// -*- C++ -*- // Copyright (C) 2019-2020 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received __a copy of the GNU General Public License and // __a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file include/ranges * This is a Standard C++ Library header. * @ingroup concepts */ #ifndef _GLIBCXX_RANGES #define _GLIBCXX_RANGES 1 #if __cplusplus > 201703L #pragma GCC system_header #include #if __cpp_lib_concepts #include #include #include #include #include #include #include /** * @defgroup ranges Ranges * * Components for dealing with ranges of elements. */ namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION namespace ranges { // [range.access] customization point objects // [range.req] range and view concepts // [range.dangling] dangling iterator handling // Defined in // [view.interface] View interface // [range.subrange] Sub-ranges // Defined in // C++20 24.6 [range.factories] Range factories /// A view that contains no elements. template requires is_object_v<_Tp> class empty_view : public view_interface> { public: static constexpr _Tp* begin() noexcept { return nullptr; } static constexpr _Tp* end() noexcept { return nullptr; } static constexpr _Tp* data() noexcept { return nullptr; } static constexpr size_t size() noexcept { return 0; } static constexpr bool empty() noexcept { return true; } }; template inline constexpr bool enable_borrowed_range> = true; namespace __detail { template requires is_object_v<_Tp> struct __box : std::optional<_Tp> { using std::optional<_Tp>::optional; constexpr __box() noexcept(is_nothrow_default_constructible_v<_Tp>) requires default_initializable<_Tp> : std::optional<_Tp>{std::in_place} { } __box(const __box&) = default; __box(__box&&) = default; using std::optional<_Tp>::operator=; // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3477. Simplify constraints for semiregular-box __box& operator=(const __box& __that) noexcept(is_nothrow_copy_constructible_v<_Tp>) requires (!copyable<_Tp>) { if ((bool)__that) this->emplace(*__that); else this->reset(); return *this; } __box& operator=(__box&& __that) noexcept(is_nothrow_move_constructible_v<_Tp>) requires (!movable<_Tp>) { if ((bool)__that) this->emplace(std::move(*__that)); else this->reset(); return *this; } }; } // namespace __detail /// A view that contains exactly one element. template requires is_object_v<_Tp> class single_view : public view_interface> { public: single_view() = default; constexpr explicit single_view(const _Tp& __t) : _M_value(__t) { } constexpr explicit single_view(_Tp&& __t) : _M_value(std::move(__t)) { } template requires constructible_from<_Tp, _Args...> constexpr single_view(in_place_t, _Args&&... __args) : _M_value{in_place, std::forward<_Args>(__args)...} { } constexpr _Tp* begin() noexcept { return data(); } constexpr const _Tp* begin() const noexcept { return data(); } constexpr _Tp* end() noexcept { return data() + 1; } constexpr const _Tp* end() const noexcept { return data() + 1; } static constexpr size_t size() noexcept { return 1; } constexpr _Tp* data() noexcept { return _M_value.operator->(); } constexpr const _Tp* data() const noexcept { return _M_value.operator->(); } private: __detail::__box<_Tp> _M_value; }; namespace __detail { template constexpr auto __to_signed_like(_Wp __w) noexcept { if constexpr (!integral<_Wp>) return iter_difference_t<_Wp>(); else if constexpr (sizeof(iter_difference_t<_Wp>) > sizeof(_Wp)) return iter_difference_t<_Wp>(__w); else if constexpr (sizeof(ptrdiff_t) > sizeof(_Wp)) return ptrdiff_t(__w); else if constexpr (sizeof(long long) > sizeof(_Wp)) return (long long)(__w); #ifdef __SIZEOF_INT128__ else if constexpr (__SIZEOF_INT128__ > sizeof(_Wp)) return __int128(__w); #endif else return __max_diff_type(__w); } template using __iota_diff_t = decltype(__to_signed_like(std::declval<_Wp>())); template concept __decrementable = incrementable<_It> && requires(_It __i) { { --__i } -> same_as<_It&>; { __i-- } -> same_as<_It>; }; template concept __advanceable = __decrementable<_It> && totally_ordered<_It> && requires( _It __i, const _It __j, const __iota_diff_t<_It> __n) { { __i += __n } -> same_as<_It&>; { __i -= __n } -> same_as<_It&>; _It(__j + __n); _It(__n + __j); _It(__j - __n); { __j - __j } -> convertible_to<__iota_diff_t<_It>>; }; } // namespace __detail template requires std::__detail::__weakly_eq_cmp_with<_Winc, _Bound> && semiregular<_Winc> class iota_view : public view_interface> { private: struct _Sentinel; struct _Iterator { private: static auto _S_iter_cat() { using namespace __detail; if constexpr (__advanceable<_Winc>) return random_access_iterator_tag{}; else if constexpr (__decrementable<_Winc>) return bidirectional_iterator_tag{}; else if constexpr (incrementable<_Winc>) return forward_iterator_tag{}; else return input_iterator_tag{}; } public: using iterator_category = decltype(_S_iter_cat()); using value_type = _Winc; using difference_type = __detail::__iota_diff_t<_Winc>; _Iterator() = default; constexpr explicit _Iterator(_Winc __value) : _M_value(__value) { } constexpr _Winc operator*() const noexcept(is_nothrow_copy_constructible_v<_Winc>) { return _M_value; } constexpr _Iterator& operator++() { ++_M_value; return *this; } constexpr void operator++(int) { ++*this; } constexpr _Iterator operator++(int) requires incrementable<_Winc> { auto __tmp = *this; ++*this; return __tmp; } constexpr _Iterator& operator--() requires __detail::__decrementable<_Winc> { --_M_value; return *this; } constexpr _Iterator operator--(int) requires __detail::__decrementable<_Winc> { auto __tmp = *this; --*this; return __tmp; } constexpr _Iterator& operator+=(difference_type __n) requires __detail::__advanceable<_Winc> { using __detail::__is_integer_like; using __detail::__is_signed_integer_like; if constexpr (__is_integer_like<_Winc> && !__is_signed_integer_like<_Winc>) { if (__n >= difference_type(0)) _M_value += static_cast<_Winc>(__n); else _M_value -= static_cast<_Winc>(-__n); } else _M_value += __n; return *this; } constexpr _Iterator& operator-=(difference_type __n) requires __detail::__advanceable<_Winc> { using __detail::__is_integer_like; using __detail::__is_signed_integer_like; if constexpr (__is_integer_like<_Winc> && !__is_signed_integer_like<_Winc>) { if (__n >= difference_type(0)) _M_value -= static_cast<_Winc>(__n); else _M_value += static_cast<_Winc>(-__n); } else _M_value -= __n; return *this; } constexpr _Winc operator[](difference_type __n) const requires __detail::__advanceable<_Winc> { return _Winc(_M_value + __n); } friend constexpr bool operator==(const _Iterator& __x, const _Iterator& __y) requires equality_comparable<_Winc> { return __x._M_value == __y._M_value; } friend constexpr bool operator<(const _Iterator& __x, const _Iterator& __y) requires totally_ordered<_Winc> { return __x._M_value < __y._M_value; } friend constexpr bool operator>(const _Iterator& __x, const _Iterator& __y) requires totally_ordered<_Winc> { return __y < __x; } friend constexpr bool operator<=(const _Iterator& __x, const _Iterator& __y) requires totally_ordered<_Winc> { return !(__y < __x); } friend constexpr bool operator>=(const _Iterator& __x, const _Iterator& __y) requires totally_ordered<_Winc> { return !(__x < __y); } #ifdef __cpp_lib_three_way_comparison friend constexpr auto operator<=>(const _Iterator& __x, const _Iterator& __y) requires totally_ordered<_Winc> && three_way_comparable<_Winc> { return __x._M_value <=> __y._M_value; } #endif friend constexpr _Iterator operator+(_Iterator __i, difference_type __n) requires __detail::__advanceable<_Winc> { return __i += __n; } friend constexpr _Iterator operator+(difference_type __n, _Iterator __i) requires __detail::__advanceable<_Winc> { return __i += __n; } friend constexpr _Iterator operator-(_Iterator __i, difference_type __n) requires __detail::__advanceable<_Winc> { return __i -= __n; } friend constexpr difference_type operator-(const _Iterator& __x, const _Iterator& __y) requires __detail::__advanceable<_Winc> { using __detail::__is_integer_like; using __detail::__is_signed_integer_like; using _Dt = difference_type; if constexpr (__is_integer_like<_Winc>) { if constexpr (__is_signed_integer_like<_Winc>) return _Dt(_Dt(__x._M_value) - _Dt(__y._M_value)); else return (__y._M_value > __x._M_value) ? _Dt(-_Dt(__y._M_value - __x._M_value)) : _Dt(__x._M_value - __y._M_value); } else return __x._M_value - __y._M_value; } private: _Winc _M_value = _Winc(); friend _Sentinel; }; struct _Sentinel { private: constexpr bool _M_equal(const _Iterator& __x) const { return __x._M_value == _M_bound; } _Bound _M_bound = _Bound(); public: _Sentinel() = default; constexpr explicit _Sentinel(_Bound __bound) : _M_bound(__bound) { } friend constexpr bool operator==(const _Iterator& __x, const _Sentinel& __y) { return __y._M_equal(__x); } friend constexpr iter_difference_t<_Winc> operator-(const _Iterator& __x, const _Sentinel& __y) requires sized_sentinel_for<_Bound, _Winc> { return __x._M_value - __y._M_bound; } friend constexpr iter_difference_t<_Winc> operator-(const _Sentinel& __x, const _Iterator& __y) requires sized_sentinel_for<_Bound, _Winc> { return -(__y - __x); } }; _Winc _M_value = _Winc(); _Bound _M_bound = _Bound(); public: iota_view() = default; constexpr explicit iota_view(_Winc __value) : _M_value(__value) { } constexpr iota_view(type_identity_t<_Winc> __value, type_identity_t<_Bound> __bound) : _M_value(__value), _M_bound(__bound) { if constexpr (totally_ordered_with<_Winc, _Bound>) __glibcxx_assert( bool(__value <= __bound) ); } constexpr _Iterator begin() const { return _Iterator{_M_value}; } constexpr auto end() const { if constexpr (same_as<_Bound, unreachable_sentinel_t>) return unreachable_sentinel; else return _Sentinel{_M_bound}; } constexpr _Iterator end() const requires same_as<_Winc, _Bound> { return _Iterator{_M_bound}; } constexpr auto size() const requires (same_as<_Winc, _Bound> && __detail::__advanceable<_Winc>) || (integral<_Winc> && integral<_Bound>) || sized_sentinel_for<_Bound, _Winc> { using __detail::__is_integer_like; using __detail::__to_unsigned_like; if constexpr (integral<_Winc> && integral<_Bound>) { using _Up = make_unsigned_t; return _Up(_M_bound) - _Up(_M_value); } else if constexpr (__is_integer_like<_Winc>) return __to_unsigned_like(_M_bound) - __to_unsigned_like(_M_value); else return __to_unsigned_like(_M_bound - _M_value); } }; template requires (!__detail::__is_integer_like<_Winc> || !__detail::__is_integer_like<_Bound> || (__detail::__is_signed_integer_like<_Winc> == __detail::__is_signed_integer_like<_Bound>)) iota_view(_Winc, _Bound) -> iota_view<_Winc, _Bound>; template inline constexpr bool enable_borrowed_range> = true; namespace views { template inline constexpr empty_view<_Tp> empty{}; struct _Single { template constexpr auto operator()(_Tp&& __e) const { return single_view{std::forward<_Tp>(__e)}; } }; inline constexpr _Single single{}; struct _Iota { template constexpr auto operator()(_Tp&& __e) const { return iota_view{std::forward<_Tp>(__e)}; } template constexpr auto operator()(_Tp&& __e, _Up&& __f) const { return iota_view{std::forward<_Tp>(__e), std::forward<_Up>(__f)}; } }; inline constexpr _Iota iota{}; } // namespace views namespace __detail { template concept __stream_extractable = requires(basic_istream<_CharT, _Traits>& is, _Val& t) { is >> t; }; } // namespace __detail template requires default_initializable<_Val> && __detail::__stream_extractable<_Val, _CharT, _Traits> class basic_istream_view : public view_interface> { public: basic_istream_view() = default; constexpr explicit basic_istream_view(basic_istream<_CharT, _Traits>& __stream) : _M_stream(std::__addressof(__stream)) { } constexpr auto begin() { if (_M_stream != nullptr) *_M_stream >> _M_object; return _Iterator{*this}; } constexpr default_sentinel_t end() const noexcept { return default_sentinel; } private: basic_istream<_CharT, _Traits>* _M_stream = nullptr; _Val _M_object = _Val(); struct _Iterator { public: using iterator_concept = input_iterator_tag; using difference_type = ptrdiff_t; using value_type = _Val; _Iterator() = default; constexpr explicit _Iterator(basic_istream_view& __parent) noexcept : _M_parent(std::__addressof(__parent)) { } _Iterator(const _Iterator&) = delete; _Iterator(_Iterator&&) = default; _Iterator& operator=(const _Iterator&) = delete; _Iterator& operator=(_Iterator&&) = default; _Iterator& operator++() { __glibcxx_assert(_M_parent->_M_stream != nullptr); *_M_parent->_M_stream >> _M_parent->_M_object; return *this; } void operator++(int) { ++*this; } _Val& operator*() const { __glibcxx_assert(_M_parent->_M_stream != nullptr); return _M_parent->_M_object; } friend bool operator==(const _Iterator& __x, default_sentinel_t) { return __x._M_at_end(); } private: basic_istream_view* _M_parent = nullptr; bool _M_at_end() const { return _M_parent == nullptr || !*_M_parent->_M_stream; } }; friend _Iterator; }; template basic_istream_view<_Val, _CharT, _Traits> istream_view(basic_istream<_CharT, _Traits>& __s) { return basic_istream_view<_Val, _CharT, _Traits>{__s}; } // C++20 24.7 [range.adaptors] Range adaptors namespace __detail { struct _Empty { }; // Alias for a type that is conditionally present // (and is an empty type otherwise). // Data members using this alias should use [[no_unique_address]] so that // they take no space when not needed. template using __maybe_present_t = conditional_t<_Present, _Tp, _Empty>; // Alias for a type that is conditionally const. template using __maybe_const_t = conditional_t<_Const, const _Tp, _Tp>; } // namespace __detail namespace views { namespace __adaptor { template inline constexpr auto __maybe_refwrap(_Tp& __arg) { return reference_wrapper<_Tp>{__arg}; } template inline constexpr auto __maybe_refwrap(const _Tp& __arg) { return reference_wrapper{__arg}; } template inline constexpr decltype(auto) __maybe_refwrap(_Tp&& __arg) { return std::forward<_Tp>(__arg); } template struct _RangeAdaptorClosure; template struct _RangeAdaptor { protected: [[no_unique_address]] __detail::__maybe_present_t, _Callable> _M_callable; public: constexpr _RangeAdaptor(const _Callable& = {}) requires is_default_constructible_v<_Callable> { } constexpr _RangeAdaptor(_Callable __callable) requires (!is_default_constructible_v<_Callable>) : _M_callable(std::move(__callable)) { } template requires (sizeof...(_Args) >= 1) constexpr auto operator()(_Args&&... __args) const { // [range.adaptor.object]: If a range adaptor object accepts more // than one argument, then the following expressions are equivalent: // // (1) adaptor(range, args...) // (2) adaptor(args...)(range) // (3) range | adaptor(args...) // // In this case, adaptor(args...) is a range adaptor closure object. // // We handle (1) and (2) here, and (3) is just a special case of a // more general case already handled by _RangeAdaptorClosure. if constexpr (is_invocable_v<_Callable, _Args...>) { static_assert(sizeof...(_Args) != 1, "a _RangeAdaptor that accepts only one argument " "should be defined as a _RangeAdaptorClosure"); // Here we handle adaptor(range, args...) -- just forward all // arguments to the underlying adaptor routine. return _Callable{}(std::forward<_Args>(__args)...); } else { // Here we handle adaptor(args...)(range). // Given args..., we return a _RangeAdaptorClosure that takes a // range argument, such that (2) is equivalent to (1). // // We need to be careful about how we capture args... in this // closure. By using __maybe_refwrap, we capture lvalue // references by reference (through a reference_wrapper) and // otherwise capture by value. auto __closure = [...__args(__maybe_refwrap(std::forward<_Args>(__args)))] (_Range&& __r) { // This static_cast has two purposes: it forwards a // reference_wrapper capture as a T&, and otherwise // forwards the captured argument as an rvalue. return _Callable{}(std::forward<_Range>(__r), (static_cast>> (__args))...); }; using _ClosureType = decltype(__closure); return _RangeAdaptorClosure<_ClosureType>(std::move(__closure)); } } }; template _RangeAdaptor(_Callable) -> _RangeAdaptor<_Callable>; template struct _RangeAdaptorClosure : public _RangeAdaptor<_Callable> { using _RangeAdaptor<_Callable>::_RangeAdaptor; template requires requires { declval<_Callable>()(declval<_Range>()); } constexpr auto operator()(_Range&& __r) const { if constexpr (is_default_constructible_v<_Callable>) return _Callable{}(std::forward<_Range>(__r)); else return this->_M_callable(std::forward<_Range>(__r)); } template requires requires { declval<_Callable>()(declval<_Range>()); } friend constexpr auto operator|(_Range&& __r, const _RangeAdaptorClosure& __o) { return __o(std::forward<_Range>(__r)); } template friend constexpr auto operator|(const _RangeAdaptorClosure<_Tp>& __x, const _RangeAdaptorClosure& __y) { if constexpr (is_default_constructible_v<_Tp> && is_default_constructible_v<_Callable>) { auto __closure = [] (_Up&& __e) { return std::forward<_Up>(__e) | decltype(__x){} | decltype(__y){}; }; return _RangeAdaptorClosure(__closure); } else if constexpr (is_default_constructible_v<_Tp> && !is_default_constructible_v<_Callable>) { auto __closure = [__y] (_Up&& __e) { return std::forward<_Up>(__e) | decltype(__x){} | __y; }; return _RangeAdaptorClosure(__closure); } else if constexpr (!is_default_constructible_v<_Tp> && is_default_constructible_v<_Callable>) { auto __closure = [__x] (_Up&& __e) { return std::forward<_Up>(__e) | __x | decltype(__y){}; }; return _RangeAdaptorClosure(__closure); } else { auto __closure = [__x, __y] (_Up&& __e) { return std::forward<_Up>(__e) | __x | __y; }; return _RangeAdaptorClosure(__closure); } } }; template _RangeAdaptorClosure(_Callable) -> _RangeAdaptorClosure<_Callable>; } // namespace __adaptor } // namespace views template requires is_object_v<_Range> class ref_view : public view_interface> { private: _Range* _M_r = nullptr; static void _S_fun(_Range&); // not defined static void _S_fun(_Range&&) = delete; public: constexpr ref_view() noexcept = default; template<__detail::__not_same_as _Tp> requires convertible_to<_Tp, _Range&> && requires { _S_fun(declval<_Tp>()); } constexpr ref_view(_Tp&& __t) : _M_r(std::__addressof(static_cast<_Range&>(std::forward<_Tp>(__t)))) { } constexpr _Range& base() const { return *_M_r; } constexpr iterator_t<_Range> begin() const { return ranges::begin(*_M_r); } constexpr sentinel_t<_Range> end() const { return ranges::end(*_M_r); } constexpr bool empty() const requires requires { ranges::empty(*_M_r); } { return ranges::empty(*_M_r); } constexpr auto size() const requires sized_range<_Range> { return ranges::size(*_M_r); } constexpr auto data() const requires contiguous_range<_Range> { return ranges::data(*_M_r); } }; template ref_view(_Range&) -> ref_view<_Range>; template inline constexpr bool enable_borrowed_range> = true; namespace views { inline constexpr __adaptor::_RangeAdaptorClosure all = [] (_Range&& __r) { if constexpr (view>) return std::forward<_Range>(__r); else if constexpr (requires { ref_view{std::forward<_Range>(__r)}; }) return ref_view{std::forward<_Range>(__r)}; else return subrange{std::forward<_Range>(__r)}; }; template using all_t = decltype(all(std::declval<_Range>())); } // namespace views // XXX: the following algos are copied from ranges_algo.h to avoid a circular // dependency with that header. namespace __detail { template _Sent, typename _Proj = identity, indirect_unary_predicate> _Pred> constexpr _Iter find_if(_Iter __first, _Sent __last, _Pred __pred, _Proj __proj = {}) { while (__first != __last && !(bool)std::__invoke(__pred, std::__invoke(__proj, *__first))) ++__first; return __first; } template _Sent, typename _Proj = identity, indirect_unary_predicate> _Pred> constexpr _Iter find_if_not(_Iter __first, _Sent __last, _Pred __pred, _Proj __proj = {}) { while (__first != __last && (bool)std::__invoke(__pred, std::__invoke(__proj, *__first))) ++__first; return __first; } template> _Comp = ranges::less> constexpr const _Tp& min(const _Tp& __a, const _Tp& __b, _Comp __comp = {}, _Proj __proj = {}) { if (std::__invoke(std::move(__comp), std::__invoke(__proj, __b), std::__invoke(__proj, __a))) return __b; else return __a; } template _Sent1, input_iterator _Iter2, sentinel_for<_Iter2> _Sent2, typename _Pred = ranges::equal_to, typename _Proj1 = identity, typename _Proj2 = identity> requires indirectly_comparable<_Iter1, _Iter2, _Pred, _Proj1, _Proj2> constexpr pair<_Iter1, _Iter2> mismatch(_Iter1 __first1, _Sent1 __last1, _Iter2 __first2, _Sent2 __last2, _Pred __pred = {}, _Proj1 __proj1 = {}, _Proj2 __proj2 = {}) { while (__first1 != __last1 && __first2 != __last2 && (bool)std::__invoke(__pred, std::__invoke(__proj1, *__first1), std::__invoke(__proj2, *__first2))) { ++__first1; ++__first2; } return { std::move(__first1), std::move(__first2) }; } } // namespace __detail namespace __detail { template struct _CachedPosition { constexpr bool _M_has_value() const { return false; } constexpr iterator_t<_Range> _M_get(const _Range&) const { __glibcxx_assert(false); return {}; } constexpr void _M_set(const _Range&, const iterator_t<_Range>&) const { } }; template struct _CachedPosition<_Range> { private: iterator_t<_Range> _M_iter{}; public: constexpr bool _M_has_value() const { return _M_iter != iterator_t<_Range>{}; } constexpr iterator_t<_Range> _M_get(const _Range&) const { __glibcxx_assert(_M_has_value()); return _M_iter; } constexpr void _M_set(const _Range&, const iterator_t<_Range>& __it) { __glibcxx_assert(!_M_has_value()); _M_iter = __it; } }; template requires (sizeof(range_difference_t<_Range>) <= sizeof(iterator_t<_Range>)) struct _CachedPosition<_Range> { private: range_difference_t<_Range> _M_offset = -1; public: constexpr bool _M_has_value() const { return _M_offset >= 0; } constexpr iterator_t<_Range> _M_get(_Range& __r) const { __glibcxx_assert(_M_has_value()); return ranges::begin(__r) + _M_offset; } constexpr void _M_set(_Range& __r, const iterator_t<_Range>& __it) { __glibcxx_assert(!_M_has_value()); _M_offset = __it - ranges::begin(__r); } }; } // namespace __detail template> _Pred> requires view<_Vp> && is_object_v<_Pred> class filter_view : public view_interface> { private: struct _Sentinel; struct _Iterator { private: static constexpr auto _S_iter_concept() { if constexpr (bidirectional_range<_Vp>) return bidirectional_iterator_tag{}; else if constexpr (forward_range<_Vp>) return forward_iterator_tag{}; else return input_iterator_tag{}; } static constexpr auto _S_iter_cat() { using _Cat = typename iterator_traits<_Vp_iter>::iterator_category; if constexpr (derived_from<_Cat, bidirectional_iterator_tag>) return bidirectional_iterator_tag{}; else if constexpr (derived_from<_Cat, forward_iterator_tag>) return forward_iterator_tag{}; else return _Cat{}; } friend filter_view; using _Vp_iter = iterator_t<_Vp>; _Vp_iter _M_current = _Vp_iter(); filter_view* _M_parent = nullptr; public: using iterator_concept = decltype(_S_iter_concept()); using iterator_category = decltype(_S_iter_cat()); using value_type = range_value_t<_Vp>; using difference_type = range_difference_t<_Vp>; _Iterator() = default; constexpr _Iterator(filter_view& __parent, _Vp_iter __current) : _M_current(std::move(__current)), _M_parent(std::__addressof(__parent)) { } constexpr _Vp_iter base() const & requires copyable<_Vp_iter> { return _M_current; } constexpr _Vp_iter base() && { return std::move(_M_current); } constexpr range_reference_t<_Vp> operator*() const { return *_M_current; } constexpr _Vp_iter operator->() const requires __detail::__has_arrow<_Vp_iter> && copyable<_Vp_iter> { return _M_current; } constexpr _Iterator& operator++() { _M_current = __detail::find_if(std::move(++_M_current), ranges::end(_M_parent->_M_base), std::ref(*_M_parent->_M_pred)); return *this; } constexpr void operator++(int) { ++*this; } constexpr _Iterator operator++(int) requires forward_range<_Vp> { auto __tmp = *this; ++*this; return __tmp; } constexpr _Iterator& operator--() requires bidirectional_range<_Vp> { do --_M_current; while (!std::__invoke(*_M_parent->_M_pred, *_M_current)); return *this; } constexpr _Iterator operator--(int) requires bidirectional_range<_Vp> { auto __tmp = *this; --*this; return __tmp; } friend constexpr bool operator==(const _Iterator& __x, const _Iterator& __y) requires equality_comparable<_Vp_iter> { return __x._M_current == __y._M_current; } friend constexpr range_rvalue_reference_t<_Vp> iter_move(const _Iterator& __i) noexcept(noexcept(ranges::iter_move(__i._M_current))) { return ranges::iter_move(__i._M_current); } friend constexpr void iter_swap(const _Iterator& __x, const _Iterator& __y) noexcept(noexcept(ranges::iter_swap(__x._M_current, __y._M_current))) requires indirectly_swappable<_Vp_iter> { ranges::iter_swap(__x._M_current, __y._M_current); } }; struct _Sentinel { private: sentinel_t<_Vp> _M_end = sentinel_t<_Vp>(); constexpr bool __equal(const _Iterator& __i) const { return __i._M_current == _M_end; } public: _Sentinel() = default; constexpr explicit _Sentinel(filter_view& __parent) : _M_end(ranges::end(__parent._M_base)) { } constexpr sentinel_t<_Vp> base() const { return _M_end; } friend constexpr bool operator==(const _Iterator& __x, const _Sentinel& __y) { return __y.__equal(__x); } }; _Vp _M_base = _Vp(); __detail::__box<_Pred> _M_pred; [[no_unique_address]] __detail::_CachedPosition<_Vp> _M_cached_begin; public: filter_view() = default; constexpr filter_view(_Vp __base, _Pred __pred) : _M_base(std::move(__base)), _M_pred(std::move(__pred)) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr const _Pred& pred() const { return *_M_pred; } constexpr _Iterator begin() { if (_M_cached_begin._M_has_value()) return {*this, _M_cached_begin._M_get(_M_base)}; __glibcxx_assert(_M_pred.has_value()); auto __it = __detail::find_if(ranges::begin(_M_base), ranges::end(_M_base), std::ref(*_M_pred)); _M_cached_begin._M_set(_M_base, __it); return {*this, std::move(__it)}; } constexpr auto end() { if constexpr (common_range<_Vp>) return _Iterator{*this, ranges::end(_M_base)}; else return _Sentinel{*this}; } }; template filter_view(_Range&&, _Pred) -> filter_view, _Pred>; namespace views { inline constexpr __adaptor::_RangeAdaptor filter = [] (_Range&& __r, _Pred&& __p) { return filter_view{std::forward<_Range>(__r), std::forward<_Pred>(__p)}; }; } // namespace views template requires view<_Vp> && is_object_v<_Fp> && regular_invocable<_Fp&, range_reference_t<_Vp>> && std::__detail::__can_reference>> class transform_view : public view_interface> { private: template struct _Sentinel; template struct _Iterator { private: using _Parent = __detail::__maybe_const_t<_Const, transform_view>; using _Base = __detail::__maybe_const_t<_Const, _Vp>; static constexpr auto _S_iter_concept() { if constexpr (random_access_range<_Vp>) return random_access_iterator_tag{}; else if constexpr (bidirectional_range<_Vp>) return bidirectional_iterator_tag{}; else if constexpr (forward_range<_Vp>) return forward_iterator_tag{}; else return input_iterator_tag{}; } static constexpr auto _S_iter_cat() { using _Res = invoke_result_t<_Fp&, range_reference_t<_Base>>; if constexpr (is_lvalue_reference_v<_Res>) { using _Cat = typename iterator_traits<_Base_iter>::iterator_category; if constexpr (derived_from<_Cat, contiguous_iterator_tag>) return random_access_iterator_tag{}; else return _Cat{}; } else return input_iterator_tag{}; } using _Base_iter = iterator_t<_Base>; _Base_iter _M_current = _Base_iter(); _Parent* _M_parent = nullptr; public: using iterator_concept = decltype(_S_iter_concept()); using iterator_category = decltype(_S_iter_cat()); using value_type = remove_cvref_t>>; using difference_type = range_difference_t<_Base>; _Iterator() = default; constexpr _Iterator(_Parent& __parent, _Base_iter __current) : _M_current(std::move(__current)), _M_parent(std::__addressof(__parent)) { } constexpr _Iterator(_Iterator __i) requires _Const && convertible_to, _Base_iter> : _M_current(std::move(__i._M_current)), _M_parent(__i._M_parent) { } constexpr _Base_iter base() const & requires copyable<_Base_iter> { return _M_current; } constexpr _Base_iter base() && { return std::move(_M_current); } constexpr decltype(auto) operator*() const noexcept(noexcept(std::__invoke(*_M_parent->_M_fun, *_M_current))) { return std::__invoke(*_M_parent->_M_fun, *_M_current); } constexpr _Iterator& operator++() { ++_M_current; return *this; } constexpr void operator++(int) { ++_M_current; } constexpr _Iterator operator++(int) requires forward_range<_Base> { auto __tmp = *this; ++*this; return __tmp; } constexpr _Iterator& operator--() requires bidirectional_range<_Base> { --_M_current; return *this; } constexpr _Iterator operator--(int) requires bidirectional_range<_Base> { auto __tmp = *this; --*this; return __tmp; } constexpr _Iterator& operator+=(difference_type __n) requires random_access_range<_Base> { _M_current += __n; return *this; } constexpr _Iterator& operator-=(difference_type __n) requires random_access_range<_Base> { _M_current -= __n; return *this; } constexpr decltype(auto) operator[](difference_type __n) const requires random_access_range<_Base> { return std::__invoke(*_M_parent->_M_fun, _M_current[__n]); } friend constexpr bool operator==(const _Iterator& __x, const _Iterator& __y) requires equality_comparable<_Base_iter> { return __x._M_current == __y._M_current; } friend constexpr bool operator<(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> { return __x._M_current < __y._M_current; } friend constexpr bool operator>(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> { return __y < __x; } friend constexpr bool operator<=(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> { return !(__y < __x); } friend constexpr bool operator>=(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> { return !(__x < __y); } #ifdef __cpp_lib_three_way_comparison friend constexpr auto operator<=>(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> && three_way_comparable<_Base_iter> { return __x._M_current <=> __y._M_current; } #endif friend constexpr _Iterator operator+(_Iterator __i, difference_type __n) requires random_access_range<_Base> { return {*__i._M_parent, __i._M_current + __n}; } friend constexpr _Iterator operator+(difference_type __n, _Iterator __i) requires random_access_range<_Base> { return {*__i._M_parent, __i._M_current + __n}; } friend constexpr _Iterator operator-(_Iterator __i, difference_type __n) requires random_access_range<_Base> { return {*__i._M_parent, __i._M_current - __n}; } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3483. transform_view::iterator's difference is overconstrained friend constexpr difference_type operator-(const _Iterator& __x, const _Iterator& __y) requires sized_sentinel_for, iterator_t<_Base>> { return __x._M_current - __y._M_current; } friend constexpr decltype(auto) iter_move(const _Iterator& __i) noexcept(noexcept(*__i)) { if constexpr (is_lvalue_reference_v) return std::move(*__i); else return *__i; } friend constexpr void iter_swap(const _Iterator& __x, const _Iterator& __y) noexcept(noexcept(ranges::iter_swap(__x._M_current, __y._M_current))) requires indirectly_swappable<_Base_iter> { return ranges::iter_swap(__x._M_current, __y._M_current); } friend _Iterator; template friend struct _Sentinel; }; template struct _Sentinel { private: using _Parent = __detail::__maybe_const_t<_Const, transform_view>; using _Base = __detail::__maybe_const_t<_Const, _Vp>; template constexpr auto __distance_from(const _Iterator<_Const2>& __i) const { return _M_end - __i._M_current; } template constexpr bool __equal(const _Iterator<_Const2>& __i) const { return __i._M_current == _M_end; } sentinel_t<_Base> _M_end = sentinel_t<_Base>(); public: _Sentinel() = default; constexpr explicit _Sentinel(sentinel_t<_Base> __end) : _M_end(__end) { } constexpr _Sentinel(_Sentinel __i) requires _Const && convertible_to, sentinel_t<_Base>> : _M_end(std::move(__i._M_end)) { } constexpr sentinel_t<_Base> base() const { return _M_end; } template requires sentinel_for, iterator_t<__detail::__maybe_const_t<_Const2, _Vp>>> friend constexpr bool operator==(const _Iterator<_Const2>& __x, const _Sentinel& __y) { return __y.__equal(__x); } template> requires sized_sentinel_for, iterator_t<_Base2>> friend constexpr range_difference_t<_Base2> operator-(const _Iterator<_Const2>& __x, const _Sentinel& __y) { return -__y.__distance_from(__x); } template> requires sized_sentinel_for, iterator_t<_Base2>> friend constexpr range_difference_t<_Base2> operator-(const _Sentinel& __y, const _Iterator<_Const2>& __x) { return __y.__distance_from(__x); } friend _Sentinel; }; _Vp _M_base = _Vp(); __detail::__box<_Fp> _M_fun; public: transform_view() = default; constexpr transform_view(_Vp __base, _Fp __fun) : _M_base(std::move(__base)), _M_fun(std::move(__fun)) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base ; } constexpr _Vp base() && { return std::move(_M_base); } constexpr _Iterator begin() { return _Iterator{*this, ranges::begin(_M_base)}; } constexpr _Iterator begin() const requires range && regular_invocable> { return _Iterator{*this, ranges::begin(_M_base)}; } constexpr _Sentinel end() { return _Sentinel{ranges::end(_M_base)}; } constexpr _Iterator end() requires common_range<_Vp> { return _Iterator{*this, ranges::end(_M_base)}; } constexpr _Sentinel end() const requires range && regular_invocable> { return _Sentinel{ranges::end(_M_base)}; } constexpr _Iterator end() const requires common_range && regular_invocable> { return _Iterator{*this, ranges::end(_M_base)}; } constexpr auto size() requires sized_range<_Vp> { return ranges::size(_M_base); } constexpr auto size() const requires sized_range { return ranges::size(_M_base); } }; template transform_view(_Range&&, _Fp) -> transform_view, _Fp>; namespace views { inline constexpr __adaptor::_RangeAdaptor transform = [] (_Range&& __r, _Fp&& __f) { return transform_view{std::forward<_Range>(__r), std::forward<_Fp>(__f)}; }; } // namespace views template class take_view : public view_interface> { private: template struct _Sentinel { private: using _Base = __detail::__maybe_const_t<_Const, _Vp>; using _CI = counted_iterator>; sentinel_t<_Base> _M_end = sentinel_t<_Base>(); public: _Sentinel() = default; constexpr explicit _Sentinel(sentinel_t<_Base> __end) : _M_end(__end) { } constexpr _Sentinel(_Sentinel __s) requires _Const && convertible_to, sentinel_t<_Base>> : _M_end(std::move(__s._M_end)) { } constexpr sentinel_t<_Base> base() const { return _M_end; } friend constexpr bool operator==(const _CI& __y, const _Sentinel& __x) { return __y.count() == 0 || __y.base() == __x._M_end; } friend _Sentinel; }; _Vp _M_base = _Vp(); range_difference_t<_Vp> _M_count = 0; public: take_view() = default; constexpr take_view(_Vp base, range_difference_t<_Vp> __count) : _M_base(std::move(base)), _M_count(std::move(__count)) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr auto begin() requires (!__detail::__simple_view<_Vp>) { if constexpr (sized_range<_Vp>) { if constexpr (random_access_range<_Vp>) return ranges::begin(_M_base); else { auto __sz = size(); return counted_iterator{ranges::begin(_M_base), __sz}; } } else return counted_iterator{ranges::begin(_M_base), _M_count}; } constexpr auto begin() const requires range { if constexpr (sized_range) { if constexpr (random_access_range) return ranges::begin(_M_base); else { auto __sz = size(); return counted_iterator{ranges::begin(_M_base), __sz}; } } else return counted_iterator{ranges::begin(_M_base), _M_count}; } constexpr auto end() requires (!__detail::__simple_view<_Vp>) { if constexpr (sized_range<_Vp>) { if constexpr (random_access_range<_Vp>) return ranges::begin(_M_base) + size(); else return default_sentinel; } else return _Sentinel{ranges::end(_M_base)}; } constexpr auto end() const requires range { if constexpr (sized_range) { if constexpr (random_access_range) return ranges::begin(_M_base) + size(); else return default_sentinel; } else return _Sentinel{ranges::end(_M_base)}; } constexpr auto size() requires sized_range<_Vp> { auto __n = ranges::size(_M_base); return __detail::min(__n, static_cast(_M_count)); } constexpr auto size() const requires sized_range { auto __n = ranges::size(_M_base); return __detail::min(__n, static_cast(_M_count)); } }; template take_view(_Range&&, range_difference_t<_Range>) -> take_view>; namespace views { inline constexpr __adaptor::_RangeAdaptor take = [] (_Range&& __r, _Tp&& __n) { return take_view{std::forward<_Range>(__r), std::forward<_Tp>(__n)}; }; } // namespace views template requires input_range<_Vp> && is_object_v<_Pred> && indirect_unary_predicate> class take_while_view : public view_interface> { template struct _Sentinel { private: using _Base = __detail::__maybe_const_t<_Const, _Vp>; sentinel_t<_Base> _M_end = sentinel_t<_Base>(); const _Pred* _M_pred = nullptr; public: _Sentinel() = default; constexpr explicit _Sentinel(sentinel_t<_Base> __end, const _Pred* __pred) : _M_end(__end), _M_pred(__pred) { } constexpr _Sentinel(_Sentinel __s) requires _Const && convertible_to, sentinel_t<_Base>> : _M_end(__s._M_end), _M_pred(__s._M_pred) { } constexpr sentinel_t<_Base> base() const { return _M_end; } friend constexpr bool operator==(const iterator_t<_Base>& __x, const _Sentinel& __y) { return __y._M_end == __x || !std::__invoke(*__y._M_pred, *__x); } friend _Sentinel; }; _Vp _M_base = _Vp(); __detail::__box<_Pred> _M_pred; public: take_while_view() = default; constexpr take_while_view(_Vp base, _Pred __pred) : _M_base(std::move(base)), _M_pred(std::move(__pred)) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr const _Pred& pred() const { return *_M_pred; } constexpr auto begin() requires (!__detail::__simple_view<_Vp>) { return ranges::begin(_M_base); } constexpr auto begin() const requires range { return ranges::begin(_M_base); } constexpr auto end() requires (!__detail::__simple_view<_Vp>) { return _Sentinel(ranges::end(_M_base), std::__addressof(*_M_pred)); } constexpr auto end() const requires range { return _Sentinel(ranges::end(_M_base), std::__addressof(*_M_pred)); } }; template take_while_view(_Range&&, _Pred) -> take_while_view, _Pred>; namespace views { inline constexpr __adaptor::_RangeAdaptor take_while = [] (_Range&& __r, _Pred&& __p) { return take_while_view{std::forward<_Range>(__r), std::forward<_Pred>(__p)}; }; } // namespace views template class drop_view : public view_interface> { private: _Vp _M_base = _Vp(); range_difference_t<_Vp> _M_count = 0; // ranges::next(begin(base), count, end(base)) is O(1) if _Vp satisfies // both random_access_range and sized_range. Otherwise, cache its result. static constexpr bool _S_needs_cached_begin = !(random_access_range && sized_range); [[no_unique_address]] __detail::__maybe_present_t<_S_needs_cached_begin, __detail::_CachedPosition<_Vp>> _M_cached_begin; public: drop_view() = default; constexpr drop_view(_Vp __base, range_difference_t<_Vp> __count) : _M_base(std::move(__base)), _M_count(__count) { __glibcxx_assert(__count >= 0); } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } // This overload is disabled for simple views with constant-time begin(). constexpr auto begin() requires (!(__detail::__simple_view<_Vp> && random_access_range && sized_range)) { if constexpr (_S_needs_cached_begin) if (_M_cached_begin._M_has_value()) return _M_cached_begin._M_get(_M_base); auto __it = ranges::next(ranges::begin(_M_base), _M_count, ranges::end(_M_base)); if constexpr (_S_needs_cached_begin) _M_cached_begin._M_set(_M_base, __it); return __it; } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3482. drop_view's const begin should additionally require sized_range constexpr auto begin() const requires random_access_range && sized_range { return ranges::next(ranges::begin(_M_base), _M_count, ranges::end(_M_base)); } constexpr auto end() requires (!__detail::__simple_view<_Vp>) { return ranges::end(_M_base); } constexpr auto end() const requires range { return ranges::end(_M_base); } constexpr auto size() requires sized_range<_Vp> { const auto __s = ranges::size(_M_base); const auto __c = static_cast(_M_count); return __s < __c ? 0 : __s - __c; } constexpr auto size() const requires sized_range { const auto __s = ranges::size(_M_base); const auto __c = static_cast(_M_count); return __s < __c ? 0 : __s - __c; } }; template drop_view(_Range&&, range_difference_t<_Range>) -> drop_view>; namespace views { inline constexpr __adaptor::_RangeAdaptor drop = [] (_Range&& __r, _Tp&& __n) { return drop_view{std::forward<_Range>(__r), std::forward<_Tp>(__n)}; }; } // namespace views template requires input_range<_Vp> && is_object_v<_Pred> && indirect_unary_predicate> class drop_while_view : public view_interface> { private: _Vp _M_base = _Vp(); __detail::__box<_Pred> _M_pred; [[no_unique_address]] __detail::_CachedPosition<_Vp> _M_cached_begin; public: drop_while_view() = default; constexpr drop_while_view(_Vp __base, _Pred __pred) : _M_base(std::move(__base)), _M_pred(std::move(__pred)) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr const _Pred& pred() const { return *_M_pred; } constexpr auto begin() { if (_M_cached_begin._M_has_value()) return _M_cached_begin._M_get(_M_base); auto __it = __detail::find_if_not(ranges::begin(_M_base), ranges::end(_M_base), std::cref(*_M_pred)); _M_cached_begin._M_set(_M_base, __it); return __it; } constexpr auto end() { return ranges::end(_M_base); } }; template drop_while_view(_Range&&, _Pred) -> drop_while_view, _Pred>; namespace views { inline constexpr __adaptor::_RangeAdaptor drop_while = [] (_Range&& __r, _Pred&& __p) { return drop_while_view{std::forward<_Range>(__r), std::forward<_Pred>(__p)}; }; } // namespace views template requires view<_Vp> && input_range> && (is_reference_v> || view>) class join_view : public view_interface> { private: using _InnerRange = range_reference_t<_Vp>; template struct _Sentinel; template struct _Iterator { private: using _Parent = __detail::__maybe_const_t<_Const, join_view>; using _Base = __detail::__maybe_const_t<_Const, _Vp>; static constexpr bool _S_ref_is_glvalue = is_reference_v>; constexpr void _M_satisfy() { auto __update_inner = [this] (range_reference_t<_Base> __x) -> auto& { if constexpr (_S_ref_is_glvalue) return __x; else return (_M_parent->_M_inner = views::all(std::move(__x))); }; for (; _M_outer != ranges::end(_M_parent->_M_base); ++_M_outer) { auto& inner = __update_inner(*_M_outer); _M_inner = ranges::begin(inner); if (_M_inner != ranges::end(inner)) return; } if constexpr (_S_ref_is_glvalue) _M_inner = _Inner_iter(); } static constexpr auto _S_iter_concept() { if constexpr (_S_ref_is_glvalue && bidirectional_range<_Base> && bidirectional_range>) return bidirectional_iterator_tag{}; else if constexpr (_S_ref_is_glvalue && forward_range<_Base> && forward_range>) return forward_iterator_tag{}; else return input_iterator_tag{}; } static constexpr auto _S_iter_cat() { using _OuterCat = typename iterator_traits<_Outer_iter>::iterator_category; using _InnerCat = typename iterator_traits<_Inner_iter>::iterator_category; if constexpr (_S_ref_is_glvalue && derived_from<_OuterCat, bidirectional_iterator_tag> && derived_from<_InnerCat, bidirectional_iterator_tag>) return bidirectional_iterator_tag{}; else if constexpr (_S_ref_is_glvalue && derived_from<_OuterCat, forward_iterator_tag> && derived_from<_InnerCat, forward_iterator_tag>) return forward_iterator_tag{}; else if constexpr (derived_from<_OuterCat, input_iterator_tag> && derived_from<_InnerCat, input_iterator_tag>) return input_iterator_tag{}; else return output_iterator_tag{}; } using _Outer_iter = iterator_t<_Base>; using _Inner_iter = iterator_t>; _Outer_iter _M_outer = _Outer_iter(); _Inner_iter _M_inner = _Inner_iter(); _Parent* _M_parent = nullptr; public: using iterator_concept = decltype(_S_iter_concept()); using iterator_category = decltype(_S_iter_cat()); using value_type = range_value_t>; using difference_type = common_type_t, range_difference_t>>; _Iterator() = default; constexpr _Iterator(_Parent& __parent, _Outer_iter __outer) : _M_outer(std::move(__outer)), _M_parent(std::__addressof(__parent)) { _M_satisfy(); } constexpr _Iterator(_Iterator __i) requires _Const && convertible_to, _Outer_iter> && convertible_to, _Inner_iter> : _M_outer(std::move(__i._M_outer)), _M_inner(__i._M_inner), _M_parent(__i._M_parent) { } constexpr decltype(auto) operator*() const { return *_M_inner; } constexpr _Outer_iter operator->() const requires __detail::__has_arrow<_Outer_iter> && copyable<_Outer_iter> { return _M_inner; } constexpr _Iterator& operator++() { auto&& __inner_range = [this] () -> decltype(auto) { if constexpr (_S_ref_is_glvalue) return *_M_outer; else return _M_parent->_M_inner; }(); if (++_M_inner == ranges::end(__inner_range)) { ++_M_outer; _M_satisfy(); } return *this; } constexpr void operator++(int) { ++*this; } constexpr _Iterator operator++(int) requires _S_ref_is_glvalue && forward_range<_Base> && forward_range> { auto __tmp = *this; ++*this; return __tmp; } constexpr _Iterator& operator--() requires _S_ref_is_glvalue && bidirectional_range<_Base> && bidirectional_range> && common_range> { if (_M_outer == ranges::end(_M_parent->_M_base)) _M_inner = ranges::end(*--_M_outer); while (_M_inner == ranges::begin(*_M_outer)) _M_inner = ranges::end(*--_M_outer); --_M_inner; return *this; } constexpr _Iterator operator--(int) requires _S_ref_is_glvalue && bidirectional_range<_Base> && bidirectional_range> && common_range> { auto __tmp = *this; --*this; return __tmp; } friend constexpr bool operator==(const _Iterator& __x, const _Iterator& __y) requires _S_ref_is_glvalue && equality_comparable<_Outer_iter> && equality_comparable<_Inner_iter> { return (__x._M_outer == __y._M_outer && __x._M_inner == __y._M_inner); } friend constexpr decltype(auto) iter_move(const _Iterator& __i) noexcept(noexcept(ranges::iter_move(__i._M_inner))) { return ranges::iter_move(__i._M_inner); } friend constexpr void iter_swap(const _Iterator& __x, const _Iterator& __y) noexcept(noexcept(ranges::iter_swap(__x._M_inner, __y._M_inner))) { return ranges::iter_swap(__x._M_inner, __y._M_inner); } friend _Iterator; template friend struct _Sentinel; }; template struct _Sentinel { private: using _Parent = __detail::__maybe_const_t<_Const, join_view>; using _Base = __detail::__maybe_const_t<_Const, _Vp>; template constexpr bool __equal(const _Iterator<_Const2>& __i) const { return __i._M_outer == _M_end; } sentinel_t<_Base> _M_end = sentinel_t<_Base>(); public: _Sentinel() = default; constexpr explicit _Sentinel(_Parent& __parent) : _M_end(ranges::end(__parent._M_base)) { } constexpr _Sentinel(_Sentinel __s) requires _Const && convertible_to, sentinel_t<_Base>> : _M_end(std::move(__s._M_end)) { } template requires sentinel_for, iterator_t<__detail::__maybe_const_t<_Const2, _Vp>>> friend constexpr bool operator==(const _Iterator<_Const2>& __x, const _Sentinel& __y) { return __y.__equal(__x); } friend _Sentinel; }; _Vp _M_base = _Vp(); // XXX: _M_inner is "present only when !is_reference_v<_InnerRange>" [[no_unique_address]] __detail::__maybe_present_t, views::all_t<_InnerRange>> _M_inner; public: join_view() = default; constexpr explicit join_view(_Vp __base) : _M_base(std::move(__base)) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr auto begin() { constexpr bool __use_const = (__detail::__simple_view<_Vp> && is_reference_v>); return _Iterator<__use_const>{*this, ranges::begin(_M_base)}; } constexpr auto begin() const requires input_range && is_reference_v> { return _Iterator{*this, ranges::begin(_M_base)}; } constexpr auto end() { if constexpr (forward_range<_Vp> && is_reference_v<_InnerRange> && forward_range<_InnerRange> && common_range<_Vp> && common_range<_InnerRange>) return _Iterator<__detail::__simple_view<_Vp>>{*this, ranges::end(_M_base)}; else return _Sentinel<__detail::__simple_view<_Vp>>{*this}; } constexpr auto end() const requires input_range && is_reference_v> { if constexpr (forward_range && is_reference_v> && forward_range> && common_range && common_range>) return _Iterator{*this, ranges::end(_M_base)}; else return _Sentinel{*this}; } }; template explicit join_view(_Range&&) -> join_view>; // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3474. Nesting join_views is broken because of CTAD template explicit join_view(join_view<_View>) -> join_view>; namespace views { inline constexpr __adaptor::_RangeAdaptorClosure join = [] (_Range&& __r) { return join_view{std::forward<_Range>(__r)}; }; } // namespace views namespace __detail { template struct __require_constant; template concept __tiny_range = sized_range<_Range> && requires { typename __require_constant::size()>; } && (remove_reference_t<_Range>::size() <= 1); } template requires view<_Vp> && view<_Pattern> && indirectly_comparable, iterator_t<_Pattern>, ranges::equal_to> && (forward_range<_Vp> || __detail::__tiny_range<_Pattern>) class split_view : public view_interface> { private: template struct _InnerIter; template struct _OuterIter { private: using _Parent = __detail::__maybe_const_t<_Const, split_view>; using _Base = __detail::__maybe_const_t<_Const, _Vp>; constexpr bool __at_end() const { return __current() == ranges::end(_M_parent->_M_base); } // [range.split.outer] p1 // Many of the following specifications refer to the notional member // current of outer-iterator. current is equivalent to current_ if // V models forward_range, and parent_->current_ otherwise. constexpr auto& __current() noexcept { if constexpr (forward_range<_Vp>) return _M_current; else return _M_parent->_M_current; } constexpr auto& __current() const noexcept { if constexpr (forward_range<_Vp>) return _M_current; else return _M_parent->_M_current; } _Parent* _M_parent = nullptr; // XXX: _M_current is present only if "V models forward_range" [[no_unique_address]] __detail::__maybe_present_t, iterator_t<_Base>> _M_current; public: using iterator_concept = conditional_t, forward_iterator_tag, input_iterator_tag>; using iterator_category = input_iterator_tag; using difference_type = range_difference_t<_Base>; struct value_type : view_interface { private: _OuterIter _M_i = _OuterIter(); public: value_type() = default; constexpr explicit value_type(_OuterIter __i) : _M_i(std::move(__i)) { } constexpr _InnerIter<_Const> begin() const requires copyable<_OuterIter> { return _InnerIter<_Const>{_M_i}; } constexpr _InnerIter<_Const> begin() requires (!copyable<_OuterIter>) { return _InnerIter<_Const>{std::move(_M_i)}; } constexpr default_sentinel_t end() const { return default_sentinel; } }; _OuterIter() = default; constexpr explicit _OuterIter(_Parent& __parent) requires (!forward_range<_Base>) : _M_parent(std::__addressof(__parent)) { } constexpr _OuterIter(_Parent& __parent, iterator_t<_Base> __current) requires forward_range<_Base> : _M_parent(std::__addressof(__parent)), _M_current(std::move(__current)) { } constexpr _OuterIter(_OuterIter __i) requires _Const && convertible_to, iterator_t<_Base>> : _M_parent(__i._M_parent), _M_current(std::move(__i._M_current)) { } constexpr value_type operator*() const { return value_type{*this}; } constexpr _OuterIter& operator++() { const auto __end = ranges::end(_M_parent->_M_base); if (__current() == __end) return *this; const auto [__pbegin, __pend] = subrange{_M_parent->_M_pattern}; if (__pbegin == __pend) ++__current(); else do { auto [__b, __p] = __detail::mismatch(std::move(__current()), __end, __pbegin, __pend); __current() = std::move(__b); if (__p == __pend) break; } while (++__current() != __end); return *this; } constexpr decltype(auto) operator++(int) { if constexpr (forward_range<_Base>) { auto __tmp = *this; ++*this; return __tmp; } else ++*this; } friend constexpr bool operator==(const _OuterIter& __x, const _OuterIter& __y) requires forward_range<_Base> { return __x._M_current == __y._M_current; } friend constexpr bool operator==(const _OuterIter& __x, default_sentinel_t) { return __x.__at_end(); }; friend _OuterIter; friend _InnerIter<_Const>; }; template struct _InnerIter { private: using _Base = __detail::__maybe_const_t<_Const, _Vp>; constexpr bool __at_end() const { auto [__pcur, __pend] = subrange{_M_i._M_parent->_M_pattern}; auto __end = ranges::end(_M_i._M_parent->_M_base); if constexpr (__detail::__tiny_range<_Pattern>) { const auto& __cur = _M_i_current(); if (__cur == __end) return true; if (__pcur == __pend) return _M_incremented; return *__cur == *__pcur; } else { auto __cur = _M_i_current(); if (__cur == __end) return true; if (__pcur == __pend) return _M_incremented; do { if (*__cur != *__pcur) return false; if (++__pcur == __pend) return true; } while (++__cur != __end); return false; } } static constexpr auto _S_iter_cat() { using _Cat = typename iterator_traits>::iterator_category; if constexpr (derived_from<_Cat, forward_iterator_tag>) return forward_iterator_tag{}; else return _Cat{}; } constexpr auto& _M_i_current() noexcept { return _M_i.__current(); } constexpr auto& _M_i_current() const noexcept { return _M_i.__current(); } _OuterIter<_Const> _M_i = _OuterIter<_Const>(); bool _M_incremented = false; public: using iterator_concept = typename _OuterIter<_Const>::iterator_concept; using iterator_category = decltype(_S_iter_cat()); using value_type = range_value_t<_Base>; using difference_type = range_difference_t<_Base>; _InnerIter() = default; constexpr explicit _InnerIter(_OuterIter<_Const> __i) : _M_i(std::move(__i)) { } constexpr decltype(auto) operator*() const { return *_M_i_current(); } constexpr _InnerIter& operator++() { _M_incremented = true; if constexpr (!forward_range<_Base>) if constexpr (_Pattern::size() == 0) return *this; ++_M_i_current(); return *this; } constexpr decltype(auto) operator++(int) { if constexpr (forward_range<_Vp>) { auto __tmp = *this; ++*this; return __tmp; } else ++*this; } friend constexpr bool operator==(const _InnerIter& __x, const _InnerIter& __y) requires forward_range<_Base> { return __x._M_i == __y._M_i; } friend constexpr bool operator==(const _InnerIter& __x, default_sentinel_t) { return __x.__at_end(); } friend constexpr decltype(auto) iter_move(const _InnerIter& __i) noexcept(noexcept(ranges::iter_move(__i._M_i_current()))) { return ranges::iter_move(__i._M_i_current()); } friend constexpr void iter_swap(const _InnerIter& __x, const _InnerIter& __y) noexcept(noexcept(ranges::iter_swap(__x._M_i_current(), __y._M_i_current()))) requires indirectly_swappable> { ranges::iter_swap(__x._M_i_current(), __y._M_i_current()); } }; _Vp _M_base = _Vp(); _Pattern _M_pattern = _Pattern(); // XXX: _M_current is "present only if !forward_range" [[no_unique_address]] __detail::__maybe_present_t, iterator_t<_Vp>> _M_current; public: split_view() = default; constexpr split_view(_Vp __base, _Pattern __pattern) : _M_base(std::move(__base)), _M_pattern(std::move(__pattern)) { } template requires constructible_from<_Vp, views::all_t<_Range>> && constructible_from<_Pattern, single_view>> constexpr split_view(_Range&& __r, range_value_t<_Range> __e) : _M_base(views::all(std::forward<_Range>(__r))), _M_pattern(std::move(__e)) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr auto begin() { if constexpr (forward_range<_Vp>) return _OuterIter<__detail::__simple_view<_Vp>>{ *this, ranges::begin(_M_base)}; else { _M_current = ranges::begin(_M_base); return _OuterIter{*this}; } } constexpr auto begin() const requires forward_range<_Vp> && forward_range { return _OuterIter{*this, ranges::begin(_M_base)}; } constexpr auto end() requires forward_range<_Vp> && common_range<_Vp> { return _OuterIter<__detail::__simple_view<_Vp>>{ *this, ranges::end(_M_base)}; } constexpr auto end() const { if constexpr (forward_range<_Vp> && forward_range && common_range) return _OuterIter{*this, ranges::end(_M_base)}; else return default_sentinel; } }; template split_view(_Range&&, _Pred&&) -> split_view, views::all_t<_Pred>>; template split_view(_Range&&, range_value_t<_Range>) -> split_view, single_view>>; namespace views { inline constexpr __adaptor::_RangeAdaptor split = [] (_Range&& __r, _Fp&& __f) { return split_view{std::forward<_Range>(__r), std::forward<_Fp>(__f)}; }; } // namespace views namespace views { struct _Counted { template constexpr auto operator()(_Iter __i, iter_difference_t<_Iter> __n) const { if constexpr (random_access_iterator<_Iter>) return subrange{__i, __i + __n}; else return subrange{counted_iterator{std::move(__i), __n}, default_sentinel}; } }; inline constexpr _Counted counted{}; } // namespace views template requires (!common_range<_Vp>) && copyable> class common_view : public view_interface> { private: _Vp _M_base = _Vp(); public: common_view() = default; constexpr explicit common_view(_Vp __r) : _M_base(std::move(__r)) { } /* XXX: LWG 3280 didn't remove this constructor, but I think it should? template requires (!common_range<_Range>) && constructible_from<_Vp, views::all_t<_Range>> constexpr explicit common_view(_Range&& __r) : _M_base(views::all(std::forward<_Range>(__r))) { } */ constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr auto begin() { if constexpr (random_access_range<_Vp> && sized_range<_Vp>) return ranges::begin(_M_base); else return common_iterator, sentinel_t<_Vp>> (ranges::begin(_M_base)); } constexpr auto begin() const requires range { if constexpr (random_access_range && sized_range) return ranges::begin(_M_base); else return common_iterator, sentinel_t> (ranges::begin(_M_base)); } constexpr auto end() { if constexpr (random_access_range<_Vp> && sized_range<_Vp>) return ranges::begin(_M_base) + ranges::size(_M_base); else return common_iterator, sentinel_t<_Vp>> (ranges::end(_M_base)); } constexpr auto end() const requires range { if constexpr (random_access_range && sized_range) return ranges::begin(_M_base) + ranges::size(_M_base); else return common_iterator, sentinel_t> (ranges::end(_M_base)); } constexpr auto size() requires sized_range<_Vp> { return ranges::size(_M_base); } constexpr auto size() const requires sized_range { return ranges::size(_M_base); } }; template common_view(_Range&&) -> common_view>; namespace views { inline constexpr __adaptor::_RangeAdaptorClosure common = [] (_Range&& __r) { if constexpr (common_range<_Range> && requires { views::all(std::forward<_Range>(__r)); }) return views::all(std::forward<_Range>(__r)); else return common_view{std::forward<_Range>(__r)}; }; } // namespace views template requires bidirectional_range<_Vp> class reverse_view : public view_interface> { private: _Vp _M_base = _Vp(); static constexpr bool _S_needs_cached_begin = !common_range<_Vp> && !random_access_range<_Vp>; [[no_unique_address]] __detail::__maybe_present_t<_S_needs_cached_begin, __detail::_CachedPosition<_Vp>> _M_cached_begin; public: reverse_view() = default; constexpr explicit reverse_view(_Vp __r) : _M_base(std::move(__r)) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr reverse_iterator> begin() { if constexpr (_S_needs_cached_begin) if (_M_cached_begin._M_has_value()) return make_reverse_iterator(_M_cached_begin._M_get(_M_base)); auto __it = ranges::next(ranges::begin(_M_base), ranges::end(_M_base)); if constexpr (_S_needs_cached_begin) _M_cached_begin._M_set(_M_base, __it); return make_reverse_iterator(std::move(__it)); } constexpr auto begin() requires common_range<_Vp> { return make_reverse_iterator(ranges::end(_M_base)); } constexpr auto begin() const requires common_range { return make_reverse_iterator(ranges::end(_M_base)); } constexpr reverse_iterator> end() { return make_reverse_iterator(ranges::begin(_M_base)); } constexpr auto end() const requires common_range { return make_reverse_iterator(ranges::begin(_M_base)); } constexpr auto size() requires sized_range<_Vp> { return ranges::size(_M_base); } constexpr auto size() const requires sized_range { return ranges::size(_M_base); } }; template reverse_view(_Range&&) -> reverse_view>; namespace views { namespace __detail { template inline constexpr bool __is_reversible_subrange = false; template inline constexpr bool __is_reversible_subrange, reverse_iterator<_Iter>, _Kind>> = true; template inline constexpr bool __is_reverse_view = false; template inline constexpr bool __is_reverse_view> = true; } inline constexpr __adaptor::_RangeAdaptorClosure reverse = [] (_Range&& __r) { using _Tp = remove_cvref_t<_Range>; if constexpr (__detail::__is_reverse_view<_Tp>) return std::forward<_Range>(__r).base(); else if constexpr (__detail::__is_reversible_subrange<_Tp>) { using _Iter = decltype(ranges::begin(__r).base()); if constexpr (sized_range<_Tp>) return subrange<_Iter, _Iter, subrange_kind::sized> (__r.end().base(), __r.begin().base(), __r.size()); else return subrange<_Iter, _Iter, subrange_kind::unsized> (__r.end().base(), __r.begin().base()); } else return reverse_view{std::forward<_Range>(__r)}; }; } // namespace views namespace __detail { template concept __has_tuple_element = requires(_Tp __t) { typename tuple_size<_Tp>::type; requires _Nm < tuple_size_v<_Tp>; typename tuple_element_t<_Nm, _Tp>; { std::get<_Nm>(__t) } -> convertible_to&>; }; } template requires view<_Vp> && __detail::__has_tuple_element, _Nm> && __detail::__has_tuple_element>, _Nm> class elements_view : public view_interface> { public: elements_view() = default; constexpr explicit elements_view(_Vp base) : _M_base(std::move(base)) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr auto begin() requires (!__detail::__simple_view<_Vp>) { return _Iterator(ranges::begin(_M_base)); } constexpr auto begin() const requires range { return _Iterator(ranges::begin(_M_base)); } constexpr auto end() requires (!__detail::__simple_view<_Vp> && !common_range<_Vp>) { return _Sentinel{ranges::end(_M_base)}; } constexpr auto end() requires (!__detail::__simple_view<_Vp> && common_range<_Vp>) { return _Iterator{ranges::end(_M_base)}; } constexpr auto end() const requires range { return _Sentinel{ranges::end(_M_base)}; } constexpr auto end() const requires common_range { return _Iterator{ranges::end(_M_base)}; } constexpr auto size() requires sized_range<_Vp> { return ranges::size(_M_base); } constexpr auto size() const requires sized_range { return ranges::size(_M_base); } private: template struct _Sentinel; template struct _Iterator { using _Base = __detail::__maybe_const_t<_Const, _Vp>; iterator_t<_Base> _M_current = iterator_t<_Base>(); friend _Iterator; public: using iterator_category = typename iterator_traits>::iterator_category; using value_type = remove_cvref_t>>; using difference_type = range_difference_t<_Base>; _Iterator() = default; constexpr explicit _Iterator(iterator_t<_Base> current) : _M_current(std::move(current)) { } constexpr _Iterator(_Iterator i) requires _Const && convertible_to, iterator_t<_Base>> : _M_current(std::move(i._M_current)) { } constexpr iterator_t<_Base> base() const& requires copyable> { return _M_current; } constexpr iterator_t<_Base> base() && { return std::move(_M_current); } constexpr decltype(auto) operator*() const { return std::get<_Nm>(*_M_current); } constexpr _Iterator& operator++() { ++_M_current; return *this; } constexpr void operator++(int) requires (!forward_range<_Base>) { ++_M_current; } constexpr _Iterator operator++(int) requires forward_range<_Base> { auto __tmp = *this; ++_M_current; return __tmp; } constexpr _Iterator& operator--() requires bidirectional_range<_Base> { --_M_current; return *this; } constexpr _Iterator operator--(int) requires bidirectional_range<_Base> { auto __tmp = *this; --_M_current; return __tmp; } constexpr _Iterator& operator+=(difference_type __n) requires random_access_range<_Base> { _M_current += __n; return *this; } constexpr _Iterator& operator-=(difference_type __n) requires random_access_range<_Base> { _M_current -= __n; return *this; } constexpr decltype(auto) operator[](difference_type __n) const requires random_access_range<_Base> { return std::get<_Nm>(*(_M_current + __n)); } friend constexpr bool operator==(const _Iterator& __x, const _Iterator& __y) requires equality_comparable> { return __x._M_current == __y._M_current; } friend constexpr bool operator<(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> { return __x._M_current < __y._M_current; } friend constexpr bool operator>(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> { return __y._M_current < __x._M_current; } friend constexpr bool operator<=(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> { return !(__y._M_current > __x._M_current); } friend constexpr bool operator>=(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> { return !(__x._M_current > __y._M_current); } #ifdef __cpp_lib_three_way_comparison friend constexpr auto operator<=>(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> && three_way_comparable> { return __x._M_current <=> __y._M_current; } #endif friend constexpr _Iterator operator+(const _Iterator& __x, difference_type __y) requires random_access_range<_Base> { return _Iterator{__x} += __y; } friend constexpr _Iterator operator+(difference_type __x, const _Iterator& __y) requires random_access_range<_Base> { return __y + __x; } friend constexpr _Iterator operator-(const _Iterator& __x, difference_type __y) requires random_access_range<_Base> { return _Iterator{__x} -= __y; } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3483. transform_view::iterator's difference is overconstrained friend constexpr difference_type operator-(const _Iterator& __x, const _Iterator& __y) requires sized_sentinel_for, iterator_t<_Base>> { return __x._M_current - __y._M_current; } friend _Sentinel<_Const>; }; template struct _Sentinel { private: constexpr bool _M_equal(const _Iterator<_Const>& __x) const { return __x._M_current == _M_end; } using _Base = __detail::__maybe_const_t<_Const, _Vp>; sentinel_t<_Base> _M_end = sentinel_t<_Base>(); public: _Sentinel() = default; constexpr explicit _Sentinel(sentinel_t<_Base> __end) : _M_end(std::move(__end)) { } constexpr _Sentinel(_Sentinel __other) requires _Const && convertible_to, sentinel_t<_Base>> : _M_end(std::move(__other._M_end)) { } constexpr sentinel_t<_Base> base() const { return _M_end; } template requires sentinel_for, iterator_t<__detail::__maybe_const_t<_Const2, _Vp>>> friend constexpr bool operator==(const _Iterator<_Const2>& __x, const _Sentinel& __y) { return __y._M_equal(__x); } template> requires sized_sentinel_for, iterator_t<_Base2>> friend constexpr range_difference_t<_Base2> operator-(const _Iterator<_Const2>& __x, const _Sentinel& __y) { return __x._M_current - __y._M_end; } template> requires sized_sentinel_for, iterator_t<_Base2>> friend constexpr range_difference_t<_Base> operator-(const _Sentinel& __x, const _Iterator<_Const2>& __y) { return __x._M_end - __y._M_current; } friend _Sentinel; }; _Vp _M_base = _Vp(); }; template using keys_view = elements_view, 0>; template using values_view = elements_view, 1>; namespace views { template inline constexpr __adaptor::_RangeAdaptorClosure elements = [] (_Range&& __r) { using _El = elements_view, _Nm>; return _El{std::forward<_Range>(__r)}; }; inline constexpr __adaptor::_RangeAdaptorClosure keys = elements<0>; inline constexpr __adaptor::_RangeAdaptorClosure values = elements<1>; } // namespace views } // namespace ranges namespace views = ranges::views; template struct tuple_size> : integral_constant { }; template struct tuple_element<0, ranges::subrange<_Iter, _Sent, _Kind>> { using type = _Iter; }; template struct tuple_element<1, ranges::subrange<_Iter, _Sent, _Kind>> { using type = _Sent; }; template struct tuple_element<0, const ranges::subrange<_Iter, _Sent, _Kind>> { using type = _Iter; }; template struct tuple_element<1, const ranges::subrange<_Iter, _Sent, _Kind>> { using type = _Sent; }; _GLIBCXX_END_NAMESPACE_VERSION } // namespace #endif // library concepts #endif // C++2a #endif /* _GLIBCXX_RANGES */