
   into fields within the ARGS array.

   NUM_ACTUALS indicates the total number elements in the ARGS array.

   Set REG_PARM_SEEN if we encounter a register parameter.  */

static void
precompute_register_parameters (num_actuals, args, reg_parm_seen)
     int num_actuals;
     struct arg_data *args;
     int *reg_parm_seen;
{
  int i;

  *reg_parm_seen = 0;

  for (i = 0; i < num_actuals; i++)
    if (args[i].reg != 0 && ! args[i].pass_on_stack)
      {
	*reg_parm_seen = 1;

	if (args[i].value == 0)
	  {
	    push_temp_slots ();
	    args[i].value = expand_expr (args[i].tree_value, NULL_RTX,
					 VOIDmode, 0);
	    preserve_temp_slots (args[i].value);
	    pop_temp_slots ();

	    /* ANSI doesn't require a sequence point here,
	       but PCC has one, so this will avoid some problems.  */
	    emit_queue ();
	  }

	/* If the value is a non-legitimate constant, force it into a
	   pseudo now.  TLS symbols sometimes need a call to resolve.  */
	if (CONSTANT_P (args[i].value)
	    && !LEGITIMATE_CONSTANT_P (args[i].value))
	  args[i].value = force_reg (args[i].mode, args[i].value);

	/* If we are to promote the function arg to a wider mode,
	   do it now.  */

	if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
	  args[i].value
	    = convert_modes (args[i].mode,
			     TYPE_MODE (TREE_TYPE (args[i].tree_value)),
			     args[i].value, args[i].unsignedp);

	/* If the value is expensive, and we are inside an appropriately
	   short loop, put the value into a pseudo and then put the pseudo
	   into the hard reg.

	   For small register classes, also do this if this call uses
	   register parameters.  This is to avoid reload conflicts while
	   loading the parameters registers.  */

	if ((! (GET_CODE (args[i].value) == REG
		|| (GET_CODE (args[i].value) == SUBREG
		    && GET_CODE (SUBREG_REG (args[i].value)) == REG)))
	    && args[i].mode != BLKmode
	    && rtx_cost (args[i].value, SET) > COSTS_N_INSNS (1)
	    && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
		|| preserve_subexpressions_p ()))
	  args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
      }
}

#ifdef REG_PARM_STACK_SPACE

  /* The argument list is the property of the called routine and it
     may clobber it.  If the fixed area has been used for previous
     parameters, we must save and restore it.  */

static rtx
save_fixed_argument_area (reg_parm_stack_space, argblock,
			  low_to_save, high_to_save)
     int reg_parm_stack_space;
     rtx argblock;
     int *low_to_save;
     int *high_to_save;
{
  int low;
  int high;

  /* Compute the boundary of the area that needs to be saved, if any.  */
  high = reg_parm_stack_space;
#ifdef ARGS_GROW_DOWNWARD
  high += 1;
#endif
  if (high > highest_outgoing_arg_in_use)
    high = highest_outgoing_arg_in_use;

  for (low = 0; low < high; low++)
    if (stack_usage_map[low] != 0)
      {
	int num_to_save;
	enum machine_mode save_mode;
	int delta;
	rtx stack_area;
	rtx save_area;

	while (stack_usage_map[--high] == 0)
	  ;

	*low_to_save = low;
	*high_to_save = high;

	num_to_save = high - low + 1;
	save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);

	/* If we don't have the required alignment, must do this
	   in BLKmode.  */
	if ((low & (MIN (GET_MODE_SIZE (save_mode),
			 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
	  save_mode = BLKmode;

#ifdef ARGS_GROW_DOWNWARD
	delta = -high;
#else
	delta = low;
#endif
	stack_area = gen_rtx_MEM (save_mode,
				  memory_address (save_mode,
						  plus_constant (argblock,
								 delta)));

	set_mem_align (stack_area, PARM_BOUNDARY);
	if (save_mode == BLKmode)
	  {
	    save_area = assign_stack_temp (BLKmode, num_to_save, 0);
	    emit_block_move (validize_mem (save_area), stack_area,
			     GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
	  }
	else
	  {
	    save_area = gen_reg_rtx (save_mode);
	    emit_move_insn (save_area, stack_area);
	  }

	return save_area;
      }

  return NULL_RTX;
}

static void
restore_fixed_argument_area (save_area, argblock, high_to_save, low_to_save)
     rtx save_area;
     rtx argblock;
     int high_to_save;
     int low_to_save;
{
  enum machine_mode save_mode = GET_MODE (save_area);
  int delta;
  rtx stack_area;

#ifdef ARGS_GROW_DOWNWARD
  delta = -high_to_save;
#else
  delta = low_to_save;
#endif
  stack_area = gen_rtx_MEM (save_mode,
			    memory_address (save_mode,
					    plus_constant (argblock, delta)));
  set_mem_align (stack_area, PARM_BOUNDARY);

  if (save_mode != BLKmode)
    emit_move_insn (stack_area, save_area);
  else
    emit_block_move (stack_area, validize_mem (save_area),
		     GEN_INT (high_to_save - low_to_save + 1),
		     BLOCK_OP_CALL_PARM);
}
#endif /* REG_PARM_STACK_SPACE */

/* If any elements in ARGS refer to parameters that are to be passed in
   registers, but not in memory, and whose alignment does not permit a
   direct copy into registers.  Copy the values into a group of pseudos
   which we will later copy into the appropriate hard registers.

   Pseudos for each unaligned argument will be stored into the array
   args[argnum].aligned_regs.  The caller is responsible for deallocating
   the aligned_regs array if it is nonzero.  */

static void
store_unaligned_arguments_into_pseudos (args, num_actuals)
     struct arg_data *args;
     int num_actuals;
{
  int i, j;

  for (i = 0; i < num_actuals; i++)
    if (args[i].reg != 0 && ! args[i].pass_on_stack
	&& args[i].mode == BLKmode
	&& (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
	    < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
      {
	int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
	int big_endian_correction = 0;

	args[i].n_aligned_regs
	  = args[i].partial ? args[i].partial
	    : (bytes + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;

	args[i].aligned_regs = (rtx *) xmalloc (sizeof (rtx)
						* args[i].n_aligned_regs);

	/* Structures smaller than a word are aligned to the least
	   significant byte (to the right).  On a BYTES_BIG_ENDIAN machine,
	   this means we must skip the empty high order bytes when
	   calculating the bit offset.  */
	if (BYTES_BIG_ENDIAN
	    && bytes < UNITS_PER_WORD)
	  big_endian_correction = (BITS_PER_WORD  - (bytes * BITS_PER_UNIT));

	for (j = 0; j < args[i].n_aligned_regs; j++)
	  {
	    rtx reg = gen_reg_rtx (word_mode);
	    rtx word = operand_subword_force (args[i].value, j, BLKmode);
	    int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);

	    args[i].aligned_regs[j] = reg;

	    /* There is no need to restrict this code to loading items
	       in TYPE_ALIGN sized hunks.  The bitfield instructions can
	       load up entire word sized registers efficiently.

	       ??? This may not be needed anymore.
	       We use to emit a clobber here but that doesn't let later
	       passes optimize the instructions we emit.  By storing 0 into
	       the register later passes know the first AND to zero out the
	       bitfield being set in the register is unnecessary.  The store
	       of 0 will be deleted as will at least the first AND.  */

	    emit_move_insn (reg, const0_rtx);

	    bytes -= bitsize / BITS_PER_UNIT;
	    store_bit_field (reg, bitsize, big_endian_correction, word_mode,
			     extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
						word_mode, word_mode,
						BITS_PER_WORD),
			     BITS_PER_WORD);
	  }
      }
}

/* Fill in ARGS_SIZE and ARGS array based on the parameters found in
   ACTPARMS.

   NUM_ACTUALS is the total number of parameters.

   N_NAMED_ARGS is the total number of named arguments.

   FNDECL is the tree code for the target of this call (if known)

   ARGS_SO_FAR holds state needed by the target to know where to place
   the next argument.

   REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
   for arguments which are passed in registers.

   OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
   and may be modified by this routine.

   OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
   flags which may may be modified by this routine.  */

static void
initialize_argument_information (num_actuals, args, args_size, n_named_args,
				 actparms, fndecl, args_so_far,
				 reg_parm_stack_space, old_stack_level,
				 old_pending_adj, must_preallocate,
				 ecf_flags)
     int num_actuals ATTRIBUTE_UNUSED;
     struct arg_data *args;
     struct args_size *args_size;
     int n_named_args ATTRIBUTE_UNUSED;
     tree actparms;
     tree fndecl;
     CUMULATIVE_ARGS *args_so_far;
     int reg_parm_stack_space;
     rtx *old_stack_level;
     int *old_pending_adj;
     int *must_preallocate;
     int *ecf_flags;
{
  /* 1 if scanning parms front to back, -1 if scanning back to front.  */
  int inc;

  /* Count arg position in order args appear.  */
  int argpos;

  struct args_size alignment_pad;
  int i;
  tree p;

  args_size->constant = 0;
  args_size->var = 0;

  /* In this loop, we consider args in the order they are written.
     We fill up ARGS from the front or from the back if necessary
     so that in any case the first arg to be pushed ends up at the front.  */

  if (PUSH_ARGS_REVERSED)
    {
      i = num_actuals - 1, inc = -1;
      /* In this case, must reverse order of args
	 so that we compute and push the last arg first.  */
    }
  else
    {
      i = 0, inc = 1;
    }

  /* I counts args in order (to be) pushed; ARGPOS counts in order written.  */
  for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
    {
      tree type = TREE_TYPE (TREE_VALUE (p));
      int unsignedp;
      enum machine_mode mode;

      args[i].tree_value = TREE_VALUE (p);

      /* Replace erroneous argument with constant zero.  */
      if (type == error_mark_node || !COMPLETE_TYPE_P (type))
	args[i].tree_value = integer_zero_node, type = integer_type_node;

      /* If TYPE is a transparent union, pass things the way we would
	 pass the first field of the union.  We have already verified that
	 the modes are the same.  */
      if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
	type = TREE_TYPE (TYPE_FIELDS (type));

      /* Decide where to pass this arg.

	 args[i].reg is nonzero if all or part is passed in registers.

	 args[i].partial is nonzero if part but not all is passed in registers,
	 and the exact value says how many words are passed in registers.

	 args[i].pass_on_stack is nonzero if the argument must at least be
	 computed on the stack.  It may then be loaded back into registers
	 if args[i].reg is nonzero.

	 These decisions are driven by the FUNCTION_... macros and must agree
	 with those made by function.c.  */

      /* See if this argument should be passed by invisible reference.  */
      if ((TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
	   && contains_placeholder_p (TYPE_SIZE (type)))
	  || TREE_ADDRESSABLE (type)
#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
	  || FUNCTION_ARG_PASS_BY_REFERENCE (*args_so_far, TYPE_MODE (type),
					     type, argpos < n_named_args)
#endif
	  )
	{
	  /* If we're compiling a thunk, pass through invisible
             references instead of making a copy.  */
	  if (current_function_is_thunk
#ifdef FUNCTION_ARG_CALLEE_COPIES
	      || (FUNCTION_ARG_CALLEE_COPIES (*args_so_far, TYPE_MODE (type),
					     type, argpos < n_named_args)
		  /* If it's in a register, we must make a copy of it too.  */
		  /* ??? Is this a sufficient test?  Is there a better one? */
		  && !(TREE_CODE (args[i].tree_value) == VAR_DECL
		       && REG_P (DECL_RTL (args[i].tree_value)))
		  && ! TREE_ADDRESSABLE (type))
#endif
	      )
	    {
	      /* C++ uses a TARGET_EXPR to indicate that we want to make a
	         new object from the argument.  If we are passing by
	         invisible reference, the callee will do that for us, so we
	         can strip off the TARGET_EXPR.  This is not always safe,
	         but it is safe in the only case where this is a useful
	         optimization; namely, when the argument is a plain object.
	         In that case, the frontend is just asking the backend to
	         make a bitwise copy of the argument.  */

	      if (TREE_CODE (args[i].tree_value) == TARGET_EXPR
		  && (DECL_P (TREE_OPERAND (args[i].tree_value, 1)))
		  && ! REG_P (DECL_RTL (TREE_OPERAND (args[i].tree_value, 1))))
		args[i].tree_value = TREE_OPERAND (args[i].tree_value, 1);

	      args[i].tree_value = build1 (ADDR_EXPR,
					   build_pointer_type (type),
					   args[i].tree_value);
	      type = build_pointer_type (type);
	    }
	  else if (TREE_CODE (args[i].tree_value) == TARGET_EXPR)
	    {
	      /* In the V3 C++ ABI, parameters are destroyed in the caller.
		 We implement this by passing the address of the temporary
	         rather than expanding it into another allocated slot.  */
	      args[i].tree_value = build1 (ADDR_EXPR,
					   build_pointer_type (type),
					   args[i].tree_value);
	      type = build_pointer_type (type);
	    }
	  else
	    {
	      /* We make a copy of the object and pass the address to the
		 function being called.  */
	      rtx copy;

	      if (!COMPLETE_TYPE_P (type)
		  || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
		  || (flag_stack_check && ! STACK_CHECK_BUILTIN
		      && (0 < compare_tree_int (TYPE_SIZE_UNIT (type),
						STACK_CHECK_MAX_VAR_SIZE))))
		{
		  /* This is a variable-sized object.  Make space on the stack
		     for it.  */
		  rtx size_rtx = expr_size (TREE_VALUE (p));

		  if (*old_stack_level == 0)
		    {
		      emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
		      *old_pending_adj = pending_stack_adjust;
		      pending_stack_adjust = 0;
		    }

		  copy = gen_rtx_MEM (BLKmode,
				      allocate_dynamic_stack_space
				      (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
		  set_mem_attributes (copy, type, 1);
		}
	      else
		copy = assign_temp (type, 0, 1, 0);

	      store_expr (args[i].tree_value, copy, 0);
	      *ecf_flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);

	      args[i].tree_value = build1 (ADDR_EXPR,
					   build_pointer_type (type),
					   make_tree (type, copy));
	      type = build_pointer_type (type);
	    }
	}

      mode = TYPE_MODE (type);
      unsignedp = TREE_UNSIGNED (type);

#ifdef PROMOTE_FUNCTION_ARGS
      mode = promote_mode (type, mode, &unsignedp, 1);
#endif

      args[i].unsignedp = unsignedp;
      args[i].mode = mode;

      args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
				  argpos < n_named_args);
#ifdef FUNCTION_INCOMING_ARG
      /* If this is a sibling call and the machine has register windows, the
	 register window has to be unwinded before calling the routine, so
	 arguments have to go into the incoming registers.  */
      args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
						     argpos < n_named_args);
#else
      args[i].tail_call_reg = args[i].reg;
#endif

#ifdef FUNCTION_ARG_PARTIAL_NREGS
      if (args[i].reg)
	args[i].partial
	  = FUNCTION_ARG_PARTIAL_NREGS (*args_so_far, mode, type,
					argpos < n_named_args);
#endif

      args[i].pass_on_stack = MUST_PASS_IN_STACK (mode, type);

      /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
	 it means that we are to pass this arg in the register(s) designated
	 by the PARALLEL, but also to pass it in the stack.  */
      if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
	  && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
	args[i].pass_on_stack = 1;

      /* If this is an addressable type, we must preallocate the stack
	 since we must evaluate the object into its final location.

	 If this is to be passed in both registers and the stack, it is simpler
	 to preallocate.  */
      if (TREE_ADDRESSABLE (type)
	  || (args[i].pass_on_stack && args[i].reg != 0))
	*must_preallocate = 1;

      /* If this is an addressable type, we cannot pre-evaluate it.  Thus,
	 we cannot consider this function call constant.  */
      if (TREE_ADDRESSABLE (type))
	*ecf_flags &= ~ECF_LIBCALL_BLOCK;

      /* Compute the stack-size of this argument.  */
      if (args[i].reg == 0 || args[i].partial != 0
	  || reg_parm_stack_space > 0
	  || args[i].pass_on_stack)
	locate_and_pad_parm (mode, type,
#ifdef STACK_PARMS_IN_REG_PARM_AREA
			     1,
#else
			     args[i].reg != 0,
#endif
			     fndecl, args_size, &args[i].offset,
			     &args[i].size, &alignment_pad);

#ifndef ARGS_GROW_DOWNWARD
      args[i].slot_offset = *args_size;
#endif

      args[i].alignment_pad = alignment_pad;

      /* If a part of the arg was put into registers,
	 don't include that part in the amount pushed.  */
      if (reg_parm_stack_space == 0 && ! args[i].pass_on_stack)
	args[i].size.constant -= ((args[i].partial * UNITS_PER_WORD)
				  / (PARM_BOUNDARY / BITS_PER_UNIT)
				  * (PARM_BOUNDARY / BITS_PER_UNIT));

      /* Update ARGS_SIZE, the total stack space for args so far.  */

      args_size->constant += args[i].size.constant;
      if (args[i].size.var)
	{
	  ADD_PARM_SIZE (*args_size, args[i].size.var);
	}

      /* Since the slot offset points to the bottom of the slot,
	 we must record it after incrementing if the args grow down.  */
#ifdef ARGS_GROW_DOWNWARD
      args[i].slot_offset = *args_size;

      args[i].slot_offset.constant = -args_size->constant;
      if (args_size->var)
	SUB_PARM_SIZE (args[i].slot_offset, args_size->var);
#endif

      /* Increment ARGS_SO_FAR, which has info about which arg-registers
	 have been used, etc.  */

      FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
			    argpos < n_named_args);
    }
}

/* Update ARGS_SIZE to contain the total size for the argument block.
   Return the original constant component of the argument block's size.

   REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
   for arguments passed in registers.  */

static int
compute_argument_block_size (reg_parm_stack_space, args_size,
			     preferred_stack_boundary)
     int reg_parm_stack_space;
     struct args_size *args_size;
     int preferred_stack_boundary ATTRIBUTE_UNUSED;
{
  int unadjusted_args_size = args_size->constant;

  /* For accumulate outgoing args mode we don't need to align, since the frame
     will be already aligned.  Align to STACK_BOUNDARY in order to prevent
     backends from generating misaligned frame sizes.  */
  if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
    preferred_stack_boundary = STACK_BOUNDARY;

  /* Compute the actual size of the argument block required.  The variable
     and constant sizes must be combined, the size may have to be rounded,
     and there may be a minimum required size.  */

  if (args_size->var)
    {
      args_size->var = ARGS_SIZE_TREE (*args_size);
      args_size->constant = 0;

      preferred_stack_boundary /= BITS_PER_UNIT;
      if (preferred_stack_boundary > 1)
	{
	  /* We don't handle this case yet.  To handle it correctly we have
	     to add the delta, round and subtract the delta.
	     Currently no machine description requires this support.  */
	  if (stack_pointer_delta & (preferred_stack_boundary - 1))
	    abort ();
	  args_size->var = round_up (args_size->var, preferred_stack_boundary);
	}

      if (reg_parm_stack_space > 0)
	{
	  args_size->var
	    = size_binop (MAX_EXPR, args_size->var,
			  ssize_int (reg_parm_stack_space));

#ifndef OUTGOING_REG_PARM_STACK_SPACE
	  /* The area corresponding to register parameters is not to count in
	     the size of the block we need.  So make the adjustment.  */
	  args_size->var
	    = size_binop (MINUS_EXPR, args_size->var,
			  ssize_int (reg_parm_stack_space));
#endif
	}
    }
  else
    {
      preferred_stack_boundary /= BITS_PER_UNIT;
      if (preferred_stack_boundary < 1)
	preferred_stack_boundary = 1;
      args_size->constant = (((args_size->constant
			       + stack_pointer_delta
			       + preferred_stack_boundary - 1)
			      / preferred_stack_boundary
			      * preferred_stack_boundary)
			     - stack_pointer_delta);

      args_size->constant = MAX (args_size->constant,
				 reg_parm_stack_space);

#ifdef MAYBE_REG_PARM_STACK_SPACE
      if (reg_parm_stack_space == 0)
	args_size->constant = 0;
#endif

#ifndef OUTGOING_REG_PARM_STACK_SPACE
      args_size->constant -= reg_parm_stack_space;
#endif
    }
  return unadjusted_args_size;
}

/* Precompute parameters as needed for a function call.

   FLAGS is mask of ECF_* constants.

   NUM_ACTUALS is the number of arguments.

   ARGS is an array containing information for each argument; this
   routine fills in the INITIAL_VALUE and VALUE fields for each
   precomputed argument.  */

static void
precompute_arguments (flags, num_actuals, args)
     int flags;
     int num_actuals;
     struct arg_data *args;
{
  int i;

  /* If this function call is cse'able, precompute all the parameters.
     Note that if the parameter is constructed into a temporary, this will
     cause an additional copy because the parameter will be constructed
     into a temporary location and then copied into the outgoing arguments.
     If a parameter contains a call to alloca and this function uses the
     stack, precompute the parameter.  */

  /* If we preallocated the stack space, and some arguments must be passed
     on the stack, then we must precompute any parameter which contains a
     function call which will store arguments on the stack.
     Otherwise, evaluating the parameter may clobber previous parameters
     which have already been stored into the stack.  (we have code to avoid
     such case by saving the outgoing stack arguments, but it results in
     worse code)  */

  for (i = 0; i < num_actuals; i++)
    if ((flags & ECF_LIBCALL_BLOCK)
	|| calls_function (args[i].tree_value, !ACCUMULATE_OUTGOING_ARGS))
      {
	enum machine_mode mode;

	/* If this is an addressable type, we cannot pre-evaluate it.  */
	if (TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)))
	  abort ();

	args[i].value
	  = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0);

	/* ANSI doesn't require a sequence point here,
	   but PCC has one, so this will avoid some problems.  */
	emit_queue ();

	args[i].initial_value = args[i].value
	  = protect_from_queue (args[i].value, 0);

	mode = TYPE_MODE (TREE_TYPE (args[i].tree_value));
	if (mode != args[i].mode)
	  {
	    args[i].value
	      = convert_modes (args[i].mode, mode,
			       args[i].value, args[i].unsignedp);
#ifdef PROMOTE_FOR_CALL_ONLY
	    /* CSE will replace this only if it contains args[i].value
	       pseudo, so convert it down to the declared mode using
	       a SUBREG.  */
	    if (GET_CODE (args[i].value) == REG
		&& GET_MODE_CLASS (args[i].mode) == MODE_INT)
	      {
		args[i].initial_value
		  = gen_lowpart_SUBREG (mode, args[i].value);
		SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
		SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
		  args[i].unsignedp);
	      }
#endif
	  }
      }
}

/* Given the current state of MUST_PREALLOCATE and information about
   arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
   compute and return the final value for MUST_PREALLOCATE.  */

static int
finalize_must_preallocate (must_preallocate, num_actuals, args, args_size)
     int must_preallocate;
     int num_actuals;
     struct arg_data *args;
     struct args_size *args_size;
{
  /* See if we have or want to preallocate stack space.

     If we would have to push a partially-in-regs parm
     before other stack parms, preallocate stack space instead.

     If the size of some parm is not a multiple of the required stack
     alignment, we must preallocate.

     If the total size of arguments that would otherwise create a copy in
     a temporary (such as a CALL) is more than half the total argument list
     size, preallocation is faster.

     Another reason to preallocate is if we have a machine (like the m88k)
     where stack alignment is required to be maintained between every
     pair of insns, not just when the call is made.  However, we assume here
     that such machines either do not have push insns (and hence preallocation
     would occur anyway) or the problem is taken care of with
     PUSH_ROUNDING.  */

  if (! must_preallocate)
    {
      int partial_seen = 0;
      int copy_to_evaluate_size = 0;
      int i;

      for (i = 0; i < num_actuals && ! must_preallocate; i++)
	{
	  if (args[i].partial > 0 && ! args[i].pass_on_stack)
	    partial_seen = 1;
	  else if (partial_seen && args[i].reg == 0)
	    must_preallocate = 1;

	  if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
	      && (TREE_CODE (args[i].tree_value) == CALL_EXPR
		  || TREE_CODE (args[i].tree_value) == TARGET_EXPR
		  || TREE_CODE (args[i].tree_value) == COND_EXPR
		  || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
	    copy_to_evaluate_size
	      += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
	}

      if (copy_to_evaluate_size * 2 >= args_size->constant
	  && args_size->constant > 0)
	must_preallocate = 1;
    }
  return must_preallocate;
}

/* If we preallocated stack space, compute the address of each argument
   and store it into the ARGS array.

   We need not ensure it is a valid memory address here; it will be
   validized when it is used.

   ARGBLOCK is an rtx for the address of the outgoing arguments.  */

static void
compute_argument_addresses (args, argblock, num_actuals)
     struct arg_data *args;
     rtx argblock;
     int num_actuals;
{
  if (argblock)
    {
      rtx arg_reg = argblock;
      int i, arg_offset = 0;

      if (GET_CODE (argblock) == PLUS)
	arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));

      for (i = 0; i < num_actuals; i++)
	{
	  rtx offset = ARGS_SIZE_RTX (args[i].offset);
	  rtx slot_offset = ARGS_SIZE_RTX (args[i].slot_offset);
	  rtx addr;

	  /* Skip this parm if it will not be passed on the stack.  */
	  if (! args[i].pass_on_stack && args[i].reg != 0)
	    continue;

	  if (GET_CODE (offset) == CONST_INT)
	    addr = plus_constant (arg_reg, INTVAL (offset));
	  else
	    addr = gen_rtx_PLUS (Pmode, arg_reg, offset);

	  addr = plus_constant (addr, arg_offset);
	  args[i].stack = gen_rtx_MEM (args[i].mode, addr);
	  set_mem_align (args[i].stack, PARM_BOUNDARY);
	  set_mem_attributes (args[i].stack,
			      TREE_TYPE (args[i].tree_value), 1);

	  if (GET_CODE (slot_offset) == CONST_INT)
	    addr = plus_constant (arg_reg, INTVAL (slot_offset));
	  else
	    addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);

	  addr = plus_constant (addr, arg_offset);
	  args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
	  set_mem_align (args[i].stack_slot, PARM_BOUNDARY);
	  set_mem_attributes (args[i].stack_slot,
			      TREE_TYPE (args[i].tree_value), 1);

	  /* Function incoming arguments may overlap with sibling call
	     outgoing arguments and we cannot allow reordering of reads
	     from function arguments with stores to outgoing arguments
	     of sibling calls.  */
	  set_mem_alias_set (args[i].stack, 0);
	  set_mem_alias_set (args[i].stack_slot, 0);
	}
    }
}

/* Given a FNDECL and EXP, return an rtx suitable for use as a target address
   in a call instruction.

   FNDECL is the tree node for the target function.  For an indirect call
   FNDECL will be NULL_TREE.

   ADDR is the operand 0 of CALL_EXPR for this call.  */

static rtx
rtx_for_function_call (fndecl, addr)
     tree fndecl;
     tree addr;
{
  rtx funexp;

  /* Get the function to call, in the form of RTL.  */
  if (fndecl)
    {
      /* If this is the first use of the function, see if we need to
	 make an external definition for it.  */
      if (! TREE_USED (fndecl))
	{
	  assemble_external (fndecl);
	  TREE_USED (fndecl) = 1;
	}

      /* Get a SYMBOL_REF rtx for the function address.  */
      funexp = XEXP (DECL_RTL (fndecl), 0);
    }
  else
    /* Generate an rtx (probably a pseudo-register) for the address.  */
    {
      push_temp_slots ();
      funexp = expand_expr (addr, NULL_RTX, VOIDmode, 0);
      pop_temp_slots ();	/* FUNEXP can't be BLKmode.  */
      emit_queue ();
    }
  return funexp;
}

/* Do the register loads required for any wholly-register parms or any
   parms which are passed both on the stack and in a register.  Their
   expressions were already evaluated.

   Mark all register-parms as living through the call, putting these USE
   insns in the CALL_INSN_FUNCTION_USAGE field.  
 
   When IS_SIBCALL, perform the check_sibcall_overlap_argument_overlap
   checking, setting *SIBCALL_FAILURE if appropriate.  */

static void
load_register_parameters (args, num_actuals, call_fusage, flags, 
			    is_sibcall, sibcall_failure)
     struct arg_data *args;
     int num_actuals;
     rtx *call_fusage;
     int flags;
     int is_sibcall;
     int *sibcall_failure;
{
  int i, j;

#ifdef LOAD_ARGS_REVERSED
  for (i = num_actuals - 1; i >= 0; i--)
#else
  for (i = 0; i < num_actuals; i++)
#endif
    {
      rtx reg = ((flags & ECF_SIBCALL)
		 ? args[i].tail_call_reg : args[i].reg);
      int partial = args[i].partial;
      int nregs;

      if (reg)
	{
	  rtx before_arg = get_last_insn ();
	  /* Set to non-negative if must move a word at a time, even if just
	     one word (e.g, partial == 1 && mode == DFmode).  Set to -1 if
	     we just use a normal move insn.  This value can be zero if the
	     argument is a zero size structure with no fields.  */
	  nregs = (partial ? partial
		   : (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
		      ? ((int_size_in_bytes (TREE_TYPE (args[i].tree_value))
			  + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
		      : -1));

	  /* Handle calls that pass values in multiple non-contiguous
	     locations.  The Irix 6 ABI has examples of this.  */

	  if (GET_CODE (reg) == PARALLEL)
	    emit_group_load (reg, args[i].value,
			     int_size_in_bytes (TREE_TYPE (args[i].tree_value)));

	  /* If simple case, just do move.  If normal partial, store_one_arg
	     has already loaded the register for us.  In all other cases,
	     load the register(s) from memory.  */

	  else if (nregs == -1)
	    emit_move_insn (reg, args[i].value);

	  /* If we have pre-computed the values to put in the registers in
	     the case of non-aligned structures, copy them in now.  */

	  else if (args[i].n_aligned_regs != 0)
	    for (j = 0; j < args[i].n_aligned_regs; j++)
	      emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
			      args[i].aligned_regs[j]);

	  else if (partial == 0 || args[i].pass_on_stack)
	    move_block_to_reg (REGNO (reg),
			       validize_mem (args[i].value), nregs,
			       args[i].mode);

	  /* When a parameter is a block, and perhaps in other cases, it is
	     possible that it did a load from an argument slot that was
	     already clobbered.  */
	  if (is_sibcall
	      && check_sibcall_argument_overlap (before_arg, &args[i], 0))
	    *sibcall_failure = 1;

	  /* Handle calls that pass values in multiple non-contiguous
	     locations.  The Irix 6 ABI has examples of this.  */
	  if (GET_CODE (reg) == PARALLEL)
	    use_group_regs (call_fusage, reg);
	  else if (nregs == -1)
	    use_reg (call_fusage, reg);
	  else
	    use_regs (call_fusage, REGNO (reg), nregs == 0 ? 1 : nregs);
	}
    }
}

/* Try to integrate function.  See expand_inline_function for documentation
   about the parameters.  */

static rtx
try_to_integrate (fndecl, actparms, target, ignore, type, structure_value_addr)
     tree fndecl;
     tree actparms;
     rtx target;
     int ignore;
     tree type;
     rtx structure_value_addr;
{
  rtx temp;
  rtx before_call;
  int i;
  rtx old_stack_level = 0;
  int reg_parm_stack_space = 0;

#ifdef REG_PARM_STACK_SPACE
#ifdef MAYBE_REG_PARM_STACK_SPACE
  reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
#else
  reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
#endif
#endif

  before_call = get_last_insn ();

  timevar_push (TV_INTEGRATION);

  temp = expand_inline_function (fndecl, actparms, target,
				 ignore, type,
				 structure_value_addr);

  timevar_pop (TV_INTEGRATION);

  /* If inlining succeeded, return.  */
  if (temp != (rtx) (size_t) - 1)
    {
      if (ACCUMULATE_OUTGOING_ARGS)
	{
	  /* If the outgoing argument list must be preserved, push
	     the stack before executing the inlined function if it
	     makes any calls.  */

	  i = reg_parm_stack_space;
	  if (i > highest_outgoing_arg_in_use)
	    i = highest_outgoing_arg_in_use;
	  while (--i >= 0 && stack_usage_map[i] == 0)
	    ;

	  if (stack_arg_under_construction || i >= 0)
	    {
	      rtx first_insn
		= before_call ? NEXT_INSN (before_call) : get_insns ();
	      rtx insn = NULL_RTX, seq;

	      /* Look for a call in the inline function code.
	         If DECL_SAVED_INSNS (fndecl)->outgoing_args_size is
	         nonzero then there is a call and it is not necessary
	         to scan the insns.  */

	      if (DECL_SAVED_INSNS (fndecl)->outgoing_args_size == 0)
		for (insn = first_insn; insn; insn = NEXT_INSN (insn))
		  if (GET_CODE (insn) == CALL_INSN)
		    break;

	      if (insn)
		{
		  /* Reserve enough stack space so that the largest
		     argument list of any function call in the inline
		     function does not overlap the argument list being
		     evaluated.  This is usually an overestimate because
		     allocate_dynamic_stack_space reserves space for an
		     outgoing argument list in addition to the requested
		     space, but there is no way to ask for stack space such
		     that an argument list of a certain length can be
		     safely constructed.

		     Add the stack space reserved for register arguments, if
		     any, in the inline function.  What is really needed is the
		     largest value of reg_parm_stack_space in the inline
		     function, but that is not available.  Using the current
		     value of reg_parm_stack_space is wrong, but gives
		     correct results on all supported machines.  */

		  int adjust = (DECL_SAVED_INSNS (fndecl)->outgoing_args_size
				+ reg_parm_stack_space);

		  start_sequence ();
		  emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
		  allocate_dynamic_stack_space (GEN_INT (adjust),
						NULL_RTX, BITS_PER_UNIT);
		  seq = get_insns ();
		  end_sequence ();
		  emit_insn_before (seq, first_insn);
		  emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
		}
	    }
	}

      /* If the result is equivalent to TARGET, return TARGET to simplify
         checks in store_expr.  They can be equivalent but not equal in the
         case of a function that returns BLKmode.  */
      if (temp != target && rtx_equal_p (temp, target))
	return target;
      return temp;
    }

  /* If inlining failed, mark FNDECL as needing to be compiled
     separately after all.  If function was declared inline,
     give a warning.  */
  if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline
      && optimize > 0 && !TREE_ADDRESSABLE (fndecl))
    {
      warning_with_decl (fndecl, "inlining failed in call to `%s'");
      warning ("called from here");
    }
  (*lang_hooks.mark_addressable) (fndecl);
  return (rtx) (size_t) - 1;
}

/* We need to pop PENDING_STACK_ADJUST bytes.  But, if the arguments
   wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
   bytes, then we would need to push some additional bytes to pad the
   arguments.  So, we compute an adjust to the stack pointer for an
   amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
   bytes.  Then, when the arguments are pushed the stack will be perfectly
   aligned.  ARGS_SIZE->CONSTANT is set to the number of bytes that should
   be popped after the call.  Returns the adjustment.  */

static int
combine_pending_stack_adjustment_and_call (unadjusted_args_size,
					   args_size,
					   preferred_unit_stack_boundary)
     int unadjusted_args_size;
     struct args_size *args_size;
     int preferred_unit_stack_boundary;
{
  /* The number of bytes to pop so that the stack will be
     under-aligned by UNADJUSTED_ARGS_SIZE bytes.  */
  HOST_WIDE_INT adjustment;
  /* The alignment of the stack after the arguments are pushed, if we
     just pushed the arguments without adjust the stack here.  */
  HOST_WIDE_INT unadjusted_alignment;

  unadjusted_alignment
    = ((stack_pointer_delta + unadjusted_args_size)
       % preferred_unit_stack_boundary);

  /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
     as possible -- leaving just enough left to cancel out the
     UNADJUSTED_ALIGNMENT.  In other words, we want to ensure that the
     PENDING_STACK_ADJUST is non-negative, and congruent to
     -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY.  */

  /* Begin by trying to pop all the bytes.  */
  unadjusted_alignment
    = (unadjusted_alignment
       - (pending_stack_adjust % preferred_unit_stack_boundary));
  adjustment = pending_stack_adjust;
  /* Push enough additional bytes that the stack will be aligned
     after the arguments are pushed.  */
  if (preferred_unit_stack_boundary > 1)
    {
      if (unadjusted_alignment > 0)
	adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
      else
	adjustment += unadjusted_alignment;
    }

  /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
     bytes after the call.  The right number is the entire
     PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
     by the arguments in the first place.  */
  args_size->constant
    = pending_stack_adjust - adjustment + unadjusted_args_size;

  return adjustment;
}

/* Scan X expression if it does not dereference any argument slots
   we already clobbered by tail call arguments (as noted in stored_args_map
   bitmap).
   Return nonzero if X expression dereferences such argument slots,
   zero otherwise.  */

static int
check_sibcall_argument_overlap_1 (x)
     rtx x;
{
  RTX_CODE code;
  int i, j;
  unsigned int k;
  const char *fmt;

  if (x == NULL_RTX)
    return 0;

  code = GET_CODE (x);

  if (code == MEM)
    {
      if (XEXP (x, 0) == current_function_internal_arg_pointer)
	i = 0;
      else if (GET_CODE (XEXP (x, 0)) == PLUS
	       && XEXP (XEXP (x, 0), 0) ==
		  current_function_internal_arg_pointer
	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
	i = INTVAL (XEXP (XEXP (x, 0), 1));
      else
	return 0;

#ifdef ARGS_GROW_DOWNWARD
      i = -i - GET_MODE_SIZE (GET_MODE (x));
#endif

      for (k = 0; k < GET_MODE_SIZE (GET_MODE (x)); k++)
	if (i + k < stored_args_map->n_bits
	    && TEST_BIT (stored_args_map, i + k))
	  return 1;

      return 0;
    }

  /* Scan all subexpressions.  */
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    {
      if (*fmt == 'e')
	{
	  if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
	    return 1;
	}
      else if (*fmt == 'E')
	{
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
	      return 1;
	}
    }
  return 0;
}

/* Scan sequence after INSN if it does not dereference any argument slots
   we already clobbered by tail call arguments (as noted in stored_args_map
   bitmap).  If MARK_STORED_ARGS_MAP, add stack slots for ARG to
   stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
   should be 0).  Return nonzero if sequence after INSN dereferences such argument
   slots, zero otherwise.  */

static int
check_sibcall_argument_overlap (insn, arg, mark_stored_args_map)
     rtx insn;
     struct arg_data *arg;
     int mark_stored_args_map;
{
  int low, high;

  if (insn == NULL_RTX)
    insn = get_insns ();
  else
    insn = NEXT_INSN (insn);

  for (; insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn)
	&& check_sibcall_argument_overlap_1 (PATTERN (insn)))
      break;

  if (mark_stored_args_map)
    {
#ifdef ARGS_GROW_DOWNWARD
      low = -arg->slot_offset.constant - arg->size.constant;
#else
      low = arg->slot_offset.constant;
#endif

      for (high = low + arg->size.constant; low < high; low++)
	SET_BIT (stored_args_map, low);
    }
  return insn != NULL_RTX;
}

static tree
fix_unsafe_tree (t)
     tree t;
{
  switch (unsafe_for_reeval (t))
    {
    case 0: /* Safe.  */
      break;

    case 1: /* Mildly unsafe.  */
      t = unsave_expr (t);
      break;

    case 2: /* Wildly unsafe.  */
      {
	tree var = build_decl (VAR_DECL, NULL_TREE,
			       TREE_TYPE (t));
	SET_DECL_RTL (var,
		      expand_expr (t, NULL_RTX, VOIDmode, EXPAND_NORMAL));
	t = var;
      }
      break;

    default:
      abort ();
    }
  return t;
}

/* Generate all the code for a function call
   and return an rtx for its value.
   Store the value in TARGET (specified as an rtx) if convenient.
   If the value is stored in TARGET then TARGET is returned.
   If IGNORE is nonzero, then we ignore the value of the function call.  */

rtx
expand_call (exp, target, ignore)
     tree exp;
     rtx target;
     int ignore;
{
  /* Nonzero if we are currently expanding a call.  */
  static int currently_expanding_call = 0;

  /* List of actual parameters.  */
  tree actparms = TREE_OPERAND (exp, 1);
  /* RTX for the function to be called.  */
  rtx funexp;
  /* Sequence of insns to perform a tail recursive "call".  */
  rtx tail_recursion_insns = NULL_RTX;
  /* Sequence of insns to perform a normal "call".  */
  rtx normal_call_insns = NULL_RTX;
  /* Sequence of insns to perform a tail recursive "call".  */
  rtx tail_call_insns = NULL_RTX;
  /* Data type of the function.  */
  tree funtype;
  /* Declaration of the function being called,
     or 0 if the function is computed (not known by name).  */
  tree fndecl = 0;
  rtx insn;
  int try_tail_call = 1;
  int try_tail_recursion = 1;
  int pass;

  /* Register in which non-BLKmode value will be returned,
     or 0 if no value or if value is BLKmode.  */
  rtx valreg;
  /* Address where we should return a BLKmode value;
     0 if value not BLKmode.  */
  rtx structure_value_addr = 0;
  /* Nonzero if that address is being passed by treating it as
     an extra, implicit first parameter.  Otherwise,
     it is passed by being copied directly into struct_value_rtx.  */
  int structure_value_addr_parm = 0;
  /* Size of aggregate value wanted, or zero if none wanted
     or if we are using the non-reentrant PCC calling convention
     or expecting the value in registers.  */
  HOST_WIDE_INT struct_value_size = 0;
  /* Nonzero if called function returns an aggregate in memory PCC style,
     by returning the address of where to find it.  */
  int pcc_struct_value = 0;

  /* Number of actual parameters in this call, including struct value addr.  */
  int num_actuals;
  /* Number of named args.  Args after this are anonymous ones
     and they must all go on the stack.  */
  int n_named_args;

  /* Vector of information about each argument.
     Arguments are numbered in the order they will be pushed,
     not the order they are written.  */
  struct arg_data *args;

  /* Total size in bytes of all the stack-parms scanned so far.  */
  struct args_size args_size;
  struct args_size adjusted_args_size;
  /* Size of arguments before any adjustments (such as rounding).  */
  int unadjusted_args_size;
  /* Data on reg parms scanned so far.  */
  CUMULATIVE_ARGS args_so_far;
  /* Nonzero if a reg parm has been scanned.  */
  int reg_parm_seen;
  /* Nonzero if this is an indirect function call.  */

  /* Nonzero if we must avoid push-insns in the args for this call.
     If stack space is allocated for register parameters, but not by the
     caller, then it is preallocated in the fixed part of the stack frame.
     So the entire argument block must then be preallocated (i.e., we
     ignore PUSH_ROUNDING in that case).  */

  int must_preallocate = !PUSH_ARGS;

  /* Size of the stack reserved for parameter registers.  */
  int reg_parm_stack_space = 0;

  /* Address of space preallocated for stack parms
     (on machines that lack push insns), or 0 if space not preallocated.  */
  rtx argblock = 0;

  /* Mask of ECF_ flags.  */
  int flags = 0;
  /* Nonzero if this is a call to an inline function.  */
  int is_integrable = 0;
#ifdef REG_PARM_STACK_SPACE
  /* Define the boundary of the register parm stack space that needs to be
     saved, if any.  */
  int low_to_save, high_to_save;
  rtx save_area = 0;		/* Place that it is saved */
#endif

  int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
  char *initial_stack_usage_map = stack_usage_map;

  int old_stack_allocated;

  /* State variables to track stack modifications.  */
  rtx old_stack_level = 0;
  int old_stack_arg_under_construction = 0;
  int old_pending_adj = 0;
  int old_inhibit_defer_pop = inhibit_defer_pop;

  /* Some stack pointer alterations we make are performed via
     allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
     which we then also need to save/restore along the way.  */
  int old_stack_pointer_delta = 0;

  rtx call_fusage;
  tree p = TREE_OPERAND (exp, 0);
  tree addr = TREE_OPERAND (exp, 0);
  int i;
  /* The alignment of the stack, in bits.  */
  HOST_WIDE_INT preferred_stack_boundary;
  /* The alignment of the stack, in bytes.  */
  HOST_WIDE_INT preferred_unit_stack_boundary;

  /* See if this is "nothrow" function call.  */
  if (TREE_NOTHROW (exp))
    flags |= ECF_NOTHROW;

  /* See if we can find a DECL-node for the actual function.
     As a result, decide whether this is a call to an integrable function.  */

  fndecl = get_callee_fndecl (exp);
  if (fndecl)
    {
      if (!flag_no_inline
	  && fndecl != current_function_decl
	  && DECL_INLINE (fndecl)
	  && DECL_SAVED_INSNS (fndecl)
	  && DECL_SAVED_INSNS (fndecl)->inlinable)
	is_integrable = 1;
      else if (! TREE_ADDRESSABLE (fndecl))
	{
	  /* In case this function later becomes inlinable,
	     record that there was already a non-inline call to it.

	     Use abstraction instead of setting TREE_ADDRESSABLE
	     directly.  */
	  if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline
	      && optimize > 0)
	    {
	      warning_with_decl (fndecl, "can't inline call to `%s'");
	      warning ("called from here");
	    }
	  (*lang_hooks.mark_addressable) (fndecl);
	}

      flags |= flags_from_decl_or_type (fndecl);
    }

  /* If we don't have specific function to call, see if we have a
     attributes set in the type.  */
  else
    flags |= flags_from_decl_or_type (TREE_TYPE (TREE_TYPE (p)));

#ifdef REG_PARM_STACK_SPACE
#ifdef MAYBE_REG_PARM_STACK_SPACE
  reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
#else
  reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
#endif
#endif

#ifndef OUTGOING_REG_PARM_STACK_SPACE
  if (reg_parm_stack_space > 0 && PUSH_ARGS)
    must_preallocate = 1;
#endif

  /* Warn if this value is an aggregate type,
     regardless of which calling convention we are using for it.  */
  if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp)))
    warning ("function call has aggregate value");

  /* Set up a place to return a structure.  */

  /* Cater to broken compilers.  */
  if (aggregate_value_p (exp))
    {
      /* This call returns a big structure.  */
      flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);

#ifdef PCC_STATIC_STRUCT_RETURN
      {
	pcc_struct_value = 1;
	/* Easier than making that case work right.  */
	if (is_integrable)
	  {
	    /* In case this is a static function, note that it has been
	       used.  */
	    if (! TREE_ADDRESSABLE (fndecl))
	      (*lang_hooks.mark_addressable) (fndecl);
	    is_integrable = 0;
	  }
      }
#else /* not PCC_STATIC_STRUCT_RETURN */
      {
	struct_value_size = int_size_in_bytes (TREE_TYPE (exp));

	if (CALL_EXPR_HAS_RETURN_SLOT_ADDR (exp))
	  {
	    /* The structure value address arg is already in actparms.
	       Pull it out.  It might be nice to just leave it there, but
	       we need to set structure_value_addr.  */
	    tree return_arg = TREE_VALUE (actparms);
	    actparms = TREE_CHAIN (actparms);
	    structure_value_addr = expand_expr (return_arg, NULL_RTX,
						VOIDmode, EXPAND_NORMAL);
	  }
	else if (target && GET_CODE (target) == MEM)
	  structure_value_addr = XEXP (target, 0);
	else
	  {
	    /* For variable-sized objects, we must be called with a target
	       specified.  If we were to allocate space on the stack here,
	       we would have no way of knowing when to free it.  */
	    rtx d = assign_temp (TREE_TYPE (exp), 1, 1, 1);

	    mark_temp_addr_taken (d);
	    structure_value_addr = XEXP (d, 0);
	    target = 0;
	  }
      }
#endif /* not PCC_STATIC_STRUCT_RETURN */
    }

  /* If called function is inline, try to integrate it.  */

  if (is_integrable)
    {
      rtx temp = try_to_integrate (fndecl, actparms, target,
				   ignore, TREE_TYPE (exp),
				   structure_value_addr);
      if (temp != (rtx) (size_t) - 1)
	return temp;
    }

  /* Figure out the amount to which the stack should be aligned.  */
  preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
  if (fndecl)
    {
      struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
      if (i && i->preferred_incoming_stack_boundary)
	preferred_stack_boundary = i->preferred_incoming_stack_boundary;
    }

  /* Operand 0 is a pointer-to-function; get the type of the function.  */
  funtype = TREE_TYPE (addr);
  if (! POINTER_TYPE_P (funtype))
    abort ();
  funtype = TREE_TYPE (funtype);

  /* See if this is a call to a function that can return more than once
     or a call to longjmp or malloc.  */
  flags |= special_function_p (fndecl, flags);

  if (flags & ECF_MAY_BE_ALLOCA)
    current_function_calls_alloca = 1;

  /* If struct_value_rtx is 0, it means pass the address
     as if it were an extra parameter.  */
  if (structure_value_addr && struct_value_rtx == 0)
    {
      /* If structure_value_addr is a REG other than
	 virtual_outgoing_args_rtx, we can use always use it.  If it
	 is not a REG, we must always copy it into a register.
	 If it is virtual_outgoing_args_rtx, we must copy it to another
	 register in some cases.  */
      rtx temp = (GET_CODE (structure_value_addr) != REG
		  || (ACCUMULATE_OUTGOING_ARGS
		      && stack_arg_under_construction
		      && structure_value_addr == virtual_outgoing_args_rtx)
		  ? copy_addr_to_reg (structure_value_addr)
		  : structure_value_addr);

      actparms
	= tree_cons (error_mark_node,
		     make_tree (build_pointer_type (TREE_TYPE (funtype)),
				temp),
		     actparms);
      structure_value_addr_parm = 1;
    }

  /* Count the arguments and set NUM_ACTUALS.  */
  for (p = actparms, num_actuals = 0; p; p = TREE_CHAIN (p))
    num_actuals++;

  /* Compute number of named args.
     Normally, don't include the last named arg if anonymous args follow.
     We do include the last named arg if STRICT_ARGUMENT_NAMING is nonzero.
     (If no anonymous args follow, the result of list_length is actually
     one too large.  This is harmless.)

     If PRETEND_OUTGOING_VARARGS_NAMED is set and STRICT_ARGUMENT_NAMING is
     zero, this machine will be able to place unnamed args that were
     passed in registers into the stack.  So treat all args as named.
     This allows the insns emitting for a specific argument list to be
     independent of the function declaration.

     If PRETEND_OUTGOING_VARARGS_NAMED is not set, we do not have any
     reliable way to pass unnamed args in registers, so we must force
     them into memory.  */

  if ((STRICT_ARGUMENT_NAMING
       || ! PRETEND_OUTGOING_VARARGS_NAMED)
      && TYPE_ARG_TYPES (funtype) != 0)
    n_named_args
      = (list_length (TYPE_ARG_TYPES (funtype))
	 /* Don't include the last named arg.  */
	 - (STRICT_ARGUMENT_NAMING ? 0 : 1)
	 /* Count the struct value address, if it is passed as a parm.  */
	 + structure_value_addr_parm);
  else
    /* If we know nothing, treat all args as named.  */
    n_named_args = num_actuals;

  /* Start updating where the next arg would go.

     On some machines (such as the PA) indirect calls have a different
     calling convention than normal calls.  The last argument in
     INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
     or not.  */
  INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl);

  /* Make a vector to hold all the information about each arg.  */
  args = (struct arg_data *) alloca (num_actuals * sizeof (struct arg_data));
  memset ((char *) args, 0, num_actuals * sizeof (struct arg_data));

  /* Build up entries in the ARGS array, compute the size of the
     arguments into ARGS_SIZE, etc.  */
  initialize_argument_information (num_actuals, args, &args_size,
				   n_named_args, actparms, fndecl,
				   &args_so_far, reg_parm_stack_space,
				   &old_stack_level, &old_pending_adj,
				   &must_preallocate, &flags);

  if (args_size.var)
    {
      /* If this function requires a variable-sized argument list, don't
	 try to make a cse'able block for this call.  We may be able to
	 do this eventually, but it is too complicated to keep track of
	 what insns go in the cse'able block and which don't.  */

      flags &= ~ECF_LIBCALL_BLOCK;
      must_preallocate = 1;
    }

  /* Now make final decision about preallocating stack space.  */
  must_preallocate = finalize_must_preallocate (must_preallocate,
						num_actuals, args,
						&args_size);

  /* If the structure value address will reference the stack pointer, we
     must stabilize it.  We don't need to do this if we know that we are
     not going to adjust the stack pointer in processing this call.  */

  if (structure_value_addr
      && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
	  || reg_mentioned_p (virtual_outgoing_args_rtx,
			      structure_value_addr))
      && (args_size.var
	  || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
    structure_value_addr = copy_to_reg (structure_value_addr);

  /* Tail calls can make things harder to debug, and we're traditionally
     pushed these optimizations into -O2.  Don't try if we're already
     expanding a call, as that means we're an argument.  Don't try if
     there's cleanups, as we know there's code to follow the call.

     If rtx_equal_function_value_matters is false, that means we've
     finished with regular parsing.  Which means that some of the
     machinery we use to generate tail-calls is no longer in place.
     This is most often true of sjlj-exceptions, which we couldn't
     tail-call to anyway.  */

  if (currently_expanding_call++ != 0
      || !flag_optimize_sibling_calls
      || !rtx_equal_function_value_matters
      || any_pending_cleanups (1)
      || args_size.var)
    try_tail_call = try_tail_recursion = 0;

  /* Tail recursion fails, when we are not dealing with recursive calls.  */
  if (!try_tail_recursion
      || TREE_CODE (addr) != ADDR_EXPR
      || TREE_OPERAND (addr, 0) != current_function_decl)
    try_tail_recursion = 0;

  /*  Rest of purposes for tail call optimizations to fail.  */
  if (
#ifdef HAVE_sibcall_epilogue
      !HAVE_sibcall_epilogue
#else
      1
#endif
      || !try_tail_call
      /* Doing sibling call optimization needs some work, since
	 structure_value_addr can be allocated on the stack.
	 It does not seem worth the effort since few optimizable
	 sibling calls will return a structure.  */
      || structure_value_addr != NULL_RTX
      /* Check whether the target is able to optimize the call
	 into a sibcall.  */
      || !(*targetm.function_ok_for_sibcall) (fndecl, exp)
      /* Functions that do not return exactly once may not be sibcall
         optimized.  */
      || (flags & (ECF_RETURNS_TWICE | ECF_LONGJMP | ECF_NORETURN))
      || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
      /* If the called function is nested in the current one, it might access
         some of the caller's arguments, but could clobber them beforehand if
         the argument areas are shared.  */
       || decl_function_context (fndecl) == current_function_decl
      /* If this function requires more stack slots than the current
	 function, we cannot change it into a sibling call.  */
      || args_size.constant > current_function_args_size
      /* If the callee pops its own arguments, then it must pop exactly
	 the same number of arguments as the current function.  */
      || RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
	 != RETURN_POPS_ARGS (current_function_decl,
			      TREE_TYPE (current_function_decl),
			      current_function_args_size))
    try_tail_call = 0;

  if (try_tail_call || try_tail_recursion)
    {
      int end, inc;
      actparms = NULL_TREE;
      /* Ok, we're going to give the tail call the old college try.
	 This means we're going to evaluate the function arguments
	 up to three times.  There are two degrees of badness we can
	 encounter, those that can be unsaved and those that can't.
	 (See unsafe_for_reeval commentary for details.)

	 Generate a new argument list.  Pass safe arguments through
	 unchanged.  For the easy badness wrap them in UNSAVE_EXPRs.
	 For hard badness, evaluate them now and put their resulting
	 rtx in a temporary VAR_DECL.

	 initialize_argument_information has ordered the array for the
	 order to be pushed, and we must remember this when reconstructing
	 the original argument order.  */

      if (PUSH_ARGS_REVERSED)
	{
	  inc = 1;
	  i = 0;
	  end = num_actuals;
	}
      else
	{
	  inc = -1;
	  i = num_actuals - 1;
	  end = -1;
	}

      for (; i != end; i += inc)
	{
          args[i].tree_value = fix_unsafe_tree (args[i].tree_value);
	  /* We need to build actparms for optimize_tail_recursion.  We can
	     safely trash away TREE_PURPOSE, since it is unused by this
	     function.  */
	  if (try_tail_recursion)
	    actparms = tree_cons (NULL_TREE, args[i].tree_value, actparms);
	}
      /* Do the same for the function address if it is an expression.  */
      if (!fndecl)
        addr = fix_unsafe_tree (addr);
      /* Expanding one of those dangerous arguments could have added
	 cleanups, but otherwise give it a whirl.  */
      if (any_pending_cleanups (1))
	try_tail_call = try_tail_recursion = 0;
    }

  /* Generate a tail recursion sequence when calling ourselves.  */

  if (try_tail_recursion)
    {
      /* We want to emit any pending stack adjustments before the tail
	 recursion "call".  That way we know any adjustment after the tail
	 recursion call can be ignored if we indeed use the tail recursion
	 call expansion.  */
      int save_pending_stack_adjust = pending_stack_adjust;
      int save_stack_pointer_delta = stack_pointer_delta;

      /* Emit any queued insns now; otherwise they would end up in
	 only one of the alternates.  */
      emit_queue ();

      /* Use a new sequence to hold any RTL we generate.  We do not even
	 know if we will use this RTL yet.  The final decision can not be
	 made until after RTL generation for the entire function is
	 complete.  */
      start_sequence ();
      /* If expanding any of the arguments creates cleanups, we can't
	 do a tailcall.  So, we'll need to pop the pending cleanups
	 list.  If, however, all goes well, and there are no cleanups
	 then the call to expand_start_target_temps will have no
	 effect.  */
      expand_start_target_temps ();
      if (optimize_tail_recursion (actparms, get_last_insn ()))
	{
	  if (any_pending_cleanups (1))
	    try_tail_call = try_tail_recursion = 0;
	  else
	    tail_recursion_insns = get_insns ();
	}
      expand_end_target_temps ();
      end_sequence ();

      /* Restore the original pending stack adjustment for the sibling and
	 normal call cases below.  */
      pending_stack_adjust = save_pending_stack_adjust;
      stack_pointer_delta = save_stack_pointer_delta;
    }

  if (profile_arc_flag && (flags & ECF_FORK_OR_EXEC))
    {
      /* A fork duplicates the profile information, and an exec discards
	 it.  We can't rely on fork/exec to be paired.  So write out the
	 profile information we have gathered so far, and clear it.  */
      /* ??? When Linux's __clone is called with CLONE_VM set, profiling
	 is subject to race conditions, just as with multithreaded
	 programs.  */

      emit_library_call (gcov_flush_libfunc, LCT_ALWAYS_RETURN, VOIDmode, 0);
    }

  /* Ensure current function's preferred stack boundary is at least
     what we need.  We don't have to increase alignment for recursive
     functions.  */
  if (cfun->preferred_stack_boundary < preferred_stack_boundary
      && fndecl != current_function_decl)
    cfun->preferred_stack_boundary = preferred_stack_boundary;
  if (fndecl == current_function_decl)
    cfun->recursive_call_emit = true;

  preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;

  function_call_count++;

  /* We want to make two insn chains; one for a sibling call, the other
     for a normal call.  We will select one of the two chains after
     initial RTL generation is complete.  */
  for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
    {
      int sibcall_failure = 0;
      /* We want to emit any pending stack adjustments before the tail
	 recursion "call".  That way we know any adjustment after the tail
	 recursion call can be ignored if we indeed use the tail recursion
	 call expansion.  */
      int save_pending_stack_adjust = 0;
      int save_stack_pointer_delta = 0;
      rtx insns;
      rtx before_call, next_arg_reg;

      if (pass == 0)
	{
	  /* Emit any queued insns now; otherwise they would end up in
             only one of the alternates.  */
	  emit_queue ();

	  /* State variables we need to save and restore between
	     iterations.  */
	  save_pending_stack_adjust = pending_stack_adjust;
	  save_stack_pointer_delta = stack_pointer_delta;
	}
      if (pass)
	flags &= ~ECF_SIBCALL;
      else
	flags |= ECF_SIBCALL;

      /* Other state variables that we must reinitialize each time
	 through the loop (that are not initialized by the loop itself).  */
      argblock = 0;
      call_fusage = 0;

      /* Start a new sequence for the normal call case.

	 From this point on, if the sibling call fails, we want to set
	 sibcall_failure instead of continuing the loop.  */
      start_sequence ();

      if (pass == 0)
	{
	  /* We know at this point that there are not currently any
	     pending cleanups.  If, however, in the process of evaluating
	     the arguments we were to create some, we'll need to be
	     able to get rid of them.  */
	  expand_start_target_temps ();
	}

      /* Don't let pending stack adjusts add up to too much.
	 Also, do all pending adjustments now if there is any chance
	 this might be a call to alloca or if we are expanding a sibling
	 call sequence or if we are calling a function that is to return
	 with stack pointer depressed.  */
      if (pending_stack_adjust >= 32
	  || (pending_stack_adjust > 0
	      && (flags & (ECF_MAY_BE_ALLOCA | ECF_SP_DEPRESSED)))
	  || pass == 0)
	do_pending_stack_adjust ();

      /* When calling a const function, we must pop the stack args right away,
	 so that the pop is deleted or moved with the call.  */
      if (pass && (flags & ECF_LIBCALL_BLOCK))
	NO_DEFER_POP;

#ifdef FINAL_REG_PARM_STACK_SPACE
      reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant,
							 args_size.var);
#endif
      /* Precompute any arguments as needed.  */
      if (pass)
	precompute_arguments (flags, num_actuals, args);

      /* Now we are about to start emitting insns that can be deleted
	 if a libcall is deleted.  */
      if (pass && (flags & (ECF_LIBCALL_BLOCK | ECF_MALLOC)))
	start_sequence ();

      adjusted_args_size = args_size;
      /* Compute the actual size of the argument block required.  The variable
	 and constant sizes must be combined, the size may have to be rounded,
	 and there may be a minimum required size.  When generating a sibcall
	 pattern, do not round up, since we'll be re-using whatever space our
	 caller provided.  */
      unadjusted_args_size
	= compute_argument_block_size (reg_parm_stack_space,
				       &adjusted_args_size,
				       (pass == 0 ? 0
					: preferred_stack_boundary));

      old_stack_allocated = stack_pointer_delta - pending_stack_adjust;

      /* The argument block when performing a sibling call is the
         incoming argument block.  */
      if (pass == 0)
	{
	  argblock = virtual_incoming_args_rtx;
	  argblock
#ifdef STACK_GROWS_DOWNWARD
	    = plus_constant (argblock, current_function_pretend_args_size);
#else
	    = plus_constant (argblock, -current_function_pretend_args_size);
#endif
	  stored_args_map = sbitmap_alloc (args_size.constant);
	  sbitmap_zero (stored_args_map);
	}

      /* If we have no actual push instructions, or shouldn't use them,
	 make space for all args right now.  */
      else if (adjusted_args_size.var != 0)
	{
	  if (old_stack_level == 0)
	    {
	      emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
	      old_stack_pointer_delta = stack_pointer_delta;
	      old_pending_adj = pending_stack_adjust;
	      pending_stack_adjust = 0;
	      /* stack_arg_under_construction says whether a stack arg is
		 being constructed at the old stack level.  Pushing the stack
		 gets a clean outgoing argument block.  */
	      old_stack_arg_under_construction = stack_arg_under_construction;
	      stack_arg_under_construction = 0;
	    }
	  argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
	}
      else
	{
	  /* Note that we must go through the motions of allocating an argument
	     block even if the size is zero because we may be storing args
	     in the area reserved for register arguments, which may be part of
	     the stack frame.  */

	  int needed = adjusted_args_size.constant;

	  /* Store the maximum argument space used.  It will be pushed by
	     the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
	     checking).  */

	  if (needed > current_function_outgoing_args_size)
	    current_function_outgoing_args_size = needed;

	  if (must_preallocate)
	    {
	      if (ACCUMULATE_OUTGOING_ARGS)
		{
		  /* Since the stack pointer will never be pushed, it is
		     possible for the evaluation of a parm to clobber
		     something we have already written to the stack.
		     Since most function calls on RISC machines do not use
		     the stack, this is uncommon, but must work correctly.

		     Therefore, we save any area of the stack that was already
		     written and that we are using.  Here we set up to do this
		     by making a new stack usage map from the old one.  The
		     actual save will be done by store_one_arg.

		     Another approach might be to try to reorder the argument
		     evaluations to avoid this conflicting stack usage.  */

#ifndef OUTGOING_REG_PARM_STACK_SPACE
		  /* Since we will be writing into the entire argument area,
		     the map must be allocated for its entire size, not just
		     the part that is the responsibility of the caller.  */
		  needed += reg_parm_stack_space;
#endif

#ifdef ARGS_GROW_DOWNWARD
		  highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
						     needed + 1);
#else
		  highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
						     needed);
#endif
		  stack_usage_map
		    = (char *) alloca (highest_outgoing_arg_in_use);

		  if (initial_highest_arg_in_use)
		    memcpy (stack_usage_map, initial_stack_usage_map,
			    initial_highest_arg_in_use);

		  if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
		    memset (&stack_usage_map[initial_highest_arg_in_use], 0,
			   (highest_outgoing_arg_in_use
			    - initial_highest_arg_in_use));
		  needed = 0;

		  /* The address of the outgoing argument list must not be
		     copied to a register here, because argblock would be left
		     pointing to the wrong place after the call to
		     allocate_dynamic_stack_space below.  */

		  argblock = virtual_outgoing_args_rtx;
		}
	      else
		{
		  if (inhibit_defer_pop == 0)
		    {
		      /* Try to reuse some or all of the pending_stack_adjust
			 to get this space.  */
		      needed
			= (combine_pending_stack_adjustment_and_call
			   (unadjusted_args_size,
			    &adjusted_args_size,
			    preferred_unit_stack_boundary));

		      /* combine_pending_stack_adjustment_and_call computes
			 an adjustment before the arguments are allocated.
			 Account for them and see whether or not the stack
			 needs to go up or down.  */
		      needed = unadjusted_args_size - needed;

		      if (needed < 0)
			{
			  /* We're releasing stack space.  */
			  /* ??? We can avoid any adjustment at all if we're
			     already aligned.  FIXME.  */
			  pending_stack_adjust = -needed;
			  do_pending_stack_adjust ();
			  needed = 0;
			}
		      else
			/* We need to allocate space.  We'll do that in
			   push_block below.  */
			pending_stack_adjust = 0;
		    }

		  /* Special case this because overhead of `push_block' in
		     this case is non-trivial.  */
		  if (needed == 0)
		    argblock = virtual_outgoing_args_rtx;
		  else
		    argblock = push_block (GEN_INT (needed), 0, 0);

		  /* We only really need to call `copy_to_reg' in the case
		     where push insns are going to be used to pass ARGBLOCK
		     to a function call in ARGS.  In that case, the stack
		     pointer changes value from the allocation point to the
		     call point, and hence the value of
		     VIRTUAL_OUTGOING_ARGS_RTX changes as well.  But might
		     as well always do it.  */
		  argblock = copy_to_reg (argblock);
		}
	    }
	}

      if (ACCUMULATE_OUTGOING_ARGS)
	{
	  /* The save/restore code in store_one_arg handles all
	     cases except one: a constructor call (including a C
	     function returning a BLKmode struct) to initialize
	     an argument.  */
	  if (stack_arg_under_construction)
	    {
#ifndef OUTGOING_REG_PARM_STACK_SPACE
	      rtx push_size = GEN_INT (reg_parm_stack_space
				       + adjusted_args_size.constant);
#else
	      rtx push_size = GEN_INT (adjusted_args_size.constant);
#endif
	      if (old_stack_level == 0)
		{
		  emit_stack_save (SAVE_BLOCK, &old_stack_level,
				   NULL_RTX);
		  old_stack_pointer_delta = stack_pointer_delta;
		  old_pending_adj = pending_stack_adjust;
		  pending_stack_adjust = 0;
		  /* stack_arg_under_construction says whether a stack
		     arg is being constructed at the old stack level.
		     Pushing the stack gets a clean outgoing argument
		     block.  */
		  old_stack_arg_under_construction
		    = stack_arg_under_construction;
		  stack_arg_under_construction = 0;
		  /* Make a new map for the new argument list.  */
		  stack_usage_map = (char *)
		    alloca (highest_outgoing_arg_in_use);
		  memset (stack_usage_map, 0, highest_outgoing_arg_in_use);
		  highest_outgoing_arg_in_use = 0;
		}
	      allocate_dynamic_stack_space (push_size, NULL_RTX,
					    BITS_PER_UNIT);
	    }

	  /* If argument evaluation might modify the stack pointer,
	     copy the address of the argument list to a register.  */
	  for (i = 0; i < num_actuals; i++)
	    if (args[i].pass_on_stack)
	      {
		argblock = copy_addr_to_reg (argblock);
		break;
	      }
	}
      
      compute_argument_addresses (args, argblock, num_actuals);

      /* If we push args individually in reverse order, perform stack alignment
	 before the first push (the last arg).  */
      if (PUSH_ARGS_REVERSED && argblock == 0
	  && adjusted_args_size.constant != unadjusted_args_size)
	{
	  /* When the stack adjustment is pending, we get better code
	     by combining the adjustments.  */
	  if (pending_stack_adjust
	      && ! (flags & ECF_LIBCALL_BLOCK)
	      && ! inhibit_defer_pop)
	    {
	      pending_stack_adjust
		= (combine_pending_stack_adjustment_and_call
		   (unadjusted_args_size,
		    &adjusted_args_size,
		    preferred_unit_stack_boundary));
	      do_pending_stack_adjust ();
	    }
	  else if (argblock == 0)
	    anti_adjust_stack (GEN_INT (adjusted_args_size.constant
					- unadjusted_args_size));
	}
      /* Now that the stack is properly aligned, pops can't safely
	 be deferred during the evaluation of the arguments.  */
      NO_DEFER_POP;

      funexp = rtx_for_function_call (fndecl, addr);

      /* Figure out the register where the value, if any, will come back.  */
      valreg = 0;
      if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
	  && ! structure_value_addr)
	{
	  if (pcc_struct_value)
	    valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
					  fndecl, (pass == 0));
	  else
	    valreg = hard_function_value (TREE_TYPE (exp), fndecl, (pass == 0));
	}

      /* Precompute all register parameters.  It isn't safe to compute anything
	 once we have started filling any specific hard regs.  */
      precompute_register_parameters (num_actuals, args, &reg_parm_seen);

#ifdef REG_PARM_STACK_SPACE
      /* Save the fixed argument area if it's part of the caller's frame and
	 is clobbered by argument setup for this call.  */
      if (ACCUMULATE_OUTGOING_ARGS && pass)
	save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
					      &low_to_save, &high_to_save);
#endif

      /* Now store (and compute if necessary) all non-register parms.
	 These come before register parms, since they can require block-moves,
	 which could clobber the registers used for register parms.
	 Parms which have partial registers are not stored here,
	 but we do preallocate space here if they want that.  */

      for (i = 0; i < num_actuals; i++)
	if (args[i].reg == 0 || args[i].pass_on_stack)
	  {
	    rtx before_arg = get_last_insn ();

	    if (store_one_arg (&args[i], argblock, flags,
			       adjusted_args_size.var != 0,
			       reg_parm_stack_space)
		|| (pass == 0
		    && check_sibcall_argument_overlap (before_arg,
						       &args[i], 1)))
	      sibcall_failure = 1;
	  }

      /* If we have a parm that is passed in registers but not in memory
	 and whose alignment does not permit a direct copy into registers,
	 make a group of pseudos that correspond to each register that we
	 will later fill.  */
      if (STRICT_ALIGNMENT)
	store_unaligned_arguments_into_pseudos (args, num_actuals);

      /* Now store any partially-in-registers parm.
	 This is the last place a block-move can happen.  */
      if (reg_parm_seen)
	for (i = 0; i < num_actuals; i++)
	  if (args[i].partial != 0 && ! args[i].pass_on_stack)
	    {
	      rtx before_arg = get_last_insn ();

	      if (store_one_arg (&args[i], argblock, flags,
				 adjusted_args_size.var != 0,
				 reg_parm_stack_space)
		  || (pass == 0
		      && check_sibcall_argument_overlap (before_arg,
							 &args[i], 1)))
		sibcall_failure = 1;
	    }

      /* If we pushed args in forward order, perform stack alignment
	 after pushing the last arg.  */
      if (!PUSH_ARGS_REVERSED && argblock == 0)
	anti_adjust_stack (GEN_INT (adjusted_args_size.constant
				    - unadjusted_args_size));

      /* If register arguments require space on the stack and stack space
	 was not preallocated, allocate stack space here for arguments
	 passed in registers.  */
#ifdef OUTGOING_REG_PARM_STACK_SPACE
      if (!ACCUMULATE_OUTGOING_ARGS
	  && must_preallocate == 0 && reg_parm_stack_space > 0)
	anti_adjust_stack (GEN_INT (reg_parm_stack_space));
#endif

      /* Pass the function the address in which to return a
	 structure value.  */
      if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
	{
	  emit_move_insn (struct_value_rtx,
			  force_reg (Pmode,
				     force_operand (structure_value_addr,
						    NULL_RTX)));

	  if (GET_CODE (struct_value_rtx) == REG)
	    use_reg (&call_fusage, struct_value_rtx);
	}

      funexp = prepare_call_address (funexp, fndecl, &call_fusage,
				     reg_parm_seen, pass == 0);

      load_register_parameters (args, num_actuals, &call_fusage, flags,
				pass == 0, &sibcall_failure);

      /* Perform postincrements before actually calling the function.  */
      emit_queue ();

      /* Save a pointer to the last insn before the call, so that we can
	 later safely search backwards to find the CALL_INSN.  */
      before_call = get_last_insn ();

      /* Set up next argument register.  For sibling calls on machines
	 with register windows this should be the incoming register.  */
#ifdef FUNCTION_INCOMING_ARG
      if (pass == 0)
	next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
					      void_type_node, 1);
      else
#endif
	next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
				     void_type_node, 1);

      /* All arguments and registers used for the call must be set up by
	 now!  */

      /* Stack must be properly aligned now.  */
      if (pass && stack_pointer_delta % preferred_unit_stack_boundary)
	abort ();

      /* Generate the actual call instruction.  */
      emit_call_1 (funexp, fndecl, funtype, unadjusted_args_size,
		   adjusted_args_size.constant, struct_value_size,
		   next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
		   flags, & args_so_far);

      /* If call is cse'able, make appropriate pair of reg-notes around it.
	 Test valreg so we don't crash; may safely ignore `const'
	 if return type is void.  Disable for PARALLEL return values, because
	 we have no way to move such values into a pseudo register.  */
      if (pass && (flags & ECF_LIBCALL_BLOCK))
	{
	  rtx insns;

	  if (valreg == 0 || GET_CODE (valreg) == PARALLEL)
	    {
	      insns = get_insns ();
	      end_sequence ();
	      emit_insn (insns);
	    }
	  else
	    {
	      rtx note = 0;
	      rtx temp = gen_reg_rtx (GET_MODE (valreg));

	      /* Mark the return value as a pointer if needed.  */
	      if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
		mark_reg_pointer (temp,
				  TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp))));

	      /* Construct an "equal form" for the value which mentions all the
		 arguments in order as well as the function name.  */
	      for (i = 0; i < num_actuals; i++)
		note = gen_rtx_EXPR_LIST (VOIDmode,
					  args[i].initial_value, note);
	      note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note);

	      insns = get_insns ();
	      end_sequence ();

	      if (flags & ECF_PURE)
		note = gen_rtx_EXPR_LIST (VOIDmode,
			gen_rtx_USE (VOIDmode,
				     gen_rtx_MEM (BLKmode,
						  gen_rtx_SCRATCH (VOIDmode))),
			note);

	      emit_libcall_block (insns, temp, valreg, note);

	      valreg = temp;
	    }
	}
      else if (pass && (flags & ECF_MALLOC))
	{
	  rtx temp = gen_reg_rtx (GET_MODE (valreg));
	  rtx last, insns;

	  /* The return value from a malloc-like function is a pointer.  */
	  if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
	    mark_reg_pointer (temp, BIGGEST_ALIGNMENT);

	  emit_move_insn (temp, valreg);

	  /* The return value from a malloc-like function can not alias
	     anything else.  */
	  last = get_last_insn ();
	  REG_NOTES (last) =
	    gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last));

	  /* Write out the sequence.  */
	  insns = get_insns ();
	  end_sequence ();
	  emit_insn (insns);
	  valreg = temp;
	}

      /* For calls to `setjmp', etc., inform flow.c it should complain
	 if nonvolatile values are live.  For functions that cannot return,
	 inform flow that control does not fall through.  */

      if ((flags & (ECF_NORETURN | ECF_LONGJMP)) || pass == 0)
	{
	  /* The barrier must be emitted
	     immediately after the CALL_INSN.  Some ports emit more
	     than just a CALL_INSN above, so we must search for it here.  */

	  rtx last = get_last_insn ();
	  while (GET_CODE (last) != CALL_INSN)
	    {
	      last = PREV_INSN (last);
	      /* There was no CALL_INSN?  */
	      if (last == before_call)
		abort ();
	    }

	  emit_barrier_after (last);
	}

      if (flags & ECF_LONGJMP)
	current_function_calls_longjmp = 1;

      /* If this function is returning into a memory location marked as
	 readonly, it means it is initializing that location.  But we normally
	 treat functions as not clobbering such locations, so we need to
	 specify that this one does.  */
      if (target != 0 && GET_CODE (target) == MEM
	  && structure_value_addr != 0 && RTX_UNCHANGING_P (target))
	emit_insn (gen_rtx_CLOBBER (VOIDmode, target));

      /* If value type not void, return an rtx for the value.  */

      /* If there are cleanups to be called, don't use a hard reg as target.
	 We need to double check this and see if it matters anymore.  */
      if (any_pending_cleanups (1))
	{
	  if (target && REG_P (target)
	      && REGNO (target) < FIRST_PSEUDO_REGISTER)
	    target = 0;
	  sibcall_failure = 1;
	}

      if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
	  || ignore)
	target = const0_rtx;
      else if (structure_value_addr)
	{
	  if (target == 0 || GET_CODE (target) != MEM)
	    {
	      target
		= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
			       memory_address (TYPE_MODE (TREE_TYPE (exp)),
					       structure_value_addr));
	      set_mem_attributes (target, exp, 1);
	    }
	}
      else if (pcc_struct_value)
	{
	  /* This is the special C++ case where we need to
	     know what the true target was.  We take care to
	     never use this value more than once in one expression.  */
	  target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
				copy_to_reg (valreg));
	  set_mem_attributes (target, exp, 1);
	}
      /* Handle calls that return values in multiple non-contiguous locations.
	 The Irix 6 ABI has examples of this.  */
      else if (GET_CODE (valreg) == PARALLEL)
	{
	  if (target == 0)
	    {
	      /* This will only be assigned once, so it can be readonly.  */
	      tree nt = build_qualified_type (TREE_TYPE (exp),
					      (TYPE_QUALS (TREE_TYPE (exp))
					       | TYPE_QUAL_CONST));

	      target = assign_temp (nt, 0, 1, 1);
	      preserve_temp_slots (target);
	    }

	  if (! rtx_equal_p (target, valreg))
	    emit_group_store (target, valreg,
			      int_size_in_bytes (TREE_TYPE (exp)));

	  /* We can not support sibling calls for this case.  */
	  sibcall_failure = 1;
	}
      else if (target
	       && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
	       && GET_MODE (target) == GET_MODE (valreg))
	{
	  /* TARGET and VALREG cannot be equal at this point because the
	     latter would not have REG_FUNCTION_VALUE_P true, while the
	     former would if it were referring to the same register.

	     If they refer to the same register, this move will be a no-op,
	     except when function inlining is being done.  */
	  emit_move_insn (target, valreg);
	}
      else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
	{
	  target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));

	  /* We can not support sibling calls for this case.  */
	  sibcall_failure = 1;
	}
      else
	target = copy_to_reg (valreg);

#ifdef PROMOTE_FUNCTION_RETURN
      /* If we promoted this return value, make the proper SUBREG.  TARGET
	 might be const0_rtx here, so be careful.  */
      if (GET_CODE (target) == REG
	  && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
	  && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
	{
	  tree type = TREE_TYPE (exp);
	  int unsignedp = TREE_UNSIGNED (type);
	  int offset = 0;

	  /* If we don't promote as expected, something is wrong.  */
	  if (GET_MODE (target)
	      != promote_mode (type, TYPE_MODE (type), &unsignedp, 1))
	    abort ();

	if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
	    && GET_MODE_SIZE (GET_MODE (target))
	       > GET_MODE_SIZE (TYPE_MODE (type)))
	  {
	    offset = GET_MODE_SIZE (GET_MODE (target))
		     - GET_MODE_SIZE (TYPE_MODE (type));
	    if (! BYTES_BIG_ENDIAN)
	      offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
	    else if (! WORDS_BIG_ENDIAN)
	      offset %= UNITS_PER_WORD;
	  }
	  target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
	  SUBREG_PROMOTED_VAR_P (target) = 1;
	  SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
	}
#endif

      /* If size of args is variable or this was a constructor call for a stack
	 argument, restore saved stack-pointer value.  */

      if (old_stack_level && ! (flags & ECF_SP_DEPRESSED))
	{
	  emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
	  stack_pointer_delta = old_stack_pointer_delta;
	  pending_stack_adjust = old_pending_adj;
	  stack_arg_under_construction = old_stack_arg_under_construction;
	  highest_outgoing_arg_in_use = initial_highest_arg_in_use;
	  stack_usage_map = initial_stack_usage_map;
	  sibcall_failure = 1;
	}
      else if (ACCUMULATE_OUTGOING_ARGS && pass)
	{
#ifdef REG_PARM_STACK_SPACE
	  if (save_area)
	    restore_fixed_argument_area (save_area, argblock,
					 high_to_save, low_to_save);
#endif

	  /* If we saved any argument areas, restore them.  */
	  for (i = 0; i < num_actuals; i++)
	    if (args[i].save_area)
	      {
		enum machine_mode save_mode = GET_MODE (args[i].save_area);
		rtx stack_area
		  = gen_rtx_MEM (save_mode,
				 memory_address (save_mode,
						 XEXP (args[i].stack_slot, 0)));

		if (save_mode != BLKmode)
		  emit_move_insn (stack_area, args[i].save_area);
		else
		  emit_block_move (stack_area, args[i].save_area,
				   GEN_INT (args[i].size.constant),
				   BLOCK_OP_CALL_PARM);
	      }

	  highest_outgoing_arg_in_use = initial_highest_arg_in_use;
	  stack_usage_map = initial_stack_usage_map;
	}

      /* If this was alloca, record the new stack level for nonlocal gotos.
	 Check for the handler slots since we might not have a save area
	 for non-local gotos.  */

      if ((flags & ECF_MAY_BE_ALLOCA) && nonlocal_goto_handler_slots != 0)
	emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);

      /* Free up storage we no longer need.  */
      for (i = 0; i < num_actuals; ++i)
	if (args[i].aligned_regs)
	  free (args[i].aligned_regs);

      if (pass == 0)
	{
	  /* Undo the fake expand_start_target_temps we did earlier.  If
	     there had been any cleanups created, we've already set
	     sibcall_failure.  */
	  expand_end_target_temps ();
	}

      insns = get_insns ();
      end_sequence ();

      if (pass == 0)
	{
	  tail_call_insns = insns;

	  /* Restore the pending stack adjustment now that we have
	     finished generating the sibling call sequence.  */

	  pending_stack_adjust = save_pending_stack_adjust;
	  stack_pointer_delta = save_stack_pointer_delta;

	  /* Prepare arg structure for next iteration.  */
	  for (i = 0; i < num_actuals; i++)
	    {
	      args[i].value = 0;
	      args[i].aligned_regs = 0;
	      args[i].stack = 0;
	    }

	  sbitmap_free (stored_args_map);
	}
      else
	{
	  normal_call_insns = insns;

	  /* Verify that we've deallocated all the stack we used.  */
	  if (old_stack_allocated !=
	      stack_pointer_delta - pending_stack_adjust)
	    abort ();
	}

      /* If something prevents making this a sibling call,
	 zero out the sequence.  */
      if (sibcall_failure)
	tail_call_insns = NULL_RTX;
    }

  /* The function optimize_sibling_and_tail_recursive_calls doesn't
     handle CALL_PLACEHOLDERs inside other CALL_PLACEHOLDERs.  This
     can happen if the arguments to this function call an inline
     function who's expansion contains another CALL_PLACEHOLDER.

     If there are any C_Ps in any of these sequences, replace them
     with their normal call.  */

  for (insn = normal_call_insns; insn; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == CALL_INSN
	&& GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
      replace_call_placeholder (insn, sibcall_use_normal);

  for (insn = tail_call_insns; insn; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == CALL_INSN
	&& GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
      replace_call_placeholder (insn, sibcall_use_normal);

  for (insn = tail_recursion_insns; insn; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == CALL_INSN
	&& GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
      replace_call_placeholder (insn, sibcall_use_normal);

  /* If this was a potential tail recursion site, then emit a
     CALL_PLACEHOLDER with the normal and the tail recursion streams.
     One of them will be selected later.  */
  if (tail_recursion_insns || tail_call_insns)
    {
      /* The tail recursion label must be kept around.  We could expose
	 its use in the CALL_PLACEHOLDER, but that creates unwanted edges
	 and makes determining true tail recursion sites difficult.

	 So we set LABEL_PRESERVE_P here, then clear it when we select
	 one of the call sequences after rtl generation is complete.  */
      if (tail_recursion_insns)
	LABEL_PRESERVE_P (tail_recursion_label) = 1;
      emit_call_insn (gen_rtx_CALL_PLACEHOLDER (VOIDmode, normal_call_insns,
						tail_call_insns,
						tail_recursion_insns,
						tail_recursion_label));
    }
  else
    emit_insn (normal_call_insns);

  currently_expanding_call--;

  /* If this function returns with the stack pointer depressed, ensure
     this block saves and restores the stack pointer, show it was
     changed, and adjust for any outgoing arg space.  */
  if (flags & ECF_SP_DEPRESSED)
    {
      clear_pending_stack_adjust ();
      emit_insn (gen_rtx (CLOBBER, VOIDmode, stack_pointer_rtx));
      emit_move_insn (virtual_stack_dynamic_rtx, stack_pointer_rtx);
      save_stack_pointer ();
    }

  return target;
}

/* Output a library call to function FUN (a SYMBOL_REF rtx).
   The RETVAL parameter specifies whether return value needs to be saved, other
   parameters are documented in the emit_library_call function below.  */

static rtx
emit_library_call_value_1 (retval, orgfun, value, fn_type, outmode, nargs, p)
     int retval;
     rtx orgfun;
     rtx value;
     enum libcall_type fn_type;
     enum machine_mode outmode;
     int nargs;
     va_list p;
{
  /* Total size in bytes of all the stack-parms scanned so far.  */
  struct args_size args_size;
  /* Size of arguments before any adjustments (such as rounding).  */
  struct args_size original_args_size;
  int argnum;
  rtx fun;
  int inc;
  int count;
  struct args_size alignment_pad;
  rtx argblock = 0;
  CUMULATIVE_ARGS args_so_far;
  struct arg
  {
    rtx value;
    enum machine_mode mode;
    rtx reg;
    int partial;
    struct args_size offset;
    struct args_size size;
    rtx save_area;
  };
  struct arg *argvec;
  int old_inhibit_defer_pop = inhibit_defer_pop;
  rtx call_fusage = 0;
  rtx mem_value = 0;
  rtx valreg;
  int pcc_struct_value = 0;
  int struct_value_size = 0;
  int flags;
  int reg_parm_stack_space = 0;
  int needed;
  rtx before_call;
  tree tfom;			/* type_for_mode (outmode, 0) */

#ifdef REG_PARM_STACK_SPACE
  /* Define the boundary of the register parm stack space that needs to be
     save, if any.  */
  int low_to_save, high_to_save;
  rtx save_area = 0;            /* Place that it is saved.  */
#endif

  /* Size of the stack reserved for parameter registers.  */
  int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
  char *initial_stack_usage_map = stack_usage_map;

#ifdef REG_PARM_STACK_SPACE
#ifdef MAYBE_REG_PARM_STACK_SPACE
  reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
#else
  reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
#endif
#endif

  /* By default, library functions can not throw.  */
  flags = ECF_NOTHROW;

  switch (fn_type)
    {
    case LCT_NORMAL:
      break;
    case LCT_CONST:
      flags |= ECF_CONST;
      break;
    case LCT_PURE:
      flags |= ECF_PURE;
      break;
    case LCT_CONST_MAKE_BLOCK:
      flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
      break;
    case LCT_PURE_MAKE_BLOCK:
      flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
      break;
    case LCT_NORETURN:
      flags |= ECF_NORETURN;
      break;
    case LCT_THROW:
      flags = ECF_NORETURN;
      break;
    case LCT_ALWAYS_RETURN:
      flags = ECF_ALWAYS_RETURN;
      break;
    case LCT_RETURNS_TWICE:
      flags = ECF_RETURNS_TWICE;
      break;
    }
  fun = orgfun;

  /* Ensure current function's preferred stack boundary is at least
     what we need.  */
  if (cfun->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
    cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;

  /* If this kind of value comes back in memory,
     decide where in memory it should come back.  */
  if (outmode != VOIDmode)
    {
      tfom = (*lang_hooks.types.type_for_mode) (outmode, 0);
      if (aggregate_value_p (tfom))
	{
#ifdef PCC_STATIC_STRUCT_RETURN
	  rtx pointer_reg
	    = hard_function_value (build_pointer_type (tfom), 0, 0);
	  mem_value = gen_rtx_MEM (outmode, pointer_reg);
	  pcc_struct_value = 1;
	  if (value == 0)
	    value = gen_reg_rtx (outmode);
#else /* not PCC_STATIC_STRUCT_RETURN */
	  struct_value_size = GET_MODE_SIZE (outmode);
	  if (value != 0 && GET_CODE (value) == MEM)
	    mem_value = value;
	  else
	    mem_value = assign_temp (tfom, 0, 1, 1);
#endif
	  /* This call returns a big structure.  */
	  flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
	}
    }
  else
    tfom = void_type_node;

  /* ??? Unfinished: must pass the memory address as an argument.  */

  /* Copy all the libcall-arguments out of the varargs data
     and into a vector ARGVEC.

     Compute how to pass each argument.  We only support a very small subset
     of the full argument passing conventions to limit complexity here since
     library functions shouldn't have many args.  */

  argvec = (struct arg *) alloca ((nargs + 1) * sizeof (struct arg));
  memset ((char *) argvec, 0, (nargs + 1) * sizeof (struct arg));

#ifdef INIT_CUMULATIVE_LIBCALL_ARGS
  INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
#else
  INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0);
#endif

  args_size.constant = 0;
  args_size.var = 0;

  count = 0;

  /* Now we are about to start emitting insns that can be deleted
     if a libcall is deleted.  */
  if (flags & ECF_LIBCALL_BLOCK)
    start_sequence ();

  push_temp_slots ();

  /* If there's a structure value address to be passed,
     either pass it in the special place, or pass it as an extra argument.  */
  if (mem_value && struct_value_rtx == 0 && ! pcc_struct_value)
    {
      rtx addr = XEXP (mem_value, 0);
      nargs++;

      /* Make sure it is a reasonable operand for a move or push insn.  */
      if (GET_CODE (addr) != REG && GET_CODE (addr) != MEM
	  && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
	addr = force_operand (addr, NULL_RTX);

      argvec[count].value = addr;
      argvec[count].mode = Pmode;
      argvec[count].partial = 0;

      argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
#ifdef FUNCTION_ARG_PARTIAL_NREGS
      if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far, Pmode, NULL_TREE, 1))
	abort ();
#endif

      locate_and_pad_parm (Pmode, NULL_TREE,
#ifdef STACK_PARMS_IN_REG_PARM_AREA
                           1,
#else
			   argvec[count].reg != 0,
#endif
			   NULL_TREE, &args_size, &argvec[count].offset,
			   &argvec[count].size, &alignment_pad);

      if (argvec[count].reg == 0 || argvec[count].partial != 0
	  || reg_parm_stack_space > 0)
	args_size.constant += argvec[count].size.constant;

      FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);

      count++;
    }

  for (; count < nargs; count++)
    {
      rtx val = va_arg (p, rtx);
      enum machine_mode mode = va_arg (p, enum machine_mode);

      /* We cannot convert the arg value to the mode the library wants here;
	 must do it earlier where we know the signedness of the arg.  */
      if (mode == BLKmode
	  || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode))
	abort ();

      /* On some machines, there's no way to pass a float to a library fcn.
	 Pass it as a double instead.  */
#ifdef LIBGCC_NEEDS_DOUBLE
      if (LIBGCC_NEEDS_DOUBLE && mode == SFmode)
	val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode;
#endif

      /* There's no need to call protect_from_queue, because
	 either emit_move_insn or emit_push_insn will do that.  */

      /* Make sure it is a reasonable operand for a move or push insn.  */
      if (GET_CODE (val) != REG && GET_CODE (val) != MEM
	  && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
	val = force_operand (val, NULL_RTX);

#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
      if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1))
	{
	  rtx slot;
	  int must_copy = 1
#ifdef FUNCTION_ARG_CALLEE_COPIES	  
	    && ! FUNCTION_ARG_CALLEE_COPIES (args_so_far, mode,
					     NULL_TREE, 1)
#endif
	    ;

	  /* loop.c won't look at CALL_INSN_FUNCTION_USAGE of const/pure
	     functions, so we have to pretend this isn't such a function.  */
	  if (flags & ECF_LIBCALL_BLOCK)
	    {
	      rtx insns = get_insns ();
	      end_sequence ();
	      emit_insn (insns);
	    }
	  flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);

	  /* If this was a CONST function, it is now PURE since
	     it now reads memory.  */
	  if (flags & ECF_CONST)
	    {
	      flags &= ~ECF_CONST;
	      flags |= ECF_PURE;
	    }

	  if (GET_MODE (val) == MEM && ! must_copy)
	    slot = val;
	  else if (must_copy)
	    {
	      slot = assign_temp ((*lang_hooks.types.type_for_mode) (mode, 0),
				  0, 1, 1);
	      emit_move_insn (slot, val);
	    }
	  else
	    {
	      tree type = (*lang_hooks.types.type_for_mode) (mode, 0);

	      slot
		= gen_rtx_MEM (mode,
			       expand_expr (build1 (ADDR_EXPR,
						    build_pointer_type (type),
						    make_tree (type, val)),
					    NULL_RTX, VOIDmode, 0));
	    }

	  call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
					   gen_rtx_USE (VOIDmode, slot),
					   call_fusage);
	  if (must_copy)
	    call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
					     gen_rtx_CLOBBER (VOIDmode,
							      slot),
					     call_fusage);

	  mode = Pmode;
	  val = force_operand (XEXP (slot, 0), NULL_RTX);
	}
#endif

      argvec[count].value = val;
      argvec[count].mode = mode;

      argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);

#ifdef FUNCTION_ARG_PARTIAL_NREGS
      argvec[count].partial
	= FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1);
#else
      argvec[count].partial = 0;
#endif

      locate_and_pad_parm (mode, NULL_TREE,
#ifdef STACK_PARMS_IN_REG_PARM_AREA
			   1,
#else
			   argvec[count].reg != 0,
#endif
			   NULL_TREE, &args_size, &argvec[count].offset,
			   &argvec[count].size, &alignment_pad);

      if (argvec[count].size.var)
	abort ();

      if (reg_parm_stack_space == 0 && argvec[count].partial)
	argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD;

      if (argvec[count].reg == 0 || argvec[count].partial != 0
	  || reg_parm_stack_space > 0)
	args_size.constant += argvec[count].size.constant;

      FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
    }

#ifdef FINAL_REG_PARM_STACK_SPACE
  reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant,
						     args_size.var);
#endif
  /* If this machine requires an external definition for library
     functions, write one out.  */
  assemble_external_libcall (fun);

  original_args_size = args_size;
  args_size.constant = (((args_size.constant
			  + stack_pointer_delta
			  + STACK_BYTES - 1)
			  / STACK_BYTES
			  * STACK_BYTES)
			 - stack_pointer_delta);

  args_size.constant = MAX (args_size.constant,
			    reg_parm_stack_space);

#ifndef OUTGOING_REG_PARM_STACK_SPACE
  args_size.constant -= reg_parm_stack_space;
#endif

  if (args_size.constant > current_function_outgoing_args_size)
    current_function_outgoing_args_size = args_size.constant;

  if (ACCUMULATE_OUTGOING_ARGS)
    {
      /* Since the stack pointer will never be pushed, it is possible for
	 the evaluation of a parm to clobber something we have already
	 written to the stack.  Since most function calls on RISC machines
	 do not use the stack, this is uncommon, but must work correctly.

	 Therefore, we save any area of the stack that was already written
	 and that we are using.  Here we set up to do this by making a new
	 stack usage map from the old one.

	 Another approach might be to try to reorder the argument
	 evaluations to avoid this conflicting stack usage.  */

      needed = args_size.constant;

#ifndef OUTGOING_REG_PARM_STACK_SPACE
      /* Since we will be writing into the entire argument area, the
	 map must be allocated for its entire size, not just the part that
	 is the responsibility of the caller.  */
      needed += reg_parm_stack_space;
#endif

#ifdef ARGS_GROW_DOWNWARD
      highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
					 needed + 1);
#else
      highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
					 needed);
#endif
      stack_usage_map = (char *) alloca (highest_outgoing_arg_in_use);

      if (initial_highest_arg_in_use)
	memcpy (stack_usage_map, initial_stack_usage_map,
		initial_highest_arg_in_use);

      if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
	memset (&stack_usage_map[initial_highest_arg_in_use], 0,
	       highest_outgoing_arg_in_use - initial_highest_arg_in_use);
      needed = 0;

      /* We must be careful to use virtual regs before they're instantiated,
         and real regs afterwards.  Loop optimization, for example, can create
	 new libcalls after we've instantiated the virtual regs, and if we
	 use virtuals anyway, they won't match the rtl patterns.  */

      if (virtuals_instantiated)
	argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
      else
	argblock = virtual_outgoing_args_rtx;
    }
  else
    {
      if (!PUSH_ARGS)
	argblock = push_block (GEN_INT (args_size.constant), 0, 0);
    }

  /* If we push args individually in reverse order, perform stack alignment
     before the first push (the last arg).  */
  if (argblock == 0 && PUSH_ARGS_REVERSED)
    anti_adjust_stack (GEN_INT (args_size.constant
				- original_args_size.constant));

  if (PUSH_ARGS_REVERSED)
    {
      inc = -1;
      argnum = nargs - 1;
    }
  else
    {
      inc = 1;
      argnum = 0;
    }

#ifdef REG_PARM_STACK_SPACE
  if (ACCUMULATE_OUTGOING_ARGS)
    {
      /* The argument list is the property of the called routine and it
	 may clobber it.  If the fixed area has been used for previous
	 parameters, we must save and restore it.  */
      save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
					    &low_to_save, &high_to_save);
    }
#endif

  /* Push the args that need to be pushed.  */

  /* ARGNUM indexes the ARGVEC array in the order in which the arguments
     are to be pushed.  */
  for (count = 0; count < nargs; count++, argnum += inc)
    {
      enum machine_mode mode = argvec[argnum].mode;
      rtx val = argvec[argnum].value;
      rtx reg = argvec[argnum].reg;
      int partial = argvec[argnum].partial;
      int lower_bound = 0, upper_bound = 0, i;

      if (! (reg != 0 && partial == 0))
	{
	  if (ACCUMULATE_OUTGOING_ARGS)
	    {
	      /* If this is being stored into a pre-allocated, fixed-size,
		 stack area, save any previous data at that location.  */

#ifdef ARGS_GROW_DOWNWARD
	      /* stack_slot is negative, but we want to index stack_usage_map
		 with positive values.  */
	      upper_bound = -argvec[argnum].offset.constant + 1;
	      lower_bound = upper_bound - argvec[argnum].size.constant;
#else
	      lower_bound = argvec[argnum].offset.constant;
	      upper_bound = lower_bound + argvec[argnum].size.constant;
#endif

	      i = lower_bound;
	      /* Don't worry about things in the fixed argument area;
		 it has already been saved.  */
	      if (i < reg_parm_stack_space)
		i = reg_parm_stack_space;
	      while (i < upper_bound && stack_usage_map[i] == 0)
		i++;

	      if (i < upper_bound)
		{
		  /* We need to make a save area.  See what mode we can make
		     it.  */
		  enum machine_mode save_mode
		    = mode_for_size (argvec[argnum].size.constant
				     * BITS_PER_UNIT,
				     MODE_INT, 1);
		  rtx stack_area
		    = gen_rtx_MEM
		      (save_mode,
		       memory_address
		       (save_mode,
			plus_constant (argblock,
				       argvec[argnum].offset.constant)));
		  argvec[argnum].save_area = gen_reg_rtx (save_mode);

		  emit_move_insn (argvec[argnum].save_area, stack_area);
		}
	    }

	  emit_push_insn (val, mode, NULL_TREE, NULL_RTX, PARM_BOUNDARY,
			  partial, reg, 0, argblock,
			  GEN_INT (argvec[argnum].offset.constant),
			  reg_parm_stack_space, ARGS_SIZE_RTX (alignment_pad));

	  /* Now mark the segment we just used.  */
	  if (ACCUMULATE_OUTGOING_ARGS)
	    for (i = lower_bound; i < upper_bound; i++)
	      stack_usage_map[i] = 1;

	  NO_DEFER_POP;
	}
    }

  /* If we pushed args in forward order, perform stack alignment
     after pushing the last arg.  */
  if (argblock == 0 && !PUSH_ARGS_REVERSED)
    anti_adjust_stack (GEN_INT (args_size.constant
				- original_args_size.constant));

  if (PUSH_ARGS_REVERSED)
    argnum = nargs - 1;
  else
    argnum = 0;

  fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0, 0);

  /* Now load any reg parms into their regs.  */

  /* ARGNUM indexes the ARGVEC array in the order in which the arguments
     are to be pushed.  */
  for (count = 0; count < nargs; count++, argnum += inc)
    {
      rtx val = argvec[argnum].value;
      rtx reg = argvec[argnum].reg;
      int partial = argvec[argnum].partial;

      /* Handle calls that pass values in multiple non-contiguous
	 locations.  The PA64 has examples of this for library calls.  */
      if (reg != 0 && GET_CODE (reg) == PARALLEL)
	emit_group_load (reg, val, GET_MODE_SIZE (GET_MODE (val)));
      else if (reg != 0 && partial == 0)
	emit_move_insn (reg, val);

      NO_DEFER_POP;
    }

  /* Any regs containing parms remain in use through the call.  */
  for (count = 0; count < nargs; count++)
    {
      rtx reg = argvec[count].reg;
      if (reg != 0 && GET_CODE (reg) == PARALLEL)
	use_group_regs (&call_fusage, reg);
      else if (reg != 0)
	use_reg (&call_fusage, reg);
    }

  /* Pass the function the address in which to return a structure value.  */
  if (mem_value != 0 && struct_value_rtx != 0 && ! pcc_struct_value)
    {
      emit_move_insn (struct_value_rtx,
		      force_reg (Pmode,
				 force_operand (XEXP (mem_value, 0),
						NULL_RTX)));
      if (GET_CODE (struct_value_rtx) == REG)
	use_reg (&call_fusage, struct_value_rtx);
    }

  /* Don't allow popping to be deferred, since then
     cse'ing of library calls could delete a call and leave the pop.  */
  NO_DEFER_POP;
  valreg = (mem_value == 0 && outmode != VOIDmode
	    ? hard_libcall_value (outmode) : NULL_RTX);

  /* Stack must be properly aligned now.  */
  if (stack_pointer_delta & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1))
    abort ();

  before_call = get_last_insn ();

  /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
     will set inhibit_defer_pop to that value.  */
  /* The return type is needed to decide how many bytes the function pops.
     Signedness plays no role in that, so for simplicity, we pretend it's
     always signed.  We also assume that the list of arguments passed has
     no impact, so we pretend it is unknown.  */

  emit_call_1 (fun,
	       get_identifier (XSTR (orgfun, 0)),
	       build_function_type (tfom, NULL_TREE),
	       original_args_size.constant, args_size.constant,
	       struct_value_size,
	       FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
	       valreg,
	       old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);

  /* For calls to `setjmp', etc., inform flow.c it should complain
     if nonvolatile values are live.  For functions that cannot return,
     inform flow that control does not fall through.  */

  if (flags & (ECF_NORETURN | ECF_LONGJMP))
    {
      /* The barrier note must be emitted
	 immediately after the CALL_INSN.  Some ports emit more than
	 just a CALL_INSN above, so we must search for it here.  */

      rtx last = get_last_insn ();
      while (GET_CODE (last) != CALL_INSN)
	{
	  last = PREV_INSN (last);
	  /* There was no CALL_INSN?  */
	  if (last == before_call)
	    abort ();
	}

      emit_barrier_after (last);
    }

  /* Now restore inhibit_defer_pop to its actual original value.  */
  OK_DEFER_POP;

  /* If call is cse'able, make appropriate pair of reg-notes around it.
     Test valreg so we don't crash; may safely ignore `const'
     if return type is void.  Disable for PARALLEL return values, because
     we have no way to move such values into a pseudo register.  */
  if (flags & ECF_LIBCALL_BLOCK)
    {
      rtx insns;

      if (valreg == 0)
	{
	  insns = get_insns ();
	  end_sequence ();
	  emit_insn (insns);
	}
      else
	{
	  rtx note = 0;
	  rtx temp;
	  int i;

	  if (GET_CODE (valreg) == PARALLEL)
	    {
	      temp = gen_reg_rtx (outmode);
	      emit_group_store (temp, valreg, outmode);
	      valreg = temp;
	    }

	  temp = gen_reg_rtx (GET_MODE (valreg));

	  /* Construct an "equal form" for the value which mentions all the
	     arguments in order as well as the function name.  */
	  for (i = 0; i < nargs; i++)
	    note = gen_rtx_EXPR_LIST (VOIDmode, argvec[i].value, note);
	  note = gen_rtx_EXPR_LIST (VOIDmode, fun, note);

	  insns = get_insns ();
	  end_sequence ();

	  if (flags & ECF_PURE)
	    note = gen_rtx_EXPR_LIST (VOIDmode,
			gen_rtx_USE (VOIDmode,
				     gen_rtx_MEM (BLKmode,
						  gen_rtx_SCRATCH (VOIDmode))),
			note);

	  emit_libcall_block (insns, temp, valreg, note);

	  valreg = temp;
	}
    }
  pop_temp_slots ();

  /* Copy the value to the right place.  */
  if (outmode != VOIDmode && retval)
    {
      if (mem_value)
	{
	  if (value == 0)
	    value = mem_value;
	  if (value != mem_value)
	    emit_move_insn (value, mem_value);
	}
      else if (GET_CODE (valreg) == PARALLEL)
	{
	  if (value == 0)
	    value = gen_reg_rtx (outmode);
	  emit_group_store (value, valreg, outmode);
	}
      else if (value != 0)
	emit_move_insn (value, valreg);
      else
	value = valreg;
    }

  if (ACCUMULATE_OUTGOING_ARGS)
    {
#ifdef REG_PARM_STACK_SPACE
      if (save_area)
	restore_fixed_argument_area (save_area, argblock,
				     high_to_save, low_to_save);
#endif

      /* If we saved any argument areas, restore them.  */
      for (count = 0; count < nargs; count++)
	if (argvec[count].save_area)
	  {
	    enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
	    rtx stack_area
	      = gen_rtx_MEM (save_mode,
			     memory_address
			     (save_mode,
			      plus_constant (argblock,
					     argvec[count].offset.constant)));

	    emit_move_insn (stack_area, argvec[count].save_area);
	  }

      highest_outgoing_arg_in_use = initial_highest_arg_in_use;
      stack_usage_map = initial_stack_usage_map;
    }

  return value;

}

/* Output a library call to function FUN (a SYMBOL_REF rtx)
   (emitting the queue unless NO_QUEUE is nonzero),
   for a value of mode OUTMODE,
   with NARGS different arguments, passed as alternating rtx values
   and machine_modes to convert them to.
   The rtx values should have been passed through protect_from_queue already.

   FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for `const'
   calls, LCT_PURE for `pure' calls, LCT_CONST_MAKE_BLOCK for `const' calls
   which should be enclosed in REG_LIBCALL/REG_RETVAL notes,
   LCT_PURE_MAKE_BLOCK for `purep' calls which should be enclosed in
   REG_LIBCALL/REG_RETVAL notes with extra (use (memory (scratch)),
   or other LCT_ value for other types of library calls.  */

void
emit_library_call VPARAMS((rtx orgfun, enum libcall_type fn_type,
			   enum machine_mode outmode, int nargs, ...))
{
  VA_OPEN (p, nargs);
  VA_FIXEDARG (p, rtx, orgfun);
  VA_FIXEDARG (p, int, fn_type);
  VA_FIXEDARG (p, enum machine_mode, outmode);
  VA_FIXEDARG (p, int, nargs);

  emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);

  VA_CLOSE (p);
}

/* Like emit_library_call except that an extra argument, VALUE,
   comes second and says where to store the result.
   (If VALUE is zero, this function chooses a convenient way
   to return the value.

   This function returns an rtx for where the value is to be found.
   If VALUE is nonzero, VALUE is returned.  */

rtx
emit_library_call_value VPARAMS((rtx orgfun, rtx value,
				 enum libcall_type fn_type,
				 enum machine_mode outmode, int nargs, ...))
{
  rtx result;
  
  VA_OPEN (p, nargs);
  VA_FIXEDARG (p, rtx, orgfun);
  VA_FIXEDARG (p, rtx, value);
  VA_FIXEDARG (p, int, fn_type);
  VA_FIXEDARG (p, enum machine_mode, outmode);
  VA_FIXEDARG (p, int, nargs);

  result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
				      nargs, p);

  VA_CLOSE (p);

  return result;
}

/* Store a single argument for a function call
   into the register or memory area where it must be passed.
   *ARG describes the argument value and where to pass it.

   ARGBLOCK is the address of the stack-block for all the arguments,
   or 0 on a machine where arguments are pushed individually.

   MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
   so must be careful about how the stack is used.

   VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
   argument stack.  This is used if ACCUMULATE_OUTGOING_ARGS to indicate
   that we need not worry about saving and restoring the stack.

   FNDECL is the declaration of the function we are calling.

   Return nonzero if this arg should cause sibcall failure,
   zero otherwise.  */

static int
store_one_arg (arg, argblock, flags, variable_size, reg_parm_stack_space)
     struct arg_data *arg;
     rtx argblock;
     int flags;
     int variable_size ATTRIBUTE_UNUSED;
     int reg_parm_stack_space;
{
  tree pval = arg->tree_value;
  rtx reg = 0;
  int partial = 0;
  int used = 0;
  int i, lower_bound = 0, upper_bound = 0;
  int sibcall_failure = 0;

  if (TREE_CODE (pval) == ERROR_MARK)
    return 1;

  /* Push a new temporary level for any temporaries we make for
     this argument.  */
  push_temp_slots ();

  if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
    {
      /* If this is being stored into a pre-allocated, fixed-size, stack area,
	 save any previous data at that location.  */
      if (argblock && ! variable_size && arg->stack)
	{
#ifdef ARGS_GROW_DOWNWARD
	  /* stack_slot is negative, but we want to index stack_usage_map
	     with positive values.  */
	  if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
	    upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
	  else
	    upper_bound = 0;

	  lower_bound = upper_bound - arg->size.constant;
#else
	  if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
	    lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
	  else
	    lower_bound = 0;

	  upper_bound = lower_bound + arg->size.constant;
#endif

	  i = lower_bound;
	  /* Don't worry about things in the fixed argument area;
	     it has already been saved.  */
	  if (i < reg_parm_stack_space)
	    i = reg_parm_stack_space;
	  while (i < upper_bound && stack_usage_map[i] == 0)
	    i++;

	  if (i < upper_bound)
	    {
	      /* We need to make a save area.  See what mode we can make it.  */
	      enum machine_mode save_mode
		= mode_for_size (arg->size.constant * BITS_PER_UNIT, MODE_INT, 1);
	      rtx stack_area
		= gen_rtx_MEM (save_mode,
			       memory_address (save_mode,
					       XEXP (arg->stack_slot, 0)));

	      if (save_mode == BLKmode)
		{
		  tree ot = TREE_TYPE (arg->tree_value);
		  tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
						       | TYPE_QUAL_CONST));

		  arg->save_area = assign_temp (nt, 0, 1, 1);
		  preserve_temp_slots (arg->save_area);
		  emit_block_move (validize_mem (arg->save_area), stack_area,
				   expr_size (arg->tree_value),
				   BLOCK_OP_CALL_PARM);
		}
	      else
		{
		  arg->save_area = gen_reg_rtx (save_mode);
		  emit_move_insn (arg->save_area, stack_area);
		}
	    }
	}
    }

  /* If this isn't going to be placed on both the stack and in registers,
     set up the register and number of words.  */
  if (! arg->pass_on_stack)
    {
      if (flags & ECF_SIBCALL)
	reg = arg->tail_call_reg;
      else
	reg = arg->reg;
      partial = arg->partial;
    }

  if (reg != 0 && partial == 0)
    /* Being passed entirely in a register.  We shouldn't be called in
       this case.  */
    abort ();

  /* If this arg needs special alignment, don't load the registers
     here.  */
  if (arg->n_aligned_regs != 0)
    reg = 0;

  /* If this is being passed partially in a register, we can't evaluate
     it directly into its stack slot.  Otherwise, we can.  */
  if (arg->value == 0)
    {
      /* stack_arg_under_construction is nonzero if a function argument is
	 being evaluated directly into the outgoing argument list and
	 expand_call must take special action to preserve the argument list
	 if it is called recursively.

	 For scalar function arguments stack_usage_map is sufficient to
	 determine which stack slots must be saved and restored.  Scalar
	 arguments in general have pass_on_stack == 0.

	 If this argument is initialized by a function which takes the
	 address of the argument (a C++ constructor or a C function
	 returning a BLKmode structure), then stack_usage_map is
	 insufficient and expand_call must push the stack around the
	 function call.  Such arguments have pass_on_stack == 1.

	 Note that it is always safe to set stack_arg_under_construction,
	 but this generates suboptimal code if set when not needed.  */

      if (arg->pass_on_stack)
	stack_arg_under_construction++;

      arg->value = expand_expr (pval,
				(partial
				 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
				? NULL_RTX : arg->stack,
				VOIDmode, EXPAND_STACK_PARM);

      /* If we are promoting object (or for any other reason) the mode
	 doesn't agree, convert the mode.  */

      if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
	arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
				    arg->value, arg->unsignedp);

      if (arg->pass_on_stack)
	stack_arg_under_construction--;
    }

  /* Don't allow anything left on stack from computation
     of argument to alloca.  */
  if (flags & ECF_MAY_BE_ALLOCA)
    do_pending_stack_adjust ();

  if (arg->value == arg->stack)
    /* If the value is already in the stack slot, we are done.  */
    ;
  else if (arg->mode != BLKmode)
    {
      int size;

      /* Argument is a scalar, not entirely passed in registers.
	 (If part is passed in registers, arg->partial says how much
	 and emit_push_insn will take care of putting it there.)

	 Push it, and if its size is less than the
	 amount of space allocated to it,
	 also bump stack pointer by the additional space.
	 Note that in C the default argument promotions
	 will prevent such mismatches.  */

      size = GET_MODE_SIZE (arg->mode);
      /* Compute how much space the push instruction will push.
	 On many machines, pushing a byte will advance the stack
	 pointer by a halfword.  */
#ifdef PUSH_ROUNDING
      size = PUSH_ROUNDING (size);
#endif
      used = size;

      /* Compute how much space the argument should get:
	 round up to a multiple of the alignment for arguments.  */
      if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
	used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
		 / (PARM_BOUNDARY / BITS_PER_UNIT))
		* (PARM_BOUNDARY / BITS_PER_UNIT));

      /* This isn't already where we want it on the stack, so put it there.
	 This can either be done with push or copy insns.  */
      emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX, 
		      PARM_BOUNDARY, partial, reg, used - size, argblock,
		      ARGS_SIZE_RTX (arg->offset), reg_parm_stack_space,
		      ARGS_SIZE_RTX (arg->alignment_pad));

      /* Unless this is a partially-in-register argument, the argument is now
	 in the stack.  */
      if (partial == 0)
	arg->value = arg->stack;
    }
  else
    {
      /* BLKmode, at least partly to be pushed.  */

      unsigned int parm_align;
      int excess;
      rtx size_rtx;

      /* Pushing a nonscalar.
	 If part is passed in registers, PARTIAL says how much
	 and emit_push_insn will take care of putting it there.  */

      /* Round its size up to a multiple
	 of the allocation unit for arguments.  */

      if (arg->size.var != 0)
	{
	  excess = 0;
	  size_rtx = ARGS_SIZE_RTX (arg->size);
	}
      else
	{
	  /* PUSH_ROUNDING has no effect on us, because
	     emit_push_insn for BLKmode is careful to avoid it.  */
	  excess = (arg->size.constant - int_size_in_bytes (TREE_TYPE (pval))
		    + partial * UNITS_PER_WORD);
	  size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
				  NULL_RTX, TYPE_MODE (sizetype), 0);
	}

      /* Some types will require stricter alignment, which will be
	 provided for elsewhere in argument layout.  */
      parm_align = MAX (PARM_BOUNDARY, TYPE_ALIGN (TREE_TYPE (pval)));

      /* When an argument is padded down, the block is aligned to
	 PARM_BOUNDARY, but the actual argument isn't.  */
      if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
	{
	  if (arg->size.var)
	    parm_align = BITS_PER_UNIT;
	  else if (excess)
	    {
	      unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
	      parm_align = MIN (parm_align, excess_align);
	    }
	}

      if ((flags & ECF_SIBCALL) && GET_CODE (arg->value) == MEM)
	{
	  /* emit_push_insn might not work properly if arg->value and
	     argblock + arg->offset areas overlap.  */
	  rtx x = arg->value;
	  int i = 0;

	  if (XEXP (x, 0) == current_function_internal_arg_pointer
	      || (GET_CODE (XEXP (x, 0)) == PLUS
		  && XEXP (XEXP (x, 0), 0) ==
		     current_function_internal_arg_pointer
		  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
	    {
	      if (XEXP (x, 0) != current_function_internal_arg_pointer)
		i = INTVAL (XEXP (XEXP (x, 0), 1));

	      /* expand_call should ensure this */
	      if (arg->offset.var || GET_CODE (size_rtx) != CONST_INT)
		abort ();

	      if (arg->offset.constant > i)
		{
		  if (arg->offset.constant < i + INTVAL (size_rtx))
		    sibcall_failure = 1;
		}
	      else if (arg->offset.constant < i)
		{
		  if (i < arg->offset.constant + INTVAL (size_rtx))
		    sibcall_failure = 1;
		}
	    }
	}

      emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
		      parm_align, partial, reg, excess, argblock,
		      ARGS_SIZE_RTX (arg->offset), reg_parm_stack_space,
		      ARGS_SIZE_RTX (arg->alignment_pad));

      /* Unless this is a partially-in-register argument, the argument is now
	 in the stack.

	 ??? Unlike the case above, in which we want the actual
	 address of the data, so that we can load it directly into a
	 register, here we want the address of the stack slot, so that
	 it's properly aligned for word-by-word copying or something
	 like that.  It's not clear that this is always correct.  */
      if (partial == 0)
	arg->value = arg->stack_slot;
    }

  /* Mark all slots this store used.  */
  if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
      && argblock && ! variable_size && arg->stack)
    for (i = lower_bound; i < upper_bound; i++)
      stack_usage_map[i] = 1;

  /* Once we have pushed something, pops can't safely
     be deferred during the rest of the arguments.  */
  NO_DEFER_POP;

  /* ANSI doesn't require a sequence point here,
     but PCC has one, so this will avoid some problems.  */
  emit_queue ();

  /* Free any temporary slots made in processing this argument.  Show
     that we might have taken the address of something and pushed that
     as an operand.  */
  preserve_temp_slots (NULL_RTX);
  free_temp_slots ();
  pop_temp_slots ();

  return sibcall_failure;
}

/* Nonzero if we do not know how to pass TYPE solely in registers.
   We cannot do so in the following cases:

   - if the type has variable size
   - if the type is marked as addressable (it is required to be constructed
     into the stack)
   - if the padding and mode of the type is such that a copy into a register
     would put it into the wrong part of the register.

   Which padding can't be supported depends on the byte endianness.

   A value in a register is implicitly padded at the most significant end.
   On a big-endian machine, that is the lower end in memory.
   So a value padded in memory at the upper end can't go in a register.
   For a little-endian machine, the reverse is true.  */

bool
default_must_pass_in_stack (mode, type)
     enum machine_mode mode;
     tree type;
{
  if (!type)
    return false;

  /* If the type has variable size...  */
  if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
    return true;

  /* If the type is marked as addressable (it is required
     to be constructed into the stack)...  */
  if (TREE_ADDRESSABLE (type))
    return true;

  /* If the padding and mode of the type is such that a copy into
     a register would put it into the wrong part of the register.  */
  if (mode == BLKmode
      && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
      && (FUNCTION_ARG_PADDING (mode, type)
	  == (BYTES_BIG_ENDIAN ? upward : downward)))
    return true;

  return false;
}