//===-- asan_allocator.h ----------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // // ASan-private header for asan_allocator.cpp. //===----------------------------------------------------------------------===// #ifndef ASAN_ALLOCATOR_H #define ASAN_ALLOCATOR_H #include "asan_flags.h" #include "asan_interceptors.h" #include "asan_internal.h" #include "sanitizer_common/sanitizer_allocator.h" #include "sanitizer_common/sanitizer_list.h" #include "sanitizer_common/sanitizer_platform.h" namespace __asan { enum AllocType { FROM_MALLOC = 1, // Memory block came from malloc, calloc, realloc, etc. FROM_NEW = 2, // Memory block came from operator new. FROM_NEW_BR = 3 // Memory block came from operator new [ ] }; class AsanChunk; struct AllocatorOptions { u32 quarantine_size_mb; u32 thread_local_quarantine_size_kb; u16 min_redzone; u16 max_redzone; u8 may_return_null; u8 alloc_dealloc_mismatch; s32 release_to_os_interval_ms; void SetFrom(const Flags *f, const CommonFlags *cf); void CopyTo(Flags *f, CommonFlags *cf); }; void InitializeAllocator(const AllocatorOptions &options); void ReInitializeAllocator(const AllocatorOptions &options); void GetAllocatorOptions(AllocatorOptions *options); class AsanChunkView { public: explicit AsanChunkView(AsanChunk *chunk) : chunk_(chunk) {} bool IsValid() const; // Checks if AsanChunkView points to a valid // allocated or quarantined chunk. bool IsAllocated() const; // Checks if the memory is currently allocated. bool IsQuarantined() const; // Checks if the memory is currently quarantined. uptr Beg() const; // First byte of user memory. uptr End() const; // Last byte of user memory. uptr UsedSize() const; // Size requested by the user. u32 UserRequestedAlignment() const; // Originally requested alignment. uptr AllocTid() const; uptr FreeTid() const; bool Eq(const AsanChunkView &c) const { return chunk_ == c.chunk_; } u32 GetAllocStackId() const; u32 GetFreeStackId() const; AllocType GetAllocType() const; bool AddrIsInside(uptr addr, uptr access_size, sptr *offset) const { if (addr >= Beg() && (addr + access_size) <= End()) { *offset = addr - Beg(); return true; } return false; } bool AddrIsAtLeft(uptr addr, uptr access_size, sptr *offset) const { (void)access_size; if (addr < Beg()) { *offset = Beg() - addr; return true; } return false; } bool AddrIsAtRight(uptr addr, uptr access_size, sptr *offset) const { if (addr + access_size > End()) { *offset = addr - End(); return true; } return false; } private: AsanChunk *const chunk_; }; AsanChunkView FindHeapChunkByAddress(uptr address); AsanChunkView FindHeapChunkByAllocBeg(uptr address); // List of AsanChunks with total size. class AsanChunkFifoList: public IntrusiveList { public: explicit AsanChunkFifoList(LinkerInitialized) { } AsanChunkFifoList() { clear(); } void Push(AsanChunk *n); void PushList(AsanChunkFifoList *q); AsanChunk *Pop(); uptr size() { return size_; } void clear() { IntrusiveList::clear(); size_ = 0; } private: uptr size_; }; struct AsanMapUnmapCallback { void OnMap(uptr p, uptr size) const; void OnMapSecondary(uptr p, uptr size, uptr user_begin, uptr user_size) const; void OnUnmap(uptr p, uptr size) const; }; #if SANITIZER_CAN_USE_ALLOCATOR64 # if SANITIZER_FUCHSIA // This is a sentinel indicating we do not want the primary allocator arena to // be placed at a fixed address. It will be anonymously mmap'd. const uptr kAllocatorSpace = ~(uptr)0; # if SANITIZER_RISCV64 // These are sanitizer tunings that allow all bringup tests for RISCV-64 Sv39 + // Fuchsia to run with asan-instrumented. That is, we can run bringup, e2e, // libc, and scudo tests with this configuration. // // TODO: This is specifically tuned for Sv39. 48/57 will likely require other // tunings, or possibly use the same tunings Fuchsia uses for other archs. The // VMA size isn't technically tied to the Fuchsia System ABI, so once 48/57 is // supported, we'd need a way of dynamically checking what the VMA size is and // determining optimal configuration. // This indicates the total amount of space dedicated for the primary allocator // during initialization. This is roughly proportional to the size set by the // FuchsiaConfig for scudo (~11.25GB == ~2^33.49). Requesting any more could // lead to some failures in sanitized bringup tests where we can't allocate new // vmars because there wouldn't be enough contiguous space. We could try 2^34 if // we re-evaluate the SizeClassMap settings. const uptr kAllocatorSize = UINT64_C(1) << 33; // 8GB // This is roughly equivalent to the configuration for the VeryDenseSizeClassMap // but has fewer size classes (ideally at most 32). Fewer class sizes means the // region size for each class is larger, thus less chances of running out of // space for each region. The main differences are the MidSizeLog (which is // smaller) and the MaxSizeLog (which is larger). // // - The MaxSizeLog is higher to allow some of the largest allocations I've // observed to be placed in the primary allocator's arena as opposed to being // mmap'd by the secondary allocator. This helps reduce fragmentation from // large classes. A huge example of this the scudo allocator tests (and its // testing infrastructure) which malloc's/new's objects on the order of // hundreds of kilobytes which normally would not be in the primary allocator // arena with the default VeryDenseSizeClassMap. // - The MidSizeLog is reduced to help shrink the number of size classes and // increase region size. Without this, we'd see ASan complain many times about // a region running out of available space. // // This differs a bit from the fuchsia config in scudo, mainly from the NumBits, // MaxSizeLog, and NumCachedHintT. This should place the number of size classes // for scudo at 45 and some large objects allocated by this config would be // placed in the arena whereas scudo would mmap them. The asan allocator needs // to have a number of classes that are a power of 2 for various internal things // to work, so we can't match the scudo settings to a tee. The sanitizer // allocator is slightly slower than scudo's but this is enough to get // memory-intensive scudo tests to run with asan instrumentation. typedef SizeClassMap SizeClassMap; static_assert(SizeClassMap::kNumClassesRounded <= 32, "The above tunings were specifically selected to ensure there " "would be at most 32 size classes. This restriction could be " "loosened to 64 size classes if we can find a configuration of " "allocator size and SizeClassMap tunings that allows us to " "reliably run all bringup tests in a sanitized environment."); # else // These are the default allocator tunings for non-RISCV environments where the // VMA is usually 48 bits and we have lots of space. const uptr kAllocatorSize = 0x40000000000ULL; // 4T. typedef DefaultSizeClassMap SizeClassMap; # endif # elif defined(__powerpc64__) const uptr kAllocatorSpace = ~(uptr)0; const uptr kAllocatorSize = 0x20000000000ULL; // 2T. typedef DefaultSizeClassMap SizeClassMap; # elif defined(__aarch64__) && SANITIZER_ANDROID // Android needs to support 39, 42 and 48 bit VMA. const uptr kAllocatorSpace = ~(uptr)0; const uptr kAllocatorSize = 0x2000000000ULL; // 128G. typedef VeryCompactSizeClassMap SizeClassMap; # elif SANITIZER_RISCV64 const uptr kAllocatorSpace = ~(uptr)0; const uptr kAllocatorSize = 0x2000000000ULL; // 128G. typedef VeryDenseSizeClassMap SizeClassMap; # elif defined(__sparc__) const uptr kAllocatorSpace = ~(uptr)0; const uptr kAllocatorSize = 0x20000000000ULL; // 2T. typedef DefaultSizeClassMap SizeClassMap; # elif SANITIZER_WINDOWS const uptr kAllocatorSpace = ~(uptr)0; const uptr kAllocatorSize = 0x8000000000ULL; // 500G typedef DefaultSizeClassMap SizeClassMap; # elif SANITIZER_APPLE const uptr kAllocatorSpace = 0x600000000000ULL; const uptr kAllocatorSize = 0x40000000000ULL; // 4T. typedef DefaultSizeClassMap SizeClassMap; # else const uptr kAllocatorSpace = 0x500000000000ULL; const uptr kAllocatorSize = 0x40000000000ULL; // 4T. typedef DefaultSizeClassMap SizeClassMap; # endif template struct AP64 { // Allocator64 parameters. Deliberately using a short name. static const uptr kSpaceBeg = kAllocatorSpace; static const uptr kSpaceSize = kAllocatorSize; static const uptr kMetadataSize = 0; typedef __asan::SizeClassMap SizeClassMap; typedef AsanMapUnmapCallback MapUnmapCallback; static const uptr kFlags = 0; using AddressSpaceView = AddressSpaceViewTy; }; template using PrimaryAllocatorASVT = SizeClassAllocator64>; using PrimaryAllocator = PrimaryAllocatorASVT; #else // Fallback to SizeClassAllocator32. typedef CompactSizeClassMap SizeClassMap; template struct AP32 { static const uptr kSpaceBeg = 0; static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE; static const uptr kMetadataSize = 0; typedef __asan::SizeClassMap SizeClassMap; static const uptr kRegionSizeLog = 20; using AddressSpaceView = AddressSpaceViewTy; typedef AsanMapUnmapCallback MapUnmapCallback; static const uptr kFlags = 0; }; template using PrimaryAllocatorASVT = SizeClassAllocator32 >; using PrimaryAllocator = PrimaryAllocatorASVT; #endif // SANITIZER_CAN_USE_ALLOCATOR64 static const uptr kNumberOfSizeClasses = SizeClassMap::kNumClasses; template using AsanAllocatorASVT = CombinedAllocator>; using AsanAllocator = AsanAllocatorASVT; using AllocatorCache = AsanAllocator::AllocatorCache; struct AsanThreadLocalMallocStorage { uptr quarantine_cache[16]; AllocatorCache allocator_cache; void CommitBack(); private: // These objects are allocated via mmap() and are zero-initialized. AsanThreadLocalMallocStorage() {} }; void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, AllocType alloc_type); void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type); void asan_delete(void *ptr, uptr size, uptr alignment, BufferedStackTrace *stack, AllocType alloc_type); void *asan_malloc(uptr size, BufferedStackTrace *stack); void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack); void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack); void *asan_reallocarray(void *p, uptr nmemb, uptr size, BufferedStackTrace *stack); void *asan_valloc(uptr size, BufferedStackTrace *stack); void *asan_pvalloc(uptr size, BufferedStackTrace *stack); void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack); int asan_posix_memalign(void **memptr, uptr alignment, uptr size, BufferedStackTrace *stack); uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp); uptr asan_mz_size(const void *ptr); void asan_mz_force_lock(); void asan_mz_force_unlock(); void PrintInternalAllocatorStats(); void AsanSoftRssLimitExceededCallback(bool exceeded); } // namespace __asan #endif // ASAN_ALLOCATOR_H