<?xml version="1.0" encoding="UTF-8" standalone="no"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>Debugging Support</title><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><meta name="keywords" content="C++, debug" /><meta name="keywords" content="ISO C++, library" /><meta name="keywords" content="ISO C++, runtime, library" /><link rel="home" href="../index.html" title="The GNU C++ Library" /><link rel="up" href="using.html" title="Chapter 3. Using" /><link rel="prev" href="using_exceptions.html" title="Exceptions" /><link rel="next" href="std_contents.html" title="Part II. Standard Contents" /></head><body><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Debugging Support</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="using_exceptions.html">Prev</a> </td><th width="60%" align="center">Chapter 3. Using</th><td width="20%" align="right"> <a accesskey="n" href="std_contents.html">Next</a></td></tr></table><hr /></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="manual.intro.using.debug"></a>Debugging Support</h2></div></div></div><p> There are numerous things that can be done to improve the ease with which C++ binaries are debugged when using the GNU tool chain. Here are some of them. </p><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="debug.compiler"></a>Using <span class="command"><strong>g++</strong></span></h3></div></div></div><p> Compiler flags determine how debug information is transmitted between compilation and debug or analysis tools. </p><p> The default optimizations and debug flags for a libstdc++ build are <code class="code">-g -O2</code>. However, both debug and optimization flags can be varied to change debugging characteristics. For instance, turning off all optimization via the <code class="code">-g -O0 -fno-inline</code> flags will disable inlining and optimizations, and include debugging information, so that stepping through all functions, (including inlined constructors and destructors) is possible. In addition, <code class="code">-fno-eliminate-unused-debug-types</code> can be used when additional debug information, such as nested class info, is desired. </p><p> Or, the debug format that the compiler and debugger use to communicate information about source constructs can be changed via <code class="code">-gdwarf-2</code> or <code class="code">-gstabs</code> flags: some debugging formats permit more expressive type and scope information to be shown in GDB. Expressiveness can be enhanced by flags like <code class="code">-g3</code>. The default debug information for a particular platform can be identified via the value set by the PREFERRED_DEBUGGING_TYPE macro in the GCC sources. </p><p> Many other options are available: please see <a class="link" href="https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html#Debugging%20Options" target="_top">"Options for Debugging Your Program"</a> in Using the GNU Compiler Collection (GCC) for a complete list. </p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="debug.debug_mode"></a>Debug Mode</h3></div></div></div><p> The <a class="link" href="debug_mode.html" title="Chapter 17. Debug Mode">Debug Mode</a> has compile and run-time checks for many containers. </p><p> There are also lightweight assertions for checking function preconditions, such as checking for out-of-bounds indices when accessing a <code class="classname">std::vector</code>. These can be enabled without using the full Debug Mode, by using <code class="option">-D_GLIBCXX_ASSERTIONS</code> (see <a class="xref" href="using_macros.html" title="Macros">Macros</a>). </p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="debug.exceptions"></a>Tracking uncaught exceptions</h3></div></div></div><p> The <a class="link" href="termination.html#support.termination.verbose" title="Verbose Terminate Handler">verbose termination handler</a> gives information about uncaught exceptions which kill the program. </p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="debug.memory"></a>Memory Leak Hunting</h3></div></div></div><p> On many targets GCC supports AddressSanitizer, a fast memory error detector, which is enabled by the <code class="option">-fsanitize=address</code> option. </p><p> The <code class="classname">std::vector</code> implementation has additional instrumentation to work with AddressSanitizer, but this has to be enabled explicitly by using <code class="option">-D_GLIBCXX_SANITIZE_VECTOR</code> (see <a class="xref" href="using_macros.html" title="Macros">Macros</a>). </p><p> There are also various third party memory tracing and debug utilities that can be used to provide detailed memory allocation information about C++ code. An exhaustive list of tools is not going to be attempted, but includes <code class="code">mtrace</code>, <code class="code">valgrind</code>, <code class="code">mudflap</code> (no longer supported since GCC 4.9.0), ElectricFence, and the non-free commercial product <code class="code">purify</code>. In addition, <code class="code">libcwd</code>, jemalloc and TCMalloc have replacements for the global <code class="code">new</code> and <code class="code">delete</code> operators that can track memory allocation and deallocation and provide useful memory statistics. </p><p> For valgrind, there are some specific items to keep in mind. First of all, use a version of valgrind that will work with current GNU C++ tools: the first that can do this is valgrind 1.0.4, but later versions should work better. Second, using an unoptimized build might avoid confusing valgrind. </p><p> Third, it may be necessary to force deallocation in other libraries as well, namely the "C" library. On GNU/Linux, this can be accomplished with the appropriate use of the <code class="code">__cxa_atexit</code> or <code class="code">atexit</code> functions. </p><pre class="programlisting"> #include <cstdlib> extern "C" void __libc_freeres(void); void do_something() { } int main() { atexit(__libc_freeres); do_something(); return 0; } </pre><p>or, using <code class="code">__cxa_atexit</code>:</p><pre class="programlisting"> extern "C" void __libc_freeres(void); extern "C" int __cxa_atexit(void (*func) (void *), void *arg, void *d); void do_something() { } int main() { extern void* __dso_handle __attribute__ ((__weak__)); __cxa_atexit((void (*) (void *)) __libc_freeres, NULL, &__dso_handle ? __dso_handle : NULL); do_test(); return 0; } </pre><p> Suggested valgrind flags, given the suggestions above about setting up the runtime environment, library, and test file, might be: </p><pre class="programlisting"> valgrind -v --num-callers=20 --leak-check=yes --leak-resolution=high --show-reachable=yes a.out </pre><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="debug.memory.mtalloc"></a>Non-memory leaks in Pool and MT allocators</h4></div></div></div><p> There are different kinds of allocation schemes that can be used by <code class="code">std::allocator</code>. Prior to GCC 3.4.0 the default was to use a pooling allocator, <code class="classname">pool_allocator</code>, which is still available as the optional <code class="classname">__pool_alloc</code> extension. Another optional extension, <code class="classname">__mt_alloc</code>, is a high-performance pool allocator. </p><p> In a suspect executable these pooling allocators can give the mistaken impression that memory is being leaked, when in reality the memory "leak" is a pool being used by the library's allocator and is reclaimed after program termination. </p><p> If you're using memory debugging tools on a program that uses one of these pooling allocators, you can set the environment variable <code class="literal">GLIBCXX_FORCE_NEW</code> to keep extraneous pool allocation noise from cluttering debug information. For more details, see the <a class="link" href="mt_allocator.html" title="Chapter 19. The mt_allocator">mt allocator</a> documentation and look specifically for <code class="code">GLIBCXX_FORCE_NEW</code>. </p></div></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="debug.races"></a>Data Race Hunting</h3></div></div></div><p> All synchronization primitives used in the library internals need to be understood by race detectors so that they do not produce false reports. </p><p> Two annotation macros are used to explain low-level synchronization to race detectors: <code class="code">_GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE()</code> and <code class="code"> _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER()</code>. By default, these macros are defined empty -- anyone who wants to use a race detector needs to redefine them to call an appropriate API. Since these macros are empty by default when the library is built, redefining them will only affect inline functions and template instantiations which are compiled in user code. This allows annotation of templates such as <code class="code">shared_ptr</code>, but not code which is only instantiated in the library. Code which is only instantiated in the library needs to be recompiled with the annotation macros defined. That can be done by rebuilding the entire <code class="filename">libstdc++.so</code> file but a simpler alternative exists for ELF platforms such as GNU/Linux, because ELF symbol interposition allows symbols defined in the shared library to be overridden by symbols with the same name that appear earlier in the runtime search path. This means you only need to recompile the functions that are affected by the annotation macros, which can be done by recompiling individual files. Annotating <code class="code">std::string</code> and <code class="code">std::wstring</code> reference counting can be done by disabling extern templates (by defining <code class="code">_GLIBCXX_EXTERN_TEMPLATE=-1</code>) or by rebuilding the <code class="filename">src/string-inst.cc</code> file. Annotating the remaining atomic operations (at the time of writing these are in <code class="code">ios_base::Init::~Init</code>, <code class="code">locale::_Impl</code>, <code class="code">locale::facet</code> and <code class="code">thread::_M_start_thread</code>) requires rebuilding the relevant source files. </p><p> The approach described above is known to work with the following race detection tools: <a class="link" href="https://valgrind.org/docs/manual/drd-manual.html" target="_top"> DRD</a>, <a class="link" href="https://valgrind.org/docs/manual/hg-manual.html" target="_top"> Helgrind</a>, and <a class="link" href="https://github.com/google/sanitizers" target="_top"> ThreadSanitizer</a> (this refers to ThreadSanitizer v1, not the new "tsan" feature built-in to GCC itself). </p><p> With DRD, Helgrind and ThreadSanitizer you will need to define the macros like this: </p><pre class="programlisting"> #define _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(A) ANNOTATE_HAPPENS_BEFORE(A) #define _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(A) ANNOTATE_HAPPENS_AFTER(A) </pre><p> Refer to the documentation of each particular tool for details. </p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="debug.gdb"></a>Using <span class="command"><strong>gdb</strong></span></h3></div></div></div><p> </p><p> Many options are available for GDB itself: please see <a class="link" href="https://sourceware.org/gdb/current/onlinedocs/gdb" target="_top"> "GDB features for C++" </a> in the GDB documentation. Also recommended: the other parts of this manual. </p><p> These settings can either be switched on in at the GDB command line, or put into a <code class="filename">.gdbinit</code> file to establish default debugging characteristics, like so: </p><pre class="programlisting"> set print pretty on set print object on set print static-members on set print vtbl on set print demangle on set demangle-style gnu-v3 </pre><p> Starting with version 7.0, GDB includes support for writing pretty-printers in Python. Pretty printers for containers and other classes are distributed with GCC from version 4.5.0 and should be installed alongside the libstdc++ shared library files and found automatically by GDB. </p><p> Depending where libstdc++ is installed, GDB might refuse to auto-load the python printers and print a warning instead. If this happens the python printers can be enabled by following the instructions GDB gives for setting your <code class="code">auto-load safe-path</code> in your <code class="filename">.gdbinit</code> configuration file. </p><p> Once loaded, standard library classes that the printers support should print in a more human-readable format. To print the classes in the old style, use the <strong class="userinput"><code>/r</code></strong> (raw) switch in the print command (i.e., <strong class="userinput"><code>print /r foo</code></strong>). This will print the classes as if the Python pretty-printers were not loaded. </p><p> For additional information on STL support and GDB please visit: <a class="link" href="https://sourceware.org/gdb/wiki/STLSupport" target="_top"> "GDB Support for STL" </a> in the GDB wiki. Additionally, in-depth documentation and discussion of the pretty printing feature can be found in "Pretty Printing" node in the GDB manual. You can find on-line versions of the GDB user manual in GDB's homepage, at <a class="link" href="https://sourceware.org/gdb/" target="_top"> "GDB: The GNU Project Debugger" </a>. </p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="debug.req"></a>Debug Versions of Library Binary Files</h3></div></div></div><p> As described above, libstdc++ is built with debug symbols enabled by default, but because it's also built with optimizations the code can be hard to follow when stepping into the library in a debugger. </p><p> If you would like to debug <code class="filename">libstdc++.so</code> itself, there are two ways to build an unoptimized libstdc++ with debug flags. The first is to create a separate debug build by running make from the top-level of a tree freshly-configured with </p><pre class="programlisting"> --enable-libstdcxx-debug </pre><p>and perhaps</p><pre class="programlisting"> --enable-libstdcxx-debug-flags='...' </pre><p> Both the normal build and the debug build will persist, without having to specify <code class="code">CXXFLAGS</code>, and the debug library will be installed in a separate directory tree, in <code class="code">(prefix)/lib/debug</code>. For more information, look at the <a class="link" href="configure.html" title="Configure">configuration</a> section. </p><p> A second approach is to use the configuration flags </p><pre class="programlisting"> make CXXFLAGS='-g3 -fno-inline -O0' all </pre></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="debug.compile_time_checks"></a>Compile Time Checking</h3></div></div></div><p> The <a class="link" href="ext_compile_checks.html" title="Chapter 16. Compile Time Checks">Compile-Time Checks</a> extension has compile-time checks for many algorithms. These checks were designed for C++98 and have not been updated to work with C++11 and later standards. They might be removed at a future date. </p></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="using_exceptions.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="using.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="std_contents.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Exceptions </td><td width="20%" align="center"><a accesskey="h" href="../index.html">Home</a></td><td width="40%" align="right" valign="top"> Part II. Standard Contents </td></tr></table></div></body></html>