/* Implementation of gamma function according to ISO C. Copyright (C) 1997-2018 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and Jakub Jelinek <jj@ultra.linux.cz, 1999. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see <http://www.gnu.org/licenses/>. */ #include "quadmath-imp.h" __float128 tgammaq (__float128 x) { int sign; __float128 ret; ret = __quadmath_gammaq_r (x, &sign); return sign < 0 ? -ret : ret; } /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's approximation to gamma function. */ static const __float128 gamma_coeff[] = { 0x1.5555555555555555555555555555p-4Q, -0xb.60b60b60b60b60b60b60b60b60b8p-12Q, 0x3.4034034034034034034034034034p-12Q, -0x2.7027027027027027027027027028p-12Q, 0x3.72a3c5631fe46ae1d4e700dca8f2p-12Q, -0x7.daac36664f1f207daac36664f1f4p-12Q, 0x1.a41a41a41a41a41a41a41a41a41ap-8Q, -0x7.90a1b2c3d4e5f708192a3b4c5d7p-8Q, 0x2.dfd2c703c0cfff430edfd2c703cp-4Q, -0x1.6476701181f39edbdb9ce625987dp+0Q, 0xd.672219167002d3a7a9c886459cp+0Q, -0x9.cd9292e6660d55b3f712eb9e07c8p+4Q, 0x8.911a740da740da740da740da741p+8Q, -0x8.d0cc570e255bf59ff6eec24b49p+12Q, }; #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0])) /* Return gamma (X), for positive X less than 1775, in the form R * 2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to avoid overflow or underflow in intermediate calculations. */ static __float128 gammal_positive (__float128 x, int *exp2_adj) { int local_signgam; if (x < 0.5Q) { *exp2_adj = 0; return expq (__quadmath_lgammaq_r (x + 1, &local_signgam)) / x; } else if (x <= 1.5Q) { *exp2_adj = 0; return expq (__quadmath_lgammaq_r (x, &local_signgam)); } else if (x < 12.5Q) { /* Adjust into the range for using exp (lgamma). */ *exp2_adj = 0; __float128 n = ceilq (x - 1.5Q); __float128 x_adj = x - n; __float128 eps; __float128 prod = __quadmath_gamma_productq (x_adj, 0, n, &eps); return (expq (__quadmath_lgammaq_r (x_adj, &local_signgam)) * prod * (1 + eps)); } else { __float128 eps = 0; __float128 x_eps = 0; __float128 x_adj = x; __float128 prod = 1; if (x < 24) { /* Adjust into the range for applying Stirling's approximation. */ __float128 n = ceilq (24 - x); x_adj = x + n; x_eps = (x - (x_adj - n)); prod = __quadmath_gamma_productq (x_adj - n, x_eps, n, &eps); } /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)). Compute gamma (X_ADJ + X_EPS) using Stirling's approximation, starting by computing pow (X_ADJ, X_ADJ) with a power of 2 factored out. */ __float128 exp_adj = -eps; __float128 x_adj_int = roundq (x_adj); __float128 x_adj_frac = x_adj - x_adj_int; int x_adj_log2; __float128 x_adj_mant = frexpq (x_adj, &x_adj_log2); if (x_adj_mant < M_SQRT1_2q) { x_adj_log2--; x_adj_mant *= 2; } *exp2_adj = x_adj_log2 * (int) x_adj_int; __float128 ret = (powq (x_adj_mant, x_adj) * exp2q (x_adj_log2 * x_adj_frac) * expq (-x_adj) * sqrtq (2 * M_PIq / x_adj) / prod); exp_adj += x_eps * logq (x_adj); __float128 bsum = gamma_coeff[NCOEFF - 1]; __float128 x_adj2 = x_adj * x_adj; for (size_t i = 1; i <= NCOEFF - 1; i++) bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i]; exp_adj += bsum / x_adj; return ret + ret * expm1q (exp_adj); } } __float128 __quadmath_gammaq_r (__float128 x, int *signgamp) { int64_t hx; uint64_t lx; __float128 ret; GET_FLT128_WORDS64 (hx, lx, x); if (((hx & 0x7fffffffffffffffLL) | lx) == 0) { /* Return value for x == 0 is Inf with divide by zero exception. */ *signgamp = 0; return 1.0 / x; } if (hx < 0 && (uint64_t) hx < 0xffff000000000000ULL && rintq (x) == x) { /* Return value for integer x < 0 is NaN with invalid exception. */ *signgamp = 0; return (x - x) / (x - x); } if (hx == 0xffff000000000000ULL && lx == 0) { /* x == -Inf. According to ISO this is NaN. */ *signgamp = 0; return x - x; } if ((hx & 0x7fff000000000000ULL) == 0x7fff000000000000ULL) { /* Positive infinity (return positive infinity) or NaN (return NaN). */ *signgamp = 0; return x + x; } if (x >= 1756) { /* Overflow. */ *signgamp = 0; return FLT128_MAX * FLT128_MAX; } else { SET_RESTORE_ROUNDF128 (FE_TONEAREST); if (x > 0) { *signgamp = 0; int exp2_adj; ret = gammal_positive (x, &exp2_adj); ret = scalbnq (ret, exp2_adj); } else if (x >= -FLT128_EPSILON / 4) { *signgamp = 0; ret = 1 / x; } else { __float128 tx = truncq (x); *signgamp = (tx == 2 * truncq (tx / 2)) ? -1 : 1; if (x <= -1775) /* Underflow. */ ret = FLT128_MIN * FLT128_MIN; else { __float128 frac = tx - x; if (frac > 0.5Q) frac = 1 - frac; __float128 sinpix = (frac <= 0.25Q ? sinq (M_PIq * frac) : cosq (M_PIq * (0.5Q - frac))); int exp2_adj; ret = M_PIq / (-x * sinpix * gammal_positive (-x, &exp2_adj)); ret = scalbnq (ret, -exp2_adj); math_check_force_underflow_nonneg (ret); } } } if (isinfq (ret) && x != 0) { if (*signgamp < 0) return -(-copysignq (FLT128_MAX, ret) * FLT128_MAX); else return copysignq (FLT128_MAX, ret) * FLT128_MAX; } else if (ret == 0) { if (*signgamp < 0) return -(-copysignq (FLT128_MIN, ret) * FLT128_MIN); else return copysignq (FLT128_MIN, ret) * FLT128_MIN; } else return ret; }