//===-- asan_allocator.cpp ------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // // Implementation of ASan's memory allocator, 2-nd version. // This variant uses the allocator from sanitizer_common, i.e. the one shared // with ThreadSanitizer and MemorySanitizer. // //===----------------------------------------------------------------------===// #include "asan_allocator.h" #include "asan_mapping.h" #include "asan_poisoning.h" #include "asan_report.h" #include "asan_stack.h" #include "asan_thread.h" #include "sanitizer_common/sanitizer_allocator_checks.h" #include "sanitizer_common/sanitizer_allocator_interface.h" #include "sanitizer_common/sanitizer_errno.h" #include "sanitizer_common/sanitizer_flags.h" #include "sanitizer_common/sanitizer_internal_defs.h" #include "sanitizer_common/sanitizer_list.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_quarantine.h" #include "lsan/lsan_common.h" namespace __asan { // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits. // We use adaptive redzones: for larger allocation larger redzones are used. static u32 RZLog2Size(u32 rz_log) { CHECK_LT(rz_log, 8); return 16 << rz_log; } static u32 RZSize2Log(u32 rz_size) { CHECK_GE(rz_size, 16); CHECK_LE(rz_size, 2048); CHECK(IsPowerOfTwo(rz_size)); u32 res = Log2(rz_size) - 4; CHECK_EQ(rz_size, RZLog2Size(res)); return res; } static AsanAllocator &get_allocator(); // The memory chunk allocated from the underlying allocator looks like this: // L L L L L L H H U U U U U U R R // L -- left redzone words (0 or more bytes) // H -- ChunkHeader (16 bytes), which is also a part of the left redzone. // U -- user memory. // R -- right redzone (0 or more bytes) // ChunkBase consists of ChunkHeader and other bytes that overlap with user // memory. // If the left redzone is greater than the ChunkHeader size we store a magic // value in the first uptr word of the memory block and store the address of // ChunkBase in the next uptr. // M B L L L L L L L L L H H U U U U U U // | ^ // ---------------------| // M -- magic value kAllocBegMagic // B -- address of ChunkHeader pointing to the first 'H' static const uptr kAllocBegMagic = 0xCC6E96B9; struct ChunkHeader { // 1-st 8 bytes. u32 chunk_state : 8; // Must be first. u32 alloc_tid : 24; u32 free_tid : 24; u32 from_memalign : 1; u32 alloc_type : 2; u32 rz_log : 3; u32 lsan_tag : 2; // 2-nd 8 bytes // This field is used for small sizes. For large sizes it is equal to // SizeClassMap::kMaxSize and the actual size is stored in the // SecondaryAllocator's metadata. u32 user_requested_size : 29; // align < 8 -> 0 // else -> log2(min(align, 512)) - 2 u32 user_requested_alignment_log : 3; u32 alloc_context_id; }; struct ChunkBase : ChunkHeader { // Header2, intersects with user memory. u32 free_context_id; }; static const uptr kChunkHeaderSize = sizeof(ChunkHeader); static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize; COMPILER_CHECK(kChunkHeaderSize == 16); COMPILER_CHECK(kChunkHeader2Size <= 16); // Every chunk of memory allocated by this allocator can be in one of 3 states: // CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated. // CHUNK_ALLOCATED: the chunk is allocated and not yet freed. // CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone. enum { CHUNK_AVAILABLE = 0, // 0 is the default value even if we didn't set it. CHUNK_ALLOCATED = 2, CHUNK_QUARANTINE = 3 }; struct AsanChunk: ChunkBase { uptr Beg() { return reinterpret_cast(this) + kChunkHeaderSize; } uptr UsedSize(bool locked_version = false) { if (user_requested_size != SizeClassMap::kMaxSize) return user_requested_size; return *reinterpret_cast( get_allocator().GetMetaData(AllocBeg(locked_version))); } void *AllocBeg(bool locked_version = false) { if (from_memalign) { if (locked_version) return get_allocator().GetBlockBeginFastLocked( reinterpret_cast(this)); return get_allocator().GetBlockBegin(reinterpret_cast(this)); } return reinterpret_cast(Beg() - RZLog2Size(rz_log)); } bool AddrIsInside(uptr addr, bool locked_version = false) { return (addr >= Beg()) && (addr < Beg() + UsedSize(locked_version)); } }; struct QuarantineCallback { QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack) : cache_(cache), stack_(stack) { } void Recycle(AsanChunk *m) { CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE); atomic_store((atomic_uint8_t*)m, CHUNK_AVAILABLE, memory_order_relaxed); CHECK_NE(m->alloc_tid, kInvalidTid); CHECK_NE(m->free_tid, kInvalidTid); PoisonShadow(m->Beg(), RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY), kAsanHeapLeftRedzoneMagic); void *p = reinterpret_cast(m->AllocBeg()); if (p != m) { uptr *alloc_magic = reinterpret_cast(p); CHECK_EQ(alloc_magic[0], kAllocBegMagic); // Clear the magic value, as allocator internals may overwrite the // contents of deallocated chunk, confusing GetAsanChunk lookup. alloc_magic[0] = 0; CHECK_EQ(alloc_magic[1], reinterpret_cast(m)); } // Statistics. AsanStats &thread_stats = GetCurrentThreadStats(); thread_stats.real_frees++; thread_stats.really_freed += m->UsedSize(); get_allocator().Deallocate(cache_, p); } void *Allocate(uptr size) { void *res = get_allocator().Allocate(cache_, size, 1); // TODO(alekseys): Consider making quarantine OOM-friendly. if (UNLIKELY(!res)) ReportOutOfMemory(size, stack_); return res; } void Deallocate(void *p) { get_allocator().Deallocate(cache_, p); } private: AllocatorCache* const cache_; BufferedStackTrace* const stack_; }; typedef Quarantine AsanQuarantine; typedef AsanQuarantine::Cache QuarantineCache; void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const { PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic); // Statistics. AsanStats &thread_stats = GetCurrentThreadStats(); thread_stats.mmaps++; thread_stats.mmaped += size; } void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const { PoisonShadow(p, size, 0); // We are about to unmap a chunk of user memory. // Mark the corresponding shadow memory as not needed. FlushUnneededASanShadowMemory(p, size); // Statistics. AsanStats &thread_stats = GetCurrentThreadStats(); thread_stats.munmaps++; thread_stats.munmaped += size; } // We can not use THREADLOCAL because it is not supported on some of the // platforms we care about (OSX 10.6, Android). // static THREADLOCAL AllocatorCache cache; AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) { CHECK(ms); return &ms->allocator_cache; } QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) { CHECK(ms); CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache)); return reinterpret_cast(ms->quarantine_cache); } void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) { quarantine_size_mb = f->quarantine_size_mb; thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb; min_redzone = f->redzone; max_redzone = f->max_redzone; may_return_null = cf->allocator_may_return_null; alloc_dealloc_mismatch = f->alloc_dealloc_mismatch; release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms; } void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) { f->quarantine_size_mb = quarantine_size_mb; f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb; f->redzone = min_redzone; f->max_redzone = max_redzone; cf->allocator_may_return_null = may_return_null; f->alloc_dealloc_mismatch = alloc_dealloc_mismatch; cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms; } struct Allocator { static const uptr kMaxAllowedMallocSize = FIRST_32_SECOND_64(3UL << 30, 1ULL << 40); AsanAllocator allocator; AsanQuarantine quarantine; StaticSpinMutex fallback_mutex; AllocatorCache fallback_allocator_cache; QuarantineCache fallback_quarantine_cache; atomic_uint8_t rss_limit_exceeded; // ------------------- Options -------------------------- atomic_uint16_t min_redzone; atomic_uint16_t max_redzone; atomic_uint8_t alloc_dealloc_mismatch; // ------------------- Initialization ------------------------ explicit Allocator(LinkerInitialized) : quarantine(LINKER_INITIALIZED), fallback_quarantine_cache(LINKER_INITIALIZED) {} void CheckOptions(const AllocatorOptions &options) const { CHECK_GE(options.min_redzone, 16); CHECK_GE(options.max_redzone, options.min_redzone); CHECK_LE(options.max_redzone, 2048); CHECK(IsPowerOfTwo(options.min_redzone)); CHECK(IsPowerOfTwo(options.max_redzone)); } void SharedInitCode(const AllocatorOptions &options) { CheckOptions(options); quarantine.Init((uptr)options.quarantine_size_mb << 20, (uptr)options.thread_local_quarantine_size_kb << 10); atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch, memory_order_release); atomic_store(&min_redzone, options.min_redzone, memory_order_release); atomic_store(&max_redzone, options.max_redzone, memory_order_release); } void InitLinkerInitialized(const AllocatorOptions &options) { SetAllocatorMayReturnNull(options.may_return_null); allocator.InitLinkerInitialized(options.release_to_os_interval_ms); SharedInitCode(options); } bool RssLimitExceeded() { return atomic_load(&rss_limit_exceeded, memory_order_relaxed); } void SetRssLimitExceeded(bool limit_exceeded) { atomic_store(&rss_limit_exceeded, limit_exceeded, memory_order_relaxed); } void RePoisonChunk(uptr chunk) { // This could be a user-facing chunk (with redzones), or some internal // housekeeping chunk, like TransferBatch. Start by assuming the former. AsanChunk *ac = GetAsanChunk((void *)chunk); uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)ac); uptr beg = ac->Beg(); uptr end = ac->Beg() + ac->UsedSize(true); uptr chunk_end = chunk + allocated_size; if (chunk < beg && beg < end && end <= chunk_end && ac->chunk_state == CHUNK_ALLOCATED) { // Looks like a valid AsanChunk in use, poison redzones only. PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic); uptr end_aligned_down = RoundDownTo(end, SHADOW_GRANULARITY); FastPoisonShadowPartialRightRedzone( end_aligned_down, end - end_aligned_down, chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic); } else { // This is either not an AsanChunk or freed or quarantined AsanChunk. // In either case, poison everything. PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic); } } void ReInitialize(const AllocatorOptions &options) { SetAllocatorMayReturnNull(options.may_return_null); allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms); SharedInitCode(options); // Poison all existing allocation's redzones. if (CanPoisonMemory()) { allocator.ForceLock(); allocator.ForEachChunk( [](uptr chunk, void *alloc) { ((Allocator *)alloc)->RePoisonChunk(chunk); }, this); allocator.ForceUnlock(); } } void GetOptions(AllocatorOptions *options) const { options->quarantine_size_mb = quarantine.GetSize() >> 20; options->thread_local_quarantine_size_kb = quarantine.GetCacheSize() >> 10; options->min_redzone = atomic_load(&min_redzone, memory_order_acquire); options->max_redzone = atomic_load(&max_redzone, memory_order_acquire); options->may_return_null = AllocatorMayReturnNull(); options->alloc_dealloc_mismatch = atomic_load(&alloc_dealloc_mismatch, memory_order_acquire); options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs(); } // -------------------- Helper methods. ------------------------- uptr ComputeRZLog(uptr user_requested_size) { u32 rz_log = user_requested_size <= 64 - 16 ? 0 : user_requested_size <= 128 - 32 ? 1 : user_requested_size <= 512 - 64 ? 2 : user_requested_size <= 4096 - 128 ? 3 : user_requested_size <= (1 << 14) - 256 ? 4 : user_requested_size <= (1 << 15) - 512 ? 5 : user_requested_size <= (1 << 16) - 1024 ? 6 : 7; u32 min_rz = atomic_load(&min_redzone, memory_order_acquire); u32 max_rz = atomic_load(&max_redzone, memory_order_acquire); return Min(Max(rz_log, RZSize2Log(min_rz)), RZSize2Log(max_rz)); } static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) { if (user_requested_alignment < 8) return 0; if (user_requested_alignment > 512) user_requested_alignment = 512; return Log2(user_requested_alignment) - 2; } static uptr ComputeUserAlignment(uptr user_requested_alignment_log) { if (user_requested_alignment_log == 0) return 0; return 1LL << (user_requested_alignment_log + 2); } // We have an address between two chunks, and we want to report just one. AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk, AsanChunk *right_chunk) { // Prefer an allocated chunk over freed chunk and freed chunk // over available chunk. if (left_chunk->chunk_state != right_chunk->chunk_state) { if (left_chunk->chunk_state == CHUNK_ALLOCATED) return left_chunk; if (right_chunk->chunk_state == CHUNK_ALLOCATED) return right_chunk; if (left_chunk->chunk_state == CHUNK_QUARANTINE) return left_chunk; if (right_chunk->chunk_state == CHUNK_QUARANTINE) return right_chunk; } // Same chunk_state: choose based on offset. sptr l_offset = 0, r_offset = 0; CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset)); CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset)); if (l_offset < r_offset) return left_chunk; return right_chunk; } // -------------------- Allocation/Deallocation routines --------------- void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack, AllocType alloc_type, bool can_fill) { if (UNLIKELY(!asan_inited)) AsanInitFromRtl(); if (RssLimitExceeded()) { if (AllocatorMayReturnNull()) return nullptr; ReportRssLimitExceeded(stack); } Flags &fl = *flags(); CHECK(stack); const uptr min_alignment = SHADOW_GRANULARITY; const uptr user_requested_alignment_log = ComputeUserRequestedAlignmentLog(alignment); if (alignment < min_alignment) alignment = min_alignment; if (size == 0) { // We'd be happy to avoid allocating memory for zero-size requests, but // some programs/tests depend on this behavior and assume that malloc // would not return NULL even for zero-size allocations. Moreover, it // looks like operator new should never return NULL, and results of // consecutive "new" calls must be different even if the allocated size // is zero. size = 1; } CHECK(IsPowerOfTwo(alignment)); uptr rz_log = ComputeRZLog(size); uptr rz_size = RZLog2Size(rz_log); uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment); uptr needed_size = rounded_size + rz_size; if (alignment > min_alignment) needed_size += alignment; bool using_primary_allocator = true; // If we are allocating from the secondary allocator, there will be no // automatic right redzone, so add the right redzone manually. if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) { needed_size += rz_size; using_primary_allocator = false; } CHECK(IsAligned(needed_size, min_alignment)); if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) { if (AllocatorMayReturnNull()) { Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n", (void*)size); return nullptr; } ReportAllocationSizeTooBig(size, needed_size, kMaxAllowedMallocSize, stack); } AsanThread *t = GetCurrentThread(); void *allocated; if (t) { AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); allocated = allocator.Allocate(cache, needed_size, 8); } else { SpinMutexLock l(&fallback_mutex); AllocatorCache *cache = &fallback_allocator_cache; allocated = allocator.Allocate(cache, needed_size, 8); } if (UNLIKELY(!allocated)) { SetAllocatorOutOfMemory(); if (AllocatorMayReturnNull()) return nullptr; ReportOutOfMemory(size, stack); } if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) { // Heap poisoning is enabled, but the allocator provides an unpoisoned // chunk. This is possible if CanPoisonMemory() was false for some // time, for example, due to flags()->start_disabled. // Anyway, poison the block before using it for anything else. uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated); PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic); } uptr alloc_beg = reinterpret_cast(allocated); uptr alloc_end = alloc_beg + needed_size; uptr beg_plus_redzone = alloc_beg + rz_size; uptr user_beg = beg_plus_redzone; if (!IsAligned(user_beg, alignment)) user_beg = RoundUpTo(user_beg, alignment); uptr user_end = user_beg + size; CHECK_LE(user_end, alloc_end); uptr chunk_beg = user_beg - kChunkHeaderSize; AsanChunk *m = reinterpret_cast(chunk_beg); m->alloc_type = alloc_type; m->rz_log = rz_log; u32 alloc_tid = t ? t->tid() : 0; m->alloc_tid = alloc_tid; CHECK_EQ(alloc_tid, m->alloc_tid); // Does alloc_tid fit into the bitfield? m->free_tid = kInvalidTid; m->from_memalign = user_beg != beg_plus_redzone; if (alloc_beg != chunk_beg) { CHECK_LE(alloc_beg+ 2 * sizeof(uptr), chunk_beg); reinterpret_cast(alloc_beg)[0] = kAllocBegMagic; reinterpret_cast(alloc_beg)[1] = chunk_beg; } if (using_primary_allocator) { CHECK(size); m->user_requested_size = size; CHECK(allocator.FromPrimary(allocated)); } else { CHECK(!allocator.FromPrimary(allocated)); m->user_requested_size = SizeClassMap::kMaxSize; uptr *meta = reinterpret_cast(allocator.GetMetaData(allocated)); meta[0] = size; meta[1] = chunk_beg; } m->user_requested_alignment_log = user_requested_alignment_log; m->alloc_context_id = StackDepotPut(*stack); uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY); // Unpoison the bulk of the memory region. if (size_rounded_down_to_granularity) PoisonShadow(user_beg, size_rounded_down_to_granularity, 0); // Deal with the end of the region if size is not aligned to granularity. if (size != size_rounded_down_to_granularity && CanPoisonMemory()) { u8 *shadow = (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity); *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0; } AsanStats &thread_stats = GetCurrentThreadStats(); thread_stats.mallocs++; thread_stats.malloced += size; thread_stats.malloced_redzones += needed_size - size; if (needed_size > SizeClassMap::kMaxSize) thread_stats.malloc_large++; else thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++; void *res = reinterpret_cast(user_beg); if (can_fill && fl.max_malloc_fill_size) { uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size); REAL(memset)(res, fl.malloc_fill_byte, fill_size); } #if CAN_SANITIZE_LEAKS m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored : __lsan::kDirectlyLeaked; #endif // Must be the last mutation of metadata in this function. atomic_store((atomic_uint8_t *)m, CHUNK_ALLOCATED, memory_order_release); ASAN_MALLOC_HOOK(res, size); return res; } // Set quarantine flag if chunk is allocated, issue ASan error report on // available and quarantined chunks. Return true on success, false otherwise. bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr, BufferedStackTrace *stack) { u8 old_chunk_state = CHUNK_ALLOCATED; // Flip the chunk_state atomically to avoid race on double-free. if (!atomic_compare_exchange_strong((atomic_uint8_t *)m, &old_chunk_state, CHUNK_QUARANTINE, memory_order_acquire)) { ReportInvalidFree(ptr, old_chunk_state, stack); // It's not safe to push a chunk in quarantine on invalid free. return false; } CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state); return true; } // Expects the chunk to already be marked as quarantined by using // AtomicallySetQuarantineFlagIfAllocated. void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) { CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE); CHECK_GE(m->alloc_tid, 0); if (SANITIZER_WORDSIZE == 64) // On 32-bits this resides in user area. CHECK_EQ(m->free_tid, kInvalidTid); AsanThread *t = GetCurrentThread(); m->free_tid = t ? t->tid() : 0; m->free_context_id = StackDepotPut(*stack); Flags &fl = *flags(); if (fl.max_free_fill_size > 0) { // We have to skip the chunk header, it contains free_context_id. uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size; if (m->UsedSize() >= kChunkHeader2Size) { // Skip Header2 in user area. uptr size_to_fill = m->UsedSize() - kChunkHeader2Size; size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size); REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill); } } // Poison the region. PoisonShadow(m->Beg(), RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY), kAsanHeapFreeMagic); AsanStats &thread_stats = GetCurrentThreadStats(); thread_stats.frees++; thread_stats.freed += m->UsedSize(); // Push into quarantine. if (t) { AsanThreadLocalMallocStorage *ms = &t->malloc_storage(); AllocatorCache *ac = GetAllocatorCache(ms); quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m, m->UsedSize()); } else { SpinMutexLock l(&fallback_mutex); AllocatorCache *ac = &fallback_allocator_cache; quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack), m, m->UsedSize()); } } void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment, BufferedStackTrace *stack, AllocType alloc_type) { uptr p = reinterpret_cast(ptr); if (p == 0) return; uptr chunk_beg = p - kChunkHeaderSize; AsanChunk *m = reinterpret_cast(chunk_beg); // On Windows, uninstrumented DLLs may allocate memory before ASan hooks // malloc. Don't report an invalid free in this case. if (SANITIZER_WINDOWS && !get_allocator().PointerIsMine(ptr)) { if (!IsSystemHeapAddress(p)) ReportFreeNotMalloced(p, stack); return; } ASAN_FREE_HOOK(ptr); // Must mark the chunk as quarantined before any changes to its metadata. // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag. if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return; if (m->alloc_type != alloc_type) { if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) { ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type, (AllocType)alloc_type); } } else { if (flags()->new_delete_type_mismatch && (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) && ((delete_size && delete_size != m->UsedSize()) || ComputeUserRequestedAlignmentLog(delete_alignment) != m->user_requested_alignment_log)) { ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack); } } QuarantineChunk(m, ptr, stack); } void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) { CHECK(old_ptr && new_size); uptr p = reinterpret_cast(old_ptr); uptr chunk_beg = p - kChunkHeaderSize; AsanChunk *m = reinterpret_cast(chunk_beg); AsanStats &thread_stats = GetCurrentThreadStats(); thread_stats.reallocs++; thread_stats.realloced += new_size; void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true); if (new_ptr) { u8 chunk_state = m->chunk_state; if (chunk_state != CHUNK_ALLOCATED) ReportInvalidFree(old_ptr, chunk_state, stack); CHECK_NE(REAL(memcpy), nullptr); uptr memcpy_size = Min(new_size, m->UsedSize()); // If realloc() races with free(), we may start copying freed memory. // However, we will report racy double-free later anyway. REAL(memcpy)(new_ptr, old_ptr, memcpy_size); Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC); } return new_ptr; } void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { if (AllocatorMayReturnNull()) return nullptr; ReportCallocOverflow(nmemb, size, stack); } void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false); // If the memory comes from the secondary allocator no need to clear it // as it comes directly from mmap. if (ptr && allocator.FromPrimary(ptr)) REAL(memset)(ptr, 0, nmemb * size); return ptr; } void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) { if (chunk_state == CHUNK_QUARANTINE) ReportDoubleFree((uptr)ptr, stack); else ReportFreeNotMalloced((uptr)ptr, stack); } void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) { AllocatorCache *ac = GetAllocatorCache(ms); quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack)); allocator.SwallowCache(ac); } // -------------------------- Chunk lookup ---------------------- // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg). AsanChunk *GetAsanChunk(void *alloc_beg) { if (!alloc_beg) return nullptr; if (!allocator.FromPrimary(alloc_beg)) { uptr *meta = reinterpret_cast(allocator.GetMetaData(alloc_beg)); AsanChunk *m = reinterpret_cast(meta[1]); return m; } uptr *alloc_magic = reinterpret_cast(alloc_beg); if (alloc_magic[0] == kAllocBegMagic) return reinterpret_cast(alloc_magic[1]); return reinterpret_cast(alloc_beg); } AsanChunk *GetAsanChunkByAddr(uptr p) { void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast(p)); return GetAsanChunk(alloc_beg); } // Allocator must be locked when this function is called. AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) { void *alloc_beg = allocator.GetBlockBeginFastLocked(reinterpret_cast(p)); return GetAsanChunk(alloc_beg); } uptr AllocationSize(uptr p) { AsanChunk *m = GetAsanChunkByAddr(p); if (!m) return 0; if (m->chunk_state != CHUNK_ALLOCATED) return 0; if (m->Beg() != p) return 0; return m->UsedSize(); } AsanChunkView FindHeapChunkByAddress(uptr addr) { AsanChunk *m1 = GetAsanChunkByAddr(addr); if (!m1) return AsanChunkView(m1); sptr offset = 0; if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) { // The address is in the chunk's left redzone, so maybe it is actually // a right buffer overflow from the other chunk to the left. // Search a bit to the left to see if there is another chunk. AsanChunk *m2 = nullptr; for (uptr l = 1; l < GetPageSizeCached(); l++) { m2 = GetAsanChunkByAddr(addr - l); if (m2 == m1) continue; // Still the same chunk. break; } if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset)) m1 = ChooseChunk(addr, m2, m1); } return AsanChunkView(m1); } void Purge(BufferedStackTrace *stack) { AsanThread *t = GetCurrentThread(); if (t) { AsanThreadLocalMallocStorage *ms = &t->malloc_storage(); quarantine.DrainAndRecycle(GetQuarantineCache(ms), QuarantineCallback(GetAllocatorCache(ms), stack)); } { SpinMutexLock l(&fallback_mutex); quarantine.DrainAndRecycle(&fallback_quarantine_cache, QuarantineCallback(&fallback_allocator_cache, stack)); } allocator.ForceReleaseToOS(); } void PrintStats() { allocator.PrintStats(); quarantine.PrintStats(); } void ForceLock() { allocator.ForceLock(); fallback_mutex.Lock(); } void ForceUnlock() { fallback_mutex.Unlock(); allocator.ForceUnlock(); } }; static Allocator instance(LINKER_INITIALIZED); static AsanAllocator &get_allocator() { return instance.allocator; } bool AsanChunkView::IsValid() const { return chunk_ && chunk_->chunk_state != CHUNK_AVAILABLE; } bool AsanChunkView::IsAllocated() const { return chunk_ && chunk_->chunk_state == CHUNK_ALLOCATED; } bool AsanChunkView::IsQuarantined() const { return chunk_ && chunk_->chunk_state == CHUNK_QUARANTINE; } uptr AsanChunkView::Beg() const { return chunk_->Beg(); } uptr AsanChunkView::End() const { return Beg() + UsedSize(); } uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); } u32 AsanChunkView::UserRequestedAlignment() const { return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log); } uptr AsanChunkView::AllocTid() const { return chunk_->alloc_tid; } uptr AsanChunkView::FreeTid() const { return chunk_->free_tid; } AllocType AsanChunkView::GetAllocType() const { return (AllocType)chunk_->alloc_type; } static StackTrace GetStackTraceFromId(u32 id) { CHECK(id); StackTrace res = StackDepotGet(id); CHECK(res.trace); return res; } u32 AsanChunkView::GetAllocStackId() const { return chunk_->alloc_context_id; } u32 AsanChunkView::GetFreeStackId() const { return chunk_->free_context_id; } StackTrace AsanChunkView::GetAllocStack() const { return GetStackTraceFromId(GetAllocStackId()); } StackTrace AsanChunkView::GetFreeStack() const { return GetStackTraceFromId(GetFreeStackId()); } void InitializeAllocator(const AllocatorOptions &options) { instance.InitLinkerInitialized(options); } void ReInitializeAllocator(const AllocatorOptions &options) { instance.ReInitialize(options); } void GetAllocatorOptions(AllocatorOptions *options) { instance.GetOptions(options); } AsanChunkView FindHeapChunkByAddress(uptr addr) { return instance.FindHeapChunkByAddress(addr); } AsanChunkView FindHeapChunkByAllocBeg(uptr addr) { return AsanChunkView(instance.GetAsanChunk(reinterpret_cast(addr))); } void AsanThreadLocalMallocStorage::CommitBack() { GET_STACK_TRACE_MALLOC; instance.CommitBack(this, &stack); } void PrintInternalAllocatorStats() { instance.PrintStats(); } void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) { instance.Deallocate(ptr, 0, 0, stack, alloc_type); } void asan_delete(void *ptr, uptr size, uptr alignment, BufferedStackTrace *stack, AllocType alloc_type) { instance.Deallocate(ptr, size, alignment, stack, alloc_type); } void *asan_malloc(uptr size, BufferedStackTrace *stack) { return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true)); } void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { return SetErrnoOnNull(instance.Calloc(nmemb, size, stack)); } void *asan_reallocarray(void *p, uptr nmemb, uptr size, BufferedStackTrace *stack) { if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { errno = errno_ENOMEM; if (AllocatorMayReturnNull()) return nullptr; ReportReallocArrayOverflow(nmemb, size, stack); } return asan_realloc(p, nmemb * size, stack); } void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) { if (!p) return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true)); if (size == 0) { if (flags()->allocator_frees_and_returns_null_on_realloc_zero) { instance.Deallocate(p, 0, 0, stack, FROM_MALLOC); return nullptr; } // Allocate a size of 1 if we shouldn't free() on Realloc to 0 size = 1; } return SetErrnoOnNull(instance.Reallocate(p, size, stack)); } void *asan_valloc(uptr size, BufferedStackTrace *stack) { return SetErrnoOnNull( instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true)); } void *asan_pvalloc(uptr size, BufferedStackTrace *stack) { uptr PageSize = GetPageSizeCached(); if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { errno = errno_ENOMEM; if (AllocatorMayReturnNull()) return nullptr; ReportPvallocOverflow(size, stack); } // pvalloc(0) should allocate one page. size = size ? RoundUpTo(size, PageSize) : PageSize; return SetErrnoOnNull( instance.Allocate(size, PageSize, stack, FROM_MALLOC, true)); } void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, AllocType alloc_type) { if (UNLIKELY(!IsPowerOfTwo(alignment))) { errno = errno_EINVAL; if (AllocatorMayReturnNull()) return nullptr; ReportInvalidAllocationAlignment(alignment, stack); } return SetErrnoOnNull( instance.Allocate(size, alignment, stack, alloc_type, true)); } void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) { if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { errno = errno_EINVAL; if (AllocatorMayReturnNull()) return nullptr; ReportInvalidAlignedAllocAlignment(size, alignment, stack); } return SetErrnoOnNull( instance.Allocate(size, alignment, stack, FROM_MALLOC, true)); } int asan_posix_memalign(void **memptr, uptr alignment, uptr size, BufferedStackTrace *stack) { if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { if (AllocatorMayReturnNull()) return errno_EINVAL; ReportInvalidPosixMemalignAlignment(alignment, stack); } void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true); if (UNLIKELY(!ptr)) // OOM error is already taken care of by Allocate. return errno_ENOMEM; CHECK(IsAligned((uptr)ptr, alignment)); *memptr = ptr; return 0; } uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) { if (!ptr) return 0; uptr usable_size = instance.AllocationSize(reinterpret_cast(ptr)); if (flags()->check_malloc_usable_size && (usable_size == 0)) { GET_STACK_TRACE_FATAL(pc, bp); ReportMallocUsableSizeNotOwned((uptr)ptr, &stack); } return usable_size; } uptr asan_mz_size(const void *ptr) { return instance.AllocationSize(reinterpret_cast(ptr)); } void asan_mz_force_lock() { instance.ForceLock(); } void asan_mz_force_unlock() { instance.ForceUnlock(); } void AsanSoftRssLimitExceededCallback(bool limit_exceeded) { instance.SetRssLimitExceeded(limit_exceeded); } } // namespace __asan // --- Implementation of LSan-specific functions --- {{{1 namespace __lsan { void LockAllocator() { __asan::get_allocator().ForceLock(); } void UnlockAllocator() { __asan::get_allocator().ForceUnlock(); } void GetAllocatorGlobalRange(uptr *begin, uptr *end) { *begin = (uptr)&__asan::get_allocator(); *end = *begin + sizeof(__asan::get_allocator()); } uptr PointsIntoChunk(void* p) { uptr addr = reinterpret_cast(p); __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr); if (!m) return 0; uptr chunk = m->Beg(); if (m->chunk_state != __asan::CHUNK_ALLOCATED) return 0; if (m->AddrIsInside(addr, /*locked_version=*/true)) return chunk; if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(/*locked_version*/ true), addr)) return chunk; return 0; } uptr GetUserBegin(uptr chunk) { __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk); CHECK(m); return m->Beg(); } LsanMetadata::LsanMetadata(uptr chunk) { metadata_ = reinterpret_cast(chunk - __asan::kChunkHeaderSize); } bool LsanMetadata::allocated() const { __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); return m->chunk_state == __asan::CHUNK_ALLOCATED; } ChunkTag LsanMetadata::tag() const { __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); return static_cast(m->lsan_tag); } void LsanMetadata::set_tag(ChunkTag value) { __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); m->lsan_tag = value; } uptr LsanMetadata::requested_size() const { __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); return m->UsedSize(/*locked_version=*/true); } u32 LsanMetadata::stack_trace_id() const { __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); return m->alloc_context_id; } void ForEachChunk(ForEachChunkCallback callback, void *arg) { __asan::get_allocator().ForEachChunk(callback, arg); } IgnoreObjectResult IgnoreObjectLocked(const void *p) { uptr addr = reinterpret_cast(p); __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr); if (!m) return kIgnoreObjectInvalid; if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr)) { if (m->lsan_tag == kIgnored) return kIgnoreObjectAlreadyIgnored; m->lsan_tag = __lsan::kIgnored; return kIgnoreObjectSuccess; } else { return kIgnoreObjectInvalid; } } } // namespace __lsan // ---------------------- Interface ---------------- {{{1 using namespace __asan; // NOLINT // ASan allocator doesn't reserve extra bytes, so normally we would // just return "size". We don't want to expose our redzone sizes, etc here. uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } int __sanitizer_get_ownership(const void *p) { uptr ptr = reinterpret_cast(p); return instance.AllocationSize(ptr) > 0; } uptr __sanitizer_get_allocated_size(const void *p) { if (!p) return 0; uptr ptr = reinterpret_cast(p); uptr allocated_size = instance.AllocationSize(ptr); // Die if p is not malloced or if it is already freed. if (allocated_size == 0) { GET_STACK_TRACE_FATAL_HERE; ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack); } return allocated_size; } void __sanitizer_purge_allocator() { GET_STACK_TRACE_MALLOC; instance.Purge(&stack); } #if !SANITIZER_SUPPORTS_WEAK_HOOKS // Provide default (no-op) implementation of malloc hooks. SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook, void *ptr, uptr size) { (void)ptr; (void)size; } SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *ptr) { (void)ptr; } #endif