1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- U R E A L P --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Alloc;
with Output; use Output;
with Table;
with Tree_IO; use Tree_IO;
package body Urealp is
Ureal_First_Entry : constant Ureal := Ureal'Succ (No_Ureal);
-- First subscript allocated in Ureal table (note that we can't just
-- add 1 to No_Ureal, since "+" means something different for Ureals).
type Ureal_Entry is record
Num : Uint;
-- Numerator (always non-negative)
Den : Uint;
-- Denominator (always non-zero, always positive if base is zero)
Rbase : Nat;
-- Base value. If Rbase is zero, then the value is simply Num / Den.
-- If Rbase is non-zero, then the value is Num / (Rbase ** Den)
Negative : Boolean;
-- Flag set if value is negative
end record;
-- The following representation clause ensures that the above record
-- has no holes. We do this so that when instances of this record are
-- written by Tree_Gen, we do not write uninitialized values to the file.
for Ureal_Entry use record
Num at 0 range 0 .. 31;
Den at 4 range 0 .. 31;
Rbase at 8 range 0 .. 31;
Negative at 12 range 0 .. 31;
end record;
for Ureal_Entry'Size use 16 * 8;
-- This ensures that we did not leave out any fields
package Ureals is new Table.Table (
Table_Component_Type => Ureal_Entry,
Table_Index_Type => Ureal'Base,
Table_Low_Bound => Ureal_First_Entry,
Table_Initial => Alloc.Ureals_Initial,
Table_Increment => Alloc.Ureals_Increment,
Table_Name => "Ureals");
-- The following universal reals are the values returned by the constant
-- functions. They are initialized by the initialization procedure.
UR_0 : Ureal;
UR_M_0 : Ureal;
UR_Tenth : Ureal;
UR_Half : Ureal;
UR_1 : Ureal;
UR_2 : Ureal;
UR_10 : Ureal;
UR_10_36 : Ureal;
UR_M_10_36 : Ureal;
UR_100 : Ureal;
UR_2_128 : Ureal;
UR_2_80 : Ureal;
UR_2_M_128 : Ureal;
UR_2_M_80 : Ureal;
Num_Ureal_Constants : constant := 10;
-- This is used for an assertion check in Tree_Read and Tree_Write to
-- help remember to add values to these routines when we add to the list.
Normalized_Real : Ureal := No_Ureal;
-- Used to memoize Norm_Num and Norm_Den, if either of these functions
-- is called, this value is set and Normalized_Entry contains the result
-- of the normalization. On subsequent calls, this is used to avoid the
-- call to Normalize if it has already been made.
Normalized_Entry : Ureal_Entry;
-- Entry built by most recent call to Normalize
-----------------------
-- Local Subprograms --
-----------------------
function Decimal_Exponent_Hi (V : Ureal) return Int;
-- Returns an estimate of the exponent of Val represented as a normalized
-- decimal number (non-zero digit before decimal point), The estimate is
-- either correct, or high, but never low. The accuracy of the estimate
-- affects only the efficiency of the comparison routines.
function Decimal_Exponent_Lo (V : Ureal) return Int;
-- Returns an estimate of the exponent of Val represented as a normalized
-- decimal number (non-zero digit before decimal point), The estimate is
-- either correct, or low, but never high. The accuracy of the estimate
-- affects only the efficiency of the comparison routines.
function Equivalent_Decimal_Exponent (U : Ureal_Entry) return Int;
-- U is a Ureal entry for which the base value is non-zero, the value
-- returned is the equivalent decimal exponent value, i.e. the value of
-- Den, adjusted as though the base were base 10. The value is rounded
-- toward zero (truncated), and so its value can be off by one.
function Is_Integer (Num, Den : Uint) return Boolean;
-- Return true if the real quotient of Num / Den is an integer value
function Normalize (Val : Ureal_Entry) return Ureal_Entry;
-- Normalizes the Ureal_Entry by reducing it to lowest terms (with a base
-- value of 0).
function Same (U1, U2 : Ureal) return Boolean;
pragma Inline (Same);
-- Determines if U1 and U2 are the same Ureal. Note that we cannot use
-- the equals operator for this test, since that tests for equality, not
-- identity.
function Store_Ureal (Val : Ureal_Entry) return Ureal;
-- This store a new entry in the universal reals table and return its index
-- in the table.
function Store_Ureal_Normalized (Val : Ureal_Entry) return Ureal;
pragma Inline (Store_Ureal_Normalized);
-- Like Store_Ureal, but normalizes its operand first
-------------------------
-- Decimal_Exponent_Hi --
-------------------------
function Decimal_Exponent_Hi (V : Ureal) return Int is
Val : constant Ureal_Entry := Ureals.Table (V);
begin
-- Zero always returns zero
if UR_Is_Zero (V) then
return 0;
-- For numbers in rational form, get the maximum number of digits in the
-- numerator and the minimum number of digits in the denominator, and
-- subtract. For example:
-- 1000 / 99 = 1.010E+1
-- 9999 / 10 = 9.999E+2
-- This estimate may of course be high, but that is acceptable
elsif Val.Rbase = 0 then
return UI_Decimal_Digits_Hi (Val.Num) -
UI_Decimal_Digits_Lo (Val.Den);
-- For based numbers, just subtract the decimal exponent from the
-- high estimate of the number of digits in the numerator and add
-- one to accommodate possible round off errors for non-decimal
-- bases. For example:
-- 1_500_000 / 10**4 = 1.50E-2
else -- Val.Rbase /= 0
return UI_Decimal_Digits_Hi (Val.Num) -
Equivalent_Decimal_Exponent (Val) + 1;
end if;
end Decimal_Exponent_Hi;
-------------------------
-- Decimal_Exponent_Lo --
-------------------------
function Decimal_Exponent_Lo (V : Ureal) return Int is
Val : constant Ureal_Entry := Ureals.Table (V);
begin
-- Zero always returns zero
if UR_Is_Zero (V) then
return 0;
-- For numbers in rational form, get min digits in numerator, max digits
-- in denominator, and subtract and subtract one more for possible loss
-- during the division. For example:
-- 1000 / 99 = 1.010E+1
-- 9999 / 10 = 9.999E+2
-- This estimate may of course be low, but that is acceptable
elsif Val.Rbase = 0 then
return UI_Decimal_Digits_Lo (Val.Num) -
UI_Decimal_Digits_Hi (Val.Den) - 1;
-- For based numbers, just subtract the decimal exponent from the
-- low estimate of the number of digits in the numerator and subtract
-- one to accommodate possible round off errors for non-decimal
-- bases. For example:
-- 1_500_000 / 10**4 = 1.50E-2
else -- Val.Rbase /= 0
return UI_Decimal_Digits_Lo (Val.Num) -
Equivalent_Decimal_Exponent (Val) - 1;
end if;
end Decimal_Exponent_Lo;
-----------------
-- Denominator --
-----------------
function Denominator (Real : Ureal) return Uint is
begin
return Ureals.Table (Real).Den;
end Denominator;
---------------------------------
-- Equivalent_Decimal_Exponent --
---------------------------------
function Equivalent_Decimal_Exponent (U : Ureal_Entry) return Int is
type Ratio is record
Num : Nat;
Den : Nat;
end record;
-- The following table is a table of logs to the base 10. All values
-- have at least 15 digits of precision, and do not exceed the true
-- value. To avoid the use of floating point, and as a result potential
-- target dependency, each entry is represented as a fraction of two
-- integers.
Logs : constant array (Nat range 1 .. 16) of Ratio :=
(1 => (Num => 0, Den => 1), -- 0
2 => (Num => 15_392_313, Den => 51_132_157), -- 0.301029995663981
3 => (Num => 731_111_920, Den => 1532_339_867), -- 0.477121254719662
4 => (Num => 30_784_626, Den => 51_132_157), -- 0.602059991327962
5 => (Num => 111_488_153, Den => 159_503_487), -- 0.698970004336018
6 => (Num => 84_253_929, Den => 108_274_489), -- 0.778151250383643
7 => (Num => 35_275_468, Den => 41_741_273), -- 0.845098040014256
8 => (Num => 46_176_939, Den => 51_132_157), -- 0.903089986991943
9 => (Num => 417_620_173, Den => 437_645_744), -- 0.954242509439324
10 => (Num => 1, Den => 1), -- 1.000000000000000
11 => (Num => 136_507_510, Den => 131_081_687), -- 1.041392685158225
12 => (Num => 26_797_783, Den => 24_831_587), -- 1.079181246047624
13 => (Num => 73_333_297, Den => 65_832_160), -- 1.113943352306836
14 => (Num => 102_941_258, Den => 89_816_543), -- 1.146128035678238
15 => (Num => 53_385_559, Den => 45_392_361), -- 1.176091259055681
16 => (Num => 78_897_839, Den => 65_523_237)); -- 1.204119982655924
function Scale (X : Int; R : Ratio) return Int;
-- Compute the value of X scaled by R
-----------
-- Scale --
-----------
function Scale (X : Int; R : Ratio) return Int is
type Wide_Int is range -2**63 .. 2**63 - 1;
begin
return Int (Wide_Int (X) * Wide_Int (R.Num) / Wide_Int (R.Den));
end Scale;
begin
pragma Assert (U.Rbase /= 0);
return Scale (UI_To_Int (U.Den), Logs (U.Rbase));
end Equivalent_Decimal_Exponent;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Ureals.Init;
UR_0 := UR_From_Components (Uint_0, Uint_1, 0, False);
UR_M_0 := UR_From_Components (Uint_0, Uint_1, 0, True);
UR_Half := UR_From_Components (Uint_1, Uint_1, 2, False);
UR_Tenth := UR_From_Components (Uint_1, Uint_1, 10, False);
UR_1 := UR_From_Components (Uint_1, Uint_1, 0, False);
UR_2 := UR_From_Components (Uint_1, Uint_Minus_1, 2, False);
UR_10 := UR_From_Components (Uint_1, Uint_Minus_1, 10, False);
UR_10_36 := UR_From_Components (Uint_1, Uint_Minus_36, 10, False);
UR_M_10_36 := UR_From_Components (Uint_1, Uint_Minus_36, 10, True);
UR_100 := UR_From_Components (Uint_1, Uint_Minus_2, 10, False);
UR_2_128 := UR_From_Components (Uint_1, Uint_Minus_128, 2, False);
UR_2_M_128 := UR_From_Components (Uint_1, Uint_128, 2, False);
UR_2_80 := UR_From_Components (Uint_1, Uint_Minus_80, 2, False);
UR_2_M_80 := UR_From_Components (Uint_1, Uint_80, 2, False);
end Initialize;
----------------
-- Is_Integer --
----------------
function Is_Integer (Num, Den : Uint) return Boolean is
begin
return (Num / Den) * Den = Num;
end Is_Integer;
----------
-- Mark --
----------
function Mark return Save_Mark is
begin
return Save_Mark (Ureals.Last);
end Mark;
--------------
-- Norm_Den --
--------------
function Norm_Den (Real : Ureal) return Uint is
begin
if not Same (Real, Normalized_Real) then
Normalized_Real := Real;
Normalized_Entry := Normalize (Ureals.Table (Real));
end if;
return Normalized_Entry.Den;
end Norm_Den;
--------------
-- Norm_Num --
--------------
function Norm_Num (Real : Ureal) return Uint is
begin
if not Same (Real, Normalized_Real) then
Normalized_Real := Real;
Normalized_Entry := Normalize (Ureals.Table (Real));
end if;
return Normalized_Entry.Num;
end Norm_Num;
---------------
-- Normalize --
---------------
function Normalize (Val : Ureal_Entry) return Ureal_Entry is
J : Uint;
K : Uint;
Tmp : Uint;
Num : Uint;
Den : Uint;
M : constant Uintp.Save_Mark := Uintp.Mark;
begin
-- Start by setting J to the greatest of the absolute values of the
-- numerator and the denominator (taking into account the base value),
-- and K to the lesser of the two absolute values. The gcd of Num and
-- Den is the gcd of J and K.
if Val.Rbase = 0 then
J := Val.Num;
K := Val.Den;
elsif Val.Den < 0 then
J := Val.Num * Val.Rbase ** (-Val.Den);
K := Uint_1;
else
J := Val.Num;
K := Val.Rbase ** Val.Den;
end if;
Num := J;
Den := K;
if K > J then
Tmp := J;
J := K;
K := Tmp;
end if;
J := UI_GCD (J, K);
Num := Num / J;
Den := Den / J;
Uintp.Release_And_Save (M, Num, Den);
-- Divide numerator and denominator by gcd and return result
return (Num => Num,
Den => Den,
Rbase => 0,
Negative => Val.Negative);
end Normalize;
---------------
-- Numerator --
---------------
function Numerator (Real : Ureal) return Uint is
begin
return Ureals.Table (Real).Num;
end Numerator;
--------
-- pr --
--------
procedure pr (Real : Ureal) is
begin
UR_Write (Real);
Write_Eol;
end pr;
-----------
-- Rbase --
-----------
function Rbase (Real : Ureal) return Nat is
begin
return Ureals.Table (Real).Rbase;
end Rbase;
-------------
-- Release --
-------------
procedure Release (M : Save_Mark) is
begin
Ureals.Set_Last (Ureal (M));
end Release;
----------
-- Same --
----------
function Same (U1, U2 : Ureal) return Boolean is
begin
return Int (U1) = Int (U2);
end Same;
-----------------
-- Store_Ureal --
-----------------
function Store_Ureal (Val : Ureal_Entry) return Ureal is
begin
Ureals.Append (Val);
-- Normalize representation of signed values
if Val.Num < 0 then
Ureals.Table (Ureals.Last).Negative := True;
Ureals.Table (Ureals.Last).Num := -Val.Num;
end if;
return Ureals.Last;
end Store_Ureal;
----------------------------
-- Store_Ureal_Normalized --
----------------------------
function Store_Ureal_Normalized (Val : Ureal_Entry) return Ureal is
begin
return Store_Ureal (Normalize (Val));
end Store_Ureal_Normalized;
---------------
-- Tree_Read --
---------------
procedure Tree_Read is
begin
pragma Assert (Num_Ureal_Constants = 10);
Ureals.Tree_Read;
Tree_Read_Int (Int (UR_0));
Tree_Read_Int (Int (UR_M_0));
Tree_Read_Int (Int (UR_Tenth));
Tree_Read_Int (Int (UR_Half));
Tree_Read_Int (Int (UR_1));
Tree_Read_Int (Int (UR_2));
Tree_Read_Int (Int (UR_10));
Tree_Read_Int (Int (UR_100));
Tree_Read_Int (Int (UR_2_128));
Tree_Read_Int (Int (UR_2_M_128));
-- Clear the normalization cache
Normalized_Real := No_Ureal;
end Tree_Read;
----------------
-- Tree_Write --
----------------
procedure Tree_Write is
begin
pragma Assert (Num_Ureal_Constants = 10);
Ureals.Tree_Write;
Tree_Write_Int (Int (UR_0));
Tree_Write_Int (Int (UR_M_0));
Tree_Write_Int (Int (UR_Tenth));
Tree_Write_Int (Int (UR_Half));
Tree_Write_Int (Int (UR_1));
Tree_Write_Int (Int (UR_2));
Tree_Write_Int (Int (UR_10));
Tree_Write_Int (Int (UR_100));
Tree_Write_Int (Int (UR_2_128));
Tree_Write_Int (Int (UR_2_M_128));
end Tree_Write;
------------
-- UR_Abs --
------------
function UR_Abs (Real : Ureal) return Ureal is
Val : constant Ureal_Entry := Ureals.Table (Real);
begin
return Store_Ureal
((Num => Val.Num,
Den => Val.Den,
Rbase => Val.Rbase,
Negative => False));
end UR_Abs;
------------
-- UR_Add --
------------
function UR_Add (Left : Uint; Right : Ureal) return Ureal is
begin
return UR_From_Uint (Left) + Right;
end UR_Add;
function UR_Add (Left : Ureal; Right : Uint) return Ureal is
begin
return Left + UR_From_Uint (Right);
end UR_Add;
function UR_Add (Left : Ureal; Right : Ureal) return Ureal is
Lval : Ureal_Entry := Ureals.Table (Left);
Rval : Ureal_Entry := Ureals.Table (Right);
Num : Uint;
begin
-- Note, in the temporary Ureal_Entry values used in this procedure,
-- we store the sign as the sign of the numerator (i.e. xxx.Num may
-- be negative, even though in stored entries this can never be so)
if Lval.Rbase /= 0 and then Lval.Rbase = Rval.Rbase then
declare
Opd_Min, Opd_Max : Ureal_Entry;
Exp_Min, Exp_Max : Uint;
begin
if Lval.Negative then
Lval.Num := (-Lval.Num);
end if;
if Rval.Negative then
Rval.Num := (-Rval.Num);
end if;
if Lval.Den < Rval.Den then
Exp_Min := Lval.Den;
Exp_Max := Rval.Den;
Opd_Min := Lval;
Opd_Max := Rval;
else
Exp_Min := Rval.Den;
Exp_Max := Lval.Den;
Opd_Min := Rval;
Opd_Max := Lval;
end if;
Num :=
Opd_Min.Num * Lval.Rbase ** (Exp_Max - Exp_Min) + Opd_Max.Num;
if Num = 0 then
return Store_Ureal
((Num => Uint_0,
Den => Uint_1,
Rbase => 0,
Negative => Lval.Negative));
else
return Store_Ureal
((Num => abs Num,
Den => Exp_Max,
Rbase => Lval.Rbase,
Negative => (Num < 0)));
end if;
end;
else
declare
Ln : Ureal_Entry := Normalize (Lval);
Rn : Ureal_Entry := Normalize (Rval);
begin
if Ln.Negative then
Ln.Num := (-Ln.Num);
end if;
if Rn.Negative then
Rn.Num := (-Rn.Num);
end if;
Num := (Ln.Num * Rn.Den) + (Rn.Num * Ln.Den);
if Num = 0 then
return Store_Ureal
((Num => Uint_0,
Den => Uint_1,
Rbase => 0,
Negative => Lval.Negative));
else
return Store_Ureal_Normalized
((Num => abs Num,
Den => Ln.Den * Rn.Den,
Rbase => 0,
Negative => (Num < 0)));
end if;
end;
end if;
end UR_Add;
----------------
-- UR_Ceiling --
----------------
function UR_Ceiling (Real : Ureal) return Uint is
Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
begin
if Val.Negative then
return UI_Negate (Val.Num / Val.Den);
else
return (Val.Num + Val.Den - 1) / Val.Den;
end if;
end UR_Ceiling;
------------
-- UR_Div --
------------
function UR_Div (Left : Uint; Right : Ureal) return Ureal is
begin
return UR_From_Uint (Left) / Right;
end UR_Div;
function UR_Div (Left : Ureal; Right : Uint) return Ureal is
begin
return Left / UR_From_Uint (Right);
end UR_Div;
function UR_Div (Left, Right : Ureal) return Ureal is
Lval : constant Ureal_Entry := Ureals.Table (Left);
Rval : constant Ureal_Entry := Ureals.Table (Right);
Rneg : constant Boolean := Rval.Negative xor Lval.Negative;
begin
pragma Assert (Rval.Num /= Uint_0);
if Lval.Rbase = 0 then
if Rval.Rbase = 0 then
return Store_Ureal_Normalized
((Num => Lval.Num * Rval.Den,
Den => Lval.Den * Rval.Num,
Rbase => 0,
Negative => Rneg));
elsif Is_Integer (Lval.Num, Rval.Num * Lval.Den) then
return Store_Ureal
((Num => Lval.Num / (Rval.Num * Lval.Den),
Den => (-Rval.Den),
Rbase => Rval.Rbase,
Negative => Rneg));
elsif Rval.Den < 0 then
return Store_Ureal_Normalized
((Num => Lval.Num,
Den => Rval.Rbase ** (-Rval.Den) *
Rval.Num *
Lval.Den,
Rbase => 0,
Negative => Rneg));
else
return Store_Ureal_Normalized
((Num => Lval.Num * Rval.Rbase ** Rval.Den,
Den => Rval.Num * Lval.Den,
Rbase => 0,
Negative => Rneg));
end if;
elsif Is_Integer (Lval.Num, Rval.Num) then
if Rval.Rbase = Lval.Rbase then
return Store_Ureal
((Num => Lval.Num / Rval.Num,
Den => Lval.Den - Rval.Den,
Rbase => Lval.Rbase,
Negative => Rneg));
elsif Rval.Rbase = 0 then
return Store_Ureal
((Num => (Lval.Num / Rval.Num) * Rval.Den,
Den => Lval.Den,
Rbase => Lval.Rbase,
Negative => Rneg));
elsif Rval.Den < 0 then
declare
Num, Den : Uint;
begin
if Lval.Den < 0 then
Num := (Lval.Num / Rval.Num) * (Lval.Rbase ** (-Lval.Den));
Den := Rval.Rbase ** (-Rval.Den);
else
Num := Lval.Num / Rval.Num;
Den := (Lval.Rbase ** Lval.Den) *
(Rval.Rbase ** (-Rval.Den));
end if;
return Store_Ureal
((Num => Num,
Den => Den,
Rbase => 0,
Negative => Rneg));
end;
else
return Store_Ureal
((Num => (Lval.Num / Rval.Num) *
(Rval.Rbase ** Rval.Den),
Den => Lval.Den,
Rbase => Lval.Rbase,
Negative => Rneg));
end if;
else
declare
Num, Den : Uint;
begin
if Lval.Den < 0 then
Num := Lval.Num * (Lval.Rbase ** (-Lval.Den));
Den := Rval.Num;
else
Num := Lval.Num;
Den := Rval.Num * (Lval.Rbase ** Lval.Den);
end if;
if Rval.Rbase /= 0 then
if Rval.Den < 0 then
Den := Den * (Rval.Rbase ** (-Rval.Den));
else
Num := Num * (Rval.Rbase ** Rval.Den);
end if;
else
Num := Num * Rval.Den;
end if;
return Store_Ureal_Normalized
((Num => Num,
Den => Den,
Rbase => 0,
Negative => Rneg));
end;
end if;
end UR_Div;
-----------
-- UR_Eq --
-----------
function UR_Eq (Left, Right : Ureal) return Boolean is
begin
return not UR_Ne (Left, Right);
end UR_Eq;
---------------------
-- UR_Exponentiate --
---------------------
function UR_Exponentiate (Real : Ureal; N : Uint) return Ureal is
X : constant Uint := abs N;
Bas : Ureal;
Val : Ureal_Entry;
Neg : Boolean;
IBas : Uint;
begin
-- If base is negative, then the resulting sign depends on whether
-- the exponent is even or odd (even => positive, odd = negative)
if UR_Is_Negative (Real) then
Neg := (N mod 2) /= 0;
Bas := UR_Negate (Real);
else
Neg := False;
Bas := Real;
end if;
Val := Ureals.Table (Bas);
-- If the base is a small integer, then we can return the result in
-- exponential form, which can save a lot of time for junk exponents.
IBas := UR_Trunc (Bas);
if IBas <= 16
and then UR_From_Uint (IBas) = Bas
then
return Store_Ureal
((Num => Uint_1,
Den => -N,
Rbase => UI_To_Int (UR_Trunc (Bas)),
Negative => Neg));
-- If the exponent is negative then we raise the numerator and the
-- denominator (after normalization) to the absolute value of the
-- exponent and we return the reciprocal. An assert error will happen
-- if the numerator is zero.
elsif N < 0 then
pragma Assert (Val.Num /= 0);
Val := Normalize (Val);
return Store_Ureal
((Num => Val.Den ** X,
Den => Val.Num ** X,
Rbase => 0,
Negative => Neg));
-- If positive, we distinguish the case when the base is not zero, in
-- which case the new denominator is just the product of the old one
-- with the exponent,
else
if Val.Rbase /= 0 then
return Store_Ureal
((Num => Val.Num ** X,
Den => Val.Den * X,
Rbase => Val.Rbase,
Negative => Neg));
-- And when the base is zero, in which case we exponentiate
-- the old denominator.
else
return Store_Ureal
((Num => Val.Num ** X,
Den => Val.Den ** X,
Rbase => 0,
Negative => Neg));
end if;
end if;
end UR_Exponentiate;
--------------
-- UR_Floor --
--------------
function UR_Floor (Real : Ureal) return Uint is
Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
begin
if Val.Negative then
return UI_Negate ((Val.Num + Val.Den - 1) / Val.Den);
else
return Val.Num / Val.Den;
end if;
end UR_Floor;
------------------------
-- UR_From_Components --
------------------------
function UR_From_Components
(Num : Uint;
Den : Uint;
Rbase : Nat := 0;
Negative : Boolean := False)
return Ureal
is
begin
return Store_Ureal
((Num => Num,
Den => Den,
Rbase => Rbase,
Negative => Negative));
end UR_From_Components;
------------------
-- UR_From_Uint --
------------------
function UR_From_Uint (UI : Uint) return Ureal is
begin
return UR_From_Components
(abs UI, Uint_1, Negative => (UI < 0));
end UR_From_Uint;
-----------
-- UR_Ge --
-----------
function UR_Ge (Left, Right : Ureal) return Boolean is
begin
return not (Left < Right);
end UR_Ge;
-----------
-- UR_Gt --
-----------
function UR_Gt (Left, Right : Ureal) return Boolean is
begin
return (Right < Left);
end UR_Gt;
--------------------
-- UR_Is_Negative --
--------------------
function UR_Is_Negative (Real : Ureal) return Boolean is
begin
return Ureals.Table (Real).Negative;
end UR_Is_Negative;
--------------------
-- UR_Is_Positive --
--------------------
function UR_Is_Positive (Real : Ureal) return Boolean is
begin
return not Ureals.Table (Real).Negative
and then Ureals.Table (Real).Num /= 0;
end UR_Is_Positive;
----------------
-- UR_Is_Zero --
----------------
function UR_Is_Zero (Real : Ureal) return Boolean is
begin
return Ureals.Table (Real).Num = 0;
end UR_Is_Zero;
-----------
-- UR_Le --
-----------
function UR_Le (Left, Right : Ureal) return Boolean is
begin
return not (Right < Left);
end UR_Le;
-----------
-- UR_Lt --
-----------
function UR_Lt (Left, Right : Ureal) return Boolean is
begin
-- An operand is not less than itself
if Same (Left, Right) then
return False;
-- Deal with zero cases
elsif UR_Is_Zero (Left) then
return UR_Is_Positive (Right);
elsif UR_Is_Zero (Right) then
return Ureals.Table (Left).Negative;
-- Different signs are decisive (note we dealt with zero cases)
elsif Ureals.Table (Left).Negative
and then not Ureals.Table (Right).Negative
then
return True;
elsif not Ureals.Table (Left).Negative
and then Ureals.Table (Right).Negative
then
return False;
-- Signs are same, do rapid check based on worst case estimates of
-- decimal exponent, which will often be decisive. Precise test
-- depends on whether operands are positive or negative.
elsif Decimal_Exponent_Hi (Left) < Decimal_Exponent_Lo (Right) then
return UR_Is_Positive (Left);
elsif Decimal_Exponent_Lo (Left) > Decimal_Exponent_Hi (Right) then
return UR_Is_Negative (Left);
-- If we fall through, full gruesome test is required. This happens
-- if the numbers are close together, or in some weird (/=10) base.
else
declare
Imrk : constant Uintp.Save_Mark := Mark;
Rmrk : constant Urealp.Save_Mark := Mark;
Lval : Ureal_Entry;
Rval : Ureal_Entry;
Result : Boolean;
begin
Lval := Ureals.Table (Left);
Rval := Ureals.Table (Right);
-- An optimization. If both numbers are based, then subtract
-- common value of base to avoid unnecessarily giant numbers
if Lval.Rbase = Rval.Rbase and then Lval.Rbase /= 0 then
if Lval.Den < Rval.Den then
Rval.Den := Rval.Den - Lval.Den;
Lval.Den := Uint_0;
else
Lval.Den := Lval.Den - Rval.Den;
Rval.Den := Uint_0;
end if;
end if;
Lval := Normalize (Lval);
Rval := Normalize (Rval);
if Lval.Negative then
Result := (Lval.Num * Rval.Den) > (Rval.Num * Lval.Den);
else
Result := (Lval.Num * Rval.Den) < (Rval.Num * Lval.Den);
end if;
Release (Imrk);
Release (Rmrk);
return Result;
end;
end if;
end UR_Lt;
------------
-- UR_Max --
------------
function UR_Max (Left, Right : Ureal) return Ureal is
begin
if Left >= Right then
return Left;
else
return Right;
end if;
end UR_Max;
------------
-- UR_Min --
------------
function UR_Min (Left, Right : Ureal) return Ureal is
begin
if Left <= Right then
return Left;
else
return Right;
end if;
end UR_Min;
------------
-- UR_Mul --
------------
function UR_Mul (Left : Uint; Right : Ureal) return Ureal is
begin
return UR_From_Uint (Left) * Right;
end UR_Mul;
function UR_Mul (Left : Ureal; Right : Uint) return Ureal is
begin
return Left * UR_From_Uint (Right);
end UR_Mul;
function UR_Mul (Left, Right : Ureal) return Ureal is
Lval : constant Ureal_Entry := Ureals.Table (Left);
Rval : constant Ureal_Entry := Ureals.Table (Right);
Num : Uint := Lval.Num * Rval.Num;
Den : Uint;
Rneg : constant Boolean := Lval.Negative xor Rval.Negative;
begin
if Lval.Rbase = 0 then
if Rval.Rbase = 0 then
return Store_Ureal_Normalized
((Num => Num,
Den => Lval.Den * Rval.Den,
Rbase => 0,
Negative => Rneg));
elsif Is_Integer (Num, Lval.Den) then
return Store_Ureal
((Num => Num / Lval.Den,
Den => Rval.Den,
Rbase => Rval.Rbase,
Negative => Rneg));
elsif Rval.Den < 0 then
return Store_Ureal_Normalized
((Num => Num * (Rval.Rbase ** (-Rval.Den)),
Den => Lval.Den,
Rbase => 0,
Negative => Rneg));
else
return Store_Ureal_Normalized
((Num => Num,
Den => Lval.Den * (Rval.Rbase ** Rval.Den),
Rbase => 0,
Negative => Rneg));
end if;
elsif Lval.Rbase = Rval.Rbase then
return Store_Ureal
((Num => Num,
Den => Lval.Den + Rval.Den,
Rbase => Lval.Rbase,
Negative => Rneg));
elsif Rval.Rbase = 0 then
if Is_Integer (Num, Rval.Den) then
return Store_Ureal
((Num => Num / Rval.Den,
Den => Lval.Den,
Rbase => Lval.Rbase,
Negative => Rneg));
elsif Lval.Den < 0 then
return Store_Ureal_Normalized
((Num => Num * (Lval.Rbase ** (-Lval.Den)),
Den => Rval.Den,
Rbase => 0,
Negative => Rneg));
else
return Store_Ureal_Normalized
((Num => Num,
Den => Rval.Den * (Lval.Rbase ** Lval.Den),
Rbase => 0,
Negative => Rneg));
end if;
else
Den := Uint_1;
if Lval.Den < 0 then
Num := Num * (Lval.Rbase ** (-Lval.Den));
else
Den := Den * (Lval.Rbase ** Lval.Den);
end if;
if Rval.Den < 0 then
Num := Num * (Rval.Rbase ** (-Rval.Den));
else
Den := Den * (Rval.Rbase ** Rval.Den);
end if;
return Store_Ureal_Normalized
((Num => Num,
Den => Den,
Rbase => 0,
Negative => Rneg));
end if;
end UR_Mul;
-----------
-- UR_Ne --
-----------
function UR_Ne (Left, Right : Ureal) return Boolean is
begin
-- Quick processing for case of identical Ureal values (note that
-- this also deals with comparing two No_Ureal values).
if Same (Left, Right) then
return False;
-- Deal with case of one or other operand is No_Ureal, but not both
elsif Same (Left, No_Ureal) or else Same (Right, No_Ureal) then
return True;
-- Do quick check based on number of decimal digits
elsif Decimal_Exponent_Hi (Left) < Decimal_Exponent_Lo (Right) or else
Decimal_Exponent_Lo (Left) > Decimal_Exponent_Hi (Right)
then
return True;
-- Otherwise full comparison is required
else
declare
Imrk : constant Uintp.Save_Mark := Mark;
Rmrk : constant Urealp.Save_Mark := Mark;
Lval : constant Ureal_Entry := Normalize (Ureals.Table (Left));
Rval : constant Ureal_Entry := Normalize (Ureals.Table (Right));
Result : Boolean;
begin
if UR_Is_Zero (Left) then
return not UR_Is_Zero (Right);
elsif UR_Is_Zero (Right) then
return not UR_Is_Zero (Left);
-- Both operands are non-zero
else
Result :=
Rval.Negative /= Lval.Negative
or else Rval.Num /= Lval.Num
or else Rval.Den /= Lval.Den;
Release (Imrk);
Release (Rmrk);
return Result;
end if;
end;
end if;
end UR_Ne;
---------------
-- UR_Negate --
---------------
function UR_Negate (Real : Ureal) return Ureal is
begin
return Store_Ureal
((Num => Ureals.Table (Real).Num,
Den => Ureals.Table (Real).Den,
Rbase => Ureals.Table (Real).Rbase,
Negative => not Ureals.Table (Real).Negative));
end UR_Negate;
------------
-- UR_Sub --
------------
function UR_Sub (Left : Uint; Right : Ureal) return Ureal is
begin
return UR_From_Uint (Left) + UR_Negate (Right);
end UR_Sub;
function UR_Sub (Left : Ureal; Right : Uint) return Ureal is
begin
return Left + UR_From_Uint (-Right);
end UR_Sub;
function UR_Sub (Left, Right : Ureal) return Ureal is
begin
return Left + UR_Negate (Right);
end UR_Sub;
----------------
-- UR_To_Uint --
----------------
function UR_To_Uint (Real : Ureal) return Uint is
Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
Res : Uint;
begin
Res := (Val.Num + (Val.Den / 2)) / Val.Den;
if Val.Negative then
return UI_Negate (Res);
else
return Res;
end if;
end UR_To_Uint;
--------------
-- UR_Trunc --
--------------
function UR_Trunc (Real : Ureal) return Uint is
Val : constant Ureal_Entry := Normalize (Ureals.Table (Real));
begin
if Val.Negative then
return -(Val.Num / Val.Den);
else
return Val.Num / Val.Den;
end if;
end UR_Trunc;
--------------
-- UR_Write --
--------------
procedure UR_Write (Real : Ureal; Brackets : Boolean := False) is
Val : constant Ureal_Entry := Ureals.Table (Real);
T : Uint;
begin
-- If value is negative, we precede the constant by a minus sign
if Val.Negative then
Write_Char ('-');
end if;
-- Zero is zero
if Val.Num = 0 then
Write_Str ("0.0");
-- For constants with a denominator of zero, the value is simply the
-- numerator value, since we are dividing by base**0, which is 1.
elsif Val.Den = 0 then
UI_Write (Val.Num, Decimal);
Write_Str (".0");
-- Small powers of 2 get written in decimal fixed-point format
elsif Val.Rbase = 2
and then Val.Den <= 3
and then Val.Den >= -16
then
if Val.Den = 1 then
T := Val.Num * (10 / 2);
UI_Write (T / 10, Decimal);
Write_Char ('.');
UI_Write (T mod 10, Decimal);
elsif Val.Den = 2 then
T := Val.Num * (100 / 4);
UI_Write (T / 100, Decimal);
Write_Char ('.');
UI_Write (T mod 100 / 10, Decimal);
if T mod 10 /= 0 then
UI_Write (T mod 10, Decimal);
end if;
elsif Val.Den = 3 then
T := Val.Num * (1000 / 8);
UI_Write (T / 1000, Decimal);
Write_Char ('.');
UI_Write (T mod 1000 / 100, Decimal);
if T mod 100 /= 0 then
UI_Write (T mod 100 / 10, Decimal);
if T mod 10 /= 0 then
UI_Write (T mod 10, Decimal);
end if;
end if;
else
UI_Write (Val.Num * (Uint_2 ** (-Val.Den)), Decimal);
Write_Str (".0");
end if;
-- Constants in base 10 or 16 can be written in normal Ada literal
-- style, as long as they fit in the UI_Image_Buffer. Using hexadecimal
-- notation, 4 bytes are required for the 16# # part, and every fifth
-- character is an underscore. So, a buffer of size N has room for
-- ((N - 4) - (N - 4) / 5) * 4 bits,
-- or at least
-- N * 16 / 5 - 12 bits.
elsif (Val.Rbase = 10 or else Val.Rbase = 16)
and then Num_Bits (Val.Num) < UI_Image_Buffer'Length * 16 / 5 - 12
then
pragma Assert (Val.Den /= 0);
-- Use fixed-point format for small scaling values
if (Val.Rbase = 10 and then Val.Den < 0 and then Val.Den > -3)
or else (Val.Rbase = 16 and then Val.Den = -1)
then
UI_Write (Val.Num * Val.Rbase**(-Val.Den), Decimal);
Write_Str (".0");
-- Write hexadecimal constants in exponential notation with a zero
-- unit digit. This matches the Ada canonical form for floating point
-- numbers, and also ensures that the underscores end up in the
-- correct place.
elsif Val.Rbase = 16 then
UI_Image (Val.Num, Hex);
pragma Assert (Val.Rbase = 16);
Write_Str ("16#0.");
Write_Str (UI_Image_Buffer (4 .. UI_Image_Length));
-- For exponent, exclude 16# # and underscores from length
UI_Image_Length := UI_Image_Length - 4;
UI_Image_Length := UI_Image_Length - UI_Image_Length / 5;
Write_Char ('E');
UI_Write (Int (UI_Image_Length) - Val.Den, Decimal);
elsif Val.Den = 1 then
UI_Write (Val.Num / 10, Decimal);
Write_Char ('.');
UI_Write (Val.Num mod 10, Decimal);
elsif Val.Den = 2 then
UI_Write (Val.Num / 100, Decimal);
Write_Char ('.');
UI_Write (Val.Num / 10 mod 10, Decimal);
UI_Write (Val.Num mod 10, Decimal);
-- Else use decimal exponential format
else
-- Write decimal constants with a non-zero unit digit. This
-- matches usual scientific notation.
UI_Image (Val.Num, Decimal);
Write_Char (UI_Image_Buffer (1));
Write_Char ('.');
if UI_Image_Length = 1 then
Write_Char ('0');
else
Write_Str (UI_Image_Buffer (2 .. UI_Image_Length));
end if;
Write_Char ('E');
UI_Write (Int (UI_Image_Length - 1) - Val.Den, Decimal);
end if;
-- Constants in a base other than 10 can still be easily written in
-- normal Ada literal style if the numerator is one.
elsif Val.Rbase /= 0 and then Val.Num = 1 then
Write_Int (Val.Rbase);
Write_Str ("#1.0#E");
UI_Write (-Val.Den);
-- Other constants with a base other than 10 are written using one of
-- the following forms, depending on the sign of the number and the
-- sign of the exponent (= minus denominator value). See that we are
-- replacing the division by a multiplication (updating accordingly the
-- sign of the exponent) to generate an expression whose computation
-- does not cause a division by 0 when base**exponent is very small.
-- numerator.0*base**exponent
-- numerator.0*base**-exponent
-- And of course an exponent of 0 can be omitted.
elsif Val.Rbase /= 0 then
if Brackets then
Write_Char ('[');
end if;
UI_Write (Val.Num, Decimal);
Write_Str (".0");
if Val.Den /= 0 then
Write_Char ('*');
Write_Int (Val.Rbase);
Write_Str ("**");
if Val.Den <= 0 then
UI_Write (-Val.Den, Decimal);
else
Write_Str ("(-");
UI_Write (Val.Den, Decimal);
Write_Char (')');
end if;
end if;
if Brackets then
Write_Char (']');
end if;
-- Rationals where numerator is divisible by denominator can be output
-- as literals after we do the division. This includes the common case
-- where the denominator is 1.
elsif Val.Num mod Val.Den = 0 then
UI_Write (Val.Num / Val.Den, Decimal);
Write_Str (".0");
-- Other non-based (rational) constants are written in num/den style
else
if Brackets then
Write_Char ('[');
end if;
UI_Write (Val.Num, Decimal);
Write_Str (".0/");
UI_Write (Val.Den, Decimal);
Write_Str (".0");
if Brackets then
Write_Char (']');
end if;
end if;
end UR_Write;
-------------
-- Ureal_0 --
-------------
function Ureal_0 return Ureal is
begin
return UR_0;
end Ureal_0;
-------------
-- Ureal_1 --
-------------
function Ureal_1 return Ureal is
begin
return UR_1;
end Ureal_1;
-------------
-- Ureal_2 --
-------------
function Ureal_2 return Ureal is
begin
return UR_2;
end Ureal_2;
--------------
-- Ureal_10 --
--------------
function Ureal_10 return Ureal is
begin
return UR_10;
end Ureal_10;
---------------
-- Ureal_100 --
---------------
function Ureal_100 return Ureal is
begin
return UR_100;
end Ureal_100;
-----------------
-- Ureal_10_36 --
-----------------
function Ureal_10_36 return Ureal is
begin
return UR_10_36;
end Ureal_10_36;
----------------
-- Ureal_2_80 --
----------------
function Ureal_2_80 return Ureal is
begin
return UR_2_80;
end Ureal_2_80;
-----------------
-- Ureal_2_128 --
-----------------
function Ureal_2_128 return Ureal is
begin
return UR_2_128;
end Ureal_2_128;
-------------------
-- Ureal_2_M_80 --
-------------------
function Ureal_2_M_80 return Ureal is
begin
return UR_2_M_80;
end Ureal_2_M_80;
-------------------
-- Ureal_2_M_128 --
-------------------
function Ureal_2_M_128 return Ureal is
begin
return UR_2_M_128;
end Ureal_2_M_128;
----------------
-- Ureal_Half --
----------------
function Ureal_Half return Ureal is
begin
return UR_Half;
end Ureal_Half;
---------------
-- Ureal_M_0 --
---------------
function Ureal_M_0 return Ureal is
begin
return UR_M_0;
end Ureal_M_0;
-------------------
-- Ureal_M_10_36 --
-------------------
function Ureal_M_10_36 return Ureal is
begin
return UR_M_10_36;
end Ureal_M_10_36;
-----------------
-- Ureal_Tenth --
-----------------
function Ureal_Tenth return Ureal is
begin
return UR_Tenth;
end Ureal_Tenth;
end Urealp;
|