// Smart pointer adaptors -*- C++ -*- // Copyright The GNU Toolchain Authors. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file include/bits/out_ptr.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{memory} */ #ifndef _GLIBCXX_OUT_PTR_H #define _GLIBCXX_OUT_PTR_H 1 #pragma GCC system_header #include #ifdef __glibcxx_out_ptr // C++ >= 23 #include #include namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION /// Smart pointer adaptor for functions taking an output pointer parameter. /** * @tparam _Smart The type of pointer to adapt. * @tparam _Pointer The type of pointer to convert to. * @tparam _Args... Argument types used when resetting the smart pointer. * @since C++23 * @headerfile */ template class out_ptr_t { #if _GLIBCXX_HOSTED static_assert(!__is_shared_ptr<_Smart> || sizeof...(_Args) != 0, "a deleter must be used when adapting std::shared_ptr " "with std::out_ptr"); #endif public: explicit out_ptr_t(_Smart& __smart, _Args... __args) : _M_impl{__smart, std::forward<_Args>(__args)...} { if constexpr (requires { _M_impl._M_out_init(); }) _M_impl._M_out_init(); } out_ptr_t(const out_ptr_t&) = delete; ~out_ptr_t() = default; operator _Pointer*() const noexcept { return _M_impl._M_get(); } operator void**() const noexcept requires (!same_as<_Pointer, void*>) { static_assert(is_pointer_v<_Pointer>); _Pointer* __p = *this; return static_cast(static_cast(__p)); } private: // TODO: Move this to namespace scope? e.g. __detail::_Ptr_adapt_impl template struct _Impl { // This constructor must not modify __s because out_ptr_t and // inout_ptr_t want to do different things. After construction // they call _M_out_init() or _M_inout_init() respectively. _Impl(_Smart& __s, _Args&&... __args) : _M_smart(__s), _M_args(std::forward<_Args>(__args)...) { } // Called by out_ptr_t to clear the smart pointer before using it. void _M_out_init() { // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3734. Inconsistency in inout_ptr and out_ptr for empty case if constexpr (requires { _M_smart.reset(); }) _M_smart.reset(); else _M_smart = _Smart(); } // Called by inout_ptr_t to copy the smart pointer's value // to the pointer that is returned from _M_get(). void _M_inout_init() { _M_ptr = _M_smart.release(); } // The pointer value returned by operator Pointer*(). _Pointer* _M_get() const { return __builtin_addressof(const_cast<_Pointer&>(_M_ptr)); } // Finalize the effects on the smart pointer. ~_Impl() noexcept(false); _Smart& _M_smart; [[no_unique_address]] _Pointer _M_ptr{}; [[no_unique_address]] tuple<_Args...> _M_args; }; // Partial specialization for raw pointers. template struct _Impl<_Tp*, _Tp*> { void _M_out_init() { _M_p = nullptr; } void _M_inout_init() { } _Tp** _M_get() const { return __builtin_addressof(const_cast<_Tp*&>(_M_p)); } _Tp*& _M_p; }; // Partial specialization for raw pointers, with conversion. template requires (!is_same_v<_Ptr, _Tp*>) struct _Impl<_Tp*, _Ptr> { explicit _Impl(_Tp*& __p) : _M_p(__p) { } void _M_out_init() { _M_p = nullptr; } void _M_inout_init() { _M_ptr = _M_p; } _Pointer* _M_get() const { return __builtin_addressof(const_cast<_Pointer&>(_M_ptr)); } ~_Impl() { _M_p = static_cast<_Tp*>(_M_ptr); } _Tp*& _M_p; _Pointer _M_ptr{}; }; // Partial specialization for std::unique_ptr. // This specialization gives direct access to the private member // of the unique_ptr, avoiding the overhead of storing a separate // pointer and then resetting the unique_ptr in the destructor. // FIXME: constrain to only match the primary template, // not program-defined specializations of unique_ptr. template struct _Impl, typename unique_ptr<_Tp, _Del>::pointer> { void _M_out_init() { _M_smart.reset(); } _Pointer* _M_get() const noexcept { return __builtin_addressof(_M_smart._M_t._M_ptr()); } _Smart& _M_smart; }; // Partial specialization for std::unique_ptr with replacement deleter. // FIXME: constrain to only match the primary template, // not program-defined specializations of unique_ptr. template struct _Impl, typename unique_ptr<_Tp, _Del>::pointer, _Del2> { void _M_out_init() { _M_smart.reset(); } _Pointer* _M_get() const noexcept { return __builtin_addressof(_M_smart._M_t._M_ptr()); } ~_Impl() { if (_M_smart.get()) _M_smart._M_t._M_deleter() = std::forward<_Del2>(_M_del); } _Smart& _M_smart; [[no_unique_address]] _Del2 _M_del; }; #if _GLIBCXX_HOSTED // Partial specialization for std::shared_ptr. // This specialization gives direct access to the private member // of the shared_ptr, avoiding the overhead of storing a separate // pointer and then resetting the shared_ptr in the destructor. // A new control block is allocated in the constructor, so that if // allocation fails it doesn't throw an exception from the destructor. template requires (is_base_of_v<__shared_ptr<_Tp>, shared_ptr<_Tp>>) struct _Impl, typename shared_ptr<_Tp>::element_type*, _Del, _Alloc> { _Impl(_Smart& __s, _Del __d, _Alloc __a = _Alloc()) : _M_smart(__s) { // We know shared_ptr cannot be used with inout_ptr_t // so we can do all set up here, instead of in _M_out_init(). _M_smart.reset(); // Similar to the shared_ptr(Y*, D, A) constructor, except that if // the allocation throws we do not need (or want) to call deleter. typename _Scd::__allocator_type __a2(__a); auto __mem = __a2.allocate(1); ::new (__mem) _Scd(nullptr, std::forward<_Del>(__d), std::forward<_Alloc>(__a)); _M_smart._M_refcount._M_pi = __mem; } _Pointer* _M_get() const noexcept { return __builtin_addressof(_M_smart._M_ptr); } ~_Impl() { auto& __pi = _M_smart._M_refcount._M_pi; if (_Sp __ptr = _M_smart.get()) static_cast<_Scd*>(__pi)->_M_impl._M_ptr = __ptr; else // Destroy the control block manually without invoking deleter. std::__exchange(__pi, nullptr)->_M_destroy(); } _Smart& _M_smart; using _Sp = typename _Smart::element_type*; using _Scd = _Sp_counted_deleter<_Sp, decay_t<_Del>, remove_cvref_t<_Alloc>, __default_lock_policy>; }; // Partial specialization for std::shared_ptr, without custom allocator. template requires (is_base_of_v<__shared_ptr<_Tp>, shared_ptr<_Tp>>) struct _Impl, typename shared_ptr<_Tp>::element_type*, _Del> : _Impl<_Smart, _Pointer, _Del, allocator> { using _Impl<_Smart, _Pointer, _Del, allocator>::_Impl; }; #endif using _Impl_t = _Impl<_Smart, _Pointer, _Args...>; _Impl_t _M_impl; template friend class inout_ptr_t; }; /// Smart pointer adaptor for functions taking an inout pointer parameter. /** * @tparam _Smart The type of pointer to adapt. * @tparam _Pointer The type of pointer to convert to. * @tparam _Args... Argument types used when resetting the smart pointer. * @since C++23 * @headerfile */ template class inout_ptr_t { #if _GLIBCXX_HOSTED static_assert(!__is_shared_ptr<_Smart>, "std::inout_ptr can not be used to wrap std::shared_ptr"); #endif public: explicit inout_ptr_t(_Smart& __smart, _Args... __args) : _M_impl{__smart, std::forward<_Args>(__args)...} { if constexpr (requires { _M_impl._M_inout_init(); }) _M_impl._M_inout_init(); } inout_ptr_t(const inout_ptr_t&) = delete; ~inout_ptr_t() = default; operator _Pointer*() const noexcept { return _M_impl._M_get(); } operator void**() const noexcept requires (!same_as<_Pointer, void*>) { static_assert(is_pointer_v<_Pointer>); _Pointer* __p = *this; return static_cast(static_cast(__p)); } private: #if _GLIBCXX_HOSTED // Avoid an invalid instantiation of out_ptr_t, ...> using _Out_ptr_t = __conditional_t<__is_shared_ptr<_Smart>, out_ptr_t, out_ptr_t<_Smart, _Pointer, _Args...>>; #else using _Out_ptr_t = out_ptr_t<_Smart, _Pointer, _Args...>; #endif using _Impl_t = typename _Out_ptr_t::_Impl_t; _Impl_t _M_impl; }; /// @cond undocumented namespace __detail { // POINTER_OF metafunction template consteval auto __pointer_of() { if constexpr (requires { typename _Tp::pointer; }) return type_identity{}; else if constexpr (requires { typename _Tp::element_type; }) return type_identity{}; else { using _Traits = pointer_traits<_Tp>; if constexpr (requires { typename _Traits::element_type; }) return type_identity{}; } // else POINTER_OF(S) is not a valid type, return void. } // POINTER_OF_OR metafunction template consteval auto __pointer_of_or() { using _TypeId = decltype(__detail::__pointer_of<_Smart>()); if constexpr (is_void_v<_TypeId>) return type_identity<_Ptr>{}; else return _TypeId{}; } // Returns Pointer if !is_void_v, otherwise POINTER_OF(Smart). template consteval auto __choose_ptr() { if constexpr (!is_void_v<_Ptr>) return type_identity<_Ptr>{}; else return __detail::__pointer_of<_Smart>(); } template concept __resettable = requires (_Smart& __s) { __s.reset(std::declval<_Sp>(), std::declval<_Args>()...); }; } /// @endcond /// Adapt a smart pointer for functions taking an output pointer parameter. /** * @tparam _Pointer The type of pointer to convert to. * @param __s The pointer that should take ownership of the result. * @param __args... Arguments to use when resetting the smart pointer. * @return A std::inout_ptr_t referring to `__s`. * @since C++23 * @headerfile */ template inline auto out_ptr(_Smart& __s, _Args&&... __args) { using _TypeId = decltype(__detail::__choose_ptr<_Pointer, _Smart>()); static_assert(!is_void_v<_TypeId>, "first argument to std::out_ptr " "must be a pointer-like type"); using _Ret = out_ptr_t<_Smart, typename _TypeId::type, _Args&&...>; return _Ret(__s, std::forward<_Args>(__args)...); } /// Adapt a smart pointer for functions taking an inout pointer parameter. /** * @tparam _Pointer The type of pointer to convert to. * @param __s The pointer that should take ownership of the result. * @param __args... Arguments to use when resetting the smart pointer. * @return A std::inout_ptr_t referring to `__s`. * @since C++23 * @headerfile */ template inline auto inout_ptr(_Smart& __s, _Args&&... __args) { using _TypeId = decltype(__detail::__choose_ptr<_Pointer, _Smart>()); static_assert(!is_void_v<_TypeId>, "first argument to std::inout_ptr " "must be a pointer-like type"); using _Ret = inout_ptr_t<_Smart, typename _TypeId::type, _Args&&...>; return _Ret(__s, std::forward<_Args>(__args)...); } /// @cond undocumented template template inline out_ptr_t<_Smart, _Pointer, _Args...>:: _Impl<_Smart2, _Pointer2, _Args2...>::~_Impl() { using _TypeId = decltype(__detail::__pointer_of_or<_Smart, _Pointer>()); using _Sp = typename _TypeId::type; if (!_M_ptr) return; _Smart& __s = _M_smart; _Pointer& __p = _M_ptr; auto __reset = [&](auto&&... __args) { if constexpr (__detail::__resettable<_Smart, _Sp, _Args...>) __s.reset(static_cast<_Sp>(__p), std::forward<_Args>(__args)...); else if constexpr (is_constructible_v<_Smart, _Sp, _Args...>) __s = _Smart(static_cast<_Sp>(__p), std::forward<_Args>(__args)...); else static_assert(is_constructible_v<_Smart, _Sp, _Args...>); }; if constexpr (sizeof...(_Args) >= 2) std::apply(__reset, std::move(_M_args)); else if constexpr (sizeof...(_Args) == 1) __reset(std::get<0>(std::move(_M_args))); else __reset(); } /// @endcond _GLIBCXX_END_NAMESPACE_VERSION } // namespace #endif // __glibcxx_out_ptr #endif /* _GLIBCXX_OUT_PTR_H */