1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ S P A R K --
-- --
-- B o d y --
-- --
-- Copyright (C) 2017-2019, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Einfo; use Einfo;
with Errout; use Errout;
with Namet; use Namet;
with Nlists; use Nlists;
with Opt; use Opt;
with Osint; use Osint;
with Sem_Prag; use Sem_Prag;
with Sem_Util; use Sem_Util;
with Sem_Aux; use Sem_Aux;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Treepr; use Treepr;
with Ada.Unchecked_Deallocation;
with GNAT.Dynamic_HTables; use GNAT.Dynamic_HTables;
package body Sem_SPARK is
-------------------------------------------------
-- Handling of Permissions Associated to Paths --
-------------------------------------------------
package Permissions is
Elaboration_Context_Max : constant := 1009;
-- The hash range
type Elaboration_Context_Index is range 0 .. Elaboration_Context_Max - 1;
function Elaboration_Context_Hash (Key : Entity_Id)
return Elaboration_Context_Index;
-- Function to hash any node of the AST
type Perm_Kind is (Borrowed, Observed, Unrestricted, Moved);
-- Permission type associated with paths. The Moved permission is
-- equivalent to the Unrestricted one (same permissions). The Moved is
-- however used to mark the RHS after a move (which still unrestricted).
-- This way, we may generate warnings when manipulating the RHS
-- afterwads since it is set to Null after the assignment.
type Perm_Tree_Wrapper;
type Perm_Tree_Access is access Perm_Tree_Wrapper;
-- A tree of permissions is defined, where the root is a whole object
-- and tree branches follow access paths in memory. As Perm_Tree is a
-- discriminated record, a wrapper type is used for the access type
-- designating a subtree, to make it unconstrained so that it can be
-- updated.
-- Nodes in the permission tree are of different kinds
type Path_Kind is
(Entire_Object, -- Scalar object, or folded object of any type
Reference, -- Unfolded object of access type
Array_Component, -- Unfolded object of array type
Record_Component -- Unfolded object of record type
);
package Perm_Tree_Maps is new Simple_HTable
(Header_Num => Elaboration_Context_Index,
Key => Node_Id,
Element => Perm_Tree_Access,
No_Element => null,
Hash => Elaboration_Context_Hash,
Equal => "=");
-- The instantation of a hash table, with keys being nodes and values
-- being pointers to trees. This is used to reference easily all
-- extensions of a Record_Component node (that can have name x, y, ...).
-- The definition of permission trees. This is a tree, which has a
-- permission at each node, and depending on the type of the node,
-- can have zero, one, or more children pointed to by an access to tree.
type Perm_Tree (Kind : Path_Kind := Entire_Object) is record
Permission : Perm_Kind;
-- Permission at this level in the path
Is_Node_Deep : Boolean;
-- Whether this node is of a deep type, to be used when moving the
-- path.
case Kind is
-- An entire object is either a leaf (an object which cannot be
-- extended further in a path) or a subtree in folded form (which
-- could later be unfolded further in another kind of node). The
-- field Children_Permission specifies a permission for every
-- extension of that node if that permission is different from
-- the node's permission.
when Entire_Object =>
Children_Permission : Perm_Kind;
-- Unfolded path of access type. The permission of the object
-- pointed to is given in Get_All.
when Reference =>
Get_All : Perm_Tree_Access;
-- Unfolded path of array type. The permission of the elements is
-- given in Get_Elem.
when Array_Component =>
Get_Elem : Perm_Tree_Access;
-- Unfolded path of record type. The permission of the regular
-- components is given in Component. The permission of unknown
-- components (for objects of tagged type) is given in
-- Other_Components.
when Record_Component =>
Component : Perm_Tree_Maps.Instance;
Other_Components : Perm_Tree_Access;
end case;
end record;
type Perm_Tree_Wrapper is record
Tree : Perm_Tree;
end record;
-- We use this wrapper in order to have unconstrained discriminants
type Perm_Env is new Perm_Tree_Maps.Instance;
-- The definition of a permission environment for the analysis. This
-- is just a hash table of permission trees, each of them rooted with
-- an Identifier/Expanded_Name.
type Perm_Env_Access is access Perm_Env;
-- Access to permission environments
package Env_Maps is new Simple_HTable
(Header_Num => Elaboration_Context_Index,
Key => Entity_Id,
Element => Perm_Env_Access,
No_Element => null,
Hash => Elaboration_Context_Hash,
Equal => "=");
-- The instantiation of a hash table whose elements are permission
-- environments. This hash table is used to save the environments at
-- the entry of each loop, with the key being the loop label.
type Env_Backups is new Env_Maps.Instance;
-- The type defining the hash table saving the environments at the entry
-- of each loop.
package Boolean_Variables_Maps is new Simple_HTable
(Header_Num => Elaboration_Context_Index,
Key => Entity_Id,
Element => Boolean,
No_Element => False,
Hash => Elaboration_Context_Hash,
Equal => "=");
-- These maps allow tracking the variables that have been declared but
-- never used anywhere in the source code. Especially, we do not raise
-- an error if the variable stays write-only and is declared at package
-- level, because there is no risk that the variable has been moved,
-- because it has never been used.
type Initialization_Map is new Boolean_Variables_Maps.Instance;
--------------------
-- Simple Getters --
--------------------
-- Simple getters to avoid having .all.Tree.Field everywhere. Of course,
-- that's only for the top access, as otherwise this reverses the order
-- in accesses visually.
function Children_Permission (T : Perm_Tree_Access) return Perm_Kind;
function Component (T : Perm_Tree_Access) return Perm_Tree_Maps.Instance;
function Get_All (T : Perm_Tree_Access) return Perm_Tree_Access;
function Get_Elem (T : Perm_Tree_Access) return Perm_Tree_Access;
function Is_Node_Deep (T : Perm_Tree_Access) return Boolean;
function Kind (T : Perm_Tree_Access) return Path_Kind;
function Other_Components (T : Perm_Tree_Access) return Perm_Tree_Access;
function Permission (T : Perm_Tree_Access) return Perm_Kind;
-----------------------
-- Memory Management --
-----------------------
procedure Copy_Env
(From : Perm_Env;
To : in out Perm_Env);
-- Procedure to copy a permission environment
procedure Copy_Init_Map
(From : Initialization_Map;
To : in out Initialization_Map);
-- Procedure to copy an initialization map
procedure Copy_Tree
(From : Perm_Tree_Access;
To : Perm_Tree_Access);
-- Procedure to copy a permission tree
procedure Free_Env
(PE : in out Perm_Env);
-- Procedure to free a permission environment
procedure Free_Perm_Tree
(PT : in out Perm_Tree_Access);
-- Procedure to free a permission tree
--------------------
-- Error Messages --
--------------------
procedure Perm_Mismatch
(Exp_Perm, Act_Perm : Perm_Kind;
N : Node_Id);
-- Issues a continuation error message about a mismatch between a
-- desired permission Exp_Perm and a permission obtained Act_Perm. N
-- is the node on which the error is reported.
end Permissions;
package body Permissions is
-------------------------
-- Children_Permission --
-------------------------
function Children_Permission (T : Perm_Tree_Access) return Perm_Kind is
begin
return T.all.Tree.Children_Permission;
end Children_Permission;
---------------
-- Component --
---------------
function Component
(T : Perm_Tree_Access)
return Perm_Tree_Maps.Instance
is
begin
return T.all.Tree.Component;
end Component;
--------------
-- Copy_Env --
--------------
procedure Copy_Env (From : Perm_Env; To : in out Perm_Env) is
Comp_From : Perm_Tree_Access;
Key_From : Perm_Tree_Maps.Key_Option;
Son : Perm_Tree_Access;
begin
Reset (To);
Key_From := Get_First_Key (From);
while Key_From.Present loop
Comp_From := Get (From, Key_From.K);
pragma Assert (Comp_From /= null);
Son := new Perm_Tree_Wrapper;
Copy_Tree (Comp_From, Son);
Set (To, Key_From.K, Son);
Key_From := Get_Next_Key (From);
end loop;
end Copy_Env;
-------------------
-- Copy_Init_Map --
-------------------
procedure Copy_Init_Map
(From : Initialization_Map;
To : in out Initialization_Map)
is
Comp_From : Boolean;
Key_From : Boolean_Variables_Maps.Key_Option;
begin
Reset (To);
Key_From := Get_First_Key (From);
while Key_From.Present loop
Comp_From := Get (From, Key_From.K);
Set (To, Key_From.K, Comp_From);
Key_From := Get_Next_Key (From);
end loop;
end Copy_Init_Map;
---------------
-- Copy_Tree --
---------------
procedure Copy_Tree (From : Perm_Tree_Access; To : Perm_Tree_Access) is
begin
To.all := From.all;
case Kind (From) is
when Entire_Object =>
null;
when Reference =>
To.all.Tree.Get_All := new Perm_Tree_Wrapper;
Copy_Tree (Get_All (From), Get_All (To));
when Array_Component =>
To.all.Tree.Get_Elem := new Perm_Tree_Wrapper;
Copy_Tree (Get_Elem (From), Get_Elem (To));
when Record_Component =>
declare
Comp_From : Perm_Tree_Access;
Key_From : Perm_Tree_Maps.Key_Option;
Son : Perm_Tree_Access;
Hash_Table : Perm_Tree_Maps.Instance;
begin
-- We put a new hash table, so that it gets dealiased from the
-- Component (From) hash table.
To.all.Tree.Component := Hash_Table;
To.all.Tree.Other_Components :=
new Perm_Tree_Wrapper'(Other_Components (From).all);
Copy_Tree (Other_Components (From), Other_Components (To));
Key_From := Perm_Tree_Maps.Get_First_Key
(Component (From));
while Key_From.Present loop
Comp_From := Perm_Tree_Maps.Get
(Component (From), Key_From.K);
pragma Assert (Comp_From /= null);
Son := new Perm_Tree_Wrapper;
Copy_Tree (Comp_From, Son);
Perm_Tree_Maps.Set
(To.all.Tree.Component, Key_From.K, Son);
Key_From := Perm_Tree_Maps.Get_Next_Key
(Component (From));
end loop;
end;
end case;
end Copy_Tree;
------------------------------
-- Elaboration_Context_Hash --
------------------------------
function Elaboration_Context_Hash
(Key : Entity_Id) return Elaboration_Context_Index
is
begin
return Elaboration_Context_Index (Key mod Elaboration_Context_Max);
end Elaboration_Context_Hash;
--------------
-- Free_Env --
--------------
procedure Free_Env (PE : in out Perm_Env) is
CompO : Perm_Tree_Access;
begin
CompO := Get_First (PE);
while CompO /= null loop
Free_Perm_Tree (CompO);
CompO := Get_Next (PE);
end loop;
end Free_Env;
--------------------
-- Free_Perm_Tree --
--------------------
procedure Free_Perm_Tree (PT : in out Perm_Tree_Access) is
procedure Free_Perm_Tree_Dealloc is
new Ada.Unchecked_Deallocation
(Perm_Tree_Wrapper, Perm_Tree_Access);
-- The deallocator for permission_trees
begin
case Kind (PT) is
when Entire_Object =>
Free_Perm_Tree_Dealloc (PT);
when Reference =>
Free_Perm_Tree (PT.all.Tree.Get_All);
Free_Perm_Tree_Dealloc (PT);
when Array_Component =>
Free_Perm_Tree (PT.all.Tree.Get_Elem);
when Record_Component =>
declare
Comp : Perm_Tree_Access;
begin
Free_Perm_Tree (PT.all.Tree.Other_Components);
Comp := Perm_Tree_Maps.Get_First (Component (PT));
while Comp /= null loop
-- Free every Component subtree
Free_Perm_Tree (Comp);
Comp := Perm_Tree_Maps.Get_Next (Component (PT));
end loop;
end;
Free_Perm_Tree_Dealloc (PT);
end case;
end Free_Perm_Tree;
-------------
-- Get_All --
-------------
function Get_All (T : Perm_Tree_Access) return Perm_Tree_Access is
begin
return T.all.Tree.Get_All;
end Get_All;
--------------
-- Get_Elem --
--------------
function Get_Elem (T : Perm_Tree_Access) return Perm_Tree_Access is
begin
return T.all.Tree.Get_Elem;
end Get_Elem;
------------------
-- Is_Node_Deep --
------------------
function Is_Node_Deep (T : Perm_Tree_Access) return Boolean is
begin
return T.all.Tree.Is_Node_Deep;
end Is_Node_Deep;
----------
-- Kind --
----------
function Kind (T : Perm_Tree_Access) return Path_Kind is
begin
return T.all.Tree.Kind;
end Kind;
----------------------
-- Other_Components --
----------------------
function Other_Components
(T : Perm_Tree_Access)
return Perm_Tree_Access
is
begin
return T.all.Tree.Other_Components;
end Other_Components;
----------------
-- Permission --
----------------
function Permission (T : Perm_Tree_Access) return Perm_Kind is
begin
return T.all.Tree.Permission;
end Permission;
-------------------
-- Perm_Mismatch --
-------------------
procedure Perm_Mismatch (Exp_Perm, Act_Perm : Perm_Kind; N : Node_Id) is
begin
Error_Msg_N ("\expected state `"
& Perm_Kind'Image (Exp_Perm) & "` at least, got `"
& Perm_Kind'Image (Act_Perm) & "`", N);
end Perm_Mismatch;
end Permissions;
use Permissions;
--------------------------------------
-- Analysis modes for AST traversal --
--------------------------------------
-- The different modes for analysis. This allows to checking whether a path
-- found in the code should be moved, borrowed, or observed.
type Checking_Mode is
(Read,
-- Default mode
Move,
-- Regular moving semantics. Checks that paths have Unrestricted
-- permission. After moving a path, the permission of both it and
-- its extensions are set to Unrestricted.
Assign,
-- Used for the target of an assignment, or an actual parameter with
-- mode OUT. Checks that paths have Unrestricted permission. After
-- assigning to a path, its permission is set to Unrestricted.
Borrow,
-- Used for the source of an assignement when initializes a stand alone
-- object of anonymous type, constant, or IN parameter and also OUT
-- or IN OUT composite object.
-- In the borrowed state, the access object is completely "dead".
Observe
-- Used for actual IN parameters of a scalar type. Checks that paths
-- have Read_Perm permission. After checking a path, its permission
-- is set to Observed.
--
-- Also used for formal IN parameters
);
type Result_Kind is (Folded, Unfolded, Function_Call);
-- The type declaration to discriminate in the Perm_Or_Tree type
-- The result type of the function Get_Perm_Or_Tree. This returns either a
-- tree when it found the appropriate tree, or a permission when the search
-- finds a leaf and the subtree we are looking for is folded. In the last
-- case, we return instead the Children_Permission field of the leaf.
type Perm_Or_Tree (R : Result_Kind) is record
case R is
when Folded => Found_Permission : Perm_Kind;
when Unfolded => Tree_Access : Perm_Tree_Access;
when Function_Call => null;
end case;
end record;
-----------------------
-- Local subprograms --
-----------------------
-- Checking proceduress for safe pointer usage. These procedures traverse
-- the AST, check nodes for correct permissions according to SPARK RM
-- 6.4.2, and update permissions depending on the node kind.
procedure Check_Call_Statement (Call : Node_Id);
procedure Check_Callable_Body (Body_N : Node_Id);
-- We are not in End_Of_Callee mode, hence we will save the environment
-- and start from a new one. We will add in the environment all formal
-- parameters as well as global used during the subprogram, with the
-- appropriate permissions (unrestricted for borrowed and moved, observed
-- for observed names).
procedure Check_Declaration (Decl : Node_Id);
procedure Check_Expression (Expr : Node_Id);
procedure Check_Globals (N : Node_Id);
-- This procedure takes a global pragma and checks it
procedure Check_List (L : List_Id);
-- Calls Check_Node on each element of the list
procedure Check_Loop_Statement (Loop_N : Node_Id);
procedure Check_Node (N : Node_Id);
-- Main traversal procedure to check safe pointer usage. This procedure is
-- mutually recursive with the specialized procedures that follow.
procedure Check_Package_Body (Pack : Node_Id);
procedure Check_Param_In (Formal : Entity_Id; Actual : Node_Id);
-- This procedure takes a formal and an actual parameter and checks the
-- permission of every in-mode parameter. This includes Observing and
-- Borrowing.
procedure Check_Param_Out (Formal : Entity_Id; Actual : Node_Id);
-- This procedure takes a formal and an actual parameter and checks the
-- state of every out-mode and in out-mode parameter. This includes
-- Moving and Borrowing.
procedure Check_Statement (Stmt : Node_Id);
function Get_Perm (N : Node_Id) return Perm_Kind;
-- The function that takes a name as input and returns a permission
-- associated to it.
function Get_Perm_Or_Tree (N : Node_Id) return Perm_Or_Tree;
-- This function gets a Node_Id and looks recursively to find the
-- appropriate subtree for that Node_Id. If the tree is folded on
-- that node, then it returns the permission given at the right level.
function Get_Perm_Tree (N : Node_Id) return Perm_Tree_Access;
-- This function gets a Node_Id and looks recursively to find the
-- appropriate subtree for that Node_Id. If the tree is folded, then
-- it unrolls the tree up to the appropriate level.
procedure Hp (P : Perm_Env);
-- A procedure that outputs the hash table. This function is used only in
-- the debugger to look into a hash table.
pragma Unreferenced (Hp);
procedure Illegal_Global_Usage (N : Node_Or_Entity_Id);
pragma No_Return (Illegal_Global_Usage);
-- A procedure that is called when deep globals or aliased globals are used
-- without any global aspect.
function Is_Deep (E : Entity_Id) return Boolean;
-- A function that can tell if a type is deep or not. Returns true if the
-- type passed as argument is deep.
procedure Perm_Error
(N : Node_Id;
Perm : Perm_Kind;
Found_Perm : Perm_Kind);
-- A procedure that is called when the permissions found contradict the
-- rules established by the RM. This function is called with the node, its
-- entity and the permission that was expected, and adds an error message
-- with the appropriate values.
procedure Perm_Error_Subprogram_End
(E : Entity_Id;
Subp : Entity_Id;
Perm : Perm_Kind;
Found_Perm : Perm_Kind);
-- A procedure that is called when the permissions found contradict the
-- rules established by the RM at the end of subprograms. This function
-- is called with the node, its entity, the node of the returning function
-- and the permission that was expected, and adds an error message with the
-- appropriate values.
procedure Process_Path (N : Node_Id);
procedure Return_Declarations (L : List_Id);
-- Check correct permissions on every declared object at the end of a
-- callee. Used at the end of the body of a callable entity. Checks that
-- paths of all borrowed formal parameters and global have Unrestricted
-- permission.
procedure Return_Globals (Subp : Entity_Id);
-- Takes a subprogram as input, and checks that all borrowed global items
-- of the subprogram indeed have RW permission at the end of the subprogram
-- execution.
procedure Return_The_Global
(Id : Entity_Id;
Mode : Formal_Kind;
Subp : Entity_Id);
-- Auxiliary procedure to Return_Globals
-- There is no need to return parameters because they will be reassigned
-- their state once the subprogram returns. Local variables that have
-- borrowed, observed, or moved an actual parameter go out of the scope.
procedure Set_Perm_Extensions (T : Perm_Tree_Access; P : Perm_Kind);
-- This procedure takes an access to a permission tree and modifies the
-- tree so that any strict extensions of the given tree become of the
-- access specified by parameter P.
function Set_Perm_Prefixes_Borrow (N : Node_Id) return Perm_Tree_Access;
-- This function modifies the permissions of a given node_id in the
-- permission environment as well as in all the prefixes of the path,
-- given that the path is borrowed with mode out.
function Set_Perm_Prefixes
(N : Node_Id;
New_Perm : Perm_Kind)
return Perm_Tree_Access;
-- This function sets the permissions of a given node_id in the
-- permission environment as well as in all the prefixes of the path
-- to the one given in parameter (P).
procedure Setup_Globals (Subp : Entity_Id);
-- Takes a subprogram as input, and sets up the environment by adding
-- global items with appropriate permissions.
procedure Setup_Parameter_Or_Global
(Id : Entity_Id;
Mode : Formal_Kind;
Global_Var : Boolean);
-- Auxiliary procedure to Setup_Parameters and Setup_Globals
procedure Setup_Parameters (Subp : Entity_Id);
-- Takes a subprogram as input, and sets up the environment by adding
-- formal parameters with appropriate permissions.
function Has_Ownership_Aspect_True
(N : Node_Id;
Msg : String)
return Boolean;
-- Takes a node as an input, and finds out whether it has ownership aspect
-- True or False. This function is recursive whenever the node has a
-- composite type. Access-to-objects have ownership aspect False if they
-- have a general access type.
----------------------
-- Global Variables --
----------------------
Current_Perm_Env : Perm_Env;
-- The permission environment that is used for the analysis. This
-- environment can be saved, modified, reinitialized, but should be the
-- only one valid from which to extract the permissions of the paths in
-- scope. The analysis ensures at each point that this variables contains
-- a valid permission environment with all bindings in scope.
Current_Checking_Mode : Checking_Mode := Read;
-- The current analysis mode. This global variable indicates at each point
-- of the analysis whether the node being analyzed is moved, borrowed,
-- assigned, read, ... The full list of possible values can be found in
-- the declaration of type Checking_Mode.
Current_Loops_Envs : Env_Backups;
-- This variable contains saves of permission environments at each loop the
-- analysis entered. Each saved environment can be reached with the label
-- of the loop.
Current_Loops_Accumulators : Env_Backups;
-- This variable contains the environments used as accumulators for loops,
-- that consist of the merge of all environments at each exit point of
-- the loop (which can also be the entry point of the loop in the case of
-- non-infinite loops), each of them reachable from the label of the loop.
-- We require that the environment stored in the accumulator be less
-- restrictive than the saved environment at the beginning of the loop, and
-- the permission environment after the loop is equal to the accumulator.
Current_Initialization_Map : Initialization_Map;
-- This variable contains a map that binds each variable of the analyzed
-- source code to a boolean that becomes true whenever the variable is used
-- after declaration. Hence we can exclude from analysis variables that
-- are just declared and never accessed, typically at package declaration.
--------------------------
-- Check_Call_Statement --
--------------------------
procedure Check_Call_Statement (Call : Node_Id) is
Saved_Env : Perm_Env;
procedure Iterate_Call_In is new
Iterate_Call_Parameters (Check_Param_In);
procedure Iterate_Call_Out is new
Iterate_Call_Parameters (Check_Param_Out);
begin
-- Save environment, so that the modifications done by analyzing the
-- parameters are not kept at the end of the call.
Copy_Env (Current_Perm_Env, Saved_Env);
-- We first check the globals then parameters to handle the
-- No_Parameter_Aliasing Restriction. An out or in-out global is
-- considered as borrowing while a parameter with the same mode is
-- a move. This order disallow passing a part of a variable to a
-- subprogram if it is referenced as a global by the callable (when
-- writable).
-- For paremeters, we fisrt check in parameters and then the out ones.
-- This is to avoid Observing or Borrowing objects that are already
-- moved. This order is not mandatory but allows to catch runtime
-- errors like null pointer dereferencement at the analysis time.
Current_Checking_Mode := Read;
Check_Globals (Get_Pragma (Get_Called_Entity (Call), Pragma_Global));
Iterate_Call_In (Call);
Iterate_Call_Out (Call);
-- Restore environment, because after borrowing/observing actual
-- parameters, they get their permission reverted to the ones before
-- the call.
Free_Env (Current_Perm_Env);
Copy_Env (Saved_Env, Current_Perm_Env);
Free_Env (Saved_Env);
end Check_Call_Statement;
-------------------------
-- Check_Callable_Body --
-------------------------
procedure Check_Callable_Body (Body_N : Node_Id) is
Mode_Before : constant Checking_Mode := Current_Checking_Mode;
Saved_Env : Perm_Env;
Saved_Init_Map : Initialization_Map;
New_Env : Perm_Env;
Body_Id : constant Entity_Id := Defining_Entity (Body_N);
Spec_Id : constant Entity_Id := Unique_Entity (Body_Id);
begin
-- Check if SPARK pragma is not set to Off
if Present (SPARK_Pragma (Defining_Entity (Body_N))) then
if Get_SPARK_Mode_From_Annotation
(SPARK_Pragma (Defining_Entity (Body_N, False))) /= Opt.On
then
return;
end if;
else
return;
end if;
-- Save environment and put a new one in place
Copy_Env (Current_Perm_Env, Saved_Env);
-- Save initialization map
Copy_Init_Map (Current_Initialization_Map, Saved_Init_Map);
Current_Checking_Mode := Read;
Current_Perm_Env := New_Env;
-- Add formals and globals to the environment with adequate permissions
if Is_Subprogram_Or_Entry (Spec_Id) then
Setup_Parameters (Spec_Id);
Setup_Globals (Spec_Id);
end if;
-- Analyze the body of the function
Check_List (Declarations (Body_N));
Check_Node (Handled_Statement_Sequence (Body_N));
-- Check the read-write permissions of borrowed parameters/globals
if Ekind_In (Spec_Id, E_Procedure, E_Entry)
and then not No_Return (Spec_Id)
then
Return_Globals (Spec_Id);
end if;
-- Free the environments
Free_Env (Current_Perm_Env);
Copy_Env (Saved_Env, Current_Perm_Env);
Free_Env (Saved_Env);
-- Restore initialization map
Copy_Init_Map (Saved_Init_Map, Current_Initialization_Map);
Reset (Saved_Init_Map);
-- The assignment of all out parameters will be done by caller
Current_Checking_Mode := Mode_Before;
end Check_Callable_Body;
-----------------------
-- Check_Declaration --
-----------------------
procedure Check_Declaration (Decl : Node_Id) is
Target_Ent : constant Entity_Id := Defining_Identifier (Decl);
Target_Typ : Node_Id renames Etype (Target_Ent);
Target_View_Typ : Entity_Id;
Check : Boolean := True;
begin
if Present (Full_View (Target_Typ)) then
Target_View_Typ := Full_View (Target_Typ);
else
Target_View_Typ := Target_Typ;
end if;
case N_Declaration'(Nkind (Decl)) is
when N_Full_Type_Declaration =>
if not Has_Ownership_Aspect_True (Target_Ent, "type declaration")
then
Check := False;
end if;
-- ??? What about component declarations with defaults.
when N_Object_Declaration =>
if (Is_Access_Type (Target_View_Typ)
or else Is_Deep (Target_Typ))
and then not Has_Ownership_Aspect_True
(Target_Ent, "Object declaration ")
then
Check := False;
end if;
if Is_Anonymous_Access_Type (Target_View_Typ)
and then not Present (Expression (Decl))
then
-- ??? Check the case of default value (AI)
-- ??? How an anonymous access type can be with default exp?
Error_Msg_NE ("? object declaration & has OAF (Anonymous "
& "access-to-object with no initialization)",
Decl, Target_Ent);
-- If it it an initialization
elsif Present (Expression (Decl)) and Check then
-- Find out the operation to be done on the right-hand side
-- Initializing object, access type
if Is_Access_Type (Target_View_Typ) then
-- Initializing object, constant access type
if Is_Constant_Object (Target_Ent) then
-- Initializing object, constant access to variable type
if not Is_Access_Constant (Target_View_Typ) then
Current_Checking_Mode := Borrow;
-- Initializing object, constant access to constant type
-- Initializing object,
-- constant access to constant anonymous type.
elsif Is_Anonymous_Access_Type (Target_View_Typ) then
-- This is an object declaration so the target
-- of the assignement is a stand-alone object.
Current_Checking_Mode := Observe;
-- Initializing object, constant access to constant
-- named type.
else
-- If named then it is a general access type
-- Hence, Has_Ownership_Aspec_True is False.
raise Program_Error;
end if;
-- Initializing object, variable access type
else
-- Initializing object, variable access to variable type
if not Is_Access_Constant (Target_View_Typ) then
-- Initializing object, variable named access to
-- variable type.
if not Is_Anonymous_Access_Type (Target_View_Typ) then
Current_Checking_Mode := Move;
-- Initializing object, variable anonymous access to
-- variable type.
else
-- This is an object declaration so the target
-- object of the assignement is a stand-alone
-- object.
Current_Checking_Mode := Borrow;
end if;
-- Initializing object, variable access to constant type
else
-- Initializing object,
-- variable named access to constant type.
if not Is_Anonymous_Access_Type (Target_View_Typ) then
Error_Msg_N ("assignment not allowed, Ownership "
& "Aspect False (Anonymous Access "
& "Object)", Decl);
Check := False;
-- Initializing object,
-- variable anonymous access to constant type.
else
-- This is an object declaration so the target
-- of the assignement is a stand-alone object.
Current_Checking_Mode := Observe;
end if;
end if;
end if;
-- Initializing object, composite (deep) type
elsif Is_Deep (Target_Typ) then
-- Initializing object, constant composite type
if Is_Constant_Object (Target_Ent) then
Current_Checking_Mode := Observe;
-- Initializing object, variable composite type
else
-- Initializing object, variable anonymous composite type
if Nkind (Object_Definition (Decl)) =
N_Constrained_Array_Definition
-- An N_Constrained_Array_Definition is an anonymous
-- array (to be checked). Record types are always
-- named and are considered in the else part.
then
declare
Com_Ty : constant Node_Id :=
Component_Type (Etype (Target_Typ));
begin
if Is_Access_Type (Com_Ty) then
-- If components are of anonymous type
if Is_Anonymous_Access_Type (Com_Ty) then
if Is_Access_Constant (Com_Ty) then
Current_Checking_Mode := Observe;
else
Current_Checking_Mode := Borrow;
end if;
else
Current_Checking_Mode := Move;
end if;
elsif Is_Deep (Com_Ty) then
-- This is certainly named so it is a move
Current_Checking_Mode := Move;
end if;
end;
else
Current_Checking_Mode := Move;
end if;
end if;
end if;
end if;
if Check then
Check_Node (Expression (Decl));
end if;
-- If lhs is not a pointer, we still give it the unrestricted
-- state which is useless but not harmful.
declare
Elem : Perm_Tree_Access;
Deep : constant Boolean := Is_Deep (Target_Typ);
begin
-- Note that all declared variables are set to the unrestricted
-- state.
--
-- If variables are not initialized:
-- unrestricted to every declared object.
-- Exp:
-- R : Rec
-- S : Rec := (...)
-- R := S
-- The assignement R := S is not allowed in the new rules
-- if R is not unrestricted.
--
-- If variables are initialized:
-- If it is a move, then the target is unrestricted
-- If it is a borrow, then the target is unrestricted
-- If it is an observe, then the target should be observed
if Current_Checking_Mode = Observe then
Elem := new Perm_Tree_Wrapper'
(Tree =>
(Kind => Entire_Object,
Is_Node_Deep => Deep,
Permission => Observed,
Children_Permission => Observed));
else
Elem := new Perm_Tree_Wrapper'
(Tree =>
(Kind => Entire_Object,
Is_Node_Deep => Deep,
Permission => Unrestricted,
Children_Permission => Unrestricted));
end if;
-- Create new tree for defining identifier
Set (Current_Perm_Env,
Unique_Entity (Defining_Identifier (Decl)),
Elem);
pragma Assert (Get_First (Current_Perm_Env) /= null);
end;
when N_Subtype_Declaration =>
Check_Node (Subtype_Indication (Decl));
when N_Iterator_Specification =>
null;
when N_Loop_Parameter_Specification =>
null;
-- Checking should not be called directly on these nodes
when N_Function_Specification
| N_Entry_Declaration
| N_Procedure_Specification
| N_Component_Declaration
=>
raise Program_Error;
-- Ignored constructs for pointer checking
when N_Formal_Object_Declaration
| N_Formal_Type_Declaration
| N_Incomplete_Type_Declaration
| N_Private_Extension_Declaration
| N_Private_Type_Declaration
| N_Protected_Type_Declaration
=>
null;
-- The following nodes are rewritten by semantic analysis
when N_Expression_Function =>
raise Program_Error;
end case;
end Check_Declaration;
----------------------
-- Check_Expression --
----------------------
procedure Check_Expression (Expr : Node_Id) is
Mode_Before : constant Checking_Mode := Current_Checking_Mode;
begin
case N_Subexpr'(Nkind (Expr)) is
when N_Procedure_Call_Statement
| N_Function_Call
=>
Check_Call_Statement (Expr);
when N_Identifier
| N_Expanded_Name
=>
-- Check if identifier is pointing to nothing (On/Off/...)
if not Present (Entity (Expr)) then
return;
end if;
-- Do not analyze things that are not of object Kind
if Ekind (Entity (Expr)) not in Object_Kind then
return;
end if;
-- Consider as ident
Process_Path (Expr);
-- Switch to read mode and then check the readability of each operand
when N_Binary_Op =>
Current_Checking_Mode := Read;
Check_Node (Left_Opnd (Expr));
Check_Node (Right_Opnd (Expr));
-- Switch to read mode and then check the readability of each operand
when N_Op_Abs
| N_Op_Minus
| N_Op_Not
| N_Op_Plus
=>
Current_Checking_Mode := Read;
Check_Node (Right_Opnd (Expr));
-- Forbid all deep expressions for Attribute ???
-- What about generics? (formal parameters).
when N_Attribute_Reference =>
case Attribute_Name (Expr) is
when Name_Access =>
Error_Msg_N ("access attribute not allowed", Expr);
when Name_Last
| Name_First
=>
Current_Checking_Mode := Read;
Check_Node (Prefix (Expr));
when Name_Min =>
Current_Checking_Mode := Read;
Check_Node (Prefix (Expr));
when Name_Image =>
Check_List (Expressions (Expr));
when Name_Img =>
Check_Node (Prefix (Expr));
when Name_SPARK_Mode =>
null;
when Name_Value =>
Current_Checking_Mode := Read;
Check_Node (Prefix (Expr));
when Name_Update =>
Check_List (Expressions (Expr));
Check_Node (Prefix (Expr));
when Name_Pred
| Name_Succ
=>
Check_List (Expressions (Expr));
Check_Node (Prefix (Expr));
when Name_Length =>
Current_Checking_Mode := Read;
Check_Node (Prefix (Expr));
-- Any Attribute referring to the underlying memory is ignored
-- in the analysis. This means that taking the address of a
-- variable makes a silent alias that is not rejected by the
-- analysis.
when Name_Address
| Name_Alignment
| Name_Component_Size
| Name_First_Bit
| Name_Last_Bit
| Name_Size
| Name_Position
=>
null;
-- Attributes referring to types (get values from types), hence
-- no need to check either for borrows or any loans.
when Name_Base
| Name_Val
=>
null;
-- Other attributes that fall out of the scope of the analysis
when others =>
null;
end case;
when N_In =>
Current_Checking_Mode := Read;
Check_Node (Left_Opnd (Expr));
Check_Node (Right_Opnd (Expr));
when N_Not_In =>
Current_Checking_Mode := Read;
Check_Node (Left_Opnd (Expr));
Check_Node (Right_Opnd (Expr));
-- Switch to read mode and then check the readability of each operand
when N_And_Then
| N_Or_Else
=>
Current_Checking_Mode := Read;
Check_Node (Left_Opnd (Expr));
Check_Node (Right_Opnd (Expr));
-- Check the arguments of the call
when N_Explicit_Dereference =>
Process_Path (Expr);
-- Copy environment, run on each branch, and then merge
when N_If_Expression =>
declare
Saved_Env : Perm_Env;
-- Accumulator for the different branches
New_Env : Perm_Env;
Elmt : Node_Id := First (Expressions (Expr));
begin
Current_Checking_Mode := Read;
Check_Node (Elmt);
Current_Checking_Mode := Mode_Before;
-- Save environment
Copy_Env (Current_Perm_Env, Saved_Env);
-- Here we have the original env in saved, current with a fresh
-- copy, and new aliased.
-- THEN PART
Next (Elmt);
Check_Node (Elmt);
-- Here the new_environment contains curr env after then block
-- ELSE part
-- Restore environment before if
Copy_Env (Current_Perm_Env, New_Env);
Free_Env (Current_Perm_Env);
Copy_Env (Saved_Env, Current_Perm_Env);
-- Here new environment contains the environment after then and
-- current the fresh copy of old one.
Next (Elmt);
Check_Node (Elmt);
-- CLEANUP
Copy_Env (New_Env, Current_Perm_Env);
Free_Env (New_Env);
Free_Env (Saved_Env);
end;
when N_Indexed_Component =>
Process_Path (Expr);
-- Analyze the expression that is getting qualified
when N_Qualified_Expression =>
Check_Node (Expression (Expr));
when N_Quantified_Expression =>
declare
Saved_Env : Perm_Env;
begin
Copy_Env (Current_Perm_Env, Saved_Env);
Current_Checking_Mode := Read;
Check_Node (Iterator_Specification (Expr));
Check_Node (Loop_Parameter_Specification (Expr));
Check_Node (Condition (Expr));
Free_Env (Current_Perm_Env);
Copy_Env (Saved_Env, Current_Perm_Env);
Free_Env (Saved_Env);
end;
-- Analyze the list of associations in the aggregate
when N_Aggregate =>
Check_List (Expressions (Expr));
Check_List (Component_Associations (Expr));
when N_Allocator =>
Check_Node (Expression (Expr));
when N_Case_Expression =>
declare
Saved_Env : Perm_Env;
-- Accumulator for the different branches
New_Env : Perm_Env;
Elmt : Node_Id := First (Alternatives (Expr));
begin
Current_Checking_Mode := Read;
Check_Node (Expression (Expr));
Current_Checking_Mode := Mode_Before;
-- Save environment
Copy_Env (Current_Perm_Env, Saved_Env);
-- Here we have the original env in saved, current with a fresh
-- copy, and new aliased.
-- First alternative
Check_Node (Elmt);
Next (Elmt);
Copy_Env (Current_Perm_Env, New_Env);
Free_Env (Current_Perm_Env);
-- Other alternatives
while Present (Elmt) loop
-- Restore environment
Copy_Env (Saved_Env, Current_Perm_Env);
Check_Node (Elmt);
Next (Elmt);
end loop;
-- CLEANUP
Copy_Env (Saved_Env, Current_Perm_Env);
Free_Env (New_Env);
Free_Env (Saved_Env);
end;
-- Analyze the list of associates in the aggregate as well as the
-- ancestor part.
when N_Extension_Aggregate =>
Check_Node (Ancestor_Part (Expr));
Check_List (Expressions (Expr));
when N_Range =>
Check_Node (Low_Bound (Expr));
Check_Node (High_Bound (Expr));
-- We arrived at a path. Process it.
when N_Selected_Component =>
Process_Path (Expr);
when N_Slice =>
Process_Path (Expr);
when N_Type_Conversion =>
Check_Node (Expression (Expr));
when N_Unchecked_Type_Conversion =>
Check_Node (Expression (Expr));
-- Checking should not be called directly on these nodes
when N_Target_Name =>
raise Program_Error;
-- Unsupported constructs in SPARK
when N_Delta_Aggregate =>
Error_Msg_N ("unsupported construct in SPARK", Expr);
-- Ignored constructs for pointer checking
when N_Character_Literal
| N_Null
| N_Numeric_Or_String_Literal
| N_Operator_Symbol
| N_Raise_Expression
| N_Raise_xxx_Error
=>
null;
-- The following nodes are never generated in GNATprove mode
when N_Expression_With_Actions
| N_Reference
| N_Unchecked_Expression
=>
raise Program_Error;
end case;
end Check_Expression;
-------------------
-- Check_Globals --
-------------------
procedure Check_Globals (N : Node_Id) is
begin
if Nkind (N) = N_Empty then
return;
end if;
declare
pragma Assert (List_Length (Pragma_Argument_Associations (N)) = 1);
PAA : constant Node_Id := First (Pragma_Argument_Associations (N));
pragma Assert (Nkind (PAA) = N_Pragma_Argument_Association);
Row : Node_Id;
The_Mode : Name_Id;
RHS : Node_Id;
procedure Process (Mode : Name_Id; The_Global : Entity_Id);
procedure Process (Mode : Name_Id; The_Global : Node_Id) is
Ident_Elt : constant Entity_Id :=
Unique_Entity (Entity (The_Global));
Mode_Before : constant Checking_Mode := Current_Checking_Mode;
begin
if Ekind (Ident_Elt) = E_Abstract_State then
return;
end if;
case Mode is
when Name_Input
| Name_Proof_In
=>
Current_Checking_Mode := Observe;
Check_Node (The_Global);
when Name_Output
| Name_In_Out
=>
-- ??? Borrow not Move?
Current_Checking_Mode := Borrow;
Check_Node (The_Global);
when others =>
raise Program_Error;
end case;
Current_Checking_Mode := Mode_Before;
end Process;
begin
if Nkind (Expression (PAA)) = N_Null then
-- global => null
-- No globals, nothing to do
return;
elsif Nkind_In (Expression (PAA), N_Identifier, N_Expanded_Name) then
-- global => foo
-- A single input
Process (Name_Input, Expression (PAA));
elsif Nkind (Expression (PAA)) = N_Aggregate
and then Expressions (Expression (PAA)) /= No_List
then
-- global => (foo, bar)
-- Inputs
RHS := First (Expressions (Expression (PAA)));
while Present (RHS) loop
case Nkind (RHS) is
when N_Identifier
| N_Expanded_Name
=>
Process (Name_Input, RHS);
when N_Numeric_Or_String_Literal =>
Process (Name_Input, Original_Node (RHS));
when others =>
raise Program_Error;
end case;
RHS := Next (RHS);
end loop;
elsif Nkind (Expression (PAA)) = N_Aggregate
and then Component_Associations (Expression (PAA)) /= No_List
then
-- global => (mode => foo,
-- mode => (bar, baz))
-- A mixture of things
declare
CA : constant List_Id :=
Component_Associations (Expression (PAA));
begin
Row := First (CA);
while Present (Row) loop
pragma Assert (List_Length (Choices (Row)) = 1);
The_Mode := Chars (First (Choices (Row)));
RHS := Expression (Row);
case Nkind (RHS) is
when N_Aggregate =>
RHS := First (Expressions (RHS));
while Present (RHS) loop
case Nkind (RHS) is
when N_Numeric_Or_String_Literal =>
Process (The_Mode, Original_Node (RHS));
when others =>
Process (The_Mode, RHS);
end case;
RHS := Next (RHS);
end loop;
when N_Identifier
| N_Expanded_Name
=>
Process (The_Mode, RHS);
when N_Null =>
null;
when N_Numeric_Or_String_Literal =>
Process (The_Mode, Original_Node (RHS));
when others =>
raise Program_Error;
end case;
Row := Next (Row);
end loop;
end;
else
raise Program_Error;
end if;
end;
end Check_Globals;
----------------
-- Check_List --
----------------
procedure Check_List (L : List_Id) is
N : Node_Id;
begin
N := First (L);
while Present (N) loop
Check_Node (N);
Next (N);
end loop;
end Check_List;
--------------------------
-- Check_Loop_Statement --
--------------------------
procedure Check_Loop_Statement (Loop_N : Node_Id) is
-- Local variables
Loop_Name : constant Entity_Id := Entity (Identifier (Loop_N));
Loop_Env : constant Perm_Env_Access := new Perm_Env;
begin
-- Save environment prior to the loop
Copy_Env (From => Current_Perm_Env, To => Loop_Env.all);
-- Add saved environment to loop environment
Set (Current_Loops_Envs, Loop_Name, Loop_Env);
-- If the loop is not a plain-loop, then it may either never be entered,
-- or it may be exited after a number of iterations. Hence add the
-- current permission environment as the initial loop exit environment.
-- Otherwise, the loop exit environment remains empty until it is
-- populated by analyzing exit statements.
if Present (Iteration_Scheme (Loop_N)) then
declare
Exit_Env : constant Perm_Env_Access := new Perm_Env;
begin
Copy_Env (From => Current_Perm_Env, To => Exit_Env.all);
Set (Current_Loops_Accumulators, Loop_Name, Exit_Env);
end;
end if;
-- Analyze loop
Check_Node (Iteration_Scheme (Loop_N));
Check_List (Statements (Loop_N));
-- Set environment to the one for exiting the loop
declare
Exit_Env : constant Perm_Env_Access :=
Get (Current_Loops_Accumulators, Loop_Name);
begin
Free_Env (Current_Perm_Env);
-- In the normal case, Exit_Env is not null and we use it. In the
-- degraded case of a plain-loop without exit statements, Exit_Env is
-- null, and we use the initial permission environment at the start
-- of the loop to continue analysis. Any environment would be fine
-- here, since the code after the loop is dead code, but this way we
-- avoid spurious errors by having at least variables in scope inside
-- the environment.
if Exit_Env /= null then
Copy_Env (From => Exit_Env.all, To => Current_Perm_Env);
Free_Env (Loop_Env.all);
Free_Env (Exit_Env.all);
else
Copy_Env (From => Loop_Env.all, To => Current_Perm_Env);
Free_Env (Loop_Env.all);
end if;
end;
end Check_Loop_Statement;
----------------
-- Check_Node --
----------------
procedure Check_Node (N : Node_Id) is
Mode_Before : constant Checking_Mode := Current_Checking_Mode;
begin
case Nkind (N) is
when N_Declaration =>
Check_Declaration (N);
when N_Subexpr =>
Check_Expression (N);
when N_Subtype_Indication =>
Check_Node (Constraint (N));
when N_Body_Stub =>
Check_Node (Get_Body_From_Stub (N));
when N_Statement_Other_Than_Procedure_Call =>
Check_Statement (N);
when N_Package_Body =>
Check_Package_Body (N);
when N_Subprogram_Body
| N_Entry_Body
| N_Task_Body
=>
Check_Callable_Body (N);
when N_Protected_Body =>
Check_List (Declarations (N));
when N_Package_Declaration =>
declare
Spec : constant Node_Id := Specification (N);
begin
Current_Checking_Mode := Read;
Check_List (Visible_Declarations (Spec));
Check_List (Private_Declarations (Spec));
Return_Declarations (Visible_Declarations (Spec));
Return_Declarations (Private_Declarations (Spec));
end;
when N_Iteration_Scheme =>
Current_Checking_Mode := Read;
Check_Node (Condition (N));
Check_Node (Iterator_Specification (N));
Check_Node (Loop_Parameter_Specification (N));
when N_Case_Expression_Alternative =>
Current_Checking_Mode := Read;
Check_List (Discrete_Choices (N));
Current_Checking_Mode := Mode_Before;
Check_Node (Expression (N));
when N_Case_Statement_Alternative =>
Current_Checking_Mode := Read;
Check_List (Discrete_Choices (N));
Current_Checking_Mode := Mode_Before;
Check_List (Statements (N));
when N_Component_Association =>
Check_Node (Expression (N));
when N_Handled_Sequence_Of_Statements =>
Check_List (Statements (N));
when N_Parameter_Association =>
Check_Node (Explicit_Actual_Parameter (N));
when N_Range_Constraint =>
Check_Node (Range_Expression (N));
when N_Index_Or_Discriminant_Constraint =>
Check_List (Constraints (N));
-- Checking should not be called directly on these nodes
when N_Abortable_Part
| N_Accept_Alternative
| N_Access_Definition
| N_Access_Function_Definition
| N_Access_Procedure_Definition
| N_Access_To_Object_Definition
| N_Aspect_Specification
| N_Compilation_Unit
| N_Compilation_Unit_Aux
| N_Component_Clause
| N_Component_Definition
| N_Component_List
| N_Constrained_Array_Definition
| N_Contract
| N_Decimal_Fixed_Point_Definition
| N_Defining_Character_Literal
| N_Defining_Identifier
| N_Defining_Operator_Symbol
| N_Defining_Program_Unit_Name
| N_Delay_Alternative
| N_Derived_Type_Definition
| N_Designator
| N_Discriminant_Specification
| N_Elsif_Part
| N_Entry_Body_Formal_Part
| N_Enumeration_Type_Definition
| N_Entry_Call_Alternative
| N_Entry_Index_Specification
| N_Error
| N_Exception_Handler
| N_Floating_Point_Definition
| N_Formal_Decimal_Fixed_Point_Definition
| N_Formal_Derived_Type_Definition
| N_Formal_Discrete_Type_Definition
| N_Formal_Floating_Point_Definition
| N_Formal_Incomplete_Type_Definition
| N_Formal_Modular_Type_Definition
| N_Formal_Ordinary_Fixed_Point_Definition
| N_Formal_Private_Type_Definition
| N_Formal_Signed_Integer_Type_Definition
| N_Generic_Association
| N_Mod_Clause
| N_Modular_Type_Definition
| N_Ordinary_Fixed_Point_Definition
| N_Package_Specification
| N_Parameter_Specification
| N_Pragma_Argument_Association
| N_Protected_Definition
| N_Push_Pop_xxx_Label
| N_Real_Range_Specification
| N_Record_Definition
| N_SCIL_Dispatch_Table_Tag_Init
| N_SCIL_Dispatching_Call
| N_SCIL_Membership_Test
| N_Signed_Integer_Type_Definition
| N_Subunit
| N_Task_Definition
| N_Terminate_Alternative
| N_Triggering_Alternative
| N_Unconstrained_Array_Definition
| N_Unused_At_Start
| N_Unused_At_End
| N_Variant
| N_Variant_Part
=>
raise Program_Error;
-- Unsupported constructs in SPARK
when N_Iterated_Component_Association =>
Error_Msg_N ("unsupported construct in SPARK", N);
-- Ignored constructs for pointer checking
when N_Abstract_Subprogram_Declaration
| N_At_Clause
| N_Attribute_Definition_Clause
| N_Call_Marker
| N_Delta_Constraint
| N_Digits_Constraint
| N_Empty
| N_Enumeration_Representation_Clause
| N_Exception_Declaration
| N_Exception_Renaming_Declaration
| N_Formal_Package_Declaration
| N_Formal_Subprogram_Declaration
| N_Freeze_Entity
| N_Freeze_Generic_Entity
| N_Function_Instantiation
| N_Generic_Function_Renaming_Declaration
| N_Generic_Package_Declaration
| N_Generic_Package_Renaming_Declaration
| N_Generic_Procedure_Renaming_Declaration
| N_Generic_Subprogram_Declaration
| N_Implicit_Label_Declaration
| N_Itype_Reference
| N_Label
| N_Number_Declaration
| N_Object_Renaming_Declaration
| N_Others_Choice
| N_Package_Instantiation
| N_Package_Renaming_Declaration
| N_Pragma
| N_Procedure_Instantiation
| N_Record_Representation_Clause
| N_Subprogram_Declaration
| N_Subprogram_Renaming_Declaration
| N_Task_Type_Declaration
| N_Use_Package_Clause
| N_With_Clause
| N_Use_Type_Clause
| N_Validate_Unchecked_Conversion
| N_Variable_Reference_Marker
| N_Discriminant_Association
-- ??? check whether we should do sth special for
-- N_Discriminant_Association, or maybe raise a program error.
=>
null;
-- The following nodes are rewritten by semantic analysis
when N_Single_Protected_Declaration
| N_Single_Task_Declaration
=>
raise Program_Error;
end case;
Current_Checking_Mode := Mode_Before;
end Check_Node;
------------------------
-- Check_Package_Body --
------------------------
procedure Check_Package_Body (Pack : Node_Id) is
Saved_Env : Perm_Env;
CorSp : Node_Id;
begin
if Present (SPARK_Pragma (Defining_Entity (Pack, False))) then
if Get_SPARK_Mode_From_Annotation
(SPARK_Pragma (Defining_Entity (Pack))) /= Opt.On
then
return;
end if;
else
return;
end if;
CorSp := Parent (Corresponding_Spec (Pack));
while Nkind (CorSp) /= N_Package_Specification loop
CorSp := Parent (CorSp);
end loop;
Check_List (Visible_Declarations (CorSp));
-- Save environment
Copy_Env (Current_Perm_Env, Saved_Env);
Check_List (Private_Declarations (CorSp));
-- Set mode to Read, and then analyze declarations and statements
Current_Checking_Mode := Read;
Check_List (Declarations (Pack));
Check_Node (Handled_Statement_Sequence (Pack));
-- Check RW for every stateful variable (i.e. in declarations)
Return_Declarations (Private_Declarations (CorSp));
Return_Declarations (Visible_Declarations (CorSp));
Return_Declarations (Declarations (Pack));
-- Restore previous environment (i.e. delete every nonvisible
-- declaration) from environment.
Free_Env (Current_Perm_Env);
Copy_Env (Saved_Env, Current_Perm_Env);
end Check_Package_Body;
--------------------
-- Check_Param_In --
--------------------
procedure Check_Param_In (Formal : Entity_Id; Actual : Node_Id) is
Mode : constant Entity_Kind := Ekind (Formal);
Mode_Before : constant Checking_Mode := Current_Checking_Mode;
begin
case Formal_Kind'(Mode) is
-- Formal IN parameter
when E_In_Parameter =>
-- Formal IN parameter, access type
if Is_Access_Type (Etype (Formal)) then
-- Formal IN parameter, access to variable type
if not Is_Access_Constant (Etype (Formal)) then
-- Formal IN parameter, named/anonymous access-to-variable
-- type.
--
-- In SPARK, IN access-to-variable is an observe operation
-- for a function, and a borrow operation for a procedure.
if Ekind (Scope (Formal)) = E_Function then
Current_Checking_Mode := Observe;
Check_Node (Actual);
else
Current_Checking_Mode := Borrow;
Check_Node (Actual);
end if;
-- Formal IN parameter, access-to-constant type
-- Formal IN parameter, access-to-named-constant type
elsif not Is_Anonymous_Access_Type (Etype (Formal)) then
Error_Msg_N ("assignment not allowed, Ownership Aspect"
& " False (Named general access type)",
Formal);
-- Formal IN parameter, access to anonymous constant type
else
Current_Checking_Mode := Observe;
Check_Node (Actual);
end if;
-- Formal IN parameter, composite type
elsif Is_Deep (Etype (Formal)) then
-- Composite formal types should be named
-- Formal IN parameter, composite named type
Current_Checking_Mode := Observe;
Check_Node (Actual);
end if;
when E_Out_Parameter
| E_In_Out_Parameter
=>
null;
end case;
Current_Checking_Mode := Mode_Before;
end Check_Param_In;
----------------------
-- Check_Param_Out --
----------------------
procedure Check_Param_Out (Formal : Entity_Id; Actual : Node_Id) is
Mode : constant Entity_Kind := Ekind (Formal);
Mode_Before : constant Checking_Mode := Current_Checking_Mode;
begin
case Formal_Kind'(Mode) is
-- Formal OUT/IN OUT parameter
when E_Out_Parameter
| E_In_Out_Parameter
=>
-- Formal OUT/IN OUT parameter, access type
if Is_Access_Type (Etype (Formal)) then
-- Formal OUT/IN OUT parameter, access to variable type
if not Is_Access_Constant (Etype (Formal)) then
-- Cannot have anonymous out access parameter
-- Formal out/in out parameter, access to named variable
-- type.
Current_Checking_Mode := Move;
Check_Node (Actual);
-- Formal out/in out parameter, access to constant type
else
Error_Msg_N ("assignment not allowed, Ownership Aspect False"
& " (Named general access type)", Formal);
end if;
-- Formal out/in out parameter, composite type
elsif Is_Deep (Etype (Formal)) then
-- Composite formal types should be named
-- Formal out/in out Parameter, Composite Named type.
Current_Checking_Mode := Borrow;
Check_Node (Actual);
end if;
when E_In_Parameter =>
null;
end case;
Current_Checking_Mode := Mode_Before;
end Check_Param_Out;
-------------------------
-- Check_Safe_Pointers --
-------------------------
procedure Check_Safe_Pointers (N : Node_Id) is
-- Local subprograms
procedure Check_List (L : List_Id);
-- Call the main analysis procedure on each element of the list
procedure Initialize;
-- Initialize global variables before starting the analysis of a body
----------------
-- Check_List --
----------------
procedure Check_List (L : List_Id) is
N : Node_Id;
begin
N := First (L);
while Present (N) loop
Check_Safe_Pointers (N);
Next (N);
end loop;
end Check_List;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Reset (Current_Loops_Envs);
Reset (Current_Loops_Accumulators);
Reset (Current_Perm_Env);
Reset (Current_Initialization_Map);
end Initialize;
-- Local variables
Prag : Node_Id;
-- SPARK_Mode pragma in application
-- Start of processing for Check_Safe_Pointers
begin
Initialize;
case Nkind (N) is
when N_Compilation_Unit =>
Check_Safe_Pointers (Unit (N));
when N_Package_Body
| N_Package_Declaration
| N_Subprogram_Body
=>
Prag := SPARK_Pragma (Defining_Entity (N));
if Present (Prag) then
if Get_SPARK_Mode_From_Annotation (Prag) = Opt.Off then
return;
else
Check_Node (N);
end if;
elsif Nkind (N) = N_Package_Body then
Check_List (Declarations (N));
elsif Nkind (N) = N_Package_Declaration then
Check_List (Private_Declarations (Specification (N)));
Check_List (Visible_Declarations (Specification (N)));
end if;
when others =>
null;
end case;
end Check_Safe_Pointers;
---------------------
-- Check_Statement --
---------------------
procedure Check_Statement (Stmt : Node_Id) is
Mode_Before : constant Checking_Mode := Current_Checking_Mode;
State_N : Perm_Kind;
Check : Boolean := True;
St_Name : Node_Id;
Ty_St_Name : Node_Id;
function Get_Root (Comp_Stmt : Node_Id) return Node_Id;
-- Return the root of the name given as input
function Get_Root (Comp_Stmt : Node_Id) return Node_Id is
begin
case Nkind (Comp_Stmt) is
when N_Identifier
| N_Expanded_Name
=> return Comp_Stmt;
when N_Type_Conversion
| N_Unchecked_Type_Conversion
| N_Qualified_Expression
=>
return Get_Root (Expression (Comp_Stmt));
when N_Parameter_Specification =>
return Get_Root (Defining_Identifier (Comp_Stmt));
when N_Selected_Component
| N_Indexed_Component
| N_Slice
| N_Explicit_Dereference
=>
return Get_Root (Prefix (Comp_Stmt));
when others =>
raise Program_Error;
end case;
end Get_Root;
begin
case N_Statement_Other_Than_Procedure_Call'(Nkind (Stmt)) is
when N_Entry_Call_Statement =>
Check_Call_Statement (Stmt);
-- Move right-hand side first, and then assign left-hand side
when N_Assignment_Statement =>
St_Name := Name (Stmt);
Ty_St_Name := Etype (Name (Stmt));
-- Check that is not a *general* access type
if Has_Ownership_Aspect_True (St_Name, "assigning to") then
-- Assigning to access type
if Is_Access_Type (Ty_St_Name) then
-- Assigning to access to variable type
if not Is_Access_Constant (Ty_St_Name) then
-- Assigning to named access to variable type
if not Is_Anonymous_Access_Type (Ty_St_Name) then
Current_Checking_Mode := Move;
-- Assigning to anonymous access to variable type
else
-- Target /= source root
if Nkind_In (Expression (Stmt), N_Allocator, N_Null)
or else Entity (St_Name) /=
Entity (Get_Root (Expression (Stmt)))
then
Error_Msg_N ("assignment not allowed, anonymous "
& "access Object with Different Root",
Stmt);
Check := False;
-- Target = source root
else
-- Here we do nothing on the source nor on the
-- target. However, we check the the legality rule:
-- "The source shall be an owning access object
-- denoted by a name that is not in the observed
-- state".
State_N := Get_Perm (Expression (Stmt));
if State_N = Observed then
Error_Msg_N ("assignment not allowed, Anonymous "
& "access object with the same root"
& " but source Observed", Stmt);
Check := False;
end if;
end if;
end if;
-- else access-to-constant
-- Assigning to anonymous access-to-constant type
elsif Is_Anonymous_Access_Type (Ty_St_Name) then
-- ??? Check the follwing condition. We may have to
-- add that the root is in the observed state too.
State_N := Get_Perm (Expression (Stmt));
if State_N /= Observed then
Error_Msg_N ("assignment not allowed, anonymous "
& "access-to-constant object not in "
& "the observed state)", Stmt);
Check := False;
else
Error_Msg_N ("?here check accessibility level cited in"
& " the second legality rule of assign",
Stmt);
Check := False;
end if;
-- Assigning to named access-to-constant type:
-- This case should have been detected when checking
-- Has_Onwership_Aspect_True (Name (Stmt), "msg").
else
raise Program_Error;
end if;
-- Assigning to composite (deep) type.
elsif Is_Deep (Ty_St_Name) then
if Ekind_In (Ty_St_Name,
E_Record_Type,
E_Record_Subtype)
then
declare
Elmt : Entity_Id :=
First_Component_Or_Discriminant (Ty_St_Name);
begin
while Present (Elmt) loop
if Is_Anonymous_Access_Type (Etype (Elmt)) or
Ekind (Elmt) = E_General_Access_Type
then
Error_Msg_N ("assignment not allowed, Ownership "
& "Aspect False (Components have "
& "Ownership Aspect False)", Stmt);
Check := False;
exit;
end if;
Next_Component_Or_Discriminant (Elmt);
end loop;
end;
-- Record types are always named so this is a move
if Check then
Current_Checking_Mode := Move;
end if;
elsif Ekind_In (Ty_St_Name,
E_Array_Type,
E_Array_Subtype)
and then Check
then
Current_Checking_Mode := Move;
end if;
-- Now handle legality rules of using a borrowed, observed,
-- or moved name as a prefix in an assignment.
else
if Nkind_In (St_Name,
N_Attribute_Reference,
N_Expanded_Name,
N_Explicit_Dereference,
N_Indexed_Component,
N_Reference,
N_Selected_Component,
N_Slice)
then
if Is_Access_Type (Etype (Prefix (St_Name))) or
Is_Deep (Etype (Prefix (St_Name)))
then
-- We set the Check variable to True so that we can
-- Check_Node of the expression and the name first
-- under the assumption of Current_Checking_Mode =
-- Read => nothing to be done for the RHS if the
-- following check on the expression fails, and
-- Current_Checking_Mode := Assign => the name should
-- not be borrowed or observed so that we can use it
-- as a prefix in the target of an assignement.
--
-- Note that we do not need to check the OA here
-- because we are allowed to read and write "through"
-- an object of OAF (example: traversing a DS).
Check := True;
end if;
end if;
if Nkind_In (Expression (Stmt),
N_Attribute_Reference,
N_Expanded_Name,
N_Explicit_Dereference,
N_Indexed_Component,
N_Reference,
N_Selected_Component,
N_Slice)
then
if Is_Access_Type (Etype (Prefix (Expression (Stmt))))
or else Is_Deep (Etype (Prefix (Expression (Stmt))))
then
Current_Checking_Mode := Observe;
Check := True;
end if;
end if;
end if;
if Check then
Check_Node (Expression (Stmt));
Current_Checking_Mode := Assign;
Check_Node (St_Name);
end if;
end if;
when N_Block_Statement =>
declare
Saved_Env : Perm_Env;
begin
-- Save environment
Copy_Env (Current_Perm_Env, Saved_Env);
-- Analyze declarations and Handled_Statement_Sequences
Current_Checking_Mode := Read;
Check_List (Declarations (Stmt));
Check_Node (Handled_Statement_Sequence (Stmt));
-- Restore environment
Free_Env (Current_Perm_Env);
Copy_Env (Saved_Env, Current_Perm_Env);
end;
when N_Case_Statement =>
declare
Saved_Env : Perm_Env;
-- Accumulator for the different branches
New_Env : Perm_Env;
Elmt : Node_Id := First (Alternatives (Stmt));
begin
Current_Checking_Mode := Read;
Check_Node (Expression (Stmt));
Current_Checking_Mode := Mode_Before;
-- Save environment
Copy_Env (Current_Perm_Env, Saved_Env);
-- Here we have the original env in saved, current with a fresh
-- copy, and new aliased.
-- First alternative
Check_Node (Elmt);
Next (Elmt);
Copy_Env (Current_Perm_Env, New_Env);
Free_Env (Current_Perm_Env);
-- Other alternatives
while Present (Elmt) loop
-- Restore environment
Copy_Env (Saved_Env, Current_Perm_Env);
Check_Node (Elmt);
Next (Elmt);
end loop;
Copy_Env (Saved_Env, Current_Perm_Env);
Free_Env (New_Env);
Free_Env (Saved_Env);
end;
when N_Delay_Relative_Statement =>
Check_Node (Expression (Stmt));
when N_Delay_Until_Statement =>
Check_Node (Expression (Stmt));
when N_Loop_Statement =>
Check_Loop_Statement (Stmt);
-- If deep type expression, then move, else read
when N_Simple_Return_Statement =>
case Nkind (Expression (Stmt)) is
when N_Empty =>
declare
-- ??? This does not take into account the fact that
-- a simple return inside an extended return statement
-- applies to the extended return statement.
Subp : constant Entity_Id :=
Return_Applies_To (Return_Statement_Entity (Stmt));
begin
Return_Globals (Subp);
end;
when others =>
if Is_Deep (Etype (Expression (Stmt))) then
Current_Checking_Mode := Move;
else
Check := False;
end if;
if Check then
Check_Node (Expression (Stmt));
end if;
end case;
when N_Extended_Return_Statement =>
Check_List (Return_Object_Declarations (Stmt));
Check_Node (Handled_Statement_Sequence (Stmt));
Return_Declarations (Return_Object_Declarations (Stmt));
declare
-- ??? This does not take into account the fact that a simple
-- return inside an extended return statement applies to the
-- extended return statement.
Subp : constant Entity_Id :=
Return_Applies_To (Return_Statement_Entity (Stmt));
begin
Return_Globals (Subp);
end;
-- Nothing to do when exiting a loop. No merge needed
when N_Exit_Statement =>
null;
-- Copy environment, run on each branch
when N_If_Statement =>
declare
Saved_Env : Perm_Env;
-- Accumulator for the different branches
New_Env : Perm_Env;
begin
Check_Node (Condition (Stmt));
-- Save environment
Copy_Env (Current_Perm_Env, Saved_Env);
-- Here we have the original env in saved, current with a fresh
-- copy.
-- THEN PART
Check_List (Then_Statements (Stmt));
Copy_Env (Current_Perm_Env, New_Env);
Free_Env (Current_Perm_Env);
-- Here the new_environment contains curr env after then block
-- ELSIF part
declare
Elmt : Node_Id;
begin
Elmt := First (Elsif_Parts (Stmt));
while Present (Elmt) loop
-- Transfer into accumulator, and restore from save
Copy_Env (Saved_Env, Current_Perm_Env);
Check_Node (Condition (Elmt));
Check_List (Then_Statements (Stmt));
Next (Elmt);
end loop;
end;
-- ELSE part
-- Restore environment before if
Copy_Env (Saved_Env, Current_Perm_Env);
-- Here new environment contains the environment after then and
-- current the fresh copy of old one.
Check_List (Else_Statements (Stmt));
-- CLEANUP
Copy_Env (Saved_Env, Current_Perm_Env);
Free_Env (New_Env);
Free_Env (Saved_Env);
end;
-- Unsupported constructs in SPARK
when N_Abort_Statement
| N_Accept_Statement
| N_Asynchronous_Select
| N_Code_Statement
| N_Conditional_Entry_Call
| N_Goto_Statement
| N_Requeue_Statement
| N_Selective_Accept
| N_Timed_Entry_Call
=>
Error_Msg_N ("unsupported construct in SPARK", Stmt);
-- Ignored constructs for pointer checking
when N_Null_Statement
| N_Raise_Statement
=>
null;
-- The following nodes are never generated in GNATprove mode
when N_Compound_Statement
| N_Free_Statement
=>
raise Program_Error;
end case;
end Check_Statement;
--------------
-- Get_Perm --
--------------
function Get_Perm (N : Node_Id) return Perm_Kind is
Tree_Or_Perm : constant Perm_Or_Tree := Get_Perm_Or_Tree (N);
begin
case Tree_Or_Perm.R is
when Folded =>
return Tree_Or_Perm.Found_Permission;
when Unfolded =>
pragma Assert (Tree_Or_Perm.Tree_Access /= null);
return Permission (Tree_Or_Perm.Tree_Access);
-- We encoutered a function call, hence the memory area is fresh,
-- which means that the association permission is RW.
when Function_Call =>
return Unrestricted;
end case;
end Get_Perm;
----------------------
-- Get_Perm_Or_Tree --
----------------------
function Get_Perm_Or_Tree (N : Node_Id) return Perm_Or_Tree is
begin
case Nkind (N) is
-- Base identifier. Normally those are the roots of the trees stored
-- in the permission environment.
when N_Defining_Identifier =>
raise Program_Error;
when N_Identifier
| N_Expanded_Name
=>
declare
P : constant Entity_Id := Entity (N);
C : constant Perm_Tree_Access :=
Get (Current_Perm_Env, Unique_Entity (P));
begin
-- Setting the initialization map to True, so that this
-- variable cannot be ignored anymore when looking at end
-- of elaboration of package.
Set (Current_Initialization_Map, Unique_Entity (P), True);
if C = null then
-- No null possible here, there are no parents for the path.
-- This means we are using a global variable without adding
-- it in environment with a global aspect.
Illegal_Global_Usage (N);
else
return (R => Unfolded, Tree_Access => C);
end if;
end;
when N_Type_Conversion
| N_Unchecked_Type_Conversion
| N_Qualified_Expression
=>
return Get_Perm_Or_Tree (Expression (N));
-- Happening when we try to get the permission of a variable that
-- is a formal parameter. We get instead the defining identifier
-- associated with the parameter (which is the one that has been
-- stored for indexing).
when N_Parameter_Specification =>
return Get_Perm_Or_Tree (Defining_Identifier (N));
-- We get the permission tree of its prefix, and then get either the
-- subtree associated with that specific selection, or if we have a
-- leaf that folds its children, we take the children's permission
-- and return it using the discriminant Folded.
when N_Selected_Component =>
declare
C : constant Perm_Or_Tree := Get_Perm_Or_Tree (Prefix (N));
begin
case C.R is
when Folded
| Function_Call
=>
return C;
when Unfolded =>
pragma Assert (C.Tree_Access /= null);
pragma Assert (Kind (C.Tree_Access) = Entire_Object
or else
Kind (C.Tree_Access) = Record_Component);
if Kind (C.Tree_Access) = Record_Component then
declare
Selected_Component : constant Entity_Id :=
Entity (Selector_Name (N));
Selected_C : constant Perm_Tree_Access :=
Perm_Tree_Maps.Get
(Component (C.Tree_Access), Selected_Component);
begin
if Selected_C = null then
return (R => Unfolded,
Tree_Access =>
Other_Components (C.Tree_Access));
else
return (R => Unfolded,
Tree_Access => Selected_C);
end if;
end;
elsif Kind (C.Tree_Access) = Entire_Object then
return (R => Folded,
Found_Permission =>
Children_Permission (C.Tree_Access));
else
raise Program_Error;
end if;
end case;
end;
-- We get the permission tree of its prefix, and then get either the
-- subtree associated with that specific selection, or if we have a
-- leaf that folds its children, we take the children's permission
-- and return it using the discriminant Folded.
when N_Indexed_Component
| N_Slice
=>
declare
C : constant Perm_Or_Tree := Get_Perm_Or_Tree (Prefix (N));
begin
case C.R is
when Folded
| Function_Call
=>
return C;
when Unfolded =>
pragma Assert (C.Tree_Access /= null);
pragma Assert (Kind (C.Tree_Access) = Entire_Object
or else
Kind (C.Tree_Access) = Array_Component);
if Kind (C.Tree_Access) = Array_Component then
pragma Assert (Get_Elem (C.Tree_Access) /= null);
return (R => Unfolded,
Tree_Access => Get_Elem (C.Tree_Access));
elsif Kind (C.Tree_Access) = Entire_Object then
return (R => Folded, Found_Permission =>
Children_Permission (C.Tree_Access));
else
raise Program_Error;
end if;
end case;
end;
-- We get the permission tree of its prefix, and then get either the
-- subtree associated with that specific selection, or if we have a
-- leaf that folds its children, we take the children's permission
-- and return it using the discriminant Folded.
when N_Explicit_Dereference =>
declare
C : constant Perm_Or_Tree := Get_Perm_Or_Tree (Prefix (N));
begin
case C.R is
when Folded
| Function_Call
=>
return C;
when Unfolded =>
pragma Assert (C.Tree_Access /= null);
pragma Assert (Kind (C.Tree_Access) = Entire_Object
or else
Kind (C.Tree_Access) = Reference);
if Kind (C.Tree_Access) = Reference then
if Get_All (C.Tree_Access) = null then
-- Hash_Table_Error
raise Program_Error;
else
return
(R => Unfolded,
Tree_Access => Get_All (C.Tree_Access));
end if;
elsif Kind (C.Tree_Access) = Entire_Object then
return (R => Folded, Found_Permission =>
Children_Permission (C.Tree_Access));
else
raise Program_Error;
end if;
end case;
end;
-- The name contains a function call, hence the given path is always
-- new. We do not have to check for anything.
when N_Function_Call =>
return (R => Function_Call);
when others =>
raise Program_Error;
end case;
end Get_Perm_Or_Tree;
-------------------
-- Get_Perm_Tree --
-------------------
function Get_Perm_Tree (N : Node_Id) return Perm_Tree_Access is
begin
case Nkind (N) is
-- Base identifier. Normally those are the roots of the trees stored
-- in the permission environment.
when N_Defining_Identifier =>
raise Program_Error;
when N_Identifier
| N_Expanded_Name
=>
declare
P : constant Node_Id := Entity (N);
C : constant Perm_Tree_Access :=
Get (Current_Perm_Env, Unique_Entity (P));
begin
-- Setting the initialization map to True, so that this
-- variable cannot be ignored anymore when looking at end
-- of elaboration of package.
Set (Current_Initialization_Map, Unique_Entity (P), True);
if C = null then
-- No null possible here, there are no parents for the path.
-- This means we are using a global variable without adding
-- it in environment with a global aspect.
Illegal_Global_Usage (N);
else
return C;
end if;
end;
when N_Type_Conversion
| N_Unchecked_Type_Conversion
| N_Qualified_Expression
=>
return Get_Perm_Tree (Expression (N));
when N_Parameter_Specification =>
return Get_Perm_Tree (Defining_Identifier (N));
-- We get the permission tree of its prefix, and then get either the
-- subtree associated with that specific selection, or if we have a
-- leaf that folds its children, we unroll it in one step.
when N_Selected_Component =>
declare
C : constant Perm_Tree_Access := Get_Perm_Tree (Prefix (N));
begin
if C = null then
-- If null then it means we went through a function call
return null;
end if;
pragma Assert (Kind (C) = Entire_Object
or else Kind (C) = Record_Component);
if Kind (C) = Record_Component then
-- The tree is unfolded. We just return the subtree.
declare
Selected_Component : constant Entity_Id :=
Entity (Selector_Name (N));
Selected_C : constant Perm_Tree_Access :=
Perm_Tree_Maps.Get
(Component (C), Selected_Component);
begin
if Selected_C = null then
return Other_Components (C);
end if;
return Selected_C;
end;
elsif Kind (C) = Entire_Object then
declare
-- Expand the tree. Replace the node with
-- Record_Component.
Elem : Node_Id;
-- Create the unrolled nodes
Son : Perm_Tree_Access;
Child_Perm : constant Perm_Kind :=
Children_Permission (C);
begin
-- We change the current node from Entire_Object to
-- Record_Component with same permission and an empty
-- hash table as component list.
C.all.Tree :=
(Kind => Record_Component,
Is_Node_Deep => Is_Node_Deep (C),
Permission => Permission (C),
Component => Perm_Tree_Maps.Nil,
Other_Components =>
new Perm_Tree_Wrapper'
(Tree =>
(Kind => Entire_Object,
-- Is_Node_Deep is true, to be conservative
Is_Node_Deep => True,
Permission => Child_Perm,
Children_Permission => Child_Perm)
)
);
-- We fill the hash table with all sons of the record,
-- with basic Entire_Objects nodes.
Elem := First_Component_Or_Discriminant
(Etype (Prefix (N)));
while Present (Elem) loop
Son := new Perm_Tree_Wrapper'
(Tree =>
(Kind => Entire_Object,
Is_Node_Deep => Is_Deep (Etype (Elem)),
Permission => Child_Perm,
Children_Permission => Child_Perm));
Perm_Tree_Maps.Set
(C.all.Tree.Component, Elem, Son);
Next_Component_Or_Discriminant (Elem);
end loop;
-- we return the tree to the sons, so that the recursion
-- can continue.
declare
Selected_Component : constant Entity_Id :=
Entity (Selector_Name (N));
Selected_C : constant Perm_Tree_Access :=
Perm_Tree_Maps.Get
(Component (C), Selected_Component);
begin
pragma Assert (Selected_C /= null);
return Selected_C;
end;
end;
else
raise Program_Error;
end if;
end;
-- We set the permission tree of its prefix, and then we extract from
-- the returned pointer the subtree. If folded, we unroll the tree at
-- one step.
when N_Indexed_Component
| N_Slice
=>
declare
C : constant Perm_Tree_Access := Get_Perm_Tree (Prefix (N));
begin
if C = null then
-- If null then we went through a function call
return null;
end if;
pragma Assert (Kind (C) = Entire_Object
or else Kind (C) = Array_Component);
if Kind (C) = Array_Component then
-- The tree is unfolded. We just return the elem subtree
pragma Assert (Get_Elem (C) = null);
return Get_Elem (C);
elsif Kind (C) = Entire_Object then
declare
-- Expand the tree. Replace node with Array_Component.
Son : Perm_Tree_Access;
begin
Son := new Perm_Tree_Wrapper'
(Tree =>
(Kind => Entire_Object,
Is_Node_Deep => Is_Node_Deep (C),
Permission => Children_Permission (C),
Children_Permission => Children_Permission (C)));
-- We change the current node from Entire_Object
-- to Array_Component with same permission and the
-- previously defined son.
C.all.Tree := (Kind => Array_Component,
Is_Node_Deep => Is_Node_Deep (C),
Permission => Permission (C),
Get_Elem => Son);
return Get_Elem (C);
end;
else
raise Program_Error;
end if;
end;
-- We get the permission tree of its prefix, and then get either the
-- subtree associated with that specific selection, or if we have a
-- leaf that folds its children, we unroll the tree.
when N_Explicit_Dereference =>
declare
C : Perm_Tree_Access;
begin
C := Get_Perm_Tree (Prefix (N));
if C = null then
-- If null, we went through a function call
return null;
end if;
pragma Assert (Kind (C) = Entire_Object
or else Kind (C) = Reference);
if Kind (C) = Reference then
-- The tree is unfolded. We return the elem subtree
if Get_All (C) = null then
-- Hash_Table_Error
raise Program_Error;
end if;
return Get_All (C);
elsif Kind (C) = Entire_Object then
declare
-- Expand the tree. Replace the node with Reference.
Son : Perm_Tree_Access;
begin
Son := new Perm_Tree_Wrapper'
(Tree =>
(Kind => Entire_Object,
Is_Node_Deep => Is_Deep (Etype (N)),
Permission => Children_Permission (C),
Children_Permission => Children_Permission (C)));
-- We change the current node from Entire_Object to
-- Reference with same permission and the previous son.
pragma Assert (Is_Node_Deep (C));
C.all.Tree := (Kind => Reference,
Is_Node_Deep => Is_Node_Deep (C),
Permission => Permission (C),
Get_All => Son);
return Get_All (C);
end;
else
raise Program_Error;
end if;
end;
-- No permission tree for function calls
when N_Function_Call =>
return null;
when others =>
raise Program_Error;
end case;
end Get_Perm_Tree;
--------
-- Hp --
--------
procedure Hp (P : Perm_Env) is
Elem : Perm_Tree_Maps.Key_Option;
begin
Elem := Get_First_Key (P);
while Elem.Present loop
Print_Node_Briefly (Elem.K);
Elem := Get_Next_Key (P);
end loop;
end Hp;
--------------------------
-- Illegal_Global_Usage --
--------------------------
procedure Illegal_Global_Usage (N : Node_Or_Entity_Id) is
begin
Error_Msg_NE ("cannot use global variable & of deep type", N, N);
Error_Msg_N ("\without prior declaration in a Global aspect", N);
Errout.Finalize (Last_Call => True);
Errout.Output_Messages;
Exit_Program (E_Errors);
end Illegal_Global_Usage;
-------------
-- Is_Deep --
-------------
function Is_Deep (E : Entity_Id) return Boolean is
function Is_Private_Entity_Mode_Off (E : Entity_Id) return Boolean;
function Is_Private_Entity_Mode_Off (E : Entity_Id) return Boolean is
Decl : Node_Id;
Pack_Decl : Node_Id;
begin
if Is_Itype (E) then
Decl := Associated_Node_For_Itype (E);
else
Decl := Parent (E);
end if;
Pack_Decl := Parent (Parent (Decl));
if Nkind (Pack_Decl) /= N_Package_Declaration then
return False;
end if;
return
Present (SPARK_Aux_Pragma (Defining_Entity (Pack_Decl)))
and then Get_SPARK_Mode_From_Annotation
(SPARK_Aux_Pragma (Defining_Entity (Pack_Decl))) = Off;
end Is_Private_Entity_Mode_Off;
begin
pragma Assert (Is_Type (E));
case Ekind (E) is
when Scalar_Kind =>
return False;
when Access_Kind =>
return True;
-- Just check the depth of its component type
when E_Array_Type
| E_Array_Subtype
=>
return Is_Deep (Component_Type (E));
when E_String_Literal_Subtype =>
return False;
-- Per RM 8.11 for class-wide types
when E_Class_Wide_Subtype
| E_Class_Wide_Type
=>
return True;
-- ??? What about hidden components
when E_Record_Type
| E_Record_Subtype
=>
declare
Elmt : Entity_Id;
begin
Elmt := First_Component_Or_Discriminant (E);
while Present (Elmt) loop
if Is_Deep (Etype (Elmt)) then
return True;
else
Next_Component_Or_Discriminant (Elmt);
end if;
end loop;
return False;
end;
when Private_Kind =>
if Is_Private_Entity_Mode_Off (E) then
return False;
else
if Present (Full_View (E)) then
return Is_Deep (Full_View (E));
else
return True;
end if;
end if;
when E_Incomplete_Type
| E_Incomplete_Subtype
=>
return True;
-- No problem with synchronized types
when E_Protected_Type
| E_Protected_Subtype
| E_Task_Subtype
| E_Task_Type
=>
return False;
when E_Exception_Type =>
return False;
when others =>
raise Program_Error;
end case;
end Is_Deep;
----------------
-- Perm_Error --
----------------
procedure Perm_Error
(N : Node_Id;
Perm : Perm_Kind;
Found_Perm : Perm_Kind)
is
procedure Set_Root_Object
(Path : Node_Id;
Obj : out Entity_Id;
Deref : out Boolean);
-- Set the root object Obj, and whether the path contains a dereference,
-- from a path Path.
---------------------
-- Set_Root_Object --
---------------------
procedure Set_Root_Object
(Path : Node_Id;
Obj : out Entity_Id;
Deref : out Boolean)
is
begin
case Nkind (Path) is
when N_Identifier
| N_Expanded_Name
=>
Obj := Entity (Path);
Deref := False;
when N_Type_Conversion
| N_Unchecked_Type_Conversion
| N_Qualified_Expression
=>
Set_Root_Object (Expression (Path), Obj, Deref);
when N_Indexed_Component
| N_Selected_Component
| N_Slice
=>
Set_Root_Object (Prefix (Path), Obj, Deref);
when N_Explicit_Dereference =>
Set_Root_Object (Prefix (Path), Obj, Deref);
Deref := True;
when others =>
raise Program_Error;
end case;
end Set_Root_Object;
-- Local variables
Root : Entity_Id;
Is_Deref : Boolean;
-- Start of processing for Perm_Error
begin
Set_Root_Object (N, Root, Is_Deref);
if Is_Deref then
Error_Msg_NE
("insufficient permission on dereference from &", N, Root);
else
Error_Msg_NE ("insufficient permission for &", N, Root);
end if;
Perm_Mismatch (Perm, Found_Perm, N);
end Perm_Error;
-------------------------------
-- Perm_Error_Subprogram_End --
-------------------------------
procedure Perm_Error_Subprogram_End
(E : Entity_Id;
Subp : Entity_Id;
Perm : Perm_Kind;
Found_Perm : Perm_Kind)
is
begin
Error_Msg_Node_2 := Subp;
Error_Msg_NE ("insufficient permission for & when returning from &",
Subp, E);
Perm_Mismatch (Perm, Found_Perm, Subp);
end Perm_Error_Subprogram_End;
------------------
-- Process_Path --
------------------
procedure Process_Path (N : Node_Id) is
Root : constant Entity_Id := Get_Enclosing_Object (N);
State_N : Perm_Kind;
begin
-- We ignore if yielding to synchronized
if Present (Root)
and then Is_Synchronized_Object (Root)
then
return;
end if;
State_N := Get_Perm (N);
case Current_Checking_Mode is
-- Check permission R, do nothing
when Read =>
-- This condition should be removed when removing the read
-- checking mode.
return;
when Move =>
-- The rhs object in an assignment statement (including copy in
-- and copy back) should be in the Unrestricted or Moved state.
-- Otherwise the move is not allowed.
-- This applies to both stand-alone and composite objects.
-- If the state of the source is Moved, then a warning message
-- is prompt to make the user aware of reading a nullified
-- object.
if State_N /= Unrestricted and State_N /= Moved then
Perm_Error (N, Unrestricted, State_N);
return;
end if;
-- In the AI, after moving a path nothing to do since the rhs
-- object was in the Unrestricted state and it shall be
-- refreshed to Unrestricted. The object should be nullified
-- however. To avoid moving again a name that has already been
-- moved, in this implementation we set the state of the moved
-- object to "Moved". This shall be used to prompt a warning
-- when manipulating a null pointer and also to implement
-- the no aliasing parameter restriction.
if State_N = Moved then
Error_Msg_N ("?the source or one of its extensions has"
& " already been moved", N);
end if;
declare
-- Set state to Moved to the path and any of its prefixes
Tree : constant Perm_Tree_Access :=
Set_Perm_Prefixes (N, Moved);
begin
if Tree = null then
-- We went through a function call, no permission to
-- modify.
return;
end if;
-- Set state to Moved on any strict extension of the path
Set_Perm_Extensions (Tree, Moved);
end;
when Assign =>
-- The lhs object in an assignment statement (including copy in
-- and copy back) should be in the Unrestricted state.
-- Otherwise the move is not allowed.
-- This applies to both stand-alone and composite objects.
if State_N /= Unrestricted and State_N /= Moved then
Perm_Error (N, Unrestricted, State_N);
return;
end if;
-- After assigning to a path nothing to do since it was in the
-- Unrestricted state and it would be refreshed to
-- Unrestricted.
when Borrow =>
-- Borrowing is only allowed on Unrestricted objects.
if State_N /= Unrestricted and State_N /= Moved then
Perm_Error (N, Unrestricted, State_N);
end if;
if State_N = Moved then
Error_Msg_N ("?the source or one of its extensions has"
& " already been moved", N);
end if;
declare
-- Set state to Borrowed to the path and any of its prefixes
Tree : constant Perm_Tree_Access :=
Set_Perm_Prefixes (N, Borrowed);
begin
if Tree = null then
-- We went through a function call, no permission to
-- modify.
return;
end if;
-- Set state to Borrowed on any strict extension of the path
Set_Perm_Extensions (Tree, Borrowed);
end;
when Observe =>
if State_N /= Unrestricted
and then State_N /= Observed
then
Perm_Error (N, Observed, State_N);
end if;
declare
-- Set permission to Observed on the path and any of its
-- prefixes if it is of a deep type. Actually, some operation
-- like reading from an object of access type is considered as
-- observe while it should not affect the permissions of
-- the considered tree.
Tree : Perm_Tree_Access;
begin
if Is_Deep (Etype (N)) then
Tree := Set_Perm_Prefixes (N, Observed);
else
Tree := null;
end if;
if Tree = null then
-- We went through a function call, no permission to
-- modify.
return;
end if;
-- Set permissions to No on any strict extension of the path
Set_Perm_Extensions (Tree, Observed);
end;
end case;
end Process_Path;
-------------------------
-- Return_Declarations --
-------------------------
procedure Return_Declarations (L : List_Id) is
procedure Return_Declaration (Decl : Node_Id);
-- Check correct permissions for every declared object
------------------------
-- Return_Declaration --
------------------------
procedure Return_Declaration (Decl : Node_Id) is
begin
if Nkind (Decl) = N_Object_Declaration then
-- Check RW for object declared, unless the object has never been
-- initialized.
if Get (Current_Initialization_Map,
Unique_Entity (Defining_Identifier (Decl))) = False
then
return;
end if;
declare
Elem : constant Perm_Tree_Access :=
Get (Current_Perm_Env,
Unique_Entity (Defining_Identifier (Decl)));
begin
if Elem = null then
-- Here we are on a declaration. Hence it should have been
-- added in the environment when analyzing this node with
-- mode Read. Hence it is not possible to find a null
-- pointer here.
-- Hash_Table_Error
raise Program_Error;
end if;
if Permission (Elem) /= Unrestricted then
Perm_Error (Decl, Unrestricted, Permission (Elem));
end if;
end;
end if;
end Return_Declaration;
-- Local Variables
N : Node_Id;
-- Start of processing for Return_Declarations
begin
N := First (L);
while Present (N) loop
Return_Declaration (N);
Next (N);
end loop;
end Return_Declarations;
--------------------
-- Return_Globals --
--------------------
procedure Return_Globals (Subp : Entity_Id) is
procedure Return_Globals_From_List
(First_Item : Node_Id;
Kind : Formal_Kind);
-- Return global items from the list starting at Item
procedure Return_Globals_Of_Mode (Global_Mode : Name_Id);
-- Return global items for the mode Global_Mode
------------------------------
-- Return_Globals_From_List --
------------------------------
procedure Return_Globals_From_List
(First_Item : Node_Id;
Kind : Formal_Kind)
is
Item : Node_Id := First_Item;
E : Entity_Id;
begin
while Present (Item) loop
E := Entity (Item);
-- Ignore abstract states, which play no role in pointer aliasing
if Ekind (E) = E_Abstract_State then
null;
else
Return_The_Global (E, Kind, Subp);
end if;
Next_Global (Item);
end loop;
end Return_Globals_From_List;
----------------------------
-- Return_Globals_Of_Mode --
----------------------------
procedure Return_Globals_Of_Mode (Global_Mode : Name_Id) is
Kind : Formal_Kind;
begin
case Global_Mode is
when Name_Input
| Name_Proof_In
=>
Kind := E_In_Parameter;
when Name_Output =>
Kind := E_Out_Parameter;
when Name_In_Out =>
Kind := E_In_Out_Parameter;
when others =>
raise Program_Error;
end case;
-- Return both global items from Global and Refined_Global pragmas
Return_Globals_From_List (First_Global (Subp, Global_Mode), Kind);
Return_Globals_From_List
(First_Global (Subp, Global_Mode, Refined => True), Kind);
end Return_Globals_Of_Mode;
-- Start of processing for Return_Globals
begin
Return_Globals_Of_Mode (Name_Proof_In);
Return_Globals_Of_Mode (Name_Input);
Return_Globals_Of_Mode (Name_Output);
Return_Globals_Of_Mode (Name_In_Out);
end Return_Globals;
--------------------------------
-- Return_Parameter_Or_Global --
--------------------------------
procedure Return_The_Global
(Id : Entity_Id;
Mode : Formal_Kind;
Subp : Entity_Id)
is
Elem : constant Perm_Tree_Access := Get (Current_Perm_Env, Id);
pragma Assert (Elem /= null);
begin
-- Observed IN parameters and globals need not return a permission to
-- the caller.
if Mode = E_In_Parameter
-- Check this for read-only globals.
then
if Permission (Elem) /= Unrestricted
and then Permission (Elem) /= Observed
then
Perm_Error_Subprogram_End
(E => Id,
Subp => Subp,
Perm => Observed,
Found_Perm => Permission (Elem));
end if;
-- All globals of mode out or in/out should return with mode
-- Unrestricted.
else
if Permission (Elem) /= Unrestricted then
Perm_Error_Subprogram_End
(E => Id,
Subp => Subp,
Perm => Unrestricted,
Found_Perm => Permission (Elem));
end if;
end if;
end Return_The_Global;
-------------------------
-- Set_Perm_Extensions --
-------------------------
procedure Set_Perm_Extensions (T : Perm_Tree_Access; P : Perm_Kind) is
procedure Free_Perm_Tree_Children (T : Perm_Tree_Access);
procedure Free_Perm_Tree_Children (T : Perm_Tree_Access) is
begin
case Kind (T) is
when Entire_Object =>
null;
when Reference =>
Free_Perm_Tree (T.all.Tree.Get_All);
when Array_Component =>
Free_Perm_Tree (T.all.Tree.Get_Elem);
-- Free every Component subtree
when Record_Component =>
declare
Comp : Perm_Tree_Access;
begin
Comp := Perm_Tree_Maps.Get_First (Component (T));
while Comp /= null loop
Free_Perm_Tree (Comp);
Comp := Perm_Tree_Maps.Get_Next (Component (T));
end loop;
Free_Perm_Tree (T.all.Tree.Other_Components);
end;
end case;
end Free_Perm_Tree_Children;
Son : constant Perm_Tree :=
Perm_Tree'
(Kind => Entire_Object,
Is_Node_Deep => Is_Node_Deep (T),
Permission => Permission (T),
Children_Permission => P);
begin
Free_Perm_Tree_Children (T);
T.all.Tree := Son;
end Set_Perm_Extensions;
------------------------------
-- Set_Perm_Prefixes --
------------------------------
function Set_Perm_Prefixes
(N : Node_Id;
New_Perm : Perm_Kind)
return Perm_Tree_Access
is
begin
case Nkind (N) is
when N_Identifier
| N_Expanded_Name
| N_Defining_Identifier
=>
if Nkind (N) = N_Defining_Identifier
and then New_Perm = Borrowed
then
raise Program_Error;
end if;
declare
P : Node_Id;
C : Perm_Tree_Access;
begin
if Nkind (N) = N_Defining_Identifier then
P := N;
else
P := Entity (N);
end if;
C := Get (Current_Perm_Env, Unique_Entity (P));
pragma Assert (C /= null);
-- Setting the initialization map to True, so that this
-- variable cannot be ignored anymore when looking at end
-- of elaboration of package.
Set (Current_Initialization_Map, Unique_Entity (P), True);
if New_Perm = Observed
and then C = null
then
-- No null possible here, there are no parents for the path.
-- This means we are using a global variable without adding
-- it in environment with a global aspect.
Illegal_Global_Usage (N);
end if;
C.all.Tree.Permission := New_Perm;
return C;
end;
when N_Type_Conversion
| N_Unchecked_Type_Conversion
| N_Qualified_Expression
=>
return Set_Perm_Prefixes (Expression (N), New_Perm);
when N_Parameter_Specification =>
raise Program_Error;
-- We set the permission tree of its prefix, and then we extract
-- our subtree from the returned pointer and assign an adequate
-- permission to it, if unfolded. If folded, we unroll the tree
-- in one step.
when N_Selected_Component =>
declare
C : constant Perm_Tree_Access :=
Set_Perm_Prefixes (Prefix (N), New_Perm);
begin
if C = null then
-- We went through a function call, do nothing
return null;
end if;
pragma Assert (Kind (C) = Entire_Object
or else Kind (C) = Record_Component);
if Kind (C) = Record_Component then
-- The tree is unfolded. We just modify the permission and
-- return the record subtree.
declare
Selected_Component : constant Entity_Id :=
Entity (Selector_Name (N));
Selected_C : Perm_Tree_Access :=
Perm_Tree_Maps.Get
(Component (C), Selected_Component);
begin
if Selected_C = null then
Selected_C := Other_Components (C);
end if;
pragma Assert (Selected_C /= null);
Selected_C.all.Tree.Permission := New_Perm;
return Selected_C;
end;
elsif Kind (C) = Entire_Object then
declare
-- Expand the tree. Replace the node with
-- Record_Component.
Elem : Node_Id;
-- Create an empty hash table
Hashtbl : Perm_Tree_Maps.Instance;
-- We create the unrolled nodes, that will all have same
-- permission than parent.
Son : Perm_Tree_Access;
Children_Perm : constant Perm_Kind :=
Children_Permission (C);
begin
-- We change the current node from Entire_Object to
-- Record_Component with same permission and an empty
-- hash table as component list.
C.all.Tree :=
(Kind => Record_Component,
Is_Node_Deep => Is_Node_Deep (C),
Permission => Permission (C),
Component => Hashtbl,
Other_Components =>
new Perm_Tree_Wrapper'
(Tree =>
(Kind => Entire_Object,
Is_Node_Deep => True,
Permission => Children_Perm,
Children_Permission => Children_Perm)
));
-- We fill the hash table with all sons of the record,
-- with basic Entire_Objects nodes.
Elem := First_Component_Or_Discriminant
(Etype (Prefix (N)));
while Present (Elem) loop
Son := new Perm_Tree_Wrapper'
(Tree =>
(Kind => Entire_Object,
Is_Node_Deep => Is_Deep (Etype (Elem)),
Permission => Children_Perm,
Children_Permission => Children_Perm));
Perm_Tree_Maps.Set (C.all.Tree.Component, Elem, Son);
Next_Component_Or_Discriminant (Elem);
end loop;
-- Now we set the right field to Borrowed, and then we
-- return the tree to the sons, so that the recursion can
-- continue.
declare
Selected_Component : constant Entity_Id :=
Entity (Selector_Name (N));
Selected_C : Perm_Tree_Access :=
Perm_Tree_Maps.Get
(Component (C), Selected_Component);
begin
if Selected_C = null then
Selected_C := Other_Components (C);
end if;
pragma Assert (Selected_C /= null);
Selected_C.all.Tree.Permission := New_Perm;
return Selected_C;
end;
end;
else
raise Program_Error;
end if;
end;
-- We set the permission tree of its prefix, and then we extract
-- from the returned pointer the subtree and assign an adequate
-- permission to it, if unfolded. If folded, we unroll the tree in
-- one step.
when N_Indexed_Component
| N_Slice
=>
declare
C : constant Perm_Tree_Access :=
Set_Perm_Prefixes (Prefix (N), New_Perm);
begin
if C = null then
-- We went through a function call, do nothing
return null;
end if;
pragma Assert (Kind (C) = Entire_Object
or else Kind (C) = Array_Component);
if Kind (C) = Array_Component then
-- The tree is unfolded. We just modify the permission and
-- return the elem subtree.
pragma Assert (Get_Elem (C) /= null);
C.all.Tree.Get_Elem.all.Tree.Permission := New_Perm;
return Get_Elem (C);
elsif Kind (C) = Entire_Object then
declare
-- Expand the tree. Replace node with Array_Component.
Son : Perm_Tree_Access;
begin
Son := new Perm_Tree_Wrapper'
(Tree =>
(Kind => Entire_Object,
Is_Node_Deep => Is_Node_Deep (C),
Permission => New_Perm,
Children_Permission => Children_Permission (C)));
-- Children_Permission => Children_Permission (C)
-- this line should be checked maybe New_Perm
-- instead of Children_Permission (C)
-- We change the current node from Entire_Object
-- to Array_Component with same permission and the
-- previously defined son.
C.all.Tree := (Kind => Array_Component,
Is_Node_Deep => Is_Node_Deep (C),
Permission => New_Perm,
Get_Elem => Son);
return Get_Elem (C);
end;
else
raise Program_Error;
end if;
end;
-- We set the permission tree of its prefix, and then we extract
-- from the returned pointer the subtree and assign an adequate
-- permission to it, if unfolded. If folded, we unroll the tree
-- at one step.
when N_Explicit_Dereference =>
declare
C : constant Perm_Tree_Access :=
Set_Perm_Prefixes (Prefix (N), New_Perm);
begin
if C = null then
-- We went through a function call. Do nothing.
return null;
end if;
pragma Assert (Kind (C) = Entire_Object
or else Kind (C) = Reference);
if Kind (C) = Reference then
-- The tree is unfolded. We just modify the permission and
-- return the elem subtree.
pragma Assert (Get_All (C) /= null);
C.all.Tree.Get_All.all.Tree.Permission := New_Perm;
return Get_All (C);
elsif Kind (C) = Entire_Object then
declare
-- Expand the tree. Replace the node with Reference.
Son : Perm_Tree_Access;
begin
Son := new Perm_Tree_Wrapper'
(Tree =>
(Kind => Entire_Object,
Is_Node_Deep => Is_Deep (Etype (N)),
Permission => New_Perm,
Children_Permission => Children_Permission (C)));
-- We change the current node from Entire_Object to
-- Reference with Borrowed and the previous son.
pragma Assert (Is_Node_Deep (C));
C.all.Tree := (Kind => Reference,
Is_Node_Deep => Is_Node_Deep (C),
Permission => New_Perm,
Get_All => Son);
return Get_All (C);
end;
else
raise Program_Error;
end if;
end;
when N_Function_Call =>
return null;
when others =>
raise Program_Error;
end case;
end Set_Perm_Prefixes;
------------------------------
-- Set_Perm_Prefixes_Borrow --
------------------------------
function Set_Perm_Prefixes_Borrow (N : Node_Id) return Perm_Tree_Access
is
begin
pragma Assert (Current_Checking_Mode = Borrow);
case Nkind (N) is
when N_Identifier
| N_Expanded_Name
=>
declare
P : constant Node_Id := Entity (N);
C : constant Perm_Tree_Access :=
Get (Current_Perm_Env, Unique_Entity (P));
pragma Assert (C /= null);
begin
-- Setting the initialization map to True, so that this
-- variable cannot be ignored anymore when looking at end
-- of elaboration of package.
Set (Current_Initialization_Map, Unique_Entity (P), True);
C.all.Tree.Permission := Borrowed;
return C;
end;
when N_Type_Conversion
| N_Unchecked_Type_Conversion
| N_Qualified_Expression
=>
return Set_Perm_Prefixes_Borrow (Expression (N));
when N_Parameter_Specification
| N_Defining_Identifier
=>
raise Program_Error;
-- We set the permission tree of its prefix, and then we extract
-- our subtree from the returned pointer and assign an adequate
-- permission to it, if unfolded. If folded, we unroll the tree
-- in one step.
when N_Selected_Component =>
declare
C : constant Perm_Tree_Access :=
Set_Perm_Prefixes_Borrow (Prefix (N));
begin
if C = null then
-- We went through a function call, do nothing
return null;
end if;
-- The permission of the returned node should be No
pragma Assert (Permission (C) = Borrowed);
pragma Assert (Kind (C) = Entire_Object
or else Kind (C) = Record_Component);
if Kind (C) = Record_Component then
-- The tree is unfolded. We just modify the permission and
-- return the record subtree.
declare
Selected_Component : constant Entity_Id :=
Entity (Selector_Name (N));
Selected_C : Perm_Tree_Access :=
Perm_Tree_Maps.Get
(Component (C), Selected_Component);
begin
if Selected_C = null then
Selected_C := Other_Components (C);
end if;
pragma Assert (Selected_C /= null);
Selected_C.all.Tree.Permission := Borrowed;
return Selected_C;
end;
elsif Kind (C) = Entire_Object then
declare
-- Expand the tree. Replace the node with
-- Record_Component.
Elem : Node_Id;
-- Create an empty hash table
Hashtbl : Perm_Tree_Maps.Instance;
-- We create the unrolled nodes, that will all have same
-- permission than parent.
Son : Perm_Tree_Access;
ChildrenPerm : constant Perm_Kind :=
Children_Permission (C);
begin
-- We change the current node from Entire_Object to
-- Record_Component with same permission and an empty
-- hash table as component list.
C.all.Tree :=
(Kind => Record_Component,
Is_Node_Deep => Is_Node_Deep (C),
Permission => Permission (C),
Component => Hashtbl,
Other_Components =>
new Perm_Tree_Wrapper'
(Tree =>
(Kind => Entire_Object,
Is_Node_Deep => True,
Permission => ChildrenPerm,
Children_Permission => ChildrenPerm)
));
-- We fill the hash table with all sons of the record,
-- with basic Entire_Objects nodes.
Elem := First_Component_Or_Discriminant
(Etype (Prefix (N)));
while Present (Elem) loop
Son := new Perm_Tree_Wrapper'
(Tree =>
(Kind => Entire_Object,
Is_Node_Deep => Is_Deep (Etype (Elem)),
Permission => ChildrenPerm,
Children_Permission => ChildrenPerm));
Perm_Tree_Maps.Set (C.all.Tree.Component, Elem, Son);
Next_Component_Or_Discriminant (Elem);
end loop;
-- Now we set the right field to Borrowed, and then we
-- return the tree to the sons, so that the recursion can
-- continue.
declare
Selected_Component : constant Entity_Id :=
Entity (Selector_Name (N));
Selected_C : Perm_Tree_Access := Perm_Tree_Maps.Get
(Component (C), Selected_Component);
begin
if Selected_C = null then
Selected_C := Other_Components (C);
end if;
pragma Assert (Selected_C /= null);
Selected_C.all.Tree.Permission := Borrowed;
return Selected_C;
end;
end;
else
raise Program_Error;
end if;
end;
-- We set the permission tree of its prefix, and then we extract
-- from the returned pointer the subtree and assign an adequate
-- permission to it, if unfolded. If folded, we unroll the tree in
-- one step.
when N_Indexed_Component
| N_Slice
=>
declare
C : constant Perm_Tree_Access :=
Set_Perm_Prefixes_Borrow (Prefix (N));
begin
if C = null then
-- We went through a function call, do nothing
return null;
end if;
pragma Assert (Permission (C) = Borrowed);
pragma Assert (Kind (C) = Entire_Object
or else Kind (C) = Array_Component);
if Kind (C) = Array_Component then
-- The tree is unfolded. We just modify the permission and
-- return the elem subtree.
pragma Assert (Get_Elem (C) /= null);
C.all.Tree.Get_Elem.all.Tree.Permission := Borrowed;
return Get_Elem (C);
elsif Kind (C) = Entire_Object then
declare
-- Expand the tree. Replace node with Array_Component.
Son : Perm_Tree_Access;
begin
Son := new Perm_Tree_Wrapper'
(Tree =>
(Kind => Entire_Object,
Is_Node_Deep => Is_Node_Deep (C),
Permission => Borrowed,
Children_Permission => Children_Permission (C)));
-- We change the current node from Entire_Object
-- to Array_Component with same permission and the
-- previously defined son.
C.all.Tree := (Kind => Array_Component,
Is_Node_Deep => Is_Node_Deep (C),
Permission => Borrowed,
Get_Elem => Son);
return Get_Elem (C);
end;
else
raise Program_Error;
end if;
end;
-- We set the permission tree of its prefix, and then we extract
-- from the returned pointer the subtree and assign an adequate
-- permission to it, if unfolded. If folded, we unroll the tree
-- at one step.
when N_Explicit_Dereference =>
declare
C : constant Perm_Tree_Access :=
Set_Perm_Prefixes_Borrow (Prefix (N));
begin
if C = null then
-- We went through a function call. Do nothing.
return null;
end if;
-- The permission of the returned node should be No
pragma Assert (Permission (C) = Borrowed);
pragma Assert (Kind (C) = Entire_Object
or else Kind (C) = Reference);
if Kind (C) = Reference then
-- The tree is unfolded. We just modify the permission and
-- return the elem subtree.
pragma Assert (Get_All (C) /= null);
C.all.Tree.Get_All.all.Tree.Permission := Borrowed;
return Get_All (C);
elsif Kind (C) = Entire_Object then
declare
-- Expand the tree. Replace the node with Reference.
Son : Perm_Tree_Access;
begin
Son := new Perm_Tree_Wrapper'
(Tree =>
(Kind => Entire_Object,
Is_Node_Deep => Is_Deep (Etype (N)),
Permission => Borrowed,
Children_Permission => Children_Permission (C)));
-- We change the current node from Entire_Object to
-- Reference with Borrowed and the previous son.
pragma Assert (Is_Node_Deep (C));
C.all.Tree := (Kind => Reference,
Is_Node_Deep => Is_Node_Deep (C),
Permission => Borrowed,
Get_All => Son);
return Get_All (C);
end;
else
raise Program_Error;
end if;
end;
when N_Function_Call =>
return null;
when others =>
raise Program_Error;
end case;
end Set_Perm_Prefixes_Borrow;
-------------------
-- Setup_Globals --
-------------------
procedure Setup_Globals (Subp : Entity_Id) is
procedure Setup_Globals_From_List
(First_Item : Node_Id;
Kind : Formal_Kind);
-- Set up global items from the list starting at Item
procedure Setup_Globals_Of_Mode (Global_Mode : Name_Id);
-- Set up global items for the mode Global_Mode
-----------------------------
-- Setup_Globals_From_List --
-----------------------------
procedure Setup_Globals_From_List
(First_Item : Node_Id;
Kind : Formal_Kind)
is
Item : Node_Id := First_Item;
E : Entity_Id;
begin
while Present (Item) loop
E := Entity (Item);
-- Ignore abstract states, which play no role in pointer aliasing
if Ekind (E) = E_Abstract_State then
null;
else
Setup_Parameter_Or_Global (E, Kind, Global_Var => True);
end if;
Next_Global (Item);
end loop;
end Setup_Globals_From_List;
---------------------------
-- Setup_Globals_Of_Mode --
---------------------------
procedure Setup_Globals_Of_Mode (Global_Mode : Name_Id) is
Kind : Formal_Kind;
begin
case Global_Mode is
when Name_Input
| Name_Proof_In
=>
Kind := E_In_Parameter;
when Name_Output =>
Kind := E_Out_Parameter;
when Name_In_Out =>
Kind := E_In_Out_Parameter;
when others =>
raise Program_Error;
end case;
-- Set up both global items from Global and Refined_Global pragmas
Setup_Globals_From_List (First_Global (Subp, Global_Mode), Kind);
Setup_Globals_From_List
(First_Global (Subp, Global_Mode, Refined => True), Kind);
end Setup_Globals_Of_Mode;
-- Start of processing for Setup_Globals
begin
Setup_Globals_Of_Mode (Name_Proof_In);
Setup_Globals_Of_Mode (Name_Input);
Setup_Globals_Of_Mode (Name_Output);
Setup_Globals_Of_Mode (Name_In_Out);
end Setup_Globals;
-------------------------------
-- Setup_Parameter_Or_Global --
-------------------------------
procedure Setup_Parameter_Or_Global
(Id : Entity_Id;
Mode : Formal_Kind;
Global_Var : Boolean)
is
Elem : Perm_Tree_Access;
View_Typ : Entity_Id;
begin
if Present (Full_View (Etype (Id))) then
View_Typ := Full_View (Etype (Id));
else
View_Typ := Etype (Id);
end if;
Elem := new Perm_Tree_Wrapper'
(Tree =>
(Kind => Entire_Object,
Is_Node_Deep => Is_Deep (Etype (Id)),
Permission => Unrestricted,
Children_Permission => Unrestricted));
case Mode is
-- All out and in out parameters are considered to be unrestricted.
-- They are whether borrowed or moved. Ada Rules would restrict
-- these permissions further. For example an in parameter cannot
-- be written.
-- In the following we deal with in parameters that can be observed.
-- We only consider the observing cases.
when E_In_Parameter =>
-- Handling global variables as IN parameters here.
-- Remove the following condition once it's decided how globals
-- should be considered. ???
--
-- In SPARK, IN access-to-variable is an observe operation for
-- a function, and a borrow operation for a procedure.
if not Global_Var then
if (Is_Access_Type (View_Typ)
and then Is_Access_Constant (View_Typ)
and then Is_Anonymous_Access_Type (View_Typ))
or else
(Is_Access_Type (View_Typ)
and then Ekind (Scope (Id)) = E_Function)
or else
(not Is_Access_Type (View_Typ)
and then Is_Deep (View_Typ)
and then not Is_Anonymous_Access_Type (View_Typ))
then
Elem.all.Tree.Permission := Observed;
Elem.all.Tree.Children_Permission := Observed;
else
Elem.all.Tree.Permission := Unrestricted;
Elem.all.Tree.Children_Permission := Unrestricted;
end if;
else
Elem.all.Tree.Permission := Observed;
Elem.all.Tree.Children_Permission := Observed;
end if;
-- When out or in/out formal or global parameters, we set them to
-- the Unrestricted state. "We want to be able to assume that all
-- relevant writable globals are unrestricted when a subprogram
-- starts executing". Formal parameters of mode out or in/out
-- are whether Borrowers or the targets of a move operation:
-- they start theirs lives in the subprogram as Unrestricted.
when others =>
Elem.all.Tree.Permission := Unrestricted;
Elem.all.Tree.Children_Permission := Unrestricted;
end case;
Set (Current_Perm_Env, Id, Elem);
end Setup_Parameter_Or_Global;
----------------------
-- Setup_Parameters --
----------------------
procedure Setup_Parameters (Subp : Entity_Id) is Formal : Entity_Id;
begin
Formal := First_Formal (Subp);
while Present (Formal) loop
Setup_Parameter_Or_Global
(Formal, Ekind (Formal), Global_Var => False);
Next_Formal (Formal);
end loop;
end Setup_Parameters;
-------------------------------
-- Has_Ownership_Aspect_True --
-------------------------------
function Has_Ownership_Aspect_True
(N : Entity_Id;
Msg : String)
return Boolean
is
begin
case Ekind (Etype (N)) is
when Access_Kind =>
if Ekind (Etype (N)) = E_General_Access_Type then
Error_Msg_NE (Msg & " & not allowed " &
"(Named General Access type)", N, N);
return False;
else
return True;
end if;
when E_Array_Type
| E_Array_Subtype
=>
declare
Com_Ty : constant Node_Id := Component_Type (Etype (N));
Ret : Boolean := Has_Ownership_Aspect_True (Com_Ty, "");
begin
if Nkind (Parent (N)) = N_Full_Type_Declaration and
Is_Anonymous_Access_Type (Com_Ty)
then
Ret := False;
end if;
if not Ret then
Error_Msg_NE (Msg & " & not allowed "
& "(Components of Named General Access type or"
& " Anonymous type)", N, N);
end if;
return Ret;
end;
-- ??? What about hidden components
when E_Record_Type
| E_Record_Subtype
=>
declare
Elmt : Entity_Id;
Elmt_T_Perm : Boolean := True;
Elmt_Perm, Elmt_Anonym : Boolean;
begin
Elmt := First_Component_Or_Discriminant (Etype (N));
while Present (Elmt) loop
Elmt_Perm := Has_Ownership_Aspect_True (Elmt,
"type of component");
Elmt_Anonym := Is_Anonymous_Access_Type (Etype (Elmt));
if Elmt_Anonym then
Error_Msg_NE
("type of component & not allowed"
& " (Components of Anonymous type)", Elmt, Elmt);
end if;
Elmt_T_Perm := Elmt_T_Perm and Elmt_Perm and not Elmt_Anonym;
Next_Component_Or_Discriminant (Elmt);
end loop;
if not Elmt_T_Perm then
Error_Msg_NE
(Msg & " & not allowed (One or "
& "more components have Ownership Aspect False)",
N, N);
end if;
return Elmt_T_Perm;
end;
when others =>
return True;
end case;
end Has_Ownership_Aspect_True;
end Sem_SPARK;
|