//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer (TSan), a race detector. // // Main internal TSan header file. // // Ground rules: // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static // function-scope locals) // - All functions/classes/etc reside in namespace __tsan, except for those // declared in tsan_interface.h. // - Platform-specific files should be used instead of ifdefs (*). // - No system headers included in header files (*). // - Platform specific headres included only into platform-specific files (*). // // (*) Except when inlining is critical for performance. //===----------------------------------------------------------------------===// #ifndef TSAN_RTL_H #define TSAN_RTL_H #include "sanitizer_common/sanitizer_allocator.h" #include "sanitizer_common/sanitizer_allocator_internal.h" #include "sanitizer_common/sanitizer_asm.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_deadlock_detector_interface.h" #include "sanitizer_common/sanitizer_libignore.h" #include "sanitizer_common/sanitizer_suppressions.h" #include "sanitizer_common/sanitizer_thread_registry.h" #include "sanitizer_common/sanitizer_vector.h" #include "tsan_defs.h" #include "tsan_flags.h" #include "tsan_ignoreset.h" #include "tsan_ilist.h" #include "tsan_mman.h" #include "tsan_mutexset.h" #include "tsan_platform.h" #include "tsan_report.h" #include "tsan_shadow.h" #include "tsan_stack_trace.h" #include "tsan_sync.h" #include "tsan_trace.h" #include "tsan_vector_clock.h" #if SANITIZER_WORDSIZE != 64 # error "ThreadSanitizer is supported only on 64-bit platforms" #endif namespace __tsan { #if !SANITIZER_GO struct MapUnmapCallback; #if defined(__mips64) || defined(__aarch64__) || defined(__loongarch__) || \ defined(__powerpc__) struct AP32 { static const uptr kSpaceBeg = 0; static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE; static const uptr kMetadataSize = 0; typedef __sanitizer::CompactSizeClassMap SizeClassMap; static const uptr kRegionSizeLog = 20; using AddressSpaceView = LocalAddressSpaceView; typedef __tsan::MapUnmapCallback MapUnmapCallback; static const uptr kFlags = 0; }; typedef SizeClassAllocator32 PrimaryAllocator; #else struct AP64 { // Allocator64 parameters. Deliberately using a short name. # if defined(__s390x__) typedef MappingS390x Mapping; # else typedef Mapping48AddressSpace Mapping; # endif static const uptr kSpaceBeg = Mapping::kHeapMemBeg; static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg; static const uptr kMetadataSize = 0; typedef DefaultSizeClassMap SizeClassMap; typedef __tsan::MapUnmapCallback MapUnmapCallback; static const uptr kFlags = 0; using AddressSpaceView = LocalAddressSpaceView; }; typedef SizeClassAllocator64 PrimaryAllocator; #endif typedef CombinedAllocator Allocator; typedef Allocator::AllocatorCache AllocatorCache; Allocator *allocator(); #endif struct ThreadSignalContext; struct JmpBuf { uptr sp; int int_signal_send; bool in_blocking_func; uptr in_signal_handler; uptr *shadow_stack_pos; }; // A Processor represents a physical thread, or a P for Go. // It is used to store internal resources like allocate cache, and does not // participate in race-detection logic (invisible to end user). // In C++ it is tied to an OS thread just like ThreadState, however ideally // it should be tied to a CPU (this way we will have fewer allocator caches). // In Go it is tied to a P, so there are significantly fewer Processor's than // ThreadState's (which are tied to Gs). // A ThreadState must be wired with a Processor to handle events. struct Processor { ThreadState *thr; // currently wired thread, or nullptr #if !SANITIZER_GO AllocatorCache alloc_cache; InternalAllocatorCache internal_alloc_cache; #endif DenseSlabAllocCache block_cache; DenseSlabAllocCache sync_cache; DDPhysicalThread *dd_pt; }; #if !SANITIZER_GO // ScopedGlobalProcessor temporary setups a global processor for the current // thread, if it does not have one. Intended for interceptors that can run // at the very thread end, when we already destroyed the thread processor. struct ScopedGlobalProcessor { ScopedGlobalProcessor(); ~ScopedGlobalProcessor(); }; #endif struct TidEpoch { Tid tid; Epoch epoch; }; struct TidSlot { Mutex mtx; Sid sid; atomic_uint32_t raw_epoch; ThreadState *thr; Vector journal; INode node; Epoch epoch() const { return static_cast(atomic_load(&raw_epoch, memory_order_relaxed)); } void SetEpoch(Epoch v) { atomic_store(&raw_epoch, static_cast(v), memory_order_relaxed); } TidSlot(); } ALIGNED(SANITIZER_CACHE_LINE_SIZE); // This struct is stored in TLS. struct ThreadState { FastState fast_state; int ignore_sync; #if !SANITIZER_GO int ignore_interceptors; #endif uptr *shadow_stack_pos; // Current position in tctx->trace.Back()->events (Event*). atomic_uintptr_t trace_pos; // PC of the last memory access, used to compute PC deltas in the trace. uptr trace_prev_pc; // Technically `current` should be a separate THREADLOCAL variable; // but it is placed here in order to share cache line with previous fields. ThreadState* current; atomic_sint32_t pending_signals; VectorClock clock; // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read. // We do not distinguish beteween ignoring reads and writes // for better performance. int ignore_reads_and_writes; int suppress_reports; // Go does not support ignores. #if !SANITIZER_GO IgnoreSet mop_ignore_set; IgnoreSet sync_ignore_set; #endif uptr *shadow_stack; uptr *shadow_stack_end; #if !SANITIZER_GO Vector jmp_bufs; int in_symbolizer; atomic_uintptr_t in_blocking_func; bool in_ignored_lib; bool is_inited; #endif MutexSet mset; bool is_dead; const Tid tid; uptr stk_addr; uptr stk_size; uptr tls_addr; uptr tls_size; ThreadContext *tctx; DDLogicalThread *dd_lt; TidSlot *slot; uptr slot_epoch; bool slot_locked; // Current wired Processor, or nullptr. Required to handle any events. Processor *proc1; #if !SANITIZER_GO Processor *proc() { return proc1; } #else Processor *proc(); #endif atomic_uintptr_t in_signal_handler; atomic_uintptr_t signal_ctx; #if !SANITIZER_GO StackID last_sleep_stack_id; VectorClock last_sleep_clock; #endif // Set in regions of runtime that must be signal-safe and fork-safe. // If set, malloc must not be called. int nomalloc; const ReportDesc *current_report; explicit ThreadState(Tid tid); } ALIGNED(SANITIZER_CACHE_LINE_SIZE); #if !SANITIZER_GO #if SANITIZER_APPLE || SANITIZER_ANDROID ThreadState *cur_thread(); void set_cur_thread(ThreadState *thr); void cur_thread_finalize(); inline ThreadState *cur_thread_init() { return cur_thread(); } # else __attribute__((tls_model("initial-exec"))) extern THREADLOCAL char cur_thread_placeholder[]; inline ThreadState *cur_thread() { return reinterpret_cast(cur_thread_placeholder)->current; } inline ThreadState *cur_thread_init() { ThreadState *thr = reinterpret_cast(cur_thread_placeholder); if (UNLIKELY(!thr->current)) thr->current = thr; return thr->current; } inline void set_cur_thread(ThreadState *thr) { reinterpret_cast(cur_thread_placeholder)->current = thr; } inline void cur_thread_finalize() { } # endif // SANITIZER_APPLE || SANITIZER_ANDROID #endif // SANITIZER_GO class ThreadContext final : public ThreadContextBase { public: explicit ThreadContext(Tid tid); ~ThreadContext(); ThreadState *thr; StackID creation_stack_id; VectorClock *sync; uptr sync_epoch; Trace trace; // Override superclass callbacks. void OnDead() override; void OnJoined(void *arg) override; void OnFinished() override; void OnStarted(void *arg) override; void OnCreated(void *arg) override; void OnReset() override; void OnDetached(void *arg) override; }; struct RacyStacks { MD5Hash hash[2]; bool operator==(const RacyStacks &other) const; }; struct RacyAddress { uptr addr_min; uptr addr_max; }; struct FiredSuppression { ReportType type; uptr pc_or_addr; Suppression *supp; }; struct Context { Context(); bool initialized; #if !SANITIZER_GO bool after_multithreaded_fork; #endif MetaMap metamap; Mutex report_mtx; int nreported; atomic_uint64_t last_symbolize_time_ns; void *background_thread; atomic_uint32_t stop_background_thread; ThreadRegistry thread_registry; // This is used to prevent a very unlikely but very pathological behavior. // Since memory access handling is not synchronized with DoReset, // a thread running concurrently with DoReset can leave a bogus shadow value // that will be later falsely detected as a race. For such false races // RestoreStack will return false and we will not report it. // However, consider that a thread leaves a whole lot of such bogus values // and these values are later read by a whole lot of threads. // This will cause massive amounts of ReportRace calls and lots of // serialization. In very pathological cases the resulting slowdown // can be >100x. This is very unlikely, but it was presumably observed // in practice: https://github.com/google/sanitizers/issues/1552 // If this happens, previous access sid+epoch will be the same for all of // these false races b/c if the thread will try to increment epoch, it will // notice that DoReset has happened and will stop producing bogus shadow // values. So, last_spurious_race is used to remember the last sid+epoch // for which RestoreStack returned false. Then it is used to filter out // races with the same sid+epoch very early and quickly. // It is of course possible that multiple threads left multiple bogus shadow // values and all of them are read by lots of threads at the same time. // In such case last_spurious_race will only be able to deduplicate a few // races from one thread, then few from another and so on. An alternative // would be to hold an array of such sid+epoch, but we consider such scenario // as even less likely. // Note: this can lead to some rare false negatives as well: // 1. When a legit access with the same sid+epoch participates in a race // as the "previous" memory access, it will be wrongly filtered out. // 2. When RestoreStack returns false for a legit memory access because it // was already evicted from the thread trace, we will still remember it in // last_spurious_race. Then if there is another racing memory access from // the same thread that happened in the same epoch, but was stored in the // next thread trace part (which is still preserved in the thread trace), // we will also wrongly filter it out while RestoreStack would actually // succeed for that second memory access. RawShadow last_spurious_race; Mutex racy_mtx; Vector racy_stacks; // Number of fired suppressions may be large enough. Mutex fired_suppressions_mtx; InternalMmapVector fired_suppressions; DDetector *dd; Flags flags; fd_t memprof_fd; // The last slot index (kFreeSid) is used to denote freed memory. TidSlot slots[kThreadSlotCount - 1]; // Protects global_epoch, slot_queue, trace_part_recycle. Mutex slot_mtx; uptr global_epoch; // guarded by slot_mtx and by all slot mutexes bool resetting; // global reset is in progress IList slot_queue SANITIZER_GUARDED_BY(slot_mtx); IList trace_part_recycle SANITIZER_GUARDED_BY(slot_mtx); uptr trace_part_total_allocated SANITIZER_GUARDED_BY(slot_mtx); uptr trace_part_recycle_finished SANITIZER_GUARDED_BY(slot_mtx); uptr trace_part_finished_excess SANITIZER_GUARDED_BY(slot_mtx); #if SANITIZER_GO uptr mapped_shadow_begin; uptr mapped_shadow_end; #endif }; extern Context *ctx; // The one and the only global runtime context. ALWAYS_INLINE Flags *flags() { return &ctx->flags; } struct ScopedIgnoreInterceptors { ScopedIgnoreInterceptors() { #if !SANITIZER_GO cur_thread()->ignore_interceptors++; #endif } ~ScopedIgnoreInterceptors() { #if !SANITIZER_GO cur_thread()->ignore_interceptors--; #endif } }; const char *GetObjectTypeFromTag(uptr tag); const char *GetReportHeaderFromTag(uptr tag); uptr TagFromShadowStackFrame(uptr pc); class ScopedReportBase { public: void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, Tid tid, StackTrace stack, const MutexSet *mset); void AddStack(StackTrace stack, bool suppressable = false); void AddThread(const ThreadContext *tctx, bool suppressable = false); void AddThread(Tid tid, bool suppressable = false); void AddUniqueTid(Tid unique_tid); int AddMutex(uptr addr, StackID creation_stack_id); void AddLocation(uptr addr, uptr size); void AddSleep(StackID stack_id); void SetCount(int count); void SetSigNum(int sig); const ReportDesc *GetReport() const; protected: ScopedReportBase(ReportType typ, uptr tag); ~ScopedReportBase(); private: ReportDesc *rep_; // Symbolizer makes lots of intercepted calls. If we try to process them, // at best it will cause deadlocks on internal mutexes. ScopedIgnoreInterceptors ignore_interceptors_; ScopedReportBase(const ScopedReportBase &) = delete; void operator=(const ScopedReportBase &) = delete; }; class ScopedReport : public ScopedReportBase { public: explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone); ~ScopedReport(); private: ScopedErrorReportLock lock_; }; bool ShouldReport(ThreadState *thr, ReportType typ); ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack); // The stack could look like: // |
| | tag | // This will extract the tag and keep: // |
| | template void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) { if (stack->size < 2) return; uptr possible_tag_pc = stack->trace[stack->size - 2]; uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc); if (possible_tag == kExternalTagNone) return; stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1]; stack->size -= 1; if (tag) *tag = possible_tag; } template void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack, uptr *tag = nullptr) { uptr size = thr->shadow_stack_pos - thr->shadow_stack; uptr start = 0; if (size + !!toppc > kStackTraceMax) { start = size + !!toppc - kStackTraceMax; size = kStackTraceMax - !!toppc; } stack->Init(&thr->shadow_stack[start], size, toppc); ExtractTagFromStack(stack, tag); } #define GET_STACK_TRACE_FATAL(thr, pc) \ VarSizeStackTrace stack; \ ObtainCurrentStack(thr, pc, &stack); \ stack.ReverseOrder(); void MapShadow(uptr addr, uptr size); void MapThreadTrace(uptr addr, uptr size, const char *name); void DontNeedShadowFor(uptr addr, uptr size); void UnmapShadow(ThreadState *thr, uptr addr, uptr size); void InitializeShadowMemory(); void DontDumpShadow(uptr addr, uptr size); void InitializeInterceptors(); void InitializeLibIgnore(); void InitializeDynamicAnnotations(); void ForkBefore(ThreadState *thr, uptr pc); void ForkParentAfter(ThreadState *thr, uptr pc); void ForkChildAfter(ThreadState *thr, uptr pc, bool start_thread); void ReportRace(ThreadState *thr, RawShadow *shadow_mem, Shadow cur, Shadow old, AccessType typ); bool OutputReport(ThreadState *thr, const ScopedReport &srep); bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace); bool IsExpectedReport(uptr addr, uptr size); #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1 # define DPrintf Printf #else # define DPrintf(...) #endif #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2 # define DPrintf2 Printf #else # define DPrintf2(...) #endif StackID CurrentStackId(ThreadState *thr, uptr pc); ReportStack *SymbolizeStackId(StackID stack_id); void PrintCurrentStack(ThreadState *thr, uptr pc); void PrintCurrentStackSlow(uptr pc); // uses libunwind MBlock *JavaHeapBlock(uptr addr, uptr *start); void Initialize(ThreadState *thr); void MaybeSpawnBackgroundThread(); int Finalize(ThreadState *thr); void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write); void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write); void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size, AccessType typ); void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size, AccessType typ); // This creates 2 non-inlined specialized versions of MemoryAccessRange. template void MemoryAccessRangeT(ThreadState *thr, uptr pc, uptr addr, uptr size); ALWAYS_INLINE void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size, bool is_write) { if (size == 0) return; if (is_write) MemoryAccessRangeT(thr, pc, addr, size); else MemoryAccessRangeT(thr, pc, addr, size); } void ShadowSet(RawShadow *p, RawShadow *end, RawShadow v); void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size); void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size); void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size); void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size); void ThreadIgnoreBegin(ThreadState *thr, uptr pc); void ThreadIgnoreEnd(ThreadState *thr); void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc); void ThreadIgnoreSyncEnd(ThreadState *thr); Tid ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached); void ThreadStart(ThreadState *thr, Tid tid, tid_t os_id, ThreadType thread_type); void ThreadFinish(ThreadState *thr); Tid ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid); void ThreadJoin(ThreadState *thr, uptr pc, Tid tid); void ThreadDetach(ThreadState *thr, uptr pc, Tid tid); void ThreadFinalize(ThreadState *thr); void ThreadSetName(ThreadState *thr, const char *name); int ThreadCount(ThreadState *thr); void ProcessPendingSignalsImpl(ThreadState *thr); void ThreadNotJoined(ThreadState *thr, uptr pc, Tid tid, uptr uid); Processor *ProcCreate(); void ProcDestroy(Processor *proc); void ProcWire(Processor *proc, ThreadState *thr); void ProcUnwire(Processor *proc, ThreadState *thr); // Note: the parameter is called flagz, because flags is already taken // by the global function that returns flags. void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0, int rec = 1); int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr); void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr); void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr); void Acquire(ThreadState *thr, uptr pc, uptr addr); // AcquireGlobal synchronizes the current thread with all other threads. // In terms of happens-before relation, it draws a HB edge from all threads // (where they happen to execute right now) to the current thread. We use it to // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal // right before executing finalizers. This provides a coarse, but simple // approximation of the actual required synchronization. void AcquireGlobal(ThreadState *thr); void Release(ThreadState *thr, uptr pc, uptr addr); void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr); void ReleaseStore(ThreadState *thr, uptr pc, uptr addr); void AfterSleep(ThreadState *thr, uptr pc); void IncrementEpoch(ThreadState *thr); #if !SANITIZER_GO uptr ALWAYS_INLINE HeapEnd() { return HeapMemEnd() + PrimaryAllocator::AdditionalSize(); } #endif void SlotAttachAndLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx); void SlotDetach(ThreadState *thr); void SlotLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx); void SlotUnlock(ThreadState *thr) SANITIZER_RELEASE(thr->slot->mtx); void DoReset(ThreadState *thr, uptr epoch); void FlushShadowMemory(); ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags); void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber); void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags); // These need to match __tsan_switch_to_fiber_* flags defined in // tsan_interface.h. See documentation there as well. enum FiberSwitchFlags { FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync }; class SlotLocker { public: ALWAYS_INLINE SlotLocker(ThreadState *thr, bool recursive = false) : thr_(thr), locked_(recursive ? thr->slot_locked : false) { #if !SANITIZER_GO // We are in trouble if we are here with in_blocking_func set. // If in_blocking_func is set, all signals will be delivered synchronously, // which means we can't lock slots since the signal handler will try // to lock it recursively and deadlock. DCHECK(!atomic_load(&thr->in_blocking_func, memory_order_relaxed)); #endif if (!locked_) SlotLock(thr_); } ALWAYS_INLINE ~SlotLocker() { if (!locked_) SlotUnlock(thr_); } private: ThreadState *thr_; bool locked_; }; class SlotUnlocker { public: SlotUnlocker(ThreadState *thr) : thr_(thr), locked_(thr->slot_locked) { if (locked_) SlotUnlock(thr_); } ~SlotUnlocker() { if (locked_) SlotLock(thr_); } private: ThreadState *thr_; bool locked_; }; ALWAYS_INLINE void ProcessPendingSignals(ThreadState *thr) { if (UNLIKELY(atomic_load_relaxed(&thr->pending_signals))) ProcessPendingSignalsImpl(thr); } extern bool is_initialized; ALWAYS_INLINE void LazyInitialize(ThreadState *thr) { // If we can use .preinit_array, assume that __tsan_init // called from .preinit_array initializes runtime before // any instrumented code except when tsan is used as a // shared library. #if (!SANITIZER_CAN_USE_PREINIT_ARRAY || defined(SANITIZER_SHARED)) if (UNLIKELY(!is_initialized)) Initialize(thr); #endif } void TraceResetForTesting(); void TraceSwitchPart(ThreadState *thr); void TraceSwitchPartImpl(ThreadState *thr); bool RestoreStack(EventType type, Sid sid, Epoch epoch, uptr addr, uptr size, AccessType typ, Tid *ptid, VarSizeStackTrace *pstk, MutexSet *pmset, uptr *ptag); template ALWAYS_INLINE WARN_UNUSED_RESULT bool TraceAcquire(ThreadState *thr, EventT **ev) { // TraceSwitchPart accesses shadow_stack, but it's called infrequently, // so we check it here proactively. DCHECK(thr->shadow_stack); Event *pos = reinterpret_cast(atomic_load_relaxed(&thr->trace_pos)); #if SANITIZER_DEBUG // TraceSwitch acquires these mutexes, // so we lock them here to detect deadlocks more reliably. { Lock lock(&ctx->slot_mtx); } { Lock lock(&thr->tctx->trace.mtx); } TracePart *current = thr->tctx->trace.parts.Back(); if (current) { DCHECK_GE(pos, ¤t->events[0]); DCHECK_LE(pos, ¤t->events[TracePart::kSize]); } else { DCHECK_EQ(pos, nullptr); } #endif // TracePart is allocated with mmap and is at least 4K aligned. // So the following check is a faster way to check for part end. // It may have false positives in the middle of the trace, // they are filtered out in TraceSwitch. if (UNLIKELY(((uptr)(pos + 1) & TracePart::kAlignment) == 0)) return false; *ev = reinterpret_cast(pos); return true; } template ALWAYS_INLINE void TraceRelease(ThreadState *thr, EventT *evp) { DCHECK_LE(evp + 1, &thr->tctx->trace.parts.Back()->events[TracePart::kSize]); atomic_store_relaxed(&thr->trace_pos, (uptr)(evp + 1)); } template void TraceEvent(ThreadState *thr, EventT ev) { EventT *evp; if (!TraceAcquire(thr, &evp)) { TraceSwitchPart(thr); UNUSED bool res = TraceAcquire(thr, &evp); DCHECK(res); } *evp = ev; TraceRelease(thr, evp); } ALWAYS_INLINE WARN_UNUSED_RESULT bool TryTraceFunc(ThreadState *thr, uptr pc = 0) { if (!kCollectHistory) return true; EventFunc *ev; if (UNLIKELY(!TraceAcquire(thr, &ev))) return false; ev->is_access = 0; ev->is_func = 1; ev->pc = pc; TraceRelease(thr, ev); return true; } WARN_UNUSED_RESULT bool TryTraceMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size, AccessType typ); WARN_UNUSED_RESULT bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size, AccessType typ); void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size, AccessType typ); void TraceFunc(ThreadState *thr, uptr pc = 0); void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr, StackID stk); void TraceMutexUnlock(ThreadState *thr, uptr addr); void TraceTime(ThreadState *thr); void TraceRestartFuncExit(ThreadState *thr); void TraceRestartFuncEntry(ThreadState *thr, uptr pc); void GrowShadowStack(ThreadState *thr); ALWAYS_INLINE void FuncEntry(ThreadState *thr, uptr pc) { DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.sid(), (void *)pc); if (UNLIKELY(!TryTraceFunc(thr, pc))) return TraceRestartFuncEntry(thr, pc); DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack); #if !SANITIZER_GO DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); #else if (thr->shadow_stack_pos == thr->shadow_stack_end) GrowShadowStack(thr); #endif thr->shadow_stack_pos[0] = pc; thr->shadow_stack_pos++; } ALWAYS_INLINE void FuncExit(ThreadState *thr) { DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.sid()); if (UNLIKELY(!TryTraceFunc(thr, 0))) return TraceRestartFuncExit(thr); DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack); #if !SANITIZER_GO DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); #endif thr->shadow_stack_pos--; } #if !SANITIZER_GO extern void (*on_initialize)(void); extern int (*on_finalize)(int); #endif } // namespace __tsan #endif // TSAN_RTL_H